l Undergraduate Topics in Computer Scien

Gerard 0'Regan

Introduction
to Software

Quality

UTiCS

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international
advisory board, and contain numerous examples and problems. Many include fully
worked solutions.

For further volumes:
http://www .springer.com/series/7592

Gerard O'Regan

Introduction to Software
Quality

@ Springer

Gerard O’Regan
SQC Consulting
Mallow, Cork, Ireland

Series Editor
Tan Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
ISBN 978-3-319-06105-4 ISBN 978-3-319-06106-1 (eBook)
DOI 10.1007/978-3-319-06106-1

Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936841

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To
Kevin and Maura and the four princesses
(Eve, Grace, Jane and Tara)

Overview

The objective of this book is to provide an introduction to the software quality field
to students and practitioners, and it is based on the author’s experience in software
quality and software process improvement at leading industrial companies. The
principles of software quality management and software process improvement
are discussed.

The goal is to cover both theory and practice, and to give the reader a grasp
of the fundamentals of the software quality field, as well as guidance on how to
apply the theory in an industrial environment.

Organization and Features

The first chapter provides an introduction to the fundamentals of the quality
management field, and provides historical background on several pioneers such
as Deming, Juran, and Crosby.

Chapter 2 provides a broad overview of software engineering and discusses
various software lifecycles and the phases in software development. It includes a
discussion on requirements elicitation, software design, implementation, testing,
and maintenance.

Chapter 3 provides an introduction to project management and discusses project
estimation, project planning and scheduling, project monitoring and control, risk
management, and managing project quality.

Chapter 4 discusses requirements and design and is concerned with requirements
engineering and management, architectural design, and design and development.

Chapter 5 discusses configuration management and discusses the fundamental
concept of a baseline. Configuration management is concerned with identifying
those deliverables that must be subject to change control, and controlling changes
to them.

Chapter 6 discusses software inspections which play a key role in building
quality into a product. The well-known Fagan inspection process which was
developed at IBM in the 1970s is discussed, as well as lighter review and walk-
through methodologies.

Vii

http://dx.doi.org/10.1007/978-3-319-06106-1_2
http://dx.doi.org/10.1007/978-3-319-06106-1_3
http://dx.doi.org/10.1007/978-3-319-06106-1_4
http://dx.doi.org/10.1007/978-3-319-06106-1_5
http://dx.doi.org/10.1007/978-3-319-06106-1_6

viii Preface

Chapter 7 is concerned with software testing and discusses the various types of
testing that may be carried out. It includes a discussion on test planning, test case
definition, test tracking, test metrics, test reporting, and testing in an e-commerce
environment.

Chapter 8 is concerned with the selection and management of a software
supplier. It discusses how candidate suppliers may be formally evaluated, and
how the selected supplier may be managed during the project.

Chapter 9 nine discusses software quality assurance and the importance of
process quality. It is a premise in the quality field that conformance to the defined
process is essential in the delivery of high-quality product, and this chapter
discusses audits, and describes how they are carried out.

Chapter 10 is concerned with metrics and problem solving, and this includes a
discussion of the balanced score card which assists in identifying appropriate
metrics for the organization. The Goal, Question, Metrics (GQM) approach is
discussed, and this is useful in defining metrics that are related to the organization
goals. This chapter includes a collection of sample metrics for an organization.
Problem solving tools such as fishbone diagrams, pareto charts, and trend charts are
also discussed.

Chapter 11 discusses the ISO 9000 standard, which is an important standard for
product and service delivery. This family of standards includes ISO 9001 and ISO
9004. The main features of the standard are discussed as well as guidance on its
implementation.

Chapter 12 discusses software process improvement. It begins with a discussion
of a software process, and discusses the benefits that may be gained from a software
process improvement initiative. Various models that support software process
improvement are discussed, and these include the CMMI, ISO 9000, PSP, and TSP.

Chapter 13 gives an overview of the CMMI model and discusses its five maturity
levels and their constituent process areas. It includes a discussion of both the staged
and continuous representations.

Chapter 14 describes the activities and teams required to set up a CMMI
improvement initiative for an organization. These include the CMMI Steering
Group, the SEPG team, and process specific teams.

Chapter 15 discusses the SCAMPI appraisal methodology. This includes the
formal SCAMPI Class A appraisal often employed by large organizations to obtain
a CMMI rating that allows them to benchmark themselves against other
organizations, and SCAMPI Class B and C appraisals that are less expensive and
time consuming but may not be used for benchmarking.

Chapter 16 discusses various tools to support the organizations in the various
software engineering activities. The focus is first to define the process, and then to
find tools to support the process. Tools to support project management are discussed
as well as tools to support requirements engineering, configuration management,
design and development activities, and software testing.

Chapter 17 discusses formal methods, which consist of a set of mathematical
techniques to specify and derive a program from its specification. Formal methods
may be employed to rigorously state the requirements of the proposed system; they

http://dx.doi.org/10.1007/978-3-319-06106-1_7
http://dx.doi.org/10.1007/978-3-319-06106-1_8
http://dx.doi.org/10.1007/978-3-319-06106-1_9
http://dx.doi.org/10.1007/978-3-319-06106-1_10
http://dx.doi.org/10.1007/978-3-319-06106-1_11
http://dx.doi.org/10.1007/978-3-319-06106-1_12
http://dx.doi.org/10.1007/978-3-319-06106-1_13
http://dx.doi.org/10.1007/978-3-319-06106-1_14
http://dx.doi.org/10.1007/978-3-319-06106-1_15
http://dx.doi.org/10.1007/978-3-319-06106-1_16
http://dx.doi.org/10.1007/978-3-319-06106-1_17

Preface ix

may be employed to derive a program from its mathematical specification; and they
provide a rigorous proof that the implemented program satisfies its specification.
They have been mainly applied to the safety critical field.

Chapter 18 presents the Z specification language, which is one of the most
widely used formal methods. It was developed at Oxford University in the UK.

Chapter 19 presents the unified modelling language (UML) which is used to
present several views of the system architecture. Chapter 20 is the concluding
chapter in which we summarize the journey that we have travelled in this book.

Audience

The main audience of this book are computer science students who are interested in
learning about software quality, and in learning on how to build high-quality and
reliable software on time and on budget. It will also be of interest to industrialists
including software engineers, quality professionals, and software managers as well
as the motivated general reader.

Mallow, Cork, Ireland Gerard O’Regan

http://dx.doi.org/10.1007/978-3-319-06106-1_18
http://dx.doi.org/10.1007/978-3-319-06106-1_19
http://dx.doi.org/10.1007/978-3-319-06106-1_20

Acknowledgments

I am deeply indebted to family and friends who supported my efforts in this
endeavour.

xi

Introduction.

1.1

1.2
1.3

1.4

1.5

1.6

1.7
1.8

Introduction.
1.1.1 The Software Engineering Challenge
History of Software Failures.
Background to Software Quality
1.3.1 What Is Software Quality?
1.3.2 Early Quality Management.
1.3.3 Total Quality Management.
1.34 Software Quality Control.
History of Quality
14.1 Shewhart.
1.4.2 Deming........... i
1.4.3 Juran.o
144 CroSbY . . oot
1.4.5 Watts Humphrey
1.4.6 Miscellaneous Quality Gurus.
Modern Software Quality Management.
1.5.1 Software Inspections.
1.5.2 Software Testing
1.5.3 Software Quality Assurance.
1.54 Problem Solving Techniques.
1.5.5 Costof Qualityt
1.5.6 Software Process Improvement.
1.5.7 Software Metrics
1.5.8 Customer Satisfaction.
1.5.9 Assessments (Appraisals)
1.5.10 Total Quality Management.
Miscellaneous i
1.6.1 Organization Culture and Change
1.6.2 Law of Negligence
1.6.3 Qualityandthe WEB
Review Questions i
SUMMATY . . .o

[e<BEN I Ne NV IV, I N S

L L W W W WIENNNDINDNDNDNDNDNDINDND == ===
NN, OO VO NANDFR~R,OOODWNDOX®

xiii

Xiv

Contents

Software Engineering 35
2.1 Introduction. 35
2.2 What Is Software Engineering? 38
2.3 Challenges in Software Engineering 40
2.4 Software Processes and Lifecycles. 42
2.4.1 Waterfall Lifecycle. 43

24.2 Spiral Lifecycles. 44

243 Rational Unified Process. 45

2.4.4 Agile Development. 46

2.5 Activities in Waterfall Lifecycle. 47
2.5.1 Business Requirements Definition. 48

252 Specification of System Requirements. 48

253 Design......... L. 49

254 Implementation. 50

2.5.5 Software Testing 50

2.5.6 Maintenance 52

2.6 Software Inspections o o . 53
2.7 Software Project Management. 53
2.8 CMMI Maturity Model 54
2.9 Formal Methods 55
2.10 Review QUeStionS.ttt it 56
201 Summaryt e 56
Project Management 59
3.1 Introduction. 59
3.2 Project Start Up and Initiation. 61
33 Estimation. i 62
3.3.1 Estimation Techniques. 63

332 Work Breakdown Structure 64

34 Project Planning and Scheduling 65
3.5 Risk Management.c.viuiiirinnennnnn. 67
3.6 Quality Management in Projects. 69
3.7 Project Monitoring and Control 70
3.8 Managing Issues and Change Requests. 71
3.9 Project Board and Governance 72
3.10 ProjectReporting. 73
3.11 ProjectClosure.ttt 73
3.12 Prince 2 Methodology i 74
3.13 Review QUestionS.outi it 76
314 SuMmMAry oot 76
Requirements, Design and Development. 77
4.1 Introduction. e 71
4.2 Requirements Engineering 78
4.2.1 Requirements Elicitation and Specification. 79

422 Requirements Analysis. 81

Contents XV
423 Requirements Verification and Validation. 81

424 Managing Changes to Requirements. 82

425 Requirements Traceability 82

4.3 Architecture Design. it 84
4.4 Design and Development. 86
4.5 Review Questions.ttt 87
4.6 SUMMATY . . .o e 87
5 Configuration Management 89
5.1 Introduction. 89
5.2 Configuration Management System. 93
5.2.1 Identify Configuration Items 93

5.2.2 Document Control Management. 93

523 Source Code Control Management. 94

5.2.4 Configuration Management Plan. 95

5.3 Change Control.ttt en e 95
5.4 Configuration Management Audits. 98
55 Review Questions. ittt 98
5.6 Summary. 99
6 Software Inspections 101
6.1 Introduction. 101
6.2 Economic Benefits of Software Inspections. 103
6.3 Informal Reviews. 104
6.4 Structured Walkthrough L oL 104
6.5 Semi-formal Review Meeting 105
6.6 FaganInspections., 108
6.6.1 Fagan Inspection Guidelines. 109

6.6.2 Inspectorsand Roles. 110

6.6.3 Inspection Entry Criteria. 110

6.6.4 Preparation. 110

6.6.5 The Inspection Meeting 112

6.6.6 Inspection Exit Criteria. 114

6.6.7 Issue Severityt 114

6.6.8 Defect Type oov v e 114

6.7 Automated Software Inspections. 116
6.8 Review Questionst 117
6.9 SUMMATY . . .o 117
7 Software Testing. 119
7.1 Introduction. 119
7.2 Test Process.o oo 121
7.3 TestPlanning 125
7.4 Test Case Design and Definition. 126
7.5 Test Reporting and Project Sign-off. 127
7.6 Testing and Quality Improvement. 128

XVi

10

Contents

7.7 Traceability of Requirements. 129
7.8 Test Tools.o o 130
7.8.1 Test Management Tools. 130

7.8.2 Miscellaneous Testing Tools. 131

7.9 E-commerce Testing.civiiiineeenn.. 131
7.10 Review QUESHONS vt i ittt e e 133
TAL SumMmMaryt e 133
Supplier Selection and Management 135
8.1 Introduction. 135
8.2 Planning and Requirements. 136
8.3 Identifying Suppliers. i 137
8.4 Prepare and Issue RFP. 137
8.5 Evaluate Proposals and Select Supplier. 138
8.6 Formal Agreement. i, 138
8.7 Managing the Supplier. 139
8.8 Acceptance of Software 139
8.9 Rollout. 140
8.10 Review Questions.ttt 140
811 Summary. 140
Software Quality Assurance. 143
9.1 Introduction. 143
9.2 Audit Planning 146
9.3 AuditMeeting. 147
94 AuditReporting. 148
9.5 Follow Up Activityo oot e 149
9.6 Audit Escalation. 149
9.7 Review of Audit Activities., 149
9.8 Review Questions.t 149
9.9 Summary. 150
Software Metrics. 151
10.1 Introduction. 151
10.2 The Goal Question Metric Paradigm 152
102.1 Goal.o 153

1022 Question. i 154

1023 MEtriCS . o v v ettt e 154

10.3 The Balanced Scorecard 154
10.4 Metrics for an Organization. 156
10.4.1 Customer Satisfaction Metrics. 157

10.4.2 Process Improvement Metrics. 158

10.4.3 Human Resources and Training Metrics. 160

10.4.4 Project Management Metrics. 162

10.4.5 Development Quality Metrics. 164

10.4.6 Quality Audit Metrics. 167

Contents

11

12

13

10.4.7 Customer Care Metrics.o oo,
10.4.8 Miscellaneous Metrics ov ...
10.5 Implementing a Metrics Program.
10.5.1 Data Gathering for Metrics.
10.6 Problem-Solving Techniques.
10.6.1 Fishbone Diagram.
10.6.2 Histograms.ttt
10.6.3 ParetoChart................,
10.6.4 Trend Graphs............. iuioo...
10.6.5 Scatter GraphsS.t
10.6.6 Metrics and Statistical Process Control
10.7 Review QUeStionS. v vttt it
10.8 Summary.t
ISO9000.
11.1 Introduction.uiieiiiennnnnn..
112 Motivation for ISO9000.
113 ISO9000.0 e e
11.3.1 Quality Management System.
11.3.2 Management Responsibility.
11.3.3 Resource Management.
11.3.4 Product or Service Realization.
11.3.5 Measuring, Analysis, and Improvement.
11.4 Implementing ISO9001.
11.5 ISO 9000 and Improvement.
11.5.1 Self-Assessment Process.
11.5.2 ISO 9001 Certification Process.
11.6 Review QUeStionS.o vttt ittt ie e
T1.7 0 Summary.ot e
Software Process Improvement
12.1 Introduction.uintiiinnn..
12.2 What Is a Software Process?
12.3 What Is Software Process Improvement?

12.4 What Are the Benefits of Software Process Improvement? . . .
12.5 What Models Are Used in Software Process Improvement? .

126 Process Mapping.
12.7 Process Improvement Initiatives.
12.8 Barriers to SUCCESS . . . oo vttt
129 Review QUestionsS. v ittt it
12,10 Summaryttt e
Capability Maturity Model Integration.
13.1 Introduction............ot

132 The CMMI.

xviii

14

15

Contents

133 CMMI Maturity Levels. 217
13.3.1 CMMI Representations. 220
13.4 Categories of CMMI Processes. 222
13.5 CMMI Process Areas.uuuuuuununennnnnnns 222
13.6 Components of CMMI Process Areas. 223
13.6.1 SG 1 — Manage Requirements. 227
13.7 SCAMPI Appraisals. 229
13.8° Review QUestionso ittt 231
139 Summary. 231
Setting Up a CMMI Initiative.. 233
14.1 Introduction.ouiuininneeeeeennnnn. 233
142 Approach to Continuous Improvement. 234
14.3 CMMI Improvement Structure and Teams. 236
14.3.1 Setting Upthe SEPG Team................... 237
14.3.2 Setting Up the Steering Group. 240
14.3.3 Setting Up Dedicated Improvement Sub-teams. . . . 241
143.4 Role of the CMMI Project Manager. 242
1435 RiskstoSuccess.c.oiiiiiiiiii.. 242
14.4 Planning the Improvement Cycle. 243
144.1 Appraisals. i 243
1442 CMMIProjectPlan. 244
14.43 CMMI Project Schedule 245
14.44 CMMI Kick-off Session. 245
14.5 Implementation of Improvements. 246
14.5.1 Process Mapping.ooiiinn... 246
1452 Layoutof Templates........................ 248
14.5.3 Layout of Procedures and Guidelines. 248
14.6 Piloting the Process. 249
147 RollingOut Process. 249
14.8 Review Questions.ci i, 250
149 Summary. 250
SCAMPI Appraisals. 253
15.1 Introduction.t 253
15.2 Planning and Requirements for the Appraisal 256
15.2.1 Analyze Requirements. 256
15.2.2 Develop Appraisal Plan. 257
15.2.3 Select and Prepare Team 258
15.2.4 Obtain and Analyze Initial Evidence 259
15.2.5 Prepare for Conducting Appraisal 260
15.3 Conducting the Appraisal 261
15.3.1 Prepare Participants 261
15.3.2 Examine Objective Evidence 262

15.3.3 Document Objective Evidence 264

Contents

16

17

Xix

15.3.4 Verify Objective Evidence 265

15.3.5 Validate Preliminary Findings 266

153.6 Generate Appraisal Results. 266

154 Reportingthe Results. 267
15.4.1 Deliver Appraisal Results. 267

15.4.2 Archive Appraisal Results. 267

15,5 Review Questions.ui e 268
156 Summary. 268
Software Engineering Tools. 271
16.1 Introduction.............ot 271
16.2 Tools for Project Management. 272
16.3 Tools for Requirements. 274
16.4 Tools for Design and Development. 278
16.5 Tools for Configuration Management and Change Control. . . 280
16.6 Tools for Code Analysis and Code Inspections. 283
16,7 Toolsfor Testing.c.uuiiiiininnennan. 284
16.8 Review QUestions.iuin it 286
169 Summary........ 286
Formal Methods 289
17.1 Introduction............. ... iiiuiiininnneeeean. 289
17.2 Why Should We Use Formal Methods?. 291
17.3 Applications of Formal Methods. 292
17.4 Tools for Formal Methods 293
17.5 Approaches to Formal Methods. 294
17.5.1 Model-Oriented Approach. 294

1752 Modelling. 295

17.5.3 Axiomatic Approach. 296

17.6 Proof and Formal Methods 296
17.7 The Future of Formal Methods. 298
17.8 The Vienna Development Method 298
17.9 VDM™, the Irish School of VDM 299
17.10 The Z Specification Language 301
1711 TheBMethod. 302
17.12 Predicate Transformers and Weakest Preconditions. 302
17.13 The Process Calculii. 303
17.14 Finite State Machines. 304
17.15 TheParnas Way., 305
17.16 Usability of Formal Methods 306
17.16.1 Why Are Formal Methods difficult?. 307

