
Recent Advances in the Particle Finite
Element Method Towards More Complex Fluid
Flow Applications

Norberto M. Nigro, Juan M. Gimenez and Sergio R. Idelsohn

Abstract This paper presents a state of the art in the Particle Finite Element Method,
normally called PFEM, its emphasis in the new ideas oriented to extend its application
not only to solve fluid structure interaction and multifluid problems, also bring new
opportunities to shorten the gap between engineering design times and computational
simulation times for general problems when Eulerian formulation were typically
chosen. In order to reduce the long history of this method here the starting point begins
with the reformulation of the method to solve academic and real problems in real
time or at least in drastically reduced computational times. The main topics involved
in this paper are around the stability and the accuracy of Lagrangian formulations
against its Eulerian counterpart shown through several academic benchmarks and a
deep analysis of the efficiency revealing that the original method needs some new
features. The former brought out a new integration method called X-IVAS and the
later has produced a new version of the method called PFEM in fixed Mesh. Once
the method had shown its good performance and how the new features impact on
the final efficiency the last developments had been done in extending the application
of this new method in multifluids and other complex fluid mechanics problems like
turbulence and reactive flows.
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1 Introduction

Standard formulations for the solution of the incompressible Navier-Stokes equations
may be split in two classes depending on the approach chosen for the description
of the inertial terms, namely Eulerian and Lagrangian approaches. In the first class,
the acceleration is described as the sum of the spatial derivative of the velocity plus
the convective term. In the second approach, the acceleration is simply described as
the total derivative of the velocity. Over the last 30 years, computer simulation of
incompressible flows has been mainly based on the Eulerian formulation (see [18]
for references on this topic). However, with this formulation, it is still difficult to
analyze large 3D problems in which the shape of the free-surfaces or internal inter-
faces changes continuously or in fluid structure interactions where complex contact
problems are involved. In all these problems the computing time is sometimes so high
that makes the method unpractical. In the last few years, several solutions using the
Lagrangian formulation to solve the compressible and incompressible Navier-Stokes
equations have been developed [3, 9, 11]. The advantages of these solutions to solve
problems with free-surfaces or multi-fluids with complicated internal interfaces have
been demonstrated [15]. In general, these formulations are more expensive than a
standard Eulerian approaches if they are used in homogeneous flows, but they justify
their popularity in solving free- surface flows or complicated multi-fluids flows in
which the standard Eulerian formulations are inaccurate or, sometimes, impossible
to be used [15].

When attempting to compare the efficiency of Eulerian codes against Lagrangian
ones the conclusions were not so definite. Even though Lagrangian solvers are simpler
than Eulerian ones the very small time steps normally employed in the former has
reduced its application only to specific examples.

Only few attempts in the past thought in using Lagrangian formulation for homo-
geneous fluid flow. To cite here only a few contributions we can mention the work
of Joe Stam [23]. In these work the author solve the Navier-Stokes equations in
the context of video games leaving the message that it is possible to design simpler
numerical methods that may be applied on this challenge context where the efficiency
is the key point.

One of the reasons why there are so few jobs using Lagrangian methods for homo-
geneous fluid flow applications may be the important computational cost involved
in the remeshing. Lagrangian solvers are principally based on moving particles, and
after that some sort of mesh should be built depending on the specific method the way
to do that. PFEM is one of the most popular Lagrangian methods with the particular
fact that the moving particles define a mesh where the discrete equations are solved.
Its origins go back to the early 2,000. For brevity reasons its state of the art is given
up here. Readers interested in the basis of the method may see http://www.cimne.
com/pfem/ where there are most of the publications of the method. Among the most
cited publications here we can mention [3, 12, 13, 19].

This feature obliged the method to deform the mesh up to certain limit where for
geometric reasons some sort of remeshing should be done. As the remeshing was only

http://www.cimne.com/pfem/
http://www.cimne.com/pfem/
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limited to some special time intervals the deforming mesh added another ingredient
to the time step selection, to avoid the mesh inversion. This severe limitation together
with another imposed for the non-linearities and those proper of explicit schemes
made the efficiency of original PFEM a serious problem. Lately the method evolved
thanks to the progress done in parallel mesh generation and remeshing avoiding this
serious limitation in some measure.

Even though these limitations and the large community that normally employ
Eulerian codes the Lagrangian formulation contains some nice features that need to
be reviewed here.

One of the most important rests on the missing of the convective term in the bal-
ance equations, converting the non-symmetric equations in symmetric and positive
definite. For Navier-Stokes equations this fact has a by-product, converting in lin-
ear the original non-linear momentum equation. These two facts avoid the usage of
stabilization terms with the strong consequence of not adding the typical numerical
diffusion needed to stabilize it. Not having convective terms, for constant coeffi-
cient problems as for laminar and homogeneous fluid flow and also for DNS (Direct
Numerical Simulation), the system matrices may be factorized at the beginning and
reusing them all the time steps, with an important saving in cpu-time. For convection
dominated flows the time step in Eulerian formulations needs to be limited attending
non-linearities and stability reasons. On the contrary, the Lagrangian formulations
do not suffer from this inconvenience when the equations are integrated with good
accuracy. This is a key point that deserves much more attention.

In particular PFEM has evolved considerably over the past few years, incorporat-
ing new ideas seeking enlarge the time steps largely in stable and accurate way.

In this sense PFEM has incorporated a novel time integration scheme called
X-IVS and its extension X-IVAS. This form of integrating based in following the
streamlines of the flow in the present time step is to some extent a better way to solve
the non-linearities of the equations of the flow.

In this way it is possible to solve the complex flow situations allowing to extend
the time steps in a significant way.

On the other hand being the information carried by the particles using the mesh
only for computing secondary fields confers to the method of high accuracy.

Therefore the goals of accuracy, robustness (stability) and efficiency are signif-
icantly improved by these new ideas included in the last version of PFEM, called
Fixed Mesh PFEM.

One of the main target of this work is to show that Lagrangian formulations are not
only valuable to solve heterogeneous fluid flows with free-surfaces. We will prove on
the contrary that even for homogeneous fluid flows, without free-surfaces or internal
interfaces, they are able to yield accurate solutions while being competitively fast
when compared to state-of-the-art eulerian solvers. Also, another goal of this paper is
to update the state of the art of PFEM joining some basis published before [6, 7, 10,
11, 22], with new findings discovering more and more nice features of the method
to become a competitive tool in the future for high performance computations.

The paper starts with a mathematical review of the problems to be treated writing
them in an Eulerian and a Lagrangian formalism.
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Next, the time integration schemes are presented where it is possible to understand
the novelty introduced by X-IVS and X-IVAS.

It is followed by a section dedicated to two examples that have served as inspiring
muses for the development of new ideas which were then applied to PFEM. In these
examples may be understood the benefits of using Lagrangian solvers. While these
examples solved by Eulerian codes needs a lot of numerical artifacts, they are trivially
solved by Lagrangian ones. The next section presents the two versions of PFEM.
The first called Mobile Mesh Version is an extension to the original PFEM with
permanent remeshing and a X-IVAS time integration scheme included. Showing the
pros and cons the rest of the section is devoted to the novel idea of mixing two view
points, one based on particles and the other based on the background and fixed mesh.
This idea allowed to increase the efficiency in a very important way. Even though
some earlier attempts had been done in using the duality of particle and mesh, for
example [8], at the moment of designing the idea this information was not on the
knowledge of the authors and moreover, both ideas have only few things in common.

The next section presents some details about the Fixed Mesh version of PFEM,
how to manage the particle inventory, how to share the information between particles
and mesh. It is followed by a section where the focus is on the treatment of the
diffusive terms. Contrary to what may be a prior assumed, the Lagrangian behavior
has been superior to the Eulerian one, in regard to precision being that this part of the
calculation is of Eulerian nature. The last section is devoted to show some examples
solved numerically by PFEM where it is possible to realize that in the present status
PFEM is able to solve turbulent flows, multifluids and multiphase flows, general
multiphysics, among others. Finally some conclusions are included.

2 X-IVAS: A New Integration Method to Enhance Accuracy
and Stability

In this section the emphasis is placed on the main features that produce the big
advantages of PFEM against any other method. In general the interesting problem to
be solved is the general transport equation that is very widespread in the engineering
applications. Both, the passive scalar transport equation and the incompressible flow
represented by the Navier-Stokes equations will be considered in the rest of the paper.

In order to understand the evolution of PFEM the Eulerian and Lagrangian for-
mulations are introduced first.

2.1 Scalar Transport Equation

In the Eulerian framework a fixed coordinate system is considered as the reference
for the physical quantities. The scalar transport equation is written as:
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∂T

∂t
+ ∇ · (vT ) = ∇ · (α∇T ) + Q (1)

where T (x, t) is the dependent variable (passive scalar), for example the temperature,
v is the velocity vector, for this problem a given data and α the diffusivity, with ∇·
the divergence operator, ∇ the gradient operator and ∂

∂t the temporal derivative. In
this problem x represents a fixed coordinate.

Normally this equation may be rewritten in the following form:

∂T

∂t
+ v · ∇T = ∇ · (α∇T ) + Q − (∇ · v)T

(2)

where the first order derivative is split in two terms, one for the convective transport
and the other for the source term generated by the non free divergence velocity field.
Normally the incompressible flow satisfies the free divergence and in this case this
source term may be neglected.

