
Undergraduate Topics in Computer Science

Gerard O’Regan

Introduction
to Software
Quality

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality

instructional content for undergraduates studying in all areas of computing and

information science. From core foundational and theoretical material to final-year

topics and applications, UTiCS books take a fresh, concise, and modern approach

and are ideal for self-study or for a one- or two-semester course. The texts are all

authored by established experts in their fields, reviewed by an international

advisory board, and contain numerous examples and problems. Many include fully

worked solutions.

For further volumes:
http://www.springer.com/series/7592

Gerard O’Regan

Introduction to Software
Quality

Gerard O’Regan
SQC Consulting
Mallow, Cork, Ireland

ISSN 1863-7310 ISSN 2197-1781 (electronic)
ISBN 978-3-319-06105-4 ISBN 978-3-319-06106-1 (eBook)
DOI 10.1007/978-3-319-06106-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936841

Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Series Editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark

Steven Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

To
Kevin and Maura and the four princesses
(Eve, Grace, Jane and Tara)

Preface

Overview

The objective of this book is to provide an introduction to the software quality field

to students and practitioners, and it is based on the author’s experience in software

quality and software process improvement at leading industrial companies. The

principles of software quality management and software process improvement

are discussed.

The goal is to cover both theory and practice, and to give the reader a grasp

of the fundamentals of the software quality field, as well as guidance on how to

apply the theory in an industrial environment.

Organization and Features

The first chapter provides an introduction to the fundamentals of the quality

management field, and provides historical background on several pioneers such

as Deming, Juran, and Crosby.

Chapter 2 provides a broad overview of software engineering and discusses

various software lifecycles and the phases in software development. It includes a

discussion on requirements elicitation, software design, implementation, testing,

and maintenance.

Chapter 3 provides an introduction to project management and discusses project

estimation, project planning and scheduling, project monitoring and control, risk

management, and managing project quality.

Chapter 4 discusses requirements and design and is concerned with requirements

engineering and management, architectural design, and design and development.

Chapter 5 discusses configuration management and discusses the fundamental

concept of a baseline. Configuration management is concerned with identifying

those deliverables that must be subject to change control, and controlling changes

to them.

Chapter 6 discusses software inspections which play a key role in building

quality into a product. The well-known Fagan inspection process which was

developed at IBM in the 1970s is discussed, as well as lighter review and walk-

through methodologies.

vii

http://dx.doi.org/10.1007/978-3-319-06106-1_2
http://dx.doi.org/10.1007/978-3-319-06106-1_3
http://dx.doi.org/10.1007/978-3-319-06106-1_4
http://dx.doi.org/10.1007/978-3-319-06106-1_5
http://dx.doi.org/10.1007/978-3-319-06106-1_6

Chapter 7 is concerned with software testing and discusses the various types of

testing that may be carried out. It includes a discussion on test planning, test case

definition, test tracking, test metrics, test reporting, and testing in an e-commerce

environment.

Chapter 8 is concerned with the selection and management of a software

supplier. It discusses how candidate suppliers may be formally evaluated, and

how the selected supplier may be managed during the project.

Chapter 9 nine discusses software quality assurance and the importance of

process quality. It is a premise in the quality field that conformance to the defined

process is essential in the delivery of high-quality product, and this chapter

discusses audits, and describes how they are carried out.

Chapter 10 is concerned with metrics and problem solving, and this includes a

discussion of the balanced score card which assists in identifying appropriate

metrics for the organization. The Goal, Question, Metrics (GQM) approach is

discussed, and this is useful in defining metrics that are related to the organization

goals. This chapter includes a collection of sample metrics for an organization.

Problem solving tools such as fishbone diagrams, pareto charts, and trend charts are

also discussed.

Chapter 11 discusses the ISO 9000 standard, which is an important standard for

product and service delivery. This family of standards includes ISO 9001 and ISO

9004. The main features of the standard are discussed as well as guidance on its

implementation.

Chapter 12 discusses software process improvement. It begins with a discussion

of a software process, and discusses the benefits that may be gained from a software

process improvement initiative. Various models that support software process

improvement are discussed, and these include the CMMI, ISO 9000, PSP, and TSP.

Chapter 13 gives an overview of the CMMI model and discusses its five maturity

levels and their constituent process areas. It includes a discussion of both the staged

and continuous representations.

Chapter 14 describes the activities and teams required to set up a CMMI

improvement initiative for an organization. These include the CMMI Steering

Group, the SEPG team, and process specific teams.

Chapter 15 discusses the SCAMPI appraisal methodology. This includes the

formal SCAMPI Class A appraisal often employed by large organizations to obtain

a CMMI rating that allows them to benchmark themselves against other

organizations, and SCAMPI Class B and C appraisals that are less expensive and

time consuming but may not be used for benchmarking.

Chapter 16 discusses various tools to support the organizations in the various

software engineering activities. The focus is first to define the process, and then to

find tools to support the process. Tools to support project management are discussed

as well as tools to support requirements engineering, configuration management,

design and development activities, and software testing.

Chapter 17 discusses formal methods, which consist of a set of mathematical

techniques to specify and derive a program from its specification. Formal methods

may be employed to rigorously state the requirements of the proposed system; they

viii Preface

http://dx.doi.org/10.1007/978-3-319-06106-1_7
http://dx.doi.org/10.1007/978-3-319-06106-1_8
http://dx.doi.org/10.1007/978-3-319-06106-1_9
http://dx.doi.org/10.1007/978-3-319-06106-1_10
http://dx.doi.org/10.1007/978-3-319-06106-1_11
http://dx.doi.org/10.1007/978-3-319-06106-1_12
http://dx.doi.org/10.1007/978-3-319-06106-1_13
http://dx.doi.org/10.1007/978-3-319-06106-1_14
http://dx.doi.org/10.1007/978-3-319-06106-1_15
http://dx.doi.org/10.1007/978-3-319-06106-1_16
http://dx.doi.org/10.1007/978-3-319-06106-1_17

may be employed to derive a program from its mathematical specification; and they

provide a rigorous proof that the implemented program satisfies its specification.

They have been mainly applied to the safety critical field.

Chapter 18 presents the Z specification language, which is one of the most

widely used formal methods. It was developed at Oxford University in the UK.

Chapter 19 presents the unified modelling language (UML) which is used to

present several views of the system architecture. Chapter 20 is the concluding

chapter in which we summarize the journey that we have travelled in this book.

Audience

The main audience of this book are computer science students who are interested in

learning about software quality, and in learning on how to build high-quality and

reliable software on time and on budget. It will also be of interest to industrialists

including software engineers, quality professionals, and software managers as well

as the motivated general reader.

Mallow, Cork, Ireland Gerard O’Regan

Preface ix

http://dx.doi.org/10.1007/978-3-319-06106-1_18
http://dx.doi.org/10.1007/978-3-319-06106-1_19
http://dx.doi.org/10.1007/978-3-319-06106-1_20

Acknowledgments

I am deeply indebted to family and friends who supported my efforts in this

endeavour.

xi

Contents

1 Introduction . 1

1.1 Introduction . 1

1.1.1 The Software Engineering Challenge 2

1.2 History of Software Failures . 4

1.3 Background to Software Quality . 5

1.3.1 What Is Software Quality? 5

1.3.2 Early Quality Management 6

1.3.3 Total Quality Management 6

1.3.4 Software Quality Control . 7

1.4 History of Quality . 8

1.4.1 Shewhart . 8

1.4.2 Deming . 10

1.4.3 Juran . 12

1.4.4 Crosby . 15

1.4.5 Watts Humphrey . 17

1.4.6 Miscellaneous Quality Gurus 19

1.5 Modern Software Quality Management 20

1.5.1 Software Inspections . 20

1.5.2 Software Testing . 21

1.5.3 Software Quality Assurance 21

1.5.4 Problem Solving Techniques 22

1.5.5 Cost of Quality . 24

1.5.6 Software Process Improvement 25

1.5.7 Software Metrics . 26

1.5.8 Customer Satisfaction . 26

1.5.9 Assessments (Appraisals) . 29

1.5.10 Total Quality Management 29

1.6 Miscellaneous . 30

1.6.1 Organization Culture and Change 30

1.6.2 Law of Negligence . 31

1.6.3 Quality and the WEB . 31

1.7 Review Questions . 32

1.8 Summary . 32

xiii

2 Software Engineering . 35

2.1 Introduction . 35

2.2 What Is Software Engineering? . 38

2.3 Challenges in Software Engineering . 40

2.4 Software Processes and Lifecycles . 42

2.4.1 Waterfall Lifecycle . 43

2.4.2 Spiral Lifecycles . 44

2.4.3 Rational Unified Process . 45

2.4.4 Agile Development . 46

2.5 Activities in Waterfall Lifecycle . 47

2.5.1 Business Requirements Definition 48

2.5.2 Specification of System Requirements 48

2.5.3 Design . 49

2.5.4 Implementation . 50

2.5.5 Software Testing . 50

2.5.6 Maintenance . 52

2.6 Software Inspections . 53

2.7 Software Project Management . 53

2.8 CMMI Maturity Model . 54

2.9 Formal Methods . 55

2.10 Review Questions . 56

2.11 Summary . 56

3 Project Management . 59

3.1 Introduction . 59

3.2 Project Start Up and Initiation . 61

3.3 Estimation . 62

3.3.1 Estimation Techniques . 63

3.3.2 Work Breakdown Structure 64

3.4 Project Planning and Scheduling . 65

3.5 Risk Management . 67

3.6 Quality Management in Projects . 69

3.7 Project Monitoring and Control . 70

3.8 Managing Issues and Change Requests 71

3.9 Project Board and Governance . 72

3.10 Project Reporting . 73

3.11 Project Closure . 73

3.12 Prince 2 Methodology . 74

3.13 Review Questions . 76

3.14 Summary . 76

4 Requirements, Design and Development . 77

4.1 Introduction . 77

4.2 Requirements Engineering . 78

4.2.1 Requirements Elicitation and Specification 79

4.2.2 Requirements Analysis . 81

xiv Contents

4.2.3 Requirements Verification and Validation 81

4.2.4 Managing Changes to Requirements 82

4.2.5 Requirements Traceability 82

4.3 Architecture Design . 84

4.4 Design and Development . 86

4.5 Review Questions . 87

4.6 Summary . 87

5 Configuration Management . 89

5.1 Introduction . 89

5.2 Configuration Management System . 93

5.2.1 Identify Configuration Items 93

5.2.2 Document Control Management 93

5.2.3 Source Code Control Management 94

5.2.4 Configuration Management Plan 95

5.3 Change Control . 95

5.4 Configuration Management Audits . 98

5.5 Review Questions . 98

5.6 Summary . 99

6 Software Inspections . 101

6.1 Introduction . 101

6.2 Economic Benefits of Software Inspections 103

6.3 Informal Reviews . 104

6.4 Structured Walkthrough . 104

6.5 Semi-formal Review Meeting . 105

6.6 Fagan Inspections . 108

6.6.1 Fagan Inspection Guidelines 109

6.6.2 Inspectors and Roles . 110

6.6.3 Inspection Entry Criteria . 110

6.6.4 Preparation . 110

6.6.5 The Inspection Meeting . 112

6.6.6 Inspection Exit Criteria . 114

6.6.7 Issue Severity . 114

6.6.8 Defect Type . 114

6.7 Automated Software Inspections . 116

6.8 Review Questions . 117

6.9 Summary . 117

7 Software Testing . 119

7.1 Introduction . 119

7.2 Test Process . 121

7.3 Test Planning . 125

7.4 Test Case Design and Definition . 126

7.5 Test Reporting and Project Sign-off . 127

7.6 Testing and Quality Improvement . 128

Contents xv

7.7 Traceability of Requirements . 129

7.8 Test Tools . 130

7.8.1 Test Management Tools . 130

7.8.2 Miscellaneous Testing Tools 131

7.9 E-commerce Testing . 131

7.10 Review Questions . 133

7.11 Summary . 133

8 Supplier Selection and Management . 135

8.1 Introduction . 135

8.2 Planning and Requirements . 136

8.3 Identifying Suppliers . 137

8.4 Prepare and Issue RFP . 137

8.5 Evaluate Proposals and Select Supplier 138

8.6 Formal Agreement . 138

8.7 Managing the Supplier . 139

8.8 Acceptance of Software . 139

8.9 Rollout . 140

8.10 Review Questions . 140

8.11 Summary . 140

9 Software Quality Assurance . 143

9.1 Introduction . 143

9.2 Audit Planning . 146

9.3 Audit Meeting . 147

9.4 Audit Reporting . 148

9.5 Follow Up Activity . 149

9.6 Audit Escalation . 149

9.7 Review of Audit Activities . 149

9.8 Review Questions . 149

9.9 Summary . 150

10 Software Metrics . 151

10.1 Introduction . 151

10.2 The Goal Question Metric Paradigm 152

10.2.1 Goal . 153

10.2.2 Question . 154

10.2.3 Metrics . 154

10.3 The Balanced Scorecard . 154

10.4 Metrics for an Organization . 156

10.4.1 Customer Satisfaction Metrics 157

10.4.2 Process Improvement Metrics 158

10.4.3 Human Resources and Training Metrics 160

10.4.4 Project Management Metrics 162

10.4.5 Development Quality Metrics 164

10.4.6 Quality Audit Metrics . 167

xvi Contents

10.4.7 Customer Care Metrics . 168

10.4.8 Miscellaneous Metrics . 170

10.5 Implementing a Metrics Program . 172

10.5.1 Data Gathering for Metrics 173

10.6 Problem-Solving Techniques . 174

10.6.1 Fishbone Diagram . 175

10.6.2 Histograms . 177

10.6.3 Pareto Chart . 178

10.6.4 Trend Graphs . 179

10.6.5 Scatter Graphs . 180

10.6.6 Metrics and Statistical Process Control 181

10.7 Review Questions . 182

10.8 Summary . 183

11 ISO 9000 . 185

11.1 Introduction . 185

11.2 Motivation for ISO 9000 . 186

11.3 ISO 9000 . 187

11.3.1 Quality Management System 187

11.3.2 Management Responsibility 189

11.3.3 Resource Management . 190

11.3.4 Product or Service Realization 191

11.3.5 Measuring, Analysis, and Improvement 193

11.4 Implementing ISO 9001 . 195

11.5 ISO 9000 and Improvement . 195

11.5.1 Self-Assessment Process . 195

11.5.2 ISO 9001 Certification Process 195

11.6 Review Questions . 197

11.7 Summary . 198

12 Software Process Improvement . 199

12.1 Introduction . 199

12.2 What Is a Software Process? . 200

12.3 What Is Software Process Improvement? 202

12.4 What Are the Benefits of Software Process Improvement? . . . 203

12.5 What Models Are Used in Software Process Improvement? . . 204

12.6 Process Mapping . 206

12.7 Process Improvement Initiatives . 206

12.8 Barriers to Success . 207

12.9 Review Questions . 208

12.10 Summary . 208

13 Capability Maturity Model Integration . 211

13.1 Introduction . 211

13.2 The CMMI . 214

Contents xvii

13.3 CMMI Maturity Levels . 217

13.3.1 CMMI Representations . 220

13.4 Categories of CMMI Processes . 222

13.5 CMMI Process Areas . 222

13.6 Components of CMMI Process Areas 223

13.6.1 SG 1 – Manage Requirements 227

13.7 SCAMPI Appraisals . 229

13.8 Review Questions . 231

13.9 Summary . 231

14 Setting Up a CMMI Initiative . 233

14.1 Introduction . 233

14.2 Approach to Continuous Improvement 234

14.3 CMMI Improvement Structure and Teams 236

14.3.1 Setting Up the SEPG Team 237

14.3.2 Setting Up the Steering Group 240

14.3.3 Setting Up Dedicated Improvement Sub-teams 241

14.3.4 Role of the CMMI Project Manager 242

14.3.5 Risks to Success . 242

14.4 Planning the Improvement Cycle . 243

14.4.1 Appraisals . 243

14.4.2 CMMI Project Plan . 244

14.4.3 CMMI Project Schedule . 245

14.4.4 CMMI Kick-off Session . 245

14.5 Implementation of Improvements . 246

14.5.1 Process Mapping . 246

14.5.2 Layout of Templates . 248

14.5.3 Layout of Procedures and Guidelines 248

14.6 Piloting the Process . 249

14.7 Rolling Out Process . 249

14.8 Review Questions . 250

14.9 Summary . 250

15 SCAMPI Appraisals . 253

15.1 Introduction . 253

15.2 Planning and Requirements for the Appraisal 256

15.2.1 Analyze Requirements . 256

15.2.2 Develop Appraisal Plan . 257

15.2.3 Select and Prepare Team . 258

15.2.4 Obtain and Analyze Initial Evidence 259

15.2.5 Prepare for Conducting Appraisal 260

15.3 Conducting the Appraisal . 261

15.3.1 Prepare Participants . 261

15.3.2 Examine Objective Evidence 262

15.3.3 Document Objective Evidence 264

xviii Contents

15.3.4 Verify Objective Evidence 265

15.3.5 Validate Preliminary Findings 266

15.3.6 Generate Appraisal Results 266

15.4 Reporting the Results . 267

15.4.1 Deliver Appraisal Results . 267

15.4.2 Archive Appraisal Results . 267

15.5 Review Questions . 268

15.6 Summary . 268

16 Software Engineering Tools . 271

16.1 Introduction . 271

16.2 Tools for Project Management . 272

16.3 Tools for Requirements . 274

16.4 Tools for Design and Development . 278

16.5 Tools for Configuration Management and Change Control . . . 280

16.6 Tools for Code Analysis and Code Inspections 283

16.7 Tools for Testing . 284

16.8 Review Questions . 286

16.9 Summary . 286

17 Formal Methods . 289

17.1 Introduction . 289

17.2 Why Should We Use Formal Methods? 291

17.3 Applications of Formal Methods . 292

17.4 Tools for Formal Methods . 293

17.5 Approaches to Formal Methods . 294

17.5.1 Model-Oriented Approach 294

17.5.2 Modelling . 295

17.5.3 Axiomatic Approach . 296

17.6 Proof and Formal Methods . 296

17.7 The Future of Formal Methods . 298

17.8 The Vienna Development Method . 298

17.9 VDM♣, the Irish School of VDM . 299

17.10 The Z Specification Language . 301

17.11 The B Method . 302

17.12 Predicate Transformers and Weakest Preconditions 302

17.13 The Process Calculii . 303

17.14 Finite State Machines . 304

17.15 The Parnas Way . 305

17.16 Usability of Formal Methods . 306

17.16.1 Why Are Formal Methods difficult? 307

17.16.2 Characteristics of a Usable Formal Method 308

17.17 Review Questions . 308

17.18 Summary . 309

Contents xix

18 Z Formal Specification Language . 311

18.1 Introduction . 311

18.2 Sets . 314

18.3 Relations . 315

18.4 Functions . 316

18.5 Sequences . 318

18.6 Bags . 319

18.7 Schemas and Schema Composition . 320

18.8 Reification and Decomposition . 322

18.9 Proof in Z . 323

18.10 Review Questions . 324

18.11 Summary . 325

19 Unified Modelling Language . 327

19.1 Introduction . 327

19.2 Overview of UML . 328

19.3 UML Diagrams . 330

19.3.1 Advantages of UML . 335

19.4 Rational Unified Process . 335

19.5 Review Questions . 337

19.6 Summary . 337

20 Epilogue . 339

20.1 The Future of Software Quality . 341

Glossary . 343

References . 347

Index . 351

xx Contents

List of Figures

Fig. 1.1 Standish research – Project cost estimation

accuracy in 1998 . 3

Fig. 1.2 Shewhart’s control chart . 9

Fig. 1.3 Shewhart’s PDCA cycle . 9

Fig. 1.4 W.E. Deming . 10

Fig. 1.5 Joseph Juran . 13

Fig. 1.6 Cost of poor quality – % of sales . 13

Fig. 1.7 Estimation accuracy – Breakthrough and control 14

Fig. 1.8 Watts Humphrey (Courtesy of Watts Humphrey) 18

Fig. 1.9 Cost of quality . 25

Fig. 1.10 Customer satisfaction process . 27

Fig. 1.11 Customer satisfaction metrics . 28

Fig. 2.1 Standish report – Results of 1995 and 2009 survey 37

Fig. 2.2 Standish 1998 report – Estimation accuracy 41

Fig. 2.3 Waterfall V lifecycle model . 43

Fig. 2.4 SPIRAL lifecycle model . . . Public domain 44

Fig. 3.1 Simple process map for project planning 65

Fig. 3.2 Sample Microsoft project schedule . 66

Fig. 3.3 Simple process map for project monitoring and control 70

Fig. 3.4 Prince 2 project board . 72

Fig. 3.5 Project management triangle . 74

Fig. 3.6 Prince 2 processes . 75

Fig. 4.1 C.A.R. Hoare (Public domain) . 85

Fig. 4.2 David Parnas (Public domain) . 85

Fig. 5.1 Simple process map for change requests 96

Fig. 5.2 Simple process map for configuration management 97

Fig. 6.1 Michael Fagan . 102

Fig. 6.2 Template for semi-formal review . 107

Fig. 6.3 Template for Fagan inspection . 113

Fig. 6.4 Sample-defect types in a project (ODC) 116

xxi

Fig. 7.1 Simplified test process . 122

Fig. 7.2 Sample test status . 124

Fig. 7.3 Cumulative defects . 127

Fig. 7.4 Phase containment effectiveness metric 128

Fig. 9.1 Sample audit process . 145

Fig. 10.1 GQM example . 153

Fig. 10.2 The balanced scorecard . 155

Fig. 10.3 Balanced score card and implementing strategy 155

Fig. 10.4 Customer survey arrivals . 157

Fig. 10.5 Customer satisfaction measurements 158

Fig. 10.6 Process improvement measurements 159

Fig. 10.7 Status of process improvement suggestions 159

Fig. 10.8 Age of open process improvement suggestions 160

Fig. 10.9 Process improvement productivity . 160

Fig. 10.10 Employee headcount in current year 161

Fig. 10.11 Employee turnover in current year . 161

Fig. 10.12 Schedule timeliness metric . 162

Fig. 10.13 Effort timeliness metric . 163

Fig. 10.14 Requirements delivered . 163

Fig. 10.15 Total number of issues in project . 164

Fig. 10.16 Open issues in project . 165

Fig. 10.17 Age of open defects in project . 165

Fig. 10.18 Problem arrivals per month . 166

Fig. 10.19 Phase containment effectiveness . 166

Fig. 10.20 Annual audit schedule . 167

Fig. 10.21 Status of audit actions . 167

Fig. 10.22 Audit action types . 168

Fig. 10.23 Customer queries (arrivals/closures) 169

Fig. 10.24 Outage time per customer . 170

Fig. 10.25 Availability of system per month . 171

Fig. 10.26 Configuration management . 171

Fig. 10.27 CMMI maturity in current year . 172

Fig. 10.28 Fishbone cause-and-effect diagram . 176

Fig. 10.29 Histogram . 178

Fig. 10.30 Pareto chart outages . 179

Fig. 10.31 Trend chart estimation accuracy . 180

Fig. 10.32 Scatter graph amount inspected rate/error density 181

Fig. 10.33 Estimation accuracy and control charts 182

Fig. 11.1 ISO 9000 quality management system 188

Fig. 12.1 Process as glue for people, procedures and tools 201

Fig. 12.2 Sample process map . 202

xxii List of Figures

Fig. 13.1 Process as glue for people, procedures and tools 212

Fig. 13.2 ISO/IEC 12207 standard for software engineering

processes . 213

Fig. 13.3 CMMI Worldwide maturity 2013 . 216

Fig. 13.4 CMMI maturity levels . 218

Fig. 13.5 CMMI capability levels . 221

Fig. 13.6 CMMI – Continuous representation . 222

Fig. 13.7 CMMI staged model . 226

Fig. 13.8 Specific practices for SG1 – manage requirements 227

Fig. 14.1 Steps in process improvement . 235

Fig. 14.2 Continuous improvement cycle . 235

Fig. 14.3 CMMI Level 2 improvement structure and teams 239

Fig. 14.4 Sample process map . 247

Fig. 15.1 Appraisals . 254

Fig. 15.2 SCAMPI CMMI L3 rating of practices 255

Fig. 15.3 SCAMPI (classes of appraisals) . 256

Fig. 15.4 Sample schedule for SCAMPI Class C appraisal 258

Fig. 16.1 Dashboard views in Planview Enterprise 275

Fig. 16.2 Planview Process Builder . 276

Fig. 16.3 IBM Rational DOORS tool . 278

Fig. 16.4 IBM Rational Software Modeler . 279

Fig. 16.5 Sparx Enterprise Architect . 281

Fig. 16.6 LDRA code coverage analysis report 283

Fig. 16.7 HP Quality Center . 285

Fig. 17.1 Deterministic finite state machine . 305

Fig. 18.1 Specification of positive square root 312

Fig. 18.2 Specification of a library system . 313

Fig. 18.3 Specification of borrow operation . 313

Fig. 18.4 Specification of vending machine using bags 320

Fig. 18.5 Schema inclusion . 321

Fig. 18.6 Merging schemas (S1 ∨ S2) . 321

Fig. 18.7 Schema composition . 322

Fig. 18.8 Refinement commuting diagram . 323

Fig. 19.1 Simple object diagram . 332

Fig. 19.2 Use-Case diagram of ATM machine 333

Fig. 19.3 UML sequence diagram . 333

Fig. 19.4 UML activity diagram . 334

Fig. 19.5 Rational unified process . 336

Fig. 19.6 Phases and workflows in rational unified process 337

List of Figures xxiii

List of Tables

Table 1.1 ISO 9126-Quality characteristics . 6

Table 1.2 Shewhart cycle . 9

Table 1.3 Deming-14 step programme . 11

Table 1.4 Deming – Five deadly diseases . 12

Table 1.5 Juran’s ten step programme . 14

Table 1.6 Juran’s breakthrough and control . 15

Table 1.7 Crosby’s 14 step programme . 16

Table 1.8 Crosby’s maturity grid . 17

Table 1.9 Cost of quality categories . 24

Table 1.10 Sample customer satisfaction questionnaire 28

Table 1.11 Total quality management . 30

Table 3.1 Estimation techniques . 63

Table 3.2 Example work-breakdown structure 64

Table 3.3 Sample project management checklist 67

Table 3.4 Risk management activities . 68

Table 3.5 Activities in managing issues and change requests 71

Table 3.6 Project board roles and responsibilities 73

Table 3.7 Key processes in Prince 2 . 75

Table 4.1 Symptoms of poor requirements development

and management . 79

Table 4.2 Characteristics of good requirements 79

Table 4.3 Managing change requests . 83

Table 4.4 Sample trace matrix . 83

Table 4.5 Views of system architecture . 86

Table 5.1 Features of good configuration management 90

Table 5.2 Symptoms of poor configuration management 91

Table 5.3 Software configuration management activities 91

Table 5.4 Build plan . 92

Table 5.5 CMMI requirements for configuration management 92

Table 5.6 Sample configuration management audit checklist 98

Table 6.1 Informal review . 104

Table 6.2 Structured walkthroughs . 105

xxv

Table 6.3 Activities for semi-formal review meeting 106

Table 6.4 Overview Fagan inspection process 108

Table 6.5 Strict Fagan inspection guidelines . 110

Table 6.6 Tailored (Relaxed) Fagan inspection guidelines 110

Table 6.7 Inspector roles . 111

Table 6.8 Fagan entry criteria . 111

Table 6.9 Inspection meeting . 112

Table 6.10 Fagan exit criteria . 114

Table 6.11 Issue severity . 114

Table 6.12 Classification of defects in Fagan inspections 115

Table 6.13 Classification of ODC defect types . 115

Table 7.1 Types of testing . 123

Table 7.2 Sample test schedule . 126

Table 8.1 Supplier selection and management 136

Table 9.1 Auditing activities . 144

Table 9.2 Sample auditing checklist . 147

Table 9.3 Sample audit report . 148

Table 10.1 BSC objectives and measures for IT service organization 156

Table 10.2 Implementing metrics . 173

Table 10.3 Identifying data to be gathered . 173

Table 10.4 Phase containment effectiveness . 174

Table 11.1 Motivation for ISO 9000 implementation 186

Table 11.2 ISO 9001 clauses . 187

Table 11.3 ISO 9001 implementation . 196

Table 11.4 Simple ISO 9000 self-assessment . 197

Table 12.1 Benefits of software process improvement (CMMI) 204

Table 13.1 Motivation for CMMI implementation 215

Table 13.2 Benefits of CMMI implementation . 217

Table 13.3 CMMI maturity levels . 219

Table 13.4 CMMI capability levels for continuous representation 221

Table 13.5 CMMI process categories . 223

Table 13.6 CMMI process areas . 224

Table 13.7 CMMI generic practices . 228

Table 13.8 Implementation of generic practices 230

Table 14.1 Continuous improvement cycle . 237

Table 14.2 CMMI improvement structure and teams 238

Table 15.1 Phases in a SCAMPI appraisal . 255

Table 15.2 Indicators of practice implementation 260

Table 16.1 Tool evaluation table . 272

Table 16.2 Key capabilities of Planview Enterprise 275

xxvi List of Tables

Table 16.3 Tools for requirements development and management 276

Table 16.4 Tools for software design . 279

Table 16.5 Integrated development environment 282

Table 17.1 Criticisms of formal methods . 291

Table 17.2 Techniques for validation of formal specification 307

Table 17.3 Why are formal methods difficult? . 307

Table 17.4 Characteristics of a usable formal method 308

Table 18.1 Schema composition . 322

Table 19.1 Classification of UML things . 329

Table 19.2 UML diagrams . 330

Table 19.3 Simple class diagram . 331

Table 19.4 Advantages of UML . 335

List of Tables xxvii

Introduction 1

Key Topics

Software Engineering

Shewhart

Deming

Juran

Crosby

Watts Humphries

Metrics

Problem Solving

Cost of Quality

Process Improvement

Customer Satisfaction

1.1 Introduction

The mission of a software company is to develop high-quality innovative products

and services at a competitive price to its customers, and to do so ahead of its

competitors. This requires a clear vision of the business, a culture of innovation, an

emphasis on quality, detailed knowledge of the business domain, and a sound

product development strategy.

It also requires a focus on customer satisfaction and software quality to ensure

that the desired quality is built into the software product, and that customers remain

loyal to the company. Customers today have very high expectations on quality, and

expect high-quality software products to be consistently delivered on time. The

focus on quality requires that the organization define a sound software development

infrastructure to enable quality software to be consistently produced.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_1,
Springer International Publishing Switzerland 2014

1

This book describes approaches used in current software engineering to build

quality into software. This involves project planning and tracking, software

lifecycles, software inspections and testing, configuration management, software

quality assurance, etc. The capability maturity model integrated (CMMI) is

discussed in detail and the CMMI provides a framework that assists organizations

in software process improvement. It allows them to assess the current capability or

maturity of selected software processes and to prioritize improvements.

The assessment (or SCAMPI appraisal) of an organization against the CMMI

reveals strengths and weaknesses of the management and engineering processes in

the organization. The output from the appraisal is used to formulate an improve-

ment plan, which is then tracked to completion. The execution of the plan may take

1 or more years of effort.

Quality improvement also requires that the organization be actively aware of

industrial best practice, as well as emerging technologies from various research

programs. Piloting or technology transfer of innovative technology is a key part of

continuous improvement.

The history of quality and some of the key people who have contributed to the

quality movement are discussed later in the chapter. This includes well-known

quality gurus such as Shewhart, Deming, Juran, and Crosby, and these grandfathers

of quality played an important role in promoting quality in business. Watts

Humphrey is considered the father of software quality, and his important

contributions to software process improvement are discussed.

1.1.1 The Software Engineering Challenge

The challenge in software engineering is to deliver high-quality software on time to

customers. The Standish Group research [64] (Fig. 1.1) on project cost overruns in

the US during 1998 indicate that 33 % of projects are between 21 and 50 % over

estimate, 18 % are between 51 and 100 % over estimate, and 11 % of projects are

between 101 and 200 % overestimate.1

Project management and estimating project cost, effort and schedule accurately

are software engineering challenges. Consequently, organizations need to deter-

mine how good their estimation process actually and to improve it. The actual

project effort versus estimated project estimate and the actual project schedule

versus projected project schedule are determined.

Risk management is a key part of project management, and the objective is to

identify potential risks early in the project, to determine the probability of their

occurrence and their impact should they occur. The management of a risk involves

actions to eliminate or reduce the probability of its occurrence or its impact should

1 The study was from the mid/late 1990s and recent reports from the Standish Group show good

improvement trends.

2 1 Introduction

it occur, or to have a contingency plan should the risk materialize. Risks need to be

managed throughout the project lifecycle.

Projects sometimes fail and there are many examples of project being abandoned

prior to completion. For example, the Taurus project at the London stock exchange

is a well-known disaster, and the original budget was £6 million. The project was

eventually abandoned, and at that stage it was 11 years late, i.e., 13,200 % late and

had cost the city of London hundreds of millions [40].

It is essential that requirements are properly managed as changing requirement

(or the introduction of new requirements late in the software development lifecycle)

may have a negative effect on the project. It may be necessary to accept the late

requirement change if it is demanded by a customer, but there may be risks to the

project schedule and quality. However, a good requirements process will ensure that

changes to the requirements are minimized and controlled, and the requirements

process may include prototyping or joint user reviews to ensure that they match the

needs of the customer.

The implementation of the requirements involves design, development and

testing activities. It may also involve the production of user manuals and training

materials as well as the technical documentation. Changes to requirements may

occur, and any change requests must be approved and communicated to the project

team. Quality must be built into the software and testing activities are carried out to

verify the correctness of the software, and that it correctly implements the

requirements. The project manager is responsible for delivering the project on

time, and recovering the schedule when the project falls behind schedule.

The challenges in software engineering are also faced in many other disciplines.

Bridges have been constructed by engineers for several millennia and bridge building

is a mature engineering activity. However, civil engineering projects occasionally fall

Fig. 1.1 Standish research – Project cost estimation accuracy in 1998

1.1 Introduction 3

behind schedule or suffer design flaws; for example, the infamous Tacoma Narrows

bridge (or Galloping Gertie as it was known) collapsed in 1940 due to a design flaw.

The Tacoma Narrows Bridge was known for its tendency to sway in windstorms.

The shape of the bridge was like that of an aircraft wing, and under windy

conditions it would generate sufficient lift to become Unstable. A large windstorm

in November, 1940 caused catastrophic failure. The significance of the Tacoma

Bridge is its collapse and the subsequent investigation by engineers. They realized

that aero-dynamical forces in suspension bridges were not sufficiently understood

in the design of the bridge, and that new research was needed. It was recommended

that wind tunnel tests be used to aid in the design of the replacement bridge.

Software engineering is a less mature field than civil engineering, and it is only in

more recent times that investigations and recommendations from software projects

have become part of the software development process. The study of software

engineering has led to new theories and understanding of software development.

1.2 History of Software Failures

There are many examples of software failures in the literature. These include the

year 2000 (or Y2K) problem which was a design flaw in the representation of the

date with two digits; the Intel microprocessor bug which referred to a floating point

problem on its microprocessor back in 1994; the Ariane 5 disaster refers to an

operand error due to the conversion of a 64 bit floating point number to a 16 bit

signed integer number. Software failures may cause major problems and adversely

affect the customer’s business. It may lead to credibility issues, and damage to the

customer relationship.

The Y2K bug is historical and part of computer science folklore. The event on

January 1, 2000 had minimal impact on the world economy. However, organizations

spent large sums of money in identify all code with a year 2000 impact, changing the

representation of the date from 2 digits to 4 digits, and verifying the correctness of the

changes made. The worldwide cost of this was in billions of dollars.

The Intel response to a famous microprocessor mathematical bug back in 1994

inflicted (temporary) damage on the company and its reputation. Intel was slow to

acknowledge the floating point problem, and to provide adequate information on

the problems. This damaged its reputation and there was a financial cost involved in

replacing microprocessors.

The Ariane 5 failure caused major embarrassment and damage to the credibility

of the European Space Agency (ESA). The maiden flight of the Ariane 5 launcher

ended in failure on June 4, 1996, after a flight time of 40 s. The first 37 s of flight

proceeded normal. The launcher then veered off its flight path, broke up, and

exploded. An independent inquiry board investigated the cause of the failure, and

the report and recommendations to prevent a future failure are described in [38].

The inquiry noted that the failure of the inertial reference system was followed

immediately by a failure of the backup inertial reference system. The problem was

traced to a software failure due to an operand error involving the conversion of a

4 1 Introduction

64 bit floating point number to a 16 bit signed integer value number. The floating

point number was too large to be represented in the 16 bit number and this resulted

in an operand error.

The inertial reference system and the backup reference system reported failure

due to the software exception. The operand error occurred owing to an exception-

ally high value related to the horizontal velocity, and this was due to the fact that the

early part of the trajectory of the Ariane 5 differed from the earlier Ariane 4, and

required a higher horizontal velocity. The inquiry board made a series of

recommendations to prevent a reoccurrence of similar problems.

These failures indicate that software quality needs to be a key driving force in

any organization. The effect of software failure may result in huge costs to correct

the software (e.g., Y2K), negative perception of a company (e.g., Intel micropro-

cessor problem), or the loss of a valuable communications satellite (e.g., Ariane 5).

1.3 Background to Software Quality

Customers today have very high quality and reliability expectations, and expect

companies to adhere to very high standards. There are many quality software

products in the marketplace; however, the task of producing high-quality software

products consistently on time is non-trivial. Even the most respect organizations

occasionally deliver software that contains defects, or ship products late due to

quality problems. Defects may cause minor irritation to a customer, loss of credi-

bility, or in a worst case scenario they may lead to injury or loss of life.

The late delivery of a product leads to extra costs, and it may adversely affect the

customer’s revenue, profitability, and business planning. Consequently, it is essen-

tial to have a robust process to consistently develop high-quality software on time

and within budget. The influential papers by Fred Brooks in [10, 11] suggests that

there is no silver bullet to do this, and instead, the focus needs to be on incremental

improvement to processes and tools.

1.3.1 What Is Software Quality?

There are various definitions of quality such as the narrow definition proposed by

Philip Crosby where quality is defined as “conformance to the requirements”. This
definition does not take the intrinsic difference in quality of products into account in

judging the quality of the product. For example, this definition might suggest that a

Mercedes car is of the same quality as a Lada car. Further, the definition does not

consider whether the requirements are actually appropriate for the product. Juran

defines quality as “fitness for use” and this is a better definition, although it does not
provide a mechanism to judge better quality when two products are equally fit to be

used. The ISO 9126 standard for information technology [31] is a framework for the

evaluation of software product quality. It defines six product quality characteristics

1.3 Background to Software Quality 5

(Table 1.1) which indicate the extent to which a software product may be judged to

be of a high quality.

The extent to which the software product exhibits these quality characteristics

will determine whether it will be rated as a high-quality product by customers.

1.3.2 Early Quality Management

In the middle ages a craftsman was responsible for the complete development of a

product from conception to delivery to the customer. This led to a strong sense of

pride in the quality of the product, and apprentices joined craftsmen to learn the

skills of the trade to become successful craftsmen themselves.

The industrial revolution led to a change to this traditional paradigm, and labour

became highly organized with workers responsible for a particular part of the

manufacturing process. The sense of ownership and the pride of workmanship in

the product were diluted, as workers were now responsible only for their portion of

the product, and not the product as a whole.

This led to a requirement for more stringent management practices, including

planning, organizing, implementation, and control. It inevitably led to a hierarchy

of labour with various functions identified, and a reporting structure for the various

functions. Supervisor controls were needed to ensure quality and productivity

issues were addressed.

1.3.3 Total Quality Management

Total quality management (TQM) is a modern approach to quality management,

and this management philosophy involves customer focus, process improvement,

developing a culture of quality within the organization and developing a measure-

ment and analysis program. It emphasizes that customers have rights and quality

expectations which should be satisfied, and that everyone in the organization is both

a customer and has customers.

Table 1.1 ISO 9126-Quality characteristics

Characteristic Description

Functionality This indicates the extent to which the required functionality is available in the

software.

Reliability This indicates the extent to which the software is reliable.

Usability This indicates the extent to which the users of the software judge it to be easy to

use.

Efficiency This characteristic indicates the efficiency of the software

Maintainability This indicates the extent to which the software product is easy to modify and

maintain.

Portability This indicates the ease of transferring the software to a different environment.

6 1 Introduction

It is a holistic approach and requires that all functions, in the organization follow
high standards. Quality needs to be built into the product by ensuring that quality is

addressed at every step in the process.

It involves defining internal and external customers, recognizing that internal

and external customers have rights and expectations, identifying the requirements

that they have, and meeting these first time and every time. It requires total

commitment from the top management, training all staff in quality management,

and ensuring that all staff participates in quality improvement. It requires that a

commitment to quality be instilled in all staff, and that the focus within the

organization change from fire fighting to fire prevention. Fire prevention involves

problem solving to address root causes of problems, and taking corrective action to

prevent re-occurrence.

1.3.4 Software Quality Control

Software quality control is concerned with activities to ensure that the end product

satisfies the functional and non-functional requirements and is fit for purpose. It

includes inspections and testing to verify that the deliverables produced satisfy their

requirements. Inspections typically consist of a formal review of a deliverable by

independent experts, and the objective is to identify defects within the work

product, and to provide confidence in its correctness. Software inspections are

discussed in a later chapter.

Inspections in a manufacturing environment are quite different in that they take

place at the end of the production cycle, and do not offer a mechanism to build

quality into the product. Instead, the defective products are removed from the batch

and reworked. There is a growing trend towards quality sampling at the early phases

of a manufacturing process to minimize reworking of defective products.

Software testing consists of “white box” or “black box” testing techniques, and the
testing activities include unit, system, performance, and acceptance testing. The
testing is quite methodical, and includes a comprehensive set of manual or automated

test cases. The verification and validation activities involve the execution of the

defined tests, and the correction of any failed or blocked tests. It may not always be

possible to do sufficient real world testing, and in some cases only limited simulation

testing may be possible. In these cases, the simulated environment will need to

resemble the real time environment closely to ensure the validity of the testing.

The cost of correction of a defect is directly related to the phase in which it is

detected in the lifecycle. Errors detected in phase are the least expensive to correct,

and defects detected out of phase become increasingly expensive to correct. The

most expensive defect is that detected by the customer, as its correction may require

changes to the requirements, design and code. Testing will be required as well as a

fix release for the customer. There is further overhead in project management,

configuration management, and in communication with the customer.

It is therefore highly desirable to capture defects as early as possible in the

software lifecycle, in order to minimize the effort required to re-work the defect.

1.3 Background to Software Quality 7

Modern software engineering places emphasis on defect prevention and in learning

lessons from the actual defects. This approach is adopted from manufacturing

environments, and consists of formal causal analysis meetings to brainstorm and

identify root causes of problems, and the corrective actions necessary to prevent

reoccurrence. The actions are then implemented and tracked to completion.

1.4 History of Quality

This section considers the ideas of several pioneers who have influenced the quality

field. These include Walter Shewhart, W. Edwards Deming, Joseph Juran, and

Philip Crosby. We also discuss the influence of Watts Humphrey who is considered

the father of software quality.

1.4.1 Shewhart

Walter Shewhart was a statistician at AT&T Bell Laboratories (or Western Electric

Co. as it was known in the 1920s). He is regarded as the founder of statistical process

control (SPC), which remains important today in monitoring and controlling a

process (Fig. 1.2). He developed a control chart which is a tool that can be used to

control the process, with upper and lower limits for process performance specified.

The process is under control if it is performing within these limits.

Shewhart’s ideas were later applied to the Capability Maturity Model (CMM) in

the late 1980s as a way to control key software processes, and statistical process

control plays an important role in process improvement. Deming and Juran worked

with Shewhart at Bell Labs in the 1920s.

The Shewhart model is a systematic approach to problem solving and process

control. It consists of four steps which are used for continuous process improve-

ment, and these are plan, do, check, act, and it is known as the “PDCA Model” or

Shewhart’s model (Fig. 1.3 and Table 1.2).

Shewhart argued that quality and productivity improve as process variability is

reduced. His influential book, The Economic control of quality of manufactured
product [58], was published in 1931, and outlines the methods of statistical process

control to reduce process variability. The book prophesized that productivity would

improve as process variability was reduced, and this was verified by Japanese

engineers in the 1950s.

This lead to a paradigm shift in quality at Japanese companies, and it led to

productivity improvements, increased market share, and led to Japanese companies

gaining global market share. Today, companies around the world recognize the

importance of placing quality at the heart of the organization.

8 1 Introduction

Fig. 1.2 Shewhart’s control chart

Fig. 1.3 Shewhart’s PDCA

cycle

Table 1.2 Shewhart cycle

Step Description

Plan This step identifies an improvement opportunity and outlines the problem or process that

will be addressed.

Select the problem to be addressed.

Describe current process.

Identify the possible causes of the problem.

Find the root cause of problems.

Develop an action plan to correct the root cause.

Do This step involves carrying out the improvements and it may involve a pilot of the

proposed changes to the process.

Check This step involves checking the results obtained against the expected results to determine

their effectiveness.

Act This step includes the analysis of the results to adjust process performance to achieve the

desired results.

1.4 History of Quality 9

1.4.2 Deming

W. Edwards Deming (Fig. 1.4) was a major figure in the quality movement. He was

influenced by Shewhart’s work on statistical process control, and Deming’s ideas

on quality were adopted in post second world war Japan, and played an important

role in transforming Japan industry.

Deming argued that it is not sufficient for everyone in the organization to be

doing one’s best: instead, what is required is that there be a consistent purpose and

direction in the organization. That is, it is first necessary that people know what to

do, and there must be a constancy of purpose from all individuals to ensure success.

He argued that there is a very strong case for improving quality, as costs will

decrease due to less rework of defective products, and productivity will increase as

less time is spent in reworking. This will enable the company to increase its market

share, with better quality and lower prices, and to stay in business. Conversely,

companies which fail to address quality issues will lose market share, and go out of

business. Deming was highly critical of the then American approach to quality, and

the lack of vision of American management in quality management.

Deming’s influential book Out of the Crisis [15] proposed 14 principles to

transform the western style of management of an organization to a quality and

customer focused organization. The implementation of his approach helps an

organization to produce high-quality products. It includes:

• Constancy of purpose

• Quality built into the product

• Continuous improvement culture

Statistical process control is employed to minimize variability in process perfor-

mance, as variability in the process affects product quality. SPC involves the

analysis of control charts so that the cause of variability can be identified and

eliminated. Deming’s ideas are described in more detail in Table 1.3.

Deming argued that there are several diseases that afflict companies in the

western world that prevent them for achieving high quality results. The “five deadly
diseases” noted by Deming include (Table 1.4).

Fig. 1.4 W.E. Deming

10 1 Introduction

Table 1.3 Deming-14 step programme

Step Description

Constancy of

purpose

Companies face short-term and long-term problems. The problems of

tomorrow require long-term planning on new products, training, and

innovation. This requires resources invested in research and development

and continuous improvement of existing products and services.

Adopt new

philosophy

Deming outlined the five deadly diseases which afflicted US companies.

These included lack of purpose and an excessive interest in short-term

profits.

Build quality in Deming argued that performing mass inspections is equivalent to planning

for defects as they are too late to improve quality. Consequently, it is

necessary to improve the production process to build the quality into the

product.

Price and quality Deming argued against the practice of awarding business on the basis of

price alone, as the price of a product or service is meaningless unless there

is an objective measure of the quality of the product or service being

purchased.

Continuous

improvement

There must be continuous improvement in all areas, including
understanding customer requirements, design, manufacturing and test

methods.

Institute training The organization must be a learning organization and this involves setting

up a training program to educate management and staff about the company,

customer needs, and pride of workmanship in the products. Supervisors and

managers need training on the 14 point program to ensure they fully

understand the enhanced contribution that their staff can make if barriers to

good work are removed.

Institute leadership Deming argues that management is about leadership and not supervision.
Management should work to remove barriers, know the work domain in

depth, and seek innovative solutions to resolve quality and other relevant

issues.

Eliminate fear The presence of fear is a barrier to an open discussion of problems and the

identification of solutions or changes to prevent problems from arising.

Eliminate barriers The objective here is to break down barriers between different departments

and groups. It is not enough for each group to optimize its own area:

instead, what is required is for the organization to be working as one team.

Eliminate slogans Deming argued that slogans do not help anyone to do a better job. Slogans

may potentially alienate staff or encourage cynicism. Deming criticized

slogans such as “Zero Defects” or “Do it right the first time” as

inappropriate, as how can it be made right first time if the production

machine is defective. Most problems are due to the system rather than the

person. A slogan is absolutely inappropriate unless there is a clearly defined

strategy to attain it, as otherwise the result is the opposite effect to that

intended.

Eliminate numerical

quotas

Deming argued that quotas act as an impediment to improvement in

quality, as quotas are normally based on what may be achieved by the

average worker. People below the average cannot make the rate and the

result is dissatisfaction and turnover. Thus, there is a fundamental conflict

between quotas and pride of workmanship.

Pride of work The intention here is to remove barriers that rob people of pride of

workmanship (e.g., machines out of order).

(continued)

1.4 History of Quality 11

Comment (Deming): Deming’s program has been quite influential and has many
sound points. His views on slogans in the workplace are in direct opposition to the
use of slogans like Crosby’s “Zero defects”. The key point for Deming is that a
slogan has no value unless there is a clear method to attain the particular goal
described by the slogan.

1.4.3 Juran

Joseph Juran (Fig. 1.5) was a major figure in the quality movement, and he argued

for a top down approach to quality. He defined quality as “fitness for use”, and he

argued that quality issues are the direct responsibility of management. Management

must ensure that quality is planned, controlled, and improved.

The trilogy of quality planning, control, and improvement is known as the

“Juran Trilogy”, and is usually described by a diagram with time on the horizontal

axis and the cost of poor quality on the vertical axis (Fig. 1.6).

Quality planning consists of setting quality goals, developing plans, and

identifying resources to meet the goals. Quality control consists of evaluating

performance, setting new goals, and taking action. Quality improvement consists

of improving delivery, eliminating wastage and improving customer satisfaction.

Juran’s10 step programme is defined in [33], and a summary is in Table 1.5.

Juran defined an approach to achieve a new quality performance level that is

termed “Breakthrough and Control”, It is described pictorially by a control chart

Table 1.3 (continued)

Step Description

Self improvement This involves encouraging education and self-improvement for everyone in

the company.

Take action This requires that management agree on direction using the 14 principles,

communicate the reasons for changes to the staff, and train the staff on the

14 principles.

Table 1.4 Deming – Five deadly diseases

Disease Description

Lack of constancy of

purpose

Management is too focused on short term thinking rather than long-term

improvements.

Emphasis on short

term profit

A company should aim to become the world’s most efficient provider of

product/service. Profits will then follow.

Evaluation of

performance

Deming is against annual performance appraisal and rating

Mobility of

management

Mobility of management frequently has a negative impact on quality.

Excessive

measurement

Excessive management by measurement.

12 1 Introduction

showing the old performance level with occasional spikes or random events; what is

needed is a breakthrough to a new and more consistent quality performance, i.e., a

new performance level with performance achieved at that level.

The example in Fig. 1.7 presents the breakthrough in developing a more accurate

estimation process. Initially the variation in estimation accuracy is quite large, but

as an improved estimation process is put in place, the control limits are narrowed

and more consistent estimation accuracy is achieved.

The breakthrough is achieved by a sustained and coordinated effort, and the old

performance standard becomes obsolete. The difference between the old and the

Fig. 1.5 Joseph Juran

Fig. 1.6 Cost of poor quality – % of sales

1.4 History of Quality 13

Table 1.5 Juran’s ten step programme

Step Description

Identify customers This includes the internal and external customers of an organization, e.g.,

the testing group is an internal customer and the end user of the software is

the external customer.

Determine customer

needs

Customer needs are generally expressed in the language of the customer’s

organization. There is a need to elicit and determine the actual desired

requirements with further communication with the customer.

Translate This involves translating the customer needs into the language of the

supplier.

Units of

measurement

This involves defining the measurement units to be used

Measurement

programme

This involves setting up a measurement program in the organization, and

includes internal and external measurements of quality and process

performance.

Develop product This step determines the product features to meet the needs of the

customer.

Optimize product

design

The intention is to optimize the design of the product to meet the needs of

the customer and supplier.

Develop process This involves developing processes which can produce the products to

satisfy the customer’s needs.

Optimize process

capability

This involves optimizing the capability of the process to ensure that high

quality products are produced.

Transfer This involves transferring the process to normal product development

operations.

Fig. 1.7 Estimation accuracy – Breakthrough and control

14 1 Introduction

new performance level is known as the “chronic disease” which must be diagnosed

and cured. His approach to breakthrough and control is (Table 1.6).

1.4.4 Crosby

Philip Crosby was a key figure in the quality movement, and his quality improve-

ment grid influenced the Capability Maturity Model (CMM) developed by the

Software Engineering Institute. His influential book Quality is Free [14] outlines

his philosophy of doing things right the first time, i.e., the zero defects
(ZD) program. Quality is defined as “conformance to the requirements” and he

argues that people have been conditioned to believe that error is inevitable.

Crosby argued that people in their personal lives do not accept this: for example, it

would not be acceptable for nurses to drop a certain percentage of newly born babies.

He further argues that the term “Acceptable Quality Level” (AQL) is a commitment

to produce imperfect material. Crosby notes that defects are due to two main reasons:

lack of knowledge or a lack of attention of the individual.
He argued that lack of knowledge can be measured and addressed by training,

but that lack of attention is a mind-set that requires a change of attitude by the

individual. The net effect of a successful implementation of a zero defects program

is higher productivity due to less reworking of defective products. Thus, quality, in
effect, is free.

Crosby’s approach to achieve the desired quality level of zero defects was to put

a quality improvement program in place. He outlined a 14 step quality improvement

program (Table 1.7). It requires management commitment to be successful, and an

organization-wide quality improvement team needs to be set up. A measurement

program is put in place to determine the status and cost of quality within the

organization. The cost of quality is then shared with the staff and corrective actions

are identified and implemented. The zero defect program is communicated to the

staff, and 1 day every year is made a zero defects day, and is used to emphasize the

importance of zero defects to the organization.

Crosby’s Quality ManagementMaturity Grid (Table 1.8) measures the maturity of

the current quality system with respect to several quality management categories, and

highlights areas which require improvement. Six categories of quality management

Table 1.6 Juran’s breakthrough and control

Step Description

Breakthrough in

attitude

This involves developing a favourable attitude to quality improvement.

Pareto This involves identifying the key areas affecting quality

Organization This involves analysing the problem and coordinating a solution.

Control This is concerned with achieving performance at the new level.

Repeat This leads to continuous improvement with new performance levels set and

breakthroughs made to achieve the new performance levels.

1.4 History of Quality 15

are considered: management understanding and attitude towards quality, quality
organization status, problem handling, the cost of quality, quality improvement
actions and summation of company quality posture.

Each category is rated on a 1–5 maturity scale and this indicates the maturity of

the particular category. Crosby’s maturity grid has been adapted and applied to the

CMM. The five levels are given in Table 1.8.

Comment (Crosby): Crosby’s program has been quite influential and his maturity
grid has been applied to the software CMM. The ZD part of the program is difficult to

Table 1.7 Crosby’s 14 step programme

Step Description

Management

commitment

Management commitment and participation is essential for the success of

the quality improvement program. The profile of quality is raised within the

organization

Quality

improvement team

This involves the formation of an organization-wide cross-functional team

consisting of representatives from each of the departments.

Quality

measurement

The objective of quality measurements is to determine the status of quality

in each area of the company and to identify areas where improvements are

required

Cost of quality

evaluation

The cost of quality is an indication of the financial cost of quality to the

organization. The cost is initially high, but as the quality improvement

becomes effective there is a reduction in the cost of quality.

Quality awareness This involves sharing the cost of poor quality with staff, and motivating

staff to identify corrective actions to address quality issues.

Corrective action This involves resolving any problems which have been identified, and

bringing any problems which cannot be resolved to the attention of

management.

Zero defect program The next step is to communicate the meaning of zero defects to the

employees The key point is that it is not a motivation program: instead, it

means doing things right the first time, i.e., zero defects.

Supervisor training This requires that all supervisors and managers receive training on the

14 step quality improvement program

Zero defects day This involves setting aside 1 day each year to high-light zero defects, and its

importance to the company.

Goal setting This phase involves getting people to think in terms of goals and achieving

the goals

Error cause removal This phase identifies any roadblocks or problems which prevent employees

from performing error-free work.

The list is produced from the list of problems or road-blocks for each

employee.

Recognition This involves recognizing employees who make out-standing contributions

to quality improvement.

Quality councils This involves bringing quality professionals together on a regular basis to

share ideas on action.

Do it over again The principle of continuous improvement is a key part of the programme.

Improvement is continuous.

16 1 Introduction

apply to the complex world of software development, where the complexities of the
systems to be developed are often the cause of defects rather than the mind-set of
software professionals (who are generally dedicated to quality). Slogans may be
dangerous and potentially unsuitable to some cultures and a zero defects day may
potentially have the effect of de-motivating staff.

1.4.5 Watts Humphrey

Watts Humphrey was an American software engineer and vice president of techni-

cal development at IBM. He made important contributions to the software engi-

neering field, and is considered the father of software quality. He dedicated much of

his career to addressing the problems of software development including schedule

delays, cost overruns, software quality and productivity (Fig. 1.8).

He was born in Michigan in 1927 and served in the US Navy and completed a

bachelor’s degree in physics at the University of Chicago in 1949. He obtained a

Master’s degree in physics from the Illinois Institute of Technology (IIT) and an

MBA from the University of Chicago.

He took a position with Sylvania in Boston in the early 1950s, and he became

manager of the circuit design group in the company. He recognized the importance

of planning and management early in his career, and he later made important

contributions to the management aspects of software development at IBM and the

Software Engineering Institute (SEI). He joined IBM in 1959 initially as a hardware

architect, but most of his IBM career was in management. He was eventually to

become a vice president of technical development, where he oversaw 4,000

Table 1.8 Crosby’s maturity grid

Level Name Description

1. Uncertainty: Management has no understanding of quality, and is likely to blame

quality problems on the quality department. Fire fighting is prevalent and

problems are fought as they occur. Root causes of problems are not

investigated, and there are few organized quality improvement activities.

2. Awakening: Management is beginning to recognize that quality management may be

of value, but is unwilling to devote time and money to it. Instead, the

emphasis is on appraisal rather than prevention. Teams are set up to

address major problems, but long-term solutions are rarely sought.

3. Enlightenment: Management is learning more about quality, and is becoming more

supportive of quality improvement. The quality department reports to

senior management, and implementation of the 14 step quality

improvement program is underway. There is a culture of openness where

problems are faced openly and resolved in an orderly way.

4. Wisdom: Management is fully participating in the program, and fully understands

the importance of quality management. All functions within the

organization are open to suggestions for improvement, and problems are

identified earlier. Defect prevention is now part of the culture.

5. Certainty: The whole organization is involved in continuous improvement

1.4 History of Quality 17

engineers in 15 development centres in over 7 countries. He was influenced by

others at IBM including Fred Brooks who was project manager of the IBM

360 project; Michael Fagan who developed the Fagan Inspection Methodology;

and Harlan Mills who developed the Cleanroom methodology. Humphries ran the

software quality and process group at IBM towards the end of his IBM career, and

became very interested in software quality.

He retired from IBM in 1986 and joined the newly formed SEI at Carnegie

Mellon University. He made a commitment to change the software engineering

world by developing sound management principles for the software industry. The

SEI has largely fulfilled this commitment, and it has played an important role in

enhancing the capability of software organizations throughout the world.

The SEI had a contract from the Department of Defence (DOD) to provide

guidance to the military in the selection of capable software subcontractors. This

evolved into the book “Managing the Software Process” [29] which describes

technical and managerial topics essential for good software engineering. The

book was influenced by the ideas of Deming and Juran in statistical process control.

Humphries established the software process programme at the SEI, and this led

to the development of the software Capability Maturity Model (CMM) and its

successors. Humphries asked questions such as:

– How good is the current software process?

– What must I do to improve it?

– Where do I start?

The CMM is a framework to help an organization to understand its current

process maturity, and to prioritize improvements. The SEI introduced software

process assessment and software capability evaluation methods, and these include

CBA/IPI and CBA/SCE. The CMM model and the associated assessment methods

were widely adopted by organizations around the world, and their successors are the

CMMI Model and the SCAMPI appraisal methodology.

Humphries focused his later efforts to developing the Personal Software Process

(PSP) and the Team Software Process (TSP). These are approaches that teach

engineers the skills they need to make and track plans, and to produce high-

quality software with zero defects. The PSP helps the individual engineer to collect

Fig. 1.8 Watts Humphrey

(Courtesy of Watts

Humphrey)

18 1 Introduction

relevant data for statistical process control, whereas the TSP focuses on teams, and

the goal is to assist teams to understand and improve their current productivity and

quality of their work.

He received many awards for his contributions to the computing field. He was

named the first SEI fellow in 1995 in recognition of his outstanding contribution to

the software quality field. He received the 2003 National Medal in Technology

from President George Bush, and was named an ACM fellow in 2009 for his

outstanding contributions to computing and information technology. He was the

author of 12 books in the software engineering field. He died in 2010.

1.4.6 Miscellaneous Quality Gurus

There are several other important pioneers in the quality field including Shingowho
developed his own version of zero defects termed “Poka yoke” (or defects¼ 0).
This involves identifying potential error sources in the process, and monitoring

these for errors. Causal analysis is performed on any errors found, and the root

causes are eliminated. This approach leads to the elimination of all errors likely to

occur, and thus only exceptional errors should occur. These exceptional errors and

their causes are then eliminated. The failure mode and effects analysis (FMEA)

methodology is a variant of this. Potential failures to the system or sub-system are

identified and analysed, and the causes and effects and probability of failure

documented.

Genichi Taguchi’s definition of quality is quite different. Quality is defined as

“the loss a product causes to society after being shipped, other than losses caused
by its intrinsic function”. Taguchi defines a loss function as a measure of the cost of

quality; L(x)¼ c(x� T)2 + k. Taguchi also developed a method for determining the

optimum value of process variables which will minimize the variation in a process

while keeping a process mean on target.

Kaoru Ishikawa is well known for his work in quality control circles (QCC).

A quality control circle is a small group of employees who do similar work, and meet

regularly to identify and analyse work-related problems. This involves brainstorming,

recommending and implementing solutions. The problem solving tools employed

include pareto analysis, fishbone diagrams, histograms, scatter diagrams, and con-
trol charts. A facilitator will train the quality circle team leaders, and the activities in

a quality circle include:

• Select problem

• State and re-state problem

• Collect facts

• Brain-storm

• Build on each other’s ideas

• Choose course of action

• Presentation

Armand Feigenbaum is well known for this work in total quality control which
concerns quality assurance applied to all functions in the organization. It is distinct

1.4 History of Quality 19

from total quality management: total quality control is concerned with controlling

quality throughout, whereas TQM embodies a philosophy of quality management

and improvement involving all staff and functions throughout the organization.

1.5 Modern Software Quality Management

The cost of correction of a defect increases the later that it is detected in the life

cycle. Consequently, it is desirable to detect an error as early as possible and

preferably within the phase in which it was created. This involves setting up a

software quality infrastructure to assist in error detection within the phase in which

the defect is created or at worst to detect the defect shortly after it exits the

particular phase. The development of high quality software requires a good soft-

ware development process to be in place, and this includes best practices in

software engineering for:

• Project management

• Estimation methodology

• Risk management process.

• Requirements Development and Management

• Design and Development

• Software development lifecycles

• Quality assurance/management

• Software inspections

• Software testing

• Supplier Selection and Management

• Configuration management

• Customer satisfaction process

• Continuous improvement

Mature software organizations are learning organizations and the goal is to learn

from defects to prevent their re-occurrence. Software inspections play a key role in

detecting defects in-phase, and they are discussed in the next section.

1.5.1 Software Inspections

The Fagan Inspection process was developed by Michael Fagan of IBM [20], and it

aims to identify and remove errors in work products. There is a strong economic

case for identifying defects as early as possible, as the cost of correction of a defect

increases the later that it is discovered. The process mandates that requirement

documents, design documents, source code, and test plans all be formally inspected

by experts independent of the author of the deliverable.

There are various roles defined in the process including the moderator who

chairs the inspection. The moderator ensures that all of the inspectors are trained

and receive the appropriate materials for the inspection. S/he ensures that sufficient

preparation is done, and that the speed of the inspection does not exceed the

20 1 Introduction

recommended guidelines. The reader reads or paraphrases the particular deliverable;
the author is the creator of the deliverable and has a special interest in ensuring that it
is correct. The tester role is concerned with the test viewpoint.

The inspection process will consider whether the design is correct with respect to

the requirements, and whether the source code is correct with respect to the design.

The errors identified are classified into various types and the data are generally

recorded to enable analysis to be performed on the most common types of errors.

The analysis will yield actions to be performed to minimize the re-occurrence of the

most common defect types. Software inspections are described in more detail in

Chap. 6.

1.5.2 Software Testing

Software testing plays a key role in verifying that the software is fit for purpose, and

two key types of software testing are black box and white box testing. White box

testing involves checking that every path in a module has been tested, and involves

defining and executing test cases to ensure code and branch coverage. The goal of

black box testing is to verify the functionality of a module or feature or the complete

system itself. Testing is both a constructive activity in that it is verifying the

correctness of functionality, and it may be a destructive activity in that the objective

is to find defects in the implemented software. Testing verifies that the requirements

are correctly implemented, and it yields the presence or absence of defects.

The test cases are reviewed by independent experts to ensure that they are

sufficient to verify the correctness of the software. There are various types of

testing including, unit, system, performance and usability testing. The effectiveness

of the testing is influenced by the maturity of the test process employed. Testing is

described in more detail in Chap. 7.

1.5.3 Software Quality Assurance

The IEEE definition of software quality assurance is “the planned and systematic
pattern of all actions necessary to provide adequate confidence that the software
performs to established technical requirements” [41]. The software quality assur-

ance department provides visibility into the quality of the work products being

built, and the processes being used to create them. The quality assurance group may

be just one person operating part time or it may be a team of quality engineers. The

activities of the quality assurance group typically include software testing activities

to verify the correctness of the software, and also quality audits of the various

groups involved in software development. This section discusses the role of an

independent quality assurance group.

The quality group promotes quality in the organization and is independent of the

development group. It provides an independent assessment of the quality of the

product being built, and this viewpoint is independent of the project manager and

1.5 Modern Software Quality Management 21

http://dx.doi.org/10.1007/978-3-319-06106-1_6
http://dx.doi.org/10.1007/978-3-319-06106-1_7

development viewpoint. The quality assurance group acts as the voice of the

customer, and aims to ensure that quality is considered at each step in the process.

The quality group will perform audits of various projects, groups and departments,

and will determine the extent to which the process is followed and report any

weaknesses in the processes and non-compliances identified. The quality group will

usually have a reporting channel to senior management, and any non-compliance

issues which are not addressed at the project level may be escalated to the next level

of management for resolution. The key responsibilities of the quality assurance group

are:

• Promotes quality in organization

• Customer Advocate

• Conducts audits to verify Compliance

• Reports audit results to management

• Provides visibility to Management on processes followed

• Facilitates software process improvement

• Release sign-offs

The quality audit provides visibility into the work products and processes used to

develop the work products. The audit consists of an interview with the project team,

and the auditor examines the processes followed and deliverables produced by each

team member, considers any issues which have arisen during the work, and assesses

if there are any quality risks associated with the project based on the information

provided.

The auditor needs good written and verbal communication skills, and gathers

information via open and closed questions. S/he will need to observe behaviour and

body language and be able to deal effectively with any resistance. The auditor will

consider the role that the participant is performing, and relate this to the defined

process for their area. The entry and exit criteria to the defined processes are

generally examined to verify that the criteria have been satisfied at the various

milestones. The auditor writes a report detailing the findings from the audit and the

recommended corrective actions with respect to any identified non-compliance to

the defined procedures. S/he will perform follow-up activity at a later stage to verify

that the corrective actions have been carried out. The audit activities include

planning activities, the audit meeting, gathering data, reporting the findings and

assigning actions, and following the actions through to closure. The audit process is

described in more detail Chap. 9.

1.5.4 Problem Solving Techniques

There is a relationship between the quality of the process and the quality of the

products built from the process. The defects identified during testing are very

valuable in that they enable the organization to learn and improve from the defect.

Defects are often caused by the incorrect execution of a process, or due to a defect

in the process itself. Consequently, the lessons learned from a particular defect

should be used to correct systemic defects in the process.

22 1 Introduction

http://dx.doi.org/10.1007/978-3-319-06106-1_9

Problem-solving teams are formed to analyse various problems and to identify

corrective actions. They agree on the problem to be solved, the collection and

analysis of the facts, and determine the appropriate solution to solve the problem.

There are various tools to assist problem solving and these include fishbone

diagrams, histograms, trend charts, pareto diagrams, and bar charts. Problem

solving is discussed in detail in Chap. 10.

1.5.4.1 Fishbone Diagrams
This well-known cause-and-effect diagram is in the shape of the backbone of a fish.

The approach is to identify the possible causes of some particular quality effect.

These may include people, materials, methods, and timing. Each of the main causes

may then be broken down into sub-causes. The root cause is then identified, as often

80 % of problems are due to 20 % of causes (the 80:20 rule).

1.5.4.2 Histograms
A histogram is a way of representing data via a frequency distribution in bar chart

format, and it is a graphical representation of the underlying distribution of the data.

It illustrates the shape, variation, and centring of the underlying distribution. The

data is divided into a number of buckets, where a bucket is a particular range of data

values, and the relative frequency of each bucket is displayed in bar format. The

shape of the process and its spread from the mean is evident from the histogram.

1.5.4.3 Pareto Chart
The objective of a pareto chart is to identify the key problems and to focus on these.

Problems are classified into various types or categories, and the frequency of each

category of problem is then determined. The chart is displayed in a descending

sequence of frequency, with the most significant category detailed first, and the

least significant category detailed last. The success in problem-solving activities

over a period of time may be judged from the trends in the pareto chart, and if

problem solving activities are successful, then the key problem categories in the old

chart should show a noticeable improvement in the new pareto chart.

1.5.4.4 Trend Graph
A trend graph is a graph of a variable over time and is a study of observed data for

trends or patterns over time.

1.5.4.5 Scatter Graphs
The scatter diagram is used to measure the relationship between variables, and to

determine whether there is a correlation between the variables. The results may be a

positive correlation, negative correlation or no correlation between the data. The

scatter diagram provides a means to confirm a hypothesis that two variables are

related, and provides a visual means to illustrate the potential relationship.

1.5 Modern Software Quality Management 23

http://dx.doi.org/10.1007/978-3-319-06106-1_10

1.5.4.6 Failure Mode Effect Analysis
This involves identifying all of the possible failures of the system, and the impact of

each failure. Each possible failure mode is documented, as well as the impact of

failure, the cause of failure, the frequency of occurrence, its severity, the estimate

of detection of the failure, the risk and corrective action to minimize the risk.

FMEAs are usually applied at the design stage.

The problem solving techniques discussed here are tools for the teams to analyse

and identify corrective actions. Problem-solving teams may be formed to solve a

particular problem, and the team may be disbanded after successful resolution.

1.5.5 Cost of Quality

Crosby argued that the most meaningful measurement of quality is the cost of quality,

and the emphasis on the improvement activities in the organization is therefore to

reduce the cost of poor quality (COPQ). The cost of quality includes the cost of

external and internal failure, the cost of providing an infrastructure to prevent the

occurrence of problems, and the cost of the infrastructure to verify the correctness of

the product. The cost of quality was divided into four subcategories (Table 1.9) by

Feigenbaum in the 1950s, and evolved further by James Harrington of IBM.

The cost of quality graph (Fig. 1.9) will initially show high external and internal

costs and very low prevention costs, and the total quality costs will be high.

However, as an effective quality system is put in place and becomes fully opera-

tional there will be a noticeable decrease in the external and internal cost of quality,

and a gradual increase in the cost of prevention and appraisal. The total cost of

quality will substantially decrease, as the cost of provision of the quality system is

substantially below the savings gained from lower cost of internal and external

failure. The COPQ curve will indicate where the organization is in relation to the

cost of poor quality, and the organization will need to derive a plan to achieve the

desired results to minimize the cost of poor quality.

Table 1.9 Cost of quality categories

Type of cost Description

Cost external This includes the cost of external failure and includes engineering repair,

warranties, and a customer support function

Cost internal This includes the internal failure cost and includes the cost of reworking and

re-testing of any defects found internally.

Cost

prevention

This includes the cost of maintaining a quality system to prevent the occurrence of

problems, and includes the cost of software quality assurance, the cost of training,

etc.

Cost

appraisal

This includes the cost of verifying the conformance of a product to the

requirements and includes the cost of provision of software inspections and testing

processes.

24 1 Introduction

1.5.6 Software Process Improvement

Software process improvement initiatives support the organization in achieving its

key business goals such as delivering software faster to the market, improving

quality, reducing or eliminating waste. The objective is to work smarter and to build

software better, faster, and cheaper than competitors. It makes business sense and

provides a tangible return on investment.

An improvement program is a project in its own right and needs to be managed

as such. Model based approaches to process improvement involve using models

such as the CMM, CMMI, ISO 9000, PSP or TSP. A maturity model provides a set

of best practices in software engineering, and an internal or external assessment of

the organization against the model will yield the current strengths and weaknesses

of the organization with respect to the model. The organization needs to prioritize

the improvements which will give the greatest business gain.

The employees of the company are, in effect, the owners of the process infrastruc-

ture within the organization, as they work with the processes and procedures on a

daily basis, and have an interest in having the best possible processes and templates

for the organization. A good improvement programwill empower employees to make

suggestions for continuous improvement, and a reward and recognition mechanism

helps to make process improvement part of the organization culture.

Improvement tends to be most successful when performed in small steps rather

than trying to do too much initially. It is generally easier for an organization to

adjust to a series of small changes rather than one big major change. Changes within

Fig. 1.9 Cost of quality

1.5 Modern Software Quality Management 25

an organization need to be carefully planned and controlled. Training for the

existing employees may be required to ensure that they fully understand the

rationale for the proposed changes and are in a position to implement the proposed

changes in the organization.