17.16.2 Characteristics of a Usable Formal Method 308

17.17 Review QuestionsS.ttt i, 308
I7.18 Summary.ttt 309

XX Contents
18 Z Formal Specification Language 311
18.1 Introduction. 311

18.2 Sets. ..ot 314

183 Relations.t 315

184 FunctionS.iiiinteie et 316

18.5 Sequences.uiiiiini 318

186 Bags...... .. 319

18.7 Schemas and Schema Composition. 320

18.8 Reification and Decomposition. 322

189 ProofinZ...... i 323
18.10 Review QUESHIONS vt i v it it e 324
I8.11 Summary. i 325

19 Unified Modelling Language 327
19.1 Introduction.ouiiuiineinneennnean. 327

19.2 Overviewof UML. i 328

193 UMLDiagrams.t 330
193.1 Advantagesof UML........................ 335

19.4 Rational Unified Process. 335

19.5 Review QUeStIONSo vttt it 337

19.6 Summary.t 337

20 Epilogue. 339
20.1 The Future of Software Quality 341
GloSSary e 343
References. 347
Index. e 351

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig
Fig

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
. 1.10
. 1.11

2.1
22
23
24

3.1
32
33
34
3.5
3.6

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4

Standish research — Project cost estimation

accuracy in 1998 3
Shewhart’s control chart. 9
Shewhart’s PDCAcycle. 9
WE.Deming.............. 10
JosephJuran........ 13
Cost of poor quality — % of sales. 13
Estimation accuracy — Breakthrough and control 14
Watts Humphrey (Courtesy of Watts Humphrey) 18
Costof quality 25
Customer satisfaction Process.o vvv v ewnn . 27
Customer satisfaction metrics v 28
Standish report — Results of 1995 and 2009 survey......... 37
Standish 1998 report — Estimation accuracy 41
Waterfall V lifecyclemodel 43
SPIRAL lifecycle model ... Public domain.............. 44
Simple process map for project planning 65
Sample Microsoft project schedule. 66
Simple process map for project monitoring and control 70
Prince 2 projectboard 72
Project management triangle 74
Prince 2 processes. vv vttt e 75
C.A.R. Hoare (Publicdomain) 85
David Parnas (Publicdomain). 85
Simple process map for change requests. 96
Simple process map for configuration management. 97
Michael Fagan. 102
Template for semi-formal review 107
Template for Fagan inspection. 113
Sample-defect types in a project (ODC)................. 116

XXi

XXii

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

7.1
7.2
7.3
7.4

9.1

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30
10.31
10.32
10.33

11.1

12.1
12.2

List of Figures

Simplified test Process.o v vt it 122
Sample test Status oottt e 124
Cumulative defects 127
Phase containment effectiveness metric. 128
Sample audit process.o 145
GQMexample.t e 153
The balanced scorecard 155
Balanced score card and implementing strategy 155
Customer survey arrivals. 157
Customer satisfaction measurements. 158
Process improvement measurements 159
Status of process improvement suggestions. 159
Age of open process improvement suggestions. 160
Process improvement productivity 160
Employee headcount in current year. 161
Employee turnover in current year. 161
Schedule timeliness metric. 162
Effort timeliness metric. 163
Requirements delivered 163
Total number of issues in project. 164
Open iSsuUes N ProjJect. . . . oo v e vttt e e 165
Age of open defects inproject. 165
Problem arrivals permonth. 166
Phase containment effectiveness. 166
Annual auditschedule. 167
Status of auditactions., 167
Audit aCtioN tYPeS. .« v v v vt e 168
Customer queries (arrivals/closures). 169
Outage time Per CUSIOMET . . .« ¢ . v vt v et e e e e e e 170
Availability of system permonth. 171
Configuration managementc...u..... 171
CMMI maturity incurrent year.uuunn... 172
Fishbone cause-and-effect diagram. 176
Histogram. 178
Pareto chartoutages. 179
Trend chart estimation accuracy 180
Scatter graph amount inspected rate/error density 181
Estimation accuracy and control charts. 182
ISO 9000 quality management system. 188
Process as glue for people, procedures and tools. 201
Sample process Map v v oo vttt 202

List of Figures XXiii

Fig. 13.1 Process as glue for people, procedures and tools. 212
Fig. 13.2 ISO/IEC 12207 standard for software engineering

PTOCESSES « v v v e ettt e e e e e e e 213
Fig. 13.3 CMMI Worldwide maturity 2013 216
Fig. 13.4 CMMImaturity levels. 218
Fig. 13.5 CMMI capability levels. 221
Fig. 13.6 CMMI — Continuous representation. 222
Fig. 137 CMMlIstagedmodel 226
Fig. 13.8 Specific practices for SG1 — manage requirements. 227
Fig. 14.1 Steps in process improvement. 235
Fig. 14.2 Continuous improvementcycle. 235
Fig. 143 CMMI Level 2 improvement structure and teams. 239
Fig. 144 Sample processmap. 247
Fig. 15.1 Appraisals. 254
Fig. 152 SCAMPI CMMI L3 rating of practices. 255
Fig. 15.3 SCAMPI (classes of appraisals). 256
Fig. 154 Sample schedule for SCAMPI Class C appraisal 258
Fig. 16.1 Dashboard views in Planview Enterprise. 275
Fig. 16.2 Planview Process Builder. 276
Fig. 16.3 IBM Rational Doorstool 278
Fig. 164 IBM Rational Software Modeler. 279
Fig. 16.5 Sparx Enterprise Architect. 281
Fig. 16.6 LDRA code coverage analysisreport. 283
Fig. 16.7 HPQuality Center.ttt 285
Fig. 17.1 Deterministic finite state machine. 305
Fig. 18.1 Specification of positive square root. 312
Fig. 18.2 Specification of a library system. 313
Fig. 18.3 Specification of borrow operation. 313
Fig. 184 Specification of vending machine using bags. 320
Fig. 18.5 Schemainclusion. 321
Fig. 18.6 Merging schemas (S; V So). . ..o ool 321
Fig. 18.7 Schema composition. 322
Fig. 18.8 Refinement commuting diagram. 323
Fig. 19.1 Simple object diagram 332
Fig. 19.2 Use-Case diagram of ATM machine. 333
Fig. 19.3 UML sequence diagram.vuuvvunneenn . 333
Fig. 194 UML activity diagram, 334
Fig. 19.5 Rational unified process. 336

Fig. 19.6 Phases and workflows in rational unified process. 337

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 1.6
Table 1.7
Table 1.8
Table 1.9
Table 1.10
Table 1.11

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7

Table 4.1

Table 4.2
Table 4.3
Table 4.4
Table 4.5

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6

Table 6.1
Table 6.2

ISO 9126-Quality characteristics 6
Shewhartcycle. i 9
Deming-14 step programme 11
Deming — Five deadly diseases 12
Juran’s ten step programme 14
Juran’s breakthrough and control 15
Crosby’s 14 step programmeovvvvenenn.... 16
Crosby’s maturity grid. 17
Cost of quality categories. 24
Sample customer satisfaction questionnaire 28
Total quality management.c...... 30
Estimation techniques. 63
Example work-breakdown structure 64
Sample project management checklist. 67
Risk management activities. 68
Activities in managing issues and change requests. 71
Project board roles and responsibilities. 73
Key processesinPrince 2. 75

Symptoms of poor requirements development

and Managementttt 79
Characteristics of good requirements. 79
Managing change requestS. oi it 83
Sample trace matriX oov vttt 83
Views of system architecture 86
Features of good configuration management. 90
Symptoms of poor configuration management. 91
Software configuration management activities. 91
Buildplan. 92
CMMI requirements for configuration management. 92
Sample configuration management audit checklist. 98
Informal review L 104
Structured walkthroughs 105

XXV

XXVi

Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table 6.12
Table 6.13

Table 7.1
Table 7.2

Table 8.1

Table 9.1
Table 9.2
Table 9.3

Table 10.1
Table 10.2
Table 10.3
Table 10.4

Table 11.1
Table 11.2
Table 11.3
Table 11.4

Table 12.1

Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 13.5
Table 13.6
Table 13.7
Table 13.8

Table 14.1
Table 14.2

Table 15.1
Table 15.2

Table 16.1
Table 16.2

List of Tables

Activities for semi-formal review meeting. 106
Overview Fagan inspection process. 108
Strict Fagan inspection guidelines. 110
Tailored (Relaxed) Fagan inspection guidelines. 110
Inspectorroles. 111
Faganentrycriteria.ovtiiiino... 111
Inspectionmeeting., 112
Faganexitceriteria. i 114
Issue severity 114
Classification of defects in Fagan inspections. 115
Classification of ODC defecttypes. 115
Typesof testing. oottt 123
Sample test schedule. o L. 126
Supplier selection and management. 136
Auditing activities v i 144
Sample auditing checklist. 147
Sample auditreport. L 148
BSC objectives and measures for IT service organization. ... 156
Implementing metrics 173
Identifying data to be gathered 173
Phase containment effectiveness. 174
Motivation for ISO 9000 implementation. 186
ISO9001 clauses. oot 187
ISO 9001 implementation. 196
Simple ISO 9000 self-assessment. 197
Benefits of software process improvement (CMMI). 204
Motivation for CMMI implementation. 215
Benefits of CMMI implementation. 217
CMMI maturity levels. 219
CMMI capability levels for continuous representation. 221
CMMI process Categoriesot .. 223
CMMI Process ar€aso o vv e it et ee e e 224
CMMI generic practiCes v e, 228
Implementation of generic practices. 230
Continuous improvementcycle. 237
CMMI improvement structure and teams 238
Phases in a SCAMPI appraisal 255
Indicators of practice implementation. 260
Tool evaluationtable. 272

Key capabilities of Planview Enterprise. 275

List of Tables

Table 16.3
Table 16.4
Table 16.5

Table 17.1
Table 17.2
Table 17.3
Table 17.4

Table 18.1

Table 19.1
Table 19.2
Table 19.3
Table 19.4

XXVii
Tools for requirements development and management. 276
Tools for software design. 279
Integrated development environment 282
Criticisms of formal methods 291
Techniques for validation of formal specification.......... 307
Why are formal methods difficult?.................... 307
Characteristics of a usable formal method. 308
Schema composition. 322
Classification of UML things. 329
UML diagramso vttt it e e e e 330
Simple class diagram, 331

Advantagesof UML. 335

Key Topics

Software Engineering
Shewhart

Deming

Juran

Crosby

Watts Humphries
Metrics

Problem Solving
Cost of Quality
Process Improvement
Customer Satisfaction

1.1 Introduction

The mission of a software company is to develop high-quality innovative products
and services at a competitive price to its customers, and to do so ahead of its
competitors. This requires a clear vision of the business, a culture of innovation, an
emphasis on quality, detailed knowledge of the business domain, and a sound
product development strategy.

It also requires a focus on customer satisfaction and software quality to ensure
that the desired quality is built into the software product, and that customers remain
loyal to the company. Customers today have very high expectations on quality, and
expect high-quality software products to be consistently delivered on time. The
focus on quality requires that the organization define a sound software development
infrastructure to enable quality software to be consistently produced.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics 1
in Computer Science, DOI 10.1007/978-3-319-06106-1_1,
© Springer International Publishing Switzerland 2014

2 1 Introduction

This book describes approaches used in current software engineering to build
quality into software. This involves project planning and tracking, software
lifecycles, software inspections and testing, configuration management, software
quality assurance, etc. The capability maturity model integrated (CMMI) is
discussed in detail and the CMMI provides a framework that assists organizations
in software process improvement. It allows them to assess the current capability or
maturity of selected software processes and to prioritize improvements.

The assessment (or SCAMPI appraisal) of an organization against the CMMI
reveals strengths and weaknesses of the management and engineering processes in
the organization. The output from the appraisal is used to formulate an improve-
ment plan, which is then tracked to completion. The execution of the plan may take
1 or more years of effort.

Quality improvement also requires that the organization be actively aware of
industrial best practice, as well as emerging technologies from various research
programs. Piloting or technology transfer of innovative technology is a key part of
continuous improvement.

The history of quality and some of the key people who have contributed to the
quality movement are discussed later in the chapter. This includes well-known
quality gurus such as Shewhart, Deming, Juran, and Crosby, and these grandfathers
of quality played an important role in promoting quality in business. Watts
Humphrey is considered the father of software quality, and his important
contributions to software process improvement are discussed.

1.1.1 The Software Engineering Challenge

The challenge in software engineering is to deliver high-quality software on time to
customers. The Standish Group research [64] (Fig. 1.1) on project cost overruns in
the US during 1998 indicate that 33 % of projects are between 21 and 50 % over
estimate, 18 % are between 51 and 100 % over estimate, and 11 % of projects are
between 101 and 200 % overestimate.'

Project management and estimating project cost, effort and schedule accurately
are software engineering challenges. Consequently, organizations need to deter-
mine how good their estimation process actually and to improve it. The actual
project effort versus estimated project estimate and the actual project schedule
versus projected project schedule are determined.

Risk management is a key part of project management, and the objective is to
identify potential risks early in the project, to determine the probability of their
occurrence and their impact should they occur. The management of a risk involves
actions to eliminate or reduce the probability of its occurrence or its impact should

" The study was from the mid/late 1990s and recent reports from the Standish Group show good
improvement trends.

1.1 Introduction 3

Standish Report (Estimation Accuracy
1998)

40
35

:2 Under 20% over

20 B 21-50% over

15 W 51-100% over
10 101 - 200% over
0 - B >200% over

Under 20% 21.50% 51.100% 101-200% >200%
over over over over over

w

Fig. 1.1 Standish research — Project cost estimation accuracy in 1998

it occur, or to have a contingency plan should the risk materialize. Risks need to be
managed throughout the project lifecycle.

Projects sometimes fail and there are many examples of project being abandoned
prior to completion. For example, the Taurus project at the London stock exchange
is a well-known disaster, and the original budget was £6 million. The project was
eventually abandoned, and at that stage it was 11 years late, i.e., 13,200 % late and
had cost the city of London hundreds of millions [40].

It is essential that requirements are properly managed as changing requirement
(or the introduction of new requirements late in the software development lifecycle)
may have a negative effect on the project. It may be necessary to accept the late
requirement change if it is demanded by a customer, but there may be risks to the
project schedule and quality. However, a good requirements process will ensure that
changes to the requirements are minimized and controlled, and the requirements
process may include prototyping or joint user reviews to ensure that they match the
needs of the customer.

The implementation of the requirements involves design, development and
testing activities. It may also involve the production of user manuals and training
materials as well as the technical documentation. Changes to requirements may
occur, and any change requests must be approved and communicated to the project
team. Quality must be built into the software and testing activities are carried out to
verify the correctness of the software, and that it correctly implements the
requirements. The project manager is responsible for delivering the project on
time, and recovering the schedule when the project falls behind schedule.

The challenges in software engineering are also faced in many other disciplines.
Bridges have been constructed by engineers for several millennia and bridge building
is a mature engineering activity. However, civil engineering projects occasionally fall

4 1 Introduction

behind schedule or suffer design flaws; for example, the infamous Tacoma Narrows
bridge (or Galloping Gertie as it was known) collapsed in 1940 due to a design flaw.
The Tacoma Narrows Bridge was known for its tendency to sway in windstorms.
The shape of the bridge was like that of an aircraft wing, and under windy
conditions it would generate sufficient lift to become Unstable. A large windstorm
in November, 1940 caused catastrophic failure. The significance of the Tacoma
Bridge is its collapse and the subsequent investigation by engineers. They realized
that aero-dynamical forces in suspension bridges were not sufficiently understood
in the design of the bridge, and that new research was needed. It was recommended
that wind tunnel tests be used to aid in the design of the replacement bridge.
Software engineering is a less mature field than civil engineering, and it is only in
more recent times that investigations and recommendations from software projects
have become part of the software development process. The study of software
engineering has led to new theories and understanding of software development.

1.2 History of Software Failures

There are many examples of software failures in the literature. These include the
year 2000 (or Y2K) problem which was a design flaw in the representation of the
date with two digits; the Intel microprocessor bug which referred to a floating point
problem on its microprocessor back in 1994; the Ariane 5 disaster refers to an
operand error due to the conversion of a 64 bit floating point number to a 16 bit
signed integer number. Software failures may cause major problems and adversely
affect the customer’s business. It may lead to credibility issues, and damage to the
customer relationship.

The Y2K bug is historical and part of computer science folklore. The event on
January 1, 2000 had minimal impact on the world economy. However, organizations
spent large sums of money in identify all code with a year 2000 impact, changing the
representation of the date from 2 digits to 4 digits, and verifying the correctness of the
changes made. The worldwide cost of this was in billions of dollars.

The Intel response to a famous microprocessor mathematical bug back in 1994
inflicted (temporary) damage on the company and its reputation. Intel was slow to
acknowledge the floating point problem, and to provide adequate information on
the problems. This damaged its reputation and there was a financial cost involved in
replacing microprocessors.

The Ariane 5 failure caused major embarrassment and damage to the credibility
of the European Space Agency (ESA). The maiden flight of the Ariane 5 launcher
ended in failure on June 4, 1996, after a flight time of 40 s. The first 37 s of flight
proceeded normal. The launcher then veered off its flight path, broke up, and
exploded. An independent inquiry board investigated the cause of the failure, and
the report and recommendations to prevent a future failure are described in [38].

The inquiry noted that the failure of the inertial reference system was followed
immediately by a failure of the backup inertial reference system. The problem was
traced to a software failure due to an operand error involving the conversion of a

1.3 Background to Software Quality 5

64 bit floating point number to a 16 bit signed integer value number. The floating
point number was too large to be represented in the 16 bit number and this resulted
in an operand error.

The inertial reference system and the backup reference system reported failure
due to the software exception. The operand error occurred owing to an exception-
ally high value related to the horizontal velocity, and this was due to the fact that the
early part of the trajectory of the Ariane 5 differed from the earlier Ariane 4, and
required a higher horizontal velocity. The inquiry board made a series of
recommendations to prevent a reoccurrence of similar problems.

These failures indicate that software quality needs to be a key driving force in
any organization. The effect of software failure may result in huge costs to correct
the software (e.g., Y2K), negative perception of a company (e.g., Intel micropro-
cessor problem), or the loss of a valuable communications satellite (e.g., Ariane 5).