On the other hand in the Lagrangian framework the same problem is written as:

DT

Dt
= ∇ · (α∇T ) + Q

(3)

where DT
Dt = ∂T

∂t + v · ∇T is the material derivative. The convective term works like
a variable transformation between that measured in a fixed coordinate system and
that measured in the moving coordinate system that travels with the fluid velocity
v. In this transformation the velocity field is incorporated in the dependent variable
itself being the unknown variable T = T (xp, t) with xp the location of a fluid
parcel included within the material volume. This location is at the same time another
variable, so it is needed to solve an additional equation like:

Dxp

Dt
= v

(4)

Finally the problem in Lagrangian framework is:

DT

Dt
= ∇ · (α∇T ) + Q

Dxp

Dt
= v (5)
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2.2 Incompressible Viscous Fluid Flow: Navier-Stokes Equations

The other problem that in this paper deserves special attention is the fluid dynamics
of an incompressible and viscous flow. It is very well known that this problem is
governed by the Navier-Stokes equations that presents the balance of the linear
momentum equation and the continuity equation or the mass balance.

Both equations normally written together in an Eulerian framework look like:

∂ρ

∂t
+ ∇ · (vρ) = 0

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = ∇ · (σ) + F (6)

Being σ the stress tensor which definition may be split in two parts, one for the
spherical (isotropic) component being proportional to the fluid pressure and the other,
the deviatoric or viscous component normally written as τ . The operator ⊗ means
the tensor or dyadic product between two vectors. F represents the external force,
for example the gravity, and finally ρ is the density. For incompressible flows the
density is constant, therefore, the continuity equation becomes a constrain over the
velocity field, as:

∇ · (v) = 0
(7)

Applying the above restriction also in the linear momentum equation produces a
simplified and non-conservative version like

∇ · (v) = 0

ρ(
∂v
∂t

+ v · ∇v) = ∇ · (σ) + F (8)

For the Lagrangian formulation the above system is written as:

∇ · (v) = 0

ρ
Dv
Dt

= ∇ · (σ) + F

Dxp

Dt
= v

(9)
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2.3 Time Integration

In this section the time integration of both frameworks, the Eulerian and the
Lagrangian is presented.

For simplicity the scalar transport equation is chosen first leaving for some special
topics the extension to the vector equation system governing the fluid dynamics of
one phase incompressible viscous flow.

2.3.1 Scalar Transport Equation

For the Eulerian framework represented by Eq. (2) the integration is normally done as

tn+1∫

tn

∂T

∂t
dt =

tn+1∫

tn

(−v · ∇T + ∇ · (α∇T ) + Q)dt

T n+1(x) − T n(x) =
tn+1∫

tn

(−v · ∇T (x) + ∇ · (α∇T (x)) + Q(x, t))dt

T n+1(x) − T n(x) = (−v · ∇T (x) + ∇ · (α∇T (x)) + Q(x, t))n+θ�t

(10)

For some θ ∈ (0, 1) the last expression in (10) gives the exact solution. As this
parameter is unknown and problem dependent some fixed values for θ are adopted,
θ = 0 for explicit schemes, θ = 1 for implicit schemes and θ = 1

2 for Crank-
Nicholson among others.

(−v · ∇T + ∇ · (α∇T ) + Q)n+θ = θ
(

− v · ∇T + ∇ · (α∇T ) + Q
)n+1

+ (1 − θ)
(

− v · ∇T + ∇ · (α∇T ) + Q
)n

(11)
Replacing (11) in (10)

T n+1(x) − T n(x) = θ
(

− v · ∇T + ∇ · (α∇T ) + Q
)n+1

�t

+ (1 − θ)
(

− v · ∇T + ∇ · (α∇T ) + Q
)n

�t
(12)

The right hand side in (12) is evaluated using only the information of the nodal
point x at the two extremes of the time interval, tn and tn+1 = tn + �t .

For the Lagrangian framework a similar integration scheme is applied.
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tn+1∫

tn

DT

Dt
dt =

tn+1∫

tn

(∇ · (α∇T ) + Q)t dt

tn+1∫

tn

Dxp

Dt
dt =

tn+1∫

tn

vt dt

T (xp
n+1, tn+1) − T (xp

n , tn) =
tn+1∫

tn

(
∇ · (α∇T ) + Q

)t
dt

xp
n+1 − xp

n =
tn+1∫

tn

vt dt

(13)

In a straightforward way it is possible to apply (11) in (13) producing the following
standard Lagrangian form:

T (xp
n+1, tn+1) − T (xp

n, tn) =
tn+1∫

tn

(
∇ · (α∇T ) + Q

)t
dt

= θ
(
∇ · (α∇T ) + Q

)n+1
�t+

(1 − θ)
(
∇ · (α∇T ) + Q

)n
�t

xp
n+1 − xp

n = θvn+1�t + (1 − θ)vn�t

(14)

2.3.2 Navier-Stokes

The extension of the time discretization to the Navier-Stokes equations needs to solve
the pressure-velocity coupling.

It is well known that the velocity vector unknown arises solving the vector
momentum equation. Being the pressure the scalar unknown for which the continuity
equation might be the natural choice, in this equation the pressure does not appear.
Moreover, this equation is not a time evolution equation, it works like a constraint
over the velocity field, choosing only those velocity field that satisfy a free diver-
gence. To discover the equation associated with the pressure several alternatives are
possible. Among them, segregated or projection methods like fractional step appear
as good candidates. The idea behind the fractional step is to write the momentum
equation discretized in time in such a way to firstly predict a velocity using the old
value of the pressure (the pressure at the old time step) and after correcting it with the
updated pressure that arises from applying the divergence operator to the correction
equation getting a Poisson like equation for the pressure.

In synthesis the fractional step may be viewed as:
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vn+1 − vn =
(
∇ · σ + f

)n+θ
�t

vn+1 − v̂n+1 + v̂n+1 − vn = θ
(
∇ · σ + f

)n+1
�t + (1 − θ)

(
∇ · σ + f

)n
�t

vn+1 − v̂n+1 + v̂n+1 − vn = θ
(

− ∇ p + ∇ · v + f
)n+1

�t+
(1 − θ)

(
− ∇ p + ∇ · v + f

)n
�t

vn+1 − v̂n+1 + v̂n+1 − vn = θ(−∇ pn+1 + ∇ pn)�t − θ∇ pn�t + θ
(
∇ · v + f

)n+1
�t

+ (1 − θ)
(

− ∇ p + ∇ · v + f
)n

�t

vn+1 − v̂n+1 + v̂n+1 − vn = θ(−∇ pn+1 + ∇ pn)�t − ∇ pn�t

+ θ
(
∇ · v + f

)n+1
�t

+ (1 − θ)
(
∇ · v + f

)n
�t

vn+1 − v̂n+1 + v̂n+1 − vn = θ(−∇ pn+1 + ∇ pn)�t − ∇ pn�t + θ
(
∇ · v + f

)n+1
�t

+ (1 − θ)
(
∇ · v + f

)n
�t

vn+1 − v̂n+1︸ ︷︷ ︸
CORRECTOR

+ v̂n+1 − vn︸ ︷︷ ︸
PREDICTOR

= θ(−∇ pn+1 + ∇ pn)�t︸ ︷︷ ︸
CORRECTOR

− ∇ pn�t︸ ︷︷ ︸
PREDICTOR

+ θ
(
∇ · v(̂vn+1) + f

)n+1
�t + (1 − θ)

(
∇ · v + f

)n
�t︸ ︷︷ ︸

PREDICTOR

(15)

Spiting the predictor and corrector parts of the equation in two steps and applying
the divergence to the corrector step using the constraint that ∇vn+1 = 0,

PREDICTOR

v̂n+1 − vn = −∇ pn�t + θ
(
∇ · v(̂vn+1) + f

)n+1
�t

+ (1 − θ)
(
∇ · v + f

)n
�t

PRESSURE EQUATION

∇ ·
(

vn+1 − v̂n+1 = −θ�t (∇ pn+1 − ∇ pn)
)

∇ · v̂n+1 = θ�t∇ · (∇δ p) = θ�t∇2δ p

CORRECTOR

vn+1 − v̂n+1 = −θ�t∇δ p (16)
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with δ p = pn+1− pn and ∇2 the Laplacian operator. The equation for the pressure is
interposed between the predictor and corrector equations for the momentum equation
as it is normally found in the algorithm.

For the Eulerian formulation the above three steps may be applied straightforward
only changing v by v(x) and p by p(x).

For the Lagrangian formulation the above algorithm may be summarized as:

PREDICTOR
Explicit part

xp
n+1 = xp

n +
∫ tn+1

tn
vn(xp

τ )dτ

̂̂vn+1
(xp

n+1) − vn(xp
n) =

∫ tn+1

tn
−∇ pn(xp

τ ) + (1 − θ)
(
∇ · τn

v (xp
τ ) + fn(xp

τ )
)

dτ

Implicit part

v̂n+1(x) −̂̂vn+1
(x) = θ

(
∇ · τv (̂vn+1(x)) + fn+1

)
�t

PRESSURE EQUATION

∇ · v̂n+1(x) = θ�t∇2δ p(x)

CORRECTOR

vn+1(xp) − v̂n+1(xp) = −θ�t∇δ p(xp) (17)

It should be noted that for the whole procedure of Lagrangian formulation two
coordinates are used, one for the particles (xp) and the other for the mesh (x). The
relation between them is presented in a next section.