1.5.7 Software Metrics

The use of measurement is an integral part of science and engineering disciplines,

and software measures are increasingly used in software engineering. The term

“software metric” was coined by Tom Gilb in his influential book on software

measurement [23]. The purpose of measurement in software engineering is to

provide an objective indication of the effectiveness of the organization in achieving

its key goals and objectives.

There is, of course, no point in measuring for the sake of measuring itself and care

is required to ensure that the measurements to be made are closely related to an

organization particular goal. The well-known approach of Goal, Question, Metric
(GQM) suggests that the organization first needs to identify the key goals which it is

trying to achieve; then it identifies relevant questions which need to be answered to

assess the extent to which the goal is being satisfied, and then to formulate a metric to

give an objective answer to the particular question. This approach was formulated by

Victor Basilli and others, and is described in [2].

The use of measurement is invaluable in determining whether an organization

has actually improved, as actual quantitative data before and after the improvement

initiative can be compared and used to determine the extent of the improvements.

The initial measurements prior to the improvement program serve as the baseline

measurement, and these indicate the current capability and results of the organiza-

tion. A successful improvement programs will lead to improvements, and this will

be reflected in the metrics. The implementation of metrics involves:

• Business goals

• Questions related to goals

• Metrics

• Data gathering

• Presentation of charts

• Trends

• Action plans

Softwaremetrics are discussed in Chap. 10, and the chapter includes a collection of

sample metrics for the various functional areas in the organization. The metrics are

only as good as the underlying data, and data gathering is a key part of a metrics

program.

1.5.8 Customer Satisfaction

The effectiveness of the quality management system in delivering high-quality

software will ultimately be judged by the customer, and the level of customer

26 1 Introduction

http://dx.doi.org/10.1007/978-3-319-06106-1_10

satisfaction will determine whether the customer will purchase again from the

company, or recommend the company. Consumer research and customer satisfaction

surveys are used to determine the level of customer satisfaction with the company.

A customer satisfaction survey involves the customer rating the organization in

several key areas such as the quality of the software, its reliability, the timeliness of

the project, and so on. The customer satisfaction process takes the form of a closed

feedback loop, and the customer satisfaction feedback will be analysed and acted

upon appropriately.

The customer satisfaction survey is conducted, and the feedback analysed and

used to prepare the action plan. The actions are executed and the customer is

surveyed again at later date (Fig. 1.10). The follow up activity may involve a

telephone conversation with the customer or a visit to the customer to discuss the

specific issues. The issues are shared with engineering groups as appropriate. The

objective is to ensure that customers are totally satisfied with the product and

service, and a loyal customer will re-purchase and recommend the company to

other potential customers.

The customer satisfaction process is summarized as follows:

• Define customer surveys

• Send customer surveys

• Customer Satisfaction Ratings

• Customer meeting and key issues

• Action plans and follow-up

• Metrics for customer satisfaction

The definition of the questionnaire will vary depending on the nature of the

business. It is essential that the questionnaire is usable, and covers the relevant

questions to determine where the organization is weak (and in need of improve-

ment), and also to identify areas where it is strong. The questions typically employ a

rating scheme to allow the customer to give quantitative feedback on satisfaction,

and the survey will also enable the customer to go into more detail on issues.

Fig. 1.10 Customer

satisfaction process

1.5 Modern Software Quality Management 27

Software companies will be interested in the customer’s perception of the quality

of software, reliability, usability, timeliness of delivery, value for money, etc., and a

sample survey form is included in Table 1.10. This includes ten questions and may

be expanded as appropriate. A survey form will typically include open-ended

questions to enable the customer to give feedback in more detail.

Customer satisfaction metrics provide visibility into the level of customer

satisfaction with the software company, and enable trends to be determined. A

sample customer satisfaction metric is provided in Fig. 1.11, and it provides a

quantitative understanding of the level of customer satisfaction with the company.

Table 1.10 Sample customer satisfaction questionnaire

No /Question Unacceptable Poor Fair Satisfied Excellent N/A

1. Quality of software □ □ □ □ □ □

2. Ability to meet agreed dates □ □ □ □ □ □

3. Timeliness of projects □ □ □ □ □ □

4. Effective testing of software □ □ □ □ □ □

5. Expertise of staff □ □ □ □ □ □

6. Value for money □ □ □ □ □ □

7. Quality of support □ □ □ □ □ □

8. Ease of installation □ □ □ □ □ □

9. Ease of use □ □ □ □ □ □

10. Timely problem resolution □ □ □ □ □ □

Fig. 1.11 Customer satisfaction metrics

28 1 Introduction

1.5.9 Assessments (Appraisals)

The objective of an assessment (or appraisal) of an organization is to determine its

maturity with respect to a maturity model such as the CMMI or SPICE, or against

an international quality standard such as ISO 9000:2000.

The appraisal is performed by an external or internal assessment team, and yields

the strengths and weaknesses of the organization with respect to the model. The

appraisal report is used to plan and prioritize future improvements.

The appraisal is a major review of the organization and it needs to be carefully

planned. The assessment team needs sufficient expertise and experience, and the

appraisal may take 1–2 weeks. It involves interviews with the project managers and

project teams as well as the review of relevant documentation. The assessment

report will detail the extent to which the model is implemented, and any gaps and

improvement opportunities are highlighted in the report.

The SCAMPI methodology is used for CMMI appraisals, and it is discussed in

Chap. 15.

1.5.10 Total Quality Management

Total quality management (TQM) is a management philosophy to focus attention

on quality and to develop a culture of quality within the organization. Quality is a

company-wide objective, and the organization goal is total customer satisfaction.

The organization aims to deliver products and services that totally satisfy the

customer needs. It is a holistic approach and it applies to all levels and functions

within the organization.

TQM employs many of the ideas of the pioneers in the quality movement.

Management are required to take charge of the implementation of quality manage-

ment, and all staff will need to be trained in quality improvement activities.

The implementation of TQM involves a focus on all areas within the organiza-

tion, and in identifying areas for improvement. The problems in the particular area

are evaluated and data is collected and analysed. An action plan is then derived and

the actions implemented and monitored. This is then repeated for continuous

improvement. The implementation is summarized as follows:

• Identify improvement area

• Problem evaluation

• Data collection

• Data analysis

• Action plan

• Implementation of actions

• Monitor effectiveness

• Repeat

There are four main parts of TQM (Table 1.11).

1.5 Modern Software Quality Management 29

http://dx.doi.org/10.1007/978-3-319-06106-1_15

The ISO 9000 standard (see Chap. 11) is a structured approach to the implemen-

tation of TQM. Its clauses are guidelines for what needs to be done, and include

requirements to be satisfied for the organization to satisfy ISO 9000.

1.6 Miscellaneous

Software quality management is, in many ways, the application of common sense to

software engineering. It makes sense to plan and track a project, identify potential

risks early and attempt to eliminate or reduce their impact; determine the

requirements, produce a design, review the design and development activities for

correctness. It is sensible to test the software against the requirements, to record any

problems identified, and to correct them. It is sensible to have objective criteria to

determine if the software is ready to be released to the customer, and to learn any

lessons from the project and to survey customers to obtain valuable feedback.

1.6.1 Organization Culture and Change

Every organization has a distinct culture and this reflects the way in which things

are done in the company. Organization culture includes the ethos of the organiza-

tion, its core values, its history, its success stories, its people, amusing incidents,

and so on. The culture of the organization may be favourable or unfavourable to

developing high-quality software.

Occasionally a change to the organization culture is required, and this may be

difficult as it could involve changing its fundamental approach to software devel-

opment, and there may be a resistance to this. Successful change management often

involves the following:

• Kick-off meeting

• Motivate rationale for changes

Table 1.11 Total quality management

Part Description

Customer focus This involves identifying internal and external customers and recognizing

that all customers have expectations and rights which need to be satisfied

first time and every time. Quality must be considered in every aspect of the

business, and the focus is on fire prevention.

Process This involves a focus on the process and improvement to the process via

problem solving. The improvements will reduce waste and eliminate error.

Measurement and

analysis

This involves setting up a measurement program within the organization to

enable objective and effective analysis of the quality of the process and

product

Human factors This involves developing a culture of quality and customer satisfaction

throughout the organization. The core values of quality and customer

satisfaction need to be instilled in the organization. This requires training

for the employees on quality, customer satisfaction, and continuous

improvement.

30 1 Introduction

http://dx.doi.org/10.1007/978-3-319-06106-1_11

• Present plan

• Training

• Implement changes

• Monitor implementation

• Institutionalize

The culture of an organization is often illustrated by the phrase: “That’s the way
we do things around here”. For example, the evolution from one level of the CMM

to another often involves a change the way that things are done in the organization.

The focus on prevention requires a change in mind-set to focus on problem solving
and fire prevention, rather than on fire fighting.

1.6.2 Law of Negligence

The impact of a flaw in software may be catastrophic, and several software failures

were discussed earlier in this chapter. Clearly, every organization must take all

reasonable precautions to prevent the occurrence of defects, especially in the safety

critical domain where defects may cause major damage or even loss of life. Reason-

able precautions consist of having appropriate software engineering practices in place

to allow the organization to consistently produce high quality software.

A quality management system indicates that the organization takes software

quality seriously. The objective of the quality management system is to put a sound

software development process in place that serves the needs of the organization and

its customers. Modem quality assurance systems include processes for software

inspections, testing, quality audits, customer satisfaction, software development,

project planning, etc.

The organization will require evidence or records to prove that the quality

management system is in place, that it is appropriate for the organization, and

that it is fully operational within the organization. The proof that the quality system

is actually operational typically takes the form of records of the various activities.

The records also enable the organization to prepare a legal defence to show that it

took all reasonable precautions in software development, especially if a customer

decides to take legal action for negligence against the software provider following a

serious problem in the software at the customer environment.

The presence of records may be used to indicate that all reasonable steps were

taken, and the records typically include lists of all the deliverables in the project;

minutes of project meetings; records of reviews of requirements, design, and

software code, records of test plans and test results; and so on.

1.6.3 Quality and the WEB

The explosive growth of the World Wide Web and electronic commerce has made

the quality of web sites a key concern. Web technology is rapidly becoming

ubiquitous in society, and is quite distinct from other software systems in that:

1.6 Miscellaneous 31

• It may be accessed from anywhere in the world.

• It may be accessed by many different browsers.

• The usability and look and feel of the application is a key concern.

• The performance of the web site is a key concern.

• Security is a key concern.

• The web site must be capable of dealing with a large number of transactions at

any time.

• The web site has very strict availability constraints (typically 24� 365).

• The web site needs to be highly reliable.

It is inappropriate to employ the waterfall lifecycle for this domain, and usually a

spiral lifecycle will be employed as the requirements are often incomplete at project

initiation and evolve to the agreed set during the project. Often, Rapid Application

Development (RAD) or Joint ApplicationDevelopment (JAD) lifecycle are employed.

1.7 Review Questions

1. Discuss the contributions of Deming and Juran.

2. Describe Crosby’s maturity grid and discuss how it influenced the Capa-

bility Maturity Model?

3. Explain why Watts Humphrey is considered the father of software quality.

4. Explain the difference between software inspections and testing?

5. What is an assessment (appraisal) and explain how it forms part of the

improvement cycle.

6. Explain the importance of the cost of poor quality.

7. Discuss the importance of software metrics in problem solving.

8. Explain the importance of customer satisfaction and describe how it may

be measured.

1.8 Summary

This chapter provided a short introduction to the software quality field, and the

discussion covered the contributions of various pioneers such as Shewhart, Deming,

Juran and Crosby. The contributions of Watts Humphrey, who is considered the

father of software quality, were also discussed.

We examined various definitions of quality such as Crosby’s “conformance to

the requirements” and Juran’s “fitness for purpose”, as well as considering the

various dimensions of software product quality listed in ISO 9126.

We considered various software failures such as the Ariane 5 disaster, the year

2000 problem, and a maths bug in the Intel microprocessor in the mid-1990s. A

software failure may lead to loss of life, a telecoms outage, the loss of a rocket and

its satellite cargo, and the loss of credibility of the company. Consequently, there is

a strong economic case to consistently develop high-quality software.

32 1 Introduction

Wediscussedmodern software qualitymanagement including software inspections

that are used to build quality into the software; software testing to verify that the

software is of high quality as well as finding defects in the software; software quality

assurance to provide visibility into the processes and the extent to which they are

followed; problem solving techniques to prevent problems from re-occurring; the cost

of poor quality to the organization; software process improvement to improve the key

processes in the organization; and customer satisfaction to determine the level of

customer satisfaction with the organization.

1.8 Summary 33

Software Engineering 2

Key Topics

Standish Chaos Report

Software Lifecycles

Waterfall Model

Spiral Model

Rational Unified Process

Agile Development

Software Inspections

Software Testing

Project Management

2.1 Introduction

The approach to software development in the 1950s and 1960s has been described

as the “Mongolian Hordes Approach” by Ince and Andrews [30]. The “method” or

lack of method was characterized by:

The completed code will always be full of defects.
The coding should be finished quickly to correct these defects.
Design as you code approach.

This philosophy accepted defeat in software development, and suggested that

irrespective of a solid engineering approach, that the completed software would

always contain lots of defects, and that it therefore made sense to code as quickly as

possible, and to then identify the defects that would be present, so as to correct them

as soon as possible.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_2,
Springer International Publishing Switzerland 2014

35

In the late 1960s it was clear that the existing approaches to software development

were deeply flawed, and that there was an urgent need for change. The NATO

Science Committee organized two famous conferences to discuss critical issues in

software development [12], with the first conference held at Garmisch, Germany, in

1968, and it was followed by a second conference in Rome in 1969.

Over 50 people from 11 countries attended the Garmisch conference, including

Edsger Djkstra, who did important theoretical work on formal specification and

verification. The NATO conferences highlighted problems that existed in the

software sector in the late 1960s, and the term “software crisis” was coined to

refer to these problems. These included budget and schedule overruns, as well as

problems with the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its own
right, and the realization that programming is quite distinct from science and

mathematics. Programmers are like engineers in that they build software products,

and they therefore need education in traditional engineering as well as the latest

technologies. The education of a classical engineer includes product design and

mathematics. However, often computer science education places an emphasis on

the latest technologies rather than the important engineering foundations of design-

ing and building high-quality products that are safe for the public to use.

Programmers therefore need to learn the key engineering skills to enable them to

build products that are safe for the public to use. This includes a solid foundation

on design and the mathematics required for building safe software products.

Mathematics plays a key role in engineering and may assist software engineers in

the delivery of high-quality software products. Several mathematical approaches to

assist software engineers are described in [48].

There are parallels between the software crisis in the late 1960s, and serious

problems with bridge construction in the nineteenth century. Several bridges

collapsed or were delivered late or over-budget due to the fact that people involved

in their design and construction did not have the required engineering knowledge.

This led to bridges that were inadequately designed and constructed, leading to their

collapse with the loss of life and endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional

Engineering Association prior to practicing as engineers. This organization identified

a core body of knowledge that the engineer is required to possess, and the licensing

body verifies that the engineer has the required qualifications and experience. This

helps to ensure that only personnel competent to design and build products actually

do so. Engineers have a professional responsibility to ensure that the products are

properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 2.1) on the extent of problems

with IT projects since the mid-1990s. These studies were conducted in the United

States, but there is no reason to believe that European or Asian companies perform

any better. The results indicate serious problems with on-time delivery of projects

or projects being cancelled prior to completion.1 However, the comparison between

1 These are IT projects covering diverse sectors including banking, telecommunications, etc.,

rather than pure software companies. Software companies following maturity frameworks such

as the CMMI generally achieve more consistent project, and the CMMI focuses on the manage-

ment side of software engineering.

36 2 Software Engineering

1995 and 2009 suggests that there have been some improvements with a greater

percentage of projects being delivered successfully, and a reduction in the percen-

tage of projects being cancelled.

Fred Brooks argues that software is inherently complex, and that there is no silver
bullet that will resolve all of the problems associated with software development

such as schedule or budget overruns [10, 11]. Problems with poor software quality

can lead to software flaws that may seriously impact the work of an organization or

even loss of life. It is therefore essential that software development organizations

place sufficient emphasis on quality throughout the software development lifecycle.

The Y2K problem was caused by a two digit representation of dates, and it

required major rework of legacy software for the new millennium. Clearly, well-

designed programs would have hidden the representation of the date, and would

have required minimal changes for year 2000 compliance. Instead, companies spent

vast sums of money to rectify the problem.

The quality of software produced by some companies is impressive.2 These

companies employ mature software processes, and are committed to continuous

improvement. Today, there is a lot of industrial interest in software process maturity

models for software organizations, and various approaches to assess and mature

software companies are described in [47, 49].3 These models focus on improving

Fig. 2.1 Standish report – Results of 1995 and 2009 survey

2 I recall projects at Motorola that regularly achieved 5.6σ-quality in a L4 CMM environment

(i.e., approx. 20 defects per million lines of code. This represents very high quality).
3 Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and

organizational practices required in software engineering. The emphasis is on defining software

processes that are fit for purpose and consistently following them. The process maturity models

focus on what needs to be done rather how it should be done. This gives the organization the

freedom to choose the appropriate implementation to meet its needs. The models provide useful

information on practices to consider in the implementation.

2.1 Introduction 37

the effectiveness of the management, engineering and organization practices related

to software engineering, and in introducing best practice in software engineering.

The disciplined use of the mature software processes by the software engineers

enables high-quality software to be consistently produced.

2.2 What Is Software Engineering?

Software engineering involves the multi-person construction of multi-version

programs. The IEEE 610.12 definition of Software Engineering is:

Software engineering is the application of a systematic, disciplined, quantifiable approach

to the development, operation, and maintenance of software; that is, the application of

engineering to software, and the study of such approaches.

Software engineering includes:

1. Methodologies to design, develop, and test software to meet customers’ needs.

2. Software is engineered. That is, the software products are properly designed,

developed, and tested in accordance with engineering principles.

3. Quality and safety are properly addressed.

4. Mathematics may be employed to assist with the design and verification of

software products. The level of mathematics employed will depend on the safety
critical nature of the product. Systematic peer reviews and rigorous testing will

often be sufficient to build quality into the software, with heavy mathematical
techniques reserved for safety and security critical software.

5. Sound project management and quality management practices are employed.

6. Support and maintenance of the software is properly addressed.

Software engineering is not just programming. It requires the engineer to state

precisely the requirements that the software product is to satisfy, and then to produce

designs that will meet these requirements. The project needs to be planned and

delivered on time and budget. The requirements must provide a precise description

of the problem to be solved: i.e., it should be evident from the requirements what
is and what is not required. The requirements need to be rigorously reviewed to

ensure that they are stated clearly and unambiguously and are exactly what the

customer wants. The next step is then to create the design that will solve the problem,

and it is essential to validate the correctness of the design. Next, the software to

implement the design is written, and peer reviews and software testing are employed

to verify and validate the correctness of the software.

The verification and validation of the design is rigorously performed for safety

critical systems, and it is sometimes appropriate to employ mathematical tech-

niques for these systems. However, it will usually be sufficient to employ peer

reviews or software inspections as these methodologies provide a high degree of

rigour. This may include approaches such as Fagan inspections [20], Gilb inspec-

tions [24], or Prince 2’s approach to quality reviews [51].

The term “engineer” is a title that is awarded on merit in classical engineering.

It is generally applied only to people who have attained the necessary education

38 2 Software Engineering

and competence to be called engineers, and who base their practice on classical

engineering principles. The title places responsibilities on its holder such as to

behave professionally and ethically. Often in computer science the term “software
engineer” is employed loosely to refer to anyone who builds things, rather than to

an individual with a core set of knowledge, experience, and competence.

Several computer scientists (such as Parnas4) have argued that computer scientists

should be educated as engineers to enable them to apply appropriate scientific

principles to their work. They argue that computer scientists should receive a solid

foundation in mathematics and design, to enable them to have the professional

competence to perform as engineers in building high-quality products that are safe

for the public to use. The use of mathematics is an integral part of the engineer’s work

in other engineering disciplines, and so the software engineer should be able to use

mathematics to assist in the modelling or understanding of the behaviour or properties

of a proposed software system.

Software engineers need education5 on specification, design, turning designs

into programs, software inspections, and testing. The education should enable the

software engineer to produce well-structured programs that are fit for purpose.

Parnas has argued that software engineers have responsibilities as professional

engineers.6 They are responsible for designing and implementing high-quality and

reliable software that is safe to use. They are also accountable for their decisions

and actions,7 and have a responsibility to object to decisions that violate professional

4 Parnas has made important contributions to computer science. He advocates a solid engineering

approach with the extensive use of classical mathematical techniques to software development.

He also introduced information hiding in the 1970s which is now a part of object-oriented

development.
5 Software Companies that are following approaches such as the CMM or ISO 9001 consider

the education and qualification of staff prior to assigning staff to performing specific tasks.

The appropriate qualifications and experience for the specific role are considered prior to

appointing a person to carry out the role. Many companies are committed to the education and

continuous development of their staff, and on introducing best practice in software engineering

into their organization..
6 The concept of accountability was used by the ancient Babylonians, and they employed a code of

laws (known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house

collapsed and killed the owner then the builder of the house would be executed.
7 However, it is unlikely that an individual programmer would be subject to litigation in the case of

a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility

for problems rather than a guarantee of quality accompany most software products. Software

engineering is a team-based activity involving many engineers in various parts of the project, and it

would be potentially difficult for an outside party to prove that the cause of a particular problem is

due to the professional negligence of a particular software engineer, as there are many others

involved in the process such as reviewers of documentation and code and the various test groups.

Companies are more likely to be subject to litigation, as a company is legally responsible for the

actions of their employees in the workplace, and a company is a wealthier entity than one of its

employees. The legal aspects of licensing software may protect software companies from liti-

gation. However, greater legal protection for the customer can be built into the contract between

the supplier and the customer for bespoke-software development.

2.2 What Is Software Engineering? 39

standards. Engineers are required to behave professionally and ethically with their

clients. The membership of the professional engineering body requires the member to

adhere to the code of ethics8 of the profession. Engineers in other professions are

licensed, and therefore Parnas argues that a similar licensing approach be adopted for

professional software engineers9 to provide confidence that they are competent for

the particular assignment. Professional software engineers are required to follow best

practice in software engineering and the defined software processes.10

Many software companies invest heavily in training as the education and

knowledge of its staff are essential to delivering high-quality products and services.

Employees in receive professional training related to the roles that they are

performing, such as project management, service management, and software

testing. The fact that the employees are professionally qualified increases confi-

dence in the ability of the company to deliver high-quality products and services.

A company that pays little attention to the competence and continuous development

of its staff will suffer a loss of reputation and market share.

2.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time and

on budget to customers. The research done by the Standish Group was discussed

earlier in this chapter, and the results of their 1998 research (Fig. 2.2) on project cost

overruns in the US indicated that 33 % of projects are between 21 and 50 % over

estimate, 18 % are between 51 and 100 % over estimate, and 11 % of projects are

between 101 and 200 % overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in

software engineering. Therefore, project managers need to determine how good

their estimation process actually is and to make appropriate improvements. The use

of software metrics is an objective way to do this, and improvements in estimation

will be evident from a reduced variance between estimated and actual effort.

The project manager will determine and report the actual versus estimated effort

and schedule for the project.

Risk management is an important part of project management, and the objective

is to identify potential risks early and throughout the project, and to manage them

8Many software companies have a defined code of ethics that employees are expected to adhere.

Larger companies will wish to project a good corporate image and to be respected worldwide.
9 The British Computer Scientist (BCS) has introduced a qualification system for computer science

professionals that it used to show that professionals are properly qualified. The most important of

these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals to

be qualified in service management, project management, software testing, and so on.
10 Software companies that are following the CMMI or ISO 9000 standards will employ audits to

verify that the processes and procedures have been followed. Auditors report their findings to

management and the findings are addressed appropriately by the project team and affected

individuals.

40 2 Software Engineering

appropriately. The probability of each risk occurring and its impact is determined

and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a

quality product. Flaws with poor quality software lead to a negative perception of

the company, and could potentially lead to damage to the customer relationship

with a subsequent loss of market share.

There is a strong economic case to building quality into the software, as less

time is spent in re-working defective software. The cost of poor quality (COPQ)

should be measured and targets set for its reductions. It is important that lessons are

learned during the project and acted upon appropriately. This helps to promote a

culture of continuous improvement.

We discussed a number of high-profile software failures in the previous chapter.

These included the millennium bug (Y2K) problem; the floating point bug in the

Intel microprocessor; the European Space Agency Ariane-5 disaster, and so on.

These have caused embarrassment to the organizations as well as the cost of

replacement and correction.

The millennium bug was due to the use of two digits to represent dates rather

than four digits. The solution involved finding and analysing all code that that had

a Y2K impact; planning and making the necessary changes; and verifying the

correctness of the changes. The worldwide cost of correcting the millennium bug

is estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in

its Pentium microprocessor, and in providing adequate information on its impact

to its customers. It incurred a large financial cost in replacing microprocessors for

its customers. The Ariane-5 failure caused major embarrassment and damage to the

credibility of the European Space Agency (ESA). Its maiden flight ended in failure

on June 4, 1996, after a flight time of just 40 s.

Fig. 2.2 Standish 1998 report – Estimation accuracy

2.3 Challenges in Software Engineering 41

These failures indicate that quality needs to be carefully considered when

designing and developing software. The effect of software failure may be large

costs to correct the software, loss of credibility of the company, or even loss of life.

2.4 Software Processes and Lifecycles

Organizations vary by size and complexity, and the processes employed will reflect

the nature of their business. The development of software involves many processes

such as those for defining requirements; processes for project management and

estimation; processes for design, implementation, testing, and so on.

It is important that the processes employed are fit for purpose, and a key premise

in the software quality field is that the quality of the resulting software is influenced

by the quality and maturity of the underlying processes, and compliance to them.

Therefore, it is necessary to focus on the quality of the processes as well as the

quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use

is institutionalized in the organization. That is, all employees need to follow the

processes consistently. This requires that people are trained on the new processes

and that process discipline is instilled by an appropriate audit strategy.

Employees need to be trained on the processes, and audits are conducted

to ensure process compliance. Data will be collected to improve the process.

The software process assets in an organization generally consist of:

– A software development policy for the organization

– Process maps that describe the flow of activities

– Procedures and guidelines that describe the processes in more detail.

– Checklists to assist with the performance of the process

– Templates for the performance of specific activities (e.g., Design, Testing)

– Training Materials

The processes employed to develop high-quality software generally include

processes for:

– Project Management Process

– Requirements process

– Design Process

– Coding Process

– Peer Review Process

– Testing Process

– Supplier Selection and Management processes

– Configuration Management process

– Audit process

– Measurement Process.

– Improvement Process

– Customer Support and Maintenance processes

The software development process has an associated lifecycle that consists of

various phases. There are several well-known lifecycles employed such as the

42 2 Software Engineering

waterfall model [56]; the spiral model [8], the Rational Unified Process [57] and the

Agile methodology [3] which has become popular in recent years. The choice of a

particular software development lifecycle is determined from the particular needs

of the specific project. The various lifecycles are described in more detail in the

following Sections.

2.4.1 Waterfall Lifecycle

The waterfall model11 (Fig. 2.3) starts with requirements gathering and definition.

It is followed by the functional specification, the design and implementation of the

software, and comprehensive testing. The testing generally includes unit, system

and user acceptance testing.

It is employed for projects where the requirements can be identified early in the

project lifecycle or are known in advance. It is also called the “V” life cycle model,

with the left-hand side of the “V” detailing requirements, specification, design, and

coding and the right-hand side detailing unit tests, integration tests, system tests

and acceptance testing. Each phase has entry and exit criteria that must be satisfied

before the next phase commences. There are several variations to the waterfall model.

Many companies employ a set of templates to enable the activities in the various

phases to be consistently performed. Templates may be employed for project

planning and reporting; requirements definition; design; testing and so on. These

templates may be based on the IEEE standards or industrial best practice.

11We treat the waterfall model as identical to the V model in this text.

Fig. 2.3 Waterfall V lifecycle model

2.4 Software Processes and Lifecycles 43

2.4.2 Spiral Lifecycles

The spiral model (Fig. 2.4) was developed by Barry Boehm in the mid-1980s, and is

useful for a project in which the requirements are not fully known at project

initiation, or where the requirements evolve as a part of the development lifecycle.

The development proceeds in a number of spirals, where each spiral typically

involves objectives and an analysis of the risks, updates to the requirements, design,

code, testing, and a user review of the particular iteration or spiral.

The spiral is, in effect, a re-usable prototype with the business analysts and the

customer reviewing the current iteration, and providing feedback to the development

team. The feedback is analysed and used to plan the next iteration. This approach is

often used in joint application development, where the usability and look and feel of

the application is a key concern. This is important in web-based development and

in the development of a graphical user interface (GUI). The implementation of part of

the system helps in gaining a better understanding of the requirements of the system,

and this feeds into subsequent development cycle. The process repeats until the

requirements and the software product are fully complete.

Fig. 2.4 SPIRAL lifecycle model . . . Public domain

44 2 Software Engineering

There are several variations of the spiral model including Rapid Application

Development (RAD); Joint Application Development (JAD) models; and the

Dynamic Systems Development Method (DSDM) model. Agile methods have

become popular in recent years and these generally employ sprints (or iterations)

of 2 weeks duration to implement a number of user stories. A sample spiral model is

shown in Fig. 2.4.

There are other life-cycle models, for example, the iterative development

process that combines the waterfall and spiral lifecycle model. The Cleanroom

approach developed by Harlan Mills at IBM includes a phase for formal specifica-

tion, and its approach to software testing is based on the predicted usage of the

software product. The Rational Unified Process has become popular in recent years,

and it is discussed in the next section.

2.4.3 Rational Unified Process

The Rational Unified Process [57] was developed at the Rational Corporation

(now part of IBM). It uses the Unified Modelling Language (UML) as a tool for

specification and design, and UML is a visual modelling language for software

systems which provides a means of specifying, constructing, and documenting

the object-oriented system. It was developed by James Rumbaugh, Grady Booch,

and Ivar Jacobson, and it facilitates the understanding of the architecture and

complexity of the system.

RUP is use case driven, architecture centric, iterative and incremental, and
includes cycles, phases, workflows, risk mitigation, quality control, project man-

agement, and configuration control. Software projects may be very complex, and

there are risks that requirements may be incomplete, or that the interpretation of a

requirement may differ between the customer and the project team.

Requirements are gathered as use cases, and the use cases describe the func-
tional requirements from the point of view of the user of the system. They describe

what the system will do at a high level, and ensure that there is an appropriate

focus on the user when defining the scope of the project. Use cases also drive the
development process, as the developers create a series of design and imple-

mentation models that realize the use cases. The developers review each successive

model for conformance to the use-case model, and the test team verifies that the

implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and

dynamic aspects of the system. The architecture grows out of the use cases and

factors such as the platform that the software is to run on, deployment conside-

rations, legacy systems, and non-functional requirements.

RUP decomposes the work in a large project into smaller slices or mini-projects,

and each mini-project is an iteration that results in an increment to the product.
The iteration consists of one or more steps in the workflow, and generally leads to

the growth of the product. If there is a need to repeat an iteration, then all that is lost

is the misdirected effort of one iteration, rather that the entire product. Another

words, RUP is a way to mitigate risk in software engineering.

2.4 Software Processes and Lifecycles 45

2.4.4 Agile Development

There has been a growth of popularity among software developers in lightweight

methodologies such as Agile. This is a software development methodology that

claims to be more responsive to customer needs than traditional methods such as the

waterfall model. The waterfall development model is similar to a wide and slow
moving value stream, and halfway through the project 100 % if the requirements are

typically 50 % done. However, for agile development 50 % of requirements are
typically 100 % done halfway through the project.

This methodology has a strong collaborative style of working and its approach

includes:

– Aim is to achieve a narrow fast flowing value stream

– Feedback and adaptation employed in decision making

– User Stories and sprints are employed

– Stories are either done are not done

– Iterative and Incremental development is employed

– A project is divided into iterations

– An iteration has a fixed length (i.e., Time boxing is employed)

– Entire software development lifecycle is employed for the implementation of

each story

– Change is accepted as a normal part of life in the Agile world

– Delivery is made as early as possible.

– Maintenance is seen as part of the development process

– Refactoring and Evolutionary Design Employed

– Continuous Integration is employed

– Short Cycle Times

– Emphasis on Quality

– Stand Up Meetings

– Plan regularly

– Direct interaction preferred over documentation

– Rapid conversion of requirements into working functionality

– Demonstrate value early

– Early decision making

Ongoing changes to requirements are considered normal in the Agile world, and it
is believed to be more realistic to change requirements regularly throughout the

project rather than attempting to define all of the requirements at the start of the

project. The methodology includes controls to manage changes to the requirements,

and good communication and early regular feedback is an essential part of the process.

A story may be a new feature or a modification to an existing feature. It is reduced
to the minimum scope that can deliver business value, and a feature may give rise

to several stories. Stories often build upon other stories and the entire software

development lifecycle is employed for the implementation of each story. Stories
are either done or not done: i.e., there is such thing as a story being 80 % done.

46 2 Software Engineering

The story is complete only when it passes its acceptance tests. Stories are prioritized

based on a number of factors including:

– Business Value of Story

– Mitigation of risk

– Dependencies on other stories.

Sprint planning is performed before the start of the iteration, and stories are

assigned to the iteration to fill the available time. The estimates for each story and

their priority are determined, and the prioritized stories are assigned to the iteration.

A short morning stand up meeting is held daily during the iteration, and attended

by the project manager and the project team. It discusses the progress made the

previous day, problem reporting and tracking, and the work planned for the day

ahead. A separate meeting is held for issues that require more detailed discussion.

Once the iteration is complete the latest product increment is demonstrated to an

audience including the product owner. This is to receive feedback and to identify

new requirements. The team also conducts a retrospective meeting to identify what

went well and what went poorly during the iteration. This is to for continuous

improvement for future iterations.

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives

in decision making and a broader understanding of the issues.

Software testing is very important and Agile generally employs automated

testing for unit, acceptance, performance and integration testing. Tests are run

frequently with the goal of catching programming errors early. They are generally

run on a separate build server to ensure that all dependencies are checked. Tests are

re-run before making a release. Agile employs test driven development with tests
written before the code. The developers write code to make a test pass with ideally

developers only coding against failing tests. This approach forces the developer to

write testable code.

Refactoring is employed in Agile as a design and coding practice. The objec-
tive is to change how the software is written without changing what it does.

Refactoring is a tool for evolutionary design where the design is regularly

evaluated, and improvements are implemented as they are identified. The auto-

mated test suite is essential in showing that the integrity of the software is

maintained following refactoring.

Continuous integration allows the system to be built with every change. Early

and regular integration allows early feedback to be provided. It also allows all of

the automated tests to be run thereby identifying problems earlier.

2.5 Activities in Waterfall Lifecycle

The waterfall software development lifecycle consists of various activities

including:

• Business Requirements Definition

• Specification of System Requirements

• Design

2.5 Activities in Waterfall Lifecycle 47

• Implementation

• Unit Testing

• System Testing

• UAT Testing

• Support and Maintenance

These activities are discussed in the following sections.

2.5.1 Business Requirements Definition

The requirements specify what the customer wants and define what the software

system is required to do (as distinct from how this is to be done). The requirements

are the foundation for the system, and if they are incorrect, then the implemented

system will be incorrect. Prototyping may be employed to assist in the definition

and validation of the requirements.

The specification of the requirements needs to be unambiguous to ensure that

all parties involved in the development of the system share a common under-

standing of what is to be developed and tested.

Requirements gathering involve meetings with the stakeholders to gather all

relevant information for the proposed product. The stakeholders are interviewed,

and requirements workshops conducted to elicit the requirements from them.

An early working system (prototype) is often used to identify gaps and misunder-

standings between developers and users. The prototype may serve as a basis for

writing the specification.

The requirements workshops with the stakeholders are used to discuss and

prioritize the requirements, as well as identifying and resolving any conflicting

requirements. The collected information is consolidated into a coherent set of

requirements.

The requirements are validated by the stakeholders to ensure that they are

actually those desired, and to establish their feasibility. This may involve several

reviews of the requirements until all stakeholders are ready to approve the require-

ments document. Changes to the requirements may occur during the project, and

these need to be controlled. It is essential to understand the impacts of a change

request prior to its approval.

The requirements for a system are generally documented in a natural language

such as “English”. Other notations that may be employed to express the require-

ments include the visual modelling language UML [32], and formal specification

languages such as VDM or Z.

2.5.2 Specification of System Requirements

The specification of the system requirements of the product is essentially a state-

ment of what the software development organization will provide to meet the

business requirements. That is, the detailed business requirements are a statement

48 2 Software Engineering

of what the customer wants, whereas the specification of the system requirements is

a statement of what will be delivered by the software development organization.

It is essential that the system requirements are valid with respect to the

business requirements, and they are reviewed by the stakeholders to ensure that

their validity with respect to the business requirements. Traceability may be

employed to show that the business requirements are addressed by the system

requirements

There are two categories of system requirements: namely, functional and

non-functional requirements. The functional requirements define the functionality

that is required of the system, and it may include screen shots, report layouts or

desired functionality specified as use cases. The non-functional requirements will
generally include security, reliability, performance and portability requirements,

as well as usability and maintainability requirements.

2.5.3 Design

The design of the system consists of engineering activities to describe the architec-

ture or structure of the system, as well as activities to describe the algorithms and

functions required to implement the system requirements. It is a creative process

concerned with how the system will be implemented, and its activities include

architecture design, interface design, and data structure design. There are often

several possible design solutions for a particular system, and the designer will need

to decide on the most appropriate solution.

The design may be specified in various ways such as graphical notations that

display the relationships between the components making up the design. The notation

may include flow charts, or various UML diagrams such as sequence diagrams, state

charts, and so on. Program description languages or pseudo code may be employed

to define the algorithms and data structures that are the basis for implementation.

Functional design involves starting with a high-level view of the system and

refining it into a more detailed design. The system state is centralized and shared

between the functions operating on that state.

Object-oriented design has become popular in recent years and is based on the

concept of information hiding developed by Parnas [52]. The system is viewed as a

collection of objects rather than functions, with each object managing its own state

information. The system state is decentralized and an object is a member of a class.

The definition of a class includes attributes and operations on class members, and

these may be inherited from super classes. Objects communicate by exchanging

messages

It is essential to verify and validate the design with respect to the system require-

ments, and this will be done by traceability of the design to the system requirements

and design reviews.

2.5 Activities in Waterfall Lifecycle 49

2.5.4 Implementation

This phase is concerned with implementing the design in the target language and

environment (e.g., C++ or Java), and involves writing or generating the actual code.

The development team divides up the work to be done, with each programmer

responsible for one or more modules. The coding activities often include code

reviews or walkthroughs to ensure that quality code is produced, and to verify its

correctness. The code reviews will verify that the source code conforms to the

coding standards and that maintainability issues are addressed. They will also verify

that the code produced is a valid implementation of the software design.

Software reuse has become more important in recent times as it provides a way

to speed up the development process. Components or objects that may be reused

need to be identified and handled accordingly. The implemented code may use

software components that have either being developed internally or purchased off

the shelf. Open source software has become popular in recent years, and it allows

software developed by others to be used (under an open source license) in the

development of applications.

The benefits of software reuse include increased productivity and a faster time to

market. There are inherent risks with customized-off-the shelf (COTS) software, as

the supplier may decide to no longer support the software, or there is no guarantee

that software that has worked successfully in one domain will work correctly in a

different domain. It is therefore important to consider the risks as well as the

benefits of software reuse and open source software.

2.5.5 Software Testing

Software testing is employed to verify that the requirements have been correctly

implemented, and that the software is fit for purpose, as well as identifying defects

present in the software. There are various types of testing that may be conducted

including unit testing, integration testing, system testing, performance testing and
user acceptance testing. These are described below:

2.5.5.1 Unit Testing
Unit testing is performed by the programmer on the completed unit (or module), and

prior to its integration with other modules. These tests are written by the programmer,

and the objective is to show that the code satisfies the design. Each unit test case is

documented and it should include a test objective and the expected result.

Code coverage and branch coverage metrics are often recorded to give an

indication of how comprehensive the unit testing has been. These metrics provide

visibility into the number of lines of code executed as well as the branches covered

during unit testing.

50 2 Software Engineering

The developer executes the unit tests; records the results; corrects any identified

defects and re-tests the software. Test driven development has become popular in

recent years (e.g., in the Agile world), and this involves writing the unit test case

before the code, and the code is written to pass the unit test cases.

2.5.5.2 Integration Test
The development team performs this type of testing on the integrated system, once

all of the individual units work correctly in isolation. The objective is to verify

that all of the modules and their interfaces work correctly together, and to identify

and resolve any issues. Modules that work correctly in isolation may fail when

integrated with other modules.

2.5.5.3 System Test
The purpose of system testing is to verify that the implementation is valid with

respect to the system requirements. It involves the specification of system test cases,

and the execution of the test cases will verify that the system requirements have

been correctly implemented. An independent test group generally conducts this

type of testing, and the system tests are traceable to the system requirements.

Any system requirements that have been incorrectly implemented will be

identified, and defects logged and reported to the developers. The test group will

verify that the new version of the software is correct, and regression testing is

conducted to verify system integrity. System testing may include security testing,

usability testing and performance testing.

The preparation of the test environment requires detailed planning, and it may

involve ordering special hardware and tools. It is important that the test environ-

ment is set up as early as possible to allow the timely execution of the test cases.

2.5.5.4 Performance Test
The purpose of performance testing is to ensure that the performance of the system

is within the bounds specified in the non-functional requirements. It may include

load performance testing, where the system is subjected to heavy loads over a long

period of time, and stress testing, where the system is subjected to heavy loads

during a short time interval.

Performance testing often involves the simulation of many users using the system,

and involves measuring the response times for various activities. Test tools are

employed to simulate a large number of users and heavy loads. It is also employed

to determine is the system is scalable to support future growth.

2.5.5.5 User Acceptance Test
UAT testing is usually performed under controlled conditions at the customer

site, and its operation will closely resemble the real life behaviour of the system.

The customer will see the product in operation, and can judge whether or not the

system is fit for purpose.

2.5 Activities in Waterfall Lifecycle 51

The objective is to demonstrate that the product satisfies the business

requirements and meets the customer expectations. Upon its successful completion

the customer is happy to accept the product.

2.5.6 Maintenance

This phase continues after the release of the software product to the customer.

Any problems that the customer notes with the software are reported as per the

customer support and maintenance agreement. The support issues will require

investigation, and the issue may be a defect in the software, an enhancement to
the software, or due to a misunderstanding. The support and maintenance team will

identify the causes of any identified defects, and will implement an appropriate

solution to resolve. Testing is conducted to verify that the solution is correct, and

that the changes made have not adversely affected other parts of the system. Mature

organizations will conduct post mortems to learn lessons from the defect,12 and will

take corrective action to prevent a re-occurrence.

The presence of a maintenance phase suggests an acceptance of the reality that
problems with the software will be identified post release. The goal of building a

correct and reliable software product the first time is very difficult to achieve, and

the customer is always likely to find some issues with the released software product.

It is accepted today that quality needs to be built into each step in the development

process, with the role of software inspections and testing to identify as many defects

as possible prior to release, and minimize the risk that that serious defects will be

found post-release.

The more effective the in-phase inspections of deliverables, the higher the quality

of the resulting implementation, with a corresponding reduction in the number of

defects detected by the test groups. The testing group plays a key role in verifying

that the system is correct, and in providing confidence that the software is fit for

purpose. The approach to software correctness almost seems to be a “brute force”
approach, where quality is achieved by testing and re-testing, until the testing group is

confident that all defects have been eliminated. Dijkstra [16] noted that:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent testing, it can never be said with

absolute confidence that the program is correct, and, at best, statistical techniques

may be employed to give a measure of the confidence in its correctness. That is,

there is no guarantee that all defects have been found in the software.

12 This is essential for serious defects that have caused significant inconvenience to customers

(e.g., a major telecoms outage). The software development organization will wish to learn lessons

to determine what went wrong in its processes that prevented the defect from been identified

during peer reviews and testing. Actions to prevent a reoccurrence will be identified and

implemented.

52 2 Software Engineering

Many software companies may consider one defect per thousand lines of code

(KLOC) to be reasonable quality. However, if the system contains one million lines

of code this is equivalent to a thousand post-release defects, which is unacceptable.

Some mature organizations have a quality objective of three defects per million

lines of code. This goal is known as six-sigma (6σ) and it was developed by

Motorola. It was originally applied it to its manufacturing businesses and subse-

quently applied to its software organizations. The goal is to reduce variability in

manufacturing processes and to ensure that the processes performed within strict

process control limits. Motorola was awarded the first Malcom Baldridge Quality

award for its six-sigma initiative and its commitment to quality.

2.6 Software Inspections

Software inspections were discussed in Chap. 1 and they are used to build quality

into software products. There are a number of well-known approaches such as the

Fagan Methodology [20]; Gilb’s approach [24]; and Prince 2’s approach.

Fagan inspections were developed by Michael Fagan of IBM It is a seven-step

process that identifies and removes errors in work products. The process mandates

that requirement documents, design documents, source code, and test plans are all

formally inspected by experts independent of the author of the deliverable to ensure

quality.

There are various roles defined in the process including the moderator who

chairs the inspection. The reader’s responsibility is to read or paraphrase the

particular deliverable, and the author is the creator of the deliverable and has a

special interest in ensuring that it is correct. The tester role is concerned with the

test viewpoint.

The inspection process will consider whether the design is correct with respect to

the requirements, and whether the source code is correct with respect to the design.

Software inspections play an important role in reducing the cost of poor quality in

the organization.

2.7 Software Project Management

The timely delivery of quality software requires good management and engineering

processes. Software projects have a history of being delivered late or over budget,

and good project management practices include the following activities:

– Estimation of cost, effort and schedule for the project

– Identifying and managing risks

– Preparing the project plan

– Preparing the initial project schedule and key milestones

– Obtaining approval for the project plan and schedule

– Staffing the project

2.7 Software Project Management 53

http://dx.doi.org/10.1007/978-3-319-06106-1_1

– Monitoring progress, budget, schedule, effort, risks, issues, change requests and

quality

– Taking corrective action

– Re-planning and re-scheduling

– Communicating progress to affected stakeholders

– Preparing status reports and presentations

The project plan will contain or reference several other plans such as the project

quality plan; the communication plan; the configuration management plan; and the

test plan.

Project estimation and scheduling are difficult as often software projects are

breaking new ground and differ from previous projects. That is, previous estimates

may often not be a good basis for estimation for the current project. Often, unanti-

cipated problems can arise for technically advanced projects, and the estimates may

often be optimistic. Gantt charts are often employed for project scheduling, and

these show the work breakdown for the project, as well as task dependencies and

allocation of staff to the various tasks.

The effective management of risk during a project is essential to project success.

Risks arise due to uncertainty and the risk management cycle involves13 risk

identification; risk analysis and evaluation; identifying responses to risks; selecting

and planning a response to the risk; and risk monitoring. The risks are logged, and

the likelihood of each risk arising and its impact is then determined. The risk is

assigned an owner and an appropriate response to the risk determined.

2.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best

practice in software and systems engineering. It is an internationally recognized

model for process improvement and assessment, and is used world-wide by thou-

sands of organizations. It provides a solid engineering approach to the development

of software, and helps in the definition of high-quality processes for the various

software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the

process improvement principles used in the manufacturing field to the software

field. They developed the original CMM model and its successor the CMMI.

The CMMI states what the organization needs to do to mature its processes rather

than how this should be done.
The CMMI consists of five maturity levels with each maturity level consisting of

several process areas. Each process area consists of a set of goals, and these goals

are implemented by practices related to that process area. Level two is focused on

management practices; level three is focused on engineering and organization

practices; level four is concerned with ensuring that key processes are performing

13 These are the risk management activities in the Prince 2 methodology.

54 2 Software Engineering

within strict quantitative limits; level five is concerned with continuous process

improvement. Maturity levels may not be skipped in the staged implementation of

the CMMI, as each maturity level is the foundation for the next level.

The CMMI allows organizations to benchmark themselves against other

organizations. This is done by a formal appraisal conducted by an authorized lead

appraiser. The results of the appraisal are generally reported back to the SEI, and

there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables

the organization to prioritize improvements for the next improvement cycle.

The CMMI is discussed in more detail in a later chapter.

2.9 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to derive

the program from its specifications using mathematics, and to employ mathematical
proof to demonstrate its correctness with respect to the specification. This offers a

rigorous framework to develop programs adhering to the highest quality constraints.

However, in practice mathematical techniques have proved to be cumbersome to

use, and their widespread deployment in industry is unlikely at this time.

The safety-critical area is one domain to which mathematical techniques have

been successfully applied: for example, demonstrating the presence or absence of

safety properties such as “when a train is in a level crossing, then the gate is
closed”. There is a need for extra rigour in the software development process

used in the safety critical field, and mathematical techniques can demonstrate the

presence or absence of certain desirable or undesirable properties.

Spivey [62] defines a “formal specification” as the use of mathematical notation

to describe in a precise way the properties which an information system must

have, without unduly constraining the way in which these properties are achieved.

It describes what the system must do, as distinct from how it is to be done. This

abstraction away from implementation enables questions about what the system

does to be answered, independently of the detailed code. Furthermore the unam-

biguous nature of mathematical notation avoids the problem of speculation about

the meaning of phrases in an imprecisely worded natural language description of

a system.

The formal specification thus becomes the key reference point for the different

parties concerned with the construction of the system, and is a useful way of

promoting a common understanding for all those concerned with the system.

The term “formal methods” is used to describe a formal specification language

and a method for the design and implementation of computer systems. The specifi-

cation is written in a mathematical language, and avoids the problem of ambiguity

inherent in a natural language specification. The derivation of an implementation

from the specification may be achieved via step-wise refinement. Each refinement

step makes the specification more concrete and closer to the actual implementation.

2.9 Formal Methods 55

There is an associated proof obligation that the refinement be valid, and that the

concrete state preserves the properties of the more abstract state. Thus, assuming

the original specification is correct and the proofs of correctness of each refinement

step are valid, then there is a very high degree of confidence in the correctness of the

implemented software.

Formal methods have been applied to a diverse range of applications, including

circuit design, artificial intelligence, specification of standards, specification and

verification of programs, etc. They are described in more detail Chap. 17.

2.10 Review Questions

1. Discuss the research results of the Standish Group the current state of IT

project delivery?

2. What are the main challenges in software engineering?

3. Describe various software lifecycles such as the waterfall model and the

spiral model.

4. Discuss the benefits of Agile over conventional approaches. List any risks

and disadvantages?

5. Describe the purpose of software inspections? What are the benefits?

6. Describe the main activities that take place in software testing.

7. Describe the main activities in project management?

2.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in

Germany. This conference highlighted the problems that existed in the software

sector in the late 1960s, and the term “software crisis” was coined to refer to these.
This led to the realization that programming is quite distinct from science and

mathematics, and that software engineers need to be properly trained to enable them

to build high-quality products that are safe to use.

The Standish group conducts research on the extent of problems with the

delivery of projects on time and budget. Their research indicates that it remains a

challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,

programmers need to receive an appropriate education in engineering as part of

their training. The education of traditional engineers includes training on product

design, and an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version

programs. It is a systematic approach to the development and maintenance of

the software, and it requires a precise statement of the requirements of the

software product, and then the design and development of a solution to meet

56 2 Software Engineering

http://dx.doi.org/10.1007/978-3-319-06106-1_17

these requirements. It includes methodologies to design, develop, implement and

test software as well as sound project management, quality management and

configuration management practices. Support and maintenance of the software

is properly addressed.

Software process maturity models such as the CMMI have become popular in

recent years. They place an emphasis on understanding and improving the software

process to enable software engineers to be more effective in their work.

2.11 Summary 57

Project Management 3

Key Topics

Project Planning

Estimation

Scheduling

Risk Management

Project Governance

Project Board

Business Case

Project Reports

Project Metrics

Project Monitoring and Control

Quality Management

Prince 2

PMP and PMBOK

3.1 Introduction

Software projects have a history of being delivered late or over budget, and the

timely delivery of high-quality software requires good estimation and planning, and

good management and engineering processes. Project management is concerned with

the effective management of projects to ensure successful delivery of a high-quality

product, on time and on budget, to the customer. A project is a temporary group
activity designed to accomplish a specific goal such as the delivery of a product to a
customer. It has a clearly defined beginning and end in time.

Project management involves good project planning and estimation; the manage-

ment of resources; the management of issues and change requests that arise during

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_3,
Springer International Publishing Switzerland 2014

59

the project; managing quality; managing risks; managing the budget; monitoring

progress; taking appropriate action when progress deviates from expectations;

communicating progress to the various stakeholders; and delivering a high-quality

product to the customer. It involves:

– Defining the scope of the project and what it is to achieve

– Estimation of the cost, effort and schedule

– Determining the start and end dates for the project

– Determining the resources required

– Assigning resources to the various tasks and activities

– Determining the project lifecycle and phases of the project

– Staffing the project

– Preparing the project plan

– Scheduling the various tasks and activities in the schedule

– Preparing the initial project schedule and key milestones

– Obtaining approval for the project plan and schedule

– Identifying and managing risks

– Monitoring progress, budget, schedule, effort, risks, issues, change requests

and quality

– Taking corrective action

– Re-planning and re-scheduling

– Communicating progress to affected stakeholders

– Preparing status reports and presentations

The scope of the project needs to be determined and effort and schedule

estimates should be established. The project plan should then be developed and

approved by the stakeholders. The project plan will need to be maintained during

the project.

The project plan will contain or reference several other plans such as the project

quality plan; the communication plan; the configuration management plan; and the

test plan.

Project estimation and scheduling are difficult as software projects are often

breaking new ground and differ from previous projects. That is, previous estimates

may often not be a good basis for estimation for the current project. Often, unanti-

cipated problems may arise for technically advanced projects, and the estimates

may be overly optimistic.

Gantt charts are generally employed for project scheduling, and these show the

work breakdown for the project as well as task dependencies and allocation of staff

to the various tasks.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves1 risk

identification; risk analysis and evaluation; identifying responses to risks; selecting

and planning a response to the risk; and risk monitoring.

1 These are the risk management activities in the Prince 2 methodology.

60 3 Project Management

Once the risks have been identified they are logged (e.g., in the Risk Log).

The likelihood of each risk arising and its impact is then determined. The risk is

assigned an owner and an appropriate response to the risk determined.

Once the planning is complete the project execution commences, and the focus

moves to monitoring progress, re-planning as appropriate, managing risks and

issues, re-planning as appropriate, providing regular progress reports to the project

board, and so on.

The two most popular project management methodologies are the Prince 2 meth-

odology which was developed in the U.K., and Project Management Professional
(PMP) and its associated project management body of knowledge (PMBOK) from

the Project Management Institute (PMI) in the United States.

3.2 Project Start Up and Initiation

There are various ways in which a project may arise: for example, a telecoms

company may wish to develop a new version of its software with attractive features

to dazzle its customers and to gain market share; an internal IT department may

receive a request from its business users to alter its business software in order to

satisfy new legal or regulatory requirements. A software development company may

be contacted by a business to develop a bespoke solution to meet its needs, and so on.

All parties must be clear on what the project is to achieve, and how it will be

achieved. It is fundamental that there is a business case for the project, as it clearly
does not make sense for the organization to spend a large amount of money unless

the project makes business sense. At the project start up the initial scope and costing

for the project are determined, and the feasibility of the project is established.2

The project is authorised,3 and a project board is set up for project governance.

The project board verifies that there is a sound business case for the project, and a

project manager is appointed to manage the project.

The project board (or steering group) includes the key stakeholders, and is

accountable for the success of the project. The project manager provides regular

status reports to the project board during the project, and the project board is

consulted when key project decisions need to be made.

The project manager is responsible for the day-to-day management of the

project, and good planning is essential to its success. The approach to the project

is decided,4 and the project manager kicks off the project and mobilises the project

team. The detailed requirements and estimates for the project are determined,

the schedule of activities and tasks established, and resources are assigned to the

2 This refers to whether the project is technically and financially feasible.
3 Organizations have limited resources, and as many projects may be proposed it will not be possible

to authorise every project, and so several projects with weak business cases will be rejected.
4 For example, it may be decided to outsource the development to a third party provider, purchase

an off-the-shelf solution, or develop the solution internally.

3.2 Project Start Up and Initiation 61

various tasks and activities.5 The project manager prepares the project plan which is

subject to the approval of the key stakeholders. The initial risks are identified and

managed, and a risk log (or repository) is set up for the project. Once the planning

is complete project execution commences.

3.3 Estimation

Estimation is a key part of project management, and the accurate estimates of effort,

cost and schedule are essential to delivering a project the on time and on budget, and

with the right quality.6 Estimation is employed in the planning process to determine

the resources and effort required, and it feeds into the scheduling of the project.

The problems with over or under-estimation of projects are well-known, and good

estimates allow:

– Accurate calculation of the project cost and its feasibility.

– Accurate scheduling of the project

– The measurement of progress and costs against the estimates.

– Determining the resources required for the project

Poor estimation leads to:

– Projects being over or under-estimated.

– Projects being over or under-resourced (impacting staff morale)

– Negative impression of the project manager.

Consequently, estimation needs to be rigorous, and there are several well-known

estimation techniques available (e.g., work-breakdown structures, function points,

and so on). Estimation applies to both the early and later parts of the project, with

the later phases of the project refining the initial estimates, as a more detailed

understanding of the project activities is then available. The new estimates are used

to re-schedule and to predict the eventual effort, delivery date and cost of the

project. The following are guidelines for estimation:

– Sufficient time needs to be allowed to do estimation.

– Estimates are produced for each phase of software development.

– The initial estimates are high-level.

– The estimates for the next phase should be solid whereas estimates for the later

phases may be high-level.

– The estimates should be conservative rather than optimistic.

– Estimates will usually include contingency

– Estimates should be reviewed to ensure their adequacy.

– Estimates from independent experts may be useful.

– It may be useful to prepare estimates using various methods and to compare.

5 The project scheduling is usually done with the Microsoft Project tool.
6 The consequences of under estimating a project include the project being delivered late, with the

project team working late nights and weekends to recover the schedule, quality being

compromised with steps in the process omitted, and so on.

62 3 Project Management

Project metrics may be employed to measure the accuracy of the estimates.

These metrics are reported during the project and include:

– Effort Estimation Accuracy

– Budget Estimation Accuracy

– Schedule Estimation Accuracy

Next, we discuss various estimation techniques including the work-breakdown

structure, the analogy method, and the Delphi method.

3.3.1 Estimation Techniques

Estimates need to be produced consistently, and it would be inappropriate to have an

estimation procedure such as “Goask Fred”,7 as this clearly relies on an individual and
is not a repeatable process. The estimates may be based on a work-breakdown

structure, function points, or another appropriate methodology. There are several

approaches to project estimation including those given in Table 3.1.

Table 3.1 Estimation techniques

Technique Description

Work breakdown

structure

Identify the project deliverables to be produced during the project. Estimate

the size of each deliverable (in pages or LOC). Estimate the effort (number of

days) required to complete the deliverable based on its complexity and size.

Estimate the cost of the completed deliverable.

Analogy method This involves comparing the proposed project with a previously completed

project (that is similar to the proposed project) The historical data and

metrics for schedule, effort and budget estimation accuracy are considered,

as well as similarities and differences between the projects to provide effort,

schedule and budget estimates.

Expert judgment This involves consultation with experienced personnel to derive the

estimate. The expert(s) can factor in differences between past project

experiences, knowledge of existing systems as well as the specific

requirements of the project.

Delphi method The Delphi Method is a consensus method used to produce accurate

schedules and estimates. It was developed by the Rand Corporation and

improved by Barry Boehm and others. It provides extra confidence in the

project estimates by using experts independent of the project manager or

third party supplier.

Cost predictor

models

These include various cost prediction modes such as Cocomo and Slim.

The Costar tool supports Cocomo, and the Qsm tool supports Slim.

Function points Function Pointswere developed by Allan Albrecht at IBM in the late 1970s,

and involve analysing each functional requirement and assigning a number

of function points based on its size and complexity. This total number of

function points is a measure of the estimate.

7 Unless “Go Ask Fred” is the name of the estimation methodology or the estimation tool

employed.

3.3 Estimation 63

3.3.2 Work Breakdown Structure

This is a popular approach to project estimation (it is also known as decomposition)
and involves the following:

– Identify the project deliverables to be produced during the project

– Estimate the size of each deliverable (in pages or LOC)

– Estimate the effort (number of days) required to complete the deliverable based

on its complexity and size, and experience of team.

– Estimate the cost of the completed deliverable.

– The estimate for the project is the sum of the individual estimates.

The approach often uses productivity data that is available from preciously

completed projects. The effort required for a complex deliverable is higher than

that of a simple deliverable (where both are of the same size). The project planning

section in the project plan (or a separate estimation plan) will include the lifecycle

phases, and the deliverables/tasks to be carried out in each phase, as given in

Table 3.2.

Table 3.2 Example work-breakdown structure

Lifecycle phase

Project deliverable

or task description Est. size Est. effort Est. cost

Planning and

requirements

Project plan 40 10 days $5,000

Project schedule 20 5 days $2,500

Business requirements 20 10 days $5,000

Test plan 15 5 days $2,500

Issue/risk log 3 2 days $1,000

Lessons learned log 1 1 day $500

Design System requirements 15 5 days $2,500

Technical/DB design 30 10 days $5,000

Coding Source code 5,000 (LOC) 10 days $5,000

Unit tests/results 200 2 days $1,000

Testing ST specs 30 10 days $5,000

System testing 10 days $5,000

UAT specs 30 10 days $5,000

UAT testing 10 days $5,000

Deployment Release notes/procedures 20 5 days $2,500

User manuals 50 10 days $5,000

Support procedures 15 10 days $5,000

Training plan 25 5 days $2,500

Project closure End project report 10 2 days $1,000

Lessons learned report 5 2 days $1,000

Contingency 10 % 13.4 $6,700

Total 147.4 $73,700

64 3 Project Management

3.4 Project Planning and Scheduling

A well-managed project has an increased chance of success, and good planning is

an essential part of project management. There is the well-known adage which

states “Fail to plan, plan to fail”. The project manager and the relevant stakeholders

will consider the appropriate approach for the project, and determine whether a

solution should be purchased off the shelf, whether to outsource the software

development to a third party supplier, or whether to develop the solution internally.

A simple process map for project planning is in Fig. 3.1.

Estimation is a key part of project planning, and the effort estimates are used

for scheduling of the tasks and activities in a project scheduling tool such as

Microsoft Project (Fig. 3.2).
The schedule will detail the phases in the project, the key project milestones, the

activities and tasks to be performed in each phase as well as their associated

timescales, and the resources required to carry out each task. The project manager

will update the project schedule regularly during the project.

Projects vary in size and complexity and the formality of the software develop-

ment process employed needs to reflect this. The project plan defines how the

project will be carried out, and it generally includes:

– Business Case

– Project Scope

– Project Goals & Objectives

– Key Milestones

– Project Planning and Estimates

– Key Stakeholders

– Project Team and Responsibilities

Planning
Data

Establish
Estimates

Develop Project
Plan

Project Plan

Approved
Project Plan

Approve
Project Plan?

Yes

No

Fig. 3.1 Simple process map for project planning

3.4 Project Planning and Scheduling 65

F
ig
.
3
.2

S
am

p
le

M
ic
ro
so
ft
p
ro
je
ct

sc
h
ed
u
le

66 3 Project Management

– Knowledge and Skills Required

– Communication Planning

– Financial Planning

– Quality and Test Planning

– Configuration Management

Communication planning describes how communication will be carried out

during the project, and this includes the various project meetings and reports that

will be produced; financial planning is concerned with budget planning for the

project; quality and test planning is concerned with the planning required to ensure

that a high-quality product is delivered; and configuration management is con-

cerned with identifying the configuration items to be controlled, and systematically

controlling changes to them throughout the lifecycle. It ensures that all deliverables

are kept consistent following approved changes.

The project plan is a key project document, and it needs to be approved by all

stakeholders. The project manager needs to ensure that the project plan, schedule

and technical work products are kept consistent with the requirements.

Checklists are useful in verifying that the tasks have been completed. The

sample project management checklist in Table 3.3 verifies that project planning

has been appropriately performed and that controls are in place.

3.5 Risk Management

Risks arise due to uncertainty, and risk management is concerned with managing
uncertainty, and especially the management of any undesired events. Risks need to

be identified, analysed and controlled in order for the project to be successful.

Once the initial set of risks to the project has been identified, they are analysed to

determine their likelihood of occurrence and their impact (e.g. on cost, schedule or

Table 3.3 Sample project management checklist

No. Item to check

1. Is the project plan complete and approved by the stakeholders?

2. Are the Risk Log, Issue Log and Lessons Learned Log set up?

3. Are the responses to the risks and issues appropriate?

4. Is the Microsoft Schedule defined for the project?

5. Is the project schedule kept up to date?

6. Is the project appropriately resourced?

7. Are estimates available for the project? Are they realistic?

8. Has quality planning been completed for the project?

9. Does the project have a business case?

10. Has the change control mechanism been set up for the project?

11. Are all deliverables under configuration management control?

12. Has project communication been appropriately planned?

13. Is the project directory set up for the project?

14. Are the key milestones defined in the project plan?

3.5 Risk Management 67

quality). These two parameters determine the risk category of the risk, and the most

serious risk category refers to a risk with a high probability of occurrence and a high

impact on occurrence.

Countermeasures are defined to reduce the likelihood of occurrence and impact

of the risks, and contingency plans are prepared to deal with the situation of the risk

actually occurring. Additional risks may become evident during the project, and the

project manager needs to be proactive in their identification and management.

Risks need to be reviewed regularly especially following changes in the project.

These could be changes to the business case or the business requirements, loss of

key personnel, and so on. Events that occur may affect existing risks (including

the probability of their occurrence and their impact), and may lead to new risks.

Countermeasures need to be kept up to date during the project. Risks are reported

regularly throughout the project.

The risk management cycle is concerned with identifying and managing risks

throughout the project lifecycle. It involves identifying risks; identifying their proba-

bility of occurrence and impact should they occur; identifying responses to the risks;

and monitoring and reporting. Table 3.4 describes these activities in greater detail.

Table 3.4 Risk management activities

Activity Description

Risk management

strategy

This defines how the risks will be identified, monitored, reviewed

and reported during the project, as well as the frequency of monitoring

and reporting.

Risk identification This involves identifying the risks to the project and recording them in a

risk repository (e.g., Risk Log). It continues throughout the project

lifecycle. The Prince 2 methodology classifies risks into five main types:

Business (e.g., collapse of subcontractors)

Legal and Regulatory

Organisational (e.g., availability of skilled resources and management).

Technical (e.g., scope creep, architecture, design)

Environmental (e.g., flooding or fires)

Evaluating the risks This involves assessing the likelihood of occurrence of a particular risk

and its impact (on cost, schedule, etc.) should it materialise. These two

parameters result in the risk category.

Identifying risk

responses

The project manager (and other stakeholders) will determine the

appropriate response to a risk depending on its severity. The response

may reduce the probability of its occurrence or its impact should it occur.

This includes:

Prevention which aims to prevent it from occurring

Reduction aim to reduce the probability of occurrence or impact should

it occur.

Transfer aims to transfer the risk to a 3rd party.

Acceptance is when nothing can be done about it

Contingency are actions that are carried out should the risk materialise.

Risk monitoring

and reporting

This involves monitoring existing risks to verify that the actions taken

to manage the risks are effective, as well as identifying new risks.

It provides an early warning that an identified risk is going to materialise.

Lessons learned This is concerned with determining the effectiveness of risk management

during the project and to learn any lessons for future projects.

68 3 Project Management

The project manager will maintain a risk repository (this may be a tool or a risk

log) to record details of each risk, including its type and description; its likelihood

and its impact (yielding the risk category); as well as the response to the risk.

3.6 Quality Management in Projects

There are various definitions of “quality” such as Juran’s definition that quality is

“fitness for purpose”. Crosby defined quality as “conformance to the requirements”,
and this definition is often useful in the quality management of projects.

It is fundamental premise in the quality field that it is more cost effective to build

quality into the product, rather than adding it later during the testing phase.

Therefore, quality needs to be considered at every step during the project, and

every deliverable needs to be reviewed to ensure its fitness for purpose. The review

may be similar to a software inspection, a structured walkthrough or another

appropriate methodology.

The project plan will include a section on quality planning for the project

(this may be a separate plan). The quality plan will define how the project plans

to deliver a high quality project, as well as the quality controls and quality assurance

activities that will take place during project execution. The quality planning needs

to ensure that the customer’s quality expectations will be achieved.

The project manager has overall responsibility for project quality, and the

quality department (if one exists) will assign a quality engineer to the project, and

the quality engineer will promote quality and its importance to the project team, as

well as facilitating quality improvement. The project manager needs to ensure that

sound software engineering processes are employed on the project, as well as

standards and templates for the various deliverables.

Process quality is important, as it is an accepted principle in the quality field that

conformance to the defined process is essential in the delivery of a high-quality

product. The quality engineer will conduct process audits to ensure that the pro-

cesses and standards are followed consistently during the project. An audit report is

published, and any audit actions are tracked to closure.

Software Testing is conducted to verify that the software corresponds to the

requirements and a separate test plan will define the various types of testing to be

performed. This will typically include unit, integration, system, performance and

acceptance testing. The test results play an important role in determining whether

the software is ready to be released or not.

The project manager will report various metrics (including the quality metrics)

in the regular status reports, and the quality metrics provide an objective indication

of the quality of the product.

The cost of poor quality may be determined at the end of the project, and this

may require a time recording system for the various project activities. The effort

involved in detecting and correcting defects may be recorded, and a chart similar to

Fig. 1.9 presented.

3.6 Quality Management in Projects 69

http://dx.doi.org/10.1007/978-3-319-06106-1_1

Poor quality may be due to various reasons. For example, it may be caused by

inadequate reviews or testing of the software; inadequate skills or experience of the

project team; or poorly defined or understood requirements.

3.7 Project Monitoring and Control

Project monitoring and control is concerned with monitoring project execution,

and taking corrective action when project performance deviates from expectations.

The progress of the project should be monitored against the plan, and corrective

actions taken as appropriate. The key project parameters such as budget, effort and

schedule as well as risks and issues are monitored, and the status of the project

communicated regularly to the effected stakeholders. The project manager will

conduct progress and milestone reviews to determine actual progress, new issues

are identified and monitored, and the corrective actions identified are tracked to

closure. The main focus of project monitoring and control is:

– Monitor the project plan and schedule and take action to ensure that the project

schedule remains on track.

– Monitor the key project parameters

– Conduct progress and milestone reviews to determine the actual status.

– Monitor risks, issues and change requests, and take appropriate action.

– Monitor resources and manage any resource issues.

– Report the project status to management and project board

– Analyse issues and take corrective action

– Track corrective action to closure

A sample process map is provided in Fig. 3.3.

Fig. 3.3 Simple process map for project monitoring and control

70 3 Project Management

The project manager will monitor progress, risks and issues during the project,

and take appropriate corrective action. The status of the project will be reported in

the regular status reports sent to management and the project board, with the status

reviewed with management regularly during the project.

3.8 Managing Issues and Change Requests

The management of issues and change requests is a normal part of project

management. An issue can arise at any time during the project (e.g., a supplier

to the project may go out of business, an employee may resign, specialized

hardware for testing may not arrive in time, and so on), and it refers to a problem

that has occurred which may have a negative impact on the project. The severity

of the issue is an indication of its impact, and the project manager has respon-

sibility for managing it. The issue needs to be properly dealt with to enable the

project to be delivered on time and on budget and with the right quality.

A change request is a stakeholder request for a change to the scope of the

project, and it may arise at any time during the project. The impacts of the change

request (e.g., technical, cost and schedule) need to be carefully considered, as a

change introduces new risks to the project, and may adversely affect cost, schedule

and quality. It is therefore essential to fully understand the impacts in order to

make an informed decision on whether to authorise or reject the change request.

The project manager may directly approve small change requests, and the impacts

of a larger change requests are considered by the change control board (CCB), who
make an informed decision to authorise or reject it.

The activities involved in managing issues and change requests are summarised

in Table 3.5.

Table 3.5 Activities in managing issues and change requests

Activity Description of issue/change request

Log issue or change

request

The issue or change request is logged by the project manager. It is assigned

a unique reference number and severity and categorised into a problem or

change request.

Assess impact This involves analysis to determine the technical impacts, as well as the

impacts on cost, schedule and quality for the issue or change request.

The risks need to be identified.

Decision on

implementation

A decision is made on how to deal with the issue or change request.

The CCB is usually involved in the decision to authorise a change request.

Implement solution The affected project documents and software modules are identified,

and modified accordingly.

Verify solution Testing (Unit, System and UAT) are employed to verify the correctness of

the solution.

Close issue/CR The issue or change request is closed.

3.8 Managing Issues and Change Requests 71

3.9 Project Board and Governance

The project board8 (or steering group) is responsible for directing the project, and is
directly accountable for the success of the project. It consists of senior managers

and staff in the organization that have the authority to make resources available,

to remove roadblocks, and to get things done.

It is consulted whenever key project decisions need to be made, and it plays a

key role in project governance. The project board ensures that there is a clear

business case for the project, and that the capital funding for the project is adequate

and well spent. The project board may cancel the project at any stage during project

execution should there cease to be a business case, or should project spending

exceed tolerance and go out of control.9

The project manager reports to the project board, and sends regular status reports

to highlight progress made as well as key project risks and issues. The project

board meets at an appropriate frequency during the project (with extra sessions

held should serious project issues arise) (Fig. 3.4).

There are several roles on the project board (an individual could perform

more than one role) and their responsibilities are given in Table 3.6.

Fig. 3.4 Prince 2 project board

8 The project board in the Prince 2 methodology includes roles such as the project executive, senior

supplier, senior user, project assurance, and the project manager. These roles have distinct

responsibilities.
9 The project plan will usually specify a tolerance level for schedule and spending, where the

project may spend (perhaps less than 10 %) in excess of the allocated capital for the project before

seeking authorization for further capital funding for the project.