1.3 Background to Software Quality

Customers today have very high quality and reliability expectations, and expect
companies to adhere to very high standards. There are many quality software
products in the marketplace; however, the task of producing high-quality software
products consistently on time is non-trivial. Even the most respect organizations
occasionally deliver software that contains defects, or ship products late due to
quality problems. Defects may cause minor irritation to a customer, loss of credi-
bility, or in a worst case scenario they may lead to injury or loss of life.

The late delivery of a product leads to extra costs, and it may adversely affect the
customer’s revenue, profitability, and business planning. Consequently, it is essen-
tial to have a robust process to consistently develop high-quality software on time
and within budget. The influential papers by Fred Brooks in [10, 11] suggests that
there is no silver bullet to do this, and instead, the focus needs to be on incremental
improvement to processes and tools.

1.3.1 What Is Software Quality?

There are various definitions of quality such as the narrow definition proposed by
Philip Crosby where quality is defined as “conformance to the requirements”. This
definition does not take the intrinsic difference in quality of products into account in
judging the quality of the product. For example, this definition might suggest that a
Mercedes car is of the same quality as a Lada car. Further, the definition does not
consider whether the requirements are actually appropriate for the product. Juran
defines quality as “fitness for use” and this is a better definition, although it does not
provide a mechanism to judge better quality when two products are equally fit to be
used. The ISO 9126 standard for information technology [31] is a framework for the
evaluation of software product quality. It defines six product quality characteristics

6 1 Introduction

Table 1.1 ISO 9126-Quality characteristics

Characteristic ~ Description
Functionality This indicates the extent to which the required functionality is available in the

software.

Reliability This indicates the extent to which the software is reliable.

Usability This indicates the extent to which the users of the software judge it to be easy to
use.

Efficiency This characteristic indicates the efficiency of the software

Maintainability This indicates the extent to which the software product is easy to modify and
maintain.

Portability This indicates the ease of transferring the software to a different environment.

(Table 1.1) which indicate the extent to which a software product may be judged to
be of a high quality.

The extent to which the software product exhibits these quality characteristics
will determine whether it will be rated as a high-quality product by customers.

1.3.2 Early Quality Management

In the middle ages a craftsman was responsible for the complete development of a
product from conception to delivery to the customer. This led to a strong sense of
pride in the quality of the product, and apprentices joined craftsmen to learn the
skills of the trade to become successful craftsmen themselves.

The industrial revolution led to a change to this traditional paradigm, and labour
became highly organized with workers responsible for a particular part of the
manufacturing process. The sense of ownership and the pride of workmanship in
the product were diluted, as workers were now responsible only for their portion of
the product, and not the product as a whole.

This led to a requirement for more stringent management practices, including
planning, organizing, implementation, and control. It inevitably led to a hierarchy
of labour with various functions identified, and a reporting structure for the various
functions. Supervisor controls were needed to ensure quality and productivity
issues were addressed.

1.3.3 Total Quality Management

Total quality management (TQM) is a modern approach to quality management,
and this management philosophy involves customer focus, process improvement,
developing a culture of quality within the organization and developing a measure-
ment and analysis program. It emphasizes that customers have rights and quality
expectations which should be satisfied, and that everyone in the organization is both
a customer and has customers.

1.3 Background to Software Quality 7

Itis a holistic approach and requires that all functions, in the organization follow
high standards. Quality needs to be built into the product by ensuring that quality is
addressed at every step in the process.

It involves defining internal and external customers, recognizing that internal
and external customers have rights and expectations, identifying the requirements
that they have, and meeting these first time and every time. It requires total
commitment from the top management, training all staff in quality management,
and ensuring that all staff participates in quality improvement. It requires that a
commitment to quality be instilled in all staff, and that the focus within the
organization change from fire fighting to fire prevention. Fire prevention involves
problem solving to address root causes of problems, and taking corrective action to
prevent re-occurrence.

1.3.4 Software Quality Control

Software quality control is concerned with activities to ensure that the end product
satisfies the functional and non-functional requirements and is fit for purpose. It
includes inspections and testing to verify that the deliverables produced satisfy their
requirements. Inspections typically consist of a formal review of a deliverable by
independent experts, and the objective is to identify defects within the work
product, and to provide confidence in its correctness. Software inspections are
discussed in a later chapter.

Inspections in a manufacturing environment are quite different in that they take
place at the end of the production cycle, and do not offer a mechanism to build
quality into the product. Instead, the defective products are removed from the batch
and reworked. There is a growing trend towards quality sampling at the early phases
of a manufacturing process to minimize reworking of defective products.

Software testing consists of “white box” or “black box” testing techniques, and the
testing activities include unit, system, performance, and acceptance testing. The
testing is quite methodical, and includes a comprehensive set of manual or automated
test cases. The verification and validation activities involve the execution of the
defined tests, and the correction of any failed or blocked tests. It may not always be
possible to do sufficient real world testing, and in some cases only limited simulation
testing may be possible. In these cases, the simulated environment will need to
resemble the real time environment closely to ensure the validity of the testing.

The cost of correction of a defect is directly related to the phase in which it is
detected in the lifecycle. Errors detected in phase are the least expensive to correct,
and defects detected out of phase become increasingly expensive to correct. The
most expensive defect is that detected by the customer, as its correction may require
changes to the requirements, design and code. Testing will be required as well as a
fix release for the customer. There is further overhead in project management,
configuration management, and in communication with the customer.

It is therefore highly desirable to capture defects as early as possible in the
software lifecycle, in order to minimize the effort required to re-work the defect.

8 1 Introduction

Modern software engineering places emphasis on defect prevention and in learning
lessons from the actual defects. This approach is adopted from manufacturing
environments, and consists of formal causal analysis meetings to brainstorm and
identify root causes of problems, and the corrective actions necessary to prevent
reoccurrence. The actions are then implemented and tracked to completion.

1.4 History of Quality

This section considers the ideas of several pioneers who have influenced the quality
field. These include Walter Shewhart, W. Edwards Deming, Joseph Juran, and
Philip Crosby. We also discuss the influence of Watts Humphrey who is considered
the father of software quality.

1.4.1 Shewhart

Walter Shewhart was a statistician at AT&T Bell Laboratories (or Western Electric
Co. as it was known in the 1920s). He is regarded as the founder of statistical process
control (SPC), which remains important today in monitoring and controlling a
process (Fig. 1.2). He developed a control chart which is a tool that can be used to
control the process, with upper and lower limits for process performance specified.
The process is under control if it is performing within these limits.

Shewhart’s ideas were later applied to the Capability Maturity Model (CMM) in
the late 1980s as a way to control key software processes, and statistical process
control plays an important role in process improvement. Deming and Juran worked
with Shewhart at Bell Labs in the 1920s.

The Shewhart model is a systematic approach to problem solving and process
control. It consists of four steps which are used for continuous process improve-
ment, and these are plan, do, check, act, and it is known as the “PDCA Model” or
Shewhart’s model (Fig. 1.3 and Table 1.2).

Shewhart argued that quality and productivity improve as process variability is
reduced. His influential book, The Economic control of quality of manufactured
product [58], was published in 1931, and outlines the methods of statistical process
control to reduce process variability. The book prophesized that productivity would
improve as process variability was reduced, and this was verified by Japanese
engineers in the 1950s.

This lead to a paradigm shift in quality at Japanese companies, and it led to
productivity improvements, increased market share, and led to Japanese companies
gaining global market share. Today, companies around the world recognize the
importance of placing quality at the heart of the organization.

1.4 History of Quality 9

Fig. 1.2 Shewhart’s control chart

Fig. 1.3 Shewhart’s PDCA
cycle

Table 1.2 Shewhart cycle

Step Description

Plan This step identifies an improvement opportunity and outlines the problem or process that
will be addressed.

Select the problem to be addressed.
Describe current process.
Identify the possible causes of the problem.
Find the root cause of problems.
Develop an action plan to correct the root cause.
Do This step involves carrying out the improvements and it may involve a pilot of the
proposed changes to the process.
Check This step involves checking the results obtained against the expected results to determine
their effectiveness.
Act This step includes the analysis of the results to adjust process performance to achieve the
desired results.

10 1 Introduction

Fig. 1.4 W.E. Deming

1.4.2 Deming

W. Edwards Deming (Fig. 1.4) was a major figure in the quality movement. He was
influenced by Shewhart’s work on statistical process control, and Deming’s ideas
on quality were adopted in post second world war Japan, and played an important
role in transforming Japan industry.

Deming argued that it is not sufficient for everyone in the organization to be
doing one’s best: instead, what is required is that there be a consistent purpose and
direction in the organization. That is, it is first necessary that people know what to
do, and there must be a constancy of purpose from all individuals to ensure success.

He argued that there is a very strong case for improving quality, as costs will
decrease due to less rework of defective products, and productivity will increase as
less time is spent in reworking. This will enable the company to increase its market
share, with better quality and lower prices, and to stay in business. Conversely,
companies which fail to address quality issues will lose market share, and go out of
business. Deming was highly critical of the then American approach to quality, and
the lack of vision of American management in quality management.

Deming’s influential book Out of the Crisis [15] proposed 14 principles to
transform the western style of management of an organization to a quality and
customer focused organization. The implementation of his approach helps an
organization to produce high-quality products. It includes:

» Constancy of purpose
¢ Quality built into the product
¢ Continuous improvement culture

Statistical process control is employed to minimize variability in process perfor-
mance, as variability in the process affects product quality. SPC involves the
analysis of control charts so that the cause of variability can be identified and
eliminated. Deming’s ideas are described in more detail in Table 1.3.

Deming argued that there are several diseases that afflict companies in the
western world that prevent them for achieving high quality results. The “five deadly
diseases” noted by Deming include (Table 1.4).

1.4 History of Quality 1

Table 1.3 Deming-14 step programme

Step
Constancy of
purpose

Adopt new
philosophy

Build quality in

Price and quality

Continuous
improvement

Institute training

Institute leadership

Eliminate fear

Eliminate barriers

Eliminate slogans

Eliminate numerical
quotas

Pride of work

Description

Companies face short-term and long-term problems. The problems of
tomorrow require long-term planning on new products, training, and
innovation. This requires resources invested in research and development
and continuous improvement of existing products and services.

Deming outlined the five deadly diseases which afflicted US companies.
These included lack of purpose and an excessive interest in short-term
profits.

Deming argued that performing mass inspections is equivalent to planning
for defects as they are too late to improve quality. Consequently, it is
necessary to improve the production process to build the quality into the
product.

Deming argued against the practice of awarding business on the basis of
price alone, as the price of a product or service is meaningless unless there
is an objective measure of the quality of the product or service being
purchased.

There must be continuous improvement in all areas, including
understanding customer requirements, design, manufacturing and test
methods.

The organization must be a learning organization and this involves setting
up a training program to educate management and staff about the company,
customer needs, and pride of workmanship in the products. Supervisors and
managers need training on the 14 point program to ensure they fully
understand the enhanced contribution that their staff can make if barriers to
good work are removed.

Deming argues that management is about leadership and not supervision.
Management should work to remove barriers, know the work domain in
depth, and seek innovative solutions to resolve quality and other relevant
issues.

The presence of fear is a barrier to an open discussion of problems and the
identification of solutions or changes to prevent problems from arising.
The objective here is to break down barriers between different departments
and groups. It is not enough for each group to optimize its own area:
instead, what is required is for the organization to be working as one team.
Deming argued that slogans do not help anyone to do a better job. Slogans
may potentially alienate staff or encourage cynicism. Deming criticized
slogans such as “Zero Defects” or “Do it right the first time” as
inappropriate, as how can it be made right first time if the production
machine is defective. Most problems are due to the system rather than the
person. A slogan is absolutely inappropriate unless there is a clearly defined
strategy to attain it, as otherwise the result is the opposite effect to that
intended.

Deming argued that quotas act as an impediment to improvement in
quality, as quotas are normally based on what may be achieved by the
average worker. People below the average cannot make the rate and the
result is dissatisfaction and turnover. Thus, there is a fundamental conflict
between quotas and pride of workmanship.

The intention here is to remove barriers that rob people of pride of
workmanship (e.g., machines out of order).

(continued)

12

1 Introduction

Table 1.3 (continued)

Step
Self improvement

Take action

Description

This involves encouraging education and self-improvement for everyone in
the company.

This requires that management agree on direction using the 14 principles,
communicate the reasons for changes to the staff, and train the staff on the
14 principles.

Table 1.4 Deming — Five deadly diseases

Disease

Lack of constancy of
purpose

Emphasis on short

Description

Management is too focused on short term thinking rather than long-term
improvements.

A company should aim to become the world’s most efficient provider of

term profit product/service. Profits will then follow.

Evaluation of Deming is against annual performance appraisal and rating
performance

Mobility of Mobility of management frequently has a negative impact on quality.
management

Excessive Excessive management by measurement.

measurement

Comment (Deming): Deming’s program has been quite influential and has many
sound points. His views on slogans in the workplace are in direct opposition to the
use of slogans like Crosby’s “Zero defects”. The key point for Deming is that a
slogan has no value unless there is a clear method to attain the particular goal
described by the slogan.

1.4.3 Juran

Joseph Juran (Fig. 1.5) was a major figure in the quality movement, and he argued
for a top down approach to quality. He defined quality as “fitness for use”, and he
argued that quality issues are the direct responsibility of management. Management
must ensure that quality is planned, controlled, and improved.

The trilogy of quality planning, control, and improvement is known as the
“Juran Trilogy” , and is usually described by a diagram with time on the horizontal
axis and the cost of poor quality on the vertical axis (Fig. 1.6).

Quality planning consists of setting quality goals, developing plans, and
identifying resources to meet the goals. Quality control consists of evaluating
performance, setting new goals, and taking action. Quality improvement consists
of improving delivery, eliminating wastage and improving customer satisfaction.
Juran’s10 step programme is defined in [33], and a summary is in Table 1.5.

Juran defined an approach to achieve a new quality performance level that is
termed “Breakthrough and Control”, It is described pictorially by a control chart

1.4 History of Quality 13

Fig. 1.5 Joseph Juran

Cost of Poor Quality (COPQ)

35
30 -
25 -
20 +
15 4 —4—Series1
10

5 |

0 - :
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 1.6 Cost of poor quality — % of sales

showing the old performance level with occasional spikes or random events; what is
needed is a breakthrough to a new and more consistent quality performance, i.e., a
new performance level with performance achieved at that level.

The example in Fig. 1.7 presents the breakthrough in developing a more accurate
estimation process. Initially the variation in estimation accuracy is quite large, but
as an improved estimation process is put in place, the control limits are narrowed
and more consistent estimation accuracy is achieved.

The breakthrough is achieved by a sustained and coordinated effort, and the old
performance standard becomes obsolete. The difference between the old and the

14

1 Introduction

Table 1.5 Juran’s ten step programme

Step
Identify customers

Determine customer

needs
Translate

Units of
measurement

Measurement
programme

Develop product

Optimize product
design
Develop process

Optimize process
capability
Transfer

Description

This includes the internal and external customers of an organization, e.g.,
the testing group is an internal customer and the end user of the software is
the external customer.

Customer needs are generally expressed in the language of the customer’s
organization. There is a need to elicit and determine the actual desired
requirements with further communication with the customer.

This involves translating the customer needs into the language of the
supplier.

This involves defining the measurement units to be used

This involves setting up a measurement program in the organization, and
includes internal and external measurements of quality and process
performance.

This step determines the product features to meet the needs of the
customer.

The intention is to optimize the design of the product to meet the needs of
the customer and supplier.

This involves developing processes which can produce the products to
satisfy the customer’s needs.

This involves optimizing the capability of the process to ensure that high
quality products are produced.

This involves transferring the process to normal product development
operations.

Estimation Accuracy Improvements

% Over or Under Estimate

Fig. 1.7 Estimation accuracy — Breakthrough and control

1.4 History of Quality 15

Table 1.6 Juran’s breakthrough and control

Step Description

Breakthrough in This involves developing a favourable attitude to quality improvement.
attitude

Pareto This involves identifying the key areas affecting quality

Organization This involves analysing the problem and coordinating a solution.

Control This is concerned with achieving performance at the new level.

Repeat This leads to continuous improvement with new performance levels set and

breakthroughs made to achieve the new performance levels.

new performance level is known as the “chronic disease” which must be diagnosed
and cured. His approach to breakthrough and control is (Table 1.6).

1.4.4 Crosby

Philip Crosby was a key figure in the quality movement, and his quality improve-
ment grid influenced the Capability Maturity Model (CMM) developed by the
Software Engineering Institute. His influential book Quality is Free [14] outlines
his philosophy of doing things right the first time, i.e., the zero defects
(ZD) program. Quality is defined as “conformance to the requirements” and he
argues that people have been conditioned to believe that error is inevitable.

Crosby argued that people in their personal lives do not accept this: for example, it
would not be acceptable for nurses to drop a certain percentage of newly born babies.
He further argues that the term “Acceptable Quality Level” (AQL) is a commitment
to produce imperfect material. Crosby notes that defects are due to two main reasons:
lack of knowledge or a lack of attention of the individual.

He argued that lack of knowledge can be measured and addressed by training,
but that lack of attention is a mind-set that requires a change of attitude by the
individual. The net effect of a successful implementation of a zero defects program
is higher productivity due to less reworking of defective products. Thus, quality, in
effect, is free.

Crosby’s approach to achieve the desired quality level of zero defects was to put
a quality improvement program in place. He outlined a 14 step quality improvement
program (Table 1.7). It requires management commitment to be successful, and an
organization-wide quality improvement team needs to be set up. A measurement
program is put in place to determine the status and cost of quality within the
organization. The cost of quality is then shared with the staff and corrective actions
are identified and implemented. The zero defect program is communicated to the
staff, and 1 day every year is made a zero defects day, and is used to emphasize the
importance of zero defects to the organization.

Crosby’s Quality Management Maturity Grid (Table 1.8) measures the maturity of
the current quality system with respect to several quality management categories, and
highlights areas which require improvement. Six categories of quality management

16 1 Introduction

Table 1.7 Crosby’s 14 step programme

Step Description

Management Management commitment and participation is essential for the success of

commitment the quality improvement program. The profile of quality is raised within the
organization

Quality This involves the formation of an organization-wide cross-functional team

improvement team consisting of representatives from each of the departments.

Quality The objective of quality measurements is to determine the status of quality

measurement in each area of the company and to identify areas where improvements are
required

Cost of quality The cost of quality is an indication of the financial cost of quality to the

evaluation organization. The cost is initially high, but as the quality improvement

becomes effective there is a reduction in the cost of quality.

Quality awareness ~ This involves sharing the cost of poor quality with staff, and motivating
staff to identify corrective actions to address quality issues.