2.4 X-IVS [X-IVAS]: Explicit Integration Velocity [Acceleration]
Scheme

In the scalar transport equation the velocity field is a given data, known not only for
its spatial variation also for its time variation. Therefore it is possible to include this
information explicitly in the Lagrangian formulation. Using a high accurate particle
tracking integration scheme it is possible to solve simple and complex pathlines
normally present in fluid flows (Figs. 1 and 2).



Recent Advances in the Particle Finite Element Method 277

Fig. 1 Time integration

Fig. 2 Streamline integration updating the particle position and state

xp
n+1 = xp

n +
tn+1∫

tn

vτ (xp
τ )dτ (18)

• Real trajectory:

xp
n+1 = xp

n +
n+1∫

n

vτ (xp
τ ) dτ . (19)

• Simple approximation:
x̂p

n+1 = xp
n + vn(xp

n)�t (20)
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Fig. 3 Streamline integration updating the particle position and state

• Streamlines approximation:

yn+1
p = xp

n +
N−1∑
i=0

vn(y
n+ i

N
p ) δt (21)

2.4.1 Remarks

• Adaptive substep: δt = �t
N ∝ CoELE. These integration substeps may be replaced

by an almost exact integration [18]. However for practical applications a very little
difference in accuracy is observed for the former with an extra cost for the later
that push the decision on the former.

• For vector systems where normally the velocity field is also an unknown the particle
velocity vp may also be updated following the same ideas changing the name of
the method to X-IVAS.

• for fluxes depending on the spatial derivatives (like diffusive) X-IVAS method is
also applied.

• This novel integration in Lagrangian context allows to a significantly better parti-
cle trajectory integration (X-IVS) following streamlines resolving more difficult
details of the flow with high accuracy. Figure 3 shows some details that may be
resolved without a drastically reduction in the time step, as it is normally done by
standard Lagrangian integration schemes.

• In general this integration scheme does not suffer for strong time step restrictions
caused by the non-linearities present in the flow field (Fig. 3).

As it was mentioned for the unknown field, the temperature, only known for the
old time step tn , an approximation to the future time step should be done using the
X-IVAS method.
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T (xp
n+1, tn+1) − T (xp

n, tn) =
tn+1∫

tn

Q(xp
τ , τ )dτ +

tn+1∫

tn

(
∇ · (α∇T (xp

τ , τ ))
)

dτ

(22)
In the PFEM method the last term at the right hand side is approximated in the

following form:

T (xp
n+1, tn+1) − T (xp

n, tn) ≈
tn+1∫

tn

Q(xp
τ , τ )dτ

+ (1 − θ)

tn+1∫

tn

∇ · (α∇T (xp
τ , tn))dτ

︸ ︷︷ ︸
explicit

+ θ∇ · (α∇T (xp
n+1, tn+1))�t︸ ︷︷ ︸

implicit

(23)

The last integration is only one possibility to choose among others, the explicit part
is solved simultaneously with the particle pathline computation, while the implicit
one is solved using the final position of the particles. However other choices may be
done in order to improve this computation, that for brevity reasons are not included
in this paper.

Comparing (12) with (23) the main difference between both may be written as:

�EUL→LAG = T (xp
n+1, tn+1) − T (xp

n, tn)

−
(

T n+1(x) − T n(x) + θv(x, tn+1) · ∇T (x, tn+1)�t

+ (1 − θ)v(x, tn) · ∇T (x, tn)�t
) (24)

This difference is due to the error produced by the transformation between both
frames, an Eulerian or fixed one and the Lagrangian or mobile one. This difference
should tend to zero when the time step goes to zero. However, for large time steps
normally needed to speed up the computation, the fact of evaluating the velocity
field placed on a fixed position (x) for Eulerian formulation in two different time
intervals may introduce large errors. Moreover the spatial stabilization needed for
advection dominant problems introduce also some extra errors that tends to dissipate
the solution much more than the physics, specially at large time steps.
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2.5 A Simple Coupled System, Solving the Coupled Flow Field
and a Passive Scalar

One of the main purposes of this development is its application to solve coupled
problems where the flow and several other fields are solved simultaneously with
some sort of interaction. For brevity a simple case is here presented. It deals with the
coupling of an incompressible viscous flow with a scalar transport like temperature
using the Boussinesq approach.

2.5.1 Physical Equations to Solve

• Navier-Stokes Equation System for Newtonian and incompressible fluids:

ρ
Dv
Dt

= −∇ p + ∇ ·
(
μ(∇vT + ∇v)

)
+ f

∇ · v = 0
(25)

• Scalar-Transport Equations:

Dφ j

Dt
= ∇ · (α j ∇φ j ) + Q j ∀ j ∈ (1 : Nfields) (26)

• Example of coupling. For φ = T ⇒ Boussinesq approximation:

f = ρgβ(φ − φc) (27)

2.5.2 Discretization

The key of the PFEM algorithm is transporting the information with particles fol-
lowing the streamlines. Although the field vp is not stationary, streamlines are taken
as stationary on each time step (vp

n), the particle position follows that field and the
particle state is updated by the rate of change determined by the balance equation.

xp
n+1 = xp

n +
tn+1∫

tn

vn(xp
τ ) dτ (28a)

vp
n+1 = vp

n +
tn+1∫

tn

(an(xp
τ ) + fτ ) dτ (28b)
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φn+1
p = φn

p +
tn+1∫

tn

(gn(xp
τ ) + Qτ ) dτ (28c)

where an = −∇ pn +∇ ·
(
μ(∇T vn +∇vn)

)
and gn = ∇ · (α ∇φn), which are nodal

variables.

3 Two Examples to Show the Benefits of the New Ideas

The following two examples serve as the starting point of new ideas behind high
accurate and stable convective transport equations.

• Pure advection of a passive scalar field.
• Inviscid transport of a vortex.

The first example was the proof in showing the advantages of using Lagrangian
formulations when a pure advective problem is between hands. It is a Gaussian
hill profile imposed as an initial condition advected by a pure rotation motion. For
this problem the profile shape and its amplitude should be conserved all the way.
The second one is one extension of the first example applied to a vector system
like Navier-Stokes equations. It consists of an initial vortex that is transported in an
inviscid flow. For this problem the intensity of the vortex should be conserved.

3.1 Pure Advection of a Passive Scalar Field

This well known problem normally serves as a benchmark for the spatial stability
of Eulerian numerical schemes. The first scope in this benchmark is to show that no
spurious oscillations appear and the second one focus on minimizing the numerical
diffusion introduced by the stabilization schemes. Also the time integration numerical
scheme is responsible for extra numerical dissipation, being the first order explicit
(θ = 0) or implicit (θ = 1) schemes not recommended for their high dissipation.
Crank-Nicholson (θ = 1

2 ) is preferred in this sense. However looking at the solution
it is always present a reduction in the original amplitude that may be improved only
reducing the mesh size and the time step.

In [10] several Figs. 9.1–9.4 are shown where it is possible to realize how the
amplitude is drastically reduced using large Courant numbers with Eulerian formu-
lations. Even though the spatial stabilization is reduced to a minimum and the time
integration is chosen as second order the numerical dissipation is highly noticeable.
Only reducing the Courant number with finer meshes it is possible to reduce it but
never annihilate.
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On the other hand Lagrangian formulations are better positioned for this kind
of problems if only the amplitude is observed. This remains exactly constant all the
way regardless the Courant number. However with standard first order integration, the
problem arises in the definition of the pathlines that are shifted inwards or outwards
depending on the explicit or implicit character of the time integration. Only with
second order time integration is possible to reduce this pathology but some sort of
iteration is needed. See Fig. 9.7 in [10].

Using the X-IVAS integration is possible to fix both errors simultaneously pro-
ducing a high accurate solution regardless the Courant number. This is also shown
in Fig. 9.7 at left in [10].

A final remark about this important result achieved on such a basic example,
showing the great capabilities of Lagrangian formulations over Eulerian ones for
convective transport, is related to some more accurate Eulerian schemes that are
currently being published for transporting signals without causing spurious diffusion.
Called as High Resolution Schemes [14, 16], these numerical methods have a robust
control to suppress the wiggles with the minimum amount of numerical dissipation.
According to the Godunov theorem [16] this is only possible in a nonlinear way. Even
though this way circumvents the drawbacks it is important to realize that Lagrangian
formulations achieved the same or better results without doing nothing special saving
the extra cost normally experienced by such schemes.

3.2 Inviscid Transport of a Vortex

Having found the good benefits of Lagrangian formulations for transporting scalar
fields in a stable and accurate way the following step was to extend the same to
vector systems. Here the incompresible viscous fluid flow model was taken. The
equivalent example in this context is the transport of a vortex in an inviscid flow. It
is well known that looking at the hyperbolic part of the whole system, neglecting
the diffusion and not considering the role of the pressure, the problem looks like
the convection of vorticity waves. If a vortex ring is imposed as initial condition,
neglecting the viscosity with slip boundary conditions on the walls, the vortex should
conserve its kinetic energy as much as possible.