72 3 Project Management

3.10 Project Reporting

The frequency of project reporting is defined in the project plan (or the

communications plan). The project report advises management and the key stake-

holders of the current status of the project, and includes key project information

such as:

– Completed Deliverables (during period)

– New risks and issues

– Schedule, Effort and Budget Status (RAG metrics10)

– Quality and Test Status

– Key Risks and Issues

– Milestone Status

– Deliverables planned (next period)

The project manager discusses the project report with management and the

project board, and states how the key risks and issues will be dealt with. The project

manager will present a recovery plan to deal with the circumstances where the

project has fallen significantly behind schedule or over budget.

The key risks and issues will be discussed, and the project manager will explain

how the key issues are being dealt with, and how the key risks will be managed.

The new risks and issues will also be discussed, and the project board will carefully

consider how the project manager plans to deal with these, and will provide

appropriate support to the project manager.

The project board will carefully consider the status of the project as well as the

input from the project manager before deciding the appropriate course of action

(which could include the immediate termination of the project).

3.11 Project Closure

A project is a temporary activity, and once the project goals have been achieved and

the product handed over to the customer and support group, it is ready to be closed.

The project manager will prepare an end of project report detailing the extent to

Table 3.6 Project board roles and responsibilities

Project Director Ultimately responsible for the project. Provides overall guidance to the project.

Senior Customer Represents the interests of users.

Senior Supplier Represents the resources responsible for implementation (e.g., IS manager).

Project Manager Link between project board and project team.

Project Assurance Internal role (optional) that provides independent objective of the project.

Safety Ensure adherence to health and safety standards (optional role).

10 Often, a colour coding mechanism is employed with a red flag indicating a serious issue; amber

highlighting a potentially serious issue; and green indicating that everything is on track.

3.11 Project Closure 73

which the project achieved its targeted objectives. The report will include a

summary of key project metrics including key quality metrics and the budget and

timeliness metrics.

The success of the project is judged on the extent to which the defined objectives

have been achieved, and on the extent to which the project has delivered the

agreed functionality on schedule, on budget and with the right quality. This is

often referred to as the project management triangle (Fig. 3.5).

The project manager presents the end project report to the project board,

including any factors (e.g., change requests) that may have affected the timely

delivery of the project or the allocated budget. The project is then officially closed.

The project manager then schedules a meeting with the team review the

lessons learned from the project. The lessons learned are recorded by the team

during the project (typically in a lessons learned log), and the key lessons learned

are summarised in the lessons learned report. Any actions identified are assigned to

individuals and follower through to closure, and the lessons learned report is made

available to other projects (with the goal of learning from experience).

The project team is disbanded and the project team members are assigned to

other duties.

3.12 Prince 2 Methodology

Prince 2 (Projects in controlled environments) is a popular project management

methodology widely used in the U.K. and Europe. It is a structured, process driven

approach to project management, with processes for project start up, initiating a

project, controlling a stage, managing stage boundaries, closing a project, managing

product delivery, planning and directing a project (Fig. 3.6). It has procedures to

coordinate people and activities in a project, as well as procedures to monitor and

control project activities.

These key processes are described in more detail in Table 3.7, and more detailed

information on Prince 2 is in [51].

Fig. 3.5 Project

management triangle

74 3 Project Management

Fig. 3.6 Prince 2 processes

Table 3.7 Key processes in Prince 2

Process Description

Start-up Project Manager and project board appointed, project approach and project

brief defined.

Controlling a stage Stage plan prepared, quality and risks/issues managed, progress reviewed &

reported.

Managing stage
boundary

Stage status reviewed & next stage planned, actual products produced

vs. original stage plan compared, stage or exception report produced.

Closing a project Orderly closure of project with project board, end project report and lessons

learned report.

Managing product
delivery

Covers product creation by the team or a 3rd party supplier. Ensure that the

planned deliverables meet quality criteria.

Planning Prince 2 employs product based planning which involves identifying

the products required, and then activities and resources to provide them.

A good project plan gives everyone a common understanding of the work

to be done.

Directing a project Senior management have authority to define what is required from the

project, authorization of the project, to commit resources and funds, and to

provide management direction. The project board controls the project.

3.12 Prince 2 Methodology 75

3.13 Review Questions

1. What is a project? What is project management?

2. Describe various approaches to estimation and explain why good estima-

tion is difficult.

3. What activities take place at project start-up and initiation?

4. What skills are required to be a good project manager?

5. What is the purpose of the project board and explain why project gover-

nance is important.

6. What is the purpose of risk management? Describe how risks are managed

in a project.

7. Describe the main activities in project management.

3.14 Summary

Project management is concerned with the effective management of projects, and

the goal is to deliver a high-quality product, on time and on budget, to the customer.

It involves good project planning and estimation; managing resources; managing

changes and issues that arise during the project; managing quality; managing

risks; managing the budget; monitoring progress and taking action when progress

deviates from expectations; communicating progress to the various stakeholders;

and delivering a high-quality product to their business customers.

The scope of the project needs to be determined, and the effort and schedule

estimates should be established. The project plan is then be developed and approved

by the stakeholders. It needs to be maintained during the project. The project plan

will contain or reference several other plans such as the quality plan; the communi-

cation plan; the configuration management plan; and the test plan.

Project estimation and scheduling are difficult as often software projects are

breaking new ground and differ from previous projects. Gantt charts are often

employed for project scheduling, and these show the work breakdown for the

project as well as task dependencies and allocation of staff to the various tasks.

The effective management of risk during a project is essential to project success.

Risks arise due to uncertainty and the risk management cycle involves risk identifi-

cation; risk analysis and evaluation; identifying responses to risks; selecting and

planning a response to the risk; and risk monitoring.

Once the planning is complete the project execution commences, and the focus

moves to monitoring progress, re-planning as appropriate, managing risks and

issues, re-planning as appropriate, providing regular progress reports to the project

board, and so on.

76 3 Project Management

Requirements, Design and Development 4

Key Topics

Requirements Elicitation

Requirements Analysis

Traceability

Managing Changes to Requirements

Software Design

Software Reuse

4.1 Introduction

The user requirements specify what the customer wants and define what the software
system is required to do, as distinct from how this is to be done. The requirements are

the foundation for the system, and if they are incorrect then irrespective of the best

software development process in the world, the implemented system will be

incorrect.

Often, the initial requirements for a project arise due to a particular problem that

the business or customer needs to solve. This leads to a project to implement an

appropriate solution, and the first step is to determine the scope of work and the

actual requirements for the project, and whether the project is feasible from the cost,

time and technical considerations. The user requirements are determined from

discussions with the customer to determine their actual needs, and they are then

refined into the system requirements which state the functional and non-functional

requirements of the system.

The software design of the system is concerned with the architecture of the system,

as well as activities to describe the algorithms and functions required to implement

the system requirements. It is a creative process concerned with how the system will

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_4,
Springer International Publishing Switzerland 2014

77

be implemented, and the architecture may include hardware such as personal

computers and servers as well as the various software modules and their interfaces.

The software development is concerned with the actual implementation of the

design, and the implementation is in some programming language such as C++ or

Java. The software may be developed internally or it may be outsourced to another

company, or a solution may be purchased off-the-shelf. It is essential that the design

is valid with respect to the requirements, and that the implemented system is valid

with respect to the design.

4.2 Requirements Engineering

The specification of the requirements needs to be unambiguous to ensure that all

parties involved share a common understanding of the development of the system,

and fully agree on what is to be developed and tested. Table 4.1 presents symptoms

of a poor requirements process.

Table 4.2 lists characteristics of good requirements.

Prototyping may be employed to assist in the definition and validation of the

requirements, and a suitable prototype will include key parts of the system. It will

allow users to give early feedback on the proposed system, and on the extent to

which it meets their needs. Prototyping is very useful in clarifying the requirements,

and helps in reducing the risk of developing the wrong solution.

The implications of the proposed set of requirements needs to be understood, as

the choice of a particular requirement may affect the choice of another requirement.

For example, in the telecommunications domain, two features may work correctly

in isolation, but when present together they interact in an undesirable way. There-

fore, feature interactions need to be identified and investigated at the requirements

phase to determine how interactions should be resolved.

The following activities are involved in requirements definition and manage-

ment, and they are discussed in more detail in the following sections:

– Requirements elicitation and specification

– Requirements analysis

– Requirements verification and validation

– Requirements traceability

– Managing changes to the requirements

We distinguish between the user (or business) requirements and the system

requirements. The user requirements are the high-level requirements for the system,

whereas the system requirements are a more detailed description of what the system is

to do. The user requirements are more abstract than the system requirements, and a

user requirement is expanded into several system requirements. The system

requirements provide more detailed information on the system to be implemented.

The system requirements include the functional and non-functional require-

ments. A functional requirement is a statement about the functionality of the

system: i.e., how the system should behave and how it should respond to particular

inputs. A non-functional requirement is a constraint on the functionality of the

78 4 Requirements, Design and Development

system (e.g., a timing, performance, security or hardware constraint). Next, we

discuss the process of determining the requirements for the system.

4.2.1 Requirements Elicitation and Specification

The process of determining the requirements for the proposed system involves

discussions with the relevant stakeholders to determine their needs, and to explicitly

define what functionality the system should provide, as well as any hardware and

performance constraints. The process of eliciting the requirements from the

stakeholders is difficult as

– Stakeholders often do not know what they want from the system.

– Stakeholders often do not know what is or what is not technically feasible, and

may have unrealistic expectations.

– Stakeholders express the requirements in the language of their domain, which

may differ from the language of the business analysts.

Table 4.1 Symptoms of poor requirements development and management

No. Symptoms of poor requirements process

1. High-level of requirements creep during the project.

2. Requirements changing regularly during the project.

3. Missing requirements

4. Requirements accepted from any source

5. High-level of rework during the project

6. Design, Implementation and Test products inconsistently interpret the requirements.

7. Untestable requirements

8. Inability to prove that the implementation satisfies the requirements.

Table 4.2 Characteristics of good requirements

No. Characteristics of good requirements

1. Each requirement is clear and unambiguous.

2. Each requirement has a priority to indicate its importance

3. Each requirement may be implemented.

4. Each requirement is testable.

5. Each requirement is necessary.

6. Any conflicts between the requirements are resolved.

7. Each requirement is broken down as fully as possible

8. Each requirement is consistent with the project’s objectives.

9. Each requirement is stated as a stakeholder need (i.e., premature design/solution or

implementation information is not included).

10. The business requirements are traceable (in both directions) throughout the development

cycle

11. The requirements are complete and consistent.

4.2 Requirements Engineering 79

– Different stakeholders may want different things from the system resulting in

conflicts that need to be resolved.

The project manager/business analyst and relevant stakeholders will conduct a

brainstorming session to define the high level requirements for the proposed system

(or modification to an existing system). Further requirements workshops will

review and analyse the draft requirements, and identify all further relevant infor-

mation for the proposed system. The workshops involve interviews with the

relevant stakeholders to elicit the actual requirements for the proposed system

from the stakeholders.

Prototyping helps to identify gaps and misunderstandings in the definition of the

requirements. The prototype is an early working version of the system, and it is used

to give the users a flavour of what the working system will look like, and its

evaluation by the stakeholders helps in clarifying the requirements. The prototype

may be thrown away at the end of prototyping, or it may be re-used in the

development of the system. It involves:

– Define prototype objectives

– Decide which functional requirements will be prototyped

– Develop the prototype

– Evaluate the prototype

The project manager (or a business analyst) will facilitate the requirements

workshop, and the requirements gathered are then consolidated into a coherent

set of requirements to form the first draft of the user requirements. Following the

initial workshop, the project manager/business analyst prepares a draft of the

detailed requirements, and sends the document to the participants for comments.

Further requirements workshops are held to discuss and analyse the draft

requirements to ensure that they meet the needs of the stakeholders, and this process

continues until all participants are in agreement with the user requirements. In some

cases, the requirements may already be defined and documented by the customer.

The requirements workshops involve a brainstorming session with the attendees,

and this allows the users to discuss their needs and the requirements for the

proposed system. The requirements workshops allow the proposed requirements

to be discussed, analysed and prioritized. Any conflicts in the requirements are

identified and resolved. The requirements document is updated accordingly with

the agreed set of user requirements.

The project manager/business analyst may use a checklist to determine that the

requirements have been fully specified, and to verify that every requirement

specified is actually necessary. The final version of the user requirements document

is circulated to all participants for their final review and approval.

Once the user requirements have been agreed by all stakeholders the work on the

system requirements commences, and the business analyst expands the user

requirements into more specific and detailed system requirements. Further system

requirements workshops are conducted with the relevant stakeholders until the

system requirements are approved.

80 4 Requirements, Design and Development

The requirements for a system are generally documented in a natural language

such as “English”. Natural language is inherently ambiguous, and therefore care

needs to be taken to ensure that the definition is precise and unambiguous.

The ambiguity of natural language has led to interest in precise notations to

express requirements unambiguously. These include the formal specification

notations such as Z or VDM that are often employed in the safety critical or security

critical fields. The advantage of these mathematical languages is that they are

precise and amenable to proof, and mathematical analysis may be employed in a

sense to debug1 the requirements. This provides increased confidence in the cor-

rectness and validity of the requirements. However, these notations are perceived as

being difficult to use by industrialists, and they are not widely employed at this

time. Formal methods are discussed in Chap. 17.

Other notations to express the requirements include the visual modelling lan-

guage UML [32] which has become popular in recent years. UML is discussed in

Chap. 19.

4.2.2 Requirements Analysis

The requirements are analysed to ensure that they are technically feasible and to

identify any conflicts between them. The resolution of any conflicts is through

negotiations with the stakeholders. The requirements are prioritized to define the

importance of each requirement, and some development models implement the most

important requirements first. Requirements analysis is an iterative process with

feedback going back to the stakeholders in the requirements elicitation process.

The workshops will verify that the system requirements are valid with respect to

the user requirements, and technical workshops will need to be conducted to

determine the appropriate approach to their implementation.

4.2.3 Requirements Verification and Validation

The difference between requirements validation and verification is illustrated by the

phrase “Building the right thing” vs. “building it right”. In other words validation is
concerned with ensuring that the correct requirements are being implemented,

whereas verification is concerned with ensuring that the requirements are being

implemented correctly.

The stakeholders validate the requirements to ensure that the defined

requirements are actually those desired. This may involve several reviews of the

requirements (and prototype) by the stakeholders, with updates made by the author

until all stakeholders are ready to approve the requirements of the system.

1 Essentially, the mathematical language provides the facility to prove that certain properties are

true of the specification, and that certain undesirable properties are false in the specification.

4.2 Requirements Engineering 81

http://dx.doi.org/10.1007/978-3-319-06106-1_17
http://dx.doi.org/10.1007/978-3-319-06106-1_19

The validation of the requirements will ensure that the requirements are complete,

consistent, and realizable and reflect the needs of the customer. The final validation

step is the user acceptance testing, and this is performed by the customer to confirm

that the completed system fully meets user requirements. The lifecycle model

employed determines the verification and validation activities to be conducted during

the project, with models such as joint application development (JAD) and Agile

involving a high-level of customer involvement.

Requirements verification is concerned with ensuring that the system as built

(from design, to development, to testing) properly implements the defined

requirements. A traceability matrix shows how the requirements are implemented

and tested, and may be employed for requirements verification.

4.2.4 Managing Changes to Requirements

A change request is a stakeholder request for a change to the scope of the project,

and it may arise at any time during the project. It is essential that the impacts of a

change request on schedule, effort, budget and technical areas are fully considered

prior to its authorisation.

Once the system requirements have been approved, any proposed changes to the

requirements are subject to formal change control. Change request are considered

by the change control board (CCB), who make an informed decision to authorise or

reject the request based on its impacts.

The need to change the requirements may be due to business or regulatory

changes, or to a customer need becoming apparent at a late stage of the project

when the system is nearing completion. The impacts of the change request (e.g.,

technical, cost and schedule) need to be carefully considered, as a change

introduces new risks to the project, and may adversely affect cost, schedule and

quality. The activities involved in managing change requests are summarised in

Table 4.3.

Following the approval of a change request the affected documents such as the

system requirements, the design, and software modules are modified. Testing is

carried out to verify that the changes have been implemented correctly.

4.2.5 Requirements Traceability

The objective of requirement traceability is to verify that all of the requirements for

the project have been implemented and tested. One way to do this is to consider

each requirement number and to go through every part of the design document to

find where the requirement is being implemented in the design, and similarly to go

through the test documents and find any reference to the requirement number to

show where it is being tested. This would demonstrate that the particular require-

ment number has been implemented and tested.

82 4 Requirements, Design and Development

A more effective mechanism to do this is to employ a traceability matrix, which

may be employed to map the user requirements to the system requirements; the

system requirements to the design; the design to the unit test cases; the system test

cases; and the UAT test cases. That is, traceability is defined through the project

lifecycle, and the matrix provides details of how the requirements have been

implemented and tested.

The traceability of the requirements is bi-directional, and the traceability matrix

may be maintained as a separate document, or as part of the requirements docu-

ment. The basic idea is that a mapping between the requirement numbers and

sections of the design or test plan is defined, and this provides confidence that all

of the requirements have been implemented and tested.

Requirements may be numbered and a single requirement number may map on

to several sections of the design or to several test cases: i.e., the mapping may be

one to many. The traceability matrix (Table 4.4) provides the mapping between

individual requirement numbers, and the sections in the design or test plan

corresponding to the particular requirement number.

This mapping will typically be one to many: i.e., a single requirement number

will typically be implemented in several design sections, and verified by several test

cases. The traceability matrix will be employed to demonstrate that all of the

requirements have been implemented and tested.

It is essential to keep the traceability matrix up to date during the project, and

following changes to the requirements. The traceability matrix is useful as a tool

whenever there are changes to the requirements as it allows the impacts of the

change on the other requirements (and other project deliverables) to be easily

determined.

Table 4.3 Managing change requests

Activity Change request

Log change

request

The change request is logged and a unique reference number and severity

assigned.

Assess impact The cost, schedule, technical and quality impacts are determined and the risks

identified.

Decision The CCB authorises or rejects the change request.

Implement

solution

The affected project documents and software modules are identified, and

modified accordingly.

Verify solution Testing (Unit, System and UAT) are employed to verify the correctness of the

solution.

Close CR The change request is closed.

Table 4.4 Sample trace

matrix
Requirement no. Sections in design Test cases in test plan

Rl.l D1.4, D1.5, D3.2 T1.2, T1.7

R1.2 D1.8, D8.3 T1.4

R1.3 D2.2 T1.3

R1.50 D20.1, D30.4 T20.1 T24.2

4.2 Requirements Engineering 83

4.3 Architecture Design

The design of the system consists of engineering activities to describe the

architecture model or structure of the system that will satisfy the functional and

non-functional requirements, as well as the design of the individual programs to
describe the algorithms and functions required to implement the system

requirements. Design is a creative process concerned with how the system will

be organized, and the architecture design is often presented as a set of interacting

components. The design activities include architecture design, interface design,

component design, algorithm design, and data structure design. There are often

several possible design solutions for a particular system, and the designer will need

to choose the most appropriate design of the system.

The architectural model of the system is an abstract visual representation of the

system, and it is often presented as a set of boxes or block diagrams. The major

components of the system and their interactions are identified, and each box

represents a component with the architecture showing all the components and

their connections. A box within a box represents a sub-component, and arrows

are used to represent the flow of data between the components. This abstract

description of the system provides a high-level view of the system, and is an

effective way to facilitate discussion about the system design with the relevant

stakeholders.

The views of C.A.R. Hoare on software design are interesting (Fig. 4.1). He

states that there are two ways of constructing a software design.

One way is to make it so simple that there are obviously no deficiencies.

The other way is to make it so complex that there are no obvious deficiencies.

He argues that the first method is far more difficult to achieve, and that it requires

skill and insight.

The starting point in design is always the problem domain, and it is essential that

the problem to be solved is understood from a number of different viewpoints. A

number of potential solutions may then be identified, and each potential solution is

evaluated. This leads to the chosen solution which may, for example, be the

simplest and least costly.

Design is an iterative process and the goal is to describe the system architecture

that will satisfy the functional and non-functional requirements. It involves describ-

ing the system at a number of different levels of abstraction, with the designer

starting off with an informal picture of the design that is then refined by adding

more information.

Parnas’s ideas on design have been quite influential (Fig. 4.2), and his 1972

paper “On the criteria to be used in decomposing systems into modules” [52] is a

classic in software engineering. He introduced the revolutionary information hiding
principle, which allows software to be designed in a way to deal with change. A
module is characterized by its knowledge of a design decision (secret) that it hides
from all other modules. Every information-hiding module has an interface that

provides the only means to access the services provided by the modules. The

84 4 Requirements, Design and Development

interface hides the module’s implementation. Information hiding is used in object-

oriented programming. Parnas argues in his 1972 paper that:

It is almost always incorrect to begin the decomposition of a system into modules on the

basis of a flowchart. We propose instead that one begins with a list of difficult design

decisions or design decisions which are likely to change. Each module is then designed to

hide such a decision from the others

The design may be specified in various ways such as graphical notations that

display the relationships between the various components making up the design.

The notation may include block diagrams, flow charts, or various UML diagrams

such as sequence diagrams, state charts, and so on. The design of programs may

employ pseudo code to specify the algorithms as well as the data structures that are

the basis for implementation. Natural language is often employed to express

information that cannot be expressed formally. The design activities include:

– Architecture Design of system (with all sub-systems)

– Abstract specification of each sub-system

– Interface Design (for each subsystem)

– Component Design

Fig. 4.1 C.A.R. Hoare

(Public domain)

Fig. 4.2 David Parnas

(Public domain)

4.3 Architecture Design 85

– Data Structure Design

– Algorithm Design

The quality of the software architecture directly impacts the robustness, perfor-

mance and maintainability of the system. A good software architecture will manage

the inherent complexity of the system, and ensures a solid performance of the

implemented system, with safety, security, availability and maintainability require-

ments properly addressed.

There is a need to present multiple views of the system architecture such as how

the system is decomposed into modules, how the run-time processes interact, how

the hardware is distributed across the processors in the system. These views may

include [61] those given in Table 4.5.

The process view could be described by data-flow diagrams (part of the SSADM

method) which show the flow of data through a system. UML is a popular design

method which gives several views of the architecture of the system. It is essential

validate the design with respect to the system requirements.

4.4 Design and Development

The design of the system consists of engineering activities to describe the

components of the system as well as the algorithms and functions required to

implement the system requirements. Design and development are closely related

and are concerned with developing an executable software system.

Functional design involves starting with a high-level view of the system and

refining it into a more detailed design. The system state is centralized and shared

between the functions operating on that state.

Object-oriented design has become popular in recent years and is based on the

concept of information hiding developed by Parnas [52]. The system is viewed as a

collection of objects rather than functions, with each object managing its own state

information. The system state is decentralized and an object is a member of an

object class. The definition of a class includes attributes and operations on class

members, and these may be inherited from super classes. Objects communicate by

exchanging messages.

Table 4.5 Views of system architecture

View Description

Logical This view shows the key abstractions in the system as objects or object classes

Process view This view shows how the system is composed of interacting processes at

run-time.

Development

view

This view shows how the software is decomposed into modules/components for

development.

Physical view This view shows the system hardware and how the software components are

distributed across the system.

86 4 Requirements, Design and Development

Software design and development are closely linked, and often proceed in

parallel. Software design is the creative process that identifies the software

components and their relationships, whereas software development is concerned

with the implementation of the design in some programming language. The choice

of language reflects the problem domain, and may be an object-oriented language

such as C++ or Java, or a procedural language such as C or FORTRAN. It is important

that the software code is subject to a peer review to ensure that it is of high-quality,

and that it is a valid implementation of the requirements and design. The coding

standards for the language will also need to be followed, as this assists in the

maintainability of the code.

Software reuse has become topical in recent years, and today many organizations

approach to development includes software reuse. The advantages of software reuse

are that it potentially improves productivity, and delivers higher quality software.

Open source development is a modern approach to software development in which

the source code is published, and software developers from around the world

volunteer to participate in the software development process. The idea is that the

source code is not proprietary, and that it should be available for software developers

to use and modify as they wish.Customized-off-the-shelf software (COTS) is software
(or a system) that may be purchased off-the-shelf, and adapted to the user’s

requirements. The reader is referred to the classic text in software engineering [61]

for a more detailed explanation of the design and development activities.

4.5 Review Questions

1. What is the difference between a functional and non-functional

requirement?

2. What is the difference between requirements verification and validation?

3. How are requirement elicited from the customer?

4. Discuss the difference between architecture design and detailed design.

5. How are changes to the requirements managed?

6. What is the purpose of requirements traceability?

7. Explain the differences between COTS, software reuse, and open source

software.

4.6 Summary

The success of business is highly influenced by software, and companies may

develop their own software internally, or they may acquire software solutions off-

the-shelf or from bespoke software development. Cost is a key driver in most

organizations and it is essential that software is produced as cheaply and efficiently

as possible, and that waste is reduced or eliminated in the software development

4.6 Summary 87

process. Companies need to produce software that is better, faster and cheaper than
their competitors in order to survive in the market place.

The user requirements specify what the customer wants and define what the
software system is required to do, as distinct from how this is to be done. The

requirements are the foundation for the system, and it is essential that they are

correct and reflect the needs of the customer.

Often, the initial requirements for a project arise due to a particular problem that

the business or customer needs to solve. The first step is to determine the scope of

work and the actual requirements for the project, and whether the project is feasible.

The user requirements are determined from discussions with the customer to

determine their actual needs, and they are then refined into the system requirements.

The software design of the system is concerned with the architecture of the

system, as well as activities to describe the algorithms and functions required to

implement the system requirements. It is a creative process concerned with how the

system will be implemented, and it may include hardware as well as the various

software modules and their interfaces.

The software development is concerned with the actual implementation of the

design, and the implementation is in some programming language such as C++ or

Java. The software may be developed internally or it may be outsourced to another

company, or a solution may be purchased off-the-shelf. It is essential that the design

is valid with respect to the requirements, and that the implemented system is valid

with respect to the design.

88 4 Requirements, Design and Development

Configuration Management 5

Key Topics

Configuration Item

Baseline

Configuration Management System

Change Control

Change Control Board

Configuration Management Audits

File Naming Conventions

Version Control

5.1 Introduction

Software configuration management is concerned with identifying the configuration

items of a system; controlling changes to them; and maintaining integrity and

traceability. The configuration items are generally documents in the early part of

the development lifecycle, whereas the focus is on source code control management

and software release management in the later parts of development. Configuration

management involves:

– Identifying what needs to be controlled

– Ensuring those items are accurately defined and documented

– Ensuring that changes are made in a controlled manner

– Ensuring that the correct version of a work product is being used

– Determining the status of a configuration item at any time

– Ensuring adherence to company standards

– Planning builds and releases

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_5,
Springer International Publishing Switzerland 2014

89

It allows the orderly development of software, and it ensures that the impacts of

proposed changes are considered prior to authorization. It ensures that releases are

planned and that only authorized changes to the software are made. The integrity of

the system is maintained and the constituents of the software system and their

version numbers are known at all times.

Effective configuration management allows questions such as in Table 5.1 to be

easily answered.

The symptoms of poor configuration management include corrected defects that

suddenly begin to reappear; difficulty in or failure to locate the latest version of

source code; or failure to determine the source code that corresponds to a software

release. Therefore, it is important to employ sound configuration management

practices to enable high-quality software to be consistently produced. Poor config-

uration management practices lead to quality problems resulting in a loss of the

credibility and reputation of a company. Several symptoms of poor configuration

management practices are listed in Table 5.2.

Configuration management involves identifying the configuration items to be

controlled, and systematically controlling change to them, in order to maintain the

integrity and traceability of the configuration throughout the lifecycle. There is a

need to manage and control changes to documents and source code, including the

project plan, the requirements document, design documents, code, and test plans.

A key concept in configuration management is that of a “baseline”, which is a set
of work products that have been formally reviewed and agreed upon, and serves as
the foundation for future development work.

A baseline can only be changed through a formal change control procedure

which leads to a new baseline. It provides a stable basis for the continuing evolution

of the configuration items, and all approved changes move forward from the current

baseline leading to the creation of a new baseline. The CCB authorizes the release

of baselines, and the content of each baseline is documented. All configuration

items must be approved before they are entered into the released baselines.

Therefore, it is necessary to identify the configuration items that need to be placed

under formal change control, and to maintain a history of the changes made to the

baseline. There are four key parts to software configuration management (Table 5.3).

Table 5.1 Features of good configuration management

Features of good configuration management

What is the correct version of the software module to be updated?

Where can I get a copy of R4.7 of Software System X?

What versions of the Software System X are installed at the various customer sites?

What changes have been introduced in the new release of software (version R4.8 from the previous

release of R4.7)?

What version of the Design document corresponds to software system version R3.5?

What customers use R3.5 of the software system?

Are we certain that no undocumented or unapproved changes have been included in released

versions of the software?

90 5 Configuration Management

A typical software release, e.g., in the telecommunications domain, consists of

incremental development where the software to be released consists of a number of

release builds where each build initially consists of new functionality, and the later

builds consists of fix releases.

Software configuration management is planned for the project and each project

will typically have a build plan which will detail the planned delivery of function-

ality and fix release to the project (Table 5.4).

Each of the R. 1.0.O.k are termed release builds and they consist of functionality

and fixes to problems. The content of each release build is known; i.e., the project

team and manager will target specific functionality and fixes for each build, and the

actual content of the particular release baseline is documented. Each release build

Table 5.2 Symptoms of poor configuration management

Symptoms of poor configuration management

Defects corrected suddenly begin to re-appear

Cannot find latest version of source code

Unable to match source code and object code

Wrong version of software sent to the customer

Wrong code tested

Cannot replicate previously released code

Simultaneous changes to same source component by multiple developers with some changes lost

Table 5.3 Software configuration management activities

Area Description

Configuration

Identification

This requires identifying the configuration items to be controlled, and

implementing a sound configuration management system, including a

repository where documents and source code are placed under controlled

access. It includes a mechanism for releasing documents or code, a naming

convention and version numbering system for documents and code, and

baseline/release planning. The version and status of each configuration

item should be known.

Configuration

Control

This involves tracking and controlling change requests, and controlling

changes to the configuration items. Any changes to the work products are

controlled, and authorized by a change control board or similar mechanism.

Problems or defects reported by the test groups or customer are analysed,

and any changes made are subject to change control. The version of the

work product is known, and the constituents of a particular release are

known and controlled. The previous versions of releases can be recreated

as the source code constituents are fully known.

Configuration

Auditing

This includes audits of the baselines to verify integrity of the baseline and

audits of the configuration management system itself and verification that

standards and procedures are followed. The results of the audits are

communicated to the affected groups and corrective action taken.

Status Accounting This involves data collection and report generation. These reports include

the software baseline status, the summary of changes to the software

baseline, problem report summaries, and change request summaries

5.1 Introduction 91

can be replicated, as the version of source code to create the build is known and the

source code is under control management.

There are various tools employed for software configuration management

activities, and these include well-known tools such as Clearcase, PVCS, Visual

Source Safe (VSS) for source code control management. The PV tracker tool and

Clearquest may be used for tracking defects and change requests. A defect tracking

tool will list all of the open defects against the software, and a defect may require

several change requests to correct the software, as a problem may affect different

parts of the software product as well as different versions of the product, and a

change request may be necessary for each part. The tool will generally link the

change requests to the problem report. The current status of the problem report can

be determined, and the targeted release build for the problem identified.

The CMMI provides guidance on practices to be implemented for sound config-

uration management (Table 5.5).

The CMMI requirements are concerned with establishing a configuration man-

agement system; identifying the work products that need to be subject to change

control; controlling changes to these work products over time; controlling releases

of work products; creating baselines; maintaining the integrity of baselines;

providing accurate configuration data to stakeholders; recording and reporting the

status of configuration items and change requests; and verifying the correctness and

completeness of configuration items with configuration audits. We shall discuss the

key parts of configuration management in the following Sections.

Table 5.4 Build plan Release baseline Contents

R 1.0.0.0 F4, F5, F7

R. 1.0.0.1 F1, F2, F6 + fixes

R. 1.0.0.2 F3 + fixes

R. 1.0.0.3 F8 + fixes (functionality freeze)

R. 1.0.0.4 Fixes

R. 1.0.0.5 Fixes

R. 1.0.0.6 Official release

Table 5.5 CMMI requirements for configuration management

Specific goal Specific practice Description of specific practice/goal

SG 1 Establish baselines

SP 1.1 Identify configuration items

SP 1.2 Establish a configuration management system

SP 1.3 Create or release baselines

SG 2 Track and control changes

SP 2.1 Track change requests

SP 2.2 Control configuration items

SG 3 Establish integrity

SP 3.1 Establish configuration management records

SP 3.2 Perform configuration audits

92 5 Configuration Management

5.2 Configuration Management System

The configuration management system enables the controlled evolution of the

documents and the software modules produced during the project. It includes

– Configuration management planning.

– A document repository with check in/check out features

– A source code repository with check in/check out features

– A configuration manager (may be a part time role)

– File naming convention for documents and source code.

– Project directory structure

– Version Numbering System for documents

– Standard templates for documents

– Facility to create a baseline

– A release procedure

– A group (change control board) to manage changes to baseline

– A change control procedure

– Configuration management audits to verify integrity of baseline

5.2.1 Identify Configuration Items

The configuration items are the work products to be placed under configuration

management control, and they include project documents, source code and data

files. They may also include compilers as well as any supporting tools employed in

the project.

The project documentation will typically include project plans; the business

requirements document; the system specification; the architecture and technical

design documents; the test plans, etc.

The items to be placed under configuration management control are identified

and documented early in the project lifecycle. Each configuration item needs to be

uniquely identified and controlled. This may be done with a naming convention for

the project deliverables and source code, and applying it consistently. For example,

a simple approach is to employ mnemonics labels and version numbers to uniquely

identify project deliverables. For example, a business requirements specification for

project 005 in the Finance business area may be represented simply by:

FIN 005 BRS

5.2.2 Document Control Management

The project documents are stored in a document repository using a configuration

management tool such as PVCS or VSS. For consistency, a standard directory

structure is often employed for projects, as this makes it easier to locate particular

5.2 Configuration Management System 93

configuration items. A single repository may be employed for both documents and

software code, or a separate repository for each.

Clearly, it is undesirable for two individuals to modify the same document at the

same time, and the document repository will include check in/check out procedures.
The document must be checked out prior to its modification, and once it is checked

out it may not be modified by another until it is checked back in. An audit trail of all

modifications made to a particular document is maintained, including who made the

change, the date the change was made, and the rationale for the change.

5.2.2.1 Version Numbering of Documents
A simple version numbering system may be employed to record the versions of

documents: e.g., v0.1, v0.2, v0.3 is often used for draft documents, with version

v1.0 being the first approved version of the document. Each time a document is

modified its version number is incremented, and the document history records the

reasons for modification.

– V0.1 Initial draft of document

– V0.x Revised draft (x> 0)

– V1.0 Approved baseline version

– V1.x Approved minor revision (x> 0)

– Vn.0 Approved major revision (n> 1)

– Vn.x Approved minor revision (x> 0, n >1)

The configuration management system will provide records of the configuration

management activities as well as the status of the configuration items and the

status of the change requests. The revision history of the configuration items will

be maintained.

5.2.3 Source Code Control Management

The source code and data files are stored in a source code repository using a tool

such as PVCS, VSS or Clearcase, and the repository provides an audit trail of all the

changes made to the source code. An item must first be checked out for modifica-

tion, the changes are made, and it is then checked back in to the repository. The

source code management system provides security and control of the configuration

items, and the procedures include:

– Access controls

– Checking in/out configuration items

– Merging and Branching

– Labels

– Reporting

This ensures that the integrity of the work product is preserved, and prevents

more than one person from altering the work product at the same time.

94 5 Configuration Management

5.2.4 Configuration Management Plan

A software configuration management plan is prepared early in the project, and

defines the configuration management activities for the project. It may be a section

of the overall project plan or a separate plan. It will detail the items to be placed under

configuration management control, the standards for naming configuration items, the

version numbering system, as well as version control and release management.1 The

configuration management plan is placed under configuration management control.

The contents of each software release need to be documented as well as

installation and rollback instructions. It will detail the requirements and change

requests implemented, as well as the defects corrected and the version of the new

release. A list will be maintained customer sites of where the release has been

installed. All software releases are tested appropriately prior to their approval. The

CM plan will include:

– Roles and responsibilities

– Configuration Items

– Naming Conventions

– Version Control

– Filing Structure for project

The stakeholders and roles involved are identified and documented in the CM

plan. Often, the role of a software configuration manager is employed, and this may

be a full or part time role2 depending on the size of the organization and projects.

The CM manager ensures that the configuration management activities are carried

out correctly, and will conduct and report the results of the CM audits.

5.3 Change Control

A change request database3 is set up to record requests for changes during the

project. The change requests are documented and considered by the change control

board (CCB). The CCB may just consist of the project manager and the system

owner for small projects. The impacts and risks of the proposed change are

considered, and the CCB rejects or approves the request. The impacts may be on

the schedule and budget, as well technical. It is important to keep change to a

minimum at the later stages of the project in order to reduce risks to quality.

Figure 5.1 describes a simple process for raising a change request; performing an

impact assessment; deciding on whether to approve or reject the change request;

and proceeding with implementation (where applicable).

The results of the CCB review of each change request (including the rationale of

the decision made) will be recorded. Change requests and problem reports for all

1 These may be defined in a Configuration Management procedure and referenced in the CM plan.
2 The project manager may perform the CM manager role for small organizations and projects.
3 This may just be a simple Excel spread sheet or a sophisticated tool.

5.3 Change Control 95

Change Request

Log CR
1. Log in Issue Log

2. Complete Change
Request Form

1. Logged CR
2. CR form completed

Assess Impact of
Change

1. Cost / schedule impacts
2. Technical Impacts

3. Deliverables affected

Impact recorded (on CR
Form)

Approve CR
1. Update CR Form
2. Update Issue Log

Updated
CR Form & Issue Log.

Y

Approve
CR?

No

Closed CR

Close CR
1. Update CR Form
2. Update Issue Log

Implement Changes

Fig. 5.1 Simple process map for change requests

96 5 Configuration Management

configuration items are recorded and analysed, reviewed, approved (or rejected)

and tracked to closure.

A sample configuration management process map is detailed in Fig. 5.2, and it

shows the process for updates to configuration information following an approved

change request. The deliverable is checked out of the repository; modifications are

made and the changes approved; configuration information is updated and the deliv-

erable is checked back into the repository.

Change Approved

Modify deliverable
1. Check out of repository

2. Make Changes
3. Review & update

4. Update document
history

5. Update Version Number

New
Deliverable ?

N

Create deliverable
1. Create deliverable

(using template)
2. Review & update

4. Update document
history

5. Update Version Number
6. Assign Document ID

Y

Created deliverable Modified deliverable

Approve
Deliverable ?

Approve
Deliverable ?

N N

Approved deliverable

Check in deliverable
1. Check into repository

2. Record comments

Checked in deliverable

Fig. 5.2 Simple process map for configuration management

5.3 Change Control 97

5.4 Configuration Management Audits

Configuration management audits are conducted during the project to verify that

the configuration is consistent and complete. Every project should have at least one

configuration audit, and the objective is to verify the completeness and correctness

of the configuration system for the project. The audit will check that the records

correctly identify the configuration, and that the configuration management standards

and procedures have been followed. Table 5.6 presents a sample checklist.

There may also be a librarian role to set up the filing structure for the project, or
the configuration manager may perform this role. The project manager assigns

responsibilities for performing configuration management activities. All involved

in the process receive appropriate training on the process.

5.5 Review Questions

1. What is software configuration management?

2. What is change control?

3. What is a baseline?

4. Explain source code control management.

5. Explain document control management.

6. What is a configuration management audit and explain how it differs from

a standard audit?

7. Describe the role of the configuration manager and librarian.

8. What is a baseline?

Table 5.6 Sample configuration management audit checklist

No. Item to check

1. Is the Directory Structure set up for the project?

2. Are the configuration items identified and listed?

3. Have the latest versions of the templates been used?

4. Is a unique document Id employed for each document?

5. Is the standard version numbering system followed for the project?

6. Are all versions of documents and software modules in the document/source code repository?

7. Is the Configuration Management plan up to date?

8. Are the roles defined in the Configuration Management Plan performing their assigned

responsibilities?

9. Are changes to the approved documents formally controlled?

10. Is the version number of a document incremented following an agreed change to an approved

document?

11. Is there a change control board set up to approve change requests?

12. Is there a record of which releases are installed at the various customer sites?

13. Are all documents/software modules produced by vendors under appropriate configuration

management control?

98 5 Configuration Management

5.6 Summary

Software configuration management is concerned with the orderly development and

evolution of the software. It involves identifying the configuration items that are

subject to change control, controlling changes to them, and maintaining integrity

and traceability. The configuration items are generally documents in the early part

of the development lifecycle, whereas the focus is on source code control manage-

ment and software release management in the later parts of development.

The company standards need to be adhered to, and the correct version of a work

product should be known at all time. There is a need for a document and source code

repository, which has access controls, checking in and checking out procedures; and

labelling of releases.

A project will have a configuration management plan, and the configuration

manager role is responsible for ensuring that the configuration management activities

are carried out correctly. Configuration audits will be conducted to verify that the CM

activities have been carried out correctly.

Configuration management ensures that the impacts of proposed changes are

considered prior to authorization. It ensures that releases are planned and that only

authorized changes to the software are made. The integrity of the system is

maintained, and the constituents of the software system and their version numbers

are known at all times.

5.6 Summary 99

Software Inspections 6

Key Topics

Fagan Inspection

Gilb Inspections

Economic Benefits of Inspection

Inspection Guides

Entry and Exit Criteria

Informal Reviews

Prince 2 Quality Review

Agile Reviews

6.1 Introduction

The objective of software inspections is to build quality into the software product,

rather than adding quality later. There is clear evidence that the cost of correction of

a defect increases the later that it is detected, and it is therefore more cost effective

to build quality in rather than adding it later in the development cycle. Software

inspections are an effective way of doing this.

There are several approaches to software inspections, and these vary in the level

of formality employed. A simple informal approach consists of a walkthrough of

the document or code by an individual other than the author. The meeting usually

takes place at the author’s desk or in a meeting room, and the reviewer and author

discuss the document or code informally.

There are formal software inspection methodologies such as the well-known

Fagan inspection methodology [20] and the Gilb methodology [24]. These metho-

dologies include pre-inspection activity, an inspection meeting, and post-inspection

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_6,
Springer International Publishing Switzerland 2014

101

activity. Several inspection roles are typically employed, including an author role, an
inspector role, a tester role, and a moderator role.

The Fagan inspection methodology was developed by Michael Fagan (Fig. 6.1)

at IBM in the mid-1970s, and the Gilb methodology was developed by Tom Gilb.

The formality of the inspection methodology used by an organization is dependent

on its type of business. The impact of a defect may have a major adverse effect on

the customer’s business: for example, an incorrect one-line change to telecoms

software could create a major telecommunications outage and major disruption to

customers. There may be financial impacts, as the service level agreement details

the service level that will be provided, and the compensation given for service

disruption. Consequently, a telecommunications company needs to ensure that its

software is fit for purpose, and a formal inspection process tends to be employed.

This means that requirement documents, high-level and detailed design documents,

and code are inspected, and generally inspections are explicitly planned in the

project schedule.

An organization will need to devise an inspection process which is suitable for

its particular needs. The level of formality is influenced by its business, its culture, and

the potential impact of a software defect on its customers. It may adopt a formal

approach such as the Fagan or Gilb methodology, or it may devise a less formal

process tailored to its needs. It may not be possible to have all of the participants

present in a room, and participation by conference call or video linkmay be employed.

A formal inspection process may not suit some organization cultures, and an informal

approach such as a structured walkthrough may be the adopted approach.

Software inspections play an important role in building quality into each phase,

and in ensuring that the quality of the delivered product is good. The quality of the

delivered software product is only as good as the quality at the end each phase, and

therefore a phase should be exited only when the desired quality has been achieved.

The effectiveness of an inspection is influenced by the expertise of the inspectors,

adequate preparation, the speed of the inspection, and compliance to the inspection

process. The inspection methodology provides guidelines on the inspection and

Fig. 6.1 Michael Fagan

102 6 Software Inspections

preparation rates for an inspection, and guidelines on the entry and exit criteria for

an inspection.

There are typically at least two roles in the inspection methodology. These

include the author role and the inspector role. Themoderator, tester, and the reader
role may also be present in the methodology.

The next section describes the benefits of software inspections, and this is

followed by a discussion of a simple review methodology where the reviewers

send comments directly to the author. Then, a slightly more formal inspection

process is described, and finally the Fagan inspection process is described in detail.

6.2 Economic Benefits of Software Inspections

A software inspection program has tangible benefits in terms of productivity,

quality, time to market, and customer satisfaction. For example, IBM Houston

employed software inspections for the Space Shuttle missions: 85 % of the defects

were found by inspections and 15 % were found by testing. There were no defects

found on the space missions, and about two million lines of computer software were

employed. IBM, North Harbour in the UK quoted a 9 % increase in productivity

with 93 % of defects found by software inspections.

Software inspections are useful for educating new employees on the product,

and on the standards and procedures used in the organization. They ensure that

knowledge is shared among the employees, rather than understood by just one

individual. Inspections improve software productivity, as less time is spent in

correcting defective software.

The cost of correction of a defect increases the later that it is identified in the

lifecycle. Boehm [7] states that the cost of correction of a requirements defect
identified in the field is over 40 times more expensive than if it were detected at the
requirements phase, and so it is most economical to detect and fix the defect in

phase. The cost of correction of a requirements defect identified at the customer site

includes the cost of correcting the requirements, the cost of design, coding, unit

testing, system testing, and regression testing. It may be necessary to send an

engineer on site to fix the problem, and there may be hidden costs in the negative

perception of the company with a subsequent loss of sales. There is a powerful

argument to identify defects as early as possible, and software inspections are a cost

effective way to achieve this.

There are various estimates of the cost of poor quality (COPQ) in an organiza-

tion (Fig. 1.9), and estimates suggest that it may be 20–40 % of sales. The exact

calculation may be determined by a time sheet accountancy system, which details

the cost of internal and external failure, and the cost of appraisal and prevention.

The return on investment from an introduction of software inspections may be

calculated, and the evidence available suggests that they are a cost-effective way of

improving quality and productivity.

6.2 Economic Benefits of Software Inspections 103

http://dx.doi.org/10.1007/978-3-319-06106-1_1

6.3 Informal Reviews

This type of review involves reviewers sending comments directly to the author,

and there is no actual review meeting. It is not as effective as the Fagan inspection

process, but it helps in identifying some defects in the work products.

The author is responsible for making sure that the review happens, and advises

the participants that comments are due by a certain date. The author analyses the

comments received, makes the required changes, and circulates the document for

approval. The activities involved are described in Table 6.1.

Comment: The informal review process may help to improve quality in an organi-

zation. It is dependent on the participants adequately reviewing the deliverable and
sending comments to the author. The author can only request the reviewer to send
comments. There is no independent monitoring of the author to ensure that the
review actually happens and is effective, and that comments are requested,
received, and implemented.

6.4 Structured Walkthrough

A structured walkthrough is a peer review in which the author of a deliverable (e.g.,

a project document or actual code) brings one or more reviewers through the

deliverable. The objective is to get feedback from the reviewers on the quality of

the document or code, and to familiarize the review audience with the author’s

work. The walkthrough includes several roles namely the review leader (usually
the author), the author, the scribe (may be the author) and the review audience
(Table 6.2).

Table 6.1 Informal review

Step Description

1. The author circulates the deliverable (either physically or electronically) to the review

audience.

2. The author advises the review audience of the due date for comments

3. The due date for comments is typically 1 week or longer.

4. The author checks that all comments have been received by the due date

5. Any reviewers who have not provided feedback are contacted by the author, and comments

are requested.

6. The author analyses all comments and implements the appropriate changes.

7. The deliverable is circulated to the review audience for sign-off.

8. The reviewers signoff (with any final comments) indicating that the document has been

correctly amended by the author

9. The author/project leader stores the comments received

104 6 Software Inspections

6.5 Semi-formal Review Meeting

A semi-formal review is a moderated review meeting chaired by the review leader.

The leader may be the author, and the role involves chairing the meeting and

verifying that the follow-up activity has been completed. The material in this

section is adapted from [46].

The author selects the reviewers and appoints a review leader (who may be the

author). The author distributes the deliverable to be reviewed, and provides a brief

overview where appropriate.

The leader schedules the review meeting which includes the reviewers (with

possible participation via a conference call). The review leader chairs the meeting

and is responsible for keeping the meeting focused and running smoothly, resolving

any conflicts, recording actions and completing the review form.

The review leader checks that all participants, including conference call

participants are present, and that all have done adequate preparation. Each reviewer

is invited to give general comments, as this will determine whether the deliverable

is ready to be reviewed, and whether the review should take place. Participants

who are unable to attend are required to send their comments to the review leader

prior to the review, and the review leader will present these comments at the

meeting. The material is typically reviewed page per page for a document review,

and each reviewer is invited to comment on the current page. Code reviews may

focus on coding standards only or may focus on finding defects in the software

code. The issues noted during the review are recorded, and these may include items

requiring further investigation.

The review outcome is decided at the end of the review (i.e., whether the

deliverable needs a second review). The author then carries out the necessary corre-

ctions and investigation, and this is verified by the review leader. The document is

then circulated to the review audience for sign-off.

Table 6.2 Structured walkthroughs

Step Description

1. The author circulates the deliverable (either physically or electronically) to the review

audience.

2. The author schedules a meeting with the reviewers.

3. The reviewers familiarize themselves with the deliverable.

4. The review leader (usually the author) chairs the meeting.

5. The author brings the review audience through the deliverable, explaining what each section

is aiming to achieve, and requesting comments from them as to its correctness.

6. The scribe (usually the author) records errors, decisions and any action items.

7. A meeting outcome is agreed and the author addresses all agreed items. If the meeting

outcome is that a second review should be held then go to step 1.

8. The deliverable is circulated to reviewers for signoff and the reviewers signoff (with any

final comments) indicating that the deliverable has been correctly amended by the author.

9. The author/project leader stores the comments and sign-offs.

6.5 Semi-formal Review Meeting 105

Comment: The semi-formal review process works well for an organization when

the review leader is not the author. This ensures that the review is conducted
effectively, and that the follow up activity takes place. It may work with the author
acting as review leader provided the author has received the right training on
software inspections, and follows the review process.

The process for semi-formal reviews is summarized in Table 6.3. Figure 6.2

presents a template to record the issues identified during the review.

Table 6.3 Activities for semi-formal review meeting

Phase Review task Roles

Planning Ensure document/code is ready to be reviewed Author

Appoint review leader (may be author) Leader

Select reviewers with appropriate knowledge/experience and assign

roles

Distribution Distribute document/code and other material to reviewers at least

3 days before the meeting

Author

Schedule the meeting Leader

Optional
meeting

Give overview of deliverable to be reviewed Author

Allow reviewers to ask any questions Reviewers

Preparation Read through document/code, marking up issues/questions Reviewers

Mark minor issues on their copy of the document/code

Review

meeting

Review Leaders chairs the meeting Leader

Explains purpose of the review and how it will proceed

Set time limit for meeting

Keep review meeting focused and moving

Review document page by page

Code reviews may focus on standards/defects

Resolve any conflicts or defer as investigates

Note comments/shortcomings on review form

Raise issues – (Do not fix them) Reviewers

Present comments/suggestions/questions

Pass review documents/code with marked up minor issues directly

to the author

Respond to any questions or issues raised Author

Propose outcome of review meeting Leader

Complete review summary form/return to Author

Keep a record of the review form

Post re-view Investigate and resolve any issues or shortcomings identified at the

review

Author

Verify that the author has made the required corrections Leader

106 6 Software Inspections

Deliverable __________ Review Reference ____
Date __________________ Version No. ____
Author ____________ No. of Reviews _____
Reviewers ___
__
Issue Page/Line No. Description Action No

Unresolved Issued / Investigates
Issue Reason unresolved Verified.

Review Outcome (Tick one of the following)
No changes required _______
Verification by Review Leader only _______
Full review required _______
Review incomplete _______

Review Summary (Optional)
#Major Defects_______ # Minor Defects ______ Estimated Rework time ______
Hours Preparation _______ #Hours Review ______ Amount Reviewed _______

Fig. 6.2 Template for semi-formal review

6.5 Semi-formal Review Meeting 107

6.6 Fagan Inspections

The Fagan methodology (Table 6.4) is a well-known software inspection

methodology. It is a seven-step process and includes planning, overview, prepara-

tion, inspection meeting, process improvement, re-work, and follow-up activity.

Its objectives are to identify and remove errors in the work products, and also to

identify any systemic defects in the processes used to create the work products.

The Fagan inspection process stipulates that requirement documents, design

documents, source code and test plans all be formally inspected by experts inde-

pendent of the author, and the inspection is conducted from different viewpoints

such as requirements, design, test, etc.

There are various roles defined in the inspection process, including the

moderator, who chairs the inspection, the reader, who paraphrases the particular

Table 6.4 Overview Fagan inspection process

Activity

Role/

responsibility Objective

Planning Moderator Identify inspectors and roles.

Verify material is ready for inspection.

Distribute inspection material

Book a room for the inspection.

Overview Author Brief participants on material.

Give background information.

Preparation Inspectors Prepare for the meeting and role to be performed. Checklist may be

employed.

Read through the deliverable and mark up issues/questions.

Inspection

meeting

Moderator/

inspectors

The moderator will cancel the inspection if inadequate preparation

is done.

Time limit set for inspection

Moderator keeps meeting focused.

The inspectors perform their roles

Emphasis on finding defects not solutions.

Defects are recorded and classified.

Author responds to any questions.

The duration of the meeting is recorded.

An inspection outcome is agreed

Process

improvement

Inspectors Continuous improvement of development and inspection process.

The causes of major defects are recorded

A root cause analysis is performed to identify any systemic defect

with the software development process or inspection process.

Recommendations are made to the process improvement team.

Re-work Author The author corrects the defects and carries out any necessary

investigations.

Follow-up Moderator/

author

The moderator verifies that the author has resolved the defects and

investigations.

108 6 Software Inspections

deliverable, the author, who is the creator of the deliverable; and the tester, who is

concerned with the testing viewpoint. The inspection process will consider whether

a design is correct with respect to the requirements, and whether the source code is

correct with respect to the design.

The goal is to identify as many defects as possible, and to confirm the correctness

of a particular deliverable. Inspection data are recorded and may be used to assess

the effectiveness of the organization in detecting and preventing defects.

The moderator records the defects identified during the inspection, and the

defects are classified according to their type and severity. Mature organizations

typically enter defects into an inspection database to allow metrics to be generated,

and to enable analysis to be performed. The severity of the defect is recorded, and

the major defects are classified according to the Fagan defect classification scheme.

Some organizations use other classification schemes, e.g., the orthogonal defect
classification scheme (ODC).

The next section describes the Fagan inspection guidelines, and these include

the recommended time to be spent on the various inspection activities. An organi-

zation may need to tailor the Fagan inspection process to suit its needs, and the

recommended times in the Fagan process may need to be adjusted accordingly.

The tailored guidelines will need empirical evidence to confirm that they are

effective in defect detection.

6.6.1 Fagan Inspection Guidelines

The Fagan inspection guidelines are based on studies by Michael Fagan, and

provide recommendations on the time to spend on the various inspection activities.

The goal is to spend sufficient time to enable the inspection to be effective, and

identify as many major defects as possible. Two tables are presented here: the

strict Fagan guidelines as defined by the Fagan methodology (Table 6.5), and more

relaxed guidelines that have been shown to be effective.

The effort involved in a strict adherence to the Fagan guidelines is substantial,

and the tailored guidelines presented here have been employed in the telecoms

domain. Empirical evidence of the effectiveness of the tailoring is not presented.

Tailoring any methodology requires care, and the effectiveness of the tailoring

should be demonstrated by a pilot prior to its deployment in the organization. This

would generally involve quantitative data on the effectiveness of the inspection

and the number of escaped customer reported defects.

It is important to comply with the guidelines once they are deployed in the

organization, and trained moderators and inspectors will ensure awareness and

compliance. Audits may be employed to verify compliance.

The relaxed guidelines detailed in Table 6.6 do not conform to the strict Fagan

inspection methodology.

6.6 Fagan Inspections 109

6.6.2 Inspectors and Roles

There are four inspector roles identified in a Fagan Inspection and they are

described in Table 6.7.

6.6.3 Inspection Entry Criteria

There are explicit entry and exit criteria defined for the various types of inspections.

These criteria need to be satisfied to ensure that the inspection is effective. The

entry criteria for the various inspections are given in Table 6.8.

6.6.4 Preparation

Preparation is a key part of the inspection process, as the inspection will be

ineffective if the inspectors are insufficiently prepared. The moderator is required

to cancel the inspection if any of the inspectors has been unable to do appropriate

preparation.

Table 6.5 Strict Fagan

inspection guidelines
Activity Area Amount/Hr Max/Hr

Preparation time Requirements 4 pages 6 pages

Design 4 pages 6 pages

Code 100 LOC 125 LOC

Test plans 4 pages 6 pages

Inspection time Requirements 4 pages 6 pages

Design 4 pages 6 pages

Code 100 125 LOC

Test plans 4 pages 6 pages

Table 6.6 Tailored

(Relaxed) Fagan inspection

guidelines

Activity Area Amount/Hr Max/Hr

Preparation Requirements 10–15 pages 30 pages

Time Design 10–15 pages 30 pages

Code 300 LOC 500 LOC

Test plans 10–15 pages 30 pages

Inspection Requirements 10–15 pages 30 pages

Time Design 10–15 pages 30 pages

Code 300 LOC 500 LOC

Test plans 10–15 pages 30 pages

110 6 Software Inspections

Table 6.7 Inspector roles

Role Responsibilities

Moderator Manages the inspection process and ensures compliance to the process.

Plans the inspection and chairs the meeting

Keeps the meeting focused and resolves any conflicts

Keeps to the inspection guidelines

Verifies that the deliverables are ready to be inspected

Verifies that the inspectors have done adequate preparation.

Records the defects on the inspection sheet

Verifies that the agreed follow-up work has been completed.

Skilled in the inspection process and appropriately trained.

Skilful, diplomatic, and occasionally forceful.

Reader Paraphrases the deliverable and gives an independent view of it

Actively participates in the inspection.

Author Creator of the work product being inspected

Has an interest in finding all defects present in the deliverable.

Ensures that the work product is ready to be inspected.

Gives an overview to inspectors (if required)

Participates actively during inspection and answers all questions.

Resolves all identified defects and carries out any required investigation.

Tester Role is focused on how the product would be tested

Role often employed in requirements inspection/test plan inspection

The tester participates actively in the inspection.

Table 6.8 Fagan entry criteria

Inspection type Entry criteria Inspectors/roles

Requirements Inspector(s) with sufficient expertise available Moderator/inspectors

Preparation done by inspectors

Correct requirements template used.

Design inspection Requirements inspected and signed off Moderator/inspectors

Correct design template used to produce design

Inspector(s) have sufficient domain knowledge.

Preparation done by inspectors

Code inspection Requirements/design inspected and signed off Moderator/inspectors

Overview provided

Preparation done by inspectors

Code Listing available

Clean compile of source code

Coding standards satisfied

Inspector(s) have sufficient domain knowledge

Test plan inspection Requirements/design signed off Moderator/inspectors

Preparation done by inspectors

Inspector(s) have sufficient domain knowledge

Correct Test Plan template employed

6.6 Fagan Inspections 111

6.6.5 The Inspection Meeting

The inspection meeting (Table 6.9) consists of a formal meeting between the author

and at least one inspector. It is concerned with finding major defects in the

particular deliverable, and verifying the correctness of the inspected material.

The effectiveness of the inspection is influenced by

– The expertise and experience of the inspector(s)

– Preparation done by inspector(s)

– The speed of the inspection

These factors are quite clear since an inexperienced inspector will lack the

appropriate domain knowledge to understand the material in depth. Second, an

inspector who has inadequately prepared will be unable to make a substantial

contribution during the inspection. Third, the inspection is ineffective if it tries to

cover too much material in a short space of time. The moderator will complete the

inspection form (Fig. 6.3) to record the results from the inspection.

The final part of the inspection is concerned with process improvement.

The inspector(s) and author examine the major defects, identify the root causes

of the defect, and determine corrective action to address any systemic defects in the

software process. The moderator is responsible for completing the inspection

summary form and the defect log form, and for entering the inspection data into

the inspection database. The moderator will give any process improvement sugges-

tions directly to the process improvement team.

Table 6.9 Inspection meeting

Inspection

type Purpose Procedure

Requirements Find requirements defects. Confirm

requirements correct and reflect

customer’s needs.

Inspectors review each page

of requirements and raise questions

or concerns. Defects recorded

by Moderator

Design Find defects in design and confirm its

correctness with respect to requirements

Inspectors review each page of design

(compare to requirements) and raise

questions or concerns. Defects recorded

by Moderator

Code Find defects in the code and confirm its

correctness with respect to the design

and requirements.

Inspectors review the code and compare

to requirements/design, and raise

questions or concerns. Defects recorded

by Moderator.

Test Find defects in test cases/test plan.

Confirm test cases sufficient to verify

the design/requirements.

Inspectors review each page of test

plan/spec., compare to requirements/

design and raise questions or concerns.

Defects recorded by moderator.

112 6 Software Inspections

Inspection Type__________ Deliverable ________________ Project______________
Date__________________ Amount Inspected ______ Version No. ____
Author_________________ Moderator________________ No. of Reviews _____
Inspectors ___
#Hours Preparation _________ # Hours Inspection __________ #Hours Rework _____
Summary of Findings: # Majors _____ # Minors ____ # PIs _____ # INVs ____
ODC Summary (Majors): #CHK __#ASS___#ALG___#TIM___#INT__#FUN____#DOC___#BLD___

__
No. Page/Line No. Severity Type Description

Top 3 Root Causes of Major Defects / Process Improvement Actions
1.
2.
3.

Review Outcome
No changes Verification by Moderator Full Review Review Incomplete
Defects per KLOC _____ Defects per page _____ Verification of Rework _____________
Date Verified ________ Inspection Data in Database ____

Fig. 6.3 Template for Fagan inspection

6.6 Fagan Inspections 113

6.6.6 Inspection Exit Criteria

The exit criteria for the various inspections are given in Table 6.10.

6.6.7 Issue Severity

The severity of an issue identified in the Fagan inspection may be classified as

major, minor, a process improvement item, or an item requiring further investiga-

tion. It is classified as major if its non-detection would lead to a defect report being

raised later in the development cycle, whereas a defect report would not be raised

for a minor issue. An issue classified as an investigate item requires further study,

and an issue classified as process improvement is used to improve the software

development process (Table 6.11).

6.6.8 Defect Type

There are several defect-type classification schemes employed in software

inspections. These include the Fagan inspection defect classification (Table 6.12)

and the Orthogonal Defect Classification scheme (Table 6.13).

Table 6.11 Issue severity

Issue severity Definition

Major (M) A defect in the work product that would lead to a customer reported problem

if undetected

Minor (m) A minor issue in the work product

Process (PI) A process improvement suggestion based on analysis of

Improvement (PI) major defects

Investigate (INV) An item to be investigated. It is not clear whether it is a defect or not

Table 6.10 Fagan exit

criteria
Inspection type Exit criteria

Requirements Requirements satisfy the customer’s needs

All requirements defects are corrected

Design inspection Design satisfies the requirements.

All identified defects are corrected

Design satisfies the design standards

Code inspection Code satisfies the design and requirements

Code follows coding standards

Code compiles cleanly

All identified defects corrected

Test plan Test plan sufficient to test the requirements

Test plan follows test standards

All identified defects corrected

114 6 Software Inspections

The Orthogonal Defect Classification (ODC) scheme was developed at IBM [4],

and a defect is classified according to three (orthogonal) viewpoints. Thee defect
trigger is the catalyst that led the defect to manifest itself; the defect type indicates
the change required for correction; and the defect impact indicates the impact of the

defect at the phase in which it was identified. The ODC classification yields a rich

pool of information about the defect, but requires effort to record this information.

The defect type classification is described in Table 6.13.

The defect impact provides a mechanism to relate the impact of the software

defect to customer satisfaction. The defect impact of a defect identified pre-release

to the customer is viewed as the impact of the defect being detected by an end-user,

and for a customer-reported defect, the impact is the actual information reported by

the customer.

The inspection data is typically recorded in the inspection database; this will

enable analysis to be performed on the most common types of defects, and enable

actions to be identified to minimize reoccurrence. The data will enable the phase
containment effectiveness (PCE) metric to be determined, and to determine if the

software is ready for release to the customer.

Table 6.13 Classification of ODC defect types

Defect type Code Definition

Checking CHK Omission or incorrect validation of parameters or data in conditional

statements

Assignment ASN Value incorrectly assigned or nor assigned at all

Algorithm ALG Efficiency or correctness issue in algorithm

Timing TIM Timing/serialization error between modules, shared resources

Interface INT Interface error (error in communications between modules, operating

system, etc.)

Function FUN Omission of significant functionality

Documentation DOC Error in user guides, installation guides or code comments

Build/Merge BLD Error in build process/library system or version control

Miscellaneous MIS None of the above

Table 6.12 Classification of defects in Fagan inspections

Code inspection Type Design inspections Type Requirements Inspections Type

Logic (code) LO Usability UY Product objectives PO

Design DE Requirements RQ Documentation DS

Requirements RQ Logic LO Hardware interface HI

Maintainable MN Systems interface IS Competition analysis CO

Interface IF

Data usage DA Portability PY Function FU

Performance PE Reliability RY Software interface SI

Standards ST Maintainability MN Performance PE

Code CC Error handling EH Reliability RL

Comments Other ОТ Spelling GS

6.6 Fagan Inspections 115

The ODC classification scheme can give early warning on the quality and

reliability of the software, as experience with the ODC classification scheme

will enable an expected profile of defects to be predicted for the various phases.

The expected profile may then be compared to the actual profile, and clearly it is

reasonable to expect problems if the actual defect profile at the system test phase

resembles the defect profile of the unit testing phase, as the unit testing phase is

expected to identify a certain pool of defect types with system testing receiving

higher-quality software with unit testing defects corrected. Consequently, ODC

may be applied to make predictions of product quality and performance.

The project defects are classified according to some category scheme, for

example, the defects may be categorized by the functional area in which they are

identified, or via the ODC classification scheme as in Fig. 6.4. The frequency of

defects per category is identified, and causal analysis employed to identify actions

to prevent reoccurrence. Often the most problematic areas are targeted first (as in

a pareto chart), and an investigation into the particular category is conducted.

The action plans will identify and carry out improvements to existing processes.

6.7 Automated Software Inspections

Static code analysis is the analysis of software code without executing the code.

It is usually performed with automated tools, and the actual analysis done depends

on the sophistication of the tools. Some tools may analyze individual statements or

Fig. 6.4 Sample-defect types in a project (ODC)

116 6 Software Inspections

declarations, whereas others may analyze the whole source code. The objective

of the analysis is to highlight potential coding errors early in the development

lifecycle.

These tools provide automated software inspections, and provide quality assess-

ment reports on the extent to which the standards are satisfied. Many integrated

development environments (IDEs) provide basic functionality for automated code

reviews. These include Microsoft Visual Studio and Eclipse.

The LDRA Testbed Tool automatically determines the complexity of the

source code, and it provides metrics that give an indication of the maintainability

of the code. A useful feature of the LDRA tool is that it gives a visual picture of

system complexity, and it has a re-factoring tool to assist with reducing complexity.

It automatically generates code assessment reports listing all of the files examined,

and provides metrics on the clarity, maintainability and testability of the code.

Compliance to coding standards is important in producing readable code and in

preventing error-prone coding styles. There are several tools available to check

conformance to coding standards including the LDRA TBvision tool, which has

reporting capabilities to show code quality as well as fault detection and avoidance

measures. It includes functionality to allow users to view the results presented

intuitively in various graphs and reports.

6.8 Review Questions

1. What are software inspections?

2. Explain the difference between informal reviews, structured walkthroughs

and formal inspections?

3. What are the benefits of software inspections?

4. Describe the seven steps in the Fagan Inspection process.

5. What is the purpose of entry and exit criteria?

6. What factors affect the effectiveness of a software inspection?

7. Describe the roles involved in a Fagan inspection.

8. Describe the benefits of automated inspections.

6.9 Summary

The objective of software inspections is to build quality into the software product,

and there is clear evidence that the cost of correction of a defect increases the later

in the development cycle in which it is detected. Consequently, there is an eco-

nomic argument to employing software inspections, as it is more cost effective to

build quality in rather than adding it later in the development cycle.

There are several approaches to software inspections, and these vary in the level

of formality employed. A simple informal approach consists of a walkthrough of

the document or code by an individual other than the author. The meeting is

6.9 Summary 117

informal and usually takes place at the author’s desk or in a meeting room, and the

reviewer and author discuss the document or code informally.

There are formal software inspection methodologies such as the well-known

Fagan inspection methodology. This approach includes pre-inspection activity,

an inspection meeting, and post-inspection activity. Several inspection roles are

typically employed, including an author role, an inspector role, a tester role, and a

moderator role.
An organization will need to devise an inspection process which is suitable for

its particular needs. The level of formality is influenced by its business, its culture,

and the potential impact of a software defect on its customers. It may not be

possible to have all of the participants present in a room, and participation by

conference call or video link may be employed. A formal inspection process may

not suit some organization cultures, and an informal approach such as a structured

walkthrough may be the adopted approach.

Software inspections play an important role in building quality into each phase,

and in ensuring that the quality of the delivered product is good. The quality of the

delivered software product is only as good as the quality at the end each phase, and

therefore a phase should be exited only when the desired quality has been achieved.

The effectiveness of an inspection is influenced by the expertise of the inspectors,

adequate preparation, and speed of the inspection, and compliance to the inspection

process. The inspection methodology provides guidelines on the inspection and

preparation rates for an inspection, and guidelines on the entry and exit criteria for

an inspection.

118 6 Software Inspections

Software Testing 7

Key Topics

Test Planning

Test Reporting

Unit Testing

System Testing

Acceptance Testing

Performance Testing

White Box Testing

Black Box Testing

Test Tools

Test Environment

E-commerce Testing

7.1 Introduction

Testing plays a key role in verifying the correctness of software, and confirming

that the requirements are correctly implemented. It is a constructive and destructive

activity in that while on the one hand it aims to verify correctness, on the other hand

it aims to find as many defects as possible. In a mature software company the

majority of defects (e.g., 80 %) will be detected by software inspections, with the

remainder detected by the various forms of testing conducted in the organization.

Software testing provides confidence that the product is ready for release to

potential customers, and the recommendation of the testing department is crucial

in the decision as to whether the software product is ready to be released. The

advice of the test manager highlights any risks associated with the product, and

these are considered prior to its release. The test manager and test department can

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_7,
Springer International Publishing Switzerland 2014

119

be influential in an organization by providing strategic advice on product quality,

and by encouraging organization change to improve the quality of the software

product through the use of best practice in software engineering.

The testers need a detailed understanding of the software requirements to test the

software effectively. Test planning commences at the early stages of the project, and

testers play a role in building quality into the software product as well as verifying its

correctness. The testers typically participate in the review of the requirements, and

thus play an important role in ensuring that the requirements are correct and are

testable. They develop an appropriate testing environment to enable effective testing

to take place, and identify the resources, hardware, and test tools required. The test

plan for the project is documented (this could be part of the project plan), and it

includes the personnel involved, the resources required, the effort required, the

definition of the test environment and the test tools, and the planned schedule. There

is a separate plan for the actual test cases to verify that the requirements have been

implemented correctly, and these test cases include the purpose of the test case, the

inputs and expected outputs, and the test procedure for the particular test case.

The project testing performed includes unit testing, integration, system, regres-

sion, performance, and acceptance testing. The unit testing is performed by the

software developers, and the objective is to verify the correctness of a module. This

type of testing is termed “white box” testing, and is based on knowledge on the

internals of the software module. White box testing involves checking that every

path in a module has been tested, and it involves defining and executing test cases to

ensure code and branch coverage. The objective of “black box” testing is to verify

the functionality of a module or feature or the complete system itself.

Testing is both a constructive activity in that it is verifying the correctness of the

functionality, and it also serves as a destructive activity in that another objective is to

find defects in the software. Test reporting is a key part of the project, as this enables

all project participants to understand the current quality of the software, and know

what needs to be done to ensure that the product is meets the required quality criteria.

The test results are reported regularly throughout the project, and once the tester

discovers a defect, a problem report is opened, and the problem is analysed and

corrected by the software developers. The problem may indicate a genuine defect, a

misunderstanding by the tester, or a request for an enhancement. An independent test

group is more effective than a test group that is directly reporting to the development

manager, as it helps to ensure that quality is not compromised during the inevitable

pressures to make committed delivery dates. A good test group will play a proactive

role in quality improvement, and this may involve participation in the analysis of the

defects identified during testing phase at the end of the project, with the goal of

prevention or minimization of reoccurrence of defects.

The test manager and test team write a test plan for the project, and the plan is

reviewed by independent experts. This ensures that it is of a high quality and that

the test cases are sufficient to confirm the correctness of the requirements. Effective

testing requires sound test planning and execution, and a mature test process in

the organization. Statistics are typically maintained to determine the effectiveness

of the software testing.

120 7 Software Testing

The testing effort is often complicated by real world issues such as late delivery

of the software from the developers. Software development is challenging, and

deadline-driven, and missed deadlines potentially lead to the compression of the

testing cycle, as the project manager may wish to stay with the original schedule.

There are risks associated with shortening the test cycle as it may mean that the

testers are unable to gather sufficient data to make an informed judgment as to

whether the software is ready for release, with the obvious implication that a defect-

laden product may be shipped. Test departments may be understaffed, as manage-

ment may consider additional testers to be expensive and wish to minimize costs.

7.2 Test Process

The quality of the testing is dependent on the maturity of the test process, and a

good test process will include test planning, test case analysis and design, test

execution and test reporting. A simplified test process is sketched in Fig. 7.1 and the

test process will include:

– Test planning and risk management

– Dedicated test environment and test tools

– Test case definition

– Test automation

– Formality in handover to test department

– Test execution

– Test result analysis

– Test reporting

– Measurements of test effectiveness

– Post mortem and test process improvement.