Corrective action This involves resolving any problems which have been identified, and
bringing any problems which cannot be resolved to the attention of
management.

Zero defect program The next step is to communicate the meaning of zero defects to the
employees The key point is that it is not a motivation program: instead, it
means doing things right the first time, i.e., zero defects.

Supervisor training This requires that all supervisors and managers receive training on the
14 step quality improvement program

Zero defects day This involves setting aside 1 day each year to high-light zero defects, and its
importance to the company.

Goal setting This phase involves getting people to think in terms of goals and achieving
the goals

Error cause removal This phase identifies any roadblocks or problems which prevent employees
from performing error-free work.

The list is produced from the list of problems or road-blocks for each
employee.

Recognition This involves recognizing employees who make out-standing contributions
to quality improvement.

Quality councils This involves bringing quality professionals together on a regular basis to
share ideas on action.

Do it over again The principle of continuous improvement is a key part of the programme.
Improvement is continuous.

are considered: management understanding and attitude towards quality, quality
organization status, problem handling, the cost of quality, quality improvement
actions and summation of company quality posture.

Each category is rated on a 1-5 maturity scale and this indicates the maturity of
the particular category. Crosby’s maturity grid has been adapted and applied to the
CMM. The five levels are given in Table 1.8.

Comment (Crosby): Crosby’s program has been quite influential and his maturity
grid has been applied to the software CMM. The ZD part of the program is difficult to

1.4 History of Quality 17

Table 1.8 Crosby’s maturity grid

Level Name Description

1. Uncertainty: Management has no understanding of quality, and is likely to blame
quality problems on the quality department. Fire fighting is prevalent and
problems are fought as they occur. Root causes of problems are not
investigated, and there are few organized quality improvement activities.

2. Awakening: Management is beginning to recognize that quality management may be
of value, but is unwilling to devote time and money to it. Instead, the
emphasis is on appraisal rather than prevention. Teams are set up to
address major problems, but long-term solutions are rarely sought.

3. Enlightenment: Management is learning more about quality, and is becoming more
supportive of quality improvement. The quality department reports to
senior management, and implementation of the 14 step quality
improvement program is underway. There is a culture of openness where
problems are faced openly and resolved in an orderly way.

4. Wisdom: Management is fully participating in the program, and fully understands
the importance of quality management. All functions within the
organization are open to suggestions for improvement, and problems are
identified earlier. Defect prevention is now part of the culture.

5. Certainty: The whole organization is involved in continuous improvement

apply to the complex world of software development, where the complexities of the
systems to be developed are often the cause of defects rather than the mind-set of
software professionals (who are generally dedicated to quality). Slogans may be
dangerous and potentially unsuitable to some cultures and a zero defects day may
potentially have the effect of de-motivating staff.

1.4.5 Watts Humphrey

Watts Humphrey was an American software engineer and vice president of techni-
cal development at IBM. He made important contributions to the software engi-
neering field, and is considered the father of software quality. He dedicated much of
his career to addressing the problems of software development including schedule
delays, cost overruns, software quality and productivity (Fig. 1.8).

He was born in Michigan in 1927 and served in the US Navy and completed a
bachelor’s degree in physics at the University of Chicago in 1949. He obtained a
Master’s degree in physics from the Illinois Institute of Technology (IIT) and an
MBA from the University of Chicago.

He took a position with Sylvania in Boston in the early 1950s, and he became
manager of the circuit design group in the company. He recognized the importance
of planning and management early in his career, and he later made important
contributions to the management aspects of software development at IBM and the
Software Engineering Institute (SEI). He joined IBM in 1959 initially as a hardware
architect, but most of his IBM career was in management. He was eventually to
become a vice president of technical development, where he oversaw 4,000

18 1 Introduction

Fig. 1.8 Watts Humphrey
(Courtesy of Watts
Humphrey)

engineers in 15 development centres in over 7 countries. He was influenced by
others at IBM including Fred Brooks who was project manager of the IBM
360 project; Michael Fagan who developed the Fagan Inspection Methodology;
and Harlan Mills who developed the Cleanroom methodology. Humphries ran the
software quality and process group at IBM towards the end of his IBM career, and
became very interested in software quality.

He retired from IBM in 1986 and joined the newly formed SEI at Carnegie
Mellon University. He made a commitment to change the software engineering
world by developing sound management principles for the software industry. The
SEI has largely fulfilled this commitment, and it has played an important role in
enhancing the capability of software organizations throughout the world.

The SEI had a contract from the Department of Defence (DOD) to provide
guidance to the military in the selection of capable software subcontractors. This
evolved into the book “Managing the Software Process” [29] which describes
technical and managerial topics essential for good software engineering. The
book was influenced by the ideas of Deming and Juran in statistical process control.

Humphries established the software process programme at the SEI, and this led
to the development of the software Capability Maturity Model (CMM) and its
successors. Humphries asked questions such as:

— How good is the current software process?
— What must I do to improve it?
— Where do I start?

The CMM is a framework to help an organization to understand its current
process maturity, and to prioritize improvements. The SEI introduced software
process assessment and software capability evaluation methods, and these include
CBA/IPI and CBA/SCE. The CMM model and the associated assessment methods
were widely adopted by organizations around the world, and their successors are the
CMMI Model and the SCAMPI appraisal methodology.

Humphries focused his later efforts to developing the Personal Software Process
(PSP) and the Team Software Process (TSP). These are approaches that teach
engineers the skills they need to make and track plans, and to produce high-
quality software with zero defects. The PSP helps the individual engineer to collect

1.4 History of Quality 19

relevant data for statistical process control, whereas the TSP focuses on teams, and
the goal is to assist teams to understand and improve their current productivity and
quality of their work.

He received many awards for his contributions to the computing field. He was
named the first SEI fellow in 1995 in recognition of his outstanding contribution to
the software quality field. He received the 2003 National Medal in Technology
from President George Bush, and was named an ACM fellow in 2009 for his
outstanding contributions to computing and information technology. He was the
author of 12 books in the software engineering field. He died in 2010.

1.4.6 Miscellaneous Quality Gurus

There are several other important pioneers in the quality field including Shingo who
developed his own version of zero defects termed “Poka yoke” (or defects =0).
This involves identifying potential error sources in the process, and monitoring
these for errors. Causal analysis is performed on any errors found, and the root
causes are eliminated. This approach leads to the elimination of all errors likely to
occur, and thus only exceptional errors should occur. These exceptional errors and
their causes are then eliminated. The failure mode and effects analysis (FMEA)
methodology is a variant of this. Potential failures to the system or sub-system are
identified and analysed, and the causes and effects and probability of failure
documented.

Genichi Taguchi’s definition of quality is quite different. Quality is defined as
“the loss a product causes to society after being shipped, other than losses caused
by its intrinsic function” . Taguchi defines a loss function as a measure of the cost of
quality; L(x) = ¢(x — T)* + k. Taguchi also developed a method for determining the
optimum value of process variables which will minimize the variation in a process
while keeping a process mean on target.

Kaoru Ishikawa is well known for his work in quality control circles (QCC).
A quality control circle is a small group of employees who do similar work, and meet
regularly to identify and analyse work-related problems. This involves brainstorming,
recommending and implementing solutions. The problem solving tools employed
include pareto analysis, fishbone diagrams, histograms, scatter diagrams, and con-
trol charts. A facilitator will train the quality circle team leaders, and the activities in
a quality circle include:

« Select problem

« State and re-state problem
» Collect facts

¢ Brain-storm

¢ Build on each other’s ideas
* Choose course of action

« Presentation

Armand Feigenbaum is well known for this work in total quality control which
concerns quality assurance applied to all functions in the organization. It is distinct

20 1 Introduction

from total quality management: total quality control is concerned with controlling
quality throughout, whereas TQM embodies a philosophy of quality management
and improvement involving all staff and functions throughout the organization.

1.5 Modern Software Quality Management

The cost of correction of a defect increases the later that it is detected in the life
cycle. Consequently, it is desirable to detect an error as early as possible and
preferably within the phase in which it was created. This involves setting up a
software quality infrastructure to assist in error detection within the phase in which
the defect is created or at worst to detect the defect shortly after it exits the
particular phase. The development of high quality software requires a good soft-
ware development process to be in place, and this includes best practices in
software engineering for:
» Project management
¢ Estimation methodology
» Risk management process.
¢ Requirements Development and Management
¢ Design and Development
* Software development lifecycles
¢ Quality assurance/management
» Software inspections
* Software testing
» Supplier Selection and Management
¢ Configuration management
« Customer satisfaction process
» Continuous improvement

Mature software organizations are learning organizations and the goal is to learn
from defects to prevent their re-occurrence. Software inspections play a key role in
detecting defects in-phase, and they are discussed in the next section.

1.5.1 Software Inspections

The Fagan Inspection process was developed by Michael Fagan of IBM [20], and it
aims to identify and remove errors in work products. There is a strong economic
case for identifying defects as early as possible, as the cost of correction of a defect
increases the later that it is discovered. The process mandates that requirement
documents, design documents, source code, and test plans all be formally inspected
by experts independent of the author of the deliverable.

There are various roles defined in the process including the moderator who
chairs the inspection. The moderator ensures that all of the inspectors are trained
and receive the appropriate materials for the inspection. S/he ensures that sufficient
preparation is done, and that the speed of the inspection does not exceed the

1.5 Modern Software Quality Management 21

recommended guidelines. The reader reads or paraphrases the particular deliverable;
the author is the creator of the deliverable and has a special interest in ensuring that it
is correct. The fester role is concerned with the test viewpoint.

The inspection process will consider whether the design is correct with respect to
the requirements, and whether the source code is correct with respect to the design.
The errors identified are classified into various types and the data are generally
recorded to enable analysis to be performed on the most common types of errors.
The analysis will yield actions to be performed to minimize the re-occurrence of the
most common defect types. Software inspections are described in more detail in
Chap. 6.

1.5.2 Software Testing

Software testing plays a key role in verifying that the software is fit for purpose, and
two key types of software testing are black box and white box testing. White box
testing involves checking that every path in a module has been tested, and involves
defining and executing test cases to ensure code and branch coverage. The goal of
black box testing is to verify the functionality of a module or feature or the complete
system itself. Testing is both a constructive activity in that it is verifying the
correctness of functionality, and it may be a destructive activity in that the objective
is to find defects in the implemented software. Testing verifies that the requirements
are correctly implemented, and it yields the presence or absence of defects.

The test cases are reviewed by independent experts to ensure that they are
sufficient to verify the correctness of the software. There are various types of
testing including, unit, system, performance and usability testing. The effectiveness
of the testing is influenced by the maturity of the test process employed. Testing is
described in more detail in Chap. 7.

1.5.3 Software Quality Assurance

The IEEE definition of software quality assurance is “the planned and systematic
pattern of all actions necessary to provide adequate confidence that the software
performs to established technical requirements” [41]. The software quality assur-
ance department provides visibility into the quality of the work products being
built, and the processes being used to create them. The quality assurance group may
be just one person operating part time or it may be a team of quality engineers. The
activities of the quality assurance group typically include software testing activities
to verify the correctness of the software, and also quality audits of the various
groups involved in software development. This section discusses the role of an
independent quality assurance group.

The quality group promotes quality in the organization and is independent of the
development group. It provides an independent assessment of the quality of the
product being built, and this viewpoint is independent of the project manager and

http://dx.doi.org/10.1007/978-3-319-06106-1_6
http://dx.doi.org/10.1007/978-3-319-06106-1_7

22 1 Introduction

development viewpoint. The quality assurance group acts as the voice of the
customer, and aims to ensure that quality is considered at each step in the process.

The quality group will perform audits of various projects, groups and departments,
and will determine the extent to which the process is followed and report any
weaknesses in the processes and non-compliances identified. The quality group will
usually have a reporting channel to senior management, and any non-compliance
issues which are not addressed at the project level may be escalated to the next level
of management for resolution. The key responsibilities of the quality assurance group
are:

* Promotes quality in organization

e Customer Advocate

» Conducts audits to verify Compliance

» Reports audit results to management

« Provides visibility to Management on processes followed
« Facilitates software process improvement

* Release sign-offs

The quality audit provides visibility into the work products and processes used to
develop the work products. The audit consists of an interview with the project team,
and the auditor examines the processes followed and deliverables produced by each
team member, considers any issues which have arisen during the work, and assesses
if there are any quality risks associated with the project based on the information
provided.

The auditor needs good written and verbal communication skills, and gathers
information via open and closed questions. S/he will need to observe behaviour and
body language and be able to deal effectively with any resistance. The auditor will
consider the role that the participant is performing, and relate this to the defined
process for their area. The entry and exit criteria to the defined processes are
generally examined to verify that the criteria have been satisfied at the various
milestones. The auditor writes a report detailing the findings from the audit and the
recommended corrective actions with respect to any identified non-compliance to
the defined procedures. S/he will perform follow-up activity at a later stage to verify
that the corrective actions have been carried out. The audit activities include
planning activities, the audit meeting, gathering data, reporting the findings and
assigning actions, and following the actions through to closure. The audit process is
described in more detail Chap. 9.

1.5.4 Problem Solving Techniques

There is a relationship between the quality of the process and the quality of the
products built from the process. The defects identified during testing are very
valuable in that they enable the organization to learn and improve from the defect.
Defects are often caused by the incorrect execution of a process, or due to a defect
in the process itself. Consequently, the lessons learned from a particular defect
should be used to correct systemic defects in the process.

http://dx.doi.org/10.1007/978-3-319-06106-1_9

1.5 Modern Software Quality Management 23

Problem-solving teams are formed to analyse various problems and to identify
corrective actions. They agree on the problem to be solved, the collection and
analysis of the facts, and determine the appropriate solution to solve the problem.
There are various tools to assist problem solving and these include fishbone
diagrams, histograms, trend charts, pareto diagrams, and bar charts. Problem
solving is discussed in detail in Chap. 10.

1.5.4.1 Fishbone Diagrams

This well-known cause-and-effect diagram is in the shape of the backbone of a fish.
The approach is to identify the possible causes of some particular quality effect.
These may include people, materials, methods, and timing. Each of the main causes
may then be broken down into sub-causes. The root cause is then identified, as often
80 % of problems are due to 20 % of causes (the 80:20 rule).

1.5.4.2 Histograms

A histogram is a way of representing data via a frequency distribution in bar chart
format, and it is a graphical representation of the underlying distribution of the data.
It illustrates the shape, variation, and centring of the underlying distribution. The
data is divided into a number of buckets, where a bucket is a particular range of data
values, and the relative frequency of each bucket is displayed in bar format. The
shape of the process and its spread from the mean is evident from the histogram.

1.5.4.3 Pareto Chart

The objective of a pareto chart is to identify the key problems and to focus on these.
Problems are classified into various types or categories, and the frequency of each
category of problem is then determined. The chart is displayed in a descending
sequence of frequency, with the most significant category detailed first, and the
least significant category detailed last. The success in problem-solving activities
over a period of time may be judged from the trends in the pareto chart, and if
problem solving activities are successful, then the key problem categories in the old
chart should show a noticeable improvement in the new pareto chart.

1.5.4.4 Trend Graph
A trend graph is a graph of a variable over time and is a study of observed data for
trends or patterns over time.

1.5.4.5 Scatter Graphs

The scatter diagram is used to measure the relationship between variables, and to
determine whether there is a correlation between the variables. The results may be a
positive correlation, negative correlation or no correlation between the data. The
scatter diagram provides a means to confirm a hypothesis that two variables are
related, and provides a visual means to illustrate the potential relationship.

http://dx.doi.org/10.1007/978-3-319-06106-1_10

24 1 Introduction

Table 1.9 Cost of quality categories

Type of cost Description
Cost external This includes the cost of external failure and includes engineering repair,
warranties, and a customer support function

Cost internal This includes the internal failure cost and includes the cost of reworking and
re-testing of any defects found internally.

Cost This includes the cost of maintaining a quality system to prevent the occurrence of

prevention problems, and includes the cost of software quality assurance, the cost of training,
etc.

Cost This includes the cost of verifying the conformance of a product to the

appraisal requirements and includes the cost of provision of software inspections and testing
processes.

1.5.4.6 Failure Mode Effect Analysis
This involves identifying all of the possible failures of the system, and the impact of
each failure. Each possible failure mode is documented, as well as the impact of
failure, the cause of failure, the frequency of occurrence, its severity, the estimate
of detection of the failure, the risk and corrective action to minimize the risk.
FMEAs are usually applied at the design stage.

The problem solving techniques discussed here are tools for the teams to analyse
and identify corrective actions. Problem-solving teams may be formed to solve a
particular problem, and the team may be disbanded after successful resolution.

1.5.5 Cost of Quality

Crosby argued that the most meaningful measurement of quality is the cost of quality,
and the emphasis on the improvement activities in the organization is therefore to
reduce the cost of poor quality (COPQ). The cost of quality includes the cost of
external and internal failure, the cost of providing an infrastructure to prevent the
occurrence of problems, and the cost of the infrastructure to verify the correctness of
the product. The cost of quality was divided into four subcategories (Table 1.9) by
Feigenbaum in the 1950s, and evolved further by James Harrington of IBM.

The cost of quality graph (Fig. 1.9) will initially show high external and internal
costs and very low prevention costs, and the total quality costs will be high.
However, as an effective quality system is put in place and becomes fully opera-
tional there will be a noticeable decrease in the external and internal cost of quality,
and a gradual increase in the cost of prevention and appraisal. The total cost of
quality will substantially decrease, as the cost of provision of the quality system is
substantially below the savings gained from lower cost of internal and external
failure. The COPQ curve will indicate where the organization is in relation to the
cost of poor quality, and the organization will need to derive a plan to achieve the
desired results to minimize the cost of poor quality.

1.5 Modern Software Quality Management 25

Cost of Quality

35
30
25 — = External
20 —i—|nternal
15 ==i==Prevention
= Appraisal
10 pPp
=je=Total
5
0 | a r pris

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 1.9 Cost of quality

1.5.6 Software Process Improvement

Software process improvement initiatives support the organization in achieving its
key business goals such as delivering software faster to the market, improving
quality, reducing or eliminating waste. The objective is to work smarter and to build
software better, faster, and cheaper than competitors. It makes business sense and
provides a tangible return on investment.

An improvement program is a project in its own right and needs to be managed
as such. Model based approaches to process improvement involve using models
such as the CMM, CMMI, ISO 9000, PSP or TSP. A maturity model provides a set
of best practices in software engineering, and an internal or external assessment of
the organization against the model will yield the current strengths and weaknesses
of the organization with respect to the model. The organization needs to prioritize
the improvements which will give the greatest business gain.