Figure 4 shows how the Eulerian and Lagrangian formulation transports this vor-
ticity. For both formulations the mesh is kept fixed and the simulation had run with
the same time step, with a high enough Courant number in order to highlight the per-
formance and precision comparison. It is possible to conclude that the Lagrangian
formulation is more energy conservative than the Eulerian counterparts with the
evidence that the vortex may be transported much better. This example confirms the
advantages of Lagrangian formulation respect to Eulerian ones not only for advective
transport of scalar fields, also for non linear vector fields (Fig. 4).
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Fig. 4 Inviscid vortex ring dynamics. Conservation of momentum

4 Moving and Fixed Mesh PFEM Versions

The natural evolution of PFEM method employed only one mesh built from a cloud
of points defined by the moving particle position. There was a one to one relation
between mesh nodes and particles. At each time step the original PFEM method
moved the nodes following the updated particle positions as long as the mesh was
not deformed in such a way that an invalid grid appears. Remeshing was only used
when the deformation of the mesh was so large that the time step suffered a drastic
reduction making the computation too much expensive. At that times, the remeshing
was by-passed at extreme for cpu times reasons. Summarizing the stability of the
original PFEM was mainly affected by:

• critical time step for explicit advective terms (Co < O(1)).
• critical time step for explicit diffusive terms (Fo < O(1)).
• critical time step for the deforming mesh limited by the inversion of some elements

in the mesh (invalid)
• non linearities

The sequence of the problems above defined may be summarized as:

• To solve only the passive scalar transport Eq. (28a) and (28c) are used. If you want
to transport N passive scalars, you only have to solve (28c) for each one of the N
variables.

• To solve the Navier Stokes equation system, (28a) and (28b) are used, and p must
be calculated. A typical Fractional Step Method is used to solve the coupling
between the pressure and the velocity (see Eq. 16).

• To solve the thermal and fluid flow coupling (natural convection) (28a), (28c)
and (28b) are used and a constitutive law for the buoyancy term should be added
(Boussinesq approach)
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Fig. 5 PFEM —moving mesh version

All these steps need a mesh update and again the remeshing returns to the sce-
nario. During the last years a lot of progress was done in terms of more efficient
mesh generation and regeneration exploiting the parallelism, making the remesh-
ing affordable. A permanent remeshing circumvents the severe time step restriction
produced by the invalid mesh condition. In this sense the PFEM had experienced a
significant progress increasing the time steps with stable solutions.

• It is necessary to update the mesh states with the particles states. There are two
approaches which have generated two versions of the method:

– Remesh the geometry with new particles positions (particles↔nodes): PFEM
Mobile Mesh

– Project states from particles to nodes, preserving the mesh as fixed: PFEM
Fixed Mesh

The Mobile Mesh version has the following features:

• a 1-1 relation between Particles and Nodes.
• Remeshing at each time step.
• Need permanent assembling, profiling and solving of the algebraic linear system.

Figure 5 shows how the particle motion change the mesh definition at each time
step.

The first tests showed very good features in terms of stability and accuracy getting
a drastic reduction in the cpu times involved for solving some benchmarks compared
with the original version of PFEM. This improved performance, added to the pos-
sibility of using very large time steps were the first evidences that the permanent
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Fig. 6 PFEM —moving mesh version—profiling

remeshing using X-IVAS integration were two important numerical ingredients for
exploiting the good features evidenced by the Lagrangian formulation.

Even though moving mesh PFEM version has several advantages against its
Eulerian counterpart, it has some limitations in terms of efficiency. Mainly the per-
manent remeshing and the assemble/solving of implicit problems limit its scalability
The Fig. 6 shows a profiling of the moving mesh version of the PFEM.

As it is evident from this figure most of the time is spent in remeshing, assembling
and solving the implicit linear systems, with a performance similar to mesh based
methods because the particle update only consumes a small part of the whole cost.

In order to reduce the computational cost added by these two stages a novel idea
was presented: the Fixed Mesh Version of PFEM .

This new method combines particles with a background mesh. Particles carry the
information along the whole process using the mesh only for secondary computa-
tions, those needed to update the particle position and their states. It is normally
understood as an hybrid method or dual method where particles act like the mas-
ter in the computation and the mesh is the slave. The idea does not only avoid the
permanent remeshing, using a fixed background mesh it is possible to integrate all
the implicit part of the computations with an important and favorable impact on the
computational efficiency, the possibility of re-using the matrix profile and for linear
diffusion problems also its factorization.

This fact may be exploited only by Lagrangian formulation because the Eulerian
counterpart always has the convective term proportional to the changing unknown
velocity inside the system matrix to be inverted. Therefore it is not possible to take
advantage of it.

The fixed mesh version has the following features :

• Particles cloud over a Fixed Background Mesh.
• No need remeshing.
• It needs Projections and Interpolations between particles and mesh nodes.
• It needs only one LU or Cholesky factorization for implicit calculations.
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Fig. 7 PFEM —fixed mesh version

For constant coefficients problems an initial factorization may be built, reusing
it along the whole computation. In this way it is possible to reduce the number of
iterations of the preconditioned conjugate gradient used for solving the symmetric
and positive definite linear systems involved in the computation (Poisson for the
pressure and the heat equation for the implicit part of the diffusive terms (θ > 0)).

However, the fixed mesh version has some cons, specially that concerned with
the projection error. This operation allows to reconstruct some fields transported by
the particles in a very accurate way on a mesh where the spatial derivatives should
be computed. The better the reconstruction the less the error in the computation of
the fluxes depending on the spatial derivatives (Fig. 7).

Several numerical experiments have shown that the advection part of the com-
putation is governed by particles and the diffusive part is governed by the mesh.
Therefore increasing the number of particles allows to transport very complex initial
conditions or represents complex fields produced by its time evolution under com-
plex flow fields. On the other hand refining the mesh allows to improve the diffusive
fluxes computation. But this is not the only way to get it, higher order reconstruction
is also an alternative to explore in the future.

First order reconstruction may become inconsistent, i.e. refining in the number of
particles may produce higher diffusive flux errors. To avoid it one possibility could
be to split the elements in subdomains, one around each element node, using only
that division to project particles values on the node associated with that subelement.

Instead of using all the particles belonging to the elements connected to a given
node, only those particles belonging to the subelements connected to the node are
chosen. This subdivision also serve to seed particles when that subelement is void
of particles. In a next section some details about it are presented.

In terms of efficiency the Fig. 8 shows as the fixed mesh version has changed its
profiling, now with the most important computational cost component concentrated
in the particle computation, typical of a Lagrangian formulation.
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Fig. 8 PFEM —fixed mesh version—profiling. Case flux around a cylinder 2D—CPU: Intel
i7-2600k (4 cores)

Being particle computations cheaper than mesh computations it put the PFEM
method in a very good condition for high performance computing stuffs, specially
for scalability.

Finally this section ends with some review of the two algorithms that were firstly
developed in the context of the PFEM, one for the scalar transport and the other for
the incompressible viscous flow.

Algorithm 1 - Time Step PFEM Scalar Transport
1. Calculate scalar change rate on the nodes like a FEM:∫

�

N gn d� = − ∫
�

∇ N α∇φn d� + ∫
�

N ∇φn · η d�

2. Evaluate new particles position and state following the streamlines:

xn+1
p = xn

p + ∫ tn+1

tn vn(xτ
p) dτ

φn+1
p = φn

p + ∫ tn+1

tn gn(xn+τ
p ) + Qn+τ dτ

3. Update particles inventory
4. Project state to the mesh:

φn+1
j = π(φn+1

p )
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Algorithm 2 - Time Step PFEM Incompressible Flow
1. Calculate acceleration on the nodes like a FEM:∫

�
N ∇ · τv d� = − ∫

�
∇ N · (μ∇vn) d� + ∫

�
N ∇vn · η d�∫

�
N ∇ pn d� = − ∫

�
∇ N pn d� + ∫

�
N pn · η d�

an = ∇ · σ = −∇ pn + ∇ · τv

2. Evaluate new particles position and state following the streamlines:

xn+1
p = xn

p + ∫ tn+1

tn vn(xτ
p) dτ

v̂n+1
p = vn

p + ∫ tn+1

tn an(xn+τ
p ) + fn+τ dτ

3. Update particles inventory
4. Project state to the mesh:

vn+1
j = π(vn+1

p )

5. Find the pressure value solving the Poisson equation system using FEM:
ρ∇ · v̂n+1

j = �t�[δ pn+1]
6. Update the velocity value with the new pressure:

ρvn+1
j = ρv̂n+1

j − �t (∇ pn+1 − ∇ pn)

ρvn+1
p = ρv̂n+1

p − �tπ
−1(∇ pn+1 − ∇ pn)

It is important to realize that in the fixed mesh version of PFEM there is an
operation called projection that deserves some attention. In a next section some
comments about it will be presented.