Test planning consists of a documented plan defining the scope of testing to be

performed, the definition of the test environment, the sourcing of any required

hardware or software for the test environment, the estimation of effort and resources

for the various activities, risk management, the deliverables to be produced, the key

milestones, the various types of testing to be performed, the schedule, etc. The test

plan is generally reviewed by the affected parties to ensure its correctness, and that

everyone understands and agrees to their responsibilities. The test planmay be revised

in a controlled manner during the project. It will be described in detail in Sect. 7.3.

The test environment varies according to the type of business and project

requirements. Large organizations may employ dedicated test laboratories, whereas a

single workstation may be sufficient in a small organization. A dedicated test environ-

ment may require significant capital investment, but will pay for itself in reducing the

cost of poor quality by verifying the quality of the software and in identifying defects.

The test environment includes the hardware and software needed to verify the

correctness of the software. It needs to be defined early in the project so that any

required hardware or software may be ordered in time. Tools for simulation of parts

of the system may be required; automated regression and performance test tools

may be required; as well as tools for defect reporting and tracking.

7.2 Test Process 121

The software developers produce a software build under configurationmanagement

control, and the build is verified for integrity to ensure that testing may commence.

There is generally a formal or informal handover of the software to the test department,

and the formal handover generally includes documented criteria that must be satisfied

Fig. 7.1 Simplified test process

122 7 Software Testing

for the handover to take place. The test department must also be ready for testing with

the test cases and test environment prepared.

The various types of testing employed to verify the correctness of the software

are described in Table 7.1.

Good test cases are essential for effective testing, and the test cases need to be

complete in the sense that their successful execution will provide confidence in the

correctness of the software. Hence, the test cases must relate or cover the software

requirements, and earlier in Chap. 4 (Table 4.4) we discussed the concept of a

traceability matrix that maps the requirements to the design and test cases, and

therefore provides confidence that each requirement has a corresponding test case

for verification. The test cases will consist of a format similar to the following:

– Purpose of test case

– Setup required to execute the test case

– Inputs to the test case

– The test procedure

– Expected outputs or results

The test execution will follow the procedure outlined in the test cases, and the

tester will compare the actual results obtained with the expected results. The test

Table 7.1 Types of testing

Test type Description

Unit testing This testing is performed by the software developers, and it verifies the

correctness of the software modules.

Component

testing

This testing is used to verify the correctness of software components, to ensure

that the component is correct and may be reused.

System testing This type of testing is usually carried out by an independent test group to verify

the correctness of the complete system.

Performance

testing

This testing is typically carried out by an independent test group to ensure that

the performance of the system is within the defined limits. It may require tools

to simulate clients and heavy loads, and precise measurements of performance

are made.

Load/stress

testing

This testing is employed to verify that the system performance is within the

defined limits for heavy system loads over long or short periods of time.

Browser

compatibility

This testing is specific to web based applications and verifies that the web site

functions correctly with the supported browsers.

Usability testing This testing verifies that the software is easy to use, and that the look and feel

of the application is good.

Security testing This testing verifies that the confidentiality, integrity and availability

requirements are satisfied

Regression

testing

This testing verifies that the core functionality is preserved following changes

or corrections to the software. Test tools may be employed to increase its

productivity and efficiency.

Test simulation This testing simulates part of the system where the real system currently does

not exist, or where the real live situation is hard to replicate.

Acceptance

testing

This testing carried out by the customer to verify that the software matches the

customer’s expectations prior to acceptance.

7.2 Test Process 123

http://dx.doi.org/10.1007/978-3-319-06106-1_4
http://dx.doi.org/10.1007/978-3-319-06106-1_4

completion status will be passed, failed or blocked (if unable to run at this time).

The test results summary will indicate which test cases could be executed, which

passed, which failed and which test cases could not be executed.

The tester records the test results including detailed information on the passed

and failed tests. This will assist in identifying the precise causes of failure and the

appropriate corrective actions. The developers and tester will agree to open a defect

in the defect control system to track the successful correction of the defect.

The test status (Fig. 7.2) consists of the number of tests planned, the number of

test cases run, the number that have passed, and the number of failed and blocked

tests. The test status is reported regularly to management during the testing cycle.

The test status and test results are analysed and extra resources provided where

necessary to ensure that the product is of high quality with all defects corrected

prior to the acceptance of the product.

Test tools and test automation are used to support the test process, and lead to

improvements in quality, reduced cycle time, and productivity. Tool selection

needs to be performed in a controlled manner, and it is best to identify the

requirements for the tool first, and then to examine a selection of tools to determine

which best meets the requirements for the tool. Tools may be applied to test

management and reporting, test results management, defect management, and to

the various types of testing.

A good test process will maintain measurements to determine its effectiveness,

and an end of testing review is conducted at the end of testing to identify any lessons

Fig. 7.2 Sample test status

124 7 Software Testing

that need to be learned for continual improvement. The test metrics employed will

answer questions such as:

• What is the current quality of the software?

• How stable is the product at this time?

• Is the product ready to be released at this time?

• How good was the quality of the software that was handed over?

• How does the product quality compare to other products?

• How effective was the testing performed on the software?

• How many open problems are there?

• How much testing remains to be done?

7.3 Test Planning

Testing requires good planning and execution to be effective. Testing is a sub-project

of a project and needs to be managed as such, and the IEEE 829 standard includes a

template for test planning. Test planning involves defining the scope of the testing to

be performed; defining the test environment; estimating the effort required to define

the test cases and to perform the testing; identifying the resources needed (including

people, hardware, software, and tools); assigning the resources to the tasks; defining

the schedule; identifying any risks to the schedule or quality and managing them;

tracking progress and taking corrective action; re-planning as appropriate where the

scope of the project has changed; providing test reports to give visibility of the test

status to the full project team, including the number of test planned, executed, passed,

blocked and failed; re-testing corrections to failed or blocked test cases; taking

corrective action to ensure quality and schedule are achieved; and providing a final

test report with a recommendation to go to acceptance testing. Test management

involves:

• Identify the scope of testing to be done

• Determine types of testing to be performed

• Estimates of time, resources, people, hardware, software and tools

• Determine how test progress and results will be communicated

• Define how test defects will be logged and reported

• Provide resources needed

• Provision of test environment

• Assignment of people to tasks

• Define the schedule

• Identify and manage risks

• Track progress and take corrective action

• Provide regular test status of passed, blocked, failed tests

• Re-plan if scope of the project changes

• Conduct post mortem to learn any lessons

The scope of the testing is dependent on the requirements of the proposed

system. The estimate for the various activities is determined and is used in the

schedule. Table 7.2 shows a simple test schedule for a small project, and the test

7.3 Test Planning 125

manager will often employ Microsoft Project for planning and tracking for larger

projects (e.g., Fig. 3.2). The activities in the test plan are tracked and updated to

record the tasks that have been completed, and dates are re-scheduled as appropri-

ate. Testing is a key sub-project of the main project, and the project manager will

track the key test milestones and will maintain close contact with the test manager.

It is essential to track the schedule, and to record the actual and estimated

completion dates, and to reschedule accordingly. It is prudent to consider risk

management early in test planning, and to identify risks that could potentially

materialize during the testing project, estimate the probability and impact if a risk

does materialize, and identify (as far as is practical) actions to mitigate the risk or a

contingency plan to address the risk if it materialises.

7.4 Test Case Design and Definition

Several types of testing that may be performed were described in Table 7.2, and

there is often a separate test plan for Unit, System and UAT testing. The unit tests

are based on the software design; the system tests are based on the system

requirements (or functional requirements specification); and the UAT tests are

based on the business (or user) requirements.

Each of these test plans contains test scripts (e.g., the Unit Test Plan contains the

Unit Test scripts and so on), and the test scripts are traceable to the design (for the

Unit Tests), and for the system requirements (for the System Test scripts). The unit

tests are more focused on white box testing whereas the system test and UAT tests

are focused on black box testing.

Each test script contains the objective of the test script and the procedure by

which the test is carried out. Each test script includes:

– Test Case ID

– Test Type (e.g., Unit, System, UAT)

– Objective/Description

– Test Script Steps

– Expected Results

Table 7.2 Sample test schedule

Activity Resource name(s) Start date End/Re-plan date Comments

Review requirements Test team 15.02.2013 16.02.2013 Complete

Project test plan & review Test manager 15.02.2013 28.02.2013 Complete

System test plan/review Tester 1 01.03.2013 22.03.2013 Complete

Performance test plan/review Tester 2 15.03.2013 31.03.2013 Complete

Regression plan/review Tester 1 01.03.2013 15.03.2013 Complete

Set up test environment Tester 1 15.03.2013 31.03.2013 Complete

System testing Tester 1 01.04.2013 31.05.2013 In progress

Performance testing Tester 2 15.04.2013 07.05.2013 In progress

Regression testing Tester 2 07.05.2013 31.05.2013 In progress

Test reporting Test manager 01.04.2013 31.05.2013 In progress

126 7 Software Testing

http://dx.doi.org/10.1007/978-3-319-06106-1_3

– Actual Results

– Tested By

Regression testing involves carrying out a subset of the defined tests, and are

carried out to verify that the core functionality remains in place following changes

to the system.

7.5 Test Reporting and Project Sign-off

Testing is a sub-project of the project, and the test manager will report progress

regularly during the project. The report provides the current status of testing for the

project and includes:

• Quality Status (including tests run, passed and blocked).

• Risks and issues

• Status of Test Schedule

• Deliverables planned (next period)

The test manager discusses the test status with management, and highlights the

key risks and issues to be dealt with. The test manager may require management

support to deal with these.

The test status is important in judging whether the software is ready to be

released to the customer. Various quality metrics may be employed to measure

the quality of the software, and the key risks and issues are considered. The test

manager will make a recommendation to release or not based on the actual test

status. One useful metrics is the cumulative arrival rate (Fig. 7.3) which gives an

indication of the stability of the product.

The slope of the curve is initially steep as defects are detected; as testing proceeds

and defects are corrected and retested, the slope of the curves levels off, and indicates

that the software has stabilized and is potentially ready to be released to the customer.

Fig. 7.3 Cumulative defects

7.5 Test Reporting and Project Sign-off 127

However, it is important not to rush to conclusions based on an individual

measurement. For example, the chart in Fig. 7.3 could possibly indicate that testing

halted on May 13th with no testing since then, and that would explain why the

defect arrival rate per week is zero. Careful investigation and analysis needs to be

done before the interpretation of a measurement is made, and usually several

measurements rather than one are employed in sound decision making.

7.6 Testing and Quality Improvement

Testing is an essential part of the software development process, and the

recommendation of the test manager is considered in the decision to release the

software product. Decision making is based on objective facts, and measurements

are employed to assess the quality of the software. The cumulative test arrival rate

(Fig. 7.3) gives an indication of the stability of the software product, and may be

used in conjunction with other measures to decide on whether it is appropriate to

release the software, or whether further testing should be performed.

Test defects are valuable in the sense that they enable an organization an

opportunity to improve its software development process, to prevent them from

reoccurring in the future. A mature development organization will perform internal

reviews of requirements, design, and code prior to testing. The effectiveness of the

internal review process and the test process may be seen in the phase containment

metric (PCE).

Figure 7.4 indicates that the project had a phase containment effectiveness of

approximately 54 %. That is, the developers identified 54 % of the defects, the

system testing phase identified approximately 23 % of the defects, acceptance

testing identified approximately 14 % of the defects, and the customer identified

approximately 9 % of the defects. Many organizations set goals with respect to the

Fig. 7.4 Phase containment effectiveness metric

128 7 Software Testing

phase containment effectiveness of their software. For example, a mature organi-

zation might aim for their software development department to have a phase defect

effectiveness goal of 80 %. This means that 80 % of the defects should be found by

software inspections.

The PCE chart measures the current phase containment effectiveness, and

improvement trends of the PCE may be tracked over time. There is no point in

setting a goal for a particular group or area unless there is a clear mechanism to

achieve the goal. Thus to achieve a goal of 80 % phase containment effectiveness

the organization will need to implement a formal software inspection methodology

as described in the previous chapter. Training on inspections will be required and

the effectiveness of software inspections monitored and improved.

A mature organization will aim to have 0 % of defects reported by the customer,

and this goal requires improvements in its software inspection methodology and its

software testing methodology. Measurements provide a way to verify that the

improvements have been successful. Each defect is potentially valuable as it, in effect,

enables the organization to identify weaknesses in the software process and to target

improvements.

Escaped customer defects offer an opportunity to improve the testing process, as

an escaped customer defect indicates a weakness in the test process. These are

categorized, causal analysis is performed, and corrective actions to improve the

testing process are identified. This helps to prevent a reoccurrence of the defects.

Thus software testing plays an important role is quality improvement.

7.7 Traceability of Requirements

The objective of requirement traceability is to verify and validate that all of the

requirements for the project have been implemented and tested. One way to do this

would be to examine each requirement number and to go through every part of the

design document to find any reference to the particular requirement number, and

similarly to go through the test plan and find any reference to the requirement

number. This would demonstrate that the particular requirement number has been

implemented and tested.

A more effective mechanism to do this was discussed in Chap. 4, and this

involves using a trace matrix (Table 4.4) which may be a separate document or

part of the design or test documents. The idea is that a mapping between the

requirement numbers and sections of the design or test plan is defined, and this

provides confidence that all of the requirements have been implemented and tested.

Requirements may be numbered or may be detailed in individual sections of the

requirements document. A requirement number may map on to several sections of

the design or to several test cases, i.e., the mapping may be one to many. Traceabil-

ity provides confidence that each requirement number has been implemented in the

software design and tested via the test plan.

7.7 Traceability of Requirements 129

http://dx.doi.org/10.1007/978-3-319-06106-1_4
http://dx.doi.org/10.1007/978-3-319-06106-1_4

• The trace matrix provides the mapping between each requirement number

(or sections), and the associated test cases to verify that it has been correctly

implemented.

• This mapping will typically be one to many (i.e., for a particular requirement,

several test cases may be employed to demonstrate correctness).

7.8 Test Tools

Test tools are employed to support the test process, and are used to enhance quality,

reduce cycle time, and increase productivity. Tool selection needs to be planned, and

the evaluation plan includes the activities involved in the evaluation, the estimated

and actual effort to complete, and the individual carrying out the activity. The

evaluation and selection of a particular tool involves identifying the requirements

for the proposed tool, and identifying tools to evaluate against the requirements. Each

tool is then evaluated to yield a tool evaluation profile, and the results are analysed to

enable an informed decision to be made. This is described in more detail in Chap. 16.

There are various tools to support testing such as test planning and management

tools; defect tracking tools; regression test automation tools; performance tools; and

so on. There are tools available from various vendors such as Compuware, Software

Research, Inc., McCabe and Associates, and IBM Rational.

7.8.1 Test Management Tools

There are various test management tools available (e.g., the Quality Center tool

from HP), and the main features of such a tool are:

• Management of entire testing process

• Test planning

• Support for building and recording test scripts

• Test status and reporting

• Graphs for presentation

• Defect control system

• Support for many testers

• Support for large volume of test data

• Audit trail proof that testing has been done

• Test automation

• Support for various types of testing

The Quality Center™ tool standardizes and manages the entire test and quality

process, and is a web-based system for automated software quality management

and testing. It employs dashboard technology to give visibility into the process.

It provides a consistent repeatable process for gathering requirements; planning

and scheduling tests; analyzing results; and managing defects. It supports a high-

level of collaboration and communication between the stakeholders. It allows

the business analysts to define the application requirements and testing objectives.

130 7 Software Testing

http://dx.doi.org/10.1007/978-3-319-06106-1_16

The test managers and testers may then design test plans, test cases and automated

scripts. The testers then run the manual and automated tests, report results and log

the defects. The developers review and correct the logged defects. Project and test

managers can create status reports and manage test resources. Test and product

managers decide objectively whether the application is ready to be released.

7.8.2 Miscellaneous Testing Tools

There is a wide collection of test tools to support activities such as static testing,

unit testing, system testing, performance testing, and regression testing.

Code coverage tools are useful for unit testing, and, for example, the LDRA

Testbed is able to analyse source files to report on areas of code that were not

executed at run time, thereby facilitating the identification of missing test data.

Code coverage tools are useful in identifying the sources of errors as they will

typically show the code areas that were executed through textual or graphic reports.

Regression testing involves re-running existing test cases to verify that the

software remains correct following the changes made. It is often automated with

capture and playback tools, and the Winrunner tool which was developed by

Mercury (now part of HP) captures, verifies and replays user interactions, and

allows regression testing to be automated. The Winrunner tool has been replaced

by HP Unified Functional Testing Software. Effort is required to set up the tests for

automation, but the payback is improvements in quality and productivity.

The purpose of performance testing is to verify that system performance is

within the defined limits, and it requires measures on the server side, network

side, and client side (e.g., processor speed, disk space used, memory used, etc.).

It includes load testing and stress testing. . Mercury’s LoadRunner tool allows the

software application to be tested with hundreds or thousands of concurrent users to

determine its performance under heavy loads. It allows the scaleability of the

software system to be tested to determine if can support the predicted growth.

The decision on whether to automate and what to automate often involves a test

process improvement team. It tends to be difficult for a small organization to make a

major investment in test tools (especially if the projects are small). However, larger

organizations will require a more sophisticated testing process to ensure that high-

quality software is consistently produced.

7.9 E-commerce Testing

There has been an explosive growth in electronic commerce, and web site quality

and performance is a key concern. A web site is a software application and so

standard software engineering principles are employed to verify the quality of a

web site. E-commerce applications are characterized by:

• Distributed system with millions of servers and billions of participants

• Often rapid application development is required

• Design a little, implement a little, and test a little

7.9 E-commerce Testing 131

• Rapidly changing technologies

• Users may be unknown

• Browsers may be unknown

• High availability requirements (24 *7 * 365)

• Look and feel of the web site is highly important

• Performance may be un-predictable

• Security threats may be from anywhere

The standardwaterfall lifecyclemodel is rarely employed for the front end of aweb

application, and instead RAD/JAD/Agile models are usually employed. The use of

lightweight development methodologies does not mean that anything goes in software

development, and similar project documentation is produced (except that the chrono-

logical sequence of delivery of the documentation is more flexible). Joint application

development allows early user feedback to be received on the look and feel and

correctness of the application, and the method of design a little, implement a little,

and test a little is valid for web development. The various types of web testing include:

• Static testing

• Unit testing

• Functional Testing

• Browser compatibility testing

• Usability testing

• Security testing

• Load/performance/stress testing

• Availability testing

• Post deployment testing

Static testing generally involves inspections and reviews of documentation. The

purpose of static testing of web sites is to check the content of the web pages for

accuracy, consistency, correctness, and usability, and also to identify any syntax

errors or anomalies in the HTML. There are tools available (e.g., NetMechanic) for

statically checking the HTML for syntax correctness.

The purpose of unit testing is to verify that the content of the web pages

correspond to the design, that the content is correct, that all the links are valid,

and that the web navigation operates correctly.

The purpose of functional testing is to verify that the functional requirements are

satisfied. It may be quite complex as ecommerce applications may involve product

catalogue searches, order processing, credit checking and payment processing, and

the application may liaise with legacy systems. Also, testing of cookies, whether

enabled or disabled, needs to be considered.

The purpose of browser compatibility testing is to verify that the web browsers

that are to be supported are actually supported. The purpose of usability testing is to

verify that the look and feel of the application is good, and that web performance

(loading web pages, graphics, etc.) is good. There are automated browsing tools

which go through all of the links on a page, attempt to load each link, and produce a

report including the timing for loading an object or page. Usability needs to be

considered early in design, and is important in GUI applications.

132 7 Software Testing

The purpose of security testing is to ensure that the web site is secure. The

purpose of load, performance and stress testing is to ensure that the performance of

the system is within the defined parameters.

The purpose of post-deployment testing is to ensure that web site performance

remains good, and thismay be done as part of a service level agreement (SLA). A SLA

typically includes a penalty clause if the availability of the system or its performance

falls below defined parameters. Consequently, it is important to identify performance

and availability issues early before they become a problem. Thus post-deployment

testing includes monitoring of web site availability, performance, and security, and

taking corrective action. Ecommerce sites operate 24 h a day for 365 days a year, and

major financial loss is incurred in the case of a major outage.

7.10 Review Questions

1. Describe the main activities in test planning.

2. What does the test environment consist of? When should it be set up?

3. What are the benefits of traceability of the requirements to the test cases?

4. Describe the various types of testing that may be performed.

5. Investigate available test tools to support testing? What areas of testing do

they support and what are their benefits?

6. Describe an effective way to evaluate and select a test tool.

7. What are the characteristics of e-commerce testing that make it unique

from other domains.

7.11 Summary

This chapter considered software testing in detail and discussed how testing may be

used to verify that the software is of a high quality and fit to be released to potential

customers. Testing is both a constructive and destructive activity, in that while on

the one hand it aims to verify correctness, on the other hand it aims to find as many

defects as possible.

Various test activities were discussed including test planning, the test environ-

ment setup, test case definition, test execution, defect reporting, and test manage-

ment and reporting.

Various types of testing were discussed including black and white box testing,

unit and integration testing, system testing, performance testing, security and

usability testing. Testing in an e-commerce environment was considered. The

unit testing is performed by the software developers, and the objective is to verify

the correctness of a module.

7.11 Summary 133

Test reporting enables all project participants to understand the current quality of

the software, and are aware of what needs to be done to ensure that the product is

meets the required quality criteria.

Various tools to support the testing process were discussed, and a methodology

to assist in the selection and evaluation of tools was considered.

Metrics to provide visibility into progress with the testing and the quality of the

software were discussed, and also the role of testing in promoting quality improve-

ment was discussed.

The testing effort is often complicated by real world issues such as late delivery

of the software from the developers. This may lead to the compression of the testing

cycle, as the project manager may wish to stay with the original schedule.

134 7 Software Testing

Supplier Selection and Management 8

Key Topics

Request for Proposal

Supplier Evaluation

Formal Agreement

Statement of Work

Service Level Agreement

Escrow

8.1 Introduction

Supplier selection and management is concerned with the selection and management

of a third-party software supplier. Many large projects involve total or partial out-

sourcing of the software development, and it is therefore essential to select a supplier

who is capable of delivering high-quality and reliable software on time and on budget.

This means that the process for the selection of the supplier needs to be rigorous,

and that the capability of the supplier is clearly understood, as well as identifying

any risks associated with the supplier. The selection is based on objective criteria

such as the ability to deliver the required solution, and while cost is an important

criterion it is just one among several other important factors.

Once the selection is finalised a legal agreement is drawn up which usually

includes the terms and condition of the contract as well as a statement of work

(which details the work to be carried out, the deliverables to be produced, when they

will be produced, the personnel involved and their roles and responsibilities, and the

standards to be followed). The supplier then commences the defined work, and is

appropriately managed for the duration of the contract. The activities listed in

Table 8.1 are generally employed in supplier selection and management.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_8,
Springer International Publishing Switzerland 2014

135

8.2 Planning and Requirements

The potential acquisition of software arises as part of a make-or-buy analysis at

project initiation. The decision is whether the project team should (or has the

competence to) develop a particular software system (or component of it), or whether

there is a need to outsource (or purchase off-the-shelf) the required software.

The supplied software may be the complete solution to the project’s requirements,

or it may need to be integrated with other software produced for the project. The

following tasks are involved:

– The requirements are defined (these may be a subset of the overall business

requirements)

– The solution may be an available in an off-the-shelf software package (with

configuration needed to meet the requirements)

Table 8.1 Supplier selection and management

Activity Description

Planning and

requirements

This involves defining the approach to the procurement. It involves:

Defining the procurement requirements

Forming the evaluation team to rate each supplier against objective

criteria.

Identify suppliers This involves identifying suppliers and may involve research,

recommendations from colleagues or previous working relations. Usually

three to five potential suppliers will be identified.

Prepare and issue RFP This involves the preparation and issuing of the Request for Proposal

(RFP) to potential suppliers. The RFP may include the evaluation criteria

and preliminary legal agreement.

Evaluate proposals The received proposals are evaluated and a short-list of the suppliers

invited to present.

Select supplier Each supplier makes a presentation followed by a Q&A session.

The evaluation criteria are completed for each supplier and reference sites

checked (as appropriate). The decision on the preferred supplier is made.

Define supplier

agreement

A formal agreement is made with the supplier. This may include

Negotiations with the supplier/involvement with Legal Department.

Agreement may vary (Statement of Work, Service Level Agreement,

Escrow, etc.)

Formal Agreement signed by both parties

Unsuccessful parties informed

Purchase Order raised

Project monitoring

and control

This is concerned with monitoring and control of the supplier. It includes

monitoring progress project risks, milestones and issues and change

control management

Acceptance This is concerned with the acceptance of the software and involves

acceptance testing to ensure that the supplied software is fit for use.

Rollout This is concerned with the deployment of the software and support/

maintenance activities.

136 8 Supplier Selection and Management

– The solution may be to outsource all or part of the software development

– The solution may be a combination of the above.

Once the decision has been made to outsource or purchase an off-the-shelf

solution an evaluation team is formed to identify potential suppliers, and evaluation

criteria is defined to enable each supplier’s solution to be objectively rated. A plan

will be prepared by the project manager detailing the approach to procurement,

defining how the evaluation will be conducted, defining the members of the

evaluation team and their roles and responsibilities, and preparing a schedule of

the procurement activities to be carried out.

8.3 Identifying Suppliers

A list of potential suppliers may be determined in various ways including:

– Previous working relationship with suppliers

– Research via the Internet/Gartner

– Recommendations from colleagues or another company

– Advertisements/other

A previous working relationship with a supplier provides useful information

on the capability of the supplier, and whether it would be a suitable candidate for

the work to be done. Companies will often maintain a list of preferred suppliers, and

these are the suppliers that have worked previously with the company, and whose

capability is known. The risks with a supplier on the preferred supplier list are

generally less than those of an unknown supplier. If the experience of working with

the supplier is poor, then the supplier may be removed from the preferred supplier list.

For public procurement there may be additional requirements to ensure fairness

in the procurement process, and often these public contracts need to be more widely

advertised to allow all interested parties the opportunity to make a proposal to

provide the product or service.

The list of candidate suppliers may potentially be quite large, and so shortlisting

may be employed to reduce the list to a more manageable size of around five

candidate suppliers.

8.4 Prepare and Issue RFP

The Request for Proposal (RFP) is prepared and issued to the short-listed suppliers,

and the suppliers are required to complete a proposal detailing the solution that they

will provide, as well as the associated costs, by the closing date. The proposal will

need to detail the specifics of the supplier’s solution, and it needs to show how the

supplier plans to implement the requirements.

The RFP details the requirements for the software, and must contain sufficient

detail to allow the candidate supplier to provide a complete and accurate response.

The completed proposal will include technical and financial information, and this

will allow a rigorous evaluation of each received proposal to be carried out.

8.4 Prepare and Issue RFP 137

The RFP may include the criteria defined to evaluate the supplier, and often

weightings are employed to reflect the importance of individual criteria. The

evaluation criteria may include several categories such as:

– Functional (related to business requirements)

– Technology (related to the technologies/non-functional requirements).

– Supplier capability and maturity

– Delivery approach

– Overall Cost

Once the proposals have been received further shortlisting may take place to

limit the formal evaluation to around three suppliers.

8.5 Evaluate Proposals and Select Supplier

The evaluation team will evaluate all received proposals using an evaluation spread

sheet, and the results are employed to produce a short list of around three suppliers.

The short-listed suppliers are then invited to make a presentation to the evalua-

tion team, and this allows the team to question each supplier in detail to gain a better

understanding of the solution that they are offering, and any risks associated with

the supplier and their proposed solution.

Following the presentations and Q&A sessions the evaluation team will follow

up with checks on reference sites for each supplier. The evaluation spread sheet is

updated with all the information gained from the presentations, the reference site

checks, and the risks associated with individual suppliers.

Finally, an evaluation report is prepared to give a summary of the evaluation,

and this includes the recommendation of the preferred supplier. The project board

then makes a decision to accept the recommendation, select an alternate supplier, or

restart the procurement process.

8.6 Formal Agreement

The preferred supplier is informed on the outcome of the evaluation and negotia-

tions on a formal legal agreement commences. The agreement will need to be

signed by both parties, and may (depending on the type of agreement) include:

– Legal Contract

– Statement of Work

– Implementation Plan

– Training Plan

– User Guides and Manuals

– Customer Support to be provided

– Service Level Agreement

– Escrow Agreement

– Warranty Period

138 8 Supplier Selection and Management

The statement of work (SOW) is employed in bespoke software development,

and it details the work to be carried out, the activities involved, the deliverables to

be produced, the personnel involved and their roles and responsibilities.

A service level agreement (SLA) is an agreement between the customer and

service provider which specifies the service that the customer will receive as well as

the response time to customer issues and problems. It will also detail the penalties

should the service performance fall below the defined levels.

An Escrow agreement is an agreement made between two parties where an

independent trusted third party acts as an intermediary between both parties, and

receives money from one and sends it to the other party when contractual obliga-

tions are satisfied. Under an Escrow agreement documents and source code may

also be held by the trusted third party.

8.7 Managing the Supplier

The activities involved in the management of the supplier are similar to the

discussion on project management in Chap. 3. The supplier may be based in a

different physical location (possibly in another country), and so regular communi-

cation is essential for the duration of the contract. The project manager is respon-

sible for managing the supplier, and will typically communicate with the supplier

on a daily basis. The supplier will send regular status reports detailing progress

made as well as any risks and issues. The activities involved include:

– Managing schedule, effort and budget.

– Monitoring progress, project issues and risks

– Managing risks and issues

– Managing changes to the scope of the project

– Obtaining weekly progress reports from the supplier.

– Managing project milestones

– Managing quality

– Reviewing the supplier’s work

– Performing audits of the project

– Monitoring test results and correction of defects.

– Acceptance testing of the delivered software

The project manager needs to manage the risks associated with the supplier

(e.g., supplier delivering late, supplier delivering poor quality, and so on).

8.8 Acceptance of Software

This activity is concerned with acceptance testing to ensure that the software

developed by the supplier is fit for purpose. The supplier software may only be a

part of the system and may need to be integrated with other software. The accep-

tance testing involves:

– Preparation of acceptance test cases (this is the acceptance criteria)

– Planning and scheduling acceptance testing

8.8 Acceptance of Software 139

http://dx.doi.org/10.1007/978-3-319-06106-1_3

– Setting up the Test Environment

– Execution of test cases (UAT testing) to verify acceptance criteria is satisfied.

– Test Reporting

– Communication of Defects to Supplier

– Correction of the defects by Supplier

– Re-testing and Acceptance of Software

The project manager will communicate any defects with the software to the

supplier, and the supplier makes the required corrections and modifications to the

software. Re-testing then takes place and once all acceptance tests have success-

fully passed the software is accepted.

8.9 Rollout

This activity is concerned with the rollout of the software at the customer site, and

the handover to the support and maintenance team. It involves:

– Deployment of the software at customer site.

– Provision of training to staff.

– Handover to the Support and Maintenance Team

8.10 Review Questions

1. What are the main activities in supplier selection and management?

2. What factors would lead an organization to seek a supplier rather than

developing a software solution in-house?

3. What are the benefits of out-sourcing?

4. Describe how a supplier should be managed.

5. What is a service level agreement?

6. Describe the purpose of a statement of work?

7. What is an Escrow agreement?

8.11 Summary

Supplier selection and management is concerned with the selection and manage-

ment of a third-party software supplier. Many large projects often involve total or

partial outsourcing of the software development, and therefore it is essential to

select a supplier who is capable of delivering high-quality and reliable software on

time and on budget.

This means that the process for the selection of the supplier needs to be rigorous,

and that the capability of the supplier is clearly understood, as well as any risks.

140 8 Supplier Selection and Management

The selection is based on objective criteria, and cost is one important criterion but it

is one among several other important factors.

Once the selection is finalised a legal agreement is drawn up (which usually

includes the terms and condition of the contract as well as a statement of work

which details the deliverables to be produced, when they will be produced, and the

standards to be followed). The supplier then commences the defined work and is

appropriately managed.

The project manager is responsible for managing the supplier and this involves

communicating with the supplier on a daily basis and managing issues and risks.

The software is subject to acceptance testing before it is accepted from the supplier.

8.11 Summary 141

Software Quality Assurance 9

Key Topics

Auditor

Audit Planning

Audit Meeting

Audit Reporting

Audit Actions

Tracking Actions

Audit Escalation

SQA Team

Independence of Auditor

Training

9.1 Introduction

The purpose of software quality assurance is to provide visibility to management on

the processes being followed and the work products being produced in the organi-

zation. It is a systematic enquiry into the way that things are done in the organi-

zation, and involves conducting audits of projects, suppliers and departments.

It provides:

• Visibility into the processes and standards in use in the organization.

• Visibility into the extent of compliance to the defined processes and standards.

• Visibility into the fitness for use of the work products produced

• Visibility into the effectiveness of the defined processes.

Software quality assurance involves planning and conducting audits; reporting

the results to the affected groups; tracking the assigned audit actions to completion;

and conducting follow up audits, as appropriate. It is generally conducted by the

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_9,
Springer International Publishing Switzerland 2014

143

SQA group,1 and this group is independent of the groups being audited. The

activities involved are given in Table 9.1.

All involved in the audit process need to receive appropriate training. This

includes the participants in the audit who receive appropriate orientation; the auditor

needs to be trained in interview techniques including asking open and closed

questions; effective documentation skills to record the results; and to deal with any

conflicts that might arise during an audit.2

The flow of activities in a typical audit process is sketched in Fig. 9.1, and they

are described in more detail in the following sections.

Table 9.1 Auditing activities

Activity Description

Audit planning Select projects/areas to be audited during period.

Agree audit dates with affected groups

Agree scope of Audit & advise what needs to be brought to the meeting.

Book room & send invitation to the attendees.

Prepare/update the Audit Schedule.

Audit meeting Ask attendees as to their specific role in the project, the activities performed

& determine the extent to which the process is followed.

Employ an Audit Checklist as an aid

Review agreed documentation.

Determine if processes are appropriately followed

Audit reporting Revise notes from the Audit Meeting and review any required additional

documents.

Prepare draft audit report, detail audit actions, and obtain feedback to ensure

accuracy.

Agree closure dates of the audit actions.

Circulate approved report to attendees/management.

Track actions Track audit actions to closure.

Record the audit action status

Escalation (as appropriate) to resolve open actions

Audit closure Once all actions are resolved the audit is closed.

1 This group may vary from a team of auditors in a large organization to a part-time role in a small

organization.
2 The auditor may face a situation where one or more individuals become defensive, and will need

to reassure individuals that the objective of the audit is not to find fault with individuals, rather the

objective is to fix a defective process. The culture of an organization has an influence on how open

individuals will be during an audit (for example if there is a blame culture in the organization

rather than an emphasis on fixing the process).

144 9 Software Quality Assurance

Audit schedule

Plan Audit
1. Select areas to audit

2. Advise attendees
3. Arrange logistics

4. Update audit schedule

1. Updated audit schedule
2. Attendees invited
3. Logistics dealt with

Conduct audit
1. Interview attendees /

roles
2. Review documentation
3. Determine extent to

which process is followed
4. Identify issues to be

addressed

Draft audit report / issues

Audit Reporting
1. Circulate audit report

2. Update Audit Schedule

Updated Audit Actions

Y

Approve audit
report ?

No

Track Actions
1. Monitor closure of

actions
2. Update Audit Actions

Approved audit report / issues

Audit Actions
complete?

Y
N

Escalate
1. Escalate to management
2. Details of Noncompliance

Escalate
action(s)

Close Audit

Y

N

Fig. 9.1 Sample audit

process

9.1 Introduction 145

9.2 Audit Planning

Organizations vary in size and complexity and so the planning required for audits

will vary. In a large organization the quality manager or auditor is responsible for

planning and scheduling the audits. In a small organization the quality assurance

activities may be performed by a part time auditor who has to plan and schedule

the audits.

A representative sample of projects/areas in the organization will be audited,

and the number and types of audits employed will depend on the current maturity of

the organization. Mature organizations with a strong process culture will require

fewer audits, whereas immature organizations may need a larger number of audits

to ensure that the process is ingrained in the way that work is done.

It is essential that the auditor is independent of the area being audited. That is,
the auditor should not be reporting to the manager whose area is being audited,

as otherwise important findings in the audit may be omitted from the report.

The independence of the auditor helps to ensure that the findings are fair and

objective, as the auditor may state the facts as they are without fear of negative

consequences.

The auditor needs to be familiar with the process, and in a position to judge the

extent to which the standards have been followed. The audit needs to be factual, as

incorrect statements will lead to a loss of credibility. The planning and scheduling

activities will determine:

– Project/Area to be audited

– Planned Date of Audit

– Scope of Audit

– Checklist to be used

– Documentation required

– Auditor

– Attendees

The auditor may receive orientation on the project/area to be audited prior to

the meeting, and may review any relevant documentation in advance. A checklist

may be employed by the auditor as an aid to structure the interview.

The role requires good verbal and documentation skills as well as the ability

to deal with any conflicts that may arise during the audit. The auditor needs to be

fair and objective, and audit criteria will be employed to establish the facts in a

non-judgmental manner.

Software quality assurance requires that an independent group (e.g., the SQA

group) be set up. This may be a part time group of one person in a small organiza-

tion or a team of auditors in a large organization. The auditor role requires good

verbal and documentation skills, and auditors must be appropriately trained to carry

out their roles. The individuals being audited need to receive orientation on the

purpose of audits and their role in the audit.

146 9 Software Quality Assurance

9.3 Audit Meeting

An audit consists of interviews and document reviews, and involves a structured

interview of the various team members. The goal is to give the auditor an under-

standing of the work done, the processes employed, and the extent to which they are

followed and effective. A checklist tailored to the particular type of audit being

conducted is often employed. This will assist in determining relevant facts to judge

whether the process is followed and effective (Table 9.2).

The audit is an enquiry into to the particular role of each attendee, the activities

performed, the output produced, the standards followed, and so on. The interviews

allow the auditor to determine the extent to which the processes and standards are

followed and whether they are effective. The auditor needs to be familiar with

the process and in a position to judge the extent to which it has been followed.

Table 9.2 Sample auditing checklist

Item to check

Project Management

Has the project planning process been consistently followed?

Is the project plan complete and approved?

Are the Risk Log, Issue Log and Lessons Learned Log set up?

Is the Microsoft Schedule (or equivalent) available and up to date?

Are the weekly reports available?

Configuration Management

Are the appropriate people involved in defining, assessing the impact, and approving the change

request?

Are the affected deliverables (with the CR) identified and updated?

Are all documents and source code in the repository?

Are checking in/checking out procedures followed?

Supplier Management

Is the Statement of Work complete?

Have the PM skills of the supplier been considered in the evaluation?

Does the formal agreement include strict change control?

Requirements, Design and Testing

Are the Business Requirements complete and is the Sign-off available?

Is Requirements Traceability addressed?

Are the System Requirements complete and approved?

Is the Technical and Database design complete and approved?

Are the Unit Test scripts available with the results recorded?

Are the System Test Cases available with results recorded?

Are UAT Test Cases available with results recorded?

Deployment and Support

Are the User Manuals complete and available?

Are all open problems documented?

9.3 Audit Meeting 147

The auditor opens the meeting with an explanation of the purpose and scope

of the audit, and usually starts with one or more open questions to get the partici-

pants to describe their particular role. Each attendee is asked to describe their

specific role, the activities performed, the deliverables produced and the standards

followed. Closed questions are employed to obtain specific information when

required.

The auditor will take notes during the meeting and these are reviewed and

revised after the audit. There may be a need to review additional documentation

after the meeting or to schedule follow up meetings.

9.4 Audit Reporting

Once the audit meeting and follow up activities are completed, the auditor

will need to prepare an audit report to communicate the findings from the audit.

A draft audit report is prepared and circulated to the attendees, and the auditor

reviews any comments received, and makes final changes to address any valid

feedback.3 The approved audit report is then circulated to the attendees and

management.

The audit report will include audit actions that need to be addressed by groups

and individuals, and the auditor will track these actions to completion. In rare cases

the auditor may need to escalate the audit actions to management to ensure

resolution.

The audit report may include three parts such as the overview, the detailed

findings and an action plan. This is described in Table 9.3.

Table 9.3 Sample audit report

Area Description

Overview of

audit

This gives an overview of the audit including the area audited, the date

of the audit, its scope, the auditor and attendees and the number of audit

actions raised.

Audit findings These will vary depending on the type of audit but it may include findings from

project management, requirements, design, coding, configuration management,

testing and peer reviews, customer support, etc.

Action plan This will include an action plan to address the findings.

3 The approach depends on how the SQA function is implemented. In other implementations the

audit report may be issued directly to the attendees without the step to request comments.

148 9 Software Quality Assurance

9.5 Follow Up Activity

Once the auditor has circulated the audit report to the affected groups, the focus

then moves to closure of the assigned audit actions. The auditor will follow up with

the affected individuals to monitor closure of the actions by the agreed date, and

where appropriate a time extension may be granted. The auditor will update the

status of an audit action to closed once it has been completed correctly. In rare cases

the auditor may need to escalate the audit action to management for resolution.

This may happen when an assigned action has not been dealt with despite one or

more time extensions. Once all audit actions have been closed the audit is closed.

9.6 Audit Escalation

In rare cases the auditor may encounter resistance from one or more individuals in

completing the agreed audit actions. The auditor will remind the individual(s) of

the audit process and their responsibilities in the process. In rare cases, where the

individual(s) fail to address their assigned action(s) in a reasonable time frame, the

auditor will escalate the non-compliance tomanagement. The escalationmay involve:

• Escalation of actions to Middle Management

• Escalation to Senior Management

Escalation is generally a rare occurrence, especially if good software engineer-

ing practices are embedded in the organization.

9.7 Review of Audit Activities

The results of the audit activities will be reviewed with management on a periodic

basis. Audits provide important information to management on the processes being

used in the organization; the extent to which they are followed; and the extent to

which they are effective.

An independent audit (usually a third party or separate internal audit function)

of SQA activities may be conducted to ensure that the SQA function is effective.

Any non-compliance issues identified and assigned to the auditor and quality

manager for resolution.

9.8 Review Questions

1. What is the purpose of an audit?

2. What planning is done prior to the audit?

3. Explain why the auditor needs to be independent?

4. Describe the activities in the audit process.

(continued)

9.8 Review Questions 149

5. What happens at an audit meeting?

6. What happens after an audit meeting?

7. How will the auditor deal with a situation where the audit actions are still

open after the due date?

9.9 Summary

The purpose of software quality assurance is to provide visibility to management on

the processes being followed and the work products being produced in the organi-

zation. It is a systematic enquiry into the way that things are done in the organiza-

tion, and involves conducting audits of projects, suppliers and departments.

It provides:

• Visibility into the processes and standards in use in the organization.

• Visibility into the compliance to the defined processes and standards.

• Visibility into the effectiveness of the defined processes.

It involves planning and conducting audits; reporting the results to the affected

groups; tracking the assigned audit actions to completion; and conducting follow up

audits, as appropriate. It is generally conducted by the SQA group, and this group is

independent of the groups being audited.

The audit planning is concerned with selecting projects/areas to be audited,

determining who needs to be involved and dealing with the logistics. The audit

meeting is concerned with a formal meeting with the audit participants to discuss

their specific responsibilities in the project, the processes followed, and so on. The

audit report details the findings from the audit, and includes audit actions that need

to be resolved. Once the audit report has been published the auditor will track the

assigned audit actions to completion, and once all actions have been addressed

the audit may then be closed.

150 9 Software Quality Assurance

Software Metrics 10

Key Topics

Measurement

Goal, Question, Metric

Balanced Scorecard

Problem Solving

Data Gathering

Fishbone Diagram

Histogram

Pareto Chart

Trend Graph

Statistical Process Control

10.1 Introduction

Measurement is an essential part of mathematics and the physical sciences, and in

recent years it has been successfully applied to the software engineering discipline.

The purpose of a measurement program is to establish and use quantitative measure-

ments to manage the software development environment in the organization, to assist

the organization in understanding its current software capability, and to provide an

objective indication that improvements have been successful. Measurements provide

visibility into the various functional areas in the organization, and the actual quantita-

tive data allow trends to be seen over time. The analysis of the trends and quantitative

data allow action plans to be derived for continuous improvement.Measurementsmay

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_10,
Springer International Publishing Switzerland 2014

151

be employed to track the quality, timeliness, cost, schedule, and effort of software

projects. The term “metric” and “measurement” are used interchangeably in this book.
The formal definition of measurement given by Fenton [21] is:

Measurement is the process by which numbers or symbols are assigned to attributes or

entities in the real world in such a way as to describe them according to clearly defined rules.

Measurement plays a key role in the physical sciences and everyday life, for example,

the distance to the planets and stars, the mass of objects, the speed of mechanical

vehicles, the electric current flowing through a wire, the rate of inflation, the

unemployment rate, and so on. Measurement provides a more precise understanding

of the entity under study. Often several measurements are used to provide a detailed

understanding of the entity, for example, the cockpit of an airplane contains

measurements of altitude, speed, temperature, fuel, latitude, longitude, and various

devices essential to modern navigation and flight, and clearly an airline offering to fly

passengers using just the altitude measurement would not be taken seriously.

Metrics play a key role in problem solving, and Chap. 1 discussed various

problem-solving techniques. Good data is essential for obtaining a precise objective

understanding of the extent of a particular problem.

For example, an outage is measured as the elapsed time between down -time and

subsequent up-time. For many organizations, e.g., telecommunications companies

it is essential to minimize outages and their impact should one occur. Measurements

provide this data, and the measurement data is used to enable effective analysis to

take place to enable the root cause of a particular problem, e.g., an outage, to be

identified, and to verify that the actions taken to correct the problem have been

effective.

Metrics provide an internal view of the quality of the software product, and care

is needed before deducing the behaviour that a product will exhibit externally from

the various internal measurements of the product. A leading measure is a software

measure that usually precedes the attribute that is under examination; for example,

the arrival rate of software problems is a leading indicator of the maintenance

effort. Leading measures provide an indication of the likely behaviour of the

product in the field and need to be examined closely. A lagging indicator is a

software measure that is likely to follow the attribute being studied; for example,

escaped customer defects are an indicator of the quality and reliability of the

software. It is important to learn from lagging indicators even if the data can have

little impact on the current project.

10.2 The Goal Question Metric Paradigm

The Goal Question Metric (GQM) paradigm was developed by Victor Basili of the

University of Maryland, and it is described in detail in [2]. It is a rigorous goal

oriented approach to measurement, in which goals, questions, and measurements

are closely integrated. The business goals are first defined, and then questions that

relate to the achievement of the goal are identified, and for each question a metric

152 10 Software Metrics and Problem Solving

http://dx.doi.org/10.1007/978-3-319-06106-1_1

that gives an objective answer to the particular question is defined. The statement of

the business goal is precise, and it is related to individuals or groups. Many software

metrics programs have failed because they had poorly defined, or even non-existent

goals and objectives. The GQM concept is a simple one, and managers and

engineers proceed according to the following three stages:

• Set goals specific to needs in terms of purpose, perspective and environment

• Refine the goals into quantifiable questions

• Deduce the metrics and data to be collected (and the means for collecting them)

to answer the questions

GQM has been applied to several domains, and so we consider an example from the

software field. Consider the goal of determining the effectiveness of a new pro-

gramming language L. There are several valid questions which may be asked at this

stage, including who are the programmers that use L and what is their level of

experience? What is the quality of software code produced with language L? What

is the productivity of language L? This leads naturally to the quality and productiv-

ity metrics as detailed in Fig. 10.1.

10.2.1 Goal

The focus on improvements in an organization should be closely related to the

business goals, and the first step is to identify the business goals that the improve-

ment program is to address. The business goals are related to the strategic direction

of the organization and the problems that it is currently facing. There is little sense

in directing improvement activities to areas which do not require improvement, or

for which there is no business need to improve, or from which there will be a

minimal return to the organization.

Fig. 10.1 GQM example

10.2 The Goal Question Metric Paradigm 153

10.2.2 Question

These are the key questions that determine the extent to which the goal is being

satisfied, and for each business goal the set of pertinent questions need to be identified.

The information that is required to determine the current status of the goal is deter-

mined, and this naturally leads to the set of questions that must be answered to provide

this information. Each question is analysed to determine the best approach to obtain an

objective answer, and to define themetricswhich are needed, and the data that needs to

be gathered to answer the question objectively.

10.2.3 Metrics

These are measurements that give a quantitative answer to the particular question,

and they are closely related to the achievement of the goals. They provide an

objective picture of the extent to which the goal is currently satisfied. Measurement

improves the understanding of a specific process or product, and the GQM approach

leads to focused measurements which are closely related to the goal, rather than
measurement for the sake of measurement.

GQM helps to ensure that the measurements will be used by the organizations to

improve and to satisfy the business goals more effectively. The successful improve-

ment of software development is impossible without knowing what the improvement

goals are and how they are related with the business goals. GQM is a rigorous

approach to software measurement, and the measures may be from various view-

points, e.g., manager viewpoint, project team viewpoint, etc. The idea is always first

to identify the goals, and once the goals have been decided common-sense questions

and measurement are employed.

There are two key approaches to software process improvement: i.e., top-down
or bottom-up improvement. Top-down approaches are based on process improve-

ment models and appraisals: e.g., models such as the CMMI, 15504, and ISO 9000,

whereas GQM is a bottom-up approach to software process improvement, and is

focused on improvements related to certain specific goals. The top down and

bottom up approaches are often combined in practice.

10.3 The Balanced Scorecard

The balanced scorecard (BSC) (Fig. 10.2) is a management tool to clarify and

translate the organization vision and strategy into action. It was developed by

Kaplan and Norton [34], and has been applied to many organizations.

The BSC assists in selecting appropriate measurements to indicate the success or

failure of the organization’s strategy. There are four perspectives in the scorecard:

customer, financial, internal process, and learning and growth. Each perspective

includes objectives to be accomplished for the strategy to succeed, measures to

indicate the extent to which the objectives are being met, targets to be achieved in

154 10 Software Metrics and Problem Solving

the perspective, and initiatives to achieve the targets. The balanced scorecard

includes financial and non-financial measures.

The BSC is useful in selecting the key processes which the organization should

focus its process improvement efforts on in order to achieve its strategy (Fig. 10.3).

Traditional improvement is based on improving quality, reducing costs and improv-

ing productivity, whereas the balanced scorecard takes the future needs of the

organization into account, and identifies the processes that the organization needs

to excel at in the future to achieve its strategy. This results in focused process

improvement, and the intention is to yield the greatest business benefit from the

improvement program.

The starting point is for the organization to define its vision and strategy for the
future. This often involves clarifying the vision and gaining consensus among the

senior management team. The vision and strategy are then translated into objec-
tives for the organization or business unit. The next step is communication, and the

Fig. 10.2 The balanced

scorecard

Fig. 10.3 Balanced score card and implementing strategy

10.3 The Balanced Scorecard 155

vision and strategy and objectives are communicated to all employees. These critical

objectives must be achieved in order for the strategy to succeed. All employees will

need to determine their own local objectives to support the organization strategy.

Goals are set and rewards are linked to performance measures.

The financial and customer objectives are first determined from the strategy, and

the key business processes to be improved are then identified. These are the key

processes that will lead to a breakthrough in performance for customers and

shareholders of the company. It may require new processes and this may require

re-training of employees on the new processes. The balanced scorecard is very

effective in driving organization change. The financial objectives require targets to

be set for customer, internal business process, and the learning and growth perspec-

tive. The learning and growth perspective will examine competencies and

capabilities of employees and the level of employee satisfaction. Figure 10.3

describes how the balanced scorecard may be used for implementing the organiza-

tion vision and strategy.

Table 10.1 presents sample objectives and measures for the four perspectives in

the BSC for an IT service organization.

10.4 Metrics for an Organization

The objective of this section is to define a set of metrics to provide visibility into

various areas in the organization, and to show how metrics can facilitate

improvements. Several examples of metrics that may assist an organization are

presented, and these may be applied or tailored to an individual organization.

Table 10.1 BSC objectives and measures for IT service organization

Financial Customer

Cost of provision of services Quality service

Cost of hardware/software Reliability of solution

Increase revenue Rapid response time

Reduce costs Accurate information

Timeliness of solution Timeliness of solution

99.999 % network availability 99.999 % network availability

24� 7 customer support 24� 7 customer support

Internal business process Learning and growth

Requirements elicitation Expertise of staff

Software design Software development capability

Implementation Project management

Testing Customer support

Maintenance Staff development career structure

Customer support Objectives for staff

Security/proprietary information Employee satisfaction

Disaster prevention and recovery Leadership

156 10 Software Metrics and Problem Solving

The objective is to give an overview of how metrics may be employed for effective

management, and many organizations have monthly quality or operation reviews in

which the presentation of metrics play a key part.

This section includes sample metrics for the various functional areas in a

software organization, including human resources, customer satisfaction, supplier

quality, internal audit, project management, requirements and development, testing,

and process improvement. These metrics are typically presented at a monthly

management review, and performance trends observed. The main output from a

management review is a series of actions to be completed by the following review.

10.4.1 Customer Satisfaction Metrics

Figure 10.4 shows the survey arrival rate per customer per month, and it indicates

that there is a customer satisfaction process in place in the organization, that the

customers are surveyed, and the extent to which they are surveyed. It does not

provide any information as to whether the customers are satisfied, whether any

follow-up activity from the survey is required, or whether the frequency of surveys

is sufficient for the organization.

Figure 10.5 gives the customer satisfaction measurements in several categories

including quality, the ability of the company to meet the committed dates and to

deliver the agreed content, the ease of use of the software, the expertise of the staff

and the value for money. Figure 10.5 is interpreted as follows:

7–10 Exceeds expectations

6–7 Meets expectations

5 Fair

0–4 Below expectations

Fig. 10.4 Customer survey arrivals

10.4 Metrics for an Organization 157

Another words, a score of 8 for quality indicates that the customers considers the

software to be of high quality, and a score of 9 for value for money indicates that the

customers considers the solution to be excellent value.

10.4.2 Process Improvement Metrics

The objective of process improvement metrics is to provide visibility into the

improvement program in the organization.

Figure 10.6 shows the arrival rate of improvement suggestions from the software

community. The chart indicates that initially the arrival rate is high and the closure

rate low, which is consistent with the commencement of a process improvement

program. The closure rate then improves which indicates that the improvement

team is active and acting upon the improvement suggestions. The closure rate is low

during July and August, which may be explained by the traditional holiday period.

The chart does not indicate the effectiveness of the process improvement

suggestions and the overall impact the particular suggestion has on quality, cycle

time, or productivity. There are no measurements included of the cost of performing

improvements, and this is important as the organization will need to be able to

compare the benefits of the improvement activities with the cost of the improvements.

Figure 10.7 provides visibility into the status of the improvement suggestions,

and the number of raised, open, and closed suggestions per month. The chart

indicates that gradual progress has been made in the improvement program with

a gradual increase in the number of suggestions that are closed.

Figure 10.8 provides visibility into the age of the improvement suggestions, and

indicates the effectiveness of the organization in acting on the them. It is a measure

of the productivity of the improvement team and its ability to do its assigned work.

Fig. 10.5 Customer satisfaction measurements

158 10 Software Metrics and Problem Solving

Figure 10.9 gives an indication of the productivity of the improvement

programme, and shows how often the team meets to discuss the improvement

suggestions and to act upon them. This chart is slightly naive as it just tracks the

number of improvement meetings which have taken place during the year, and

contains no information on the actual productivity of the meeting. The chart could

be considered with Fig. 10.6 to get a more accurate idea of productivity as the

number of closed improvement suggestions per month. There will usually be other

charts associated with an improvement program, for example, a metric to indicate

the status of the CMMI program is provided in Fig. 10.26. Similarly, a measure of

Fig. 10.6 Process improvement measurements

Fig. 10.7 Status of process improvement suggestions

10.4 Metrics for an Organization 159

the current status of an ISO 9000 implementation could be derived from the number

of actions which are required to implement ISO 9000, the number implemented,

and the number outstanding.

10.4.3 Human Resources and Training Metrics

These metrics give visibility into the human resources and training areas of a

company. They provide visibility into the current headcount (Fig. 10.10) of the

Fig. 10.8 Age of open process improvement suggestions

Fig. 10.9 Process improvement productivity

160 10 Software Metrics and Problem Solving

organization per calendar month and the turnover of staff in the organization

(Fig. 10.11). The human resources department will typically maintain measurements

of the number of job openings to be filled per month, the arrival rate of resumes per

month, the average number of interviews to fill one position, the percentage of

employees that have received their annual appraisal, etc.

The key goals of the HR department are defined and the questions and metrics

are associated with the key goals. For example, one of the key goals of the HR

department is to attract and retain the best employees, and this breaks down into the

two obvious sub-goals of attracting the best employees and retaining them.

Fig. 10.10 Employee headcount in current year

Fig. 10.11 Employee turnover in current year

10.4 Metrics for an Organization 161

The next chart gives visibility into the turnover of staff during the calendar year.

It indicates the effectiveness of staff retention in the organization.

10.4.4 Project Management Metrics

The goal of project management is to deliver a high-quality product that is fit for

purpose on time and on budget. The project management metrics provide visibility

into the effectiveness of the project manager in delivering the project on time, on

budget, and with the right quality.

The timeliness metric provides visibility into the extent to which the project has

been delivered on time (Fig. 10.12), and the number of months over or under

schedule per project in the organization is shown. The schedule timeliness metric

is a lagging measure, as it indicates that the project has been delivered within

schedule or not after the event.

The on-time delivery of a project requires that the various milestones in the

project be carefully tracked and corrective actions taken to address slippage in

milestones during the project.

The second metric provides visibility into the effort estimation accuracy of a

project (Fig. 10.13). Effort estimation is a key component in calculating the cost of

a project, and in preparing the schedule, and its accuracy is essential. We mentioned

the Standish Research data on projects in an earlier chapter, and this report showed

that accurate project estimation is difficult.

The effort estimation chart is similar to the schedule estimation chart, except that

the schedule metric is referring to time as recorded in elapsed calendar months,

whereas the effort estimation chart refers to the planned number of person months

required to carry out the work, and the actual number of person months that it took.

Fig. 10.12 Schedule timeliness metric

162 10 Software Metrics and Problem Solving

Projects need an estimation methodology to enable them to be successful in project

management, and the project manager will use historical data and metrics to

determine how accurate the estimation has actually been.

The next metric is related to the commitments which are made to the customer

with respect to the content of a particular release, and it indicates the effectiveness

of the projects in delivering the agreed requirements to the customer (Fig. 10.14).

This chart could be adapted to include enhancements or fixes promised to a

customer for a particular release of a software product.

Fig. 10.13 Effort timeliness metric

Fig. 10.14 Requirements delivered

10.4 Metrics for an Organization 163

10.4.5 Development Quality Metrics

These metrics give visibility into the development and testing of the software

product, and Chap. 7 presented several testing metrics. Figure 10.15 gives an

indication of the quality of the software produced and the stability of the

requirements. It shows the total number of defects and the total number of change

requests raised during the project, as well as details on their severities. The presence

of a large number of change requests suggests that there is room for improvement in

the requirements management process.

Figure 10.16 gives the status of open issues with the project which gives an

indication of the current quality of the project, and the effort required to achieve the

desired quality in the software. This chart is not used in isolation, as the project

manager will need to know the arrival rate of problems to determine the stability of

the software product.

The organization may decide to release a software product with open problems

provided that the associated risks can be managed. It is therefore important to

perform a risk assessment of the known problems to ensure that the product may

operate effectively. A work-around for each problem is typically included in a set of

release notes for the product.

The project manager will also need to know the age of the open problems, as this

will indicate the effectiveness of the team in resolving problems in a timely manner.

Figure 10.17 presents the age of the open defects and it highlights the fact that there

is one major problem that has been open for over 1 year. The project manager needs

to prevent this situation from arising, as critical and major problems need to be

addressed in a prompt and efficient manner.

The problem arrival rate (Fig. 10.18) is a key metric, and it enables the project

manager to judge the stability of the software, and this helps in judging whether the

Fig. 10.15 Total number of issues in project

164 10 Software Metrics and Problem Solving

http://dx.doi.org/10.1007/978-3-319-06106-1_7

software is fit for purpose and ready for release to potential customers. A sample

problem arrival chart is included here, and a preliminary analysis of the chart

indicates that the trend is positive, with the arrival rate of problems falling. The

project manager will need to do analysis to determine if there are other causes that

could contribute to the fall in the arrival rate; for example, it may be the case that

testing was completed in September, which would mean, in effect, that no testing

has been performed since then, with an inevitable fall in the number of problems

reported. The important point is not to jump to a conclusion based on a particular

Fig. 10.16 Open issues in project

Fig. 10.17 Age of open defects in project

10.4 Metrics for an Organization 165

chart, as the circumstances behind the chart must be fully known and taken into

account in order to draw valid inferences.

The next metric measures the effectiveness of the project in identifying defects

in the development phase (Fig. 10.19), and the effectiveness of the test groups in

detecting defects that are present in the software. The development portion typi-

cally includes defects reported on inspection forms and in unit testing.

The system testing is usually performed by an independent test group, and it may

include usability and performance testing. Acceptance testing is performed at the

customer site. The objective is that the number of defects reported at acceptance test

and after the product is officially released to customer should be minimal.

Fig. 10.18 Problem arrivals per month

Fig. 10.19 Phase containment effectiveness

166 10 Software Metrics and Problem Solving

10.4.6 Quality Audit Metrics

These metrics provide visibility into the audit program in an organization, and

include metrics for the number of audits planned and performed (Fig. 10.20), and

the status of the audit actions (Fig. 10.21). The first chart presents visibility into the

number of audits carried out in the organization, and the number of audits which

remain to be done. It shows that the organization has an audit program, and gives

Fig. 10.20 Annual audit schedule

Fig. 10.21 Status of audit actions

10.4 Metrics for an Organization 167

information on the number of audits performed during a particular time period. The

chart does not give a breakdown into the type of audits performed, e.g., supplier

audits, project audits, and audits of particular departments in the organization, but it

could be adapted to provide this information.

The next chart gives an indication of the status of the various audits performed.

An audit is performed by an auditor, and the results are documented in an audit

report, and the audit actions need to be completed by the affected individuals and

groups. Figure 10.21 presents the status of the audit actions assigned to the affected

groups, and the actions need to be resolved in a timely manner.

Figure 10.22 gives visibility into the type of actions raised during the quality

audit of a particular area. The audit categories need to be defined by the organiza-

tion but could potentially include entry and exit criteria, planning issues, configu-

ration management issues, issues with compliance to the lifecycle or templates,

traceability to the requirements, issues with the review of various deliverables,

issues with testing, or process improvement suggestions.

10.4.7 Customer Care Metrics

The goals of the customer care group in an organization are to respond efficiently

and effectively to customer problems, to ensure that their customers receive the

highest standards of service from the company, and to ensure that its products

function reliably at the customer’s site. The organization will need to know its

efficiency in resolving customer queries, the number of customer queries, the

availability of its software systems at the customer site, and the age of open queries.

A customer query may result in a defect report in the case of a problem with the

software.

Fig. 10.22 Audit action types

168 10 Software Metrics and Problem Solving

Figure 10.23 could be developed further to include a severity attribute for the

query, and quantitative goals may be set for the resolution of queries (especially in

the case of service level agreements). The organization will often maintain a chart

for the age of open queries (similar to the chart in Fig. 10.17 presented earlier). The

organization will need to know the status of the backlog of open queries per month,

and a simple trend graph would provide this. Figure 10.23 shows the arrivals and

closures of queries: in the early part of the year the arrival rate exceeds the closure

rate of queries per month. This indicates an increasing backlog which needs to be

addressed.

The customer care department responds to any outages and ensures that the

outage time is kept to a minimum. Many companies set ambitious goals for network

availability: e.g., the “five nines initiative” has the objective of developing systems

which are available 99.999 % of the time, i.e., approximately 5 min of down time

per year. The calculation of availability is from the formula:

Availability ¼ MTBF

MTBFþMTTR

where the mean time between failure (MTBF) is the average length of time between

outages.

MTBF ¼ Sample Interval Time

#Outages

The formula for MTBF above is for a single system only, and the formula is

adjusted when there are multiple systems.

Fig. 10.23 Customer queries (arrivals/closures)

10.4 Metrics for an Organization 169

MTBF ¼ Sample Interval Time

#Outages
�#Systems

The mean time to repair (MTTR) is the average length of time that it takes to

correct the outage, i.e., the average duration of the outages that have occurred, and it

is calculated from the following formula:

MTTR ¼ Total Outage Time

#Outages

Figure 10.24 presents outage information on the customers impacted by the

outage during the particular month, and the extent of the impact on the customer.

An effective customer care department will ensure that a post-mortem of the

outages is performed to ensure that lessons are learned to prevent a reoccurrence.

This causal analysis details the root causes of the outages and the actions to be taken

to prevent a reoccurrence. Metrics to record the amount of outage time per month

will typically be maintained by the customer care group in the form of a trend

graph.

Figure 10.25 provides visibility on the availability of the system at the customer

sites (as per the availability formula described earlier). Ambitious organizations are

designing systems to be available 99.999 % of the time.

10.4.8 Miscellaneous Metrics

Metrics may be applied to many other areas in the organization. This section

includes metrics on CMMI maturity in the organization and configuration manage-

ment. Figure 10.26 gives visibility into the time to create a software release from

the configuration management system.

Fig. 10.24 Outage time per customer

170 10 Software Metrics and Problem Solving

The internal CMMI maturity of the organization is given by Fig. 10.27, and

its current state of readiness for a formal CMMI assessment may be determined.

A numeric score of 1 to 10 is used to rate each process area and a score of 7 or above

indicates that the process area is satisfied.

Fig. 10.25 Availability of system per month

Fig. 10.26 Configuration management

10.4 Metrics for an Organization 171

10.5 Implementing a Metrics Program

The metrics discussed in this chapter may be adapted and tailored to meet the needs

of organizations. The metrics are only as good as the underlying data, and good data

gathering is essential. Table 10.2 gives typical steps in the implementation of a

metrics program.

The business goals are the starting point in the implementation of a metrics

program, as there is no sense in measurement for the sake of measurement, and so

metrics must be closely related to the business goals. It is important to identify the

relevant questions to determine the extent to which the business goal is being

achieved, and metrics provide an objective answer to the questions.

The organization defines its business goals, and each department develops

specific goals to meet the organization’s goals. Measurement will indicate the

extent to which specific goals are being achieved, and good data gathering and

recording are essential. First, the organization will need to determine which data

need to be gathered, and to determine methods by which the data may be recorded.

The information that is needed to answer the questions related to the goals will

determine the precise data to be recorded. A small organization may decide to

record the data manually, but often automated or semi-automated tools will be

employed. It is essential that the data collection and extraction is efficient, as

otherwise the metrics program is likely to fail. The data gathering is described in

more detail in the next section.

Fig. 10.27 CMMI maturity in current year

172 10 Software Metrics and Problem Solving

The roles and responsibilities of staff will need to be defined with respect to the

implementation and day-to-day operation of the metrics program. Training is

needed to enable staff to perform their roles effectively. Finally, a regular manage-

ment review is needed, where the metrics and trends are presented, and actions

identified and carried out to ensure that the business goals are achieved.

10.5.1 Data Gathering for Metrics

Metrics are only as good as the underlying data, and so data gathering is a key

activity in a metrics program. The data to be recorded will be closely related to the

questions, and the data are used to give an objective answer to the question. The

starting point is the business goal (often quantitative for extra precision). Table 10.3

illustrates how the data to be gathered are identified in a top-down manner.

Table 10.4 is an approach to determine the effectiveness of the software devel-

opment process, and to enable the above questions to be answered. It includes a

column for inspection data which records the number of faults recorded at the

various inspections. The defects include the phase where the defect originated; for
example, a defect identified in the coding phase may have originated in the

requirements phase. The data is typically maintained in a spreadsheet, e.g., Excel,

and it needs to be kept up to date. It enables the phase containment effectiveness

(PCE) to be calculated for the various phases.

We will distinguish between a fault and a defect. A fault is a problem which is
usually detected by a software inspection, and it is detected in the phase in which it
is created. A defect is a problem which is detected out of phase, for example,

Table 10.2 Implementing

metrics
Implementing metrics in organization

Define the business goals

Identify the pertinent questions

Define metrics

Identify tools to (semi-) automate metrics

Identify data that needs to be gathered.

Provide resources

Gather data and prepare metrics

Communicate the metrics and review monthly

Provide training

Table 10.3 Identifying data to be gathered

Goal Reduce escaped defects from each lifecycle phases by 10 %.

Questions How many faults are identified within each lifecycle phase?

How many defects are identified after each lifecycle phase is exited?

What % of defects escaped from each lifecycle phase?

10.5 Implementing a Metrics Program 173

a problem with the requirements may be discovered in the design phase, which is

out of the phase in which it was created.

For the example Table 10.4, the effectiveness of the requirements phase is

judged by its success in identifying defects as early as possible, as the cost of

correction of a requirements defect increases the later in the cycle that it is

identified. The requirements PCE is calculated to be 40 %, i.e., the total number

of faults identified in phase divided by the total number of faults and defects

identified. There were four faults identified at the inspection of the requirements,

and six defects were identified: one at the design phase, one at the coding phase, two

at the unit testing phase, and two at the system testing phase: i.e., 4/10¼ 40 %.

Similarly, the code PCE is calculated to be 57 %.

The overall PCE for the project is calculated to be the total number of faults

detected in phase in the project divided by the total number of faults and defects,

i.e., 27/52¼ 52 %. Table 10.4 is a summary of the collected data and consists of:

• Maintain inspection data of requirements, design and code inspections

• Identify defects in each phase and determine their phase of origin

• Record the number of defects in each phase per phase of origin.

The staff who perform inspections need to record the problems identified,

whether it is a fault or a defect, and its phase of origin. Staff will need to be

appropriately trained to do this consistently.

Table 10.4 is just one example of data gathering, and in practice the organization

will need to collect various data to enable it to give an objective answer to the extent

that the particular goal is being satisfied.

10.6 Problem-Solving Techniques

Problem solving is a key part of quality improvement, and a quality circle (or

problem-solving team) is a group of employees who do similar work and volunteer

to come together on company time to identify and analyse work-related problems.

Quality circles were first proposed by Ishikawa in Japan in the 1960s. Various tools

that assist problem solving include process mapping, trend charts, bar charts, scatter

Table 10.4 Phase containment effectiveness

Phase of origin

Phase

Inspect

faults Reqs Design Code

Accept

test

Total

faults

Total

defects % PCE

Reqs 4 1 1 4 6 40 %

Design 3 3 4 42 %

Code 20 20 15 57 %

Unit test 2 2 10

System test 2 2 5

Accept test

174 10 Software Metrics and Problem Solving

diagrams, fishbone diagrams, histograms, control charts, and pareto charts [9]. These
provide visibility into the problem and help to quantify the extent of the problem. The

main features of a problem-solving team include:

• Group of employees who do similar work

• Voluntarily meet regularly on company time

• Supervisor as leader

• Identify and analyse work-related problems

• Recommend solutions to management

• Implement solution where possible

The facilitator of the quality circle coordinates the activities, ensures that the

team leaders and teams members receive sufficient training, and obtains specialist

help where required. The quality circle facilitator has the following responsibilities:

• Focal point of quality circle activities

• Train circle leaders/members

• Coordinate activities of all the circle groups

• Assist in inter-circle investigations

• Obtain specialist help when required

The circle leaders receive training in problem-solving techniques, and are

responsible for training the team members. The leader needs to keep the meeting

focused and requires skills in team building. The steps in problem solving include:

• Select the problem

• State and restate the problem

• Collect the facts

• Brainstorm

• Choose course of action

• Present to management

• Measurement of success

The benefits of a successful problem solving culture in the organization include:

• Savings of time and money

• Increased productivity

• Reduced defects

• Fire prevention culture

Various problem-solving tools are discussed in the following sections.

10.6.1 Fishbone Diagram

This well-known problem-solving tool consists of a cause and effect diagram that is

in the shape of the backbone of a fish. The objective is to identify the various causes

of some particular effect, and then these various causes are broken down into a

number of sub-causes. The various causes and sub-causes are analysed to determine

the root cause of the particular effect, and actions to address the root cause are then

defined to prevent a reoccurrence of the manifested effect. There are various

categories of causes and these may include people, methods and tools, and training.

10.6 Problem-Solving Techniques 175

The great advantage of the fishbone diagram is that it offers a crisp mechanism to

summarize the collective knowledge that a team has about a particular problem, as

it focuses on the causes of the problem, and facilitates the detailed exploration of

the causes.

The construction of a fishbone diagram involves a clear statement of the partic-

ular effect, and the effect is placed at the right-hand side of the diagram. The major

categories of cause are drawn on the backbone of the fishbone diagram; brainstorm-

ing is used to identify causes; and these are then placed in the appropriate category.

For each cause identified the various sub-causes may be identified by asking the

question “Why does this happen?” This leads to a more detailed understanding of

the causes for a particular effect.

Example 10.1

An organization wishes to determine the causes of a high number of customer

reported defects. There are various categories which may be employed such as

people, training, methods, tools, and environment. In practice, the fishbone

diagram in Fig. 10.28 would be more detailed than that presented, as

sub-causes would also be identified by a detailed examination of the identified

causes. The root cause(s) are determined from detailed analysis.

This example suggests that the organization has significant work to do in several

areas, and that an improvement program is required. The improvements needed

include the implementation of a software development process and a software test

process; the provision of training to enable staff to do their jobs more effectively;

and the implementation of better management practices to motivate staff and to

provide a supportive environment for software development.

The causes identifiedmay be symptoms rather than actual root causes: for example,

high staff turnover may be the result of poor morale and a “blame culture”, rather than

Fig. 10.28 Fishbone cause-and-effect diagram

176 10 Software Metrics and Problem Solving

a cause in itself of poor quality software. The fishbone diagram gives a better

understanding of the possible causes of the high number of customer defects.

A small subset of these causes is then identified as the root cause(s) of the problem

following further discussion and analysis.