The employees of the company are, in effect, the owners of the process infrastruc-
ture within the organization, as they work with the processes and procedures on a
daily basis, and have an interest in having the best possible processes and templates
for the organization. A good improvement program will empower employees to make
suggestions for continuous improvement, and a reward and recognition mechanism
helps to make process improvement part of the organization culture.

Improvement tends to be most successful when performed in small steps rather
than trying to do too much initially. It is generally easier for an organization to
adjust to a series of small changes rather than one big major change. Changes within

26 1 Introduction

an organization need to be carefully planned and controlled. Training for the
existing employees may be required to ensure that they fully understand the
rationale for the proposed changes and are in a position to implement the proposed
changes in the organization.

1.5.7 Software Metrics

The use of measurement is an integral part of science and engineering disciplines,
and software measures are increasingly used in software engineering. The term
“software metric” was coined by Tom Gilb in his influential book on software
measurement [23]. The purpose of measurement in software engineering is to
provide an objective indication of the effectiveness of the organization in achieving
its key goals and objectives.

There is, of course, no point in measuring for the sake of measuring itself and care
is required to ensure that the measurements to be made are closely related to an
organization particular goal. The well-known approach of Goal, Question, Metric
(GQM) suggests that the organization first needs to identify the key goals which it is
trying to achieve; then it identifies relevant questions which need to be answered to
assess the extent to which the goal is being satisfied, and then to formulate a metric to
give an objective answer to the particular question. This approach was formulated by
Victor Basilli and others, and is described in [2].

The use of measurement is invaluable in determining whether an organization
has actually improved, as actual quantitative data before and after the improvement
initiative can be compared and used to determine the extent of the improvements.
The initial measurements prior to the improvement program serve as the baseline
measurement, and these indicate the current capability and results of the organiza-
tion. A successful improvement programs will lead to improvements, and this will
be reflected in the metrics. The implementation of metrics involves:

* Business goals

* Questions related to goals
* Metrics

¢ Data gathering

« Presentation of charts

e Trends

e Action plans

Software metrics are discussed in Chap. 10, and the chapter includes a collection of
sample metrics for the various functional areas in the organization. The metrics are
only as good as the underlying data, and data gathering is a key part of a metrics
program.

1.5.8 Customer Satisfaction

The effectiveness of the quality management system in delivering high-quality
software will ultimately be judged by the customer, and the level of customer

http://dx.doi.org/10.1007/978-3-319-06106-1_10

1.5 Modern Software Quality Management 27

Fig. 1.10 Customer - =
satisfaction process Customer Satisfaction Surveys

|

Execute Plan

satisfaction will determine whether the customer will purchase again from the
company, or recommend the company. Consumer research and customer satisfaction
surveys are used to determine the level of customer satisfaction with the company.

A customer satisfaction survey involves the customer rating the organization in
several key areas such as the quality of the software, its reliability, the timeliness of
the project, and so on. The customer satisfaction process takes the form of a closed
feedback loop, and the customer satisfaction feedback will be analysed and acted
upon appropriately.

The customer satisfaction survey is conducted, and the feedback analysed and
used to prepare the action plan. The actions are executed and the customer is
surveyed again at later date (Fig. 1.10). The follow up activity may involve a
telephone conversation with the customer or a visit to the customer to discuss the
specific issues. The issues are shared with engineering groups as appropriate. The
objective is to ensure that customers are totally satisfied with the product and
service, and a loyal customer will re-purchase and recommend the company to
other potential customers.

The customer satisfaction process is summarized as follows:

» Define customer surveys

¢ Send customer surveys

» Customer Satisfaction Ratings

» Customer meeting and key issues
e Action plans and follow-up

e Metrics for customer satisfaction

The definition of the questionnaire will vary depending on the nature of the
business. It is essential that the questionnaire is usable, and covers the relevant
questions to determine where the organization is weak (and in need of improve-
ment), and also to identify areas where it is strong. The questions typically employ a
rating scheme to allow the customer to give quantitative feedback on satisfaction,
and the survey will also enable the customer to go into more detail on issues.

28

1 Introduction

Table 1.10 Sample customer satisfaction questionnaire

No /Question Unacceptable Poor Fair Satisfied Excellent N/A
1. Quality of software O O O O O O
2. Ability to meet agreed dates O O O O O O
3. Timeliness of projects O O O O O O
4. Effective testing of software O O O O O O
5. Expertise of staff O O O O O O
6. Value for money O O O O O O
7. Quality of support O O O O O O
8. Ease of installation m| m] | m] O m|
9. Ease of use O [} O O O O
10. Timely problem resolution O O O O O O
Customer Satisfaction Metrics
10

5 ® Quality of Software

g _ - H Meet Agreed Dates

7 . Timeliness

6 - Effective Testing

S m Expertise of Staff

4 1 B Value for Money

3 = Support Provided

2 W Ease of Installation

1 1 -

Ease of use
0 |

Fig. 1.11 Customer satisfaction metrics

Software companies will be interested in the customer’s perception of the quality
of software, reliability, usability, timeliness of delivery, value for money, etc., and a
sample survey form is included in Table 1.10. This includes ten questions and may
be expanded as appropriate. A survey form will typically include open-ended
questions to enable the customer to give feedback in more detail.

Customer satisfaction metrics provide visibility into the level of customer
satisfaction with the software company, and enable trends to be determined. A
sample customer satisfaction metric is provided in Fig. 1.11, and it provides a
quantitative understanding of the level of customer satisfaction with the company.

1.5 Modern Software Quality Management 29

1.5.9 Assessments (Appraisals)

The objective of an assessment (or appraisal) of an organization is to determine its
maturity with respect to a maturity model such as the CMMI or SPICE, or against
an international quality standard such as ISO 9000:2000.

The appraisal is performed by an external or internal assessment team, and yields
the strengths and weaknesses of the organization with respect to the model. The
appraisal report is used to plan and prioritize future improvements.

The appraisal is a major review of the organization and it needs to be carefully
planned. The assessment team needs sufficient expertise and experience, and the
appraisal may take 1-2 weeks. It involves interviews with the project managers and
project teams as well as the review of relevant documentation. The assessment
report will detail the extent to which the model is implemented, and any gaps and
improvement opportunities are highlighted in the report.

The SCAMPI methodology is used for CMMI appraisals, and it is discussed in
Chap. 15.

1.5.10 Total Quality Management

Total quality management (TQM) is a management philosophy to focus attention
on quality and to develop a culture of quality within the organization. Quality is a
company-wide objective, and the organization goal is total customer satisfaction.
The organization aims to deliver products and services that totally satisfy the
customer needs. It is a holistic approach and it applies to all levels and functions
within the organization.

TQM employs many of the ideas of the pioneers in the quality movement.
Management are required to take charge of the implementation of quality manage-
ment, and all staff will need to be trained in quality improvement activities.

The implementation of TQM involves a focus on all areas within the organiza-
tion, and in identifying areas for improvement. The problems in the particular area
are evaluated and data is collected and analysed. An action plan is then derived and
the actions implemented and monitored. This is then repeated for continuous
improvement. The implementation is summarized as follows:
¢ Identify improvement area
» Problem evaluation
» Data collection
¢ Data analysis
¢ Action plan
« Implementation of actions
* Monitor effectiveness
¢ Repeat
There are four main parts of TQM (Table 1.11).

http://dx.doi.org/10.1007/978-3-319-06106-1_15

30 1 Introduction

Table 1.11 Total quality management

Part Description

Customer focus This involves identifying internal and external customers and recognizing
that all customers have expectations and rights which need to be satisfied
first time and every time. Quality must be considered in every aspect of the
business, and the focus is on fire prevention.

Process This involves a focus on the process and improvement to the process via
problem solving. The improvements will reduce waste and eliminate error.

Measurement and This involves setting up a measurement program within the organization to

analysis enable objective and effective analysis of the quality of the process and
product
Human factors This involves developing a culture of quality and customer satisfaction

throughout the organization. The core values of quality and customer
satisfaction need to be instilled in the organization. This requires training
for the employees on quality, customer satisfaction, and continuous
improvement.

The ISO 9000 standard (see Chap. 11) is a structured approach to the implemen-
tation of TQM. Its clauses are guidelines for what needs to be done, and include
requirements to be satisfied for the organization to satisfy ISO 9000.

1.6 Miscellaneous

Software quality management is, in many ways, the application of common sense to
software engineering. It makes sense to plan and track a project, identify potential
risks early and attempt to eliminate or reduce their impact; determine the
requirements, produce a design, review the design and development activities for
correctness. It is sensible to test the software against the requirements, to record any
problems identified, and to correct them. It is sensible to have objective criteria to
determine if the software is ready to be released to the customer, and to learn any
lessons from the project and to survey customers to obtain valuable feedback.

1.6.1 Organization Culture and Change

Every organization has a distinct culture and this reflects the way in which things
are done in the company. Organization culture includes the ethos of the organiza-
tion, its core values, its history, its success stories, its people, amusing incidents,
and so on. The culture of the organization may be favourable or unfavourable to
developing high-quality software.

Occasionally a change to the organization culture is required, and this may be
difficult as it could involve changing its fundamental approach to software devel-
opment, and there may be a resistance to this. Successful change management often
involves the following:

» Kick-off meeting
e Motivate rationale for changes

http://dx.doi.org/10.1007/978-3-319-06106-1_11

1.6 Miscellaneous 31

* Present plan
e Training
* Implement changes
¢ Monitor implementation
 Institutionalize

The culture of an organization is often illustrated by the phrase: “That’s the way
we do things around here” . For example, the evolution from one level of the CMM
to another often involves a change the way that things are done in the organization.
The focus on prevention requires a change in mind-set to focus on problem solving
and fire prevention, rather than on fire fighting.

1.6.2 Law of Negligence

The impact of a flaw in software may be catastrophic, and several software failures
were discussed earlier in this chapter. Clearly, every organization must take all
reasonable precautions to prevent the occurrence of defects, especially in the safety
critical domain where defects may cause major damage or even loss of life. Reason-
able precautions consist of having appropriate software engineering practices in place
to allow the organization to consistently produce high quality software.

A quality management system indicates that the organization takes software
quality seriously. The objective of the quality management system is to put a sound
software development process in place that serves the needs of the organization and
its customers. Modem quality assurance systems include processes for software
inspections, testing, quality audits, customer satisfaction, software development,
project planning, etc.

The organization will require evidence or records to prove that the quality
management system is in place, that it is appropriate for the organization, and
that it is fully operational within the organization. The proof that the quality system
is actually operational typically takes the form of records of the various activities.
The records also enable the organization to prepare a legal defence to show that it
took all reasonable precautions in software development, especially if a customer
decides to take legal action for negligence against the software provider following a
serious problem in the software at the customer environment.

The presence of records may be used to indicate that all reasonable steps were
taken, and the records typically include lists of all the deliverables in the project;
minutes of project meetings; records of reviews of requirements, design, and
software code, records of test plans and test results; and so on.

1.6.3 Quality and the WEB

The explosive growth of the World Wide Web and electronic commerce has made
the quality of web sites a key concern. Web technology is rapidly becoming
ubiquitous in society, and is quite distinct from other software systems in that:

32 1 Introduction

¢ It may be accessed from anywhere in the world.

¢ It may be accessed by many different browsers.

e The usability and look and feel of the application is a key concern.

e The performance of the web site is a key concern.

* Security is a key concern.

¢ The web site must be capable of dealing with a large number of transactions at
any time.

« The web site has very strict availability constraints (typically 24 x 365).

« The web site needs to be highly reliable.

It is inappropriate to employ the waterfall lifecycle for this domain, and usually a
spiral lifecycle will be employed as the requirements are often incomplete at project
initiation and evolve to the agreed set during the project. Often, Rapid Application
Development (RAD) or Joint Application Development (JAD) lifecycle are employed.

1.7 Review Questions

—_

Discuss the contributions of Deming and Juran.

2. Describe Crosby’s maturity grid and discuss how it influenced the Capa-
bility Maturity Model?

3. Explain why Watts Humphrey is considered the father of software quality.

Explain the difference between software inspections and testing?

5. What is an assessment (appraisal) and explain how it forms part of the

improvement cycle.

Explain the importance of the cost of poor quality.

Discuss the importance of software metrics in problem solving.

8. Explain the importance of customer satisfaction and describe how it may

be measured.

g

)

1.8 Summary

This chapter provided a short introduction to the software quality field, and the
discussion covered the contributions of various pioneers such as Shewhart, Deming,
Juran and Crosby. The contributions of Watts Humphrey, who is considered the
father of software quality, were also discussed.

We examined various definitions of quality such as Crosby’s “conformance to
the requirements” and Juran’s “fitness for purpose”, as well as considering the
various dimensions of software product quality listed in ISO 9126.

We considered various software failures such as the Ariane 5 disaster, the year
2000 problem, and a maths bug in the Intel microprocessor in the mid-1990s. A
software failure may lead to loss of life, a telecoms outage, the loss of a rocket and
its satellite cargo, and the loss of credibility of the company. Consequently, there is
a strong economic case to consistently develop high-quality software.

1.8 Summary 33

We discussed modern software quality management including software inspections
that are used to build quality into the software; software testing to verify that the
software is of high quality as well as finding defects in the software; software quality
assurance to provide visibility into the processes and the extent to which they are
followed; problem solving techniques to prevent problems from re-occurring; the cost
of poor quality to the organization; software process improvement to improve the key
processes in the organization; and customer satisfaction to determine the level of
customer satisfaction with the organization.

Key Topics

Standish Chaos Report
Software Lifecycles
Waterfall Model

Spiral Model

Rational Unified Process
Agile Development
Software Inspections
Software Testing
Project Management

2.1 Introduction

The approach to software development in the 1950s and 1960s has been described
as the “Mongolian Hordes Approach” by Ince and Andrews [30]. The “method” or
lack of method was characterized by:

The completed code will always be full of defects.

The coding should be finished quickly to correct these defects.

Design as you code approach.

This philosophy accepted defeat in software development, and suggested that
irrespective of a solid engineering approach, that the completed software would
always contain lots of defects, and that it therefore made sense to code as quickly as
possible, and to then identify the defects that would be present, so as to correct them
as soon as possible.

G. O’Regan, Introduction to Software Quality, Undergraduate Topics 35
in Computer Science, DOI 10.1007/978-3-319-06106-1_2,
© Springer International Publishing Switzerland 2014

36 2 Software Engineering

In the late 1960s it was clear that the existing approaches to software development
were deeply flawed, and that there was an urgent need for change. The NATO
Science Committee organized two famous conferences to discuss critical issues in
software development [12], with the first conference held at Garmisch, Germany, in
1968, and it was followed by a second conference in Rome in 1969.

Over 50 people from 11 countries attended the Garmisch conference, including
Edsger Djkstra, who did important theoretical work on formal specification and
verification. The NATO conferences highlighted problems that existed in the
software sector in the late 1960s, and the term “software crisis” was coined to
refer to these problems. These included budget and schedule overruns, as well as
problems with the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its own
right, and the realization that programming is quite distinct from science and
mathematics. Programmers are like engineers in that they build software products,
and they therefore need education in traditional engineering as well as the latest
technologies. The education of a classical engineer includes product design and
mathematics. However, often computer science education places an emphasis on
the latest technologies rather than the important engineering foundations of design-
ing and building high-quality products that are safe for the public to use.

Programmers therefore need to learn the key engineering skills to enable them to
build products that are safe for the public to use. This includes a solid foundation
on design and the mathematics required for building safe software products.
Mathematics plays a key role in engineering and may assist software engineers in
the delivery of high-quality software products. Several mathematical approaches to
assist software engineers are described in [48].

There are parallels between the software crisis in the late 1960s, and serious
problems with bridge construction in the nineteenth century. Several bridges
collapsed or were delivered late or over-budget due to the fact that people involved
in their design and construction did not have the required engineering knowledge.
This led to bridges that were inadequately designed and constructed, leading to their
collapse with the loss of life and endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practicing as engineers. This organization identified
a core body of knowledge that the engineer is required to possess, and the licensing
body verifies that the engineer has the required qualifications and experience. This
helps to ensure that only personnel competent to design and build products actually
do so. Engineers have a professional responsibility to ensure that the products are
properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 2.1) on the extent of problems
with IT projects since the mid-1990s. These studies were conducted in the United
States, but there is no reason to believe that European or Asian companies perform
any better. The results indicate serious problems with on-time delivery of projects
or projects being cancelled prior to completion.! However, the comparison between

"These are IT projects covering diverse sectors including banking, telecommunications, etc.,
rather than pure software companies. Software companies following maturity frameworks such
as the CMMI generally achieve more consistent project, and the CMMI focuses on the manage-
ment side of software engineering.

2.1 Introduction 37

Standish Research on IT Projects
60

50 -

40 -
1995
| 2009

30
20 -

10

Successful Challenged Cancelled

Fig. 2.1 Standish report — Results of 1995 and 2009 survey

1995 and 2009 suggests that there have been some improvements with a greater
percentage of projects being delivered successfully, and a reduction in the percen-
tage of projects being cancelled.

Fred Brooks argues that software is inherently complex, and that there is no silver
bullet that will resolve all of the problems associated with software development
such as schedule or budget overruns [10, 11]. Problems with poor software quality
can lead to software flaws that may seriously impact the work of an organization or
even loss of life. It is therefore essential that software development organizations
place sufficient emphasis on quality throughout the software development lifecycle.

The Y2K problem was caused by a two digit representation of dates, and it
required major rework of legacy software for the new millennium. Clearly, well-
designed programs would have hidden the representation of the date, and would
have required minimal changes for year 2000 compliance. Instead, companies spent
vast sums of money to rectify the problem.

The quality of software produced by some companies is impressive.” These
companies employ mature software processes, and are committed to continuous
improvement. Today, there is a lot of industrial interest in software process maturity
models for software organizations, and various approaches to assess and mature
software companies are described in [47, 49].> These models focus on improving

21 recall projects at Motorola that regularly achieved 5.60-quality in a L4 CMM environment
(i.e., approx. 20 defects per million lines of code. This represents very high quality).
3Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and
organizational practices required in software engineering. The emphasis is on defining software
processes that are fit for purpose and consistently following them. The process maturity models
focus on what needs to be done rather how it should be done. This gives the organization the
freedom to choose the appropriate implementation to meet its needs. The models provide useful
information on practices to consider in the implementation.

38 2 Software Engineering

the effectiveness of the management, engineering and organization practices related
to software engineering, and in introducing best practice in software engineering.
The disciplined use of the mature software processes by the software engineers
enables high-quality software to be consistently produced.