5 Particle Inventory Managment

As mentioned before, in the PFEM algorithm, after the streamline integration the
state variables are placed on the particles. Both, for reasons of incompressibility
(pressure) as for the treatment of the diffusion (viscous stress tensor) require that the
information should be located on the grid. While for the Mobile Mesh version the
mesh is done with the particles themselves, in the Fixed Mesh approach particles
and grid are decoupled and a projection π from particle states to nodal states should
be done.

5.1 Projection Algorithms

Different approaches are available to perform projections, for example SPH or MLS
(Moving Least Square) techniques could be used for the interpolation, as well as
weights based on the position on the top of the underlying mesh. A brief review of
the actual techniques for projection in PFEM are presented (the equations presented
are for scalar projection. They are also valid for each component of a vector state
variable):
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• Mean weighted by Shape Function (P-1):

φ j =

P∑
p=1

N j (xp)φp

P∑
p=1

N j (xp)

(29)

where P is the number of particles inside a certain region around the node j .
• Mean weighted by Distance (P-2):

φ j =

P∑
p=1

||xp − x j ||2φp

P∑
p=1

||xp − x j ||2
(30)

with the same definition of P as just above.
• Weighted Polynomial Least Squares (P-3):

φ j = hθ(x j ) = θT P(x j ) (31)

where:
P = [1 x x2 . . .] on 1d, P = [1 x y xy x2 y2 . . .] on 2d (truncating at the polynomial
order required) and θ = (XT W X)−1(XT W y). It must be noted that to invert
the matrix in the calculation of θ, it is required P >= n, where n is the number
of terms used on P .

5.2 Particle Seeding

For accuracy reasons each one of the presented projection methods require a certain
number of particles in certain region near to each node. Some considerations must
be taken into account: the region around the node must be defined precisely, and
is not assured that there were particles inside each region (specially when high Co
numbers are used). Then, new particles must be created at these empty regions. In
this section several algorithms attending this issue are presented.

The first approach (S-1), used originally in PFEM, consists on setting the states
to a new particle interpolating from the nodal states at the previous time step n:

φn+1
p (xn+1

p ) =
∑

j

λ j (xn+1
p )φn

j (32)

being λ j the area coordinates of the particle in the element. Other algorithm (S-2)
searches the state following the streamline but in backward direction, thinking in
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Fig. 9 Pure-convection step problem

finding the particle location that, if it had existed at the beginning of the time step,
at the end of it would have arrived at the seed position:

φn+1
p (xn+1

p ) = φn
p(x

n
p) +

�t∫

0

gn(xn+α) dα (33)

The utility of the backward integration to search the state of the new particle is shown
in the next example: the pure-convection step problem, which is defined in Fig. 9.

A boundary condition with a sharp discontinuity enters the domain transported
with a velocity vector field not aligned with the mesh. Figure 10 shows the results,
projected on the mesh, achieved when the particles are created using the criterion
defined as (S-1) (left) and also when their states are found using backward integration
criterion (S-2) (right).

The results show that S-1 criterion fails for this example putting S-2 criterion as
a much better selection for seeding particles when it is necessary.

5.2.1 Particle Removing

On other hand, using a lot of particles increases computing times. During the simu-
lation the seeding is frequent and we need to control the amount of particles inside
the domain for computational cost reasons. So, the removal action should be defined
following some criteria.

Although it is known that particle which leaves the geometry must be deleted,
inside the geometry is not clear when particles should be removed and how to do that.
Removing particles decreases computing times of the algorithm but also decreases
the quality of the solution because it introduces numerical diffusion in an indirect
way.

In the first approach (R-1), the particles are not removed unless that two or more
of them are in almost the same position. This approach obtained accurate results
solving the pure-advective case of the rotating Gaussian signal [18].

A second approach (R-2), consists on requiring minimum number and a maximum
number of particles at each sub-element that must be conserved at each time step.
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Fig. 10 Pure convection transport. Results for different strategies to new particles states. Left S-1.
Right S-2

The sub-element i is the third parts of the triangle (fourth parts of the tetrahedral in
three dimensions) where the area coordinate corresponding to the vertex i is larger
than the rest. The idea is to think that if each node has enough number of particles
around, the projected state from particles to the node will be accurate. However,
as will be demonstrated in the next example, the continuous intrusion to the system
could decrease the quality of the solution, specially in scalar problems. This criterion
shows good results in solving incompressible flows.

The example of the rotating Gaussian signal without diffusion shows that the
numerical diffusion is important when a frequent creation and removing of particles
is performed following this criterion. The polar mesh (4390 elements) is the same
in all cases, the case consists of a Gaussian transported by a rotating flow without
diffusion term. Figure 11 compares the value of the maximum through two laps.
The best option for this problem is R-1 (in Fig. 1 Tmax old), while R-2 requires
a large range ([min_subele; max_subele]) of particles not to spread: comparing
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Fig. 11 Rotating Gaussian. Evolution of φmax for different update particle techniques

[1; 20] with [1; 5], in the second option the intrusion in the system is greater and the
solution decreases its quality.

Regarding the computing times also R-1 is the best, because requires 40 s (mean
40,000 particles), whereas [1; 5] needs 50 s (mean 46,000 particles) and [1; 20] needs
100 s (mean 120,000 particles).

However, R-1 does not work fine for the step’s problem (defined in previous
subsection), unless it creates new particles using backward integration (criterion
S-2). Also, due to the type of projection of the algorithms developed, which searches
particles in the sub-elements to send data to nodes, creating new particles in empty
elements does not ensure that there will be particles in the region around the node
(their sub-elements), so another type of selection of the position of the new particles
must be developed.

5.3 Converging into a New Algorithm to Update Particle Inventory

Taking into account the previous discussion, an algorithm to update particle inventory
has been implemented, that includes the benefits of the methods discussed previously
and follows the principle of not modifying the system unless it be really necessary.

It was mentioned that the condition empty-element, except for some particular
problems, shows to work not so fine. The main reason is the lack of particles close
enough to nodes. So, the new algorithm must not search empty-elements, instead of
that, it searches empty-regions.

The region j is defined as the geometric space where the node j takes particle
information to update its state using some projection operator; therefore, if this region
is empty, the node does not have enough information to be updated. Once detected
an empty-region, only one particle is created in exactly the same position of its node
and with a state found using backward integration.
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Fig. 12 Graphical scheme to understand the new algorithm proposed

Although to create new particles on the nodes is the least intrusive way to maintain
good solution on the nodes, if the problem is not of confined flow, the number of
particles will decrease while the simulation runs. Typically in the inlet flow boundary
the boundary condition is imposed. Then, creating particles in the Inlet Elements and
doing backward integration to search the states no error is committed, and more than
one particles can be created. The position does not have to be on the nodes and its state
will not have error. This approach allows to keep approximately the same numbers
of particles during the simulation, which preserves the accuracy of the method.

Particle removing is carried out when two or more particles are in a circle (2d)
or sphere (3d) with a radius proportional to the size of the element (r = δ h). This
approach allows to use different δs over the geometry, being a new tool to control
the number of particles. Graphic representation is presented in the Fig. 12c.

Figure 12a shows the neighbor elements and the region belonging to the node j .
It must be there at least one particle in the gray zone to have a good projection, else a
new particle must be created in the same position of the node and searching its state
with backward integration. Figure 12b shows which elements are considered as inlet
elements and, if they are empty, they must create internal particles.

Finally, this algorithm allows to solve all tests presented in this paper while other
approaches have shown to fail: the Gaussian rigid rotation and the step-2d.

The last example consists on testing this algorithm in the Navier-Stokes solver
(PFEM Fixed Mesh). The case chosen is the Flow Around a Cylinder, because it
presents different zones of refinement and patches of inlet and outlet flow. The results
are presented in the Fig. 13a and b. Similar accuracy in the amplitude and frequency
can be observed, but R-2 obtains better definition of the forces signal, specially for
Cd. For more details see [10, 11].

6 Diffusive-Dominant Problems

When the problem is diffusive-dominant, the advantages of the method PFEM are not
as clear as in the advective-dominant case. The explicit calculation of the diffusion
traditionally used by PFEM is limited by the dimensionaless Fourier number and,
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Fig. 13 Lift coefficient and drag coefficient for flow around a cylinder solved using the new updating
algorithm and comparing it with R-2 (called old in the graphic)

in some particular cases, the temporal change of the transported variables vanishes
due to the shape of its own solution. To relax these restrictions, in the Sect. 6.1 a new
model to calculate the diffusion is presented. Several tests are presented to confirm
improvements in the solution.

6.1 Diffusive Implicit Correction

Simulations solving the diffusive term in an explicit way are restricted by Fo < 0.5.
This is a strong limitation for the time-step, specially on very refined mesh and in
diffusive dominant problems (where Fo > Co). Due to explicit PFEM suffers this
stability constraint the possibility of enlarging the time step may be lost when the
flow locally turns to be diffusive. As we have mentioned normally in the vicinity of
bodies some refinement is done to capture boundary layers and flow separations and
locally the Fourier number increases. Also, in some particular cases, the temporal
change of the transported variables vanishes due to the shape of the own solution:
when the time-step is chosen such that the integral of the curvature of the function
φn

j vanishes, the method will not apply diffusion on φ, so that the solution will be
wrong. This case may be present for traveling waves with diffusion.