The root causes are then addressed (e.g., an appropriate software development

process and test process are defined and providing training to all development staff on

the new processes). The management attitude and organization culture will need to be

corrected to enable a supportive software development environment to be put in place.

10.6.2 Histograms

A histogram is a way of representing data in bar chart format, and it shows the relative

frequency of various data values or ranges of data values. It is typically employed

when there are a large number of data values, and it gives a very crisp picture of the

spread of the data values, and the centring and variance from the mean.

The histogram has an associated shape; e.g., it may be a normal distribution, a
bimodal or multi-modal distribution, or be positively or negatively skewed. The

variation and centring refer to the spread of data, and the relation of the centre of the

histogram to the customer requirements. The spread of the data is important as it

indicates whether the process is variable or whether it is performing within the

requirements. The histogram is termed process centred if its centre coincides with

the customer requirements; otherwise the process is too high or too low. A histo-

gram enables predictions of future performance to be made, assuming that the

future will reflect the past.

The construction of a histogram first requires that a frequency table be

constructed, and this requires that the range of data values be determined. The

data are divided into a number of data buckets, where a bucket is a particular range

of data values, and the relative frequency of each bucket is displayed in bar format.

The number of class intervals or buckets is determined, and the class intervals are

defined. The class intervals are mutually disjoint and span the range of the data

values. Each data value belongs to exactly one class interval and the frequency of

each class interval is determined.

The histogram is a well-known statistical tool and its construction is made more

concrete with the following example.

Example 10.2

An organization wishes to characterize the behaviour of the process for the

resolution of customer queries in order to achieve its customer satisfaction goal.

Goal

Resolve all customer queries within 24 h.

Question

How effective is the current customer query resolution process?

What action is required (if any) to achieve this goal?

10.6 Problem-Solving Techniques 177

The data class size for the histogram in Fig. 10.29 is 6 h, and data class sizes

are the same for standard histograms, whereas the size may be different for

non-standard histograms. The sample mean is 19 h in this example.

This histogram (Fig. 10.29) is based on query resolution data from 36 samples.

The organization goal of customer resolution of all queries within 24 h is not met,

and the goal is satisfied in (25/36¼ 70 % for this particular sample).

Further analysis is needed to determine the reasons why 30 % of the goals are

outside the target 24-h time period. It may prove to be impossible to meet the goal

for all queries, and the organization may need to refine the goal to state that instead

all critical and major queries will be resolved within 24 h.

10.6.3 Pareto Chart

The objective of a pareto chart is to identify and focus on the resolution of problems

that have the greatest impact, as often 20 % of the causes are responsible for 80 %
of the problems. The problems are classified into various categories, and the

frequency of each category of problem is determined. The chart is displayed in a

descending sequence of frequency, with the most significant cause presented first,

and the least significant cause presented last.

It is a key problem-solving tool, and a properly constructed pareto chart will

allow the organization to resolve the key causes of problems, and to verify their

resolution. The success of the improvements may be determined at a later stage

from an analysis of the new problems and creating a new pareto chart. The result

should show tangible improvements.

Fig. 10.29 Histogram

178 10 Software Metrics and Problem Solving

The construction of a pareto chart requires the organization to decide on the

problem to be investigated; to identify the causes of the problem via brainstorming;

to analyse the historical or real time data; to compute the frequency of each cause;

and finally display the frequency in descending order of each cause category.

Example 10.3

An organization wishes to understand the various causes of outages, and to

minimize their occurrence.

The pareto chart in Fig. 10.30 includes data from an analysis of outages, where

each outage is classified into a particular causes. The six causal categories identified

are: hardware, software, operator error, power failure, an act of nature, and

unknown. The three key causes of outages are hardware, software, and operator

error, and analysis is needed to identify to address these. The hardware category

may indicate that problems the reliability of the system hardware, and that existing

systems may need improvement or replacement. There may be a need to address

availability and reliability concerns.

The software category may be due to the release of poor-quality software, or to

usability issues in the software, and this requires further investigation. Finally,

operator issues may be due to lack of knowledge or inadequate training of the

operators.

10.6.4 Trend Graphs

A trend graph monitors the performance of a variable over time, allows trends in

performance to be identified, and enables predictions of future trends to be made.

Its construction involves deciding on the variable to measure and to gather the data

points to plot the data.

Fig. 10.30 Pareto chart outages

10.6 Problem-Solving Techniques 179

Example 10.4

An organization plans to deploy an enhanced estimation process, and wishes to

determine if estimation is actually improving.

The estimation accuracy determines the extent to which the actual effort differs

from the estimated effort. A reading of 25 % indicates that the project effort was

25 % more than estimated, whereas a reading of �10 % indicates that the actual

effort was 10 % less than estimated. The trend chart (Fig. 10.31) indicates that

initially that estimation accuracy is very poor, but then there is a gradual improve-

ment coinciding with the implementation of the new estimation process.

It is important to analyse the performance trends in the chart. For example, the

estimation accuracy for August (17 % in the chart) needs to be investigated to

determine the reasons why it occurred. It could potentially indicate that a project is

using the old estimation process or that a new project manager received no training.

A trend graph is useful for noting positive or negative trends in performance;

negative trends are analysed and actions identified to correct performance.

10.6.5 Scatter Graphs

The scatter diagram is used to measure the relationship between two variables, and to

determine whether there is a relationship or correlation between the variables.

The results may be a positive correlation, negative correlation, or no correlation.

Correlation has a precise statistical definition, and it provides a precise mathematical

understanding of the extent to which the two variables are related or unrelated.

Fig. 10.31 Trend chart estimation accuracy

180 10 Software Metrics and Problem Solving

The scatter graph provides a graphical way to determine the extent that two

particular variables are related, and it may be used to determine if there a connec-

tion between an identified causes and the effect.

The construction of a scatter diagram requires the collection of paired samples

of data, and the drawing of one variable as the x-axis, and the other as the y-axis.
The data are then plotted and interpreted.

Example 10.5

An organization wishes to determine if there is a relationship between the

inspection rate and the error density of defects identified.

The scatter graph (Fig. 10.32) provides evidence for the hypothesis that there is a

relationship between the lines of code inspected and the error density recorded (per

KLOC). The graph suggests that the error density of defects identified during

inspections is low if the speed of inspection is too fast, and the error density is

high if the speed of inspection is below 300 lines of code per hour. A line can be

drawn through the data which indicates a linear relationship.

10.6.6 Metrics and Statistical Process Control

The principles of statistical process control were described in an earlier chapter, and

process performance is measured and controlled within upper and lower control

limits. Figure 10.33 presents an example on breakthrough in performance of an

estimation process, and is adapted from [35].

Fig. 10.32 Scatter graph amount inspected rate/error density

10.6 Problem-Solving Techniques 181

The initial upper and lower control limits for estimation accuracy are set at

�40 %, and the performance of the process is within the defined upper and control

limits. However, the organization will wish to improve its estimation accuracy and

this leads to the organization’s revising the upper and lower control limits to

�25 %. The organization will need to analyse the slippage data to determine the

reasons for the wide variance in the estimation, and part of the solution will be the

use of enhanced estimation methods in the organization. In this chart, the organiza-

tion succeeds in performing within the revised control limit of�25 %, and the limit

is revised again to�15 %. This requires further analysis to determine the causes for

slippage and further improvement actions are needed to ensure that the organization

performs within the �15 % control limit.

10.7 Review Questions

1. Describe the Goal, Question, Metric model.

2. Explain how the Balanced Scorecard may be used in the implementation

of organization strategy.

3. Describe various problem solving techniques.

4. What is a fishbone diagram?

5. What is a histogram? A Pareto Chart?

6. What is a scatter graph?

7. Discuss how a metrics programme may be implemented.

8. What is statistical process control?

Fig. 10.33 Estimation accuracy and control charts

182 10 Software Metrics and Problem Solving

10.8 Summary

Measurement is an essential part of mathematics and the physical sciences, and has

been successfully applied in recent years to the software engineering discipline. The

purpose of a measurement program is to establish and use quantitative measurements

to manage software development environment in the organization, to assist the

organization in understanding its current software capability, and to provide an

objective indication that improvements have been successful. This chapter included

a collection of sample metrics to give visibility into the various functional areas in the

organization, including customer satisfaction metrics, process improvement metrics,

project management metrics, HR metrics, development and quality metrics, and

customer care metrics.

The balanced scorecard assists the organization in selecting appropriate measure-

ments to indicate the success or failure of the organization’s strategy. Each of the four

scorecard perspectives includes objectives that need to be achieved for the strategy to

succeed, and measurements indicate the extent to which the objectives are being met.

The Goal, Question, Metric paradigm is a rigorous, goal-oriented approach to

measurement in which goals, questions, and measurements are closely integrated.

The business goals are first defined, and then questions that relate to the achieve-

ment of the goal are identified, and for each question a metric that gives an objective

answer to the particular question is defined.

Metrics play a key role in problem solving, and various problem solving

techniques were discussed. These include histograms, pareto charts, trend charts

and scatter graphs. The measurement data are used to assist the analysis and to

determine the root cause of a particular problem, and to verify that the actions taken

to correct the problem have been effective. They allow trends to be seen over time,

and the analysis of the trends allows action plans to be prepared and implemented

for continuous improvement.

Metrics may be employed to track the quality, timeliness, cost, schedule, and

effort of software projects. They provide an internal view of the quality of the

software product, but care is needed before deducing the behaviour that a product

will exhibit externally.

10.8 Summary 183

ISO 9000 11

Key Topics

Quality Management System

ISO 9001 and ISO 9004

Customer Satisfaction

Customer Requirements

Implementing ISO 9000

Continuous Improvement

Measurement and Analysis

Self-Assessment Methodology

11.1 Introduction

ISO 9000 is a widely employed quality management standard, and it was developed

by the International Standards Organization (ISO). The standard was influenced by

the British quality standard (BS 5750), and it was originally published as a standard

in 1987, and revised in 1994, 2000 and in 2008.

The ISO 9000 family of standards may be applied to various types of organiza-

tions, including manufacturing, software and service organizations. The achieve-

ment of ISO 9001 by a company typically indicates that the company has a sound

quality system in place, and that quality and customer satisfaction are core values of

the company. ISO 9001 is regarded as a minimal standard that an organization

which takes quality seriously should satisfy, and many organizations require their

subcontractors to be ISO 9001 certified.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_11,
Springer International Publishing Switzerland 2014

185

It arose due to the need by organizations to know the capability or maturity of

their subcontractors prior to selection. The existing approach was to assess the

capability of a potential supplier prior to its selection. This generally involved a

quality representative from the organization visited the proposed subcontractor, and

assessing its process maturity. This was expensive and time consuming, especially

if the organization had many subcontractors. Once the international standard

became available, it allowed the organization to place ISO 9001 certification as a

minimum requirement on the subcontractor, and thereby to expect certain minimal

quality standards from the subcontractor. ISO 9001 became a discriminator in the

selection of a contractor, and the certification provided confidence in the contractor

to deliver a high-quality solution.

The standard places requirements on the quality management system of the

company, but it allows the company to choose how it may satisfy the requirements.

The ISO requirements include controls, processes and procedures, and the mainte-

nance of quality records as evidence.

11.2 Motivation for ISO 9000

The ISO 9000 family of standards offers a structured way for a company to

improve, and the company can focus its initial improvements to those clauses that

will yield the greatest business benefit. Then as the company increases in maturity,

the other clauses in the standard may be implemented. A standard is a useful way to

show the organization how good it actually is, and to prioritize further improve-

ments. Table 11.1 provides some reasons for the company to embark on an ISO

9000 initiative.

Table 11.1 Motivation

for ISO 9000

implementation

Enhances credibility of the company

Marketing benefit of ISO 9000

Shows commitment to quality and customer satisfaction

Shows commitment to continuous improvement

Provides a framework for improvement

Shows that a fire prevention culture is in place

Less rework of defective products

Reduced cost of poor quality

Improved productivity due to less rework

Improved morale

A more effective organization

186 11 ISO 9000

11.3 ISO 9000

The ISO 9000 family of standards consists of three standards: namely ISO 9000,

ISO 9001, and ISO 9004. The ISO 9000 standard covers the fundamentals and

vocabulary of quality management systems.

The ISO 9001 standard specifies the requirements of a quality management

system, and applies to manufacturing, software, and service organizations. It details

the requirements which the quality management system of the organization must

satisfy to be ISO 9001 compliant. There is a simple process model defined in the

standard, and there is an emphasis on measurement, continual improvement, and

customer satisfaction. There are five clauses in the new standard, and the standard is

customer focused.

The ISO 9004 standard (Managing for the Sustained Success of the Organi-

zation) provides guidance for performance improvement, and it is helpful in

assisting organizations in the implementation of ISO 9001. It includes a simple

self-assessment methodology to allow the organization to determine its current

maturity with respect to ISO 9001. There are five main clauses in ISO 9001 standard

(Table 11.2), with each clause having several sub-clauses.

The objective is to determine the customer requirements; to develop a product

which satisfies the requirements, and which matches or exceeds customer expecta-

tions; and to continually improve to serve the customer better. Figure 11.1 describes

the interaction between the various ISO 9001 clauses.

11.3.1 Quality Management System

This clause is concerned with documenting and implementing the quality mana-

gement system (Fig. 11.1), and defining the procedures required by the standard.

The procedures required include the quality manual, and procedures for the control

of documents and the control of quality records.

Table 11.2 ISO 9001 clauses

Clause Description

Quality Management System This clause refers to the documentation and implementation

of the Quality Management System (QMS)

Resource Management This is concerned with the provision of the resources required

to implement the QMS.

Product or Service

Realisation

This is concerned with the provision of processes to implement

the product or service.

Management Responsibility This is concerned with defining the responsibilities of management

in implementing the quality system.

Measurement, Analysis and

Improvement

This is concerned with the establishment of a measurement

programme, and using measures for continuous improvement.

11.3 ISO 9000 187

The clause is also concerned with the control of quality records, as these are

used to provide evidence of conformity to the quality system. The sub-clauses

include general requirements of the quality management system, documentation

requirements and the use of quality management principles in the organization.

The procedures required include:

– Quality Manual

– Control of Documents

– Control of records

– Internal Audit

– Control of Non-conforming product

– Corrective Action Procedure

– Preventive Action Procedure.

There is more than one way to implement the specified ISO 9001 requirements,

and the organization needs to choose an implementation which is tailored to its

own needs.

The quality manual is a key document in the QMS, and it will provide details of

the quality policy, the key goals and initiatives of the organization to achieve

customer satisfaction, an organization chart to show where quality fits into the

organization, and so on. The quality manual is one of the first things that an ISO

9001 auditor will examine, as it shows how the quality management system has

been implemented.

The control of documents requires the definition of a document control proce-

dure, which specifies the layout of a document, including its version number,

revision history, its current status, and so on. Quality records provide evidence

that the quality system and associated processes are being consistently performed,

Fig. 11.1 ISO 9000 quality management system

188 11 ISO 9000

and the control of records procedure defines the records that will be maintained,

the length of time that they will be maintained for, the means by which they are

maintained, and so on. The records may include minutes and actions from manage-

ment reviews, training records, records from the reviews of project deliverables,

records from testing, records from audits, and so on.

11.3.2 Management Responsibility

The commitment of management is fundamental to the success of the QMS, and

management play a key role in creating an environment in which the quality

management system can operate effectively in the organization. Management

need to promote quality, customer satisfaction and continuous improvement, and

this clause defines the responsibilities of management in the quality system.

It includes defining and communicating the quality policy, planning for quality,

setting quality objectives, defining a quality policy, and participating in reviews of

the quality management system. It consists of the following sub-clauses:

– Management Commitment

– Customer Focus

– Defining Quality Policy and Quality Manual

– Planning and setting quality objectives

– Responsibility, Authority and Communication

– Management Review

Management and staff need to focus on the customers and on customer satisfaction.

They need to identify customers’ needs and expectations, and to make customer

satisfaction a core value of the organization.

The quality policy expresses the core values of the company on quality, cus-

tomer satisfaction and continuous improvement. Management needs to communi-

cate the quality policy and quality expectations, and all employees need to actively

implement the policy. The quality policy needs to be reviewed periodically to

ensure that it continues to meet the needs of the organization.

Management is responsible for quality planning in the organization, and the

quality policy is employed to set the quality objectives (usually quantitative) for the

organization. For example, the objectives may be to deliver 100 % of the projects

on time and on budget; achieve a customer satisfaction measure in excess of 8.1;

and resolve 100 % of critical problems within 24 h. The quality planning may also

involve defining several high-quality processes such as a software development

process and a project management process. These processes will allow high-quality

software to be delivered on time and on budget.

Management needs to assign responsibility and authority to people to implement

and maintain the quality system. Management is responsible for approving the

quality system, monitoring it for effectiveness, and improving it. The responsibility

of the different roles in the process is defined, and management will monitor

process performance, and take corrective action when performance deviates from

11.3 ISO 9000 189

expectations. The organization will have a quality manager (this may be a part time

role for smaller organizations).

Management will review the quality system at regular intervals to ensure its

effectiveness. The quality review will examine the various parts of the quality

system such as customer satisfaction, human resources and training, project man-

agement, development and test, customer support, process improvement, quality

audits, and so on. Each group has an allocated period of time to provide visibility

into their area, and this enables management to examine trends in the performance

of the quality system, and to identify improvements. Actions to resolve any

identified issues are assigned to groups and individuals. The management review

is often metrics driven as this provides objective facts, and the review is often

chaired by the quality manager, and attended by management in the organization.

11.3.3 Resource Management

Resource management is concerned with ensuring that the appropriate resources are

in place to deliver high quality software, and this includes the human resources,

training, the work environment and the physical infrastructure. It consists of the

following sub-clauses:

– Provision of Resources

– Human Resources

– Infrastructure

– Work Environment

The provision of resources is the process concerned with determining the resources

needed to implement the quality management system, and providing them. The

resources include people, buildings, computers, and so on, and the organization

needs to plan for future resource needs, as well as its current needs. The organiza-

tion needs to enhance the knowledge and competence of people by education and

training, and to develop leadership skills for future managers.

The human resource function plays a strategic role in the organization. It is

responsible for staff recruitment and retention, career planning for employees,

employee appraisals, health and safety, training in the organization, and providing

a pleasant working environment. It facilitates communication between manage-

ment and staff.

The responsibilities and skills required for the various roles in the organization

need to be defined, and training identified to address any gaps in the current

qualification, skills and experience of the employees and the roles which they are

performing. An annual organization training plan is often prepared, and the plan is

updated throughout the year. There may be mandatory training for employees on

key areas, e.g., on quality. The training needs of the organization may change

during the year due to changes in the technologies and processes employed, or due

to a change in the strategic direction of the organization.

The organization needs to have a process for defining the appropriate infra-

structure for efficient product realization, and this includes buildings, furniture,

190 11 ISO 9000

office equipment, computer hardware and software, technologies, and tools.

The infrastructure plan is prepared well in advance, and is updated in a controlled

manner in response to medium and short-term needs. It supports the organization in

achieving its strategic goals and customer satisfaction. The infrastructure needs to

be maintained to ensure that it continues to meet the needs of the organization.

The organization needs a disaster management plan to identify preventive

measures to prevent disasters from happening, and a disaster recovery procedure

to minimize disruption following an actual disaster. The actual recovery steps

depend on the scale of damage, and it is essential that the recovery is planned

with clearly defined roles and responsibilities. The individuals with responsibility

for disaster prevention and recovery need to be trained in their roles, and the plan

needs to be tested to ensure its effectiveness in the case of a real disaster. The

damage assessment team assesses the actual damage, and the damage recovery

team is responsible for responding to the disaster.

The organization needs to develop a work environment that will promote

employee satisfaction, motivation and performance.

11.3.4 Product or Service Realization

This is concerned with the provision of efficient processes for product or service

realization to ensure that the organization has the capability to develop products or

services that will meet customer expectations. It may involve developing processes

for defining and managing the requirements; processes for design and development;

processes for testing; a process for project management; a change management

process; and so on. It involves the following sub-clauses:

– Planning of product realization

– Customer related processes

– Customer requirements

– Customer communication

– Design and development

– Control of changes

– Purchasing process (information and verification)

– Production and service provision

– Validation of processes

– Identification and traceability

– Customer property

– Preservation of product

– Control of measuring and monitoring devices

The planning of product realization requires the organization to plan and

define the processes needed for product realization. This requires a sound project

management process as well as an effective software development process to

identify the customer requirements and to design and develop an appropriate

solution that will satisfy the customer’s expectations. It will require other processes

such as a change management process and a testing process.

11.3 ISO 9000 191

The customer related processes are concerned with processes for defining

customer requirements; managing customer requirements; and verifying and

validating customer requirements to ensure customer satisfaction. There is also a

need for an effective communication mechanism where customer feedback

(enquiries and complaints) may be made and a process to determine the level of

customer satisfaction.

The customer requirements are the foundation for the product, and these need

to be correct before design and development commences. The requirements are

documented, and reviewed by all stakeholders to ensure that they are correct

and reflect the customer’s needs.

The design and development process needs to be defined and capable of delive-

ring high-quality software on time to the customer. It involves design and develop-

ment planning, the design of the solution, a review of the design and development,

verification and validation of design and development, and control of changes

during design and development. There will be controls in the process to ensure

that the defined deliverable are produced, reviewed and approved at key milestones,

and to ensure that the requirements have been properly implemented.

The importance of reviews of design and development activities is evident

from Chap. 6 on software inspections, and reviews enable defects to be identified

earlier and help to reduce the cost of poor quality. The verification and validation

activities are concerned with “building it right” and “building the right product” as
discussed in Chap. 4. A traceability matrix may also be employed for verification

and validation, as well as reviews and the various types of testing as discussed

previously. There is a need for a change control process to manage changes to the

requirements, and to keep all the deliverables consistent with the requirements.

This has been described in Chap. 5 on configuration management.

The purchasing process is important as a product often is built from components

that are procured from one or more suppliers. Therefore, the purchased products or

components need to be fit for purpose, and this involves verification (by testing

or inspections) that the purchased products satisfy the purchase requirements.

The capability of the supplier needs to be clearly understood, and this may involve

a formal evaluation of the supplier capability as discussed in Chap. 8. Outsourcing

is often employed in the software sector, and it is important to select a supplier with

the capability to deliver a high-quality solution on time and on budget.

There are ISO 9001 requirements for planning and carrying out production and

service provision under controlled conditions; validating production and service

provision processes; establishing a process for identification and traceability;

handling customer property correctly; and preserving the product. These need to

be interpreted to a software organization, and efficient and reliable processes are

essential to producing high-quality software. The production of software involves

the definition of the content of a release, performing a release build to produce the

executable files, and the storage of the released software on electronic media such

as a CD or floppy disk.

Identification and traceability requires a sound configuration management system

which includes document change control, software source code control management,

192 11 ISO 9000

http://dx.doi.org/10.1007/978-3-319-06106-1_6
http://dx.doi.org/10.1007/978-3-319-06106-1_4
http://dx.doi.org/10.1007/978-3-319-06106-1_5
http://dx.doi.org/10.1007/978-3-319-06106-1_8

change control management, and release builds. The released software is usually

accompanied by release notes and an installation guide. The validation of processes

for production and service is addressed by audits of processes and products, and

quantitative measurement of processes.

The contents of a release and the versions of the source files which make up the

release should be known, as well as notes to specify the defects corrected and

enhancements implemented. A product in the manufacturing field is composed of

many components, which are provided by various suppliers. It is important that the

constituents of each product be fully known and traceable, as if it is discovered

that a batch of components which has been used in the manufacture of a product

contains defective items, it may be necessary to recall all products which have

been manufactured with components from this particular batch. Consequently, the

product must be clearly identified and traceable.

The customer property sub-clause requires the organization to exercise care

with customer property while it is under the organization’s control. This requires

the organization to identify all customer property and to verify and protect it.

This could potentially include confidential information, intellectual property, and

test data. The software organization may have access to the customer computer

network, and must handle the network with the utmost care and confidentiality.

The preservation of product clause requires the organization to have imple-

mented processes for handling, storage, packaging, and delivery of the product.

The implementation for a software organization usually requires that the software

be stored on electronic media and packaged and delivered to the customer.

The control of measuring and monitoring devices is important in the manufa-

cturing sector, and regular calibration of the machines is required to ensure correct

performance. For a software organization this is interpreted to the testing environ-

ment, the test tools and test scripts, and automated testing.

11.3.5 Measuring, Analysis, and Improvement

This clause is concerned with the measurement of processes to improve the perfor-

mance of the quality management system. It involves the analysis of data to plan

improvement actions, and to verify that the improvements have been effective.

Measurement provides objective data on the effectiveness of the quality system,

and detailed analysis using problem-solving techniques is done to identify the key

issues, and to define improvement actions. It includes the following sub-clauses:

– Measurement of customer satisfaction

– Internal audits

– Measurement and monitoring of processes

– Measurement and monitoring of product

– Control of nonconformity

– Analysis of data

– Continual improvement

– Corrective action

– Preventative action

11.3 ISO 9000 193

The measurement of customer satisfaction is important, as the goal is to develop

a high-quality product that will satisfy the customer. A customer satisfaction survey

(as discussed in an earlier chapter) is often employed to measure the level of

satisfaction, as well as monitoring customer problems and complaints. The feed-

back from the survey is discussed with the customer, and an action plan is prepared

to address any issues. The monitoring of customer satisfaction will indicate the

success of the organization in satisfying its customers.

The organization needs to establish an internal audit process, and the objective

of an audit is to provide visibility to management on the processes being used and

the product being built. The audit is an independent examination, and is typically

carried out by a trained auditor. The level of compliance to the defined process is

considered, as is the effectiveness of the defined process. Improvement oppor-

tunities are identified and tracked to completion. The output from the audit is an

audit report, and the audit report includes the findings of the audit and recom-

mendations. Audits were discussed in Chap. 9.

The measurement and monitoring of processes requires the organization to

implement measurements to evaluate process performance. Process measurement

is essential in a manufacturing environment, and process measurement in a software

organization is focused on measuring key software processes. Quantitative goals

are set for the performance of key processes, and actual results compared against

the objectives. There is more information for software organizations in the discus-

sion of CMMI level 4 discussed in Chap. 13. The idea is that if process performance

falls outside the control limits, then this will trigger corrective actions to adjust the

performance of the process to ensure that it performs within the upper and lower

control limits. This is best seen with a process performance diagram (e.g., Fig. 1.2).

The measurement and monitoring of a product is performed to verify that the

product requirements are fulfilled. This enables an objective decision to be made on

whether it is appropriate to release the software to potential customers. It may

involve specifying various quantitative goals to be satisfied prior to release.

The control of nonconformity is concerned with the procedure for repor-

ting defects, and taking action to correct the defect. The defects are often

recorded with a defect reporting tool or a spreadsheet, and relevant information

recorded. This includes the severity of the defect, its description, the date that it

occurred, the technical person responsible for its correction, the type of defect, and

so on. The quality status of the project includes the open defects, and the most

serious defects need to be resolved prior to release of the software.

The analysis of data is used in decision making, and the organization needs

to analyse the data to determine the appropriate actions for improvement. The

objective of continual improvement is to improve the effectiveness of the quality

management system through the use of the quality policy, quality objectives, audit

results, customer satisfaction measurements, management review, analysis of data,

and corrective and preventive actions.

Corrective action is taken on customer complaints, defect reports, audit reports,

etc., and the results lead to a more effective QMS. It involves analysis of the

identified issues or defects, with actions defined to address, and the effectiveness

of the actions periodically reviewed. The objective of preventive action is to

194 11 ISO 9000

http://dx.doi.org/10.1007/978-3-319-06106-1_9
http://dx.doi.org/10.1007/978-3-319-06106-1_13
http://dx.doi.org/10.1007/978-3-319-06106-1_1

identify actions to prevent potential defects from occurring. This requires analysis

to determine the causes of defects, identifying actions to be taken, implementing

the actions, and periodically reviewing the effectiveness of the actions.

11.4 Implementing ISO 9001

The implementation of ISO 9001 in an organization is closely related to the

activities described in Sects. 11.3.1, 11.3.2, 11.3.3, 11.3.4, and 11.3.5. ISO 9001

is implemented to improve quality and customer satisfaction, and a certified ISO

9001 organization has demonstrated to the satisfaction of the ISO 9001 auditors that

a sound quality system is in place in the organization. ISO 9001 implementation

consists of the steps listed in Table 11.3.

11.5 ISO 9000 and Improvement

Many organizations aspire to excellence, and superior results may be achieved by

continuous improvement of the underlying processes and standards. An organiza-

tion may assess its current level of excellence with respect to some international

quality standard or model, and use the assessment results to improve its capability.

The ISO 9000 standard may be used by an organization to assess its current level

of maturity. The findings from the assessment will indicate the areas which the

organization needs to work on to improve. This section describes a simple self-

assessment process, which has been adapted from ISO 9004.

11.5.1 Self-Assessment Process

Table 11.4 is a self-assessment of an imaginary organization with respect to the ISO

9001 standard. The self-assessment yields a maturity profile, and it indicates the

extent to which the various ISO 9001 clauses are implemented in the organization.

It is typically carried out internally by one or more people from the organization.

The example presented here includes a small selection of the ISO 9001 clauses,

and they are rated as either “not implemented”, “partially implemented”, “largely
implemented”, or “fully implemented”.

The results of the self-assessment are analysed and used to prepare an action

plan for improvement.

11.5.2 ISO 9001 Certification Process

The steps required to implement ISO 9001 were described in Sect. 11.4

(Table 11.3). The activities involved in the certification process involve deter-

mining if the organization is ready for an ISO 9001 assessment; contacting the

certification body; preparing the participants; agreeing a date for the assessment;

11.5 ISO 9000 and Improvement 195

Table 11.3 ISO 9001 implementation

Step Description

Awareness training This involves briefing management on ISO 9000 and the steps

involved in its implementation.

Establish a team Management sets up a team with responsibility for ISO 9000

implementation. The team will consist of management and

employees, and the team chairperson will provide regular progress

reports to management. The team members will champion ISO 9000

in the organization, and will receive more detailed training on

ISO 9000.

Establish ISO 9000 status The current ISO 9001 status of the organization is determined. This

may be done by a consultant, or if the team has sufficient expertise it

may perform a self-assessment of the organization as described in ISO

9004. The areas that need to be addressed to satisfy the standards are

identified.

Prepare action plan The actual ISO 9001 status is used to prepare the action plan for

implementation, and the resources needed for implementation are

identified and provided. The action plan defines the activities to be

performed, the resources required, and the estimated completion date

of each activity.

Track action plan The action plan is the project plan for ISO 9001 implementation, and

the plan is tracked and updated to reflect the progress made, and the

work that needs to be done.

Present status of action

plan

The status of the action plan is presented regularly to management.

The chairperson presents the status of the action plan, and will re-plan

as appropriate.

ISO 9000 readiness

assessment

It is useful to determine if the organization is ready for a formal ISO

9001 assessment. This optional step may be done with a readiness

review, and this is carried out by an independent body or consultant.

This review identifies any serious issues that need to be resolved prior

to the official assessment.

Contact registrar

(certification body)

Once the organization is confident that it has implemented an ISO

9001 quality system (Fig. 11.1), it may then apply to the certification

body for an ISO 9001 audit of its quality system. This involves

Contact the certification body.

Furnish relevant details about the company.

Supply the quality manual and any requested processes or

procedures to the certification body.

Arrange a date for when the auditors will visit the company.

Brief participants in the company on the visit and the expected

behaviour during the visit.

Arrange logistics for the visit.

Arrange interview rooms.

Facilitate interview schedule.

Supply any requested documentation.

Official ISO 9000 Audit The auditor(s) compare the quality system against the ISO 9001

requirements, and they interview individuals and groups.

The participants answer all questions openly and honestly.

The auditor(s) will stay on site for 1–2 days

(continued)

196 11 ISO 9000

arranging the logistics; providing all required documentation and records to the

assessors; and acting on any feedback provided by the assessors.

11.6 Review Questions

1. What is ISO 9000?

2. Explain the differences between ISO 9000, ISO 9001 and ISO 9004.

3. What are the advantages of achieving ISO 9001 certification?

4. Describe the ISO 9001 clauses.

5. Describe the steps involved in implementing ISO 9001.

6. Describe the steps involved in applying for ISO 9001 certification.

7. Describe how ISO 9000 may be used for improvement.

Table 11.3 (continued)

Step Description

The standard requires certain processes and procedures, records, and

controls to be in place.

The auditors will examine evidence of compliance and records

The auditors will determine the extent to which the written procedures

correspond to the actual observed behaviour.

The auditors will publish an evaluation report which will detail the

findings of the audit.

The auditors may identify corrective actions to be carried out prior to

the granting of ISO 9001 certification.

The company is required to carry out the corrective actions, and these

are then verified.

The ISO 9001 registration is then granted.

The registration is valid for approximately 2 years, and follow-up

audits are conducted to ensure that the quality system remains ISO

9001 compliant.

Continuous improvement The organization will use the feedback from the formal assessment to

continuously improve.

Celebrate The award of ISO 9001 certification is a major achievement for the

organization and merits a celebration. The celebration demonstrates

the importance attached to quality and customer satisfaction

Table 11.4 Simple ISO 9000 self-assessment

ISO 9000 clause

Not

implemented

Partially

implemented

Largely

implemented

Fully

implemented

4.2.4 Control of records

5.3 Quality policy

5.6 Management review

6.2.2 Competence

7.2.3 Customer reqs

11.6 Review Questions 197

11.7 Summary

ISO 9000 is an international quality standard which enables an organization to

implement a sound quality system that is dedicated to customer satisfaction and

continuous improvement. The independent certification of ISO 9001 indicates

that the company has a sound quality management system in place, and that the

company is committed to the core values of quality, customer satisfaction, and

continuous improvement.

The ISO 9000 standards may be applied to various types of organizations,

including manufacturing, software, and service organizations. It is regarded as a

minimal quality standard that an organization committed to quality should satisfy.

Many organizations require their subcontractors to be ISO 9001 certified, as this

provides confidence in the subcontractor’s quality system, and in the ability of the

subcontractor to produce high-quality software.

The latest revision of ISO 9000 is termed ISO 9000:2008, and it places emphasis

on customer satisfaction and continuous improvement. It includes a process

model and the emphasis in the standard is on processes, and in improvement to

the processes. It is a family of standards and includes ISO 9000, ISO 9001, and ISO

9004. The ISO 9004 standard provides practical guidance on the implementation of

ISO 9001, and guidelines for performance improvement of the quality system.

The implementation of ISO 9001 involves setting up a team to manage the

implementation, and in providing the required resources for implementation.

A self-assessment may be performed to indicate the current ISO 9001 status, and

an action plan prepared to address the weaker areas. The implementation is

managed and tracked like a normal project, and it involves defining processes and

procedures, maintaining records, and training. The quality group in the organization

will play a key role in the implementation of the standard and in ensuring com-

pliance with the ISO 9001 requirements. The award of ISO 9001 certification

provides an indication that the company is focused on quality, customer satisfaction

and continuous improvement.

198 11 ISO 9000

Software Process Improvement 12

Key Topics

Software Process

Software Process Improvement

Process Mapping

Benefits of Software Process Improvement

CMMI

ISO/IEC 15504 (SPICE)

ISO 9000

PSP and TSP

Root Cause Analysis

Six Sigma

12.1 Introduction

The success of business today is highly influenced by the functionality and quality

of the software that it uses. It is essential that the software is safe, reliable, of a high

quality and fit for purpose. Companies may develop their own software internally,

or they may acquire software solutions off-the-shelf or from bespoke software

development. Software development companies need to deliver high-quality and

reliable software consistently on time to their customers.

Cost is a key driver in most organizations and it is essential that software is

produced as cheaply and efficiently as possible, and that waste is reduced or

eliminated in the software development process. In a nutshell, companies need to

produce software that is better, faster and cheaper than their competitors in order to

survive in the market place. That is, companies need to continuously work smarter

to improve their businesses and to deliver superior solutions to their customers.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_12,
Springer International Publishing Switzerland 2014

199

Software process improvement initiatives are aligned to business goals and

play a key role in helping companies achieve their strategic goals. It is invaluable

in the implementation of best practice in organizations, and allows companies to

focus on fire prevention rather than firefighting. It allows companies to problem

solve key issues to eliminate quality problems, and to critically examine their

current processes to determine the extent to which they meets its needs, as well

as identifying how the processes can be improved, and where waste can be mini-

mized or eliminated.

It allows companies to identify the root causes of problems (e.g., using the five
why tool), and to determine appropriate solutions to the problems. The benefits of

successful process improvement include the consistent delivery of high-quality

software, improved financial results and increased customer satisfaction.

Software process improvement initiatives lead to a focus on the process and on

ways to improve it. Many problems are caused by defective processes rather than

people, and a focus on the process helps to avoid a blame culture that occurs

when blame is apportioned to individuals rather than the process. The focus on

the process leads to a culture of openness in discussing problems and their

solutions, and in instilling process ownership in the process practitioners.

Software process improvement allows companies to mature their software engi-

neering processes, and to achieve their business goals more effectively. It helps

software companies to deliver high-quality software on-time and on-budget, as

well, reducing the cost of development, and improving customer satisfaction. It has

become an indispensable tool for software engineers and managers to achieve their

goals, and provides a return on investment to the organization.

12.2 What Is a Software Process?

A software development process is the process used by software engineers to design

and develop computer software. It may be an undocumented ad hoc process as

devised by the team for a particular project, or it may be a standardized and

documented process used by various teams on similar projects. The process is

seen as the glue that ties people, technology and procedures coherently together.

The processes employed in software development include processes to deter-

mine the requirements; processes to design and development software; processes to

verify that the software is fit for purpose; and processes to maintain the software.

A software process is a set of activities, methods, practices and transformations

that people use to develop and maintain software and the associated work products.

DEFINITION 12.1 (SOFTWARE PROCESS) A process is a set of practices or tasks

performed to achieve a given purpose. It may include tools, methods, material

and people.

200 12 Software Process Improvement

An organization will typically have many processes in place for doing its work,

and the object of process improvement is to improve these to meet business goals

more effectively.

The Software Engineering Institute (SEI) believes that there is a close relation-

ship between the quality of the delivered software and the quality and maturity of

the underlying processes employed to create the software. The SEI adopted and

applied the principles of process improvement employed in the manufacturing field

to develop process maturity models such as the CMM and its successor the CMMI.

These maturity models are invaluable in maturing software processes in software

intensive organizations.

The process is an abstraction of the way in which work is done in the organi-

zation, and is seen as the glue that ties people, procedures and tools together

(Fig. 12.1).

A process is often represented by a process map which details the flow of activities

and tasks. The process map will typically include the inputs to each activity as well

as the output from an activity. Often, the output from one activity will become an

input to the next activity. A simple example of a process map for creating the system

requirements specification is described in Fig. 12.2. The input to the activity to create

the systems requirements specification will typically be the business requirements,

whereas the output is the systems requirements specification document itself.

As a process matures it is defined in more detail and documented. It will have

clearly defined entry and exit criteria, inputs and outputs, an explicit description

of the tasks, verification of the process and consistent implementation throughout

the organization.

Process

Procedures

People Technology

Standards
Procedures
Checklists

Fig. 12.1 Process as glue for people, procedures and tools

12.2 What Is a Software Process? 201

12.3 What Is Software Process Improvement?

The origins of the software process improvement field go back to Walter Shewhart’s

work on statistical process control in the 1930s. Software process improvement is

concerned with practical action to improve the processes in the organization to ensure

that they meet business goals more effectively. For example, the goal may be to

deliver projects faster and with higher quality.

Shewhart’s work was later refined by Deming and Juran, and they argued

that high-quality processes are essential to the delivery of a high-quality product.

They argued that the quality of the end product is largely determined by the

processes used to produce and support it, and that therefore needs to be an emphasis

on the process as well as the product.

These quality gurus argued that product quality will improve as variability in

process performance is reduced [15], and their approach was effective in transfor-

ming manufacturing companies with quality problems to companies that could

consistently deliver high-quality products. Further, the improvements to quality

led to cost reductions and higher productivity, as less time was spent in reworking

defective products.

The work of Deming and Juran was later applied to the software quality field by

Watt Humphries and others at the SEI leading to the birth of the software process

improvement field.

DEFINITION 12.2 (SOFTWARE PROCESS IMPROVEMENT) A program of activities

designed to improve the performance and maturity of the organization’s software

processes and the results of such a program.

Software process improvement initiatives support the organization in achieving

its key business goals such as delivering software faster to the market, improving

quality, reducing or eliminating waste. The objective is to work smarter and to build

software better, faster, and cheaper than competitors. Software process improve-

ment makes business sense and provides a return on investment.

There are international standards and models available to support software

process improvement. These include the CMMI Model, the ISO 90001 standard,

and ISO 15504 (popularly known as SPICE). The CMMI model was developed by

Create System
Requirements

Business
Requirements

System
Requirements
Specification

Fig. 12.2 Sample process map

202 12 Software Process Improvement

the Software Engineering Institute (SEI), and includes best practice for processes in

software and systems engineering. The ISO 9001 standard is a quality management

system that may be employed in hardware or software development companies.

The ISO 15504 standard is an international standard for software process improve-

ment and process assessment.

Software process improvement is concerned with defining the right processes

and following them consistently. It involves training all staff on the new processes,

refining the processes, and continuously improving the processes.

12.4 What Are the Benefits of Software Process Improvement?

It is a challenge to deliver high-quality software consistently on time. There are

problems with budget and schedule overruns, late delivery of the software, spiral-

ling costs, quality problems with the delivered software, customer complaints, and

staff morale.

Software process improvement can assist in dealing with these problems.

There are costs involved but it provides a return on the investment made. Specifi-

cally, the benefits from software process improvement include:

– Improvements to quality

– Reductions in the cost of poor quality

– Improvements in productivity

– Reductions to the cost of software development

– Improvements in on-time delivery

– Improved consistency in budget and schedule delivery

– Improvements to customer satisfaction

– Improvements to employee morale

The Software Engineering Institute maintains data on the benefits that organi-

zations have achieved from using the CMMI. These include improvements in

several categories such as cost, schedule, productivity, quality, customer satisfac-

tion, and the return on investment.

Table 12.1 presents the results from 25 organizations. These results are from

conference presentations, published papers and individual collaborations [59].

For example, Northrop Grumman Defense Systems met every milestone (25 in a

row) with high-quality and customer satisfaction; Lockheed Martin reported an

80 % increase in software productivity over a 5 year period when it achieved CMM

level 5 and obtained further increases in productivity as it moved to CMMI level

5. Siemens (India) reported an improved defect removal rate from over 50 % before

testing to over 70 % before testing, and a post- release defect rate of 0.35 defects per

KLOC. Accenture reported a 5:1 return on investment from software process

improvement activities.

12.4 What Are the Benefits of Software Process Improvement? 203

12.5 What Models Are Used in Software Process Improvement?

A process model1 such as the CMMI defines best practice for software processes in

an organization. It describes what the processes should do rather than how they

should be done, and this allows the organization to use its professional judgment in

the implementation of processes to meet its needs. The process model will need to

be interpreted and tailored to the particular organization.

A process model provides a place to start an improvement initiative and it

provides a common language and shared vision for improvement. It provides a

framework to prioritize actions and allows the benefits of the experience of other

organizations to be shared. The popular process models used in software process

improvement include:

– Capability Maturity Model Integration (CMMI)

– ISO 9001 Standard

– ISO 15504

– PSP and TSP

– Six Sigma

– IEEE standards

– Root Cause Analysis (RCA)

– Balanced Scorecard

The CMMI was developed by the Software Engineering Institute, and is the

successor to the older software CMM which was released in the early 1990s.

The latter was specific to the software field it was influenced by Watt Humphrey’s

work at IBM [29]. The CMMI is a suite of products used for improving processes,

and it includes models, appraisal methods and training material. The CMMI

models address three areas of interest:

– CMMI for Development (CMMI-DEV)

– CMMI for Services (CMMI-SVC)

– CMMI for Acquisition (CMMI-ACQ)

The CMMI Development Model is discussed in the next chapter. It is a frame-

work that allows organizations to improve their maturity by improvements to their

Table 12.1 Benefits of software process improvement (CMMI)

Improvements Median (%) #Data points (%) Low (%) High (%)

Cost 20 21 3 87

Schedule 37 19 2 90

Productivity 62 17 9 255

Quality 50 20 7 132

Customer satisfaction 14 6 �4 55

ROI 4.7:1 16 2:1 27:1

1 There is the well-known adage “All models are wrong, some are useful”.

204 12 Software Process Improvement

underlying processes. It provides a structured approach and allows the organization

to set improvement goals and priorities. It provides a clearly defined roadmap for

improvement and it allows the organization to improve at its own pace. Its approach

is evolutionary rather than revolutionary, and it recognizes that a balance is required

between project needs and process improvement needs. It allows the processes to

evolve from ad hoc immature activities to disciplined mature processes.

The CMMI practices may be used for the development, acquisition and mainte-

nance of products and services. A SCAMPI appraisal determines the process maturity

of an organization and allows it to benchmark itself against other organizations.

ISO 9001 is an internationally recognized quality management standard and is

customer and process focused. It applies to the processes that an organization uses

to create and control products and services, and it emphasizes continuous improve-

ment.2 The standard is designed to apply to any product or service that an organi-

zation supplies.

The implementation of ISO 9001 involves understanding the requirements of

the standard and how the standard applies to the organization. It requires the

organization to identify its quality objectives, define a quality policy, produce

documented procedures, and carry out independent audits to ensure that the pro-

cesses and procedures are followed. An organization may be certified against the

ISO 9001 standard to gain recognition to its commitment to quality and continuous

improvement. The certification involves an independent assessment of the organi-

zation to verify that it has implemented the ISO 9001 requirements properly, and

that the quality management system is effective. It will also verify that the pro-

cesses and procedures defined are consistently followed and that appropriate

records are maintained. The ISO 9004 standard provides guidance for continuous

improvement.

The ISO/IEC 15504 standard (popularly known as ISO SPICE) is an interna-

tional standard for process assessment. It includes guidance for process improve-

ment and for process capability determination, as well as guidance for performing

an assessment. It includes an exemplar process model for software and systems

lifecycle processes. There is a version of SPICE termed “Automotive SPICE” that is
used in the automotive sector.

ISO/IEC 15504 can be used in a similar way to the CMMI and its exemplar

models (for either software or systems lifecycles) may be employed to implement

best practice in process definition. Assessments may be performed to identify

strengths and opportunities for improvement.

The Personal Software Process (PSP) is a disciplined data driven software

development process that is designed to help software engineers understand and to

improve their personal software process performance. It was developed by Watt

Humphrey at the SEI, and it helps engineers to improve their estimation and planning

skills and to and to reduce the number of defects in their work. This enables them to

make commitments that they can keep and to manage the quality of their projects.

2 The ISO 9004 standard provides guidance on continuous improvement.

12.5 What Models Are Used in Software Process Improvement? 205

The Team Software Process (TSP) was developed by Watt Humphries at the

SEI, and is a structured approach designed to help software teams understand and

improve their quality and productivity. Its focus is on building an effective software

development team, and it involves establishing team goals, assigning team roles as

well as other teamwork activities. Team members must already be familiar with

the PSP.

Six Sigma (6σ) was developed by Motorola as a way to improve quality and

reduce waste. Its approach is to identify and remove the causes of defects in

processes by reducing process variability. It uses quality management techniques

and tools such as the five whys, business process mapping, statistical techniques,

and the DMAIC and DMADV methodologies. There are several roles involved in

six sigma initiatives such as Champions, Black Belts and Green Belts, and each role

requires knowledge and experience and is awarded on merit subject to training and

certification. Sponsorship and leadership is required from top management to

ensure the success of a Six Sigma initiative. Six Sigma was influenced by earlier

quality management techniques developed by Shewhart, Deming and Juran.

A Six Sigma project follows a defined sequence of steps and has quantified

targets. These targets may be financial, quality, customer satisfaction, and cycle

time reduction.

12.6 Process Mapping

The starting point for improving a process is first to understand the process as it is

currently performed. The process stakeholders reach a common understanding

of how the process is actually performed, and to identify how it may be improved.

The process as currently performed is then sketched pictorially, with the activities

and their inputs and outputs recorded graphically. This graphical representation is

termed a “process map” and is an abstract description of the process “as is”.
The process map is an abstraction of the way that work is done, and it may be

critically examined to determine how effective it really is, and to identify weak-

nesses. This critical examination of the process by the process practitioners leads to

modifications to its definition, and the proposed definition is sketched in a new

process map to yield the process “to be”. Once the team has agreed the new process

the templates required to support the process become clear from an examination

of the input and output of the various activities. Procedures or guidelines will be

documented to provide the details on how the process is to be carried out.

12.7 Process Improvement Initiatives

The need for a software process improvement initiative often arises from the

realization that the organization is weak in some areas in software engineering,

and that it needs to improve to achieve its business goals more effectively.

206 12 Software Process Improvement

The starting point of any improvement initiative is an examination of the business

goals of the organization and these may include:

– Delivering high-quality products on time

– Delivering products faster to the market

– Reducing the cost of software development

– Improving software quality

There is more than one approach to the implementation of the CMMI. A small

organization has fewer resources available and team members involved in the

initiative will typically be working part time. Larger organizations may be able

to assign people full time on the improvement activities. The software process

improvement initiative should be designed to enable the organization achieve its

business goals more effectively.

Once the organization goals have been defined the improvement initiative

commences. This involves conducting an appraisal to determine the current strengths

and weaknesses of the processes; analysing the results to formulate a process impro-

vement plan; implementing the plan; piloting the improved processes and verifying

that they are effective; rolling out the new processes. The improvements are moni-

tored for effectiveness and the cycle repeats. The philosophy is:

• The improvement initiative is based on business needs

• Improvements should be planned based on an objective understanding of the

strengths and weaknesses of the current processes in the organization

• The CMMI Model or an alternate model is the vehicle for improvement.

• The improvements are prioritized (it is not possible to do everything at once).

• The improvement initiative needs to be planned and managed as a project.

• The results achieved need to be reviewed at the end of the period, and a new

improvement cycle started for continuous improvement

• Software process improvement requires people to change their behaviour, and so

organization culture needs to be considered.

• There needs to be a Process Champion to drive the process improvement

initiative in the organization.

• Senior management need to be 100 % committed to the success of the initiative.

• Staff need to be involved in the improvement initiative, and there needs to be a

balance between project needs and the improvement activities

The continuous improvement cycle is influenced by the IDEALSM model and by

Deming’s Plan-Do-Check-Act (PDCA) process improvement cycle. It is described

in Chap. 14.

12.8 Barriers to Success

Software process improvement initiatives are not always successful, and occasionally

an improvement initiative is abandoned. Some of the reasons for failure are:

– Unrealistic expectations

– Trying to do too much at once

– Lack of Senior Management Sponsorship

12.8 Barriers to Success 207

http://dx.doi.org/10.1007/978-3-319-06106-1_14

– Focusing on a Maturity Level

– Poor Project Management of the initiative

– Not run as a standard project

– Insufficient involvement of staff

– Insufficient time to work on improvements

– Inadequate training on Software Process Improvement

– Lack of pilots to validate new processes

– Inadequate rollout of new processes

It is essential that a software process improvement initiative is treated as a

standard project with a project manager assigned to manage the initiative. Senior

management need to be 100 % committed to the success of the initiative, and they

need to make staff available to work on the improvement activities. It needs to

be clear to all staff that the improvement initiative is a priority to the organization.

All employees need to receive appropriate training on software process improve-

ment and on the process maturity model.

The CMMI project manager needs to consider the risks of failure of the initiative

and to manage them accordingly.

12.9 Review Questions

1. What is a software process?

2. What is software process improvement?

3. What are the benefits of software process improvement?

4. Describe the various models available for software process improvement?

5. Draw the process map for the process of cooking your favourite meal.

6. Describe how a process improvement initiative may be run?

7. What are the main barriers to successful software process improvement

initiatives and how can they be overcome?

12.10 Summary

The success of business is highly influenced by software, and companies may

develop their own software internally, or they may acquire software solutions off-

the-shelf or from bespoke software development. Companies need to produce

software that is better, faster and cheaper than their competitors in order to survive

in the market place.

Software process improvement plays a key role in helping companies to achieve

their strategic goals, and is invaluable in the implementation of best practice in

organizations. It allows companies to focus on fire prevention rather than firefig-

hting, and to critically examine their processes to determine the extent to which

208 12 Software Process Improvement

they meet their needs. It enables them to identify how the process may be improved

and how waste can be minimized or eliminated.

Software process improvement initiatives lead to a focus on the process, and a

focus on process thinking is important since many problems are caused by defective

processes rather than by people. A focus on the process rather than people leads to a

culture of openness in discussing problems, and instils process ownership in the

process practitioners.

Software process improvement allows companies to mature their software engi-

neering processes, and to achieve their business goals more effectively. It helps

software companies to deliver the agreed software on-time and on-budget, as well

as improving the quality of the delivered software, reducing the cost of development,

and improving customer satisfaction. It has become an indispensable tool for soft-

ware engineers and managers to achieve their goals, and provides a return on

investment to the organization.

The next chapter gives an introduction to the Capability Maturity Model

Integration.

12.10 Summary 209

Capability Maturity Model Integration 13

Key Topics

CMMI Maturity Levels

CMMI Capability Levels

CMMI Staged Representation

CMMI Continuous Representation

CMMI Process Areas

Appraisals

13.1 Introduction

The Software Engineering Institute1 developed the Capability Maturity Model

(CMM) in the early 1990s as a framework to help software organizations improve

their software process maturity. The CMMI is the successor to the older CMM, and

its implementation brings best practice in software and systems engineering into the

organization. The SEI and many other quality experts believe that there is a close

relationship between the maturity of software processes and the quality of the

delivered software product.

1 The SEI was founded by the US Congress in 1984 and has worked successfully in advancing

software engineering practices in the US and worldwide. It performs research to find solutions to

key software engineering problems, and its proposed solutions are validated through pilots. These

solutions are then disseminated to the wider software engineering community through its training

programme. The SEI’s research and maturity models have played an important role in helping

companies to deliver high-quality software consistently on time and on budget. The SEI opened a

European office in Frankfurt, Germany in 2004.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_13,
Springer International Publishing Switzerland 2014

211

The CMM built upon the work of quality gurus such as Deming [15], Juran [33]

and Crosby [14]. These quality gurus were effective in transforming struggling

manufacturing companies with quality problem to companies that could consis-

tently produce high quality products. Their success was due to the focus on

improving the manufacturing process and in reducing variability in the process.

The work of these quality experts was discussed in Chap. 1

Similarly, software companies need to have quality software processes to deliver

high-quality software to their customers. The SEI has collected empirical data to

suggest that there is a close relationship between software process maturity and the

quality of the delivered software. Therefore there is a need to focus on the software

process as well as on the product.

The CMM was released in 1991 and its successor, the CMMI® model, was

released in 2002 [13]. The CMMI is a framework to assist an organization in the

implementation of best practice in software and systems engineering. It is an

internationally recognized model for process improvement and is used world-

wide by thousands of organizations.

The focus of the CMMI is on improvements to the software process to ensure

that they meet business needs more effectively. A process is a set of practices or

tasks performed to achieve a given purpose. It may include tools, methods, material

and people. An organization will typically have many processes in place for doing

its work, and the object of process improvement is to improve these to meet

business goals more effectively.

The process is an abstraction of the way in which work is done in the organiza-

tion, and is seen as the glue (Fig. 13.1) that ties people, procedures and tools

together.

It may be described by a process map which details the flow of activities and

tasks. The process map will include the input to each activity and the output from

each activity. Often, the output from one activity will become the input to the next

activity. A simple example of a process map for creating the system requirements

specification was described in the previous chapter (Fig. 12.2).

The ISO/IEC 12207 standard for software processes distinguishes between

several categories of software processes including the primary life cycle processes

for developing and maintaining software; supporting processes to support the

software development lifecycle; and organization life cycle processes. These are

summarized in Fig. 13.2.

Watt Humphries began applying the ideas of Deming, Juran and Crosby to

software development, and he published the book “Managing the Software

Fig. 13.1 Process as glue for

people, procedures and tools

212 13 Capability Maturity Model Integration

http://dx.doi.org/10.1007/978-3-319-06106-1_1
http://dx.doi.org/10.1007/978-3-319-06106-1_12

Process” [29] after he moved to the SEI to work on software process maturity

models with the other SEI experts. The SEI released the Capability Maturity Model

in the early 1990s, and this process model has proved to be effective in assisting

companies in improving their software engineering practices and in achieving

consistent results and high-quality software.

The CMM is a process model and it defines the characteristics or best practices

of good processes. It does not prescribe how the processes should be done and

allows the organization the freedom to interpret the model to suit its particular

context and business needs. It also provides a roadmap for an organization to get

from where it is today to a higher level of maturity. The advantage of model-based

improvement is that it provides a place to start process improvement, as well as a

common language and a shared vision.

The CMM consists of five maturity levels with the higher maturity levels

representing advanced software engineering capability. The lowest maturity level

is level 1 and the highest is level 5. The SEI developed an assessment methodology

(CBA IPI) to determine the maturity of software organizations, and initially most

organizations were assessed at level 1 maturity. However, over time companies

embarked on improvement initiatives, and matured their software processes, and

today many companies are performing at the higher maturity levels.

Fig. 13.2 ISO/IEC 12207 standard for software engineering processes

13.1 Introduction 213

The first company to be assessed at CMM level 52 was the Motorola plant in

Bangalore in India. The success of the software CMM led to the development of

other process maturity models such as the systems engineering capability maturity

mode (CMM/SE) which is concerned with maturing systems engineering practices,

and the people capability maturity model (P-CMM) which is concerned with

improving the ability of the software organizations to attract, develop, and retain

talented software engineering professionals.

The SEI commenced work on the CMMI® [13] in the late 1990s. This is a

replacement for the older CMM model and its development included merging the

software CMM and systems CMM, and ensuring that the new model was compati-

ble with the ISO 15504 standard.3 It is described in the next Section.

13.2 The CMMI

The CMMI consists of five maturity levels with each maturity level (except level 1)

consisting of a number of process areas. Each process area consists of a set of goals,

and these must be implemented by a set of related practices in order for the process

area to be satisfied. The practices specify what is to be done rather than how it

should be done. Processes are activities associated with carrying out certain tasks,

and they need to be defined and documented. The users of the process need to

receive appropriate training to enable them to carry out the process, and process

discipline need to be enforced by independent audits. Process performance needs to

be monitored and improvements made to ineffective processes.

The emphasis for level 2 of the CMMI is on maturing management practices

such as project management, requirements management, configuration manage-

ment, and so on. The emphasis on level 3 of the CMMI is on maturing engineering

and organization practices. Maturity level 3 is concerned with defining standard

organization processes, and it also includes process areas for the various engineer-

ing activities needed to design and develop the software. Level 4 is concerned with

ensuring that key processes are performing within strict quantitative limits, and

adjusting processes, where necessary, to perform within these limits. Level 5 is

concerned with continuous process improvement. Maturity levels may not be

skipped in the staged implementation of the CMMI, as each maturity level is the

foundation for work on the next level.

2 Of course, the fact that a company has been appraised at a certain CMM or CMMI rating is no

guarantee that it is performing effectively as a commercial organization. For example, the

Motorola plant in India was appraised at CMM level 5 in the late 1990s while Motorola lost

business opportunities in the GSM market.
3 ISO 15504 (popularly known as SPICE) is an international standard for software process

assessment.

214 13 Capability Maturity Model Integration

There is also a continuous representation4 of the CMMI that allows the organi-

zation to focus its improvements on key processes that are closely related to its

business goals. This allows it the freedom to choose an approach that should result

in the greatest business benefit rather than proceeding on the standard improvement

roadmap. However, in practice it is often necessary to implement several of the

level 2 process areas before serious work can be done on maturing a process to a

higher capability level. Table 13.1 presents the motivation for the implementation

of the CMMI.

The CMMI model covers both the software engineering and systems engineering

disciplines. Systems engineering is concerned with the development of systems that

may or may not include software, whereas software engineering is concerned with

the development of software systems. The model contains extra information rele-

vant to a particular discipline, and this is done by discipline amplification.5

Table 13.1 Motivation for CMMI implementation

Motivation for CMMI implementation

Enhances the credibility of the company

Marketing benefit of CMMI maturity level

Implementation of best practice in software and systems engineering

Logical path to improvement

It increases the capability and maturity of an organization

It improves the management of subcontractors

It provides improved technical and management practices

It leads to higher quality of software

It leads to increased timeliness of projects

It reduces the cost of maintenance and incidence of defects

It allows the measurement of processes and products

It allows projects/products to be quantitatively managed

It allows innovative technologies to be rigorously evaluated to enhance process performance

It improves customer satisfaction

It changes the culture from firefighting to fire prevention

It leads to a culture of improvement

It leads to higher morale in company

4Our focus is on the implementation of the staged representation of the CMMI rather than the

continuous representation. This is my preferred approach to process improvement as it provides a

clearly defined roadmap, and also allows benchmarking of organizations. Appraisals against the

staged representation are useful since a CMMI maturity level rating is awarded to the organization,

and the company may use this to publicise its software engineering capability.
5 Discipline amplification is a specialised piece of information that is relevant to a particular

discipline. It is introduced in the model by text such as “For Systems Engineering”

13.2 The CMMI 215

The CMMI allows organizations to benchmark themselves against similar

organizations. This is generally done by a formal SEI SCAMPI Class A appraisal6

conducted by an authorized SCAMPI lead appraiser (Fig. 13.3). The results will

generally be reported back to the SEI, and there is a strict qualification process to

become an authorised lead appraiser. The qualification process helps to ensure that

the appraisals are conducted fairly and objectively and that the results are consis-

tent. An appraisal is verifies that an organization has improved, and it enables the

organization to prioritize improvements for the next improvement cycle. Small

organizations will often prefer a SCAMPI Class B or C appraisal as these are less

expensive and time consuming.7

The time required to implement the CMMI in an organization depends on its size

and current maturity. It generally takes 1–2 years to implement maturity level 2, and

a further one to two years to implement level 3. The implementation of the CMMI

Fig. 13.3 CMMI Worldwide maturity 2013

6A SCAMPI appraisal is a systematic examination of the processes in an organization to

determine the maturity of the organization with respect to the CMMI. An appraisal team consists

of a SCAMPI lead appraiser, one or more external appraisers, and usually one internal appraiser. It

consists of interviews with senior and middle management and reviews with project managers and

project teams. The appraisers will review documentation and determine the extent to which the

processes defined are effective as well as the extent to which they are institutionalized in the

organization. Data will be gathered and reviewed by the appraisers, ratings produced and the

findings presented to the organization.
7 Small organizations may not have the budget for a formal SCAMPI Class A appraisal. They may

be more interested in an independent SCAMPI Class B or C appraisal, which is used to provide

feedback on their strengths and opportunities for improvement. Feedback allows the organization

to focus its improvement efforts for the next improvement cycle.

216 13 Capability Maturity Model Integration

needs to be balanced against the day-to-day needs of the organization in delivering

products and services to its customers.

The SEI has gathered empirical data (Table 13.2) on the benefits gained from the

implementation of the CMMI [60]. The table shows the median results reported to

the SEI.

The processes implemented during a CMMI initiative will generally include:

• Developing and Managing Requirements

• Design and Development

• Project Management

• Selecting and managing Subcontractors

• Managing change and Configurations

• Peer reviews

• Risk Management and Decision Analysis

• Testing

• Audits

13.3 CMMI Maturity Levels

The CMMI is divided into five maturity levels (Fig. 13.4) with each maturity level

(except level 1) consisting of several process areas. The maturity level is a predictor

of the results that will be obtained from following the software processes in the

organization. The higher the maturity level of the organization, the more capable it

is and the more predictable its results. The current maturity level acts as the

foundation for the improvements to be made in the move to the next level.

The maturity levels provide a roadmap for improvements in the organization,

and maturity levels are not skipped in the staged implementation. A particular

maturity level is achieved only when all process areas belonging to that maturity

level (and all process areas belonging to lower maturity levels) have been success-

fully implemented and institutionalized8 in the organization (Table 13.3).

Table 13.2 Benefits of

CMMI implementation
Benefit Actual saving

Cost 34 %

Schedule 50 %

Productivity 61 %

Quality 48 %

Customer satisfaction 14 %

Return on investment 4:1

8 Institutionalization is a technical term and means that the process is ingrained in the way in which

work is performed in the organization. An institutionalised process is defined, documented and

followed in the organization. All employees have been appropriately trained in its use and process

discipline is enforced via audits. It is illustrated by the phrase “That’s the way we do things around
here”.

13.3 CMMI Maturity Levels 217

The implementation of the CMMI generally starts with improvements to pro-

cesses at the project level. The focus at level 2 is on improvements to managing

projects and suppliers, and improving project management, supplier selection and

management practices, and so on.

The improvements at level 3 involve a shift from the focus on projects to the

organization. It involves defining standard processes for the organization, and

projects may then tailor the standard process (using tailoring guidelines) to produce

the project’s software process. Projects are not required to do everything in the

same way as the tailoring of the process allows the project’s defined software

process to reflect the unique characteristics of the project: i.e., a degree of variation

is allowed as per the tailoring guidelines.

The implementation of level 3 requires defining procedures and standards for

engineering activities such as design, coding and testing. Procedures are defined for

peer reviews, testing, risk management and decision analysis.

Managed (L2)
Requirements Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

Defined (L3)
Requirements Development
Technical Solution
Product Integration
Verification
Validation
Organisation Process Focus
Organisation Process Definition
Organisation Training
Integrated Project Management
Risk Management
Decision Analysis and Resolution

Quantitatively Managed (L4)
Organisation Process Performance
Quantitative Project Management

Optimising (L5)
Organisation Innovation and Deployment
Causal Analysis and Resolution

Initial (L1)

Fig. 13.4 CMMI maturity levels

218 13 Capability Maturity Model Integration

Table 13.3 CMMI maturity levels

Maturity level Description

Initial Processes are often ad hoc or chaotic with performance often unpredictable.

Success is often due to the heroics of people rather than having high-quality

processes in place. The defined process is often abandoned in times of crisis,

and there are no audits to enforce the process.

It is difficult to repeat previous success, since success is due to heroic efforts

of its people rather than processes. These organizations often over-commit,

as they often lack an appropriate estimation process on which to base project

commitments.

Firefighting is a way of life in these organizations. High-quality software

might be produced but at a cost including long hours, high level of rework,

over budget and schedule and unhappy customers. Projects do not perform

consistently as their success is dependent on the people involved.

They may have few processes defined and poor change control, poor

estimation and project planning, and weak enforcement of standards.

Managed A level 2 organization has good project management practices in place, and

planning and managing new projects is based on experience with similar

previous projects.

The process is planned, performed and controlled. A level 2 organization is

disciplined in following processes, and the process is enforced with

independent audits.

The status of the work products produced by the process is visible to

management at major milestones, and changes to work products are

controlled. The work products are placed under appropriate configuration

management control.

The requirements for a project are managed and changes to the requirements

are controlled. Project management practices are in place to manage the

project, and a set of measures are defined for budget, schedule and effort

variance. Subcontractors are managed.

Independent audits are conducted to enforce the process. The processes in a

level 2 organization are defined at the project level.

Defined A maturity level 3 organization has standard processes defined that support

the whole organization.

These standard processes ensure consistency in the way that projects are

conducted across the organization. There are guidelines defined that allow

the organization process to be tailored and applied to each project.

There are standards in place for design and development and procedures

defined for effective risk management and decision analysis.

Level 3 processes are generally defined more rigorously than level

2 processes, and the definition includes the purpose of the process, inputs,

entry criteria, activities, roles, measures, verification steps, exit criteria and

output. There is also an organization wide training program.

Quantitatively
Managed

A level 4 organization sets quantitative goals for the performance of key

processes, and these processes are controlled using statistical techniques.

Processes are stable and perform within narrowly defined limits. Software

process and product quality goals are set and managed.

A level 4 organization has predictable process performance, with variation in

process performance identified and the causes of variation corrected.

(continued)

13.3 CMMI Maturity Levels 219

The implementation of level 4 involves achieving process performance within

defined quantitative limits. This involves the use of metrics and setting quantitative

goals for project and process performance, and managing process performance. The

implementation of level 5 is concerned with achieving a culture of continuous

improvement in the company. The causes of defects are identified and resolution

actions implemented to prevent a reoccurrence.

13.3.1 CMMI Representations

The CMMI is available in the staged and continuous representations. Both

representations use the same process areas as well as the same specific and generic

goals and practices.

The staged representation was described in Fig. 13.4 and is the approach

followed here. It follows the well-known improvement roadmap from maturity

level 1 through improvement cycles until the organization has achieved its desired

level of maturity. The staged approach is concerned with organization maturity and

allows statements of organization maturity to be made, whereas the continuous

representation is concerned with individual process capability.

The continuous representation is illustrated in Fig. 13.5, and it has been

influenced by the ISO 15504 standard for process assessment. It is concerned

with improving the capability of those selected processes, and gives the organiza-

tion the freedom to choose the order of improvements that best meet their business

needs. The continuous representation allows statements of individual process

capability to be made. It employs six capability levels and a process is rated at a

particular capability level.

Each capability level consists of a set of specific and generic goals and practices,

and the capability levels provide a path for process improvement within the process

area. Process improvement is achieved by the evolution of a process from its current

capability level to a higher capability level. For example, a company may wish to

mature its project planning process from its current process rating of capability

level 2 to a rating of capability level 3. This requires the implementation of

practices to define a standard project planning process as well as collecting

improvement data. The capability levels are listed in Table 13.4.

Table 13.3 (continued)

Maturity level Description

Optimizing A level 5 organization has a continuous process improvement culture in

place, and processes are improved based on a quantitative understanding of

variation.

Defect prevention activities are an integral part of the development lifecycle.

New technologies are evaluated and introduced (where appropriate) into the

organization. Processes may be improved incrementally or through

innovative process and technology improvements.

220 13 Capability Maturity Model Integration

An incomplete process is a process that is either partially performed or not

performed at all. A performed process carries out the expected practices and work

products. However, such a process may not be adequately planned or enforced. A

managed process is planned and executed with appropriately skilled and trained

Fig. 13.5 CMMI capability levels

Table 13.4 CMMI capability levels for continuous representation

Capability level Description

Incomplete (0) The process does not implement all of the capability level 1 generic and

specific practices. The process is either not performed or partially

performed.

Performed (1) A process that performs all of the specific practices and satisfies its specific

goals. Performance may not be stable.

Managed (2) A process at this level has infrastructure to support the process. It is

managed: i.e., planned and executed in accordance with policy, its users are

trained; it is monitored and controlled and audited for adherence to its

process description.

Defined (3) A process at this level has a defined process: i.e., a managed process that is

tailored from the organization’s set of standard processes. It contributes

work products, measures and other process improvement information to the

organization’s process assets.

Quantitatively

managed (4)

A process at this level is a quantitatively managed process: i.e., a defined

process that is controlled by statistical techniques. Quantitative objectives

for quality and process performance are established and used to control the

process.

Optimizing (5) A process at this level is an optimizing process: i.e., a quantitatively

managed process that is continually improved through incremental and

innovative improvements.

13.3 CMMI Maturity Levels 221

personnel. The process is monitored and controlled and periodically enforced via

audits.

A defined process is a managed process that is tailored from the standard process

in the organization using tailoring guidelines. A quantitatively managed process is a

defined process that is controlled using quantitative techniques. An optimizing

process is a quantitatively managed process that is continuously improved through

incremental and innovative improvements.

The process is rated at a particular capability level provided it satisfies all of the

specific and generic goals of that capability level, and it also satisfies the specific

and generic goals of all lower capability levels (Fig. 13.6).

We shall be concerned with the implementation of the staged representation of

the CMMI rather than the continuous representation. The reader is referred to [13]

for more information on both representations.

13.4 Categories of CMMI Processes

The process areas on the CMMI can be divided into four categories, as given in

Table 13.5.

13.5 CMMI Process Areas

This section provides an overview of the process areas of the CMMI model. All

maturity levels with the exception of level 1 contain several process areas. The

process areas are described in more detail in [13] (Table 13.6).

Fig. 13.6 CMMI – Continuous representation

222 13 Capability Maturity Model Integration

13.6 Components of CMMI Process Areas

The maturity level of an organization indicates the expected results that its projects

will achieve, and is a predictor of future project performance. Each maturity level

consists of a number of process areas, and each process area consists of specific and

generic goals, and specific and generic practices. Each maturity level is the foun-

dation for improvements for the next level.

The specific goals and practices are listed first and then followed by the generic

goals and practices. The specific goals and practices are unique to the process area

Table 13.5 CMMI process categories

Maturity level Description

Process

management

The process areas in this category are concerned with activities to define, plan,

implement, deploy, monitor, control, appraise, measure and improve the

processes in the organization: They include:

Organization Process Focus

Organization Process Definition

Organization Training

Organization Process Performance

Organization Innovation and Deployment

Project

management

These process areas are concerned with activities to create and maintain a

project plan, tailoring the standard process to produce the project’s defined

process, monitoring progress with respect to the plan, taking corrective action,

the selection and management of suppliers, and the management of risk. They

include:

Project Planning

Project Monitoring and Control

Risk Management

Integrated Project Management

Supplier Agreement Management

Quantitative Project Management

Engineering These process areas are concerned with engineering activities such as

determining and managing requirements, designing and development the

software, testing and maintenance of the product. They include:

Requirements Development

Requirements Management

Technical Solution

Product Integration

Verification

Validation

Support These process areas include activities that support product development and

maintenance. They include:

Configuration Management

Process and Product Quality Assurance

Measurement and Analysis

Decision Analysis and Resolution

13.6 Components of CMMI Process Areas 223

Table 13.6 CMMI process areas

Maturity

level

Process

area Description of process area

Level 2 REQM Requirements Management

This process area is concerned with managing the requirements for the

project and ensuring that the requirements, project plan(s) and work

products are kept consistent with the requirements.

PP Project Planning

This process area is concerned with estimation for the project, developing

and obtaining commitment to the project plan and maintaining the plan.

PMC Project Monitoring and Control

This process area is concerned with monitoring progress with the project

and taking corrective action when project performance deviates from

the plan.

SAM Supplier Agreement Management

This process area is concerned with the selection of suppliers,

documenting the (legal) agreement/statement of work with the supplier

and managing the supplier during the execution of the agreement.