2.2 What Is Software Engineering?

Software engineering involves the multi-person construction of multi-version
programs. The IEEE 610.12 definition of Software Engineering is:

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software, and the study of such approaches.

Software engineering includes:

1. Methodologies to design, develop, and test software to meet customers’ needs.

2. Software is engineered. That is, the software products are properly designed,

developed, and tested in accordance with engineering principles.

. Quality and safety are properly addressed.

4. Mathematics may be employed to assist with the design and verification of
software products. The level of mathematics employed will depend on the safety
critical nature of the product. Systematic peer reviews and rigorous testing will
often be sufficient to build quality into the software, with heavy mathematical
techniques reserved for safety and security critical software.

5. Sound project management and quality management practices are employed.

6. Support and maintenance of the software is properly addressed.

Software engineering is not just programming. It requires the engineer to state
precisely the requirements that the software product is to satisfy, and then to produce
designs that will meet these requirements. The project needs to be planned and
delivered on time and budget. The requirements must provide a precise description
of the problem to be solved: i.e., it should be evident from the requirements what
is and what is not required. The requirements need to be rigorously reviewed to
ensure that they are stated clearly and unambiguously and are exactly what the
customer wants. The next step is then to create the design that will solve the problem,
and it is essential to validate the correctness of the design. Next, the software to
implement the design is written, and peer reviews and software testing are employed
to verify and validate the correctness of the software.

The verification and validation of the design is rigorously performed for safety
critical systems, and it is sometimes appropriate to employ mathematical tech-
niques for these systems. However, it will usually be sufficient to employ peer
reviews or software inspections as these methodologies provide a high degree of
rigour. This may include approaches such as Fagan inspections [20], Gilb inspec-
tions [24], or Prince 2’s approach to quality reviews [51].

The term “engineer” is a title that is awarded on merit in classical engineering.
It is generally applied only to people who have attained the necessary education

(O8]

2.2 What Is Software Engineering? 39

and competence to be called engineers, and who base their practice on classical
engineering principles. The title places responsibilities on its holder such as to
behave professionally and ethically. Often in computer science the term “software
engineer” is employed loosely to refer to anyone who builds things, rather than to
an individual with a core set of knowledge, experience, and competence.

Several computer scientists (such as Parnas*) have argued that computer scientists
should be educated as engineers to enable them to apply appropriate scientific
principles to their work. They argue that computer scientists should receive a solid
foundation in mathematics and design, to enable them to have the professional
competence to perform as engineers in building high-quality products that are safe
for the public to use. The use of mathematics is an integral part of the engineer’s work
in other engineering disciplines, and so the software engineer should be able to use
mathematics to assist in the modelling or understanding of the behaviour or properties
of a proposed software system.

Software engineers need education® on specification, design, turning designs
into programs, software inspections, and testing. The education should enable the
software engineer to produce well-structured programs that are fit for purpose.

Parnas has argued that software engineers have responsibilities as professional
engineers.® They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their decisions
and actions,” and have a responsibility to object to decisions that violate professional

*Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques to software development.
He also introduced information hiding in the 1970s which is now a part of object-oriented
development.

5 Software Companies that are following approaches such as the CMM or ISO 9001 consider
the education and qualification of staff prior to assigning staff to performing specific tasks.
The appropriate qualifications and experience for the specific role are considered prior to
appointing a person to carry out the role. Many companies are committed to the education and
continuous development of their staff, and on introducing best practice in software engineering
into their organization..

The concept of accountability was used by the ancient Babylonians, and they employed a code of
laws (known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house
collapsed and killed the owner then the builder of the house would be executed.

"However, it is unlikely that an individual programmer would be subject to litigation in the case of
a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility
for problems rather than a guarantee of quality accompany most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and it
would be potentially difficult for an outside party to prove that the cause of a particular problem is
due to the professional negligence of a particular software engineer, as there are many others
involved in the process such as reviewers of documentation and code and the various test groups.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and a company is a wealthier entity than one of its
employees. The legal aspects of licensing software may protect software companies from liti-
gation. However, greater legal protection for the customer can be built into the contract between
the supplier and the customer for bespoke-software development.

40 2 Software Engineering

standards. Engineers are required to behave professionally and ethically with their
clients. The membership of the professional engineering body requires the member to
adhere to the code of ethics® of the profession. Engineers in other professions are
licensed, and therefore Parnas argues that a similar licensing approach be adopted for
professional software engineers’ to provide confidence that they are competent for
the particular assignment. Professional software engineers are required to follow best
practice in software engineering and the defined software processes.'”

Many software companies invest heavily in training as the education and
knowledge of its staff are essential to delivering high-quality products and services.
Employees in receive professional training related to the roles that they are
performing, such as project management, service management, and software
testing. The fact that the employees are professionally qualified increases confi-
dence in the ability of the company to deliver high-quality products and services.
A company that pays little attention to the competence and continuous development
of its staff will suffer a loss of reputation and market share.

2.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time and
on budget to customers. The research done by the Standish Group was discussed
earlier in this chapter, and the results of their 1998 research (Fig. 2.2) on project cost
overruns in the US indicated that 33 % of projects are between 21 and 50 % over
estimate, 18 % are between 51 and 100 % over estimate, and 11 % of projects are
between 101 and 200 % overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process actually is and to make appropriate improvements. The use
of software metrics is an objective way to do this, and improvements in estimation
will be evident from a reduced variance between estimated and actual effort.
The project manager will determine and report the actual versus estimated effort
and schedule for the project.

Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project, and to manage them

8 Many software companies have a defined code of ethics that employees are expected to adhere.
Larger companies will wish to project a good corporate image and to be respected worldwide.

° The British Computer Scientist (BCS) has introduced a qualification system for computer science
professionals that it used to show that professionals are properly qualified. The most important of
these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals to
be qualified in service management, project management, software testing, and so on.

10 Software companies that are following the CMMI or ISO 9000 standards will employ audits to
verify that the processes and procedures have been followed. Auditors report their findings to
management and the findings are addressed appropriately by the project team and affected
individuals.

2.3 Challenges in Software Engineering 41

Standish Report (Estimation Accuracy
1998)

';'g | Under 20% over
20 - W 21-50% over
15 - M 51-100% over
10 - 101 - 200% over
5 i

0l - m >200% over

Under 20% 21-50% 51-100% 101-200% >200%
over over over over over

Fig. 2.2 Standish 1998 report — Estimation accuracy

appropriately. The probability of each risk occurring and its impact is determined
and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor quality software lead to a negative perception of
the company, and could potentially lead to damage to the customer relationship
with a subsequent loss of market share.

There is a strong economic case to building quality into the software, as less
time is spent in re-working defective software. The cost of poor quality (COPQ)
should be measured and targets set for its reductions. It is important that lessons are
learned during the project and acted upon appropriately. This helps to promote a
culture of continuous improvement.

We discussed a number of high-profile software failures in the previous chapter.
These included the millennium bug (Y2K) problem; the floating point bug in the
Intel microprocessor; the European Space Agency Ariane-5 disaster, and so on.
These have caused embarrassment to the organizations as well as the cost of
replacement and correction.

The millennium bug was due to the use of two digits to represent dates rather
than four digits. The solution involved finding and analysing all code that that had
a Y2K impact; planning and making the necessary changes; and verifying the
correctness of the changes. The worldwide cost of correcting the millennium bug
is estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in
its Pentium microprocessor, and in providing adequate information on its impact
to its customers. It incurred a large financial cost in replacing microprocessors for
its customers. The Ariane-5 failure caused major embarrassment and damage to the
credibility of the European Space Agency (ESA). Its maiden flight ended in failure
on June 4, 1996, after a flight time of just 40 s.

42 2 Software Engineering

These failures indicate that quality needs to be carefully considered when
designing and developing software. The effect of software failure may be large
costs to correct the software, loss of credibility of the company, or even loss of life.

2.4 Software Processes and Lifecycles

Organizations vary by size and complexity, and the processes employed will reflect
the nature of their business. The development of software involves many processes
such as those for defining requirements; processes for project management and
estimation; processes for design, implementation, testing, and so on.

It is important that the processes employed are fit for purpose, and a key premise
in the software quality field is that the quality of the resulting software is influenced
by the quality and maturity of the underlying processes, and compliance to them.
Therefore, it is necessary to focus on the quality of the processes as well as the
quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use
is institutionalized in the organization. That is, all employees need to follow the
processes consistently. This requires that people are trained on the new processes
and that process discipline is instilled by an appropriate audit strategy.

Employees need to be trained on the processes, and audits are conducted
to ensure process compliance. Data will be collected to improve the process.
The software process assets in an organization generally consist of:

— A software development policy for the organization

— Process maps that describe the flow of activities

— Procedures and guidelines that describe the processes in more detail.

— Checklists to assist with the performance of the process

— Templates for the performance of specific activities (e.g., Design, Testing)
— Training Materials

The processes employed to develop high-quality software generally include
processes for:

— Project Management Process

— Requirements process

— Design Process

— Coding Process

— Peer Review Process

— Testing Process

— Supplier Selection and Management processes

— Configuration Management process

— Audit process

— Measurement Process.

— Improvement Process

— Customer Support and Maintenance processes

The software development process has an associated lifecycle that consists of
various phases. There are several well-known lifecycles employed such as the

2.4 Software Processes and Lifecycles 43

Requirements Acceptance Testing
\ System Testin
Specification J 5
Design Integration Testing
N
Code Unit Testing

Fig. 2.3 Waterfall V lifecycle model

waterfall model [56]; the spiral model [8], the Rational Unified Process [57] and the
Agile methodology [3] which has become popular in recent years. The choice of a
particular software development lifecycle is determined from the particular needs
of the specific project. The various lifecycles are described in more detail in the
following Sections.

2.4.1 Waterfall Lifecycle

The waterfall model'' (Fig. 2.3) starts with requirements gathering and definition.
It is followed by the functional specification, the design and implementation of the
software, and comprehensive testing. The testing generally includes unit, system
and user acceptance testing.

It is employed for projects where the requirements can be identified early in the
project lifecycle or are known in advance. It is also called the “V” life cycle model,
with the left-hand side of the “V” detailing requirements, specification, design, and
coding and the right-hand side detailing unit tests, integration tests, system tests
and acceptance testing. Each phase has entry and exit criteria that must be satisfied
before the next phase commences. There are several variations to the waterfall model.

Many companies employ a set of templates to enable the activities in the various
phases to be consistently performed. Templates may be employed for project
planning and reporting; requirements definition; design; testing and so on. These
templates may be based on the IEEE standards or industrial best practice.

"'We treat the waterfall model as identical to the V model in this text.

44 2 Software Engineering

Cumulative cost

1.Determine . Progress 2. Identify and
objectives T resolve risks

\

i Requiremsnts
Review o
Concept of i
Dela_lled
design
Development
plan
Toat plan
Implementation
4. Plan the Release :
next iteration 3. Development

and Test

Fig. 2.4 SPIRAL lifecycle model ... Public domain

2.4.2 Spiral Lifecycles

The spiral model (Fig. 2.4) was developed by Barry Boehm in the mid-1980s, and is
useful for a project in which the requirements are not fully known at project
initiation, or where the requirements evolve as a part of the development lifecycle.
The development proceeds in a number of spirals, where each spiral typically
involves objectives and an analysis of the risks, updates to the requirements, design,
code, testing, and a user review of the particular iteration or spiral.

The spiral is, in effect, a re-usable prototype with the business analysts and the
customer reviewing the current iteration, and providing feedback to the development
team. The feedback is analysed and used to plan the next iteration. This approach is
often used in joint application development, where the usability and look and feel of
the application is a key concern. This is important in web-based development and
in the development of a graphical user interface (GUI). The implementation of part of
the system helps in gaining a better understanding of the requirements of the system,
and this feeds into subsequent development cycle. The process repeats until the
requirements and the software product are fully complete.

2.4 Software Processes and Lifecycles 45

There are several variations of the spiral model including Rapid Application
Development (RAD); Joint Application Development (JAD) models; and the
Dynamic Systems Development Method (DSDM) model. Agile methods have
become popular in recent years and these generally employ sprints (or iterations)
of 2 weeks duration to implement a number of user stories. A sample spiral model is
shown in Fig. 2.4.

There are other life-cycle models, for example, the iterative development
process that combines the waterfall and spiral lifecycle model. The Cleanroom
approach developed by Harlan Mills at IBM includes a phase for formal specifica-
tion, and its approach to software testing is based on the predicted usage of the
software product. The Rational Unified Process has become popular in recent years,
and it is discussed in the next section.

2.4.3 Rational Unified Process

The Rational Unified Process [57] was developed at the Rational Corporation
(now part of IBM). It uses the Unified Modelling Language (UML) as a tool for
specification and design, and UML is a visual modelling language for software
systems which provides a means of specifying, constructing, and documenting
the object-oriented system. It was developed by James Rumbaugh, Grady Booch,
and Ivar Jacobson, and it facilitates the understanding of the architecture and
complexity of the system.

RUP is use case driven, architecture centric, iterative and incremental, and
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement, and configuration control. Software projects may be very complex, and
there are risks that requirements may be incomplete, or that the interpretation of a
requirement may differ between the customer and the project team.

Requirements are gathered as use cases, and the use cases describe the func-
tional requirements from the point of view of the user of the system. They describe
what the system will do at a high level, and ensure that there is an appropriate
focus on the user when defining the scope of the project. Use cases also drive the
development process, as the developers create a series of design and imple-
mentation models that realize the use cases. The developers review each successive
model for conformance to the use-case model, and the test team verifies that the
implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and
factors such as the platform that the software is to run on, deployment conside-
rations, legacy systems, and non-functional requirements.

RUP decomposes the work in a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product.
The iteration consists of one or more steps in the workflow, and generally leads to
the growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather that the entire product. Another
words, RUP is a way to mitigate risk in software engineering.

46 2 Software Engineering

2.4.4 Agile Development

There has been a growth of popularity among software developers in lightweight
methodologies such as Agile. This is a software development methodology that
claims to be more responsive to customer needs than traditional methods such as the
waterfall model. The waterfall development model is similar to a wide and slow
moving value stream, and halfway through the project 100 % if the requirements are
typically 50 % done. However, for agile development 50 % of requirements are
typically 100 % done halfway through the project.
This methodology has a strong collaborative style of working and its approach
includes:
— Aim is to achieve a narrow fast flowing value stream
— Feedback and adaptation employed in decision making
— User Stories and sprints are employed
— Stories are either done are not done
— Tterative and Incremental development is employed
— A project is divided into iterations
— An iteration has a fixed length (i.e., Time boxing is employed)
— Entire software development lifecycle is employed for the implementation of
each story
— Change is accepted as a normal part of life in the Agile world
— Delivery is made as early as possible.
— Maintenance is seen as part of the development process
— Refactoring and Evolutionary Design Employed
— Continuous Integration is employed
— Short Cycle Times
— Emphasis on Quality
— Stand Up Meetings
— Plan regularly
— Direct interaction preferred over documentation
— Rapid conversion of requirements into working functionality
— Demonstrate value early
— Early decision making
Ongoing changes to requirements are considered normal in the Agile world, and it
is believed to be more realistic to change requirements regularly throughout the
project rather than attempting to define all of the requirements at the start of the
project. The methodology includes controls to manage changes to the requirements,
and good communication and early regular feedback is an essential part of the process.
A story may be a new feature or a modification to an existing feature. It is reduced
to the minimum scope that can deliver business value, and a feature may give rise
to several stories. Stories often build upon other stories and the entire software
development lifecycle is employed for the implementation of each story. Stories
are either done or not done: i.e., there is such thing as a story being 80 % done.

2.5 Activities in Waterfall Lifecycle 47

The story is complete only when it passes its acceptance tests. Stories are prioritized
based on a number of factors including:

— Business Value of Story

— Mitigation of risk

— Dependencies on other stories.

Sprint planning is performed before the start of the iteration, and stories are
assigned to the iteration to fill the available time. The estimates for each story and
their priority are determined, and the prioritized stories are assigned to the iteration.
A short morning stand up meeting is held daily during the iteration, and attended
by the project manager and the project team. It discusses the progress made the
previous day, problem reporting and tracking, and the work planned for the day
ahead. A separate meeting is held for issues that require more detailed discussion.

Once the iteration is complete the latest product increment is demonstrated to an
audience including the product owner. This is to receive feedback and to identify
new requirements. The team also conducts a retrospective meeting to identify what
went well and what went poorly during the iteration. This is to for continuous
improvement for future iterations.

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives
in decision making and a broader understanding of the issues.

Software testing is very important and Agile generally employs automated
testing for unit, acceptance, performance and integration testing. Tests are run
frequently with the goal of catching programming errors early. They are generally
run on a separate build server to ensure that all dependencies are checked. Tests are
re-run before making a release. Agile employs test driven development with tests
written before the code. The developers write code to make a test pass with ideally
developers only coding against failing tests. This approach forces the developer to
write testable code.

Refactoring is employed in Agile as a design and coding practice. The objec-
tive is to change how the software is written without changing what it does.
Refactoring is a tool for evolutionary design where the design is regularly
evaluated, and improvements are implemented as they are identified. The auto-
mated test suite is essential in showing that the integrity of the software is
maintained following refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all of
the automated tests to be run thereby identifying problems earlier.

2.5 Activities in Waterfall Lifecycle

The waterfall software development lifecycle consists of various activities
including:

» Business Requirements Definition

¢ Specification of System Requirements

* Design

48 2 Software Engineering

* Implementation

* Unit Testing

* System Testing

e UAT Testing

* Support and Maintenance

These activities are discussed in the following sections.

2.5.1 Business Requirements Definition

The requirements specify what the customer wants and define what the software
system is required to do (as distinct from how this is to be done). The requirements
are the foundation for the system, and if they are incorrect, then the implemented
system will be incorrect. Prototyping may be employed to assist in the definition
and validation of the requirements.

The specification of the requirements needs to be unambiguous to ensure that
all parties involved in the development of the system share a common under-
standing of what is to be developed and tested.

Requirements gathering involve meetings with the stakeholders to gather all
relevant information for the proposed product. The stakeholders are interviewed,
and requirements workshops conducted to elicit the requirements from them.
An early working system (prototype) is often used to identify gaps and misunder-
standings between developers and users. The prototype may serve as a basis for
writing the specification.

The requirements workshops with the stakeholders are used to discuss and
prioritize the requirements, as well as identifying and resolving any conflicting
requirements. The collected information is consolidated into a coherent set of
requirements.