A new approach to solve the diffusive term is based on the theta method which
consists on discretizing the non-stationary variable using a weighted mixture between
an explicit prediction and an implicit correction.

φn+1 − φn

�t
= θgn+1 + (1 − θ)gn (34)

Doing a first step in explicit way

φ̂n+1 − φn

�t
= (1 − θ)gn (35)
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and doing the correction in an implicit way, this is subtracting (35) from (34), it
follows

φn+1 − φ̂n+1

�t
= θgn+1 (36)

Algorithm 3 - Time Step PFEM Scalar Transport Explicit Diffusion - Implicit Cor-
rection

1. Calculate scalar change rate on the nodes like a FEM:∫
�

N gn d� = − ∫
�

∇ N α∇φn d� + ∫
�

N ∇φn · η d�

2. Evaluate new particles position and state following the streamlines:

xn+1
p = xn

p + ∫ tn+1

tn vn(xτ
p) dτ

φ̂n+1
p = φn

p + ∫ tn+1

tn gn(xτ
p) + Qn+τ dτ

3. Update particles inventory
4. Project state to the mesh:

φ̂n+1
j = π(φ̂n+1

p )

5. Implicit correction:
φn+1

j = φ̂n+1
j + �t θgn+1

j .
6. Interpolate state to particles:

φn+1
p = φ̂n+1

p + π−1(δφn+1
j ).

An standard FEM formulation is used to compute the implicit correction. This
problem may be solved either with the approaches absolute (37) or incremental (38).

[M + θ �t K] φn+1 = M φ̂n+1 + �t Fn+ 1
2 (37)

[M + θ �t K] δφn+1 = −θ �t K φ̂n+1 + �t Fn+ 1
2 (38)

where M is a mass matrix, K is the stiffness matrix and F is the load vector of a
standard FEM discretization. It must be noted that the matrix [M + θ �t K] for
K �= K(t) and �t = cte does not depend on the time, then it can be factorized
at the beginning of the computation and used as a preconditioner afterward with a
significant cpu-time reduction.

6.2 Analytic Diffusion 1D: Sinusoidal Signal

A diffusive-dominant problem with analytic solution is presented. It is solved using
explicit, implicit and semi-implicit schemes for diffusion and using different Fo
values.
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Fig. 14 Comparison between Explicit (θ = 0), Implicit (θ = 1) and Semi-Implicit (θ = 0.5)
schemes for diffusion in PFEM with the analytic solution at t = 0.002

The problem is:

∂φ

∂t
= α

∂2φ

∂2x
∀x ∈ (0, 1) (39)

φ(x = 0, t) = φ(x = L , t) = 0; t > 0 (40)

φ(x, t = 0) = sin(kx); t = 0 (41)

with its analytic solution as:

φ(x, t) = sin(kx)e−(2πkx)2t (42)

where α = 1 is chosen, the wave number of the problem is k = 2π
λ = 4 and the

mesh size is �x = 0.02.
Figure 14 shows that using Fo = 5 more accurate results are obtained choosing

a semi-implicit scheme. While explicit simulations are not accurate with Fo = 5,
the solution with Fo = 0.5 is useful. These results show that temporal integration
error in PFEM behaves as usual, i.e. semi-implicit or Crank Nicholson schemes
are more accurate than first order explicit or fully implicit schemes. However for
semi-implicit solvers we need to give up the idea of an explicit solver with severe
consequences on the efficiency. Do not forget that one of the main goals in PFEM
development is having a robust (stable) solver that allows to switch between accuracy
and efficiency with greater freedom. But, due to the matrix for the implicit part of the
computation of the diffusion can be factorized once at the beginning, it is possible to
run simulations using big time-steps without loosing accuracy and efficiency. This
idea of combining explicit schemes with efficient implicit schemes gives Fixed Mesh
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PFEM its stronghold. Efficient implicit schemes means solving linear systems in an
iterative way with good preconditioners.

6.3 A Pathological Case: Sinusoidal Signal Travelling

In this section, a pathological case is presented. The explicit calculation of the diffu-
sion updates the state variable with the integral of the second derivative of the variable
itself, i.e. the integral of the curvature. When certain conditions are accomplished,
that integral vanishes and the explicit diffusion is null generating wrong new states.
However, an implicit calculation of the diffusion solves that problem.

The problem consists on a sinusoidal wave transported by a field v with a non
negligible diffusive term. The idea is to force numerical and physical parameters
searching that the integral of the curvature of the function vanishes at each time-step.

If the length traveled by a particle is multiple of the length wave of the signal
(U�t = mλ), then xn+1

p = xn
p + mλ, hence, the rate of change of the variable (its

curvature κ) will be null because

κ = d2φ

dx2 = d2

dx2 [sin(
2π

λ
x)] = C sin(

2π

λ
x) = g

and
∫ xn+1

xn g dx = 0.
This pathological situation has a very low probability and only is present in

Lagrangian formulations where advection and diffusion are weakly coupled.
The problem to solve consists on:

∂φ

∂t
+ U

∂φ

∂x
= α

∂2φ

∂2x
∀x ∈ (0,∞) (43)

φ(x = 0, t) = sin(ωt) t > 0 (44)

φ(x, t = 0) = sin(
2π

λ
x) t = 0 (45)

where the advection and the diffusion can be analytically solved in an uncoupled
way, allowing to determinate the decay of the signal.

φ(x, t) = sin(
2π

λ
[x − (x0 + Ut)]) e

−(
2π

λ
)2t

(46)

Using the parameters:

• U = 5,000
• α = 1
• Lx = 10
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Fig. 15 Temporal evolution of sinusoidal amplitude

• λ = 0.25
• �x = 0.025
• �t = 0.0001 (Fo = 0.16).

In Fig. 15 results obtained with different values of θ are presented comparing with
analytic decay. The most accurate simulation is using θ = 1, using θ = 0 decay is
not observed and with other values for intermediate θ solutions are obtained. Finally,
a corrective step of an erroneous explicit prediction does not ensure accurate results
due to the bad performance of explicit schemes for this very special case.

It must be emphasized that the presented case rarely appears in non-academic
problems, but it allows to demonstrate another reason to choose an implicit calcula-
tion of the diffusion instead of an explicit.

6.4 Implicit Calculation of the Viscous Diffusion

The theta method can also be adopted to calculate the viscous effects on incompress-
ible flow problems. Again, this strategy allows to extend the maximum time-step
without the limitation of the Fourier number. The expressions are similar to the
scalar case presented in Eqs. (34)–(36), but replacing φ with v and g with ∇ · τv
where τv = μ(∇v + ∇vT ).

Finally, the algorithm for the implicit correction of the viscous stress tensor is
presented in the following algorithm:
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Algorithm 4 - Time Step PFEM Incompressible Flow with Implicit Correction of
the viscous diffusion.

1. Calculate acceleration on the nodes like a FEM:∫
�

N ∇ · τv d� = − ∫
�

∇ N · (μ∇vn) d� + ∫
�

N ∇vn · η d�∫
�

N ∇ pn d� = − ∫
�

∇ N pn d� + ∫
�

N pn · η d�

an = ∇ · σ = −∇ pn + ∇ · τv

2. Evaluate new particles position and state following the streamlines:

xn+1
p = xn

p + ∫ tn+1

tn vn(xτ
p) dτ

ˆ̂vn+1
p = vn

p + ∫ tn+1

tn an(xτ
p) + fn+τ dτ

3. Update particles inventory
4. Project state to the mesh:

ˆ̂vn+1
j = π( ˆ̂vn+1

p )

5. Implicit correction:
v̂n+1

j = ˆ̂vn+1
j + �t θ∇ · τn+1

j .
6. Find the pressure value solving the Poisson equation system using FEM:

ρ∇ · v̂n+1
j = �t�[δ pn+1]

7. Update the velocity value with the new pressure:
ρvn+1

j = ρv̂n+1
j − �t (∇ pn+1 − ∇ pn)

ρvn+1
p = ρv̂n+1

p − �tπ
−1(∇ pn+1 − ∇ pn)

The equation system for the implicit correction of the viscous diffusion can be
solved using the same strategy as presented in (37) or (38). Also, for μ �= μ(t) and
�t = cte the matrix does not depend on the time, then it can be factorized only once.

6.5 A Simple Test for a Diffusive Dominant Problem. The Mesh
Size and the Time Step Dependency

6.5.1 Advective-Diffusive Transport of a Gaussian Hill

The transport of a Gaussian Hill problem was used to demonstrate the goodness of
PFEM method to solve a scalar transport problem [18]. This case also made evident
the pathology that explicit Eulerian approaches suffer in solving a pure advective
transport problem with CFL > 1. The problem consists of a Gaussian hill signal
used as initial condition transported with physical diffusion. The velocity field is a
flow rotating around the center of a square domain. The Gaussian signal is displaced
from the center of the domain at a certain radius and its shape makes the transported
signal have a non-zero value in a limited region of the domain initially. The signal
should be transported following circular path lines. Figure 16 shows the problem
definition.
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Fig. 16 Initial temperature distribution for the advective-diffusive transport problem

6.5.2 Problem Parameter Definition

This problem is taken from Donea and Huerta [4]. The initial condition is:

φ(x, 0) =
{ 1

4 (1 + cos(πX))(1 + cos(πY )) i f X2 + Y 2 ≤ 1
0 otherwise

(47)

where X = (x − x0)/σ with a boundary condition φ = 0 for all the nodes lying
on the boundary. The initial position of the center of the signal and its radius are
x0 and σ respectively. In this example x0 = ( 1

6 , 1
6 ) and σ = 0.2 are taken. The

velocity field corresponds to a rigid rotation with angular velocity ω = 2, therefore
v(x) = (−ωy,ωx). The diffusivity chosen is α = 0.0001.