MA Measurement and Analysis

This process area is concerned with determining management information

needs and measurement objectives. Measures are then specified to meet

these objectives, and data collection and analysis procedures are defined.

Data is collected and measurements analyzed and communicated.

PPQA Process and Product Quality Assurance

This process area is concerned with providing objective visibility to

management on the extent of process compliance. Non-compliance issues

are documented and resolved by the project team.

CM Configuration Management

This process area is concerned with the management of change. It involves

setting up a configuration management system; identifying the items that

will be subject to change control and controlling changes to them.

Configuration audits are conducted.

Level 3 RD Requirements Development

This process area is concerned with eliciting and defining customer,

product and product-component requirements and analyzing and

validating the requirements.

TS Technical Solution

This process area is concerned with the design, development and

implementation of an appropriate solution to the customer requirements.

PI Product Integration

This process area is concerned with the assembly of the product

components to deliver the product, and verifying that the assembled

components function correctly together.

VER Verification

This process area is concerned with ensuring that selected work products

satisfy their specified requirements. This is achieved by peer reviews and

testing.

(continued)

224 13 Capability Maturity Model Integration

being implemented, and are concerned with what needs to be done to perform the

process. The specific practices are linked to a particular specific goal, and they

describe activities that when performed achieve the associated specific goal for the

process area (Fig. 13.7).

Table 13.6 (continued)

Maturity

level

Process

area Description of process area

VAL Validation

This process area is concerned with demonstrating that the product or

product component is fit for purpose and satisfies its intended use.

OPF Organization Process Focus

This process area is concerned with planning and implementing process

improvements based on a clear understanding of the current strengths and

weakness of the organization’s processes.

OPD Organization Process Definition

This process area is concerned with creating and maintaining a usable set

of organization processes. This allows consistent process performance

across the organization.

OT Organization Training

This process area is concerned with developing the skills and knowledge

of people to enable them to perform their roles effectively.

IPM Integrated Project Management

This process area is concerned with tailoring the organization set of

standard processes to define the project’s defined process. The project is

managed according to the project’s defined process.

RSKM Risk Management

This process area is concerned with identifying risks and determining their

probability of occurrence and impact should they occur. Risks are

identified and managed throughout the project.

DAR Decision Analysis and Resolution

This process area is concerned with formal decision making. It involves

identifying options, specifying evaluation criteria and method, performing

the evaluation, and recommending a solution.

Level 4 OPP Organization Process Performance

This process area is concerned with obtaining a quantitative understanding

of the performance of selected organization processes in order to

quantitatively manage projects in the organization.

QPM Quantitative Project Management

This process area is concerned with quantitatively managing the project’s

defined process to achieve the project’s quality and performance

objectives.

Level 5 OID Organization Innovation and Deployment

This process area is concerned with incremental and innovative process

improvements.

QPM Causal Analysis and Resolution

This process area is concerned with identifying causes of defects and

taking corrective action to prevent a re-occurrence in the future.

13.6 Components of CMMI Process Areas 225

The generic goals and practices are common to all process areas for that maturity

level, and are concerned with process institutionalization at that level. Four com-

mon features organize the generic practices and these are:

• Commitment to perform

• Ability to perform

• Directing implementation

• Verifying implementation

They describe activities that when implemented achieve the associated generic

goal(s) for the process area. The commitment to perform practices relate to the

creation of policies and sponsorship of process improvement; the ability to perform

practices are related to the provision of appropriate resources and training to

perform the process; the directing implementation practices relate to activities to

control and manage the process; and verifying practices relate to activities to verify

adherence to the process.

The implementation of the generic practices institutionalizes the process and

makes it ingrained in the way that work is done. Institutionalization means that the

process is defined, documented and understood. Process users are appropriately

trained and the process is enforced by independent audits. Institutionalization helps

to ensure that the process is performed consistently and is more likely to be retained

during times of stress. The degree of institutionalization is reflected in the extent to

which the generic goals and practices are satisfied. The generic practices ensure the

sustainability of the specific practices over time.

There is one specific goal associated with the Requirements Management pro-

cess area and it has five associated specific practices (Fig. 13.8):

Fig. 13.7 CMMI staged model

226 13 Capability Maturity Model Integration

13.6.1 SG 1 – Manage Requirements

Requirements are managed and inconsistencies with project plans and work
products are identified.

The components of the CMMI model are grouped into three categories: namely,

required, expected, and informative components. The required category is essential
to achieving goals in a particular area and includes the specific and generic goals
that must be implemented and institutionalized for the process area to be satisfied.

The expected category includes the specific and generic practices that an organiza-
tion will typically implement to perform the process effectively. These are intended

to guide individuals or groups who are implementing improvements, or who are

performing appraisals to determine the current maturity of the organization. They

state what needs to be done rather than how it should be done thereby giving

freedom on the most appropriate implementation for the organization.

The informative category includes information to guide the implementer on how

best to approach the implementation of the specific and generic goals and practices.

These include sub-practices, typical work products, discipline amplifications, and
so on. This information assists with the implementation of the process area.

The implementation and institutionalization of a process area involves the

implementation of the specific and generic practices. The specific practices are

concerned with process implementation and are described in detail in [49]. The

generic practices are concerned with process institutionalization and are

summarized in Table 13.7.

The generic goals support an evolution of process maturity, and the implemen-

tation of each generic goal provides a foundation for further process improvements.

That is, a process rated at a particular maturity level has all of the maturity of a

process at the lower levels and the additional maturity of its rated level. In other

words, a defined process is a managed process; a quantitatively managed process is

a defined process, and so on.

Fig. 13.8 Specific practices for SG1 – manage requirements

13.6 Components of CMMI Process Areas 227

Table 13.7 CMMI generic practices

Generic goal

Generic

practice Description of generic practice

GG 1 GP 1.1 Perform Base Practices

Performed Process The purpose of this generic practice is to produce the work

products and services associated with the process (i.e., as

specified in the specific practices). These practices may be

done informally without following a documented process

description and success is dependent on the individuals

performing the work. That is, the basic process is performed

but it may be immature.

GG 2 GP 2.1 Organization Policy

Managed Process The organization policy is established by senior management,

and defines the management expectations of the organization.

GP 2.2 Plan the Process

This generic practice is concerned with preparing a plan to

perform the process. The plan will assign responsibilities and

document the resources needed to perform the process as well

as any training requirements. The plan/schedule are revised as

appropriate.

GP 2.3 Provide Resources

The purpose of this generic practice is to ensure that the

resources required to perform the process (as specified in the

plan) are available when required.

GP 2.4 Assign Responsibility

The purpose of this generic practice is to assign responsibility

for performing the process and developing the work products.

GP 2.5 Train People

This generic practice is concerned with ensuring that people

receive the appropriate training to enable them to perform and

support the process.

GP 2.6 Manage Configurations

This generic practice is concerned with identifying the work

products created by the process that will be subject to

configuration management control. These are documented in

the plan for the process.

GP 2.7 Identify and Involve Relevant Stakeholders

This is concerned with ensuring that the stakeholders are

identified (as described in the plan for the process) and

involved appropriately during the execution of the process.

GP 2.8 Monitor and Control the Process

This generic practice is concerned with monitoring process

performance and taking corrective action when necessary.

GP 2.9 Objectively Evaluate Adherence

This generic practice is concerned with conducting audits to

verify that process execution adheres to the process

description.

GP 2.10 Review Status with Higher Level Management

This generic practice is concerned with providing higher level

management with appropriate visibility into the process.

(continued)

228 13 Capability Maturity Model Integration

Several of the CMMI process areas support the implementation of the generic

goals and practices. These process areas contain one or more specific practices that

when implemented may either fully implement a generic practice, or generate a

work product that is used in the implementation of the generic practice. The

implementation of the generic practices is supported by the process areas men-

tioned in Table 13.8.

13.7 SCAMPI Appraisals

An appraisal is conducted to enable an organization to understand its current

software process maturity, and to prioritize future improvements. The appraisal is

an independent examination of the processes used in the organization against the

CMMI standard. Its objective is to identify strengths and weaknesses in the

processes, and it is used to prioritize improvements in the next improvement cycle.

The SCAMPI methodology is the appraisal methodology used with the CMMI,

and it comes in three distinct flavours (SCAMPI Class A, B, and C). These classes

Table 13.7 (continued)

Generic goal

Generic

practice Description of generic practice

GG 3 GP 3.1 Establish a Defined Process

Defined Process This generic practice is concerned with tailoring the

organization set of standard processes to produce the project’s

defined process.

GP 3.2 Collect Improvement Information

This generic practice is concerned with collecting

improvement information and work products to support future

improvement of the processes.

GG 4 GP 4.1 Establish Quantitative Objectives

Quantitatively

Managed Process

This is concerned with agreeing quantitative objectives (e.g.,

quality/performance) for the process with the stakeholders.

GP 4.2 Stabilize Sub-process Performance

This generic practice is concerned with stabilizing the

performance of one or more key sub-processes of the process

using statistical techniques. This enables the process to achieve

its objectives.

GG 5 GP 5.1 Ensure Continuous Process Improvement

Optimizing Process This generic practice is concerned with systematically

improving selected processes to meet quality and process-

performance targets.

GP 5.2 Correct Root Cause of Problems

This generic practice is concerned with analyzing defects

encountered to correct the root cause of these problems and to

prevent re-occurrence.

13.7 SCAMPI Appraisals 229

vary in formality, the cost, effort and timescales involved, the rating of the

processes, and the reporting of results.

The scope of the appraisal includes the process areas to be examined, and the

projects and organization unit to be examined. It may be limited to the level

2 process areas, or the level 2 and level 3 process areas, and so on. The scope

depends on how active the organization has been in process improvement.

The appraisal will identify any gaps that exist with respect to the implementation

of the CMMI practices for each process area within the scope of the appraisal. The

appraisal team will conduct interviews and review project documentation, and they

will examine the extent to which the practices are implemented. The appraisal

findings are presented and are used to plan and prioritize the next improvement

cycle. Chapter 15 discusses SCAMPI appraisals in more detail.

Table 13.8 Implementation of generic practices

Generic goal Generic practice

Process area supporting implementation

of generic practice

GG 2 GP 2.2 Project Planning

Managed Process Plan the Process

GP 2.5 Organization Training

Train the people Project Planning

GP 2.6 Configuration Management

Manage Configurations

GP 2.7 Project Planning

Identify/involve relevant

stakeholders

GP 2.8 Project Monitoring and Control

Monitor and Control the

process

GP 2.9 Process and Product Quality Assurance

Objectively evaluate

adherence

GG 3 GP 3.1 Integrated Project Management

Defined Process Establish defined process Organization Process Definition

GP 3.2 Integrated Project Management

Improvement Information Organization Process Focus

Organization Process Definition

GG 4 GP4.1 Quantitative Project Management

Quantitatively

Managed Process

Establish quantitative

objectives for process

Organization Process Performance

GP 4.2 Quantitative Project Management

Stabilize sub-process

performance

Organization Process Performance

GG 5 GP5.1 Organization Innovation and

DeploymentOptimizing Process Ensure Continuous Process

Improvement

GP 5.2 Causal Analysis and Resolution

Correct root cause of problems

230 13 Capability Maturity Model Integration

http://dx.doi.org/10.1007/978-3-319-06106-1_15

13.8 Review Questions

1. Describe the CMMI Model.

2. Describe the staged and continuous representations of the CMMI. What

are the advantages and disadvantages of each representation?

3. Describe the CMMI maturity levels and the process areas in each level.

4. What is the purpose of the CMMI generic practices? How are they

implemented?

5. What is the difference between implementation and institutionalization?

6. What is the purpose of CMMI appraisals and how do they fit into the

software process improvement cycle?

13.9 Summary

The Capability Maturity Model Integration is a framework to assist an organization

in the implementation of best practice in software and systems engineering. It was

developed at the Software Engineering Institute and is used by many organizations

around the world.

The SEI and other quality experts believe that there is a close relationship

between the quality of the delivered software, and the maturity of the processes

used to create the software. Therefore, there needs to be a focus on the process as

well as on the product, and the CMMI contains best practice in software and

systems engineering to assist in the creation of high-quality processes.

The process is seen as the glue that ties people, technology and procedures

coherently together. Processes are activities associated with carrying out certain

tasks, and they need to be defined and documented. The users of the process need to

receive appropriate training on their use, and process discipline need to be enforced

with independent audits. Process performance needs to be monitored and

improvements made to ineffective processes.

The CMMI consists of five maturity levels with each maturity level (except level

one) consisting of several process areas. Each maturity level acts as a foundation for

improvement for the next improvement level, and each increase in maturity level

represents more advanced software engineering capability. The higher the maturity

level of the organization, the more capable it is, and the more predictable its results.

The lowest level ofmaturity ismaturity level 1 and the highest level ismaturity level 5.

Each process area consists of a set of specific and generic goals, and these must

be implemented by an associated set of specific and generic practices. The practices

specify what is to be done rather than how it should be done, and the organization is

given freedom in choosing the most appropriate implementation to meet its needs.

The SCAMPI appraisal methodology is used to determine the maturity of

software organizations. It is a systematic examination of the processes used in the

organization against the CMMI model, and it includes interviews and reviews of

13.9 Summary 231

documentation. A successful SCAMPI Class A appraisal allows the organization to

report its maturity rating to the SEI and to benchmark itself against other

companies. Appraisals are a part of the improvement cycle, and improvement

plans are prepared after the appraisal to address the findings and to prioritize

improvements.

The next chapter is concerned with setting up a CMMI improvement initiative,

and it discusses the activities involved, the teams that need to be set up, the roles

involved and their responsibilities.

232 13 Capability Maturity Model Integration

Setting Up a CMMI Initiative 14

Key Topics

Continuous Improvement Cycle

CMMI Improvement Teams

CMMI Project Plan and Schedule

CMMI Kick-off Session

Process Mapping

Piloting a New Process

Deploying a New Process

CMMI Appraisals

14.1 Introduction

The implementation of the CMMI is a project, and as with any project it needs good

planning and management to ensure its success. Once an organization makes a

decision to embark on a CMMI initiative, a project manager needs to be appointed

to manage the project. The CMMI project manager will treat the implementation as

a standard project, and plans are made to implement the CMMI within the approved

schedule and budget. The improvement initiative will often consist of several

improvement cycles, with each improvement cycle implementing one or more

process areas. Small improvement cycles may be employed to implement findings

from an appraisal or improvement suggestions from staff.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_14,
Springer International Publishing Switzerland 2014

233

One of the earliest activities carried out on any improvement initiative is to

determine the current maturity of the organization with respect to the CMMI model.

This will usually involve a SCAMPI1 Class B or C appraisal conducted by one or

more experienced appraisers. The findings will indicate the current strengths and

weaknesses of the processes as well as gaps with respect to the practices in the

CMMI. This initial appraisal is important, as it allows management in the organi-

zation to understand its current maturity with respect to the model, and to commu-

nicate where it wants to be, as well as how it plans to get there. The initial appraisal

assists in prioritising improvements for the first improvement cycle, which is

usually to implement the CMMI level 2 process areas. These include

• Project Planning and Monitoring and Control

• Requirements Management

• Configuration Management.

• Process and Product Quality Assurance.

• Measurement and Analysis.

• Selection and Management of Suppliers

The project manager will then prepare a project plan and schedule. The plan will

detail the scope of the initiative, the budget, the process areas to be implemented,

the teams and resources required, the initial risks identified, the key milestones, the

quality and communication plan, and so on.

The project schedule will detail the deliverables to be produced, the resources

required and the associated timeline for delivery.

14.2 Approach to Continuous Improvement

The need for a process improvement initiative often arises due to the realization that

the organization is weak in some areas in software engineering, and that it needs to

improve to achieve its business goals more effectively. The starting point of any

improvement initiative is an examination of the business needs of the organization,

and these may include goals such as delivering high-quality products on time or

delivering products faster to the market.

The software process improvement initiative is designed to support the organization

in achieving its business goals more effectively. The steps include examining organi-

zation needs; conducting an appraisal to determine the current strengths and weak-

nesses; and analysing the results to formulate an improvement plan. The improvement

plan is then implemented; the improvements monitored and confirmed as being

effective; and the improvement cycle repeats. These steps are described in Fig. 14.1.

1 There are three types of SCAMPI Appraisals (Class A, B, and C) which may be carried out in an

organization, and they vary in formality and expense. A SCAMPI Class A appraisal has strict

requirements and the appraisal team consists of 4–9 members. It is conducted when an organization

wants its processes rated against the CMMI standard to benchmark itself against other organizations.

The appraisal results including the maturity rating are reported back to the SEI. A SCAMPI Class C

appraisal is the least formal and costly appraisal type and is often sufficient at the start of an

improvement initiative.

234 14 Setting Up a CMMI Initiative

There is more than one approach to implement the CMMI. A small organization

has fewer resources available, and team members will typically be working part

time. Larger organizations may be able to assign people full time to the improve-

ment project. The improvement cycle suggested here is influenced by the IDEAL

model and is described in Fig. 14.2. The following is a suggested approach to

implementing the CMMI:

• The CMMI initiative is run as a project with a CMMI project manager.

• There is a project plan and schedule for the initiative.

Fig. 14.1 Steps in process improvement

Implement
 Improvements

1. Define Processes
2. SEPG Review

3. Approve for Pilot

Plan Improvements
1. Agree Scope

2. Plan & schedule
3. Provide Resources

Pilots / Refine
1. Get Feedback

2. Refine processes

Deploy
1. Train Staff

2. Deploy
3. Conduct audits

Identifying Improvements
1. Improvement Suggestions

2. Appraisal Recommendations
3. Lessons Learned

4. Periodic Process Reviews

Fig. 14.2 Continuous improvement cycle

14.2 Approach to Continuous Improvement 235

• There is a target of 3–4 h work per week for each team member involved.

• The CMMI Development Model V1.3 (Staged Representation) is employed.

• The CMMI appraisal methodology (SCAMPI) is employed

• A CMMI Steering Group is set up to provide overall management direction.

• Issues are escalated to the Steering Group where applicable

• A SEPG team is set up to coordinate the day-to-day improvement activities

• Improvement teams are setup to implement specific process areas

• The SEPG team approves the new processes produced by the improvement teams

• Team members are involved in the definition of the new processes.

• Selected processes will be piloted prior to deployment

• Feedback from pilots will be used to refine processes and standards

• Employees are trained on the new processes and standards prior to their

deployment.

• Employees are encouraged to make improvement suggestions.

• Audits are conducted to verify that the processes are followed.

• Lessons learned will feed into improvement cycles.

• Periodic process reviews are conducted to determine which processes are work-

ing well and which need to be adjusted.

• Independent appraisals are carried out at the end of an improvement cycle.

• Feedback from appraisals will be acted upon in next improvement cycle.

• Appropriate training and consultancy are provided during the initiative.

The continuous improvement cycle is described in Table 14.1.

14.3 CMMI Improvement Structure and Teams

The implementation of the CMMI requires several teams with specific responsi-

bilities to be formed. These teams will oversee the initiative and actively participate

in its implementation. The CMMI project manager is responsible for setting up the

various teams, defining a charter to explain the purpose of each team, providing

orientation to the team members, and actively working with each team.

The project manager needs to be active in monitoring progress, identifying

potential roadblocks and resolving them, and escalating issues to the SPEG or

Steering Group where appropriate. Table 14.2 suggests an improvement structure

and teams for a CMMI implementation.

The CMMI project manager is responsible for running the CMMI initiative as a

project. This involves tracking and managing the schedule, budget, effort, risks and

issues during the project, and reporting progress to the SEPG teamwhowill coordinate

the day-to-day implementation of the CMMI. The project manager will report prog-

ress to the Steering Group who provide management sponsorship of the initiative, and

who have the management influence to remove any roadblocks that may arise.

The project manager will work closely with the specific improvement teams that

are set up and resourced by the SEPG. These teams are responsible for implementing

one or more CMMI process areas such as project planning and project monitoring and

236 14 Setting Up a CMMI Initiative

control; requirements management; configuration management; and so on. The teams

involved in a typical implementation of CMMI level 2 are described in Fig. 14.3.

14.3.1 Setting Up the SEPG Team

The SEPG team is one of the first teams to be set up in the initiative. It is responsible

for day-to-day coordination of the improvement initiative, and it provides direction

and support to the improvement teams working on the implementation of specific

process areas.

Table 14.1 Continuous improvement cycle

Activity Description

Identify improvements

to be made

The improvements to be made during an improvement cycle come

from several sources:

Improvement Suggestions from Staff

Lessons Learned by Projects

Periodic process reviews

Recommendations from CMMI appraisals

CMMI Implementation Strategy

Plan improvements A project plan and schedule is prepared for a large improvement cycle

(involving the implementation of several process areas).

For a shorter improvement cycle an action plan (with owners and target

completion dates) will often be sufficient.

Implement

improvements

The plan will detail the resources required for to carry out the

improvements.

The improvements will generally be conducted by a dedicated

improvement team and approved by the SEPG.

The improvements will consist of new processes, standards, templates,

procedures, guidelines checklists, and tools (where appropriate) to

support the process.

Pilots/refine Selected new processes and standards will often be piloted prior to their

deployment to ensure that they are fit for purpose.

The feedback from the pilot is used to refine the process prior to its

general deployment.

Deploy The processes and standards are deployed using a structured approach:

Staff are trained on the new processes and standards

Staff receive support during the deployment

Audits are conducted to ensure that the new processes are followed.

Do it all again Improvement is continuous and as soon as an improvement cycle is

complete its effectiveness is considered, and a new improvement cycle

is ready to commence.

The result from the pilot may be that the new process is not suitable to be deployed in the

organization or that it needs to be significantly revised prior to deployment

14.3 CMMI Improvement Structure and Teams 237

Table 14.2 CMMI improvement structure and teams

Role/team Members Responsibility

CMMI Project

Manager

CMMI Project Manager Project Manage the CMMI improvement project.

Provide leadership on process improvement

Plan & coordinate CMMI improvements

Ensure Steering Group, SEPG and Improvement

Teams receive appropriate training on the CMMI.

Chair the SEPG Team and report progress of

improvement teams to SEPG

Report progress to the Steering Group

Facilitate review of improvement suggestions at

SEPG

Facilitate the review of Lessons Learned at the

SEPG

Facilitate periodic process reviews

Facilitate independent appraisals

Maintain continuous improvement cycle.

Steering Group

(Project Board)

Senior Manager(s) and

CMMI Project Manager

Provides management sponsorship of initiative

Provides resources and funding for the initiative

Meets monthly, bi-monthly or quarterly

Reviews progress with initiative

Uses influence to remove any roadblocks that arise

with the improvement activities.

SEPG Team Managers, Technical, and

CMMI Project Manager

Coordinate day-to-day improvement activities.

Generally meets every 2 weeks

Provides direction and support to improvement

teams

Provides sufficient staff/resources to teams

Review and approve new processes

Coordinate pilots of new processes

Coordinate training on new processes and

standards.

Coordinate rollout of new processes and standards.

Improvement

Teams

Process users and CMMI

Project Manager

Focus on specific process area(s)

Teams will usually meet weekly (or bi-weekly)

Review the current process “as is” and define the

new process “to be” (Brainstorming/CMMI).

Identify & create standards, templates, procedures

and guidelines and tools needed to support the new

process

Get feedback from the SEPG on the new process

Conduct pilots to ensure the new process is

effective.

Refine process as appropriate to address the

feedback.

Obtain approval from the SEPG on the new process

Provide any required training on the new process

Conduct rollout of new process

(continued)

238 14 Setting Up a CMMI Initiative

Table 14.2 (continued)

Role/team Members Responsibility

Staff All affected staff Participate in improvement teams as directed by

CMMI Project Manager and SEPG.

Participate in pilots (as directed by CMMI project

manager)

Participate in training on new processes

Adhere to new processes

External

Consultancy

External Consultant Conduct appraisal to determine initial maturity and

assist in planning of first improvement cycle.

Provide expertise on the CMMI and software

engineering.

Review progress made during the initiative and

conduct periodic process reviews

Provide training on the CMMI and software

engineering disciplines.

Conduct appraisal at end of each improvement

cycle and identify strengths and weaknesses in the

organization processes.

Steering
Group

SEPG

Improvement Structures / Teams

• Meets once per quarter.
• Provides resources/funding for improvement

activities
• Remove Roadblocks

• Meets every 2 weeks
• Coordinates Improvement Activities
• Provide direction and support

• Reviews and Approves New Processes
• Coordinate pilots and rollout of the new

processes

CM RM SAMPP
/ PMC

M&A PPQA

• Teams meet weekly
• Improvement Teams focus on specific

process areas
• Define New Processes & Templates
• Processes reviewed & approved by SEPG.

CMMI
Project
Manager

Fig. 14.3 CMMI Level 2 improvement structure and teams

14.3 CMMI Improvement Structure and Teams 239

The members of the SEPG will include management and technical represen-

tatives, and the team members will receive appropriate training on the CMMI. The

CMMI training will typically include:

• Overview of Software Process Improvement

• Overview of the CMMI and Maturity Levels

• Overview of CMMI process areas.

The SEPG team will decide on the number of improvement teams to be initially

set up as well as the members of each team. Typically, team members will need to

spend a minimum of 3–4 h per week working on improvement activities as

otherwise limited progress will be made. This requires that an appropriate balance

is kept between the normal day-to-day project and support work that team members

are involved in, and the software process improvement activities.

The SEPG team will review and approve the new processes and standards that

are developed by the improvement sub-teams, and it will also coordinate pilots,

rollout and training on the new processes and standards. The SEPG may decide to

place processes and standards on an Intranet site in the company, and if so, the

SEPG will review and approve the Intranet site prior to its deployment.

The CMMI project manager will chair the SEPG team and will report progress,

risks and issues regularly during the initiative. The project manager will report any

roadblocks to the Steering Group for resolution.

The SEPG team will generally meet to review progress every 2 weeks. The

project manager will provide a regular status report to summarize the activities

taking place, as well as listing the key risks and issues, and status with respect to the

schedule and budget.

14.3.2 Setting Up the Steering Group

The Steering Group provides management sponsorship of the improvement initia-

tive, and it authorises the funding and resources required to enable the improvement

teams to implement their assigned process areas.

The steering group is typically composed of senior and middle managers, and it

has sufficient influence to remove any roadblocks that may arise during the initia-

tive. The team will resolve any issues that have been escalated by the SEPG team.

The steering group will not be involved in the day-to-day implementation of the

CMMI, and so the team members do not require detailed training on the CMMI

model. They will receive high-level training on the CMMI and process improve-

ment, and the benefits that are gained from implementing the CMMI.

The team will ensure that a balance is kept between project work and process

improvement activities. It approves the organization policy for software develop-

ment, which states management expectations of the way that work will be done in

the organization. All projects need to be carried out consistently with this policy.

The steering group is also responsible for reviewing and approving the project

plan for the improvement initiative, as well as the schedule and budget. The CMMI

project manager is a member of the Steering Group and will prepare regular status

240 14 Setting Up a CMMI Initiative

reports to provide visibility into progress with the improvement initiative, and also

the status with respect to the allocated budget, schedule and effort, as well as

documenting the key risks and issues.

The Steering Group typically meets less frequently than the SEPG and a

frequency of bi-monthly or once per quarter is often sufficient. Extra meetings

(in response to serious issues) may be scheduled where appropriate.

14.3.3 Setting Up Dedicated Improvement Sub-teams

The dedicated improvement teams are responsible for the implementation of one or

more CMMI process areas. For example, the project management improvement

team will usually implement the project planning and project monitoring and

control process areas. The SEPG is responsible for setting up the improvement

team; selecting team members; and providing orientation and training to the team

members.

The team members will receive appropriate orientation on the CMMI model to

enable them to implement their assigned process areas effectively. The CMMI

project manager will conduct a kick-off session to commence work on the

improvements and this includes introducing team members, communicating the

objectives of the team and the planned deliverables, and the roles of the team

members. The team will usually commence its work with process mapping and this

involves defining and understanding the process as currently performed: i.e., the

process “as is”.
The team then critically examines the current process and brainstorms ways to

improve it. Strengths and weaknesses in the current process are considered as well

as best practice in the CMMI for the process area. The specific and generic practices

in the CMMI for the process area will be considered, and used to guide the

definition of the new process: i.e., the process “to be”. Once the new process is

agreed there will be a need to identify the standards, procedures, guidelines,

checklists and templates required to support the new process.

The CMMI project manager may be a member of or may chair the specific

improvement team. The project manager will facilitate the process mapping ses-

sion, and will apply the CMMI specific and generic practices to the process area and

verify that the specific and generic goals are satisfied.

The number of improvement teams set up at any period of time will depend on

the size of the organization, and the amount of time that the organization can devote

to software process improvement. Larger organizations have more resources avail-

able and are in a position to set up several improvement teams at the start of the

initiative. Small organizations have fewer resources available and it may only be

practical to set up only one or two improvement teams at any one time.

It is essential that sufficient time is available to team members to work on

improvement activities, as otherwise little progress will be made in the initiative.

The steering group is responsible for ensuring that the team members have 3–4 h of

time available to them to work on their improvement activities.

14.3 CMMI Improvement Structure and Teams 241

The SEPG is responsible for reviewing and approving the new processes and

standards, and it will coordinate the pilots, rollout and training on the new processes

and standards.

The improvement team will act upon any feedback that the SEPG provides, and

it will participate in pilots, training and rollout as directed by the SEPG team. The

CMMI project manager will report progress and issues for all active improvement

teams to the SEPG and the Steering Group.

14.3.4 Role of the CMMI Project Manager

The CMMI project manager plays a key role in managing the improvement

initiative. This includes:

• Setting up the various teams (SEPG, Steering Group, and improvement teams)

• Providing training and orientation to the various teams.

• Managing the improvement initiative as a project

• Preparing the project plan and schedule.

• Tracking schedule, effort and budget

• Managing project risks and issues

• Reporting progress regularly to the steering group

• Chairing the SEPG team and discussing progress, risks and issues

• Recording minutes and actions from SEPG meetings.

• Providing guidance and direction to specific improvement teams

• Ensuring roadblocks are identified and resolved appropriately.

The CMMI project manager is required to have a strong background in the

CMMI and software process improvement. The role requires a good understanding

of SCAMPI appraisals as well as good verbal and written communication. The role

requires skill in influencing people to change behaviour, as a software process

improvement initiative involves changing the way that work is done in the organi-

zation. The project manager will need to be highly motivated to drive the improve-

ment project to a successful conclusion.

14.3.5 Risks to Success

Software process improvement initiatives do not always succeed, and it is important

to understand some of the reasons why, and to identify and manage risks. Senior

management need to be fully behind the initiative, as this will ensure that middle

managers and staff on the ground remain fully committed. Some common causes of

failure include:

• Lack of senior management commitment to the initiative.

• Lack of buy-in from staff

• Insufficient time to perform the improvement activities

• Poor project management of the initiative

• Lack of participation from staff in defining the new processes.

• New processes may not meet the needs of the process users

242 14 Setting Up a CMMI Initiative

• Lack of pilots on the new processes and standards.

• Inadequate training on new processes and standards.

• Lack of enforcement of new processes and standards.

• Lack of sense of ownership of processes and standards.

• Insufficient communication of issues to senior management.

It is essential that staff participate in the definition of the new processes and

standards as this will help to promote ownership and buy-in of the processes. It

also helps to ensure that the new processes and standards meet the needs of the

process users.

14.4 Planning the Improvement Cycle

A major improvement cycle such as the implementation of a CMMI maturity level

requires detailed planning and scheduling. However, the planning required for a small

improvement cycle such as the implementation of a small number of process

improvements may be as simple as an action plan. Large improvement cycles will

require dedicated improvement teams to be set up to implement specific process areas,

whereas improvement actions may be assigned to individuals for smaller cycles.

The roll of the project manager was discussed in Sect. 14.3.4, and the project

manager is assigned to manage a major improvement cycle. The project plan

records the key project planning information such as the business case, the key

project goals and objectives for the initiative, the scope of the initiative as well as

the process areas to be implemented. The roles and responsibilities of the various

teams and individuals involved are recorded in the project plan. The project plan

also documents the approved budget as well as the key project milestones and the

high-level estimates for the work to be done.

The project manager will set up the risk and issue logs and will be proactive in

identifying risks early in the project, and managing risks throughout the project.

The project manager will work with the improvement teams to ensure successful

delivery of the desired improvements, and will inform the SEPG of progress and

any roadblocks that may impede progress.

For a shorter improvement cycle (e.g., such as the implementation of recommen-

dations from an appraisal or the implementation of improvement suggestions from

staff) it will usually be sufficient to employ an improvement action plan. Such an

action plan will include target dates and owners for the various improvement

actions, and the project manager and SEPG will track these to completion.

14.4.1 Appraisals

SCAMPI Appraisals were discussed in Sect. 13.7 and they play an important role

in software process improvement. They allow an organization to understand

its current software process maturity, as well as strengths and weaknesses in its

processes.

14.4 Planning the Improvement Cycle 243

http://dx.doi.org/10.1007/978-3-319-06106-1_13

The initial appraisal is conducted early in the initiative, and the improvements

planned and implemented. An appraisal is conducted at the end of the improvement

cycle to determine the progress made, and to identify strengths and opportunities

for further improvement to the processes.

The SCAMPI appraisal is an independent evaluation of the practices in an

organization against the CMMI model, and it is conducted by one or more experi-

enced appraisers. The scope of the appraisal will often be the level 2 or level

3 process areas, and the appraisal will identify strengths and weaknesses and gaps

with respect to the implementation of the CMMI.

The appraisal will typically consists of interviews and reviews of documentation,

and the appraisal team2 will determine the extent to which the CMMI goals and

practices for each process area within the scope of the appraisal are satisfied.

The appraisal output will often be presented in a power-point presentation and

documented in the appraisal report. The appraisal findings may include ratings of

the process areas, as well as the overall CMMI rating for the organization and any

gaps that exist with respect to the targeted CMMI maturity level.

The appraisal findings are valuable and will allow the CMMI project manager to

plan and schedule the next improvement cycle. Appraisals are discussed in detail in

the next chapter.

14.4.2 CMMI Project Plan

The CMMI project manager will prepare the project plan for the CMMI initiative. It

will include the business case for the initiative, the approved budget and the key

project milestones. It will document the approach taken, as well as the goals and

objectives of the improvement initiative. The scope of the initiative including the

process areas to be implemented will be defined in the plan. The stakeholders and

teams involved will be documented as well as the key success factors, and any

assumptions, risks and dependencies.

The project plan will include a section on estimation, and the estimation may be

based on a work-breakdown structure where the estimates for the various phases of

the project (and deliverables within the phase) are recorded. The knowledge, skills

and tools required to carry out the improvement project are also recorded. The

initial risks to the success of the initiative are documented, and the project manager

will need to be proactive in identifying and managing risks during the project.

2 The appraisal team could be the CMMI project manager only (if the project manager is a

SCAMPI trained appraiser); alternatively, it could be an external appraiser and the project

manager. For very large organizations interested in a very formal appraisal it could be a large

team of 4–9 appraisers including a SCAMPI lead appraiser. There is a strict qualification process

for a SCAMPI lead appraiser and it requires attending the official SEI CMMI and SCAMPI

training as well as conducting two appraisals under the direction of a qualified SCAMPI lead

appraiser.

244 14 Setting Up a CMMI Initiative

The project plan will include sections on quality and communication planning.

The quality planning covers how quality will be built into the deliverables, and

communication planning covers how communication will take place during the

project. The communication to the stakeholders will include project status reports

and project meetings with the various stakeholders.

The plan will include a section on configuration management, and this will detail

how changes will be controlled during the project. It will detail where the project

deliverables will be placed, as well as defining how releases will be done. It will

define how the deployment of the new processes and standards is done.

Once the project plan has been approved by the stakeholders, the project

manager is in a position to prepare the project schedule. This will detail the various

phases of the project lifecycle and the tasks and activities to be conducted.

14.4.3 CMMI Project Schedule

The project schedule details the tasks and activities to be carried out during the

improvement project; the effort and duration of each task and activity; and the

resources required. The schedule shows how the project will be delivered within the

key project parameters such as time and cost without compromising quality in any

way. A sample schedule was presented in Chap. 3 (Fig. 3.2).

The project manager will manage the schedule and will take corrective action

when project performance deviates from expectations. The project schedule will be

updated regularly during the improvement project (usually weekly or bi-weekly).

14.4.4 CMMI Kick-off Session

The implementation of the CMMI is a major initiative for an organization, and it is

essential to raise its profile early in the initiative. This will allow senior manage-

ment to state its importance, and to motivate the staff involved in its implementa-

tion. A CMMI kick-off meeting is important as it sets the scene for the activities in

the CMMI implementation.

The meeting allows the CMMI project manager to give an introduction to the

CMMI, its benefits, the improvement initiative planned for the organization, and the

teams and people involved. A senior manager will typically open the kick off

meeting and will introduce the CMMI project manager as well as stating the

importance of the initiative to the organization, their commitment to it, and the

expectation that all staff in the organization will give it full support. The project

manager will give a presentation on the CMMI including:

• Introduction to the CMMI and Software Process Improvement

• Benefits of Software Process Improvement

• Goals and objectives of the initiative

• Teams involved in the improvement initiative

• Approach to CMMI implementation

14.4 Planning the Improvement Cycle 245

http://dx.doi.org/10.1007/978-3-319-06106-1_3
http://dx.doi.org/10.1007/978-3-319-06106-1_3

• People involved and team composition.

• The timelines

• Next steps

Senior management will commit to making resources available to support the

initiative, and senior management support is essential in ensuring that middle

management and employees make the initiative a priority.

14.5 Implementation of Improvements

Once the specific improvement teams have been set up and the team members

appropriately trained, the teams are ready to commence work on their assigned

process areas. The improvement teams will generally meet weekly, and the first task

is to prepare a plan for the implementation of its assigned process areas. The CMMI

project manager will work closely3 with the team to ensure that the plan is realistic

and will address the CMMI requirements. The plan will detail the activities to be

carried out and the deliverables to be produced. These include:

• Policy for the performance of the process

(There will usually be one policy that covers all of the relevant process areas)

• Process Map to show the flow of activities for the process area.

• Procedure or Guidelines that describes the process in more detail

• Templates and Standards to assist in the performance of the process

• Checklists to assist in the performance of the process

• Evaluation and Selection of Tools to support the performance of the process

• Metrics to measure the effectiveness of performance of the process

• Training materials to assist in piloting and rollout of the process

The CMMI Project Manager may be a member of each improvement team, or

may work closely with the teams to drive improvements and to determine progress

on a regular basis. Any roadblocks that arise are first communicated to the SEPG,

and if the SEPG is unable to resolve the issue is escalated to the Steering Group.

The project manager will report progress regularly to the SEPG and at appropri-

ate intervals to the CMMI Steering Group.

14.5.1 Process Mapping

The starting point for each improvement team is to understand the process as it is

currently performed and to determine the extent to which it is effective. The

stakeholders of the process participate in the discussion of how it is currently

performed, and the process is then sketched pictorially with activities and their

3 The CMMI project manager may be a member or may chair the improvement team. It will

depend on the experience of the team.

246 14 Setting Up a CMMI Initiative

inputs and outputs recorded graphically. This graphical map is a representation of

the process “as is”.

We use the approach of representing activities in the process by rectangles (with

tasks within an activity being numbered). Each activity has an input and an output

and these are recorded in the process map. There may be standards to support the

process (e.g., procedures and templates), and the tasks and activities are conducted

by various roles. The process maps presented here are kept as simple and abstract as

possible and focus on inputs, tasks and activities and outputs.

For example, Fig. 14.4 shows a simple process map that is part of supplier

selection.

There are two activities listed in this process map. These are the “Issue RFP”
activity that has two tasks, and the “Evaluate Proposals” activity that has four tasks
associated with it. A more detailed process would specify standards to support the

process and the roles involved in carrying out the tasks and activities. Entry and exit

criteria could be specified as well as any verification steps and measures (Fig. 14.4).

Process mapping was discussed in an earlier chapter, and the process map is an

abstraction of the way that work is done. The team critically examines the process

map to determine how effective the process is, and weaknesses are identified. The

CMMI specific and generic practices for the process area are considered, as they

contain best practice for process performance.

This leads to modifications to the definition of the current process to yield the

process “to be”. Once the team has agreed the new process the templates required to

support the process become clear from an examination of the input and output to the

various activities. Templates will be prepared to standardize input and output from

the process. Procedures or guidelines will be required to provide detailed informa-

tion on how the process is to be carried out.

Fig. 14.4 Sample

process map

14.5 Implementation of Improvements 247

The SEPG team is responsible for approving the processes and deliverables

produced by the improvement team. The SEPG may approve without comments, or

it may require changes to the process and deliverables prior to approval.

Once the deliverables for a process area have been approved by the SEPG they

are ready for piloting (where required) or deployment. The SEPG will decide

whether a pilot is required prior to deployment.

14.5.2 Layout of Templates

Templates are employed to support the process and it is desirable that they have a

common look and feel. The first 3–4 pages for each template should have identical

headings such as:

• Title Page

• This includes a unique document number, the date the current version was

prepared, and the release status of the document.

• It may include an abstract and an approval section.

• Version History

• This includes the history of who modified the document, the reason for

modification, and the date of modification.

• Table of Contents

• Introduction

• This includes the purpose of the document, the definition of any acronyms,

and references to other documents.

• Template Version No.

• Each template has an associated version number

There are standard templates available (e.g., the IEEE standards) for various

activities in software engineering. The organization may decide to use or tailor the

IEEE standards to meet its needs, or it may decide to devise its own Templates.

14.5.3 Layout of Procedures and Guidelines

Processes are an abstraction of the way in which work is done. They need associated

procedures or guidelines to describe in detail how the process is performed. It is

desirable that these have a common look and feel with common sections such as:

• Title Page

• Version History

• Table of Contents

• Introduction

• Overview of Process

• Process Map

• Details

• Training and Metrics

• Roles and Responsibilities

248 14 Setting Up a CMMI Initiative

14.6 Piloting the Process

The SEPG team will decide if the new processes and standards need to be piloted

prior to their deployment. This involves:

• New process is approved for pilot by the SEPG.

• Project(s) and staff are selected for the pilot.

• Training is provided to all staff that will participate on the pilot.

• The CMMI project manager will communicate the objectives of the pilot to all

participants.

The pilot then commences and the CMMI project manager will work closely

with the participants to determine the effectiveness of the new process and

standards.

• The participants will present feedback as to what went well and what went

poorly during the pilot.

• The project manager and SEPG will consider the feedback and decide whether

the process and standards are ready to be rolled out.

• The processes and standards are refined accordingly.

• If the pilot is unsuccessful the improvement team and the CMMI project

manager will analyse the reasons why and develop an appropriate strategy for

the process area.

14.7 Rolling Out Process

The SEPG team is responsible for approving the new process for rollout and for

coordinating the activities for rollout. These include:

• New process is approved for rollout by the SEPG.

• Training Material on the process is prepared by the improvement team and

approved by SEPG.

• Training is provided on the new process to all affected staff.

• The intranet site with the processes and standards will be updated to include the

new process and standards.

• The induction checklist will be updated to include induction on the new process

and standards.

• The audit checklist will be updated to audit the new process and standards.

The new process and standards will be deployed on all new projects (and

possibly on projects that have recently commenced). The post-rollout activities

may include:

• Induction to new staff on the new process

• Audits to verify that the new process is followed and effective.

• Metrics on the performance of the process are periodically reviewed to ensure

that its performance is effective.

14.7 Rolling Out Process 249

14.8 Review Questions

1. Discuss the approach suggested for software process improvement in this

chapter.

2. Discuss the continuous software process improvement cycle.

3. Describe the teams involved in a typical software process improvement

initiative.

4. Discuss the planning and scheduling required in a software process

improvement initiative.

5. Describe the activities that take place during the kick-off session of a

software process improvement initiative.

6. Describe the activities involved in process mapping.

7. Describe the purpose of pilots of new processes.

8. Describe how a new process may be rolled out to the staff in the

organization.

9. Describe how appraisals fit into the software process improvement cycle.

14.9 Summary

This chapter discussed the activities and teams required to set up a CMMI

improvement initiative, and an improvement programme involves identifying the

improvements to be made; planning the improvements; implementing the improve-

ments; pilots; deployment of the new processes; and doing it all again.

A CMMI project manager is assigned to run the initiative, and the project

manager is responsible for defining the approach to implementation and setting

up the teams involved. These include the Steering Group, the SEPG, and dedicated

improvement teams. The CMMI project manager will ensure that all team members

receive appropriate training.

The implementation consists of one or more improvement cycles. A major

improvement cycle will implement several process areas, whereas minor improve-

ment cycles may be concerned with implementing actions from an appraisal or

improvement suggestions from staff.

One of the earliest activities in an appraisal is to determine the current maturity

of the organization with respect to the CMMI model, as well as strengths and

weaknesses in its processes. The first improvement cycle will often be concerned

with the implementation of level 2 of the CMMI.

The PM will prepare the project plan and schedule, monitor and report progress,

and will manage project risks and issues. The PM works closely with the improve-

ment teams, and will participate in process mapping and in defining improved

processes.

250 14 Setting Up a CMMI Initiative

The SEPG will approve the new processes and templates and coordinate any

pilots, as well as coordinating the rollout of the new processes and standards.

A formal SCAMPI appraisal is conducted to confirm that the organization is

performing at a higher level of maturity and that the improvements are successful.

14.9 Summary 251

SCAMPI Appraisals 15

Key Topics

Appraisal Plan

Conducting an Appraisal

Objective Evidence

SCAMPI (Class A, B, C) Appraisals

Reporting the results

15.1 Introduction

Appraisals (Fig. 15.1) play an essential role in the software process improvement

programme. They allow an organization to understand its current software process

maturity, including the strengths and weaknesses in its processes. An initial

appraisal is conducted at the start of the initiative to allow the organization under-

stand its current process maturity, and to plan and prioritize improvements for the

first improvement cycle. Improvements are then implemented, and an appraisal is

typically conducted at the end of the cycle to confirm progress.

An appraisal is an independent examination of the software engineering and

management practices in the organization, and is conducted using the SCAMPI1

appraisal methodology [63]. The appraisal will identify strengths and weaknesses in

the processes and any gaps that exist with respect to the CMMI practices.

1 There are three classes of SCAMPI appraisals and these are termed Class A, B, C. They differ in

the level of formality, the cost and duration, and the reporting of the appraisal results.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_15,
Springer International Publishing Switzerland 2014

253

The appraisal leader kicks off the appraisal with the opening presentation, and

the leader introduces the appraisal team,2 and presents the activities that will be

carried out in the days ahead. These will include presentations, interviews, reviews

of project documentation, and detailed analysis to determine the extent to which the

specific and generic practices have been implemented, and whether the specific and

generic goals for each process area within the scope of the appraisal are satisfied.

Sample output3 from a SCAMPI Class A CMMI level 3 appraisal is presented in

Fig. 15.2. Each column represents a CMMI process area and each row represents a

specific or generic practice. Colour coding is employed to indicate the extent to

which the specific or generic practices have been implemented. The extent of

implementation may be:

• Fully satisfied

• Largely satisfied.

• Partially satisfied

• Not satisfied

• Not rated

The appraisal leader will present the appraisal findings, and the appraisal output

may include a presentation and an appraisal report. The appraisal output summarises

Fig. 15.1 Appraisals

2 The appraisal team could be the CMMI project manager only (if the project manager is a

SCAMPI trained appraiser); alternatively, it could be an external appraiser and the CMMI project

manager. A SCAMPI Class A appraisal it could involve a large team of 4–9-appraisers (including

a SCAMPI lead appraiser) for a large organization. There is a strict qualification process to become

a SCAMPI lead appraiser, and it requires attending the official SEI CMMI and SCAMPI training

and conducting two appraisals under the direction of a qualified SCAMPI lead appraiser.
3 The type of output to be provided is agreed in discussions between the appraisal sponsor and the

appraisal leader. The output may just be the strengths and improvement opportunities identified.

In other cases, the ratings may just be of the specific and generic goals rather than of he practices.

254 15 SCAMPI Appraisals

the strengths and opportunities for improvement identified, and ratings of the process

areas will be provided (where ratings are a part of the appraisal). The ratings will

indicate the current maturity of the organization’s processes, and any gaps that exist

with respect to the targeted CMMI maturity level.

The appraisal findings allow the CMMI project manager to plan and schedule the

next improvement cycle, and to continue with the CMMI improvement programme.

Appraisals allow an organization to

• Understand its current maturity (including strengths and weaknesses of its

processes)

• Relate its strengths and weaknesses to the CMMI specific and generic practices

• Prioritize its improvements for the next improvement cycle

• Benchmark itself against other organizations (SCAMPI Class A)

There are three phases in an appraisal (Table 15.1).

Fig. 15.2 SCAMPI CMMI L3 rating of practices

Table 15.1 Phases in a SCAMPI appraisal

Phase Description

Planning and

preparation

This involves identifying the sponsor’s objectives and the requirements for

the appraisal. A good appraisal plan is fundamental to the success of the

appraisal.

Conducting the

appraisal

The appraisal team interviews the participants and examines data to judge

the extent to which the CMMI is implemented in the organization.

Reporting the

results

The results of the appraisal are reported back to the sponsor. This will usually

include a presentation of the findings and an appraisal report.

15.1 Introduction 255

15.2 Planning and Requirements for the Appraisal

Good planning is essential to the success of the appraisal. The appraisal leader4 will

determine the appraisal objectives in discussions with the sponsor. The type of

appraisal to be conducted is determined, and an appraisal plan is developed to meet

the sponsor’s requirements. The appraisal leader then forms a team to conduct the

appraisal.

There are three classes of SCAMPI appraisals [1] that may be conducted, and

they vary in formality, the appraisal findings to be generated, and the output,

duration and cost. The three classes of SCAMPI appraisals (Class A, B, and C)

are defined in Fig. 15.3.

The initial evidence provided by the organization will often consist of question-

naires and Practice Implementation Indicator Descriptions (PIIDs5). The appraisal

leader will analyse the initial evidence to get a preliminary understanding of the

organization’s processes and maturity.

15.2.1 Analyze Requirements

The appraisal leader will determine the goals and objectives of the appraisal in

discussions with the sponsor. The appraisal leader may give an overview of the

CMMI and appraisals to the sponsor and relevant members of the organization.

This is to ensure that the purpose of appraisals, the various types of appraisals that

Requirements Class A Class B Class C
Documents and
interviews

Documents
and interviews

Documents or
interviews

Ratings Generated Goal ratings
required

Not allowed Not allowed

Required Not required Not required

4 2 1

Lead appraiser Person trained
and
experienced

Person trained
and experienced

Appraisal Team
Leader
Requirements

Minimum Team
Size

Organizational
Unit Coverage

Type of Objective
Evidence

Fig. 15.3 SCAMPI (classes of appraisals)

4 For a formal SCAMPI Class A appraisals the appraisal team leader will need to be a qualified

SEI- SCAMPI lead appraiser.
5 The PIID is a mapping between the specific and generic practices in the CMMI model and the

processes employed in the organization. It shows how the organization has implemented the

CMMI. It is produced prior to the appraisal.

256 15 SCAMPI Appraisals

may be conducted and the output that may be produced are understood. This is

essential when the organization is relatively new to software process improvement.

It will be explained where appraisals fit into software process improvement,

and how the output from the appraisal is used in the next improvement cycle.

The objectives of the appraisal should be realistic, and constraints such as cost,

schedule and effort determined.

The business goals of the software process improvement initiative may influence

the scope and type of appraisal to be conducted. The business goals may include:

• Reducing costs of software development

• Delivery software consistently on time

• Delivering high-quality software

• Delivering software fast to market ahead of competitors

• Marketing benefit of CMMI maturity level as a differentiator to its competitors

A software process improvement initiative will generally focus on improve-

ments to those processes in the organization that will lead to the greatest business

benefit. The appraisal is an objective way to determine if these processes have

actually improved, as well as determining their actual maturity. Some companies

may be interested in the marketing benefit of a CMMI maturity level rating, and

may wish to benchmark themselves against other companies. They will generally

be interested in a formal SCAMPI Class A appraisal.

The scope of the appraisal determines the CMMI process areas that will be

appraised; the parts of the organization to be examined; the participants; and the

projects and support functions involved.

The sponsor will decide on the appraisal outputs to be produced, and this may

include strengths and weaknesses in the processes; ratings of the process areas

appraised; a final findings presentation with recommendations; and an appraisal

report. The appraisal input gathered from the discussions will include:

• Identity of appraisal sponsor

• Appraisal leader and team

• Participants in appraisal

• Objectives of appraisal

• Scope of appraisal

• Selected projects

• Constraints

• Confidentiality requirements

• Appraisal outputs

The sponsor and appraisal leader verbally agree the appraisal input which is then

documented in the appraisal plan.

15.2.2 Develop Appraisal Plan

The appraisal plan is prepared by the appraisal leader, and it describes the scope of

the appraisal and how it will be conducted. It includes the input gathered in

discussions with the appraisal sponsor such as:

15.2 Planning and Requirements for the Appraisal 257

• Identity of appraisal sponsor

• Appraisal leader and team

• Scope of the Appraisal

• Objectives and Constraints

• Projects to be examined

• Participants

• Appraisal Schedule

• Risks to success

• Appraisal outputs

The plan will detail the effort required, cost involved and the schedule for the

appraisal. It will also document how the appraisal will be conducted as well as the

resources required. The key personnel involved will include the appraisal leader,

the appraisal team, the on-site coordinator and the participants.

The logistics requirements for the appraisal need to be determined and

documented in the appraisal plan. These may include accommodation and meals,

transportation, and access to rooms and equipment. The appraisal plan will describe

how data is collected and validated. A sample appraisal schedule for a SCAMPI

Class C appraisal is in Fig. 15.4.

The risks to the success of the appraisal need to be identified and managed.

Finally, once the appraisal plan is complete it is reviewed and approved by the

appraisal sponsor.

15.2.3 Select and Prepare Team

The appraisal leader is responsible for ensuring that the appraisal is conducted in

accordance with the appraisal methodology. The leader will determine the size6 and

Time Day 1 Day 2 Day 3
9:00 Kick Off Planning/Consolidation Gather Feedback
10:00 Interview (PM 1) Interview (PM 3) and
11:00 Notes Notes Prepare Feedback
11:30 Interview (Team 1) Interview (Team 3) Presentation
12:30 Notes & Lunch Notes & Lunch Lunch
13:30 Interview (PM 2) Interview (Support) Present Feedback
14:30 Notes Notes Close
15:00 Interview (Team 2) Interview (QA/SEPG)
16:00 Notes Notes
16:30 Demo Intranet Interview (HR/Training)
17:00 Notes & Close Notes & Close

Fig. 15.4 Sample schedule for SCAMPI Class C appraisal

6 The minimum acceptable team size for a SCAMPI Class A appraisal (as in Fig. 15.3) is four and

the maximum is nine. The minimum team size for Class A is one and for Class B is two.

258 15 SCAMPI Appraisals

composition of the team, and will select team members who are appropriately

qualified and have sufficient knowledge and experience to conduct the appraisal

effectively. Any knowledge and skill gaps will need to be identified, and addressed

by training7 prior to the appraisal.

The methodology requires that the team has sufficient software engineering and

management experience. Team members also need good verbal and written com-

munication skills to enable them to carry out their roles effectively.

The appraisal leader will introduce the team members to one another, and will

give the team an overview of the goals of the appraisal; its scope; the appraisal plan;

and the approach to the appraisal. This orientation will enable the appraisal team to

carry out their assigned roles effectively.

The initial information provided by the organization (e.g., completed question-

naires and PIIDs) will be analyzed, and the data collection and validation methods

and tools to be employed during the appraisal discussed. There are confidentiality

requirements to be preserved during an appraisal. For example, everything that is

said by individuals during the interviews is treated in the strictest confidence, and

appraisal findings are not attributed to individuals.

There are several roles involved in the appraisal including the on-site coordi-
nator8 who takes care of the logistics to support the appraisal team leader; the

librarian who manages the inventory of appraisal documents; mini-teams who are

responsible for data collection for their assigned process areas; facilitators who

conduct the interviews; and timekeeper who keeps the interview on time.

15.2.4 Obtain and Analyze Initial Evidence

The organization will provide initial information to the appraisal leader prior to the

appraisal to show how it has implemented the CMMI. This helps the appraisal team

to understand how the organization has implemented the various practices in the

CMMI model, and assists the team in preparing a data collection plan to verify

the implementation. The initial evidence may include completed questionnaires,

relevant presentations, and a PIID mapping between the CMMI specific and generic

practices and the process assets of the organization.

This initial evidence is analyzed by the team to enable them to understand the

objective evidence available for the specific and generic practices. An inventory of

the evidence available for the various CMMI practices is prepared, and the ade-

quacy and completeness of the information provided is determined. This may result

in the need for additional data which is then input into the data collection plan.

7 The appraisers need to have received appropriate training on the CMMI reference model and on

the SCAMPI appraisal methodology.
8 The CMMI project manager is responsible for project managing the CMMI implementation , and

may carry out the role of onsite coordinator.

15.2 Planning and Requirements for the Appraisal 259

There is a need for objective evidence to substantiate implementation of every

practice within the scope of the appraisal, and for every project instance of that

practice. The extent to which the practice has been implemented is judged by

practice implementation indicators, given in Table 15.2.

It is important to collect as much objective evidence as possible prior to the

appraisal, as this will reduce the time required for discovery activities during the

appraisal. The discovery activities are concerned with looking for evidence to

support practice implementation, and an efficient on-site appraisal will focus

more on verification activities rather than on discovery activities.

15.2.5 Prepare for Conducting Appraisal

The appraisal leader will conduct an appraisal readiness review to judge the extent

to which the organization is ready for the appraisal. There is no point in going ahead

with the appraisal if the organization is not ready or is insufficiently prepared.

The sponsor and appraisal leader will consider the feasibility of the appraisal

plan, and will decide on whether to continue with the appraisal as planned, to

re-plan accordingly, or in a worst case scenario to cancel the appraisal.

The appraisal leader will judge whether the preliminary data is available, and

whether the appraisal team has been formed and appropriately trained. The logistics

will need to be suitably handled and the risks to the appraisal identified and

managed.

The PIIDs will detail the coverage of the CMMI specific and generic practices,

and it is reasonable to expect few significant coverage gaps prior to the appraisal.

The PIID will refer to documents and evidence that need to be accessible to the

appraisers. The appraisers need a verification strategy to verify the objective

evidence that is available for practices, as well as a discovery strategy to find

objective evidence for practices that have no available objective evidence. The

verification and discovery activities to take place during the appraisal are docum-

ented in the data collection plan.

The data collection plan may be documented in a variety of deliverables

(e.g., interview schedule and participants and scripted interview questions).

It may include a spreadsheet with the CMMI practices or questions listed vertically

Table 15.2 Indicators of practice implementation

Indicator Description

Direct

Artifact

Tangible output of the practice (e.g., typical work products in CMMI model).

Indirect

Artifact

Artifacts that are a consequence of performing the process (e.g., meeting minutes),

but not necessarily the purpose for which it is performed.

Affirmation Oral or written statements confirming the performance of a practice.

260 15 SCAMPI Appraisals

and sources of information listed horizontally. Data on every practice within the

scope of the appraisal is required.9

The appraisal leader will determine the participants required at each interview

and the documents to be reviewed. The roles and responsibilities of team members

in data collection activities will be documented in the data collection plan.

15.3 Conducting the Appraisal

This phase of the appraisal is concerned with on-site activities to gather data on

the extent to which the specific and generic practices have been implemented.

It involves gathering and examining the objective evidence, as well as documenting

and verifying the data. The preliminary findings are generated and presented to the

appraisal participants to get feedback in order to validate the data and findings.

Additional data is then gathered and the final appraisal results prepared. The

activities involved include:

• Prepare Participants

• Collect Objective Evidence

• Examine Objective Evidence

• Verify Objective Evidence

• Validate Objective Evidence

• Generate Appraisal Findings

The appraisal participants will receive appropriate training on the appraisal process

and their role in it. The appraisal team members take notes and gather objective

evidence during the various data collection activities. The objective evidence is

then reviewed and consolidated, related to the specific and generic practices,

critically examined and documented, and verified and validated. The extent to

which the CMMI practices are implemented is determined.

Preliminary findings are prepared and validated and the final appraisal results are

then prepared.

15.3.1 Prepare Participants

The onsite coordinator (this may be the CMMI project manager or the quality

manager) will give appropriate orientation to the appraisal participants prior to the

appraisal to ensure that they understand the purpose of the appraisal and their role in

it. This will be the first experience of an appraisal for many in the organization, and

so the participants need to understand the process and the required behaviours:

• Professional behaviour at all times

• Punctuality in attendance for interviews

9Data is required for every project instantiation for practices addressing processes at the project

level. One instantiation is sufficient for practices addressing processes at the organization level.

15.3 Conducting the Appraisal 261

• Openness and honesty in answering questions

• Acting promptly on requests to provide additional material

• Awareness of the confidentiality requirements

• Awareness that the appraisal findings will not be attributed to individuals or

specific projects.

The participants need to be aware of the meetings and interviews that they need

to attend. All participants will attend the opening and closing sessions, and will

attend their own specific interview(s), and the feedback session(s).

The sponsor introduces the appraisal leader at the opening session, and the leader

will set the context and expectations for the appraisal, and describes the activities

that will take place in the days ahead. The leader gives a brief overview to the

participants on the appraisal process and schedule, and the appraisal team is

introduced. The opening presentation will typically cover:

• Overview of appraisal

• Appraisals and Process Improvement

• Process Areas within scope of appraisal

• Projects to be reviewed

• Activities in appraisal

• Participants in Appraisal

• Confidentiality

• Appraisal Schedule

• Output from appraisal

The information provided by participants will be treated in the strictest con-

fidence by the appraisal team, and that none of the appraisal findings will be

attributed to individuals or projects. This is important, as otherwise participants

may be reluctant to share information.

15.3.2 Examine Objective Evidence

The accuracy of the appraisal findings is dependent on the accuracy of the informa-

tion collected by the appraisal team. The team needs to collect adequate infor-

mation on how the organization does its work, and the information gathered needs

to be related to the CMMI specific and generic practices. This requires that the

appraisal team understands how the organization has implemented the CMMI, and

has objective evidence of specific and generic practice implementation.

The data collection needs to be well planned and tracked and it will be revised

appropriately during the appraisal to reflect new information needs. The data

collection plan consists of:

• Appraisal schedule

• Interview schedule

• Document list

• Interview questions

262 15 SCAMPI Appraisals

The appraisal team will continually manage the data collected, and plan new

data collection in line with information needs. The data collection sources include:

• Interviews with appraisal participants

• Reviews of documentation

• Presentations from staff

The interviews need to be well planned as they have a limited amount of time

to determine specific evidence (e.g., oral affirmation on the way the process is

performed) from the participants. The planning requires the preparation of scripted

questions to ensure that the interview is focused and achieves its objectives within

the time constraints. Interviews also allow dynamic data gathering, with the inter-

viewer able to branch off to discuss other related topics.

The information provided at an interview is treated in the strictest confidence,

and the appraisal findings will not be attributed to individuals or projects. There

will be separate interviews for:

• Project Managers

• Project Teams

• Functional Area Representatives (FAR)

• Managers

• Specific Groups (SEPG Team, QA, etc.).

Often, one of the appraisal team members will lead the interview with some or

all of the other appraisers being present, listening and taking notes. The planned

set of interviews will be defined in the data collection plan, and re-planning will

take place as appropriate. There may be a need for extra on-call interviews or some

of the planned interviews may be cancelled if sufficient objective evidence is

available.

Documentation reviews give the appraisal team a clearer understanding of what

practices are performed in the organization. This includes insight into how the

process is performed, the extent to which it is performed, as well as allowing

explicit deliverables produced to be examined. Most of the direct artefacts used

as indicators of practice implementation are documents.

There are three levels of documents that will typically be examined during the

appraisal. These are:

• Organization documents

• Project documents

• Implementation documents

The organization documents include policies, processes and procedures; the

project documents include the deliverables produced during the project for each

project instantiation; and the implementation documents provide an audit trail

of the processes used. The appraisal team will maintain an inventory of the

documents used.

Presentations allow the organization to explain how particular practices are

performed. The appraisal team will need to analyse the information obtained during

the various data collection activities to:

• Judge if the information collected is acceptable as objective evidence

• Relate it to the corresponding practices in the model.

• Relate evidence to the appropriate part of the organization unit

15.3 Conducting the Appraisal 263

The results of data collection will often be recorded on electronic tools, as the

inventory of the collected evidence. The appraisal team will closely monitor

progress with the data collection activities, and as appraisals have a limited amount

of time available it is essential that the data collection activities are focused and

efficient.

Finally, once the team has examined, verified and validated all of the required

data it is in a position to generate the appraisal findings, and where applicable, to

generate ratings for the organization.

15.3.3 Document Objective Evidence

This part of the appraisal is concerned with note taking; reviewing and con-

solidating notes; relating the notes to the corresponding practices in the CMMI

model; and documenting practice implementation and the strengths and weaknesses

identified. The notes taken by the team members during the data gathering sessions

are reviewed at the end of each session, and significant items relating to one or more

practices tagged. The notes record the particular data gathering session as well as

the participants.

The consolidation of the notes allows the appraisal team members to have a

common understanding of the data collected to date, as well as identifying further

data collection needs. The presence or absence of objective data for each model

practice for each process area within scope needs to be done for each project

instantiation. The gaps identified in the implemented processes with respect to the

practices in the CMMI model are documented.

It is essential that the data collection, consolidation and documentation activities

be conducted in a timely manner. An inventory (usually an electronic spreadsheet

tool or a manual wall chart tool) of the objective evidence available for each

specific and generic practice for each project instantiation within the scope of the

appraisal is maintained.

The inventory allows the status of the data collection and consolidation activities

to be determined, and this includes the practices for which there is sufficient

objective evidence available, and those that have insufficient or missing evidence.

The data collection plan needs to be updated appropriately to reflect additional data

collection needs. The inventory will record:

• Project to which data applies

• Specific or Generic practice to which it applies

• Type of evidence (Direct, Indirect, Affirmation)

• Whether implies presence or absence of objective evidence

Often, in large formal appraisals, team members are assigned responsibilities for

the collection and documentation of objective evidence for one or more process

areas. This usually involves the formation of mini-teams with two or three members

to obtain and document the objective evidence for their assigned process areas.

The raw notes taken by the appraisers are treated as confidential information

and are not disclosed to anyone outside of the appraisal team. Team members will

destroy their notes at the end of the appraisal to ensure that information cannot be

attributed to individuals.

264 15 SCAMPI Appraisals

15.3.4 Verify Objective Evidence

This is concerned with verifying the implementation of the organization’s practices

for each project instantiation, as well as determining and documenting the extent

to which the practices are implemented. The implementation of each practice is

verified for each project instantiation, with exemplary implementations highlighted

as strengths to be included in the appraisal findings.

The appraisal team uses the initial objective evidence provided by the organiza-

tion to understand how the CMMI practices are implemented. The team then

gathers data to confirm that the practices are actually implemented as defined,

and this may reveal gaps in the implementation that were not apparent in the initial

evidence provided. The implemented practices are then compared to the specific

and generic practices in the CMMI model, and additional gaps may be identified.

The gaps in the implementation are recorded, and become part of the appraisal

findings.

The appraisal teammust verify that each project within the scope of the appraisal

has objective evidence of implementation of the specific or generic practices

(reflecting project activities). The appraisal team will:

• Verify the appropriateness of each direct artefact provided for practices within

appraisal scope

• Verify the appropriateness of each indirect artefact provided

• Verify appropriateness of affirmations

• Verify that implementation of each practice (within scope) is supported by direct

artefacts and corroborated by indirect artefacts or affirmations

• Obtain oral affirmation corresponding to each specific and generic goal within

scope of appraisal

• Generate the preliminary findings including the strengths identified and gaps in

the implemented practices.

Much of the evidence required to perform verification is provided prior to the

appraisal. The main focus of the data collection activities is to allow the appraisal

team to verify that the intended practices are implemented across the organization

unit and to identify any gaps in the implementation.

The appraisal team then characterizes the extent to which the CMMI practices

are implemented for each project instantiation, and derives an aggregate rating to

characterize the extent of implementation in the organization. The extent of imple-

mentation of a practice is:

• Fully implemented (FI)

• Largely implemented (LI)

• Partially implemented (PI)

• Not implemented (NI)

The extent of implementation of the practice is judged by:

• The presence or absence of direct artefacts and their adequacy.

• The presence or absence of indirect artefacts and affirmations to confirm the

implementation

• Any weaknesses in practice implementation identified.

15.3 Conducting the Appraisal 265

The aggregate organization rating for each practice is determined from the rating

of the practice for each project instantiation. For example, if all project instan-

tiations are fully implemented then the organization rating is fully implemented.

15.3.5 Validate Preliminary Findings

The appraisal team will present preliminary findings to members of the organiza-

tion to ensure that they are an accurate reflection of the organization. This is mainly

a data collection activity, and the goal is to validate the appraisal team’s under-

standing of the processes implemented in the organization. Feedback and additional

evidence will be requested and used in the formulation of the final findings.

The preliminary findings detail the practice implementation gaps identified as

well as strengths noted by the appraisal team. Every model practice characterized

at the organization level as not implemented, partially implemented or largely

implemented will have a preliminary finding associated with it.

The appraisal team will issue a request for further information for areas where

the appraisal team has insufficient objective evidence available.

15.3.6 Generate Appraisal Results

The appraisal team will rate specific and generic goal satisfaction based on the

extent of practice implementation throughout the organization. The extent of

practice implemented is judged by the validated data collected, including direct

and indirect artefacts and oral affirmation objective evidence. Once the goals have

been rated the process areas may be rated and then the overall maturity level

determined.

A goal is considered satisfied if the practices associated with that goal are

appropriately implemented. Any gaps are considered and the appraisal team

makes a judgment made on whether these gaps threaten the ability to achieve the

associated goal. All associated practices must be rated as largely or fully

implemented, and any identified weaknesses must not have a significant impact

on goal achievement. For any goals that are rated as not satisfied the appraisal team

will detail how the weaknesses identified led to this rating.

Once the goals have been rated the team are then in a position to judge the

satisfaction of the process areas within the appraisal scope. Process area satisfaction

is closely related to goal satisfaction, and a process area is rated satisfied if all of its

specific and generic goals up to the targeted maturity level are rated satisfied.

The appraisal team is then in a position to judge the maturity level of the

organization. This is based on the ratings of the process areas within the scope of

the appraisal. The maturity level determined is the highest level at which all process

areas contained at that maturity level and lower levels are satisfied.10

10 Generic goal 3 must also be rated for all of the level 2 process areas for a level 3 rating.

266 15 SCAMPI Appraisals

The appraisal team is then in a position to prepare the final appraisal findings

including:

• Documenting the final findings

• Documenting the ratings (where ratings are part of the appraisal)

• Preparing (where applicable) the Appraisal Disclosure Statement (ADS) for the

CMMI Stewart at the SEI.

15.4 Reporting the Results

The results of the appraisal are presented to the sponsor and the participants.

The strengths and weaknesses of the processes are presented, as well as the ratings

of the process areas (where these are part of the appraisal). The appraisal results

need to be credible, as they will be used for continuous improvement.

The appraisal findings are intended to promote action and occasionally a sepa-

rate executive session is conducted with senior management. The purpose of this

session is to discuss the appraisal results, and to facilitate the preparation of an

action plan to address the findings.

15.4.1 Deliver Appraisal Results

The findings will be presented to the appraisal participants. The appraisal sponsor is

advised of the appraisal results prior to the presentation as a matter of courtesy and

to prevent any surprises. The appraisal leader will provide the appraisal findings to

the appraisal sponsor, and the findings will be signed by the appraisal leader and

team. The appraisal findings will include:

• Summary of appraisal process

• Summary of strengths and weaknesses for each process area

• Ratings (where this is part of appraisal)

Any statements of weaknesses will adhere to the confidentiality requirements,

and will not be attributed to projects or individuals. The appraisal leader and team

will sign the appraisal findings to indicate their agreement with them.

An executive session may be conducted between the sponsor and appraisal

leader to clarify any issues from the appraisal, and to help the sponsor and senior

management understand the process weaknesses identified. This helps to ensure

that management are sufficiently informed to act appropriately on the findings.

15.4.2 Archive Appraisal Results

Important data and records from the appraisal will be preserved and confidential

information disposed of securely. Any lessons learned from the appraisal will be

used to improve the appraisal process.

15.4 Reporting the Results 267

The information archived will include the appraisal plan and appraisal results.

All notes taken by appraisers will be destroyed. The appraisal record will be

delivered to the appraisal sponsor and will include:

• Dates of the appraisal

• Appraisal input

• Appraisal plan

• Objective evidence to support goal ratings

• Characterization of practice implementation

• Appraisal method

• Final findings

• All ratings (goals, practices and maturity levels)

The ADS record will be created and submitted to the CMMI steward at the SEI

for formal SCAMPI Class A appraisals.

15.5 Review Questions

1. Discuss the purpose of appraisals and how they fit into the software

process improvement cycle.

2. Describe the three phases in an appraisal.

3. Describe the three classes of SCAMPI appraisals.

4. Discuss the difference between data discovery and data verification

activities in an appraisal.

5. Describe the activities that take place in planning the appraisal.

6. Describe the activities that take place during the appraisal.

15.6 Summary

Appraisals play a key role in software process improvement and are an essential

part of the improvement programme. They allow an organization to understand its

current software process maturity, including its strengths and opportunities for

improvement. An initial appraisal is generally conducted at the start of the initiative

to allow the organization plan and prioritize improvements for the first improve-

ment cycle. Improvements are then implemented, and an appraisal is typically

conducted at the end of the cycle to confirm progress.

An appraisal is an independent examination of the software engineering and

management practices in the organization and will identify any gaps that exist with

respect to the targeted level in the CMMI. There are three phases in an appraisal:

planning the appraisal; conducting the appraisal; and reporting the results.

The appraisal leader will determine the appraisal requirements and objectives in

discussions with the sponsor. The type of appraisal to be conducted is determined,

and an appraisal plan is developed to meet the sponsor’s requirements. The appraisal

268 15 SCAMPI Appraisals

leader then forms a team to conduct the appraisal and the participants involved in the

appraisal receive appropriate training on the appraisal process and their role in it.