The requirements are validated by the stakeholders to ensure that they are
actually those desired, and to establish their feasibility. This may involve several
reviews of the requirements until all stakeholders are ready to approve the require-
ments document. Changes to the requirements may occur during the project, and
these need to be controlled. It is essential to understand the impacts of a change
request prior to its approval.

The requirements for a system are generally documented in a natural language
such as “English”. Other notations that may be employed to express the require-
ments include the visual modelling language UML [32], and formal specification
languages such as VDM or Z.

2.5.2 Specification of System Requirements
The specification of the system requirements of the product is essentially a state-

ment of what the software development organization will provide to meet the
business requirements. That is, the detailed business requirements are a statement

2.5 Activities in Waterfall Lifecycle 49

of what the customer wants, whereas the specification of the system requirements is
a statement of what will be delivered by the software development organization.

It is essential that the system requirements are valid with respect to the
business requirements, and they are reviewed by the stakeholders to ensure that
their validity with respect to the business requirements. Traceability may be
employed to show that the business requirements are addressed by the system
requirements

There are two categories of system requirements: namely, functional and
non-functional requirements. The functional requirements define the functionality
that is required of the system, and it may include screen shots, report layouts or
desired functionality specified as use cases. The non-functional requirements will
generally include security, reliability, performance and portability requirements,
as well as usability and maintainability requirements.

2.5.3 Design

The design of the system consists of engineering activities to describe the architec-
ture or structure of the system, as well as activities to describe the algorithms and
functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design, and data structure design. There are often
several possible design solutions for a particular system, and the designer will need
to decide on the most appropriate solution.

The design may be specified in various ways such as graphical notations that
display the relationships between the components making up the design. The notation
may include flow charts, or various UML diagrams such as sequence diagrams, state
charts, and so on. Program description languages or pseudo code may be employed
to define the algorithms and data structures that are the basis for implementation.

Functional design involves starting with a high-level view of the system and
refining it into a more detailed design. The system state is centralized and shared
between the functions operating on that state.

Object-oriented design has become popular in recent years and is based on the
concept of information hiding developed by Parnas [52]. The system is viewed as a
collection of objects rather than functions, with each object managing its own state
information. The system state is decentralized and an object is a member of a class.
The definition of a class includes attributes and operations on class members, and
these may be inherited from super classes. Objects communicate by exchanging
messages

It is essential to verify and validate the design with respect to the system require-
ments, and this will be done by traceability of the design to the system requirements
and design reviews.

50 2 Software Engineering

2.5.4 Implementation

This phase is concerned with implementing the design in the target language and
environment (e.g., C++ or Java), and involves writing or generating the actual code.
The development team divides up the work to be done, with each programmer
responsible for one or more modules. The coding activities often include code
reviews or walkthroughs to ensure that quality code is produced, and to verify its
correctness. The code reviews will verify that the source code conforms to the
coding standards and that maintainability issues are addressed. They will also verify
that the code produced is a valid implementation of the software design.

Software reuse has become more important in recent times as it provides a way
to speed up the development process. Components or objects that may be reused
need to be identified and handled accordingly. The implemented code may use
software components that have either being developed internally or purchased off
the shelf. Open source software has become popular in recent years, and it allows
software developed by others to be used (under an open source license) in the
development of applications.

The benefits of software reuse include increased productivity and a faster time to
market. There are inherent risks with customized-off-the shelf (COTS) software, as
the supplier may decide to no longer support the software, or there is no guarantee
that software that has worked successfully in one domain will work correctly in a
different domain. It is therefore important to consider the risks as well as the
benefits of software reuse and open source software.

2.5.5 Software Testing

Software testing is employed to verify that the requirements have been correctly
implemented, and that the software is fit for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing and
user acceptance testing. These are described below:

2.5.5.1 Unit Testing

Unit testing is performed by the programmer on the completed unit (or module), and
prior to its integration with other modules. These tests are written by the programmer,
and the objective is to show that the code satisfies the design. Each unit test case is
documented and it should include a test objective and the expected result.

Code coverage and branch coverage metrics are often recorded to give an
indication of how comprehensive the unit testing has been. These metrics provide
visibility into the number of lines of code executed as well as the branches covered
during unit testing.

2.5 Activities in Waterfall Lifecycle 51

The developer executes the unit tests; records the results; corrects any identified
defects and re-tests the software. Test driven development has become popular in
recent years (e.g., in the Agile world), and this involves writing the unit test case
before the code, and the code is written to pass the unit test cases.

2.5.5.2 Integration Test

The development team performs this type of testing on the integrated system, once
all of the individual units work correctly in isolation. The objective is to verify
that all of the modules and their interfaces work correctly together, and to identify
and resolve any issues. Modules that work correctly in isolation may fail when
integrated with other modules.

2.5.5.3 System Test

The purpose of system testing is to verify that the implementation is valid with
respect to the system requirements. It involves the specification of system test cases,
and the execution of the test cases will verify that the system requirements have
been correctly implemented. An independent test group generally conducts this
type of testing, and the system tests are traceable to the system requirements.

Any system requirements that have been incorrectly implemented will be
identified, and defects logged and reported to the developers. The test group will
verify that the new version of the software is correct, and regression testing is
conducted to verify system integrity. System testing may include security testing,
usability testing and performance testing.

The preparation of the test environment requires detailed planning, and it may
involve ordering special hardware and tools. It is important that the test environ-
ment is set up as early as possible to allow the timely execution of the test cases.

2.5.5.4 Performance Test

The purpose of performance testing is to ensure that the performance of the system
is within the bounds specified in the non-functional requirements. It may include
load performance testing, where the system is subjected to heavy loads over a long
period of time, and stress testing, where the system is subjected to heavy loads
during a short time interval.

Performance testing often involves the simulation of many users using the system,
and involves measuring the response times for various activities. Test tools are
employed to simulate a large number of users and heavy loads. It is also employed
to determine is the system is scalable to support future growth.

2.5.5.5 User Acceptance Test

UAT testing is usually performed under controlled conditions at the customer
site, and its operation will closely resemble the real life behaviour of the system.
The customer will see the product in operation, and can judge whether or not the
system is fit for purpose.

52 2 Software Engineering

The objective is to demonstrate that the product satisfies the business
requirements and meets the customer expectations. Upon its successful completion
the customer is happy to accept the product.

2.5.6 Maintenance

This phase continues after the release of the software product to the customer.
Any problems that the customer notes with the software are reported as per the
customer support and maintenance agreement. The support issues will require
investigation, and the issue may be a defect in the software, an enhancement to
the software, or due to a misunderstanding. The support and maintenance team will
identify the causes of any identified defects, and will implement an appropriate
solution to resolve. Testing is conducted to verify that the solution is correct, and
that the changes made have not adversely affected other parts of the system. Mature
organizations will conduct post mortems to learn lessons from the defect,12 and will
take corrective action to prevent a re-occurrence.

The presence of a maintenance phase suggests an acceptance of the reality that
problems with the software will be identified post release. The goal of building a
correct and reliable software product the first time is very difficult to achieve, and
the customer is always likely to find some issues with the released software product.
It is accepted today that quality needs to be built into each step in the development
process, with the role of software inspections and testing to identify as many defects
as possible prior to release, and minimize the risk that that serious defects will be
found post-release.

The more effective the in-phase inspections of deliverables, the higher the quality
of the resulting implementation, with a corresponding reduction in the number of
defects detected by the test groups. The testing group plays a key role in verifying
that the system is correct, and in providing confidence that the software is fit for
purpose. The approach to software correctness almost seems to be a “brute force”
approach, where quality is achieved by testing and re-testing, until the testing group is
confident that all defects have been eliminated. Dijkstra [16] noted that:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent testing, it can never be said with
absolute confidence that the program is correct, and, at best, statistical techniques
may be employed to give a measure of the confidence in its correctness. That is,
there is no guarantee that all defects have been found in the software.

"2 This is essential for serious defects that have caused significant inconvenience to customers
(e.g., a major telecoms outage). The software development organization will wish to learn lessons
to determine what went wrong in its processes that prevented the defect from been identified
during peer reviews and testing. Actions to prevent a reoccurrence will be identified and
implemented.

2.7 Software Project Management 53

Many software companies may consider one defect per thousand lines of code
(KLOC) to be reasonable quality. However, if the system contains one million lines
of code this is equivalent to a thousand post-release defects, which is unacceptable.

Some mature organizations have a quality objective of three defects per million
lines of code. This goal is known as six-sigma (66) and it was developed by
Motorola. It was originally applied it to its manufacturing businesses and subse-
quently applied to its software organizations. The goal is to reduce variability in
manufacturing processes and to ensure that the processes performed within strict
process control limits. Motorola was awarded the first Malcom Baldridge Quality
award for its six-sigma initiative and its commitment to quality.

2.6 Software Inspections

Software inspections were discussed in Chap. 1 and they are used to build quality
into software products. There are a number of well-known approaches such as the
Fagan Methodology [20]; Gilb’s approach [24]; and Prince 2’s approach.

Fagan inspections were developed by Michael Fagan of IBM It is a seven-step
process that identifies and removes errors in work products. The process mandates
that requirement documents, design documents, source code, and test plans are all
formally inspected by experts independent of the author of the deliverable to ensure
quality.

There are various roles defined in the process including the moderator who
chairs the inspection. The reader’s responsibility is to read or paraphrase the
particular deliverable, and the author is the creator of the deliverable and has a
special interest in ensuring that it is correct. The fester role is concerned with the
test viewpoint.

The inspection process will consider whether the design is correct with respect to
the requirements, and whether the source code is correct with respect to the design.
Software inspections play an important role in reducing the cost of poor quality in
the organization.

2.7 Software Project Management

The timely delivery of quality software requires good management and engineering
processes. Software projects have a history of being delivered late or over budget,
and good project management practices include the following activities:

— Estimation of cost, effort and schedule for the project

— Identifying and managing risks

— Preparing the project plan

— Preparing the initial project schedule and key milestones

— Obtaining approval for the project plan and schedule

— Staffing the project

http://dx.doi.org/10.1007/978-3-319-06106-1_1

54 2 Software Engineering

— Monitoring progress, budget, schedule, effort, risks, issues, change requests and
quality

— Taking corrective action

— Re-planning and re-scheduling

— Communicating progress to affected stakeholders

— Preparing status reports and presentations

The project plan will contain or reference several other plans such as the project
quality plan; the communication plan; the configuration management plan; and the
test plan.

Project estimation and scheduling are difficult as often software projects are
breaking new ground and differ from previous projects. That is, previous estimates
may often not be a good basis for estimation for the current project. Often, unanti-
cipated problems can arise for technically advanced projects, and the estimates may
often be optimistic. Gantt charts are often employed for project scheduling, and
these show the work breakdown for the project, as well as task dependencies and
allocation of staff to the various tasks.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves'® risk
identification; risk analysis and evaluation; identifying responses to risks; selecting
and planning a response to the risk; and risk monitoring. The risks are logged, and
the likelihood of each risk arising and its impact is then determined. The risk is
assigned an owner and an appropriate response to the risk determined.

2.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best
practice in software and systems engineering. It is an internationally recognized
model for process improvement and assessment, and is used world-wide by thou-
sands of organizations. It provides a solid engineering approach to the development
of software, and helps in the definition of high-quality processes for the various
software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the
process improvement principles used in the manufacturing field to the software
field. They developed the original CMM model and its successor the CMMI.
The CMMI states what the organization needs to do to mature its processes rather
than how this should be done.

The CMMI consists of five maturity levels with each maturity level consisting of
several process areas. Each process area consists of a set of goals, and these goals
are implemented by practices related to that process area. Level two is focused on
management practices; level three is focused on engineering and organization
practices; level four is concerned with ensuring that key processes are performing

13 These are the risk management activities in the Prince 2 methodology.

2.9 Formal Methods 55

within strict quantitative limits; level five is concerned with continuous process
improvement. Maturity levels may not be skipped in the staged implementation of
the CMMI, as each maturity level is the foundation for the next level.

The CMMI allows organizations to benchmark themselves against other
organizations. This is done by a formal appraisal conducted by an authorized lead
appraiser. The results of the appraisal are generally reported back to the SEI, and
there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables
the organization to prioritize improvements for the next improvement cycle.
The CMMI is discussed in more detail in a later chapter.

29 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to derive
the program from its specifications using mathematics, and to employ mathematical
proof to demonstrate its correctness with respect to the specification. This offers a
rigorous framework to develop programs adhering to the highest quality constraints.
However, in practice mathematical techniques have proved to be cumbersome to
use, and their widespread deployment in industry is unlikely at this time.

The safety-critical area is one domain to which mathematical techniques have
been successfully applied: for example, demonstrating the presence or absence of
safety properties such as “when a train is in a level crossing, then the gate is
closed”. There is a need for extra rigour in the software development process
used in the safety critical field, and mathematical techniques can demonstrate the
presence or absence of certain desirable or undesirable properties.

Spivey [62] defines a “formal specification” as the use of mathematical notation
to describe in a precise way the properties which an information system must
have, without unduly constraining the way in which these properties are achieved.
It describes what the system must do, as distinct from how it is to be done. This
abstraction away from implementation enables questions about what the system
does to be answered, independently of the detailed code. Furthermore the unam-
biguous nature of mathematical notation avoids the problem of speculation about
the meaning of phrases in an imprecisely worded natural language description of
a system.

The formal specification thus becomes the key reference point for the different
parties concerned with the construction of the system, and is a useful way of
promoting a common understanding for all those concerned with the system.

The term “formal methods™ is used to describe a formal specification language
and a method for the design and implementation of computer systems. The specifi-
cation is written in a mathematical language, and avoids the problem of ambiguity
inherent in a natural language specification. The derivation of an implementation
from the specification may be achieved via step-wise refinement. Each refinement
step makes the specification more concrete and closer to the actual implementation.

56 2 Software Engineering

There is an associated proof obligation that the refinement be valid, and that the
concrete state preserves the properties of the more abstract state. Thus, assuming
the original specification is correct and the proofs of correctness of each refinement
step are valid, then there is a very high degree of confidence in the correctness of the
implemented software.

Formal methods have been applied to a diverse range of applications, including
circuit design, artificial intelligence, specification of standards, specification and
verification of programs, etc. They are described in more detail Chap. 17.

2.10 Review Questions

1. Discuss the research results of the Standish Group the current state of IT
project delivery?

2. What are the main challenges in software engineering?

3. Describe various software lifecycles such as the waterfall model and the
spiral model.

4. Discuss the benefits of Agile over conventional approaches. List any risks

and disadvantages?

. Describe the purpose of software inspections? What are the benefits?

. Describe the main activities that take place in software testing.

7. Describe the main activities in project management?

AN

2,11 Summary

The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software
sector in the late 1960s, and the term “software crisis” was coined to refer to these.
This led to the realization that programming is quite distinct from science and
mathematics, and that software engineers need to be properly trained to enable them
to build high-quality products that are safe to use.

The Standish group conducts research on the extent of problems with the
delivery of projects on time and budget. Their research indicates that it remains a
challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as part of
their training. The education of traditional engineers includes training on product
design, and an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version
programs. It is a systematic approach to the development and maintenance of
the software, and it requires a precise statement of the requirements of the
software product, and then the design and development of a solution to meet

http://dx.doi.org/10.1007/978-3-319-06106-1_17

2.11 Summary 57

these requirements. It includes methodologies to design, develop, implement and
test software as well as sound project management, quality management and
configuration management practices. Support and maintenance of the software
is properly addressed.

Software process maturity models such as the CMMI have become popular in
recent years. They place an emphasis on understanding and improving the software
process to enable software engineers to be more effective in their work.

Key Topics

Project Planning
Estimation
Scheduling

Risk Management
Project Governance
Project Board
Business Case
Project Reports
Project Metrics
Project Monitoring and Control
Quality Management
Prince 2

PMP and PMBOK

3.1 Introduction

Software projects have a history of being delivered late or over budget, and the
timely delivery of high-quality software requires good estimation and planning, and
good management and engineering processes. Project management is concerned with
the effective management of projects to ensure successful delivery of a high-quality
product, on time and on budget, to the customer. A project is a temporary group
activity designed to accomplish a specific goal such as the delivery of a product to a
customer. It has a clearly defined beginning and end in time.

Project management involves good project planning and estimation; the manage-
ment of resources; the management of issues and change requests that arise during

G. O’Regan, Introduction to Software Quality, Undergraduate Topics 59
in Computer Science, DOI 10.1007/978-3-319-06106-1_3,
© Springer International Publishing Switzerland 2014

60 3 Project Management

the project; managing quality; managing risks; managing the budget; monitoring

progress; taking appropriate action when progress deviates from expectations;

communicating progress to the various stakeholders; and delivering a high-quality

product to the customer. It involves:

— Defining the scope of the project and what it is to achieve

— Estimation of the cost, effort and schedule

— Determining the start and end dates for the project

— Determining the resources required

— Assigning resources to the various tasks and activities

— Determining the project lifecycle and phases of the project

— Staffing the project

— Preparing the project plan

— Scheduling the various tasks and activities in the schedule

— Preparing the initial project schedule and key milestones

— Obtaining approval for the project plan and schedule

— Identifying and managing risks

— Monitoring progress, budget, schedule, effort, risks, issues, change requests
and quality

— Taking corrective action

— Re-planning and re-scheduling

— Communicating progress to affected stakeholders

— Preparing status reports and presentations

The scope of the project needs to be determined and effort and schedule
estimates should be established. The project plan should then be developed and
approved by the stakeholders. The project plan will need to be maintained during
the project.

The project plan will contain or reference several other plans such as the project
quality plan; the communication plan; the configuration management plan; and the
test plan.

Project estimation and scheduling are difficult as software projects are often
breaking new ground and differ from previous projects. That is, previous estimates
may often not be a good basis for estimation for the current project. Often, unanti-
cipated problems may arise for technically advanced projects, and the estimates
may be overly optimistic.

Gantt charts are generally employed for project scheduling, and these show the
work breakdown for the project as well as task dependencies and allocation of staff
to the various tasks.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves' risk
identification; risk analysis and evaluation; identifying responses to risks; selecting
and planning a response to the risk; and risk monitoring.

" These are the risk management activities in the Prince 2 methodology.

3.2 Project Start Up and Initiation 61

Once the risks have been identified they are logged (e.g., in the Risk Log).
The likelihood of each risk arising and its impact is then determined. The risk is
assigned an owner and an appropriate response to the risk determined.