Three different meshes were employed, all defined over a unit square [− 1
2 ,− 1

2 ]×
[ 1

2 , 1
2 ]. The coarse mesh called M1, with 30 × 30 quadrangular elements split in

triangles. Another finer called M2, with 100 × 100 and finally the finest mesh called
(M3), with 500×500, in order to define a reference solution for comparison playing
the role of an almost exact solution.

6.5.3 FEM and PFEM Simulations

Next the results are compared. They were obtained using:

• an Eulerian FEM+SUPG code using different time integration θ schemes, where
θ = 1 is the first order implicit Backward-Euler and θ = 0.5 is the second
order Crank-Nicholson. They are labeled as FEM-1order and FEM-2order
respectively.

• a Lagrangian code called PFEM using different number of particles per element
seeded at the initial time step, (3,9,15,24), labeled as PFEM-3p, PFEM-9p,
PFEM-15p and PFEM-24p respectively. For the seeding and the removing at
least one particle for each subelement was fixed as the minimum limit and 20
as the maximum. The strategy for the diffusion treatment was fully implicit, i.e.
X-IVS method was employed.
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(a)

(b)

Fig. 17 Amplitude evolution on mesh M1 for Co = 0.5 (a) with Co = 5 (b). PFEM results are
shown projected on the mesh

Figure 17 presents the evolution of the amplitude of the signal for the different
simulations. It is confirmed again the fact that Eulerian simulations introduce a lot of
numerical diffusion mainly due to the temporal scheme and the spatial stabilization.
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It is noted that PFEM simulations start with an amplitude φmax �= 1, it is due to the
projection of the maximum value on particles over the grid nodes. It is not an error
because the particle information does not suffer for any type of numerical dissipation
when is transported. The only error source is when the information is projected on the
mesh for secondary computations. To confirm this, the signal amplitude over the par-
ticles may be viewed in Fig. 18. Here, another important result arises: the maximum
value over the particles is independent of the number of particles initially seeded.
This fact depends on the particle removing limits chosen during the computation and
also on the projection operator design.

6.5.4 Simulation on a Finer Mesh M2

Figure 19 presents the evolution of the signal amplitude for different simulations. In
this case the maximum on the mesh are almost the same as the maximum over the
particles. It is due to the finer mesh involved, making the projection operation less
diffusive.

7 Some Applications for More Complex Problems

This section finally end the paper showing some brief details about new promising
and challenging applications of PFEM method. In some sense all theses applications
present some sort of coupling problems. The first is a typical natural convection heat
transfer problem in both, laminar and turbulent regime. The following example is
the well known benchmark of turbulence modeling proposed by Rodi and Ferziger,
a cube mounted on a channel floor and finally one example of multifluids flow, going
towards the multiphase flow problems a very demanding need of the industry.

7.1 Thermal and Fluid Dynamics Coupled Problems

7.1.1 Natural Convection in a Square Cavity

The problem presented deals with the two dimensional flow with a Prandtl number
Pr = 0.71 in a square cavity of side H = 1[m]. The boundary conditions for the
momentum equation are non slip at all boundaries. Horizontal walls are isolated,
and the vertical sides are at different temperatures Tc < T < Th (φ = T for natural
convection problems). Figure 20 exhibits the geometry of the cavity. Simulations
were carried out using a mesh of triangular elements with 100 × 100 nodes and
refinement towards the walls. The wide range of Ra numbers (48) was obtained by
a constant temperature difference of �T = 1 K adjusting the thermal expansion
coefficient β to supply the desired Ra.
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(a)

(b)

Fig. 18 Amplitude evolution on mesh M1 for Co = 0.5 (a) and for Co = 5 (b). PFEM results are
shown on the particles, not projected on the mesh

Ra = gβH3(φh − φc)

αν
(48)

where α is the thermal diffusivity corresponding to air with the above mentioned Pr
in standard temperature and pressure conditions.
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(a)

(b)

Fig. 19 Amplitude evolution on mesh M2 for Co = 0.5 (a) and for Co = 5 (b). PFEM results are
shown on the mesh

7.1.2 Results and Discussion

This section provides a set of solutions at low Ra number. The quantities under study
are the following:
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Fig. 20 Detail of cavity
simulated, left wall at Th ,
right wall at Tc, top and
bottom walls are insulated

Table 1 Numerical solution for thermal square cavity with PFEM comparing with reference data

Ra Data PFEM2 Corzo [1] Davis [2]

103 umax (x = 0.5) 3.605 3.640 3.634
103 ymax (x = 0.5) 0.814 0.812 0.813
103 vmax (y = 0.5) 3.650 3.700 3.679
103 xmax (y = 0.5) 0.183 0.177 0.179
104 umax (x = 0.5) 15.982 16.281 16.182
104 ymax (x = 0.5) 0.824 0.822 0.823
104 vmax (y = 0.5) 19.378 19.547 19.509
104 xmax (y = 0.5) 0.116 0.123 0.120
106 umax (x = 0.5) 64.483 64.558 65.330
106 ymax (x = 0.5) 0.845 0.851 0.851
106 vmax (y = 0.5) 218.054 221.572 216.750
106 vmax (y = 0.5) 0.037 0.067 0.039

umax(
1
2 ) : The maximum horizontal velocity on the vertical mid-plane of the cavity

(together with its location).
vmax(

1
2 ) : The maximum vertical velocity on the horizontal mid-plane of the cavity

(together with its location).

Table 1 shows PFEM results for Ra = 103, 104 and 106 compared with the [1, 2]
solutions. Excellent agreement to experimental data in both results for momentum
and energy equations prove the accuracy of this approach for this low Ra number
range. The horizontal velocity component in the vertical mid-plane is shown in
Fig. 21. Here is worthy to note that when Ra number increases the boundary layer
becomes thinner and the maximum values in the velocity get closer to the walls.
Finally Fig. 22 presents the temperature profiles for the three cases.
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Fig. 21 Horizontal velocity profiles at x mid-plane to a Ra = 103, b Ra = 104 and c Ra = 106

7.1.3 Natural Convection in a Cubic Cavity

The schematic model for the problem is shown in Fig. 23. The cubic cavity is one
meter length with an aspect ratio of unity and is filled with air as working fluid.
The Prandtl number is fixed at Pr = 0.71. All surrounding walls are rigid and
impermeable. The vertical walls located at x = 0 and x = 1 are retained to be
isothermal but at different temperatures of Th and Tc, respectively. The buoyancy
force due to gravity works downwards (i.e., in negative z-direction).

7.1.4 Results and Discussion

For the present range of Ra numbers, solutions were obtained on a mesh with 81,000
tetrahedral elements and around of eighteen thousand nodes, and with refinement
towards the walls. The following characteristic quantities are presented:
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Fig. 22 Temperature field φ to a Ra = 103, b Ra = 104 and c Ra = 106

Fig. 23 Schematic model for
the natural convection in a
cubical cavity

umax(
1
2 ) : The maximum horizontal velocity for x-direction on center line (x = 0.5,

y = 0.5) of the cavity and its location.
wmax(

1
2 ) : The maximum vertical velocity for z-direction on center line (y = 0.5, z

= 0.5) of the cavity and its location.
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Table 2 Numerical solution for thermal cubic cavity with PFEM comparing with reference data

Ra Data PFEM Wakashima [24] Fusegi [5]

104 umax(x = y = 0.5) 0.1978 0.1989 0.2013
104 zmax(x = y = 0.5) 0.8460 0.8250 0.8167
104 wmax(y = z = 0.5) 0.2190 0.2211 0.2252
104 xmax(y = z = 0.5) 0.1260 0.1253 0.1167
105 umax(x = y = 0.5) 0.1409 0.1423 0.1468
105 zmax(x = y = 0.5) 0.8460 0.8500 0.8547
105 wmax(y = z = 0.5) 0.2359 0.2407 0.2471
105 xmax(y = z = 0.5) 0.0680 0.0751 0.0647
106 umax(x = y = 0.5) 0.0766 0.0813 0.0842
106 zmax(x = y = 0.5) 0.8570 0.8500 0.8557
106 wmax(y = z = 0.5) 0.2897 0.2382 0.2588
106 xmax(y = z = 0.5) 0.0280 0.0500 0.0331

Fig. 24 Mesh with slices of section at mid-planes y = 0.5 and z = 0.5

Table 2 shows PFEM results for Ra = 104, 105 and 106 compared with the
[5, 24] solutions. Finally Fig. 24 presents a wireframe of the mesh used with slices
of section at mid-planes y = 0.5 and z = 0.5 respectively.