The on-site activities will gather data to determine the extent to which the CMMI

practices within the scope of the appraisal have been implemented. It involves

gathering and examining the objective evidence, and documenting and verifying

the data. The team makes notes and gathers objective evidence during the various

data collection activities (e.g., interviews, presentations, and reviews of documen-

tation). The objective evidence is then reviewed and consolidated, related to the

CMMI practices, critically examined and documented, verified and validated. The

extent to which the CMMI practices are implemented is determined. Preliminary

findings are then prepared and validated by members of the organization. The final

appraisal results are then prepared.

The results of the appraisal are then presented to the sponsor and the participants.

The strengths and weaknesses identified with the processes will be presented, as

well as the ratings of the process areas (where these are part of the appraisal).

The appraisal results are used for continuous process improvement. An action plan

is prepared to address the appraisal findings from the various.

15.6 Summary 269

Software Engineering Tools 16

Key Topics

Microsoft Project

COCOMO

Planview Enterprise

IBM Rational DOORS

Rational Software Modeler

LDRA Testbed

Integrated Development Environment

Sparx Enterprise Architect

HP Quality Center

16.1 Introduction

The goal of this chapter is to give a flavour of a selection of tools1 that can support

the organization in various software engineering activities. Tools for project man-

agement, requirements management, configuration management, design and devel-

opment, testing, and so on are considered. The organization will generally choose

tools to support the process rather than choosing a process to support the tool.2

Mature organizations will employ a structured approach to the introduction of

new tools. First, the requirements for a new tool are specified and the options to

1 The list of tools discussed in this chapter is intended to give a flavour of what tools are available,

and the inclusion of a particular tool is not intended as a recommendation of that tool. Similarly,

the omission of a particular tool should not be interpreted as disapproval of that tool.
2 That is, the process comes first then the tool rather than the other way around.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_16,
Springer International Publishing Switzerland 2014

271

satisfy the requirements are considered. These may include developing a tool

internally; outsourcing the development of a tool to a third party supplier; or

purchasing a tool off the shelf from a vendor.

The sample tool evaluation in Table 16.1 lists all of the requirements vertically

that the test tool is to satisfy, and the tools to be evaluated and rated against each

requirement are listed horizontally. Various rating schemes may be employed and

in the example presented here, a simple numeric rating scheme is employed to rate

the effectiveness of the tool under evaluation, to indicate the extent to which the

tool satisfies the particular requirement. The chosen tool in this example is Tool k as
it is the most highly rated of the evaluated tools.

Several candidate tools will be identified and considered prior to selection, and

each candidate tool will be evaluated to determine the extent to which it satisfies the

specified requirements. An informed decision is then made and the proposed tool

will be piloted prior to its deployment. The pilot provides feedback on its suitabil-

ity, and the feedback will be considered prior to a decision on full deployment, and

whether any customization is required prior to roll out.

Finally, the users are trained on the tool, and the tool is rolled out throughout the

organization. Support is provided for a period post deployment. First, we consider

tools for project management.

16.2 Tools for Project Management

There are several tools to support the various project management activities such as

estimation and cost prediction, planning and scheduling, monitoring risks and

issues, and managing a portfolio of projects. These include tools such as Microsoft

Project which is a powerful project management scheduling tool widely used by

project managers throughout the world. Small projects may employ a simpler tool

such as Microsoft Excel for their project scheduling activities.

The Constructive Cost Model (COCOMO) is a cost prediction model developed by

Barry Boehm [7] to estimate effort, schedule and cost for small and medium

projects. It is based on an effort estimation equation that calculates the software

development effort in person-months from the estimated project size. The effort

estimation calculation is based on the estimate of a project’s size in thousands of

Table 16.1 Tool

evaluation table
Tool 1 Tool 2 . . . Tool k

Requirement 1 8 7 9

Requirement 2 4 6 8

.

.

Requirement n 3 6 8

Total 35 38 . . . 45

272 16 Software Engineering Tools

source lines of code (SLOC3). The accuracy of the tool is limited as there is a great

deal of variation among teams due to differences in the expertise and experience of

the personnel in the project team.

There are several commercial variants of the tool including the COCOMO Basic,

Intermediate and Advanced Models. The Intermediate Model includes several cost

drivers to model the project environment, and each cost driver is rated. There are

over 15 cost drivers used and these include product complexity, reliability, and

experience of personnel as well as programming language experience. The COCOMO

parameters need to be calibrated to reflect the actual project development environ-

ment. The effort equation used in COCOMO is given by:

Effort ¼ 2:94 *EAF * KSLOCð ÞE ð16:1Þ
In this equation, EAF refers to the effort adjustment factor that is derived from

the cost drivers, and E is the exponent that is derived from the five scale drivers.4

The Costar tool is a commercial tool that implements the COCOMO Mode, and it may

be used on small or large projects. It needs to be calibrated to reflect the particular

software engineering environment, and this will enable more accurate estimates to

be produced.

Microsoft Project (Fig. 3.2) is a project management tool that is used for

planning, scheduling and charting project information. It enables a realistic project

plan to be created, and the plan is updated regularly during the project to reflect

actual progress, and the project is re-planned as appropriate. We discussed project

management in Chap. 3.

A project is defined as a series of steps or tasks to achieve a specific goal. The

amount of time that it takes to complete a task is termed its duration, and tasks are

performed in a sequence determined by the nature of the project. Resources such as

people and equipment are required to perform a task. A project will typically consist

of several phases such as planning and requirements; design; implementation; testing

and closing the project.

The project schedule (Fig. 3.2) shows the tasks and activities to be carried out

during the project; the effort and duration of each task and activity; the percentage

complete of each task, and the resources needed to carry out the various tasks. The

schedule shows how the project will be delivered within the key project parameters

such as time, cost and functionality without compromising quality in any way.

The project manager is responsible for managing the schedule and will take

corrective action when project performance deviates from expectations. The project

schedule will be updated regularly to reflect actual progress made, and the project

re-planned appropriately.

3 SLOC includes delivered source lines of code created by project staff (excluding automated code

generated and also code comments).
4 The five scale drivers are factors contributing to duration and cost and they determine the

exponent used in the Effort equation. Examples include team cohesion and process maturity.

16.2 Tools for Project Management 273

http://dx.doi.org/10.1007/978-3-319-06106-1_3
http://dx.doi.org/10.1007/978-3-319-06106-1_3
http://dx.doi.org/10.1007/978-3-319-06106-1_3

Project portfolio management (PPM) is concerned with managing a portfolio of

projects, and it allows the organization to choose the optimal mix and sequencing of

its projects to yield the greatest business benefit to the organization.

It analyses the project’s total expected cost, the resources required, the schedule,

the benefits that will be realized as well as interdependencies with other projects in

the portfolio. This allows project investment decisions to be made methodically to

deliver the greatest benefit to the organization. The approach moves away from the

normal once off analysis of an individual project proposal, to the analysis of a

portfolio of projects. PPM tools aim to manage the continuous flow of projects from

concept all the way to completion.

There are several commercial portfolio management tools available from various

vendors. These include Clarity PPM from Computer Associates, Change Point from

Compuware, RPM from IBM Rational, PPM Center from HP, and Planview Enter-

prise from Planview. It is not possible to discuss of all of these portfolio management

tools, and the discussion in this section is limited to the Planview Enterprise tool.

Planview Enterprise Portfolio Management allows organizations to manage

projects and resources across the enterprise, and to align their initiatives for

maximum business benefit. It provides visibility into and control of project

portfolios, and allows the organization to prioritize and manage its projects and

resources. This allows it to make better investment decisions, and to balance its

business strategy against its available resources. Planview helps an organization to

optimize its business through eight key capabilities listed in Table 16.2.

Planview allows key project performance indicators to be closely tracked. This

includes dashboard views of variances of cost, effort and schedule, and the analysis

and reporting is described in Fig. 16.1.

Planview includes Process Builder (Fig. 16.2), which allows modelling and

management of enterprise wide processes. It provides improved tracking, control

and audit capabilities in key process areas such as requirements management and

product development, as well as satisfying key regulatory requirements.

The organization may define and model its process in Process Builder, and this

includes process adoption, compliance and continuous improvement. The function-

ality includes:

• Process Design

• Process Automation

• Process Measurement

• Process Auditing

Next, we will consider tools to support requirements development and

management.

16.3 Tools for Requirements

There are several tools available to assist organizations in carrying out requirements

development and management. These tools assist in eliciting requirements from the

stakeholders; modelling requirements; verifying and validating the requirements;

managing the requirements throughout the lifecycle; and providing traceability of

274 16 Software Engineering Tools

Table 16.2 Key capabilities of Planview Enterprise

Capability Description

Strategic planning Define mission, objectives and strategies.

Allocate funding/staffing for chosen strategy

Automate and manage strategic process

Investment analysis Devise strategic long-term plans

Identify key criteria to evaluate initiatives

Optimize strategic and project investments to maximize business benefit

Capacity management Balance resources with business demands

Ensure capacity supports business strategy

Align top down and bottom up planning

Forecast resource capacity

Demand management Request work and Check status

Review lifecycles

Project management Scope, schedule and execution of work

Track/report time worked against projects

Track and manage risks and issues

Track/display performance and trend analysis

Financial management Collaborate to better forecast cost

Monitor spending

Resource management Balance portfolios/assign people efficiently

Improve forecasting

Keep staff productive

Change management Determine impact of change on schedule/cost

Effectively manage change

Fig. 16.1 Dashboard views in Planview Enterprise

16.3 Tools for Requirements 275

the requirements to the design and test cases. Table 16.3 gives a small selection of

some of the tools that are available.

DOORS® (Dynamic Object-Oriented Requirements System) is a requirements

management tool developed by IBM Rational. It allows the stakeholders to actively

participate in the requirements process, and aims to optimize requirements

Fig. 16.2 Planview Process Builder

Table 16.3 Tools for requirements development and management

Tool Description

DOORS (IBM/Rational) This is a Requirements Management tool developed by Telelogic

(which is now part of IBM/Rational).

Requisite Pro

(IBM/Rational)

This is a Requirements Management and Use Case management tool

developed by IBM/Rational

Enterprise Architect

(Sparx Systems)

This is a UML analysis and design tool that covers requirements

gathering, analysis and design, and testing and maintenance. It was

developed by Sparx Systems and integrates requirements

management with the other software development activities.

CORE (Vitech) This is a requirements tool developed by Vitech and may be used for

modelling and simulation.

Integrity (MKS) This tool was developed byMKS and enables organizations to capture

and validate software requirements, and to link them to downstream

development and testing activities.

276 16 Software Engineering Tools

communication, collaboration and verification. High-quality requirements help the

organization in reducing costs5 and in meeting their business objectives.

The tool can capture, link, trace, analyse, and manage changes to the requirements.

It enhances communication and collaboration to ensure that the project conforms to

the customer requirements, as well as compliance to regulations and standards.

Requirements are documented in a way that is easy to interpret and navigate. It is

easy to locate information within the database, and the user requirements are

recorded in a document style showing each individual requirement. It provides

views of the list with assigned identifiers and also an Explorer-like navigation tree.

The tool employs links to support traceability of the requirements, and these are

traversed with a simple click of the mouse to the corresponding object. The links are

easy to create by dragging and dropping; e.g., a new link from the user requirements

to the system requirements is created in this way. The tool provides dynamic

reporting on traceability, and filters may be employed to ensure that traceability

is complete. Traceability is essential in demonstrating that the requirements have

been implemented and tested.

The management of change is an important part of the requirements process.

The DOORS tool supports changes to requirements and allows an impact analysis of

the proposed changes to be performed. It allows changes that could impact other

requirements or design items and test cases to be tagged. The DOORS® tool

(Fig. 16.3) provides:

• A comprehensive requirements management environment

• Web browser access to the requirements database

• Manages changes to requirements

• Scalable solution for managing project scope and cost

• Traceability to design items, test plans and test cases

• Active engagement from stakeholders

• Integrates with other IBM Rational tools

There are several other IBM Rational tools that may be integrated with DOORS®.

These include the IBM Rational System Architect, Requirements Composer,

Rhapsody, and Quality Manager.

IBM Rational RequisitePro is a requirements management tool that allows

requirements to be documented with familiar document-based methods, and it

provides capabilities such as requirements traceability and impact analysis.

Requirements are managed throughout the lifecycle, and changes to the requirements

controlled.

The CORE product suite (developed by Vitech) has functionality for requirements

management, modelling and simulation, and verification and validation. It supports

5A good requirements process will enable high-quality requirements to be consistently produced,

and the cost of poor quality is reduced as wastage and rework is minimized. The requirements are

the foundation of the system and if they are incorrect then the delivered system will not be fit for

purpose.

16.3 Tools for Requirements 277

UML activity and sequence diagrams which enable the desired behaviour and flow

of control to be captured and analysed. The tool provides:

• Comprehensive end-to-end system traceability

• Change impact analysis

• Multiple modelling notations with integrated graphical views

• System simulation based on behavioural models

• Generation of Documentation from the database

The Integrity tool was developed byMKS and it enables organizations to capture

and validate software requirements. It enables them to link the requirements to

downstream development and testing activities, and to manage changes to the

requirements. Next, we will consider tools to support software design and

development.

16.4 Tools for Design and Development

This section describes tools available to support software design and development

activities. The software design includes the high-level architecture of the system, as

well as the lower level design and algorithms. Table 16.4 gives a small selection of

some of the tools that are available.

IBM Rational Software Modeler® (RSM) (Fig. 16.4) is a UML-based visual

modelling and design tool. It promotes communication and collaboration during

Fig. 16.3 IBM Rational DOORS tool

278 16 Software Engineering Tools

design and development, and allows information about development projects to be

specified and communicated from several perspectives. It is used for model-driven

development, and aligns the business needs with the product.

It gives the organization control over the evolving architecture, and provides an

integrated analysis and design platform. Abstract UML specifications may be built

with traceability and impact analysis shown.

Table 16.4 Tools for software design

Tool Description

Microsoft Visio This tool allows many types of drawings such as flowcharts, work

flow diagrams and network diagrams to be created.

IBM Rational Software

Modeler

This is a UML based visual modelling and software design tool.

IBM Rational Rhapsody This modelling environment tool is based on UML and provides a

visual development environment for software engineers. It uses

graphical models and generates code in C, C++ and Java.

IBM Rational Software

Architect

This modelling and development tool uses UML for designing

architecture for C++ and Java applications.

Enterprise Architect

(Sparx Systems)

This UML analysis and design tool is used for modelling systems

with traceability from requirements to design and testing. It supports

code generation.

Fig. 16.4 IBM Rational Software Modeler

16.4 Tools for Design and Development 279

It has an intuitive user interface and a diagram editor to create expressive and

interactive diagrams. The tool may be integrated with other IBM Rational tools

such as Clearcase, Clearquest and Requisite Pro.

BM Rational Rhapsody® is a visual development environment used in real-time

or embedded systems. It helps teams collaborate to understand and elaborate

requirements; abstract complexity using modelling languages such as UML; vali-

date functionality early in development; and automate code generation to speed up

the development process.

Enterprise Architect is a UML analysis and design tool used for modelling

business and IT systems, and was developed by Sparx Systems. It covers the full

product development lifecycle, including business modelling, requirements man-

agement, software design, code generation, testing, and so on. It supports

automated document generation, code generation and reverse engineering of source

code. Its reverse engineering feature allows a visual representation of the software

application to be provided (Fig. 16.5).

It is a multi-user graphical tool with built in reporting and documentation. It can

model, manage and trace requirements to the design, test cases and deployment, and

its can trace the implementation of system requirements to model elements. It can

search and report on requirements and perform an impact analysis on proposed

changes to the requirements.

The tool allows deployments scripts to be built, debugged and tested and

executed from within its development environment. UML and modelling are

integrated into the development process and debugging capabilities are provided.

This includes run time examination of the executing code for several programming

languages, and NUnit and JUnit test classes may be generated and integrated

directly into the test process.

An integrated development environment (IDE) is a software application that

provides comprehensive support facilities to software developers. It includes

specialized text editors; a compiler; build automation; and debugging capabilities.

The features of an IDE are described in Table 16.5.

IDEs help to improve programmer productivity. They are usually dedicated to a

specific programming language, although there are some multi-language tools such

as Eclipse and Microsoft Visual Studio. There are many IDEs for languages such as

Pascal, C, C++ and Java. The next section is concerned with tools to support

configuration management.

16.5 Tools for Configuration Management and Change Control

Configuration management is concerned with identifying the work products

that are subject to change control, and controlling changes to them. It involves

creating and releasing baselines, maintaining their integrity, recording and

reporting the status of the configuration items and change requests, and

verifying the correctness and completeness of the configuration items with

configuration audits.

280 16 Software Engineering Tools

F
ig
.
1
6
.5

S
p
ar
x
E
n
te
rp
ri
se

A
rc
h
it
ec
t

16.5 Tools for Configuration Management and Change Control 281

Visual Source Safe (VSS) is a version control management system for

source code and binary files. It was developed by the Microsoft Corporation

and is used mainly by small software development organizations. It allows

multiple users to place their source code and work products under version

control management. It is fairly easy to use and may be integrated with the

Microsoft Visual Studio tool. Microsoft plans to replace VSS with its Visual

Studio Team System tool.

Polytron Version Control System (PVCS) is a version control system for soft-

ware code and binary files. It was developed by Serena Software Inc., and is suitable

for use by large or small teams. It allows multiple users to place their source

code and project deliverables under version control management and it allows

files to be checked in and checked out; baselines to be controlled; roll-back of

code; and tracking of check-ins. It includes functionality for branching, merging

and labelling. It includes the PV Tracker tool for tracking defects, and the PV

Builder tool for performing builds and releases.

The PV Tracker tool automates the capture and communication of issues and

change requests. This is done throughout the software development lifecycle for

project teams, and the tool allows the developers to link the affected source code

files with issues and changes. It allows managers to determine and report on team

progress, and to prioritize tasks. PV Builder maintains an audit trail of the files

included in the build as well as their versions.

IBM Rational Clearcase and Clearquest are popular configuration management

tools with a rich feature set. Clearcase allows software code and other software

deliverables to be placed under version control management, and it may be

Table 16.5 Integrated development environment

Item Description

Source code editor This is a specialized text editor (e.g., Microsoft Visual Studio) designed for

editing the source code. It includes features to speed up the input of source

code, including syntax checking of the code while the programmer types.

Compiler or

interpreter

A compiler is a computer program that translates the high-level programming

language source code into object code to produce the executable code.

A compiler carries out lexical analysis, parsing and code generation.

An interpreter is a program that executes instructions written in a

programming language. It may involve the direction execution of the code;

translation of the code into an intermediate representation and immediate

direct execution; or execution of stored precompiled code made by a compiler

which is part of the Interpreter System.

Build automation

tools

Build automation involves scripting to automate the build process. This

includes tasks such as compiling the source code; linking the object code and

building the executable software; performing automated tests and reporting

results; reporting the build status; and generating release notes.

Debugger A debugger is a software application that is used to debug and test other

software programs. Debuggers offer step by step execution of the code or

execution to breakpoints in the code. Examples include IBM Rational Purify

and Microsoft Visual Studio Debugger.

282 16 Software Engineering Tools

employed in large or medium projects. It can handle a large number of files and

supports standard configuration management tasks such as checking in and

checking out of the software assets as well as labelling and branching. Objects

are stored in repositories called VOBs.

Clearquest may be linked to Clearcase as well as to other IBM Rational tools. It

allows the defects in a project to be tracked, and it allows the versions of source

code modules that were changed to be linked to a defect number in Clearquest.

16.6 Tools for Code Analysis and Code Inspections

Static code analysis is the analysis of software code without the actual execution of

the code. It is usually performed with automated tools and the analysis conducted

depends on the sophistication of the tools. Some tools may analyze individual

statements or declarations, whereas others may analyze the whole source code.

The objective of the analysis is to highlight potential coding errors early in the

development lifecycle.

The LDRA Tools automatically determine the complexity of the source code,

and provide metrics that give an indication of the maintainability of the code. A

useful feature of LDRA is that it gives a visual picture of system complexity, and it

has a re-factoring tool to assist with its reduction. It generates code assessment

reports listing all of the files examined, and providing metrics of the clarity,

maintainability and testability of the code. Other LDRA tools may be used for

code coverage analysis (Fig. 16.6).

Fig. 16.6 LDRA code coverage analysis report

16.6 Tools for Code Analysis and Code Inspections 283

Compliance to coding standards is important in producing readable code and in

preventing error-prone coding styles. There are several tools available to check

conformance to coding standards including the LDRA TBvision tool which has

reporting capabilities to show code quality as well as fault detection and avoidance

measures. It provides intuitive functionality to view the results in various graphs

and reports.

Some static code analysis tools (e.g., tools for formal methods) aim to prove

properties about a particular program. This may include reasoning about program

correctness or that of a program meeting its specification. These tools often provide

support for assertions, and a precondition is the assertion placed before the code

fragment, and this predicate is true before execution of the code. The post-condition

is the assertion placed after the code fragment, and this predicate is true after the

execution of the code.

There are several open-source tools available for static code analysis, and these

include the RATS tools which provide multi-language support for C, C++, Perl and

PHP, and the PMD tool for Java. There are several commercial tools available and

these include the LDRA Testbed tool which provides support for C, C++ and Java;

The Fortify tool helps developers to identify security vulnerabilities in C, C++ and

Java; and the Parasoft tools helps developers to identify coding issues that lead to

security, reliability, performance, and maintainability issues later.

16.7 Tools for Testing

Testing plays a key role in verifying that the software system satisfies the

requirements and is fit for purpose. There are various tools to support testing such

as test management tools; defect tracking tools; regression test automation tools;

performance tools; and so on. The tools considered in this section include:

• Test Director

• Winrunner

• Load Runner

Test Director (now called Quality Center) is a web-based test management tool

developed by Mercury.6 It provides a consistent repeatable process for gathering

requirements; planning and scheduling tests; analysing results; and managing

defects. It consists of four modules namely:

• Requirements

• Test Plan

• Test Lab

• Defect Management.

The Requirements module supports requirements management and traceability

of the test cases to the requirements. The Test Plan module supports the creation

6Mercury is now part of HP.

284 16 Software Engineering Tools

and update of test cases. The Test Lab module supports execution of the test cases

defined in the Test Plan module. The Defect Management module supports the

logging of defects and these defects can be linked back to the test cases that failed.

Test Director supports a high-level of collaboration and communication between

the stakeholders. It allows the business analysts to define the application requirements

and testing objectives. The test managers and testers may then design test plans, test

cases and automated scripts. The testers then run the manual and automated tests,

report results and log the defects. The developers review and correct the logged

defects. Project and test managers can create status reports and manage test resources.

Test and product managers decide objectively whether the application is ready to be

released.

Test Director is now a part of Quality Center™ (Fig. 16.7) developed by HP. This

tool standardizes and manages the entire test and quality process, and is a

web-based system for automated software quality management and testing. It

employs dashboard technology to give visibility into the process.

Mercury developed the Winrunner tool which automatically captures, verifies

and replays user interactions. It is used mainly used to automate regression testing,

which improves productivity and allows defects to be identified in a timely manner.

This provides confidence that enhancements to the software have had no negative

impact on the integrity of the system. The Winrunner tool has been replaced by HP

Unified Functional Testing Software which includes HP Quick Test Professional

and HP Service Test.

Fig. 16.7 HP Quality Center

16.7 Tools for Testing 285

Mercury developed the LoadRunner performance testing tool, which allows a

software application to be tested with thousands of concurrent users to determine its

performance under heavy loads. It allows the scalability of the software system to

be determined, and whether it can support future predicted growth.

16.8 Review Questions

1. Why are tools used in software engineering?

2. How should a tool be selected for an organization?

3. What is the relationship between the process and the tool?

4. What tools would you recommend for project management?

5. Describe how you would go about selecting a tool for requirements

development.

6. Describe various tools that are available for design and development and

which are your preferred tools?

16.9 Summary

The objective of this chapter was to give a flavour of various tools available to

support the organization in engineering software. These included tools for project

management, configuration management, design and development, test manage-

ment, and so on. The tools are chosen to support the process.

The project management tools included a discussion of the COCOMA Cost Model

which may be employed to estimate the cost and effort for a project; the Microsoft

Project tool which is used extensively by project managers to schedule and track

their projects. The Planview Portfolio Management Tool was also discussed and

this tool allows an organization to manage a portfolio of projects.

The tools to support requirements development and management included IBM

Rational DOORS, Requisite Pro and CORE. The DOORS tool allows all stakeholders to

actively participate in the requirements process, and aims to optimize requirements

communication, collaboration and verification.

The tools to support design and development included the IBM Rational Soft-

ware Modeler tool, the Sparx Enterprise Architect tool and Integrated Developer

Environments to support software developers. The Rational Software Modeler®
(RSM) is a UML-based visual modelling and design tool. Enterprise Architect is a

UML analysis and design tool, and provides traceability from requirements to

design, testing and deployment. The tools discussed to support configuration

management included PVCS and Clearcase.

The tools to support testing included Quality Center™, Winrunner and

Loadrunner tools. Quality Center™ standardizes and manages the entire test pro-

cess. It has modules for requirements management, test planning, test lab and defect

management.

286 16 Software Engineering Tools

Tool selection is done in a controlled manner. First, the organization needs to

determine its requirements for the tool. Various candidate tools are evaluated and a

decision on the proposed tool is made. Next, the tool is piloted to ensure that it

meets the needs of the organization, and feedback from the pilot may lead to

changes or customizations of the tool. Finally, the end users are trained on the

use of the tool and it is rolled out throughout the organization.

16.9 Summary 287

Formal Methods 17

Key Topics

Vienna Development Method

Z Specification Language

B Method

Process Calculus

Finite State Machines

Model-oriented approach

Axiomatic approach

Usability of Formal Methods

17.1 Introduction

The term “formal methods” refer to various mathematical techniques used for the

formal specification and development of software. They consist of a formal specifica-

tion language, and employ a collection of tools to support the syntax checking of the

specification, as well as the proof of properties of the specification. They allow

questions to be asked aboutwhat the system does independently of the implementation.

The use of mathematical notation avoids speculation about the meaning of

phrases in an imprecisely worded natural language description of a system. Natural

language is inherently ambiguous, whereas mathematics employs a precise rigorous

notation. Spivey [62] defines formal specification as:

Definition 5.1 (Formal Specification) Formal specification is the use of mathe-
matical notation to describe in a precise way the properties that an information
system must have, without unduly constraining the way in which these properties
are achieved.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_17,
Springer International Publishing Switzerland 2014

289

The formal specification thus becomes the key reference point for the different

parties involved in the construction of the system. It may be used as the reference

point for the requirements; program implementation; testing and program docu-

mentation. It promotes a common understanding for all those concerned with the

system. The term “formal methods” is used to describe a formal specification

language and a method for the design and implementation of computer systems.

The specification is written in a mathematical language, and the implementation

may be derived from the specification via step-wise refinement.1 The refinement

step makes the specification more concrete and closer to the actual implementation.

There is an associated proof obligation to demonstrate that the refinement is valid,

and that the concrete state preserves the properties of the abstract state. Thus,

assuming that the original specification is correct and the proofs of correctness of

each refinement step are valid, then there is a very high degree of confidence in the

correctness of the implemented software. Step-wise refinement is illustrated as

follows: the initial specification S is the initial model M0; it is then refined into

the more concrete model M1, and M1 is then refined into M2, and so on until the

eventual implementation Mn¼E is produced.

S ¼ M0 � M1 � M2 � M3 � � Mn ¼ E

Requirements are the foundation of the system to be built, and irrespective of the

best design and development practices, the product will be incorrect if the require-

ments are incorrect. The objective of requirements validation is to ensure that the

requirements reflect what is actually required by the customer (in order to build

the right system). Formal methods may be employed to model the requirements, and

the model exploration yields further desirable or undesirable properties. The ability to

prove that certain properties are true of the specification is very valuable, especially in

safety critical and security critical applications. These properties are logical conse-

quences of the definition of the requirements, and, where appropriate, the require-

ments may be amended. Thus, formal methods may be employed in a sense to debug

the requirements during requirements validation.

The use of formalmethods generally leads tomore robust software and to increased

confidence in its correctness. The challenges involved in the deployment of formal

methods in an organization include the education of staff in formal specification, as the

use of these mathematical techniques may be a culture shock to many staff.

Formal methods have been applied to a diverse range of applications, including

the security critical field; the safety critical field; the railway sector; microprocessor

verification; the specification of standards, and the specification and verification of

1 It is questionable whether step-wise refinement is cost effective in mainstream software engi-

neering, as it involves re-writing a specification ad nauseum. It is time-consuming to proceed in

refinement steps with significant time also required to prove that the refinement step is valid. It is

more relevant to the safety-critical field. Others in the formal methods field may disagree with this

position.

290 17 Formal Methods

programs. Parnas and others have criticized formal methods on the grounds

mentioned in Table 17.1.

However, formal methods are potentially quite useful and reasonably easy to

use. The use of a formal method such as Z or VDM forces the software engineer to

be precise and helps to avoid ambiguities present in natural language. Clearly, a

formal specification should be subject to peer review to provide confidence in its

correctness. New formalisms need to be intuitive to be usable by practitioners. The

advantage of classical mathematics is that it is familiar to students.

17.2 Why Should We Use Formal Methods?

There is a strong motivation to use best practice in software engineering in order to

produce software adhering to high quality standards. Quality problems with soft-

ware may cause minor irritations or major damage to a customer’s business

including loss of life. Formal methods are a leading-edge technology that may be

Table 17.1 Criticisms of formal methods

No. Criticism

1. Often the formal specification is as difficult to read as the programa.

2. Many formal specifications are wrongb.

3. Formal methods are strong on syntax but provide little assistance in deciding on what

technical information should be recorded using the syntaxc.

4. Formal specifications provide a model of the proposed system. However, a precise

unambiguous mathematical statement of the requirements is what is neededd.

5. Step-wise refinement is unrealistic. It is like, for example, deriving a bridge from the

description of a river and the expected traffic on the bridge. There is always a need for the

creative step in designe.

6. Much unnecessary mathematical formalisms have been developed rather than using the

available classical mathematicsf.

aOf course, others might reply by saying that some of Parnas’s tables are not exactly intuitive, and

that the notation he employs in some of his tables is quite unfriendly. The usability of all of the

mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists
bObviously, the formal specification must be analysed using mathematical reasoning and tools to

provide confidence in its correctness. The validation of a formal specification can be carried out

using mathematical proof of key properties of the specification; software inspections; or specifi-

cation animation
cApproaches such as VDM include a method for software development as well as the specification

language
dModels are extremely valuable as they allow simplification of the reality. A mathematical study

of the model demonstrates whether it is a suitable representation of the system. Models allow

properties of the proposed requirements to be studied prior to implementation
eStep-wise refinement involves rewriting a specification with each refinement step producing a

more concrete specification (that includes code and formal specification) until eventually the

detailed code is produced. However, tool support may make refinement easier
fApproaches such as VDM or Z are useful in that they add greater rigour to the software

development process. They are reasonably easy to learn, and there have been some good results

obtained by their use. Classical mathematics is familiar to students and therefore it is desirable that

new formalisms are introduced only where absolutely necessary

17.2 Why Should We Use Formal Methods? 291

of benefit to companies in reducing the occurrence of defects in software products.

Brown [55] argues that for the safety critical field that:

Comment 17.1 (Missile Safety) Missile systems must be presumed dangerous
until shown to be safe, and that the absence of evidence for the existence of
dangerous errors does not amount to evidence for the absence of danger.

This suggests that companies will need to demonstrate that every reasonable

practice was taken to prevent the occurrence of defects. One such practice is the use

of formal methods, and its exclusion may need to be justified in some domains. It is

quite possible that a software company may be sued for software which injures a

third party, and this suggests that companies will need a rigorous quality assurance

system to prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides

savings in the cost of the project. For example, a 9 % cost saving is attributed to the

use of formal methods during the CICS project; the T800 project attributes a

12-month reduction in testing time to the use of formal methods. These are

discussed in more detail in chapter one of [26].

The use of formal methods is mandatory in certain circumstances. The Ministry

of Defence in the United Kingdom issued two safety-critical standards2 in the early

1990s related to the use of formal methods in the software development lifecycle.

The first is Defence Standard 00-55, “The Procurement of safety critical software
in defense equipment” [44] which makes it mandatory to employ formal methods in

safety-critical software development in the UK; and mandates the use of formal

proof that the most crucial programs correctly implement their specifications.

The other is Def. Stan 00-56 “Hazard analysis and safety classification of the
computer and programmable electronic system elements of defense equipment”
[45]. The objective of this standard is to provide guidance to identify which systems

or parts of systems being developed are safety-critical and thereby require the use of

formal methods. This proposed system is subject to an initial hazard analysis to

determine whether there are safety-critical parts.

The reaction to these defence standards 00-55 and 00-56 was quite hostile

initially, as most suppliers were unlikely to meet the technical and organization

requirements of the standard. This is described in [65].

17.3 Applications of Formal Methods

Formal methods have been employed to verify correctness in the nuclear power

industry, the aerospace industry, the security technology area, and the railroad

domain. These sectors are subject to stringent regulatory controls to ensure safety

2 The U.K. Defence Standards 0055 and 0056 have been revised in recent years to be less

prescriptive on the use of formal methods.

292 17 Formal Methods

and security. Several organizations have piloted formal methods with varying

degrees of success. These include IBM, who developed VDM at its laboratory in

Vienna; IBM (Hursley, England) piloted the Z formal specification language on the

CICS (Customer Information Control System) project.

The mathematical techniques developed by Parnas (i.e., requirements model and

tabular expressions) have been employed to specify the requirements of the A-7

aircraft as part of a research project for the US Navy.3 Tabular expressions have

also been employed for the software inspection of the automated shutdown software

of the Darlington Nuclear power plant in Canada.4 These are two successful uses of

mathematical techniques in software engineering.

There are examples of the use of formal methods in the railway domain, and

examples dealing with the modelling and verification of a railroad gate controller

and railway signalling are described in [26]. Clearly, it is essential to verify safety

critical properties such as “when the train goes through the level crossing then the
gate is closed”.

17.4 Tools for Formal Methods

A key criticism of formal methods is the limited availability of tools to support the

software engineer in writing the formal specification and in conducting proof. Many

of the early tools were criticized as not being of industrial strength. However, in

recent years more advanced tools to support the software engineer’s work in formal

specification and formal proof have become available, and this is likely to continue

in the coming years.

The tools include syntax checkers that determine whether the specification is

syntactically correct; specialized editors which ensure that the written specifica-

tion is syntactically correct; tools to support refinement; automated code

generators that generate a high-level language corresponding to the specification;

theorem provers to demonstrate the presence or absence of key properties and to

prove the correctness of refinement steps, and to identify and resolve proof

obligations; and specification animation tools where the execution of the specifi-

cation can be simulated.

The B-Toolkit from B-Core is an integrated set of tools that supports the

B-Method. These include syntax and type checking, specification animation,

proof obligation generator, an auto-prover, a proof assistor, and code generation.

This allows, in theory, a complete formal development from initial specification to

3However, the resulting software was never actually deployed on the A-7 aircraft.
4 This was an impressive use of mathematical techniques and it has been acknowledged that formal

methods must play an important role in future developments at Darlington. However, given the

time and cost involved in the software inspection of the shutdown software some managers have

less enthusiasm in shifting from hardware to software controllers [22].

17.4 Tools for Formal Methods 293

final implementation to be achieved, with every proof obligation justified, leading

to a provably correct program.

The IFAD Toolbox5 is a support tool for the VDM-SL specification language,

and it includes support for syntax and type checking, an interpreter and debugger to

execute and debug the specification, and a code generator to convert from VDM-SL

to C++. It also includes support for graphical notations such as the OMT/UML

design notations.

17.5 Approaches to Formal Methods

There are two key approaches to formal methods: namely the model-oriented
approach of VDM or Z, and the algebraic or axiomatic approach of the process

calculi such as the calculus communicating systems (CCS) or communicating

sequential processes (CSP).

17.5.1 Model-Oriented Approach

The model-oriented approach to specification is based on mathematical models, and

a model is a mathematical representation or abstraction of a physical entity or

system. The model aims to provide a mathematical explanation of the behaviour of

the physical world, and it is considered suitable if its properties closely match those

of the system, and if its calculations match and simplify calculations in the real

world. A model will allow predictions of future behaviour to be made. There are

many models employed in the physical world such as models of the weather system

that allow weather predictions to be made.

It is fundamental to explore the model to determine its adequacy, and to determine

the extent to which it explains the underlying physical behaviour, and allows

predictions of future behaviour to be made. This will determine its acceptability as a

representation of the physical world. Models that are ineffective will be replaced with

models that offer a better explanation of the manifested physical behaviour. There are

many examples in science of the replacement of one theory by a newer one. For

example, the Copernican model of the universe replaced the older Ptolemaic model,

andNewtonian physics was replaced by Einstein’s theories on relativity. The structure

of the revolutions that take place in science are described in [36].

The model-oriented approach to software development involves defining an

abstract model of the proposed software system. The model acts as a representation

of the proposed system, and the model is then explored to assess its suitability. The

exploration of the model takes the form of model interrogation, i.e., asking

questions and determining the effectiveness of the model in answering the

5 The IFAD Toolbox has been renamed to VDM Tools as IFAD sold the VDM Tools to CSK in

Japan. The tools are expected to be available worldwide and to be improved further.

294 17 Formal Methods

questions. The modelling in formal methods is typically performed via elementary

discrete mathematics, including set theory, sequences, functions and relations.

VDM and Z are model-oriented approaches to formal methods. VDM arose from

work done in the IBM laboratory in Vienna in formalizing the semantics for the

PL/1 compiler, and it was later applied to the specification of software systems.

The origin of the Z specification language is in work done at Oxford University in

the early 1980s.

17.5.2 Modelling

The world is dominated by models: for example, models of weather systems as used

by meteorologists; models of the economy as used by Economists; models of

population growth; and models of the solar system, for example, the Ptolemaic

model and the Copernican model. Modelling can play a key role in computer

science, as computer systems tend to be highly complex, whereas a model allows

simplification or abstraction of the underlying complexity, and enables a richer

understanding of the underlying reality to be gained.

There may be more than one model of a particular entity, for example, the

Ptolemaic model and the Copernican model are different models of the solar

system. This leads to the question as to which is the best or most appropriate

model to use, and to what criteria should be employed to determine whether a

model is good. The choice is generally influenced by the ability of the model to

explain the behaviour, its simplicity, and its elegance.

The importance of models is that they serve to explain the behaviour of a

particular entity and may also be used to predict future behaviour. Different models

may vary in their ability to explain aspects of the entity under study. One model

may be good at explaining some aspects of the behaviour under study, whereas

another model might be good at explaining other aspects. The adequacy of a model

is a key concept in modelling, and the adequacy is determined by the effectiveness

of the model in representing the underlying behaviour, and its ability to predict

future behaviour. Model exploration consists of asking questions, and determining

whether the model is able to give an effective answer to the particular question.

A good model is chosen as a representation of the real world, and is referred to

whenever there are questions in relation to the aspect of the real world.

The model is a simplification or abstraction of the real world and will contain only

the essential details. For example, the model of an aircraft is hardly likely to include

the colour of the aircraft and instead the objective may be to model the aerodynamics

of the aircraft. The principle of “Ockham’s Razor” is used in modelling and in model

simplification. The objective is to choose only those entities in the model which are

absolutely necessary to explain the behaviour of the world.

The software domain has applied models of software development to assist with

the complexities in software development. These include the Capability Maturity

Model (CMM), which is employed as a framework to enhance the capability of the

17.5 Approaches to Formal Methods 295

organization in software development; UML which is employed to model

requirements with graphical notations; and mathematical models derived from

formal specifications.

17.5.3 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is to

satisfy, and there is no intention to produce an abstract model of the system. The

required properties and behaviour of the system are stated in mathematical notation.

The difference between the axiomatic specification and a model-based approach is

may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping

an element from the stack. The properties of pop and push are explicitly defined in

the axiomatic approach. The model-oriented approach constructs an explicit model

of the stack and the operations are defined in terms of the effect that they have on

the model. The specification of the pop operation on a stack is given by axiomatic

properties, for example, pop(push(s, x))¼ s.

Comment 17.2 (Axiomatic Approach) The property-oriented approach has the
advantage that the implementer is not constrained to a particular choice of
implementation, and the only constraint is that the implementation must satisfy
the stipulated properties.

The emphasis is on specifying the required properties of the system, and

implementation issues are avoided. The properties are typically stated using math-

ematical logic or higher-order logics. Mechanized theorem-proving techniques may

be employed to prove results.

One potential problem with the axiomatic approach is that the properties

specified may not be realized in any implementation. Thus, whenever a “formal

axiomatic theory” is developed a corresponding “model” of the theory must be

identified, in order to ensure that the properties may be realized in practice. That is,

when proposing a system that is to satisfy some set of properties, there is a need to

prove that there is at least one system that will satisfy the set of properties.

17.6 Proof and Formal Methods

The word “proof” has several connotations in various disciplines; for example, in a

court of law, the defendant is assumed innocent until proven guilty. The proof of the

guilt of the defendant may take the form of certain facts in relation to the

movements of the defendant, the defendant’s circumstances, the defendant’s alibi,

statements taken from witnesses, rebuttal arguments from the defence, and certain

296 17 Formal Methods

theories produced by the prosecution or defence. Ultimately, in the case of a trial by

jury, the defendant is judged guilty or not guilty depending on the extent to which

the jury has been convinced by the arguments made by the prosecution and defence.

A mathematical proof typically includes natural language and mathematical

symbols, and often many of the tedious details of the proof are omitted. The

proof may employ a “divide and conquer” technique; i.e., breaking the conjecture

down into sub-goals and then attempting to prove the sub-goals. Many proofs in

formal methods are concerned with crosschecking the details of the specification or

checking the validity of refinement steps, or checking that certain properties are

satisfied by the specification. There are often many tedious lemmas to be proved,

and theorem provers6 are essential in assisting with this. Machine proof needs to be

explicit, and reliance on some brilliant insight is avoided. Proofs by hand are

notorious for containing errors or jumps in reasoning, while machine proofs are

explicit but are often extremely lengthy and unreadable. For example, the actual

machine proof of correctness of the VIPER microprocessor7 [65] consisted of

several million formulae.

A formal mathematical proof consists of a sequence of formulae, where each

element is either an axiom or derived from a previous element in the series by

applying a fixed set of mechanical rules.

Theorem provers are invaluable in resolving many of the thousands of proof

obligations that arise from a formal specification, and the application of formal

methods in an industrial environment requires the use of machine-assisted proof.

Automated theorem proving is difficult, as often mathematicians prove a theorem

with an initial intuitive feeling that the theorem is true. Human intervention to

provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its

correctness. However, an absolute proof of correctness8 is unlikely except for the

most trivial of programs. A program may consist of legacy software that is assumed

to work; a compiler that is assumed to work correctly creates it. Theorem provers

are programs that are assumed to function correctly. The best that formal methods

can claim is increased confidence in correctness of the software, rather than an

absolute proof of correctness.

6Most existing theorem provers are difficult to use and are for specialist use only. There is a need

to improve the usability of theorem provers.
7 This verification was controversial with RSRE and Charter overselling VIPER as a chip design

that conforms to its formal specification.
8 This position is controversial with others arguing that if correctness is defined mathematically

then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove

that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist,

and that the reason why there are not many examples of such proofs is due to a lack of

mathematical specifications.

17.6 Proof and Formal Methods 297

17.7 The Future of Formal Methods

The debate concerning the level of use of mathematics in software engineering is

still ongoing. Many practitioners are against the use of mathematics and avoid its

use. They tend to employ methodologies such as software inspections and testing to

improve confidence in the correctness of the software. They argue that in the current

competitive industrial environment where time to market is a key driver that the use

of such formal mathematical techniques would seriously impact the market oppor-

tunity. Industrialists often need to balance conflicting needs such as quality; cost;

and delivering on time. They argue that the commercial necessities require

methodologies and techniques that allow them to achieve their business goals

effectively.

The other camp argues that the use of mathematics is essential in the delivery of

high-quality and reliable software, and that if a company does not place sufficient

emphasis on quality it will pay the price in terms of poor quality and its reputation

in the market place.

It is generally accepted that mathematics and formal methods must play a role in

the safety critical and security critical fields. Apart from that the extent of the use of

mathematics is a hotly disputed topic. The pace of change in the world is extraordi-

nary, and companies face significant competitive forces in a global market place. It

is unrealistic to expect companies to deploy formal methods unless they have clear

evidence that it will support them in delivering commercial products to the market

place ahead of their competition, at the right price and with the right quality. Formal

methods need to prove that it can do this if it wishes to be taken seriously in

mainstream software engineering. The issue of technology transfer of formal

methods to industry is discussed in [48].

17.8 The Vienna Development Method

VDM dates from work done by the IBM research laboratory in Vienna. This group

was specifying the semantics of the PL/1 programming language using an operational

semantic approach. That is, the semantics of the language were defined in terms of a

hypothetical machine which interprets the programs of that language [5, 6]. Later

work led to the Vienna Development Method (VDM) with its specification language,

Meta IV. This was used to give the denotational semantics of programming

languages; i.e., a mathematical object (set, function, etc.) is associated with each

phrase of the language [6]. The mathematical object is termed the denotation of the

phrase.

VDM is a model-oriented approach and this means that an explicit model of the

state of an abstract machine is given, and operations are defined in terms of this

state. Operations may act on the system state, taking inputs, and producing outputs

as well as a new system state. Operations are defined in a precondition and post-

condition style. Each operation has an associated proof obligation to ensure that if

the precondition is true, then the operation preserves the system invariant. The

initial state itself is, of course, required to satisfy the system invariant.

298 17 Formal Methods

VDM uses keywords to distinguish different parts of the specification, e.g.,

preconditions, post-conditions, as introduced by the keywords pre and post respec-
tively. In keeping with the philosophy that formal methods specifies what a system
does as distinct from how, VDM employs post-conditions to stipulate the effect of

the operation on the state. The previous state is then distinguished by employing

hooked variables, e.g., v¬, and the post-condition specifies the new state which is
defined by a logical predicate relating the pre-state to the post-state.

VDM is more than its specification language VDM-SL, and is, in fact, a software

development method, with rules to verify the steps of development. The rules

enable the executable specification, i.e., the detailed code, to be obtained from

the initial specification via refinement steps. Thus, we have a sequence S¼ S0,
S1, . . ., Sn¼E of specifications, where S is the initial specification, and E is the final

(executable) specification.

Retrieval functions enable a return from a more concrete specification to the

more abstract specification. The initial specification consists of an initial state, a

system state, and a set of operations. The system state is a particular domain, where

a domain is built out of primitive domains such as the set of natural numbers, etc., or

constructed from primitive domains using domain constructors such as Cartesian

product, disjoint union, etc. A domain-invariant predicate may further constrain the

domain, and a type in VDM reflects a domain obtained in this way. Thus, a type in

VDM is more specific than the signature of the type, and thus represents values in

the domain defined by the signature, which satisfy the domain invariant. In view of

this approach to types, it is clear that VDM types may not be “statically type

checked”.

VDM specifications are structured into modules, with a module containing the

module name, parameters, types, operations, etc. Partial functions occur frequently

in computer science as many functions, may be undefined, or fail to terminate for

some arguments in their domain. VDM addresses partial functions by employing

nonstandard logical operators, namely the logic of partial functions (LPFs)

discussed in [48].

VDM has been used in industrial projects, and its tool support includes the IFAD

Toolbox.9 VDM is described in more detail in [48]. There are several variants of

VDM, including VDM++, the object-oriented extension of VDM, and the Irish

school of the VDM, which is discussed in the next Section.

17.9 VDM♣, the Irish School of VDM

The Irish School ofVDM is a variant of standardVDM, and is characterized by [39] its

constructive approach, classical mathematical style, and its terse notation. This

method aims to combine the what and how of formal methods in that its terse

9 The VDM Tools are now available from the CSK Group in Japan.

17.9 VDM♣, the Irish School of VDM 299

specification style stipulates in concise form what the system should do; furthermore,

the fact that its specifications are constructive (or functional) means that the how is

included with thewhat. However, it is important to qualify this by stating that the how

as presented by VDM♣ is not directly executable, as several of its mathematical data

types have no corresponding structure in high-level programming languages or

functional languages. Thus, a conversion or reification of the specification into a

functional or higher-level language must take place to ensure a successful execution.

Further, the fact that a specification is constructive is no guarantee that it is a good

implementation strategy, if the construction itself is naive.

The Irish school follows a similar development methodology as in standard

VDM, and is a model-oriented approach. The initial specification is presented, with

initial state and operations defined. The operations are presented with

preconditions; however, no post-condition is necessary as the operation is “func-

tionally” (i.e., explicitly) constructed.

There are proof obligations to demonstrate that the operations preserve the

invariant. That is, if the precondition for the operation is true, and the operation is

performed, then the system invariant remains true after the operation. The philoso-

phy is to exhibit existence constructively rather than a theoretical proof of existence
that demonstrates the existence of a solution without presenting an algorithm to

construct the solution.

The school avoids the existential quantifier of predicate calculus and reliance on

logic in proof is kept to a minimum, and emphasis instead is placed on equational

reasoning. Structures with nice algebraic properties are sought, and one nice

algebraic structure employed is the monoid, which has closure, associativity, and

a unit element. The concept of isomorphism is powerful, reflecting that two

structures are essentially identical, and thus we may choose to work with either,

depending on which is more convenient for the task in hand.

The school has been influenced by the work of Polya and Lakatos. The former

[54] advocated a style of problem solving characterized by first considering an

easier sub-problem, and considering several examples. This generally leads to a

clearer insight into solving the main problem. Lakatos’s approach to mathematical

discovery [37] is characterized by heuristic methods. A primitive conjecture is

proposed and if global counter-examples to the statement of the conjecture are

discovered, then the corresponding hidden lemma for which this global counterex-

ample is a local counter example is identified and added to the statement of the

primitive conjecture. The process repeats, until no more global counterexamples are

found. A sceptical view of absolute truth or certainty is inherent in this.

Partial functions are the norm in VDM♣, and as in standard VDM, the problem is

that functions may be undefined, or fail to terminate for several of the arguments in

their domain. The logic of partial functions (LPFs) is avoided, and instead care is

taken with recursive definitions to ensure termination is achieved for each argu-

ment. Academic and industrial projects have been conducted using the method of

the Irish school, but at this stage tool support is limited.

300 17 Formal Methods

17.10 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory, and Abrial

developed it at Oxford University in the early 1980s. It is used for the formal

specification of software and is a model-oriented approach. An explicit model of the

state of an abstract machine is given, and the operations are defined in terms of the

effect on the state. It includes a mathematical notation that is similar to VDM and

the visually striking schema calculus. The latter consists essentially of boxes

(or schemas), and these are used to describe operations and states. The schema

calculus enables schemas to be used as building blocks and combined with other

schemas. The Z specification language was published as an ISO standard (ISO/IEC

13568:2002) in 2002.

The schema calculus is a powerful means of decomposing a specification into

smaller pieces or schemas. This helps to make Z specification highly readable, as

each individual schema is small in size and self-contained. The exception handling

is done by defining schemas for the exception cases, and these are then combined

with the original operation schema. Mathematical data types are used to model the

data in a system and these data types obey mathematical laws. These laws enable

simplification of expressions and are useful with proofs.

Operations are defined in a precondition/post-condition style. However, the

precondition is implicitly defined within the operation; i.e., it is not separated out

as in standard VDM. Each operation has an associated proof obligation to ensure

that if the precondition is true, then the operation preserves the system invariant.

The initial state itself is, of course, required to satisfy the system invariant. Post-

conditions employ a logical predicate which relates the pre-state to the post-state,

and the post-state of a variable v is given by priming, e.g., v0. Various

conventions are employed, e.g., v? indicates that v is an input variable and v!
indicates that v is an output variable. The symbol Ξ Op operation indicates that

this operation does not affect the state, whereas ΔOp indicates that this operation
affects the state.

Many data types employed in Z have no counterpart in standard programming

languages. It is therefore important to identify and describe the concrete data

structures that will ultimately represent the abstract mathematical structures. The

operations on the abstract data structures may need to be refined to yield operations

on the concrete data structure that yield equivalent results. For simple systems,

direct refinement (i.e., one step from abstract specification to implementation) may

be possible; in more complex systems, deferred refinement is employed, where a

sequence of increasingly concrete specifications are produced to yield the execut-

able specification eventually.

Z has been successfully applied in industry, and one of its well-known successes

is the CICS project at IBM Hursley in England. Z is described in more detail in the

next chapter.

17.10 The Z Specification Language 301

17.11 The B Method

The B-Technologies [42] consist of three components: a method for software

development, namely the B-Method; a supporting set of tools, namely, the B-
Toolkit; and a generic program for symbol manipulation, namely, the B-Tool
(from which the B-Toolkit is derived). The B-Method is a model-oriented approach

and is closely related to the Z specification language. Abrial developed the B

specification language, and every construct in the language has a set theoretic

counterpart, and the method is founded on Zermelo set theory. Each operation

has an explicit precondition.

A key role of the abstract machine in the B-Method is to provide encapsulation

of variables representing the state of the machine and operations which manipulate

the state. Machines may refer to other machines, and a machine may be introduced

as a refinement of another machine. The abstract machines are specification

machines, refinement machines, or implementable machines. The B-Method adopts

a layered approach to design where the design is gradually made more concrete by a

sequence of design layers. Each design layer is a refinement that involves a more

detailed implementation in terms of the abstract machines of the previous layer. The

design refinement ends when the final layer is implemented purely in terms of

library machines. Any refinement of a machine by another has associated proof

obligations, and proof is required to verify the validity of the refinement step.

Specification animation of the Abstract Machine Notation (AMN) specification

is possible with the B-Toolkit, and this enables typical usage scenarios n to be

explored for requirements validation. This is, in effect, an early form of testing, and

it may be used to demonstrate the presence or absence of desirable or undesirable

behaviour. Verification takes the form of a proof to demonstrate that the invariant is

preserved when the operation is executed within its precondition, and this is

performed on the AMN specification with the B-Toolkit.
The B-Toolkit provides several tools that support the B-Method, and these include

syntax and type checking; specification animation, proof obligation generator, auto

prover, proof assistor, and code generation. Thus, in theory, a complete formal

development from initial specification to final implementation may be achieved,

with every proof obligation justified, leading to a provably correct program.

The B-Method and toolkit have been successfully applied in industrial

applications, including the CICS project at IBM Hursley in the United Kingdom

[28]. The automated support provided has been cited as a major benefit of the

application of the B-Method and the B-Toolkit.

17.12 Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e., a statement that may be true or

false, and it is usually required to prove that if the precondition Q is true then

execution of S is guaranteed to terminate in a finite amount of time in a state

satisfying R. This is written as {Q} S {R}.

302 17 Formal Methods

The weakest precondition (cf. p. 109 of [25]) of a command S with respect to a

post-condition R represents the set of all states such that if execution begins in any

one of these states, then execution will terminate in a finite amount of time in a state

with R true. These set of states may be represented by a predicate Q0, so that wp
(S,R)¼wpS (R)¼Q0, and so wpS is a predicate transformer: i.e., it may be regarded

as a function on predicates. The weakest precondition is the precondition that places

the fewest constraints on the state than all of the other preconditions of (S,R). That
is, all of the other preconditions are stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness and indicates that if

execution of S commences in any state satisfying Q, and if execution terminates,

then the final state will satisfy R. Often, a predicate Q which is stronger than the

weakest precondition wp(S,R) is employed, especially where the calculation of the

weakest precondition is nontrivial. Thus, a stronger predicate Q such that Q)wp
(S,R) is often employed.

There are many properties associated with the weakest preconditions, and these

may be used to simplify expressions involving weakest preconditions, and in

determining the weakest preconditions of various program commands such as

assignments, iterations, etc. Weakest preconditions may be used in developing a

proof of correctness of a program in parallel with its development [48].

An imperative program may be regarded as a predicate transformer. This is since

a predicate P characterises the set of states in which the predicate P is true, and an

imperative program may be regarded as a binary relation on states, which may be

extended to a function F, leading to the Hoare triple P{F}Q. That is, the program
F acts as a predicate transformer with the predicate P regarded as an input assertion,

i.e., a Boolean expression that must be true before the program F is executed, and

the predicate Q is the output assertion, which is true if the program F terminates

(where F commenced in a state satisfying P).

17.13 The Process Calculii

The objectives of the process calculi [27] are to provide mathematical models

which provide insight into the diverse issues involved in the specification, design,

and implementation of computer systems which continuously act and interact with

their environment. These systems may be decomposed into sub-systems that inter-

act with each other and their environment.

The basic building block is the process, which is a mathematical abstraction of

the interactions between a system and its environment. A process that lasts indefi-

nitely may be specified recursively. Processes may be assembled into systems they

may execute concurrently, or communicate with each other. Process communica-

tion may be synchronized, and this takes the form of one process outputting a

message simultaneously to another process inputting a message. Resources may be

shared among several processes. Process calculi such as CSP [27] and CCS [43]

have been developed to enrich the understanding of communication and concur-

rency, and these calculi obey a rich collection of mathematical laws.

17.13 The Process Calculii 303

The expression (a ? P) in CSP describes a process which first engages in event a,
and then behaves as process P. A recursive definition is written as (μX)•F(X) and an
example of a simple chocolate vending machine is:

VMS ¼ μx : coin; chocf g � coin? choc?Xð Þð Þ

The simple vending machine has an alphabet of two symbols, namely, coin and

choc. The behaviour of the machine is that a coin is entered into the machine, and

then a chocolate selected and provided, and the machine is ready for further use.

CSP processes use channels to communicate values with their environment, and

input on channel c is denoted by (c?.x Px). This describes a process that accepts any
value x on channel c, and then behaves as process Px. In contrast, (c!e P) defines a
process which outputs the expression e on channel c and then behaves as process P.

The π-calculus is a process calculus based on names. Communication between

processes takes place between known channels, and the name of a channel may be

passed over a channel. There is no distinction between channel names and data

values in the π-calculus. The output of a value v on channel a is given by āv; i.e.,
output is a negative prefix. Input on a channel a is given by a(x), and is a positive

prefix. Private links or restrictions are denoted by (x)P.

17.14 Finite State Machines

The neurophysiologists Warren McCulloch and Walter Pitts published early work

on finite state automata in 1943. They were interested in modelling the thought

process for humans and machines. Moore and Mealy developed this work further,

and these finite-state machines are referred to as the “Moore machine” and the

“Mealy machine”. The Mealy machine determines its outputs through the current

state and the input, whereas the output of Moore’s machine is based upon the

current state alone.

Definition 17.2 (Finite State Machine) A finite state machine (FSM) is an
abstract mathematical machine that consists of a finite number of states. It includes
a start state q0 in which the machine is in initially; a finite set of states Q; an input
alphabet Σ; a state transition function δ; and a set of final accepting states F (where
F �, Q).

The state transition function takes the current state and an input and returns the

next state. That is, the transition function is of the form:

δ : Q� Σ ! Q

The transition function provides rules that define the action of the machine for

each input, and it may be extended to provide output as well as a state transition.

State diagrams are used to represent finite state machines, and each state accepts a

304 17 Formal Methods

finite number of inputs. A finite state machine may be deterministic or

non-deterministic, and a deterministic machine changes to exactly one state for

each input transition, whereas a non-deterministic machine may have a choice of

states to move to for a particular input (Fig. 17.1).

Finite state automata can compute only very primitive functions and are not an

adequate model for computing. There are more powerful automata such as the

Turing machine [50] that is essentially a finite automaton with an infinite storage

(memory). Anything that is computable is computable by a Turing machine.

The memory of the Turing machine is a tape that consists of a potentially infinite

number of one-dimensional cells. The Turing machine provides a mathematical

abstraction of computer execution and storage, as well as providing a mathematical

definition of an algorithm.

17.15 The Parnas Way

Parnas has been influential in the computing field, and his ideas on the specification,

design, implementation, maintenance, and documentation of computer software

remain important. He advocates a solid engineering approach and argues that the

role of the engineer is to apply scientific principles and mathematics to design and

develop products. He argues that computer scientists need to be educated as

engineers to ensure that they have the appropriate background to build software

correctly. His contributions to software engineering include:

• Tabular Expressions
These are mathematical tables for specifying requirements and enable complex

predicate logic expressions to be represented in a simpler form.

• Mathematical Documentation
He advocates the use of precise mathematical documentation for requirements

and design.

• Requirements Specification
He advocates the use of mathematical relations to specify the requirements

precisely.

• Software Design
He developed information hiding that is used in object-oriented design,10 and

allows software to be designed for change. Every information-hiding module has

S0 / 0 S1 / 0 S2 / 11S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

Fig. 17.1 Deterministic

finite state machine

10 It is surprising that many in the object-oriented world seem unaware that information hiding

goes back to the early 1970s and many have never heard of Parnas.

17.15 The Parnas Way 305

an interface that provides the only means to access the services provided by the

modules. The interface hides the module’s implementation.

• Software Inspections
His approach requires the reviewers to take an active part in the inspection. They

are provided with a list of questions by the author and their analysis involves the

production of mathematical table to justify the answers.

• Predicate Logic
He developed an extension of the predicate calculus to deal with partial

functions. This approach preserves the classical two-valued logic and deals

with undefined values that may occur in predicate logic expressions.

17.16 Usability of Formal Methods

There are practical difficulties associated with the use of formal methods. It seems

to be assumed that programmers and customers are willing to become familiar with

the mathematics used in formal methods. There is little evidence to suggest that

customers would be prepared to use formal methods.11 Customers are concerned

with their own domain and speak the technical language of that domain.12 Often,

the use of mathematics is an alien activity that bears little resemblance to their

normal work. Programmers are interested in programming rather than in mathe-

matics, and generally are not interested in becoming mathematicians.13

However, the mathematics involved in most formal methods is reasonably

elementary, and, in theory, if both customers and programmers are willing to

learn the formal mathematical notation, then a rigorous validation of the formal

specification can take place to verify its correctness. Both parties can review the

formal specification to ensure its correctness, and the code can be verified to be

correct with respect to the formal specification. It is usually possible to get a

developer to learn a formal method, as a programmer has some experience of

mathematics and logic; however, in practice, it is more difficult to get a customer

to learn a formal method.

This often means that a formal specification of the requirements and an informal

definition of the requirements using a natural language are maintained. It is

essential that both of these are consistent and that there is a rigorous validation of

the formal specification. Otherwise, if the programmer proves the correctness of the

code with respect to the formal specification, and the formal specification is

11 The domain in which the software is being used will influence the willingness or otherwise of the

customers to become familiar with the mathematics required. Certainly, in mainstream software

engineering the author does not detect any interest from customers and the perception is that

formal methods are unusable; however, in some domains such as the regulated sector there is a

greater willingness of customers to become familiar with the mathematical notation.
12 The author’s experience is that most customers have a very limited interest and even less

willingness to use mathematics. There are exceptions to this especially in the regulated sector.
13Mathematics that is potentially useful to software engineers is discussed in [13, 47].

306 17 Formal Methods

incorrect, then the formal development of the software is incorrect. There are

several techniques to validate a formal specification and these are described in

[66] Table 17.2.

17.16.1 Why Are Formal Methods difficult?

Formal methods are perceived as being difficult to use and of providing limited

value in mainstream software engineering. Programmers receive some training in

mathematics as part of their education. However, in practice, most programmers

who learn formal methods at university never use formal methods again once they

take an industrial position.

It may well be that the very nature of formal methods is such that it is suited only

for specialists with a strong background in mathematics. Some of the reasons why

formal methods are perceived as being difficult are given in Table 17.3.

Table 17.2 Techniques for validation of formal specification

Technique Description

Proof This involves demonstrating that the formal specification satisfies key properties

of the requirements. The implementation will need to preserve these properties.

Software

inspections

This involves a Fagan like inspection to compare an informal set of requirements

(unless the customer has learned the formal method) with the formal specification,

and to ensure consistency between them.

Specification

animation

This involves program (or specification) execution as a way to validate the formal

specification. It is similar to testing.

Tools Tools provide some limited support in validating a formal specification.

Table 17.3 Why are formal methods difficult?

Factor Description

Notation/Intuition The notation employed differs from that employed in mathematics.

Intuition varies from person to person. Many programmers find the

notation in formal methods to be unintuitive.

Formal specification It is easier to read a formal specification than to write one.

Validation of formal

specification

The validation of a formal specification using proof techniques or a

Fagan like inspection is difficult.

Refinementa The refinement of a formal specification into successive more concrete

specifications with proof of validity of each refinement step is difficult

and time consuming.

Proof Proof can be difficult and time consuming.

Tool support Many of the existing tools are difficult to use.

aThe author doubts that refinement is cost effective for mainstream software engineering. How-

ever, it may be useful in the regulated environment

17.16 Usability of Formal Methods 307

17.16.2 Characteristics of a Usable Formal Method

It is important to investigate ways by which formal methods can bemade more usable

to software engineers. This may involve designing more usable notations and better

tools to support the process. Practical training and coaching to employees can help.

Some of the characteristics of a usable formal method are given in Table 17.4.

17.17 Review Questions

1. What are formal methods and describe their potential benefits? How

essential is tool support?

2. What is stepwise refinement and is it realistic in mainstream software

engineering?

3. Discuss Parnas’s criticisms of formal methods and discuss whether his

views are valid.

4. Discuss the applications of formal methods and which areas have

benefited most from their use? What problems have arisen?

5. Describe a technology transfer path for the potential deployment of

formal methods in an organization.

6. Explain the difference between the model-oriented approach and the

axiomatic approach.

7. Discuss the nature of proof in formal methods and tools to support proof.

8. Discuss the Vienna Development Method and explain the difference

between standard VDM and VDM♣.

9. Discuss Z and B ? Describe the tools in the B-Toolkit.

10. Discuss process calculi such as CSP, CCS or π–calculus.

Table 17.4 Characteristics of a usable formal method

Characteristic Description

Intuitive A formal method should be intuitive.

Teachable A formal method needs to be teachable to the average software engineer.

The training should include (at least) writing practical formal specifications.

Tool support Good tools to support formal specification, validation, refinement and proof

are required.

Adaptable to

change

Change is common in a software engineering environment. A usable formal

method should be adaptable to change.

Technology

transfer path

The process for software development needs to be defined to include formal

methods. The migration to formal methods needs to be managed.

Costa The use of formal methods should be cost effective with a return on

investment. There should be benefits in time, quality and productivity.

aA commercial company will expect a return on investment from the use of a new technology. This

may be reduced software development costs, improved quality and improved timeliness of

projects, and improvements in productivity. A company does not go to the trouble of deploying

a new technology just to satisfy academic interest

308 17 Formal Methods

17.18 Summary

This chapter discussed formal methods which offer a rigorous approach to the

development of high-quality software. Formal methods employ mathematical

techniques for the specification and formal development of software, and are useful

in the safety critical field. They consist of formal specification languages or

notations; a methodology for formal software development; and a set of tools to

support the syntax checking of the specification, as well as the proof of properties of

the specification.

Formal methods may be model oriented or axiomatic oriented. The model-

oriented approach includes formal methods such as VDM, Z and B. The axiomatic

approach includes the process calculi such as CSP, CCS and the π calculus. VDM

was developed at the IBM lab in Vienna, and has been used in academia and

industry. CSP was developed by C.A.R. Hoare and CCS by Robin Milner.

Formal methods allow questions to be asked and answered about what the

system does independently of the implementation. They offer a way to debug the

requirements, and to show that certain desirable properties are true of the specifica-

tion, whereas certain undesirable properties are absent.

The use of formal methods generally leads to more robust software and to

increased confidence in its correctness. There are challenges involved in the

deployment of formal methods, as the use of these mathematical techniques may

be a culture shock to many staff.

The usability of existing formal methods was considered, and reasons for their

perceived difficulty considered. The characteristics of a usable formal method were

explored.

There are various tools to support formal methods including syntax checkers;

specialized editors; tools to support refinement; automated code generators that

generate a high-level language corresponding to the specification; theorem provers;

and specification animation tools where the execution of the specification can be

simulated.

17.18 Summary 309

Z Formal Specification Language 18

Key Topics

Sets, relations and functions

Bags and sequences

Data Reification and Refinement

Schema Calculus

Proof in Z

18.1 Introduction

Z is a formal specification language based on Zermelo set theory. It was developed

at the Programming Research Group at Oxford University in the early 1980s [18],

and became an ISO standard in 2002. Z specifications are mathematical and employ

a classical two-valued logic. The use of mathematics ensures precision, and allows

inconsistencies and gaps in the specification to be identified. Theorem provers may

be employed to demonstrate the correctness of the refinement steps, and that the

software implementation meets its specification.

Z is a ‘model oriented’ approach with an explicit model of the state of an abstract

machine given, and operations are defined in terms of this state. Its mathematical

notation is used for formal specification, and the schema calculus is used to

structure the specifications. The latter is visually striking, and consists essentially

of boxes, with these boxes or schemas used to describe operations and states. The

schema calculus enables schemas to be used as building blocks and combined with

other schemas. The simple schema in Fig. 18.1 is the specification of the positive

square root of a real number.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_18,
Springer International Publishing Switzerland 2014

311

The schema calculus is a powerful means of decomposing a specification into

smaller pieces or schemas. This helps to make Z specifications highly readable, as

each individual schema is small in size and self-contained. Exception handling is

addressed by defining schemas for the exception cases. These are then combined

with the original operation schema. Mathematical data types are used to model the

data in a system, these data types obey mathematical laws. These laws enable

simplification of expressions, and are useful with proofs.

Operations are defined in a precondition/post-condition style. A precondition

must be true before the operation is executed, and the post-condition must be true

after the operation has executed. The precondition is implicitly defined within the

operation. Each operation has an associated proof obligation to ensure that if the

precondition is true, then the operation preserves the system invariant. The system

invariant is a property of the system that must be true at all times. The initial state

itself is, of course, required to satisfy the system invariant.

The precondition for the specification of the square root function above is that

num?� 0; i.e., the function SqRoot may be applied to positive real numbers only.

The post-condition for the square root function is root!2¼ num? and root!� 0. That
is, the square root of the number is positive and its square gives the number. Post-

conditions employ a logical predicate which relates the pre-state to the post-state,

and the post-state of a variable being distinguished by priming the variable, e.g., v 0.
Z is a typed language and whenever a variable is introduced its type must be

given. A type is simply a collection of objects, and there are several standard types

in Z. These include the natural numbers ℕ, the integers ℤ and the real numbers ℝ.

The declaration of a variable x of type X is written x : X. It is also possible to create
your own types in Z.

Various conventions are employed within Z specification, for example v?
indicates that v is an input variable; v! indicates that v is an output variable. The

variable num? is an input variable and root! is an output variable in the square root

example above. The notation Ξ in a schema indicates that the operationOp does not
affect the state; whereas the notation Δ in the schema indicates that Op is an

operation that affects the state.

Many of the data types employed in Z have no counterpart in standard program-

ming languages. It is therefore important to identify and describe the concrete data

structures that ultimately will represent the abstract mathematical structures. As the

concrete structures may differ from the abstract, the operations on the abstract data

structures may need to be refined to yield operations on the concrete data that yield

equivalent results. For simple systems, direct refinement (i.e., one step from

abstract specification to implementation) may be possible; in more complex

--SqRoot-----------------
 num?, root! :

num? 0
root!2 = num?
root! 0

Fig. 18.1 Specification

of positive square root

312 18 Z Specification Language

systems, deferred refinement1 is employed, where a sequence of increasingly

concrete specifications are produced to yield the executable specification. There

is a calculus for combining schemas to make larger specifications, and this is

discussed later in the chapter.

Example 18.1

Figure 18.2 gives a Z specification to borrow a book from a library system. The

library is made up of books that are on the shelf; books that are borrowed; and

books that are missing. The specification models a library with sets representing

books on the shelf, on loan or missing. These are three mutually disjoint subsets

of the set of books Bkd-Id.

The system state is defined in the Library schema in Fig. 18.2, and operations

such as Borrow and Return affect the state. The Borrow operation is specified in

Fig. 18.2.

The notation ℙ Bkd-Id is used to represent the power set of Bkd-Id (i.e., the set of
all subsets of Bkd-Id). The disjointness condition for the library is expressed by the

requirement that the pairwise intersection of the subsets on-shelf, borrowed, miss-
ing is the empty set (Fig. 18.3).

The precondition for the Borrow operation is that the book must be available on

the shelf to borrow. The post-condition is that the borrowed book is added to the set

of borrowed books and is removed from the books on the shelf.

Z has been successfully applied in industry including the CICS project at IBM

Hursley in the UK.2 Next, we describe various parts of the Z specification language

including sets, relations, functions, sequences and bags.

--Library-----------------
on-shelf, missing, borrowed : Bkd-Id

 on-shelf ∩ missing = Ø
 on-shelf ∩ borrowed = Ø
 borrowed ∩ missing = Ø

Fig. 18.2 Specification

of a library system

--Borrow-----------------
Library

b? :Bkd-Id

 b? ∈ on-shelf
 on-shelf’ = on-shelf \ {b?}
 borrowed’ = borrowed ∪ {b?}

Fig. 18.3 Specification

of borrow operation

1 Step-wise refinement involves producing a sequence of increasingly more concrete specifications

until eventually the executable code is produced. Each refinement step has associated proof

obligations to prove that the refinement step is valid.
2 This project claimed a 9 % increase in productivity attributed to the use of formal methods.

18.1 Introduction 313

18.2 Sets

Sets may be enumerated by listing all of their elements. Thus, the set of all even

natural numbers less than or equal to 10 is:

2; 4; 6; 8; 10f g
Sets can be created from other sets using set comprehension: i.e., stating the

properties that its members must satisfy. For example, the set of even natural

numbers less than 10 is given by set comprehension as:

n :
��n 6¼ 0 ^ n < 10 ^ n mod 2 ¼ 0 � n� �

There are three main parts to the set comprehension above. The first part is the

signature of the set and this is given by n : ℕ above. The first part is separated from

the second part by a vertical line. The second part is given by a predicate, and for this

example the predicate is n 6¼ 0^ n< 10^ nmod 2¼ 0. The second part is separated

from the third part by a bullet. The third part is a term, and it is simply n for this

simple example. The term is often a more complex expression: e.g., log(n2).
In mathematics, there is just one empty set. However, since Z is a typed set

theory, there is an empty set for each type of set. Hence, there are an infinite number

of empty sets in Z. The empty set is written as ∅ [X] where X is the type of the

empty set. In practice, X is omitted when the type is clear.