7.2 Turbulent Flows

7.2.1 Wall Mounted Cube Simulation

Turbulent flows around three-dimensional obstacles are common in nature and occur
in many applications including flow around tall buildings, vehicles and computer
chips. Understanding and predicting the properties of these flows are necessary for
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Fig. 25 Geometry for the flow around a cube obstacle

safe, effective and economical engineering designs. Experimental techniques are
expensive and often provide data that is not sufficiently detailed. With the advent of
supercomputers it has become possible to investigate these flows using numerical
simulations.

In this paper the simulation of the turbulent flow around a cube obstacle is pre-
sented. This test is known as flow over a wall mounted cube, and it was analyzed
experimentally by Martinuzzi and Tropea [17] and numerically by Sha and Ferziger
[21], Lakehal and Rodi [15], and Rodi et al. [20] among others. Flow around a
cube exhibits characteristics as three dimensionality of the mean flow, separation
and large-scale unsteadiness. Quantitative results of this flow are scarce, then flows
patters are exhaustively analyzed and compared.

The geometry of the problem is presented in the Fig. 25.

Computational Modeling
In this work, the numerical method used is the Particle Finite Element Method
(PFEM) with Large Eddy Simulation (LES) for turbulence modeling. The Sub-Grid
Scale (SGS) model used is the Static Smagorinsky model. Regarding to the compu-
tational domain, the problem was solved using two grids: the first one is a relatively
coarse grid of one million of tetrahedral elements (refined towards the cube and
behind it), with a mesh-size of δh = h/25 over the cube. On the other hand, the sec-
ond grid has the same kind of refinement but it has around four million of tetrahedral
elements, with δh = h/40.

The spanwise boundary condition is slip, the spanwise width is 7 h, assuring that
blockage effects are small. In the streamwise direction, inflow-outflow boundary
conditions are used. A parabolic flow with some perturbations is used at the inlet and
fixed pressure condition is applied at the exit. The streamwise length of the domain
is 10 h.
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Fig. 26 The streamlines on the symmetry plane at Re = 40,000. a shows the experimental result
of Martinuzzi and Tropea [17], b result from LES simulation on [21], and c and d presents the
results of PFEM using a coarse and finer mesh respectively
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Summary of Results
Large eddy simulations were performed at Re = 40,000. Figure 26 shows a com-
parison of time-averaged streamlines on the symmetry plane. The overall prediction
of the separation region on the roof and behind the obstacle is quite good even using
coarse grids. Shah and Ferziger commented that in its simulations the stagnation
point was located high on the front face, and in this work could be arrived the same
conclusion. Fluid striking the body above it goes over the obstacle and using the finer
mesh we can find a solution where it reattach on the roof, something that Shah could
not. Using the finer mesh, the rear recirculation region is not closed, but streamlines
originating upstream of the obstacle do not enter this region; fluid enters the rear
recirculation region from sides. Near the top of the recirculation region we find the
head of the arch vortex. Results using coarse mesh are not accurate, mainly behind
the obstacle.

Figure presents the time-averaged streamlines on the floor of the channel. The
streamline patterns are consistent with those observed by Martinuzzi and Tropea [17].
These streamlines, which may be viewed as skin friction lines, show the complexity
of this 3-D flow. On the reference [21], the primary separation occurs at a saddle
point located about one obstacle height (1.05 h) ahead of the obstacle (experimental
value = 1.026), whereas PFEM simulation reach approximately (0.89 h) with coarse
grid and (0.92 h) with the finer grid. The separation region wraps around the obstacle
and forms a strong horseshoe vortex. The converging and diverging streamlines that
mark the extent of this vortex are regions of strong upwash and downwash. This
horseshoe is better represented by PFEM using the finer mesh, whereas with the
coarse mesh the streamlines are too much closed behind the obstacle. Instantaneous
pictures (not presented here) of the flow show that the horseshoe vortex is, in fact,
highly intermittent; an intact structure is almost never found in these snapshots. The
mean flow on the side faces is entirely reversed. In Shah and Ferziger, the primary
reattachment length of 1.65 h agrees well with the experimental value of 1.61 h,
however PFEM reattachment is found in 1.8 h.

In the work of Shah and Ferziger [21], it is said that both the primary separation
point ahead of the obstacle and the rear reattachment points are singular points
(zero skin friction) where the so-called separation lines begin and end. Also, they
comment that the owl-face shaped streamlines in the rear recirculation zone of the
obstacle correspond to the base of the arch vortex. The arch vortex is formed by
quasi-periodic vortex shedding from the upstream vertical corners that resembles a
von Karman street. This intact arch vortex exists only in the mean flow and is an
artifact of averaging and PFEM can reproduce only approximately this behavior, and
strangely with a coarse mesh the result are more accurate. Must be noticed that both
grids are not good enough near the floor of the channel, then a better refinement is
required to reach the same quality of results as Shah and Ferziger.

Efficiency
In this section the scalability of the current implementation of PFEM is presented.
The above mentioned test, using the finer grid, was carried out over a Infiniband



312 N. M. Nigro et al.

Table 3 CPU-times comparison in seconds between different PFEM2 algorithms and OpenFOAM
for one, two and four cores

Cores 1x (s) 2x (s) 4x (s)

OpenFOAM 754 402 286
PFEM2 moving mesh (CIMNE) 484 371 326
PFEM2 fixed mesh (CIMNE) 284 179 138
PFEM2 fixed mesh (CIMEC) 330 176 99

interconnected cluster, which has dual socket nodes with Intel Xeon E5-2600 CPUs
and 64 Gb RAM. The interconnection is with IB-QDR 40 Gbps (Fig. 27).

Figure 28 presents the scalability of each PFEM stage and of the entire simulation
using an Eulerian weighting strategy, obtaining approximately the same number
of degrees of freedom in each partition. Could be noted that the efficiency of the
Infiniband cluster is good enough also running with 32 cores, reaching a global
S32 ≈ 26x . Using more cores the efficiency decays because there is not enough
work for each process to overweight the communication time.

7.3 Multifluids

7.3.1 Sloshing Test

In this section a comparison with the results of the sloshing test is presented. For the
experiment, the same mesh and configuration than that presented in Idelsohn et al.
[9] have been used (Figs. 29 and 30).

Table 3 shows the computational time necessary to simulate 1 sec. in an Intel(R)
Core(TM) i7-3820 CPU 3.60 GHz with OpenFOAM and PFEM2 versions of the
International Center for Numerical Methods in Engineering (CIMNE).

On the other hand, the test of the implementation presented in this paper was
executed in an Intel(R) Core(TM) i5-3230M CPU 2.60 GHz. To match the hetero-
geneous platforms a benchmarking factor 4,007

9,010 (extracted for the web-page http://
cpubenchmark.net/high_end_cpus.html) is used, and the final values are presented
in the table.

The reported values evidence that, for the settings described, PFEM with fixed
mesh is more than 2× faster than OpenFOAM.

7.3.2 Dam-Break Test

In this section a comparison with the results of a dam-break test is presented. For the
experiment, the same mesh and configuration which is presented in Idelsohn et al.
[9] have been used.

http://cpubenchmark.net/high_end_cpus.html
http://cpubenchmark.net/high_end_cpus.html
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Fig. 27 The streamlines in a plane near to the floor at Re = 40,000. a shows the numerical result
of Shah and Ferziger [21], and b and c present the results of PFEM using a finer mesh respectively
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Fig. 28 Speed-up over an Infiniband cluster. Case: flow around a mounted cube in 3d
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Fig. 29 Interface relative height at the vertical walls (left side and right side) for PFEM fixed mesh

Figure 31 presents snapshots of the simulation. Comparing with the results
obtained in [9], good agreement both in the shape of the free surface and in the
time evolution with experimental and OpenFOAM results can be observed. The cur-
rent version is using Courant number larger than 10 (maximum 15), without present
any difficulty for this large time-step.

The CPU-Time time needed to simulate 1 s of real time is 274.75 s (running in
serial mode). Idelsohn et al. reports 278 s for the CIMNE pfem2 fixed mesh version
and 473 s with OpenFOAM.
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Fig. 30 From left to right and top to bottom: sloshing of two immiscible fluids with a large jump
in the density: snapshots at different time steps (t = 0.55, 1.15, 1.7, 2.3, 2.75, 3.35 and 5 s.)
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Fig. 31 From left to right and top to bottom: snapshots of the dam break without obstacle at
t = 0, 0.2, 0.4, 0.6, 0.8 and 1 s
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8 Conclusions

In this paper a review and the present developments of PFEM are presented. In recent
years much effort has been devoted to improve the performance of this method in
order to make it competitive with the rest of the solvers mostly used in computational
mechanics. Not only that, but with recent findings that have emerged is thought to be
on the gates of a paradigm shift in the way of performing the simulations, especially
considering that the community is demanding of methods that are commensurate
with the needs of engineering design.

While this paper does not delve into the numerical analysis it establishes the basis
to do so in the next few years with the target to demonstrate mathematically the
goodness of the Lagrangian methods of this type in front of the very commonly used
Eulerian methods.

Finally the last goal has been to show that in addition to the well-known virtues
that owns the method to resolve problems with heterogeneous flows, it is also possible
to implement complex homogeneous flows, as in the case of turbulence and cases
with thermal coupling.
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