Various set operations such as union, intersection, set difference, and symmetric

difference are employed in Z. The power set of a set X is the set of all subsets of X,

and is denoted by ℙX. The set of non-empty subsets of X is denoted by ℙ1X where

ℙ1X ¼¼ U : ℙ X
��U 6¼ ∅ X½ �� �

A finite set of elements of type X (denoted by FX) is a subset of X that cannot be

put into a one to one correspondence with a proper subset of itself. This is defined

formally as:

The expression f :V U denotes that f is a bijection from U to V and injective,

surjective and bijective functions are discussed in [50].

The fact that Z is a typed language means that whenever a variable is introduced

(e.g., in quantification with 8 and ∃) it is first declared. For example, 8 j:J • P)Q.

There is also the unique existential quantifier ∃1 j:J | P which states that there is

exactly one j of type J that has property P.

314 18 Z Specification Language

18.3 Relations

Relations are used extensively in Z and are discussed in [50]. A relation R between

X and Y is any subset of the Cartesian product of X and Y; i.e., R� (X�Y),

and the relation is denoted by R : X $Y. The notation x↦ y indicates that the pair
(x, y) ∈ R.

Consider, the relation home_owner : Person$ Home that exists between people
and their homes. An entry daphne↦mandalay ∈ home_owner if daphne is the

owner of mandalay. It is possible for a person to own more than one home:

rebecca↦nirvana∈ home owner

rebecca↦tivoli∈ home owner

It is possible for two people to share ownership of a home:

rebecca↦nirvana∈ home owner

rebecca↦nirvana∈ home owner

There may be some people who do not own a home, and there is no entry for

these people in the relation home_owner. The type Person includes every possible

person, and the type Home includes every possible home. The domain of the

relation home_owner is given by:

x∈ dom home owner , ∃h : Home � x↦h∈ home owner:

The range of the relation home_owner is given by:

h∈ ran home owner , ∃x : Person � x↦h∈ home owner:

The composition of two relations home_owner: Person $ Home and

home_value: Home $ Value yields the relation owner_wealth: Person $ Value
and is given by the relational composition home_owner ; home_value where:

p↦ν∈ home owner; home owner ,�
∃h : Home � p↦h∈ home owner ^ h↦ν∈ home value

The relational composition may also be expressed as:

owner wealth ¼ home value o home owner

The union of two relations often arises in practice. Suppose a new entry

aisling↦muckross is to be added. Then this is given by

home owner’ ¼ home owner [aisling↦muckrossf g

18.3 Relations 315

Suppose that we are interested in knowing all females who are house owners.

Then we restrict the relation home_owner so that the first element of all ordered

pairs have to be female. Consider female : ℙ Person with {aisling, rebecca}�
female.

home owner ¼ aisling↦muckross, rebecca↦nirvana, lawrence↦nirvanaf g
female⊲ home owner ¼ aisling↦muckross, rebecca↦nirvanaf g

That is, female ⊳ home_owner is a relation that is a subset of home_owner, and
the first element of each ordered pair in the relation is female. The operation ⊳ is

termed domain restriction and its fundamental property is:

x↦y∈U⊲R , �
x∈U ^ x↦y∈R

�

where R : X $Y and U : ℙ X.
There is also a domain anti-restriction (subtraction) operation and its fundamen-

tal property is:

x↦y∈U⊲R , �
x∈U ^ x↦y∈R

�

where R : X $Y and U : ℙX.
There are also range restriction (the ⊳ operator) and the range anti-restriction

operator (the ⊳ operator). These are discussed in [18].

18.4 Functions

A function [18] is an association between objects of some type X and objects of

another type Y such that given an object of type X, there exists only one object

in Y associated with that object. That is, a function is a set of ordered pairs where

the first element of the ordered pair has at most one element associated with

it. A function is therefore a special type of relation, and a function may be total or
partial.

A total function has exactly one element in Y associated with each element of X,

whereas a partial function has at most one element of Y associated with each

element of X (there may be elements of X that have no element of Y associated

with them).

A partial function from X to Y (denoted) is a relation f : X $Y such

that:

8x : X; y, z:Y � x↦y∈ f ^ x ! z∈ f) y ¼ zð Þ

316 18 Z Specification Language

The association between x and y is denoted by f(x)¼ y, and this indicates

that the value of the partial function f at x is y. A total function from X to Y
(denoted f : X! Y) is a partial function such that every element in X is associated

with some value of Y.

Clearly, every total function is a partial function but not vice versa.

One operation that arises quite frequently in specifications is the function

override operation. Consider the following specification of a temperature map:

--TempMap-----------------
CityList : City
temp : City Z

dom temp = CityList

Suppose the temperature map is given by temp¼ {Cork↦ 17, Dublin↦ 19,

London↦ 15}. Then consider the problem of updating the temperature map if a

new temperature reading is made in Cork say {Cork↦ 18}. Then the new tempera-

ture chart is obtained from the old temperature chart by function override to yield

{Cork↦ 18, Dublin↦ 19, London↦ 15}. This is written as:

temp’ ¼ temp� Cork↦18f g
The function override operation combines two functions of the same type to

give a new function of the same type. The effect of the override operation is that the

entry {Cork↦ 17} is removed from the temperature chart and replaced with

the entry {Cork↦ 18}.

Suppose are partial functions then f� g is defined and indicates

that f is overridden by g. It is defined as follows:

f � gð Þ xð Þ ¼ g xð Þwhere x∈ dom g

f � gð Þ xð Þ ¼ f xð Þ where x=2dom g ^ x∈ dom f

This may also be expressed (using function override) as:

There is notation in Z for injective, surjective and bijective functions. An injective

function is one to one: i.e.,

f xð Þ ¼ f yð Þ) x ¼ y:

18.4 Functions 317

A surjective function is onto: i.e.,

Giveny∈ Y,∃x∈X such that f xð Þ ¼ y

A bijective function is one to one and onto, and it indicates that the sets X and Y
can be put into one to one correspondence with one another. Z includes lambda

calculus notation (λ-notation) to define functions. For example, the function

cube ¼¼ λx:N • x * x * x. Lambda calculus is discussed in [50]. Function

composition f ; g is similar to relational composition.

18.5 Sequences

The type of all sequences of elements drawn from a set X is denoted by Seq X.
Sequences are written as hx1, x2, xni and the empty sequence is denoted by hi.
Sequences may be used to specify the changing state of a variable over time with

each element of the sequence representing the value of the variable at a discrete

time instance.

Sequences are functions and a sequence of elements drawn from a set X is a finite

function from the set of natural numbers to X. A finite partial function f from X to Y
is denoted by . A finite sequence of elements of X is given by

, and the domain of the function consists of all numbers between

1 and # f. It is defined formally as:

The sequence hx1, x2, xni above is given by:

1↦x1, 2↦x2, . . . n↦xnf g
There are various functions to manipulate sequences. These include the sequence

concatenation operation. Suppose σ¼hx1, x2, xni and τ¼hy1, y2, ymi then:

σ\τ ¼ x1, x2, . . . xn, y1, y2, . . . ymh i
The head of a non-empty sequence gives the first element of the sequence.

headσ ¼ head x1, x2, . . . xnh i ¼ x1

The tail of a non-empty sequence is the same sequence except that the first element

of the sequence is removed.

tailσ ¼ tail x1, x2, . . . xnh i ¼ x2, . . . xnh i

318 18 Z Specification Language

Given f : X! Y and a sequence σ : Seq X then the map function applies f to each

element of σ:

map f σ ¼ map f x1, x2, . . . xnh i ¼ f x1ð Þ, f x2ð Þ, . . . f xnð Þh i
The map function may also be expressed via function composition as:

map f σ ¼ σ; f

The reverse order of a sequence is given by the rev function:

revσ ¼ rev x1, x2, . . . xnh i ¼ xn, . . . x2, x1h i

18.6 Bags

A bag is similar to a set except that it may contain multiple occurrences of each

element. A bag of elements of type X is defined as a partial function from the type of

the elements of the bag to positive whole numbers. Its definition is:

For example, a bag of marbles may contain 3 blue marbles, 2 red marbles, and 1

green marble. This is denoted by B¼ [b, b, b, g, r, r]. The bag of marbles is thus

denoted by:

The function count determines the number of occurrences of an element in a bag.

For the example above, countMarble b¼ 3, and countMarble y¼ 0 since there are

no yellow marbles in the bag. This is defined formally as:

count bagX y ¼ 0 y=2bag X

count bagX y ¼ bagXð Þ yð Þ y∈ bag X

An element y is in bag X if and only if y is in the domain of bag X.

y in bagX , y∈ dom bagXð Þ
The union of two bags of marbles B1¼ [b, b, b, g, r, r] and B2¼ [b, g, r, y] is

given by B1⊎B2¼ [b, b, b, b, g, g, r, r, r, y]. It is defined formally as:

B1⊎B2ð Þ yð Þ ¼ B2 yð Þ y=2dom B1 ^ y∈ dom B2

B1⊎B2ð Þ yð Þ ¼ B1 yð Þ y∈ dom B1 ^ y=2dom B2

B1⊎B2ð Þ yð Þ ¼ B1 yð Þ þ B2 yð Þ y∈ dom B1 ^ y∈ dom B2

18.6 Bags 319

A bag may be used to record the number of occurrences of each product in a

warehouse as part of an inventory system. It may model the number of items

remaining for each product in a vending machine (Fig. 18.4).

The operation of a vending machine would require other operations such as

identifying the set of acceptable coins, checking that the customer has entered

sufficient coins to cover the cost of the good, returning change to the customer, and

updating the quantity on hand of each good after a purchase. A more detailed

examination is in [18].

18.7 Schemas and Schema Composition

The schemas in Z are visually striking and the specification is presented in

two-dimensional graphic boxes. Schemas are used for specifying states and state

transitions, and they employ notation to represent the before and after state (e.g.,

s and s 0 where s 0 represents the after state of s). They group all relevant information

that belongs to a state description.

There are a number of useful schema operations such as schema inclusion,

schema composition, and the use of propositional connectives to link schemas

together. The Δ convention indicates that the operation affects the state whereas

the Ξ convention indicates that the state is not affected. These operations and

conventions allow complex operations to be specified concisely, and assist with

the readability of the Z specification. Schema composition is analogous to relational

composition, and allows new schemas to be derived.

A schema name S1 may be included in the declaration part of another schema S2.

The effect of the inclusion is that the declarations in S1 are now part of S2 and the

predicates of S1 are S2 are joined together by conjunction. If the same variable is

defined in both S1 and S2, then it must be of the same type in both schemas.

-- S1---------- -- S2----------
 x, y : S1 ; z :
--------- ---------
 x + y > 2 z = x + y
------------ ------------

The result is that S2 includes the declarations and predicates of S1 (Fig. 18.5).

Two schemasmay be linked by propositional connectives such as S1^ S2, S1∨ S2,

S1) S2, and S1, S2. The schema S1∨ S2 is formed bymerging the declaration parts

of S1 and S2, and then combining their predicates with the logical ∨ operator. For

example, Fig. 18.6 gives the result of S¼ S1 ∨ S2.

-- Vending Machine----------
stock : bag Good
price : Good → 1

dom stock ⊆ dom price

Fig. 18.4 Specification of

vending machine using bags

320 18 Z Specification Language

Schema inclusion and the linking of schemas use normalization to convert

sub-types to maximal types, and predicates are employed to restrict the maximal

type to the sub-type. This involves replacing declarations of variables (e.g.,

u : 1 ..35 with u : Z, and adding the predicate u> 0 and u< 36 to the predicate

part of the schema).

The Δ and Ξ conventions are used extensively, and the notation Δ TempMap is

used in the specification of schemas that involve a change of state. The notation

Δ TempMap represents:

ΔTempMap ¼ TempMap ^ TempMap’

The longer form of Δ TempMap is written as:

-- TempMap-----------------
CityList, CityList’ : City
temp, temp’ : City Z

dom temp = CityList
dom temp’ = CityList’

The notation Ξ TempMap is used in the specification of operations that do not

involve a change to the state. It represents:

-- TempMap-----------------
 TempMap

 CityList = CityList’
 temp = temp’

Schema composition is analogous to relational composition and it allows new

specifications to be built from existing ones. It allows the after state variables of one

schema to be related with the before variables of another schema. The composition

of two schemas S and T (S ; T) is described in detail in [18] and involves four steps,

as given in Table 18.1.

-- S2----------
 x, y :
 z :

 x + y > 2
 z = x + y

Fig. 18.5 Schema inclusion

-- S----------
x, y :
z :

 x + y > 2 ∨ z = x + y

Fig. 18.6 Merging schemas

(S1 ∨ S2)

18.7 Schemas and Schema Composition 321

The example in Fig. 18.7 should make schema composition clearer. Consider the

composition of S and T where S and T are defined as follows:

-- S---------- -- T----------
x, x’, y? : x, x’ :
--------- ---------
 x’ = y? - 2 x’ = x + 1
------------ ------------

-- S1---------- -- T1----------
x, x+, y? : x+, x’ :
--------- ---------
 x+ = y? - 2 x’ = x+ + 1
------------ ------------

S1 and T1 represent the results of step 1 and step 2, with x 0 renamed to x+ in S, and

x renamed to x+ in T. Step 3 and step 4 yield the result shown in Fig. 18.7.

Schema composition allows new specifications to be created from existing ones.

18.8 Reification and Decomposition

A Z specification involves defining the state of the system and then specifying the

required operations. The Z specification language employs many constructs that are

not part of conventional programming languages, and it is therefore not directly

executable on a computer. A programmer implements the formal specification, and

mathematical proof may be employed to prove that a program meets its

specification.

Often, there is a need to write an intermediate specification that is between the

original Z specification and the eventual program code. This intermediate specifi-

cation is more algorithmic and uses less abstract data types than the Z specification.

It is termed the design and needs to be correct with respect to the specification, and

the program needs to be correct with respect to it. The design is a refinement

Table 18.1 Schema composition

Step Procedure

1. Rename all after state variables in S to something new: S [s+/s 0].
2. Rename all before state variables in T to the same new thing: i.e., T [s+/s].

3. Form the conjunction of the two new schemas: S [s+/s 0] ^ T [s+/s].

4. Hide the variable introduced in step 1 and 2. S ; T¼ (S [s+/s 0] ^ T [s+/s]) \ (s+)

-- S1 ∧T1---------- -- S ; T----------
x, x+, x’, y? : x, x’, y? :
--------- ---------
 x+ = y? – 2 ∃x+: ••
 x’ = x+ + 1 (x+ = y? – 2
------------ x’ = x+ + 1)

Fig. 18.7 Schema

composition

322 18 Z Specification Language

(reification) of the specification, and the operations of the specification have been

decomposed into those of the design.

The representation of an abstract data type such as a set by a sequence is termed

data reification, and this is concerned with the process of transforming an abstract

data type into a concrete data type. The abstract and concrete data types are related

by the retrieve function, which maps the concrete data type to the abstract data type.

There are typically several possible concrete data types for a particular abstract data

type (i.e., refinement is a relation), whereas there is one abstract data type for a

concrete data type (i.e., retrieval is a function). For example, sets are often reified to

unique sequences; however, more than one unique sequence can represent a set

whereas a unique sequence represents exactly one set.

The operations defined on the concrete data type are related to the operations

defined on the abstract data type. That is, the commuting diagram property is

required to hold; i.e., the operation ⊡ on the concrete data type correctly refines

the operation � on the abstract data type if the diagram in Fig. 18.8 commutes, and

this property requires proof.

That is, it is required to prove that:

ret σ⊡τð Þ ¼ retσð Þ � retτð Þ
In Z, the refinement and decomposition is done with schemas. It is required to

prove that the concrete schema is a valid refinement of the abstract schema, and this

gives rise to a number of proof obligations. It needs to be proved that the initial

states correspond to one another, and that each operation in the concrete schema is

correct with respect to the operation in the abstract schema, and also that it is

applicable (i.e., whenever the abstract operation may be performed the concrete

operation may also be performed).

18.9 Proof in Z

Mathematicians conduct rigorous proof of theorems using technical and natural

language. Logicians employ formal proofs to prove theorems using propositional

and predicate calculus. Formal proofs generally involve a long chain of reasoning

retr(σ),
retr(τ)

retr
(σ τ)

(σ τ)

retr(σ) retr(τ)Fig. 18.8 Refinement

commuting diagram

18.9 Proof in Z 323

with every step of the proof justified. Rigorous proofs involve precise reasoning

using a mixture of natural and mathematical language. Rigorous proofs [18] have

been described as being analogous to high level programming languages, whereas

formal proofs are analogous to machine language.

A mathematical proof includes natural language and mathematical symbols and

often many of the tedious details of the proof are omitted. Many proofs in formal

methods such as Z are concerned with crosschecking on the details of the specifi-

cation, or on the validity of the refinement step, or proofs that certain properties are

satisfied by the specification. There are often many tedious lemmas to be proved,

and tool support is essential as proof by hand often contain errors or jumps in

reasoning. Machine proofs are lengthy and largely unreadable; however, they

provide extra confidence as every step in the proof is justified.

A formal mathematical proof consists of a sequence of formulae, where each

element is either an axiom or derived from a previous element in the series by

applying a fixed set of mechanical rules. The proof of various properties about the

programs increases confidence in its correctness. Mathematical proof is discussed

in more detail in [50].

18.10 Review Questions

1. Describe the main features of the Z specification language.

2. Explain the difference between ℙ1 X, ℙ X and FX.
3. Give an example of a set derived from another set using set comprehen-

sion. Explain the three main parts of set comprehension in Z.

4. Discuss the applications of Z and which areas have benefited most from

their use? What problems have arisen?

5. Give examples to illustrate the use of domain and range restriction

operators and domain and range anti-restriction operators with relations

in Z.

6. Give examples to illustrate relational composition.

7. Explain the difference between a partial and total function and give

examples to illustrate function override.

8. Give examples to illustrate the various operations on sequences including

concatenation, head, tail, map and reverse operations.

9. Give examples to illustrate the various operations on bags.

10. Discuss the nature of proof in Z and tools to support proof.

11. Explain the process of refining an abstract schema to a more concrete

representation, the proof obligations that are generated, and the commut-

ing diagram property.

324 18 Z Specification Language

18.11 Summary

Z was developed at Oxford University and it has been employed in both industry

and academia. Its specifications are mathematical and this allows properties to be

proved about the specification, and any gaps or inconsistencies in the specification

may be identified.

Z is a “model oriented” approach and an explicit model of the state of an abstract

machine is given, and the operations are defined in terms of their effect on the state.

Its main features are the schema calculus and a mathematical notation that is similar

to VDM. The former consists essentially of boxes and are used to describe

operations and states.

The schema calculus enables schemas to be used as building blocks to form

larger specifications. It is a powerful means of decomposing a specification into

smaller pieces, and helps with the readability of Z specifications, as each individual

schema is small in size and self-contained.

Z is a highly expressive specification language and includes notation for sets,

functions, relations, bags, sequences, predicate calculus and schema calculus. A

Z specification may be refined into the detailed code. This involves producing

intermediate specifications between the Z specification and the eventual program

code. Mathematical proof is required to demonstrate the validity of the refinement

step, and this involves a proof of the commuting diagram property.

Tool support is essential to carry out formal proof, as hand proofs often involve

jumps in reasoning, and are extremely time consuming due to the volume of proof

obligations.

18.11 Summary 325

Unified Modelling Language 19

Key Topics

Use Cases

Classes and Objects

Sequence diagrams

Statecharts

Collaboration diagrams

Rational Unified Process

19.1 Introduction

The unified modelling language (UML) is a visual modelling language for software

systems. It was developed by Jim Rumbaugh, Grady Booch, and Ivar Jacobson [32]

at Rational Corporation as a notation for modelling object-oriented systems. It

provides a visual means of specifying, constructing and documenting object-

oriented systems, and facilitates the understanding of the architecture of the system,

and managing the complexity of a large system. The language was strongly

influenced by three methods: the Object Modelling Technique (OMT) developed

by Rumbaught; the Booch Method developed by Booch, and Object-Oriented
Software Engineering (OOSE) developed by Jacobson. UML unifies and improves

upon these methods, and it has become a popular formal approach to modelling

software systems.

Models provide a better understanding of the system to be developed, and

a UML model allows the system to be visualized prior to its implementation,

and simplifies the underlying reality. Large complex systems are difficult to

understand in their entirety, and the use of a UML model is an aid to simplifying

complexity.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_19,
Springer International Publishing Switzerland 2014

327

The choice of the model is fundamental, and a good model will provide a good

insight into the system. Models need to be explored and tested to ensure their

adequacy as a representation of the system. Models simplify the reality, but it is

important to ensure that the simplification does not exclude any important details.

The chosen model affects the view of the system, and different roles require

different viewpoints of the proposed system.

An architect will design a house prior to its construction, and the blueprints will

contain details of the plan of each room, as well as plans for electricity and

plumbing. That is, the plans for a house include floor plans, electrical plans, and

plumping plans. These plans provide different viewpoints of the house to be

constructed, and are used to provide estimates of the time and materials required

to construct it.

A database developer will often focus on entity-relationship models, whereas a

systems analyst will often focus on algorithmic models. An object-oriented devel-

oper will focus on classes and interactions of classes. Often, there is a need to be

able to view the system at different levels of detail. No single model in itself is

sufficient for this, and a small set of interrelated models is employed.

UML provides a formal model the system, and it allows the same information to

be presented in several ways, and at different levels of detail. The requirements of

the system are expressed in terms of use cases; the design view captures the

problem space and solution space; the process view models the systems processes;

the implementation view addresses the implementation of the system; and the

deployment view models the physical deployment of the system.

There are nine main diagrams providing different viewpoints of the system, and

these UML diagrams provide the blueprint of software.

19.2 Overview of UML

UML is an expressive graphical modelling language for visualizing, specifying,

constructing and documenting a software system. It provides several views of the

software’s architecture, and it has a clearly defined syntax and semantics. Each

stakeholder (e.g., project manager, developers, and testers) has a different perspec-

tive, and looks at the system in different ways at different times during the project.

UML is a way to model the software system before implementing it in a program-

ming language.

A UML specification consists of precise, complete and unambiguous models.

The models may be employed to generate code in a programming language such as

Java or C++. The reverse is also possible and so it is possible to work with either the

graphical notation of UML or the textual notation of a programming language.

UML expresses things that are best expressed graphically, whereas a programming

language expresses things that are best expressed textually, and tools are employed

to keep both views consistent. UML may be employed to document the software

system, and it has been employed in many domains including the banking sector,

defence, and telecommunications.

328 19 Unified Modelling Language

The use of UML requires an understanding of its basic building blocks, the rules

for combining the building blocks, and the common mechanisms that apply

throughout the language. There are three kinds of building blocks employed:

• Things

• Relationships

• Diagrams

Things are the object-oriented building blocks of the UML. They include

structural things, behavioural things, grouping things and annotational things.
Structural things are the nouns of the UML models; behavioural things are the

dynamic parts and represent behaviour over time; grouping things are the organi-

zation parts of UML; and annotation things are the explanatory parts. Things,

relationships and diagrams are all described graphically and are discussed in [32]

(Table 19.1).

There are four kinds of relationship in UML:

• Dependency

• Association

• Generalization

• Extensibility

Dependency is used to represent a relationship between two elements of a

system, in which a change to one thing affects the other thing (dependent thing).

Association describes how elements in the UML diagram are associated, and

Table 19.1 Classification of UML things

Thing Kind Description

Structural Class A class is a description of a set of objects that share the same

attributes and operations.

Interface An interface is a collection of operations that specify a service of a

class or component. It specifies externally visible behaviour of the

element.

Collaboration A collaboration defines an interaction between software objects.

Use Case A use case is a set of actions that define the interaction between an

actor and the system to achieve a particular goal.

Active Class An active class is used to describe concurrent behaviour of a system.

Component A component is used to represent any part of a system for which

UML diagrams are made.

Node A node is used to represent a physical part of the system (e.g., server,

network, etc).

Behavioural Interaction These comprise interactions (message exchange between

components) expressed as sequence diagrams or collaboration

diagrams.

State

Machine

A state machine is used to describe different states of system

component.

Grouping Packages These are the organization parts of UML models. A package

organizes elements into groups and is a way to organize a UML

model.

Annotation These are the explanatory parts (notes) of UML.

19.2 Overview of UML 329

describes a set of connections among elements in a system. Aggregation is an

association that represents a structural relationship between a whole and its parts. A

generalization is a parent/child relationship in which the objects of the specialized

element (child) are substituted for objects of the generalized element (the parent).

Extensibility refers to a mechanism to extend the power of the language to represent

extra behaviour of the system. Next, we describe the key UML diagrams.

19.3 UML Diagrams

The UML diagrams provide a graphical visualization of the system from different

viewpoints, and there are nine key UML diagrams (Table 19.2).

The concept of class and objects are taken from object-oriented design, and

classes are the most important building block of any object-oriented system. A class

is a set of objects that share the same attributes, operations, relationships and

semantics [32]. Classes may represent software things and hardware things. For

example, walls, doors, and windows are all classes, whereas individual doors and

windows are objects. A class represents a set of objects rather than an individual

object.

Automated bank teller machines (ATMs) include two key classes: customers and

accounts. The class definition includes both the data structure for customers and

accounts, and the operations on customers and accounts. These include operations

to add or remove a customer, operations to debit or credit an account, or to transfer

from one account to another. There are several instances of customers and accounts,

and these are the actual customers of the bank and their accounts.

Table 19.2 UML diagrams

Diagram Description

Class This shows a set of classes, interfaces and collaborations and their relationships.

They address the static design view of a system.

Object This shows a set of objects and their relationships. An object diagram is an instance

of a class diagram.

Use Case These describe the functionality of the system, and the relationship between the use

cases and the actors.

Sequence These diagrams show the interaction among the components of a system, and the

sequence of messages flowing from one object to another.

Collaboration This is an interaction diagram that emphasizes the structural organization of

objects that send and receive messages.

State chart This is used to represent the event driven change of state of a system, and consists

of a state machine with states, events and transitions.

Activity This diagram is used to illustrate the flow of control in a system.

Component This diagram represents the implementation view of a system, and consists of a set

of components and their relationships.

Deployment This diagram is used for visualizing the deployment view of a system.

330 19 Unified Modelling Language

Every class has a name (e.g., Customer and Account) to distinguish it from other

classes. There will generally be several objects associated with the class. The class

diagram describes the name of the class, its attributes and its operations. An

attribute represents some property of the class that is shared by all objects; for

example, the attributes of the class ‘Customer’ are name and address. Attributes are

listed below the class name, and the operations are listed below the attributes. The

operations may be applied to any object in the class. The responsibilities of a class

may also be included in the definition (Table 19.3).

Class diagrams typically include various relationships between classes. In prac-

tice, very few classes are stand alone, and most collaborate with others in various

ways. The relationship between classes needs to be considered and these provide

different ways of combining classes to form new classes. The relationships include

dependencies (a change to one thing affects the dependent thing); generalizations

(these link generalized classes to their specializations in a subclass/superclass

relationship); and associations (these represent structural relationships among

objects).

A dependency is a relationship that states that a change in the specification of

one thing affects the dependent thing. It is indicated by a dashed line (---->).

Generalizations allow a child class to be created from one or more parent classes

(single or multiple inheritance). A class that has no parents is termed a base class,

e.g., there are three children of the base class Shape namely Rectangle, Circle and

Polygon. There is one child of Rectangle namely Square. Generalization is

indicated by a solid directed line that points to the parent (—▸). Association is a

structural relationship that specifies that objects of one thing are connected to

objects of another thing. It is indicated by a solid line connecting the same or

different classes.

The object diagram (Fig. 19.1) shows a set of objects and their relationships at a

point of time. It is related to the class diagram in that the object is an instance of the

class. The ATM example in Table 19.3 had two classes (customers and accounts),

and the objects of these classes are the actual customers and their corresponding

accounts. Each customer may have several accounts, and the names and addresses

of the customers are detailed as well as the corresponding balance in the customer’s

accounts. There is one instance of the customer class and two instances of the

account class in this example.

An object has a state which has a given value at each time instance. Operations

on the object will typically (with the exception of query operations) change its state.

Table 19.3 Simple class

diagram
Customer Account

Name: String Balance:Real

Address: String Type:String

Add() Debit()

Remove() Credit()

CheckBal()

Transfer()

19.3 UML Diagrams 331

An object diagram contains objects and links to other objects, and gives a snapshot

of the system at a particular moment of time.

A use case diagram model the dynamic aspects of the system, and it shows a set of

use cases and actors and their relationships. It describes scenarios (or sequences of

actions) in the system from the user’s viewpoint (actor), and shows how the actor

interacts with the system. An actor represents the set of roles that a user can play, and

the actor may be human or an automated system. Actors are connected to use cases by

association, and they may communicate by sending and receiving messages.

A use case diagram shows a set of use cases and each use case represents a

functional requirement. Use cases are employed to model the visible services that

the system provides within the context of its environment, and for specifying the

requirements of the system as a black box. Each use case carries out some work that

is of value to the actor, and the behaviour of the use case is described by the flow of

events in text. The description includes the main flow of events for the use case and

the exceptional flow of events. These flows may also be represented graphically.

There may also be alternate flows as well as the main flow of the use case. Each

sequence is termed a scenario and a scenario is one instance of a use case.

Use cases provide a way for the end users and developers to share a common

understanding of the system. They may be applied to all or part of the system

(subsystem), and the use cases are used as the basis for development and testing. A

use case is represented graphically by an ellipse. The benefits of use cases include:

• Enables the stakeholders (e.g., domain experts, developers, testers and end users)

to share a common understanding

• Models the requirements (specifies what the system should do).

• Models the context of a system (identifies actors and their roles)

• Used for development and testing.

Figure 19.2 presents a simple example of the definition of the use cases for an

ATM application. The typical user operations at an ATM machine include the

balance inquiry operation, cash withdrawal, and the transfer of funds from one

account to another. The actors for the system include ‘customer’ and ‘admin’, and

these actors have different needs and expectations of the system.

The behaviour from the user’s viewpoint is described, and the use-cases include

“withdraw cash”, “balance enquiry”, “transfer” and “maintain/reports”. The use

case view of the system includes the actors who are performing the sequence of

actions.

Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”

Account (J.Bloggs
personal account)
Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”

Account (J.Bloggs
personal account)

Fig. 19.1 Simple object

diagram

332 19 Unified Modelling Language

The next UML diagram considered is the sequence diagram which models the

dynamic aspects of the system, and shows the interaction between objects/classes in

the system for each use case. The interactions model the flow of control that

characterises the behaviour of the system, and the objects that play a role in the

interaction are identified. A sequence diagram emphasizes the time ordering of

messages, and the interactions may include messages that are dispatched from

object to object, with the messages ordered in sequence by time. The example in

Fig. 19.4 considers the sequences of interactions between objects for the “Balance

Enquiry” use case. This sequence diagram is specific to the case of a valid balance

enquiry, and a sequence diagram is needed to handle the exception cases as well

(Fig. 19.3).

Fig. 19.2 Use-Case diagram

of ATM machine

Fig. 19.3 UML sequence diagram

19.3 UML Diagrams 333

The behaviour of the “balance enquiry” operation is evident from the diagram.

The customer inserts the card into the ATM machine and the PIN number is

requested by the ATM. The customer then enters the number and the ATMmachine

contacts the bank for verification of the number. The bank confirms the validity of

the number and the customer then selects the balance enquiry operation. The ATM

contacts the bank to request the balance of the particular account, and the bank

sends the details to the ATMmachine. The balance is displayed on the screen of the

ATM machine. The customer then withdraws the card. The actual sequence of

interactions is evident from the sequence diagram.

The example in Fig. 19.3 has four objects (Customer, ATM, Bank and Account)

and these are laid out from left to right at the top of the sequence diagram.

Collaboration diagrams are interaction diagrams that consist of objects and their

relationships. However, while sequence diagrams emphasize the time ordering of

messages, a collaboration diagram emphasizes the structural organization of the

objects that send and receive messages. Sequence diagrams and collaboration

diagrams may be converted to the other without loss of information. Collaboration

diagrams are described in more detail in [32].

The activity diagram is considered in Fig. 19.4, and this is essentially a flow

chart showing the flow of control from one activity to another. It is used to model

the dynamic aspects of a system, and this involves modelling the sequential and

possibly concurrent steps in a computational process. It is different from a sequence

diagram in that it shows the flow from activity to activity, whereas a sequence

diagram shows the flow from object to object.

Fig. 19.4 UML activity

diagram

334 19 Unified Modelling Language

State diagrams or state charts show the dynamic behaviour of a class, and how

different operations result in a change of state. There is an initial state and a final

state, and the operations result in different states being entered and exited. There

are several other UML diagrams including component and deployment diagrams.

The reader is referred to [32].

19.3.1 Advantages of UML

UML offers a rich notation to model software systems and to understand the

proposed system from different viewpoints. The main advantages of UML are

given in Table 19.4.

19.4 Rational Unified Process

Software projects need a well-structured development process to achieve their

objectives. The Rational Unified Development Software Process (RUP) [57] has

become important in recent years, and RUP and UML are often used together. It is

• Use case driven

• Architecture centric

• Iterative and incremental

It includes iterations, phases, workflows, risk mitigation, quality control, project

management, and configuration control. Software projects may be complex, and

there are risks that requirements may be missed in the process, or that the interpre-

tation of a requirement may differ between the customer and developer. RUP

gathers requirements as use cases, which describe the functional requirements

from the point of view of the users of the system.

The use case model describes what the system will do at a high-level, and there is

user focus in defining the scope the project. Use cases drive the development

Table 19.4 Advantages of UML

Advantages of UML

Visual modelling language with a rich expressive notation.

Mechanism to manage complexity of a large system

Enables the proposed system to be studied before implementation.

Visualization of architecture design of the system.

The UML diagrams provide different views of the system.

Visualization of system from different viewpoints.

Use cases allow the description of typical user behaviour.

Better understanding of implications of user behaviour.

Use cases provide a mechanism to communicate the proposed behaviour of the software system

Use cases are the basis of development and testing.

19.4 Rational Unified Process 335

process, and the developers create a series of design and implementation models

that realize the use cases. The developers review each successive model for

conformance to the use-case model. The testers verify that the implementation

model correctly implements the use cases.

The software architecture concept embodies the most significant static and

dynamic aspects of the system. The architecture grows out of the use cases and

factors such as the platform that the software is to run on, deployment

considerations, legacy systems, and non-functional requirements.

A commercial software product is a large undertaking and the work is

decomposed into smaller slices or mini-projects, where each mini-project is a

manageable chunk. Each mini-project is an iteration that results in an increment

(Fig. 19.5).

Iterations refer to the steps in the workflow, and an increment leads to the growth

of the product. If the developers need to repeat the iteration, the organization loses

only the misdirected effort of a single iteration, rather than the entire product.

Therefore, the unified process is a way to reduce risk in software engineering.

Rup consists of four phases, and these are inception, elaboration, construction

and transition. Each phase consists of one or more iterations, and the iteration

consists of several workflows. The workflows may be requirements, analysis,

design, implementation and test. Each phase terminates in a milestone with one

or more project deliverables (Fig. 19.6).

The inception identifies and prioritizes the most important risks, and it is

concerned with initial project planning, cost estimation and early work on the

architecture and functional requirements for the product. The elaboration phase

specifies most of the use cases in detail. The construction phase is concerned with

building the product, and implements all agreed use cases. The transition phase

covers the period during which the product moves into the customer site and

includes activities such as training customer personnel, providing help-line assis-

tance and correcting defects found after delivery.

Fig. 19.5 Rational unified process

336 19 Unified Modelling Language

The waterfall lifecycle has the disadvantage that the risk is greater towards the

end of the project, where it is costly to undo mistakes from earlier phases. Iterative

processes were developed as a response to this, with the waterfall steps applied

in the iteration. Instead of developing the whole system in one step, an increment

(i.e., a subset of the system functionality) is selected and developed, then another

increment, and so on.

19.5 Review Questions

1. What is UML? Explain its main features.

2. Explain the difference between an object and a class.

3. Describe the various UML diagrams.

4. What are the advantages and disadvantages of UML?

5. What is the Rational Unified Process?

6. Describe the workflows in a typical iteration.

7. Describe the phases in the Rational Unified Process.

19.6 Summary

The unified modelling language is a visual modelling language for software

systems, and it facilitates the understanding of the architecture, and management

of the complexity of large systems. It was developed as a notation for modelling

Fig. 19.6 Phases and workflows in rational unified process

19.6 Summary 337

object-oriented systems, and it provides a visual means of specifying, constructing

and documenting the object-oriented system.

UML is applied to formally model the system and it allows the same information

to be presented in many different ways and at different levels of detail. The

requirements of the system are expressed in use cases; and other views include

the design view which captures the problem space and solution space; the process

view which models the systems processes; the implementation view and the

deployment view. There are nine main diagrams providing different viewpoints

of the system, and these provide the blueprint of the software.

RUP consists of four phases, and these are inception, elaboration, construction

and transition. Each phase consists of one or more iterations, and the iteration

consists of several workflows. The workflows may be requirements, analysis,

design, implementation and test. Each phase terminates in a milestone with one

or more project deliverables.

338 19 Unified Modelling Language

Epilogue 20

We embarked on a long journey is this book and set ourselves the objective of

providing an introduction to the software quality field to students and practitioners.

The book was based on the author’s experience in software quality and software

process improvement at leading industrial companies. The principles of software

quality management and software process improvement were discussed.

The goal was to cover both theory and practice, and to give the reader a grasp of

the fundamentals of the software quality field, as well as guidance on how to apply

the theory in an industrial environment.

We noted that companies today need to focus on customer satisfaction and software

quality, and need to ensure that the desired quality is built into the software product.

Customers today have very high expectations on quality, and expect high-quality

software products to be consistently delivered on time. The focus on quality requires

that the organization define a sound software development infrastructure to enable

quality software to be consistently produced.

Quality improvement also requires that the organization be actively aware of

industrial best practice, as well as emerging technologies from various research

programs. Piloting or technology transfer of innovative technology is an important

part of continuous improvement.

We started our journey with a discussion of some key figures in the history of

quality including well-known quality gurus such as Shewhart, Deming, Juran, and

Crosby. These grandfathers of quality played an important role in promoting quality

in business, and in helping companies to change and to be more effective in

delivering high-quality products. We also discussed the contributions of Watts

Humphrey, who is considered the father of software quality.

We described approaches used in current software engineering to build quality into

software. We discussed project planning and tracking, software lifecycles, software

inspections and testing, configuration management, software quality assurance, etc.

The capability maturity model integrated (CMMI) was discussed and it provides a

framework that assists organizations in software process improvement. It allows them

to assess the current capability or maturity of selected software processes and to

prioritize improvements.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1_20,
Springer International Publishing Switzerland 2014

339

The assessment (or SCAMPI appraisal) of an organization against the CMMI

reveals strengths and weaknesses of the management and engineering processes in

the organization. The output from the appraisal is used to formulate an improvement

plan, which is then tracked to completion. The execution of the plan may take 1 or

more years of effort.

We provided an introduction to project management and discussed project

estimation, project planning and scheduling, project monitoring and control, risk

management, and managing project quality.

We then discussed requirements and design, and discussed requirements elicitation,

software design, and implementation. We then moved on to discuss the configuration

management, and the concept of a baseline. Configuration management is concerned

with identifying those deliverables that are subject to change control, and controlling

changes to them.

We then discussed software inspections including Fagan inspections, as well as

the less formal review and walkthrough methodologies. Software testing was then

discussed, including the various types of testing that may be carried out, and we

discussed test planning, test case definition, test tracking, test metrics, test

reporting, and testing in an e-commerce environment.

We then discussed the selection and management of a software supplier, and

described how candidate suppliers may be formally evaluated, and how the selected

supplier may be managed during the project.

We then discussed software quality assurance and the importance of process

quality. This chapter explained audits and described how they are carried out. We

then discussed metrics and problem solving, including the balanced score card and

GQM. We presented a collection of sample metrics for an organization.

We then discussed the ISO 9000 standard, which is an important standard for

product and service delivery. The main features of the standard were discussed as

well as guidance on its implementation.

We then discussed the important field of software process improvement. It began

with a discussion of a software process, and discussed the benefits that may be

gained from software process improvement.

We then gave an overview of the CMMI model, and discussed its five maturity

levels and their constituent process areas. We discussed both the staged and

continuous representations.

We then discussed the activities and teams required to set up a CMMI improve-

ment initiative for an organization. These include the CMMI Steering Group, the

SEPG team and process specific teams.

We then discussed the SCAMPI appraisal methodology, and this included a

discussion of the formal SCAMPI Class A appraisal used large organizations to

obtain a CMMI rating, as well as the less formal SCAMPI Class B and C appraisals.

We then examined various tools to support the organizations in improving their

software engineering maturity. The focus is first to define the process, and then to

find tools to support the process.

We then discussed formal methods which are often employed in the safety

critical and security critical fields. These consist of a set of mathematical techniques

340 20 Epilogue

to specify and derive a program from its specification. Formal methods may be

employed to rigorously state the requirements of the proposed system; they may

be employed to derive a program from its mathematical specification; and they

provide a rigorous proof that the implemented program satisfies its specification.

We then presented the Z specification language, which is one of the most widely

used formal methods. It was developed at Oxford University in the U.K.

Finally, we presented the unified modelling language (UML) which presents

various views of the system architecture. Finally, we consider the future of software

quality.

20.1 The Future of Software Quality

Quality will continue to be fundamental to the success of the company. There is

likely to be an increased focus on achieving approved quality systems such as ISO

9001, or to achieve a specific CMMI maturity level. Many companies are ISO 9001

certified or are working towards certification, or have been assessed to be

performing at a particular CMMI maturity level. Customer expectations are

increasing all the time, and in the future it is likely that software companies will

need to have a minimal quality standard such as ISO 9001 or CMM level 3 to be

taken seriously by potential customers.

The cost of poor quality is currently measured in mature companies. It is likely

to be measured in many more software companies in the future, as driving down the

cost of poor quality will become a key goal for many organizations to improve their

profitability and long-term survival.

Software components and the verification of software components may become

increasingly important, as companies will wish to speed up development to shorten

the time to market, which is a key driver in today’s competitive environment.

However, software organizations will need to have confidence in the correctness

of the components, and there may be an independent certification body to verify

that components are correct.

20.1 The Future of Software Quality 341

Glossary

ADS Appraisal Disclosure Statement

AMN Abstract Machine Notation

AQL Acceptable Quality Level

ATM Automated Teller Machine

BRS Business Requirements Specification

BSC Balanced Score Card

CAR Causal Analysis and Resolution

CCB Change Control Board

CCS Calculus Communicating Systems

CICS Customer Information Control System

CM Configuration Management

CMM® Capability Maturity Model

CMMI® Capability Maturity Model Integration

COCOMO Constructive Cost Model

COPQ Cost of Poor Quality

COTS Customized Off the Shelf

CSP Communicating Sequential Processes

DAR Decision Analysis and Resolution

DMAIC Define, Measure, Analyse, Improve, Control

DMADV Define, Measure, Analyse, Design, Verify

DOORS Dynamic Object-Oriented Requirements System

DSDM Dynamic Systems Development Method

EAF Effort Adjustment Factor

ESA European Space Agency

ESI European Software Institute

FAR Functional Area Representatives

FI Fully Implemented

FMEA Failure Mode and Effects Analysis

FSM Finite State Machine

GG Generic Goal

GP Generic Practice

GQM Goal, Question, Metric

GUI Graphical User Interface

HP Hewlett Packard

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1,
Springer International Publishing Switzerland 2014

343

HR Human Resources

HTML Hyper Text Mark-up Language

IBM International Business Machines

IDE Integrated Development Environment

IDEAL Initiating, Diagnosing, Establishing, Acting and Learning

IEC International Electro technical Commission

IEEE Institute of Electrical and Electronic Engineers

IPM Integrated Project Management

ISEB Information System Examination Board

ISO International Standards Organization

JAD Joint Application Development

KLOC Thousand Lines of Code

LCL Lower Control Limit

LDRA Liverpool Data Research Associates

LI Largely Implemented

LOC Lines of Code

MA Measurement and Analysis

MOD Ministry of Defence

MTTF Mean Time to Failure

MTTR Mean Time to Repair

NATO North Atlantic Treaty Organization

NI Not Implemented

ODC Orthogonal Defect Classification

OID Organization Innovation and Deployment

OMT Object Modelling Technique

OOSE Object-Oriented Software Engineering

OPD Organization Process Definition

OPF Organization Process Focus

OPP Organization Process Performance

OSSP Organization Set of Standard Processes

OT Organization Training

PB Project Board

PCE Phase Containment Effectiveness

PCMM People Capability Maturity Model

PDCA Plan, Do, Check, Act

PI Product Integration

PI Partially Implemented

PIID Practice Implementation Indicator Description

PL/1 Programming Language 1

PMBOK Project Management Book of Knowledge

PMI Project Management Institute

PMC Project Monitoring and Control

PMP Project Management Professional

PP Project Planning

344 Glossary

PPM Project Portfolio Management

PPQA Process and Product Quality Assurance

Prince Projects In a Controlled Environment

PSP Personal Software Process

PVCS Polytron Version Control System

QA Quality Assurance

QCC Quality Control Circle

QMS Quality Management System

QPM Quantitative Project Management

RAD Rapid Application Development

RAG Red, Amber, Green

RCA Root Cause Analysis

RD Requirements Development

RFP Request for Proposal

RM Requirements Management

ROI Return on Investment

RPM Rational Portfolio Manager

RSM Rational Software Modeller

RSKM Risk Management

RUP Rational Unified Process

SAM Supplier Agreement Management

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SG Specific Goal

SLA Service Level Agreement

SLOC Source lines of code

SOW Statement of Work

SP Specific Practice

SPC Statistical Process Control

SPI Software Process Improvement

SPICE Software Process Improvement Capability dEtermination

SQA Software Quality Assurance

SSADM Structured Systems Analysis and Design Method

TQM Total Quality Management

TS Technical Solution

TSP Team Software Process

UAT User Acceptance Testing

UCL Upper Control Limit

UK United Kingdom

UML Unified Modelling Language

VAL Validation

VDM Vienna Development Method

VDM
♣ Irish School of VDM

Glossary 345

VER Verification

VOB Version Object Base

VSS Visual Source Safe

Y2K Year 2000

346 Glossary

References

1. Appraisal Requirements for CMMI V1.2. (ARC V1.2) (2006) SCAMPI Upgrade Team.

TR CMU/SEI-2006-TR-011. August, 2006

2. Basili V, Rombach H (1988) The TAME project. Towards improvement-oriented software

environments. IEEE Trans Softw Eng 14(6):758–773

3. Beck K (2000) Extreme Programming explained. Embrace change. Addison-Wesley, Reading

4. Bhandari I (1993) A case study of software process improvement during development. IEEE

Trans Softw Eng 19(12):1157–1170

5. Bjorner D, Cliff J (1978) The Vienna development method. The meta language, vol 61, Lecture

notes in computer science. Springer, New York

6. Bjorner D, Jones C (1982) Formal specification and software development, Prentice Hall

International series in computer science. Prentice Hall International, Englewood Cliffs

7. Boehm B (1981) Software engineering economics. Prentice Hall, Englewood Cliffs

8. Boehm B (1988) A spiral model for software development and enhancement. Computer

21:61–72

9. Brassard M, Ritter D (1994) The Memory Jogger. A pocket guide of tools for continuous

improvement and effective planning. Goal/QPC, Methuen

10. Brooks F (1975) The mythical man month. Addison Wesley, Reading

11. Brooks F (1986) No silver bullet. Essence and accidents of software engineering. In: Information

processing. Elsevier, Amsterdam

12. Buxton JN, Naur P, Randell B (1975) Software Engineering. Petrocelli. Report on two NATO

conferences held in Garmisch, Germany (October1968) and Rome, Italy (October 1969)

13. Chrissis MB, Conrad M, Shrum S (2011) CMMI for development. Guidelines for process

integration and product improvement, 3rd edn, SEI series in software engineering. Addison

Wesley, Boston

14. Crosby P (1979) Quality is free. The art of making quality certain. McGraw Hill, New York

15. Deming WE (1986) Out of crisis. MIT Press, Cambridge, MA

16. Dijkstra EW (1972) Structured programming. Academic, London

17. Dijkstra EW (1976) A disciple of programming. Prentice Hall, Englewood Cliffs

18. Diller A (1990) Z. An introduction to formal methods. Wiley, England

19. Dunaway DK, Masters S (1996) CMM Based Appraisal for Internal Process Improvement

(CBA IPI): method description. Technical report CMU/SEI-96-TR-007. Software Engineering

Institute, Pittsburgh

20. Fagan M (1976) Design and code inspections to reduce errors in software development.

IBM Syst J 15(3):182–210

21. Fenton N (1995) Software metrics: A rigorous approach. Thompson Computer Press, Boston

22. Gerhart S, Craighen D, Ralston T (1994) Experience with formal methods in critical systems.

IEEE Software, January 1994

23. Gilb T (1976) Software metrics. Winthrop Publishers, Inc., Cambridge

24. Gilb T, Graham D (1994) Software inspections. Addison-Wesley, Reading

25. Gries D (1981) The science of programming. Springer, Berlin

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1,
Springer International Publishing Switzerland 2014

347

26. Hinchey M, Bowen J (eds) (1995) Applications of formal methods, Prentice Hall International

series in computer science. Prentice Hall, New York

27. Hoare CAR (1985) Communicating sequential processes, Prentice Hall International series in

computer science. Prentice Hall International, Englewood Cliffs

28. Hoare JP (1995) Application of the B-method to CICS. In: Hinchey M, Bowen JP (eds)

Applications of formal methods, Prentice Hall International series in computer science.

Prentice Hall, New York

29. Humphry W (1989) Managing the software process. Addison-Wesley, Reading

30. Ince D, Andrews D (1991) Practical formal methods with VDM, McGraw Hill International

series in software engineering. McGraw Hill, New York

31. ISO/IEC (1991) ISO/IEC 9126: Information Technology. Software Product Evaluation:

quality characteristics and guidelines for their use. ISO/IEC, Geneva

32. Jacobson I, Booch G, Rumbaugh J (1999) The unified software modelling language user guide.

Addison-Wesley, Reading

33. Juran J (1951) Juran’s quality handbook. McGraw Hill, New York

34. Kaplan RS, Norton DP (1996) The balanced scorecard. Translating strategy into action.

Harvard Business School Press, Boston

35. Keeni G et al (2000) The evolution of quality processes at Tate Consultancy Services. IEEE

Software 17(4):79–88

36. Kuhn T (1970) The structure of scientific revolutions. University of Chicago Press, Chicago

37. Lakatos I (1976) Proof and refutations. The logic of mathematical discovery. Cambridge

University Press, Cambridge

38. Lions JL (1996) Ariane 5. Flight 501. Failure report by enquiry board, The MathWorks, Inc.,

Natick

39. Mac An Airchinnigh M (1990) Conceptual models and computing. PhD thesis, Department of

Computer Science, University of Dublin. Trinity College, Dublin

40. Manley E (1995) Taurus: how I lived to tell the tale. Am Program Softw Fail 8:17

41. Manns T, Coleman M (1996) Software quality assurance. Macmillan Press Ltd., Hampshire

42. McDonnell E (1994) The development of a multiplex bundling system using formal methods,

vols I & II. MSc thesis. Department of Computer Science, Trinity College, Dublin

43. Milner R et al (1989) A calculus of mobile processes (Part 1). LFCS report series. ECS-LFCS-

89-85. Department of Computer Science. University of Edinburgh, Edinburgh

44. Ministry of Defence (1991) 00-55 (PART 1)/Issue 1, The procurement of safety critical

software in defence equipment, PART 1: Requirements. Ministry of Defence, Interim Defence

Standard, UK

45. Ministry of Defence (1991) 00-55 (PART 2)/Issue 1, The procurement of safety critical

software in defence equipment, PART 2: Guidance. Ministry of Defence, Interim Defence

Standard, UK

46. O’Hara F (1998) Peer reviews – the key to cost effective quality. European SEPG, Amsterdam

47. O’Regan G (2002) A practical approach to software quality. Springer, New York

48. O’Regan G (2006) Mathematical approaches to software quality. Springer, London

49. O’Regan G (2010) Introduction to software process improvement. Springer, London

50. O’Regan G (2013) Mathematics in computing. Springer, London

51. Office of Government Commerce (2004) Managing successful projects with PRINCE2. TSO,

London

52. Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun

ACM 15(12):1053–1058

53. Peterson B (1995) The IDEAL model. Software Engineering Institute. Software process

improvement and practice (Pilot Issue), Wiley, New York, August. 1995

54. Polya G (1957) How to solve it. A new aspect of mathematical method. Princeton University

Press, Princeton

55. Rational for the development of the U.K. defence standards for safety critical software.

COMPASS conference, June 1990. Ministry of Defence

348 References

56. Royce W (1970) The software lifecycle model (Waterfall Model). In: Proceedings of the

WESTCON, Los Angeles, August, 1970

57. Rumbaugh J et al (1999) The unified software development process. Addison-Wesley,

Reading

58. Shewhart W (1931) The economic control of manufactured products. Van Nostrand,

New York

59. Software Engineering Institute (2006) CMMI executive overview. Presentation by the SEI.

Software Engineering Institute

60. Software Engineering Institute (2009) CMMI impact. Presentation by Anita Carleton. Soft-

ware Engineering Institute. August 2009

61. Sommerville I (2011) Software engineering, 9th edn. Pearson, Boston

62. Spivey JM (1992) The Z notation. A reference manual, Prentice Hall International series in

computer science. Prentice Hall, Englewood Cliffs

63. Standard CMMI Appraisal Method for Process Improvement (2006) CMU/SEI-2006-HB-002.

V1.2. August 2006

64. Standish Group (1999) Estimating: art or science. Featuring Morotz Cost Expert. Standish

Group Research Note

65. Tierney M (1991) The evolution of Def Stan 00-55 and 00-56: an intensification of the “Formal

Methods debate” in the UK. Research Centre for Social Sciences, University of Edinburgh,

Edinburgh

66. Wichmann BA (2000) A personal view of formal methods. National Physical Laboratory,

March 2000

References 349

Index

A

Agile development, 46–47

Analogy method, 63

Appraisals, 29

plan, 257–258

Ariane 5, 4

Ariane-5 disaster, 41

Audit escalation, 149

Audit meeting, 147–148

Audit planning, 146

Audit reporting, 148

Axiomatic approach, 296

B

Balanced scorecard (BSC), 154–156

Baldridge, Malcom, 53

Barriers to success, 207–208

Baseline, 90

Basili, Victor, 26, 152

Booch method, 327

Breakthrough and control, 12

Brooks, Fred, 5

BSC. See Balanced scorecard (BSC)

Business case, 61

C

Calculus communicating systems (CCS), 303

Capability maturity model integration

(CMMI), 35–57, 101–134, 211–232

appraisals, 243–244

categories of, 222

kick-off session, 245–246

maturity levels, 217–220

process areas, 222–223

project manager, 236, 242

project plan, 244–245

project schedule, 245

representations, 220–222

CCB. See Change control
board (CCB)

CCS. See Calculus communicating

systems (CCS)

Change control, 95–97

Change control board (CCB), 71, 82

Change request, 71

CICS. See Customer Information Control

System (CICS)

Clarity PPM, 274

Class diagrams, 331

Clearcase, 92

Clearquest, 92

CMMI. See Capability maturity model

integration (CMMI)

COCOMO. See Constructive Cost Model

(COCOMO)

Communicating sequential processes

(CSP), 303

Commuting diagram property, 323

Conducting the appraisal, 261–267

Configuration control, 91

Configuration identification, 91

Configuration management, 89

audits, 98

plan, 95

Constructive Cost Model

(COCOMO), 272

Continuous improvement cycle, 236

Continuous representation, 220

Cost of poor quality (COPQ), 24, 103

Cost predictor models, 63

Crosby, Philip, 5, 15

CSP. See Communicating sequential

processes (CSP)

Customer care metrics, 168–170

Customer Information Control System

(CICS), 293

Customer satisfaction, 26–27

metrics, 157–158

G. O’Regan, Introduction to Software Quality, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-06106-1,
Springer International Publishing Switzerland 2014

351

D

Darlington Nuclear power plant, 293

Data reification, 323

Dedicated improvement sub-teams, 241–242

Def Stan 00-55, 292

Deliver appraisal results, 267

Deming, W. Edwards, 10

Development quality metrics, 164–167

Dynamic Object-Oriented Requirements

System (DOORS), 276

E

E-commerce testing, 131–133

Enterprise Architect, 280

ESA. See European Space Agency (ESA)

Escrow agreement, 139

Estimation, 62

European Space Agency (ESA), 41

Expert judgment, 63

F

Fagan inspections, 38, 53, 108–116

guidelines, 109

Fagan, Michael, 20

Fishbone diagrams, 23, 175–177

Formal methods, 55–56

Formal specification, 289

Functional requirement, 78

Function points, 63

G

Generate appraisal results, 266–267

Generic goals, 226

Generic practices, 226

Gilb, Tom, 26

Goal Question Metric (GQM), 26, 152

H

Histograms, 23, 177–178

Human Resources and Training Metrics,

160–162

Humphrey, Watts, 17, 212

I

IDE. See Integrated development

environment (IDE)

IEEE standards, 43

Information hiding, 84, 305

Inspection meeting, 112

Integrated development environment

(IDE), 280

Irish School of VDM (VDM♣), 300

ISO 9000, 185

ISO 9001, 187, 205

implementation, 195

ISO 9004, 187

ISO 9126, 5

ISO 9000 Certification Process, 195–197

J

Juran, Joseph, 12

L

LDRA Tools, 117, 283

M

Maintenance, 52

Mathematical proof, 297, 324

Measurement, 151

Microsoft Project, 273

Model, 43

Model-oriented approach, 294

Mongolian Hordes Approach, 35

N

Non-functional requirements, 78

O

Object diagram, 331

Object Modelling Technique (OMT), 327

Object-Oriented Software Engineering

(OOSE), 327

OMT. SeeObject Modelling Technique (OMT)

OOSE. See Object-Oriented Software

Engineering (OOSE)

P

Pareto chart, 23, 178–179

Parnas, 39, 49, 86, 305

Partial correctness, 303

Partial function, 316

PCE. See Phase containment

effectiveness (PCE)

Performance testing, 51

Personal Software Process (PSP), 205

352 Index

Phase containment effectiveness (PCE), 115

PIIDs. See Practice Implementation Indicator

Descriptions (PIIDs)

Piloting the process, 249

Planview, 274

Planview Enterprise, 274

PMBOK. See Project management

body of knowledge (PMBOK)

Polytron Version Control System (PVCS),

92, 282

Postcondition, 301

Practice Implementation Indicator

Descriptions (PIIDs), 256

Precondition, 301, 302

Predicate transformer, 303

Prepare participants, 261–262

Prince 2, 38, 53, 61, 74

Problem-solving techniques, 174–182

Process calculi, 303

Process improvement metrics, 158–160

Process mapping, 206, 246–248

Process maturity models, 54–55

Process model, 204

Professional Engineering Association, 36

Professional engineers, 40

Project, 59

Project board, 61, 72

Project closure, 73–74

Project management, 53–54, 59

metrics, 162–164

Project management body of knowledge

(PMBOK), 61

Project manager, 61

Project monitoring and control, 70–71

Project reporting, 73

Prototyping, 48, 78

PSP. See Personal Software Process (PSP)
PVCS. See Polytron Version Control

System (PVCS)

Q

Quality audit metrics, 167–168

Quality center, 28, 130

Quality management (system), 69–70,

187–189

R

Rational software modeler, 278

Rational unified process, 43, 45, 336

Refinement, 290

Reporting the results, 267–268

Request for proposal (RFP), 137

Requirements, 78

analysis, 81

elicitation, 79–81

engineering, 78–79

validation, 81, 290

verification, 82

traceability, 82

RequisitePro, 277

RFP. See Request for proposal (RFP)
Risk management, 67–70

Rolling out process, 249

S

SCAMPI

appraisals, 229–230, 253–269

methodology, 229

Scatter graphs, 180–181

Schema, 311

calculus, 301, 311

composition, 320–322

inclusion, 320

Scientific revolutions, 294

SEI. See Software Engineering Institute (SEI)

SEPG team, 236, 237, 240–242, 248, 249, 340

Sequence diagram, 333, 334

Shewhart model, 8

Shewhart, Walter, 8, 202

Six Sigma (6σ), 53, 206
Software crisis, 36, 56

Software design, 77

Software engineering, 36, 38, 40

Software Engineering Institute (SEI), 203

Software Engineering Tools, 271–287

Software failures, 41

Software inspections, 101

Software metrics, 151–183

Software process, 200–202

improvement, 25, 199–209

Software quality assurance, 143–150

Software reuse, 50

Software testing, 50

SOW. See Statement of work (SOW)

SPC. See Statistical process control (SPC)
Specific goals, 223

Specific practices, 225

Spiral model, 44

Sprint planning, 47

Standish group, 2, 36, 56

State diagrams, 335

Statement of work (SOW), 139

Statistical process control (SPC), 8

Index 353

Steering group, 236, 238, 240–242,

246, 250, 340

Story, 46

Structured walkthrough, 104

Supplier selection, 135

System testing, 51

T

Tacoma Narrows bridge, 4

Taurus project, 3

Team Software Process (TSP), 206

Test cases, 123

design, 126–127

Test director, 284

Test driven development, 51

Test environment, 121

Testing, 119

Test planning, 121, 125–126

Test process, 121–125

Test reporting, 127–128

Test tools, 124, 130–131

Total quality management (TQM), 6

Traceability, 49, 147, 277

Trend graph, 23

TSP. See Team Software Process (TSP)

U

UAT testing, 51

UML. See Unified modelling language (UML)

UML activity diagram, 334

UML diagrams, 330–335

Unified modelling language (UML),

327, 337

Unit testing, 50

Use-case diagram, 333

User requirements, 77

V

Vienna Development Method (VDM),

291, 298

VIPER, 297

Visual Source Safe (VSS), 92, 282

W

Waterfall model, 43

Weakest precondition, 303

Work breakdown structure, 63

Y

Y2K, 37, 41

Y2K bug, 4, 41

Z

Z, 291

Zermelo set theory, 302

Z specifications, 301, 312

language, 301

354 Index

	Preface
	Overview
	Organization and Features
	Audience

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1: Introduction
	1.1 Introduction
	1.1.1 The Software Engineering Challenge

	1.2 History of Software Failures
	1.3 Background to Software Quality
	1.3.1 What Is Software Quality?
	1.3.2 Early Quality Management
	1.3.3 Total Quality Management
	1.3.4 Software Quality Control

	1.4 History of Quality
	1.4.1 Shewhart
	1.4.2 Deming
	1.4.3 Juran
	1.4.4 Crosby
	1.4.5 Watts Humphrey
	1.4.6 Miscellaneous Quality Gurus

	1.5 Modern Software Quality Management
	1.5.1 Software Inspections
	1.5.2 Software Testing
	1.5.3 Software Quality Assurance
	1.5.4 Problem Solving Techniques
	1.5.4.1 Fishbone Diagrams
	1.5.4.2 Histograms
	1.5.4.3 Pareto Chart
	1.5.4.4 Trend Graph
	1.5.4.5 Scatter Graphs
	1.5.4.6 Failure Mode Effect Analysis

	1.5.5 Cost of Quality
	1.5.6 Software Process Improvement
	1.5.7 Software Metrics
	1.5.8 Customer Satisfaction
	1.5.9 Assessments (Appraisals)
	1.5.10 Total Quality Management

	1.6 Miscellaneous
	1.6.1 Organization Culture and Change
	1.6.2 Law of Negligence
	1.6.3 Quality and the WEB

	1.7 Review Questions
	1.8 Summary

	2: Software Engineering
	2.1 Introduction
	2.2 What Is Software Engineering?
	2.3 Challenges in Software Engineering
	2.4 Software Processes and Lifecycles
	2.4.1 Waterfall Lifecycle
	2.4.2 Spiral Lifecycles
	2.4.3 Rational Unified Process
	2.4.4 Agile Development

	2.5 Activities in Waterfall Lifecycle
	2.5.1 Business Requirements Definition
	2.5.2 Specification of System Requirements
	2.5.3 Design
	2.5.4 Implementation
	2.5.5 Software Testing
	2.5.5.1 Unit Testing
	2.5.5.2 Integration Test
	2.5.5.3 System Test
	2.5.5.4 Performance Test
	2.5.5.5 User Acceptance Test

	2.5.6 Maintenance

	2.6 Software Inspections
	2.7 Software Project Management
	2.8 CMMI Maturity Model
	2.9 Formal Methods
	2.10 Review Questions
	2.11 Summary

	3: Project Management
	3.1 Introduction
	3.2 Project Start Up and Initiation
	3.3 Estimation
	3.3.1 Estimation Techniques
	3.3.2 Work Breakdown Structure

	3.4 Project Planning and Scheduling
	3.5 Risk Management
	3.6 Quality Management in Projects
	3.7 Project Monitoring and Control
	3.8 Managing Issues and Change Requests
	3.9 Project Board and Governance
	3.10 Project Reporting
	3.11 Project Closure
	3.12 Prince 2 Methodology
	3.13 Review Questions
	3.14 Summary

	4: Requirements, Design and Development
	4.1 Introduction
	4.2 Requirements Engineering
	4.2.1 Requirements Elicitation and Specification
	4.2.2 Requirements Analysis
	4.2.3 Requirements Verification and Validation
	4.2.4 Managing Changes to Requirements
	4.2.5 Requirements Traceability

	4.3 Architecture Design
	4.4 Design and Development
	4.5 Review Questions
	4.6 Summary

	5: Configuration Management
	5.1 Introduction
	5.2 Configuration Management System
	5.2.1 Identify Configuration Items
	5.2.2 Document Control Management
	5.2.2.1 Version Numbering of Documents

	5.2.3 Source Code Control Management
	5.2.4 Configuration Management Plan

	5.3 Change Control
	5.4 Configuration Management Audits
	5.5 Review Questions
	5.6 Summary

	6: Software Inspections
	6.1 Introduction
	6.2 Economic Benefits of Software Inspections
	6.3 Informal Reviews
	6.4 Structured Walkthrough
	6.5 Semi-formal Review Meeting
	6.6 Fagan Inspections
	6.6.1 Fagan Inspection Guidelines
	6.6.2 Inspectors and Roles
	6.6.3 Inspection Entry Criteria
	6.6.4 Preparation
	6.6.5 The Inspection Meeting
	6.6.6 Inspection Exit Criteria
	6.6.7 Issue Severity
	6.6.8 Defect Type

	6.7 Automated Software Inspections
	6.8 Review Questions
	6.9 Summary

	7: Software Testing
	7.1 Introduction
	7.2 Test Process
	7.3 Test Planning
	7.4 Test Case Design and Definition
	7.5 Test Reporting and Project Sign-off
	7.6 Testing and Quality Improvement
	7.7 Traceability of Requirements
	7.8 Test Tools
	7.8.1 Test Management Tools
	7.8.2 Miscellaneous Testing Tools

	7.9 E-commerce Testing
	7.10 Review Questions
	7.11 Summary

	8: Supplier Selection and Management
	8.1 Introduction
	8.2 Planning and Requirements
	8.3 Identifying Suppliers
	8.4 Prepare and Issue RFP
	8.5 Evaluate Proposals and Select Supplier
	8.6 Formal Agreement
	8.7 Managing the Supplier
	8.8 Acceptance of Software
	8.9 Rollout
	8.10 Review Questions
	8.11 Summary

	9: Software Quality Assurance
	9.1 Introduction
	9.2 Audit Planning
	9.3 Audit Meeting
	9.4 Audit Reporting
	9.5 Follow Up Activity
	9.6 Audit Escalation
	9.7 Review of Audit Activities
	9.8 Review Questions
	9.9 Summary

	10: Software Metrics
	10.1 Introduction
	10.2 The Goal Question Metric Paradigm
	10.2.1 Goal
	10.2.2 Question
	10.2.3 Metrics

	10.3 The Balanced Scorecard
	10.4 Metrics for an Organization
	10.4.1 Customer Satisfaction Metrics
	10.4.2 Process Improvement Metrics
	10.4.3 Human Resources and Training Metrics
	10.4.4 Project Management Metrics
	10.4.5 Development Quality Metrics
	10.4.6 Quality Audit Metrics
	10.4.7 Customer Care Metrics
	10.4.8 Miscellaneous Metrics

	10.5 Implementing a Metrics Program
	10.5.1 Data Gathering for Metrics

	10.6 Problem-Solving Techniques
	10.6.1 Fishbone Diagram

	Example 10.1
	10.6.2 Histograms

	Example 10.2
	10.6.3 Pareto Chart

	Example 10.3
	10.6.4 Trend Graphs

	Example 10.4
	10.6.5 Scatter Graphs

	Example 10.5
	10.6.6 Metrics and Statistical Process Control

	10.7 Review Questions
	10.8 Summary

	11: ISO 9000
	11.1 Introduction
	11.2 Motivation for ISO 9000
	11.3 ISO 9000
	11.3.1 Quality Management System
	11.3.2 Management Responsibility
	11.3.3 Resource Management
	11.3.4 Product or Service Realization
	11.3.5 Measuring, Analysis, and Improvement

	11.4 Implementing ISO 9001
	11.5 ISO 9000 and Improvement
	11.5.1 Self-Assessment Process
	11.5.2 ISO 9001 Certification Process

	11.6 Review Questions
	11.7 Summary

	12: Software Process Improvement
	12.1 Introduction
	12.2 What Is a Software Process?
	12.3 What Is Software Process Improvement?
	12.4 What Are the Benefits of Software Process Improvement?
	12.5 What Models Are Used in Software Process Improvement?
	12.6 Process Mapping
	12.7 Process Improvement Initiatives
	12.8 Barriers to Success
	12.9 Review Questions
	12.10 Summary

	13: Capability Maturity Model Integration
	13.1 Introduction
	13.2 The CMMI
	13.3 CMMI Maturity Levels
	13.3.1 CMMI Representations

	13.4 Categories of CMMI Processes
	13.5 CMMI Process Areas
	13.6 Components of CMMI Process Areas
	13.6.1 SG 1 - Manage Requirements

	13.7 SCAMPI Appraisals
	13.8 Review Questions
	13.9 Summary

	14: Setting Up a CMMI Initiative
	14.1 Introduction
	14.2 Approach to Continuous Improvement
	14.3 CMMI Improvement Structure and Teams
	14.3.1 Setting Up the SEPG Team
	14.3.2 Setting Up the Steering Group
	14.3.3 Setting Up Dedicated Improvement Sub-teams
	14.3.4 Role of the CMMI Project Manager
	14.3.5 Risks to Success

	14.4 Planning the Improvement Cycle
	14.4.1 Appraisals
	14.4.2 CMMI Project Plan
	14.4.3 CMMI Project Schedule
	14.4.4 CMMI Kick-off Session

	14.5 Implementation of Improvements
	14.5.1 Process Mapping
	14.5.2 Layout of Templates
	14.5.3 Layout of Procedures and Guidelines

	14.6 Piloting the Process
	14.7 Rolling Out Process
	14.8 Review Questions
	14.9 Summary

	15: SCAMPI Appraisals
	15.1 Introduction
	15.2 Planning and Requirements for the Appraisal
	15.2.1 Analyze Requirements
	15.2.2 Develop Appraisal Plan
	15.2.3 Select and Prepare Team
	15.2.4 Obtain and Analyze Initial Evidence
	15.2.5 Prepare for Conducting Appraisal

	15.3 Conducting the Appraisal
	15.3.1 Prepare Participants
	15.3.2 Examine Objective Evidence
	15.3.3 Document Objective Evidence
	15.3.4 Verify Objective Evidence
	15.3.5 Validate Preliminary Findings
	15.3.6 Generate Appraisal Results

	15.4 Reporting the Results
	15.4.1 Deliver Appraisal Results
	15.4.2 Archive Appraisal Results

	15.5 Review Questions
	15.6 Summary

	16: Software Engineering Tools
	16.1 Introduction
	16.2 Tools for Project Management
	16.3 Tools for Requirements
	16.4 Tools for Design and Development
	16.5 Tools for Configuration Management and Change Control
	16.6 Tools for Code Analysis and Code Inspections
	16.7 Tools for Testing
	16.8 Review Questions
	16.9 Summary

	17: Formal Methods
	17.1 Introduction
	17.2 Why Should We Use Formal Methods?
	17.3 Applications of Formal Methods
	17.4 Tools for Formal Methods
	17.5 Approaches to Formal Methods
	17.5.1 Model-Oriented Approach
	17.5.2 Modelling
	17.5.3 Axiomatic Approach

	17.6 Proof and Formal Methods
	17.7 The Future of Formal Methods
	17.8 The Vienna Development Method
	17.9 VDM, the Irish School of VDM
	17.10 The Z Specification Language
	17.11 The B Method
	17.12 Predicate Transformers and Weakest Preconditions
	17.13 The Process Calculii
	17.14 Finite State Machines
	17.15 The Parnas Way
	17.16 Usability of Formal Methods
	17.16.1 Why Are Formal Methods difficult?
	17.16.2 Characteristics of a Usable Formal Method

	17.17 Review Questions
	17.18 Summary

	18: Z Formal Specification Language
	18.1 Introduction
	Example 18.1

	18.2 Sets
	18.3 Relations
	18.4 Functions
	18.5 Sequences
	18.6 Bags
	18.7 Schemas and Schema Composition
	18.8 Reification and Decomposition
	18.9 Proof in Z
	18.10 Review Questions
	18.11 Summary

	19: Unified Modelling Language
	19.1 Introduction
	19.2 Overview of UML
	19.3 UML Diagrams
	19.3.1 Advantages of UML

	19.4 Rational Unified Process
	19.5 Review Questions
	19.6 Summary

	20: Epilogue
	20.1 The Future of Software Quality

	Glossary
	References
	Index