Once the planning is complete the project execution commences, and the focus
moves to monitoring progress, re-planning as appropriate, managing risks and
issues, re-planning as appropriate, providing regular progress reports to the project
board, and so on.

The two most popular project management methodologies are the Prince 2 meth-
odology which was developed in the U.K., and Project Management Professional
(PMP) and its associated project management body of knowledge (PMBOK) from
the Project Management Institute (PMI) in the United States.

3.2 Project Start Up and Initiation

There are various ways in which a project may arise: for example, a telecoms
company may wish to develop a new version of its software with attractive features
to dazzle its customers and to gain market share; an internal IT department may
receive a request from its business users to alter its business software in order to
satisfy new legal or regulatory requirements. A software development company may
be contacted by a business to develop a bespoke solution to meet its needs, and so on.

All parties must be clear on what the project is to achieve, and how it will be
achieved. It is fundamental that there is a business case for the project, as it clearly
does not make sense for the organization to spend a large amount of money unless
the project makes business sense. At the project start up the initial scope and costing
for the project are determined, and the feasibility of the project is established.”
The project is authorised,” and a project board is set up for project governance.
The project board verifies that there is a sound business case for the project, and a
project manager is appointed to manage the project.

The project board (or steering group) includes the key stakeholders, and is
accountable for the success of the project. The project manager provides regular
status reports to the project board during the project, and the project board is
consulted when key project decisions need to be made.

The project manager is responsible for the day-to-day management of the
project, and good planning is essential to its success. The approach to the project
is decided,” and the project manager kicks off the project and mobilises the project
team. The detailed requirements and estimates for the project are determined,
the schedule of activities and tasks established, and resources are assigned to the

2 This refers to whether the project is technically and financially feasible.

3 Organizations have limited resources, and as many projects may be proposed it will not be possible
to authorise every project, and so several projects with weak business cases will be rejected.

* For example, it may be decided to outsource the development to a third party provider, purchase
an off-the-shelf solution, or develop the solution internally.

62 3 Project Management

various tasks and activities.” The project manager prepares the project plan which is
subject to the approval of the key stakeholders. The initial risks are identified and
managed, and a risk log (or repository) is set up for the project. Once the planning
is complete project execution commences.

3.3 Estimation

Estimation is a key part of project management, and the accurate estimates of effort,
cost and schedule are essential to delivering a project the on time and on budget, and
with the right quality.® Estimation is employed in the planning process to determine
the resources and effort required, and it feeds into the scheduling of the project.
The problems with over or under-estimation of projects are well-known, and good
estimates allow:
— Accurate calculation of the project cost and its feasibility.
— Accurate scheduling of the project
— The measurement of progress and costs against the estimates.
— Determining the resources required for the project

Poor estimation leads to:
— Projects being over or under-estimated.
— Projects being over or under-resourced (impacting staff morale)
— Negative impression of the project manager.

Consequently, estimation needs to be rigorous, and there are several well-known
estimation techniques available (e.g., work-breakdown structures, function points,
and so on). Estimation applies to both the early and later parts of the project, with
the later phases of the project refining the initial estimates, as a more detailed
understanding of the project activities is then available. The new estimates are used
to re-schedule and to predict the eventual effort, delivery date and cost of the
project. The following are guidelines for estimation:

— Sufficient time needs to be allowed to do estimation.

— Estimates are produced for each phase of software development.

— The initial estimates are high-level.

— The estimates for the next phase should be solid whereas estimates for the later
phases may be high-level.

— The estimates should be conservative rather than optimistic.

— Estimates will usually include contingency

— Estimates should be reviewed to ensure their adequacy.

— Estimates from independent experts may be useful.

— It may be useful to prepare estimates using various methods and to compare.

5 The project scheduling is usually done with the Microsoft Project tool.

S The consequences of under estimating a project include the project being delivered late, with the
project team working late nights and weekends to recover the schedule, quality being
compromised with steps in the process omitted, and so on.

3.3 Estimation 63

Table 3.1 Estimation techniques

Technique Description

Work breakdown Identify the project deliverables to be produced during the project. Estimate
structure the size of each deliverable (in pages or LOC). Estimate the effort (number of
days) required to complete the deliverable based on its complexity and size.

Estimate the cost of the completed deliverable.

Analogy method This involves comparing the proposed project with a previously completed
project (that is similar to the proposed project) The historical data and
metrics for schedule, effort and budget estimation accuracy are considered,
as well as similarities and differences between the projects to provide effort,
schedule and budget estimates.

Expert judgment This involves consultation with experienced personnel to derive the
estimate. The expert(s) can factor in differences between past project
experiences, knowledge of existing systems as well as the specific
requirements of the project.

Delphi method The Delphi Method is a consensus method used to produce accurate
schedules and estimates. It was developed by the Rand Corporation and
improved by Barry Boehm and others. It provides extra confidence in the
project estimates by using experts independent of the project manager or
third party supplier.

Cost predictor These include various cost prediction modes such as Cocomo and Slim.
models The Costar tool supports Cocomo, and the Qsm tool supports Slim.
Function points Function Points were developed by Allan Albrecht at IBM in the late 1970s,

and involve analysing each functional requirement and assigning a number
of function points based on its size and complexity. This total number of
function points is a measure of the estimate.

Project metrics may be employed to measure the accuracy of the estimates.
These metrics are reported during the project and include:
— Effort Estimation Accuracy
— Budget Estimation Accuracy
— Schedule Estimation Accuracy

Next, we discuss various estimation techniques including the work-breakdown
structure, the analogy method, and the Delphi method.

3.3.1 Estimation Techniques

Estimates need to be produced consistently, and it would be inappropriate to have an
estimation procedure such as “Go ask Fred”, as this clearly relies on an individual and
is not a repeatable process. The estimates may be based on a work-breakdown
structure, function points, or another appropriate methodology. There are several
approaches to project estimation including those given in Table 3.1.

7Unless “Go Ask Fred” is the name of the estimation methodology or the estimation tool
employed.

64

Table 3.2 Example work-breakdown structure

Lifecycle phase

Planning and
requirements

Design

Coding

Testing

Deployment

Project closure

Contingency
Total

3.3.2 Work Breakdown Structure

Project deliverable
or task description

Project plan

Project schedule
Business requirements
Test plan

Issue/risk log

Lessons learned log
System requirements
Technical/DB design
Source code

Unit tests/results

ST specs

System testing

UAT specs

UAT testing

Release notes/procedures
User manuals

Support procedures
Training plan

End project report
Lessons learned report
10 %

Est. size
40

20

20

15

3

1

15

30
5,000 (LOC)
200

30

30

20
50
15
25
10
5

Est. effort
10 days
5 days
10 days
5 days
2 days
1 day

5 days
10 days
10 days
2 days
10 days
10 days
10 days
10 days
5 days
10 days
10 days
5 days
2 days
2 days
134
147.4

3 Project Management

Est. cost
$5,000
$2,500
$5,000
$2,500
$1,000
$500
$2,500
$5,000
$5,000
$1,000
$5,000
$5,000
$5,000
$5,000
$2,500
$5,000
$5,000
$2,500
$1,000
$1,000
$6,700
$73,700

This is a popular approach to project estimation (it is also known as decomposition)
and involves the following:
— Identify the project deliverables to be produced during the project

— Estimate the size of each deliverable (in pages or LOC)

— Estimate the effort (number of days) required to complete the deliverable based
on its complexity and size, and experience of team.
— Estimate the cost of the completed deliverable.
— The estimate for the project is the sum of the individual estimates.
The approach often uses productivity data that is available from preciously
completed projects. The effort required for a complex deliverable is higher than
that of a simple deliverable (where both are of the same size). The project planning
section in the project plan (or a separate estimation plan) will include the lifecycle
phases, and the deliverables/tasks to be carried out in each phase, as given in

Table 3.2.

3.4 Project Planning and Scheduling 65

3.4 Project Planning and Scheduling

A well-managed project has an increased chance of success, and good planning is
an essential part of project management. There is the well-known adage which
states “Fail to plan, plan to fail”. The project manager and the relevant stakeholders
will consider the appropriate approach for the project, and determine whether a
solution should be purchased off the shelf, whether to outsource the software
development to a third party supplier, or whether to develop the solution internally.
A simple process map for project planning is in Fig. 3.1.

Estimation is a key part of project planning, and the effort estimates are used
for scheduling of the tasks and activities in a project scheduling tool such as
Microsoft Project (Fig. 3.2).

The schedule will detail the phases in the project, the key project milestones, the
activities and tasks to be performed in each phase as well as their associated
timescales, and the resources required to carry out each task. The project manager
will update the project schedule regularly during the project.

Projects vary in size and complexity and the formality of the software develop-
ment process employed needs to reflect this. The project plan defines how the
project will be carried out, and it generally includes:

— Business Case

— Project Scope

— Project Goals & Objectives

— Key Milestones

— Project Planning and Estimates

— Key Stakeholders

— Project Team and Responsibilities

Establish » Planning > Develop Project <
Estimates Data Plan

l

Project Plan
l No

Approve
Project Plan?

Approved
Project Plan

Fig. 3.1 Simple process map for project planning

3 Project Management

66

9[npayds 199foid 1josorony ojdwes g *bi4

560 Wiw * < VHOIG PO B US0DM - 0P IO [P | IS PUR Spewnogli) Mg | M- WUl - poaa B | N0 apsons - 10qul)

1 J&s Ie[Te L [»]
QVANGGTPUI GVEIVININI SARD ST/ SABD T 190004 pUS Bumed| e | Alze

UFZLIE U UWEC B SR LR SAMP LS] v | e

&l =Ffinig | | | | SOMIZNL QONOMTENL SARST SRRSO Dty Q43S oty | Ao
aresooog WU A LS L B AR UG whvp U s | Uy SuRRAd | Y st N Bir Pl
I =B Teasli ! GOSOSI UM DOSINE0 anL | AR ¥ shen 5 SRmItRL § S3E590C4 01 Samndn viw Mz
llaased yeses) 355°) sooo o QUSOEDSNL OVSBOANL SARPST SARPSO SSU0. FAVY O) GOSN iy Pl 7.
“Plvasls =66 rInogl = SUFOGZ PWA QOVPOEL 1 RAeng =4en 0} =ajepkia] § SRR 44 0] SAERn Wir o
soUoIETL SUB0IG FiIBLIe] yes) 350 | | SUPVILINL QURLLINL SASPST SABRSO 530041 93100 0] GOSN, LA all -4
BBow %okl s680107I505]s 6800 ¢ SOFODL I QOEOOC UL sAEp e =iepg =Rannig O 10 SPRg FEunang L Az
17 sBBoIg T} 56601 (191504 yeses) 350 I SEDBT NL SUEMEZENL SASPST sAERSO 5532000 93100 O} COUSHOM iy s
e eBBoir sl e00oiar[%os]L eBboig 1 ONCOMT WoW OOCONOZ Lo whep 17 shep 59 FEI0I W4 1O TR JuSN3eg Tre Padt-
| asy'mdon's sOBom Ty sODoET) SO0o | AUEOPLSNL SEOFLANL SAPST sAEpSO 553000 93168 0) dOUS O Ky Palll®4
WVEWET OUL SWEORE ONL eA0p S0 40P BLBEL DM = vy Ao

| SOMEL ML SWEWL0 INL SARP 925K ISARP FL'SEI INOYIOY PUR UOMULA(INID = b (13

tweo # SOEOE0 PAWL SOEDIE0 PO Chop 0 chop g opopcusc Bunroa) re A8

n‘gﬂ—gaos_.ﬁg._. (gaueg ypIas) 350 SENS0 PaM, GUFEDNE0 P SAep S Aep | Bunsmi) 9435 €€ Al
| don‘gal’ i aiey ysies) 35 _ SOEOTO ML SVENTO ML 3lepg Aup | (g dnoag) Busmi) senmsad TE ey

i ue] 385001 :oa.._.anﬂ_ SN L0 P SOREDH L0 PAM SARP £ Aep | [dn0ss) BUIIGI] MBEAAG VE Als

Gl SVEVED POM SWIWLD PO a4Rp L4 ahep Lo's Bupures) WD - € Al

| 20 SOTOOPAM 9070 P S0 shep 0 Serhuoy Busasid e Alee

[wucly w00uR SOTOALO PAAA OO0/ LOVOE YO 358P S0 shep 5T apdas) Poday droel Buussis aueq ove Pl

| [sozlh sBBC QVIN/T U4 AVLET UOW | ARD L shen 6071 11 pus 07 #504'5077 S5 S51 auuan BT P i1

....! Lad ..R..E._;...iiu sy uv.._n« s00ug s s00up | | S0TOEL ML SOTOEL UL SAERSL L AR STO Gumaai Wi 3304 8T Ao
....u.-:] ... e5h unu._...:# shfingraccly sfifing SOIOICHNL GOMOET UOW SAED T shep £ A0 WARCOEAR] DEMUDS ISLNI0T Lz P 1

| [%05)h #0DOIG WFCURUNE SUOEIE WL AR whep S U R e Uy ¥e ~le

?S_ﬂa-t—a-n.ﬁ._#_b_eng QOLONOE UOW OO LOT UOW | SARD & shep 9 UL ISR IR IS0 (14 o

({214 yoIRS) ISI'Z SUDOIT L SOUOK SOTOVIO PAM SOTH0 P SD S0 SARRSTO N0 DUSENS O VR RS BAT] ¥ 7l

[nsiz #6600 r{nsell 060K QUTOIO MWA QI LVOC 1wy =hep g =hepn g L e L s T P -

1% Hn21Ie4 Yeses) ISI1%051L SOOI MI%0ZIZ SOD0| SIVIIVDE WO S0FUET N1 SA0p T SAUP ¢ ST WD] M Tz W B
..S«:aan_ DOI0OT I QOFLOMGL 1 =hep g =hep z1 sumay dn jag vz e

e SWZWIL UL SLIGE V0K SARD 07 SARD 1’92 Bupueld - 2 Wil

DWZWOZ PR OULOL oW SARP S5z0b sAeparz | wswsbeuey 1efoid |4 '

ypad s) uogeng sy gzl sav | ©

WFIOSURLY 1204
“ w B e o e e (D] anadey ey swuann| sped]
TR g PO SL 08,550 [mognlm A
“ = n r[al- s- Ry abos - 4 & B L0 2B W - oo (G D E dadb e B o SBME | AUF BASL
- GEH MODUVY, SIRIOGRRDD PE0N 5001 JRwL0d MESu] MRl W3 ed
19af014 YosoIow g

3.5 Risk Management 67

Table 3.3 Sample project management checklist

4
e

Item to check

Is the project plan complete and approved by the stakeholders?
Are the Risk Log, Issue Log and Lessons Learned Log set up?
Are the responses to the risks and issues appropriate?

Is the Microsoft Schedule defined for the project?

Is the project schedule kept up to date?

Is the project appropriately resourced?

Are estimates available for the project? Are they realistic?

Has quality planning been completed for the project?

AR A R R A

Does the project have a business case?

_.
I

Has the change control mechanism been set up for the project?

—_ =
N —

Are all deliverables under configuration management control?
Has project communication been appropriately planned?

—_
(98]

Is the project directory set up for the project?
Are the key milestones defined in the project plan?

—_
»

— Knowledge and Skills Required
— Communication Planning

— Financial Planning

— Quality and Test Planning

— Configuration Management

Communication planning describes how communication will be carried out
during the project, and this includes the various project meetings and reports that
will be produced; financial planning is concerned with budget planning for the
project; quality and test planning is concerned with the planning required to ensure
that a high-quality product is delivered; and configuration management is con-
cerned with identifying the configuration items to be controlled, and systematically
controlling changes to them throughout the lifecycle. It ensures that all deliverables
are kept consistent following approved changes.

The project plan is a key project document, and it needs to be approved by all
stakeholders. The project manager needs to ensure that the project plan, schedule
and technical work products are kept consistent with the requirements.

Checklists are useful in verifying that the tasks have been completed. The
sample project management checklist in Table 3.3 verifies that project planning
has been appropriately performed and that controls are in place.

3.5 Risk Management

Risks arise due to uncertainty, and risk management is concerned with managing
uncertainty, and especially the management of any undesired events. Risks need to
be identified, analysed and controlled in order for the project to be successful.
Once the initial set of risks to the project has been identified, they are analysed to
determine their likelihood of occurrence and their impact (e.g. on cost, schedule or

68 3 Project Management

Table 3.4 Risk management activities

Activity Description
Risk management This defines how the risks will be identified, monitored, reviewed
strategy and reported during the project, as well as the frequency of monitoring

and reporting.

Risk identification This involves identifying the risks to the project and recording them in a
risk repository (e.g., Risk Log). It continues throughout the project
lifecycle. The Prince 2 methodology classifies risks into five main types:

Business (e.g., collapse of subcontractors)
Legal and Regulatory
Organisational (e.g., availability of skilled resources and management).
Technical (e.g., scope creep, architecture, design)
Environmental (e.g., flooding or fires)
Evaluating the risks This involves assessing the likelihood of occurrence of a particular risk
and its impact (on cost, schedule, etc.) should it materialise. These two
parameters result in the risk category.

Identifying risk The project manager (and other stakeholders) will determine the

responses appropriate response to a risk depending on its severity. The response
may reduce the probability of its occurrence or its impact should it occur.
This includes:

Prevention which aims to prevent it from occurring

Reduction aim to reduce the probability of occurrence or impact should
it occur.

Transfer aims to transfer the risk to a 3rd party.
Acceptance is when nothing can be done about it
Contingency are actions that are carried out should the risk materialise.

Risk monitoring This involves monitoring existing risks to verify that the actions taken
and reporting to manage the risks are effective, as well as identifying new risks.
It provides an early warning that an identified risk is going to materialise.

Lessons learned This is concerned with determining the effectiveness of risk management
during the project and to learn any lessons for future projects.

quality). These two parameters determine the risk category of the risk, and the most
serious risk category refers to a risk with a high probability of occurrence and a high
impact on occurrence.

Countermeasures are defined to reduce the likelihood of occurrence and impact
of the risks, and contingency plans are prepared to deal with the situation of the risk
actually occurring. Additional risks may become evident during the project, and the
project manager needs to be proactive in their identification and management.

Risks need to be reviewed regularly especially following changes in the project.
These could be changes to the business case or the business requirements, loss of
key personnel, and so on. Events that occur may affect existing risks (including
the probability of their occurrence and their impact), and may lead to new risks.
Countermeasures need to be kept up to date during the project. Risks are reported
regularly throughout the project.

The risk management cycle is concerned with identifying and managing risks
throughout the project lifecycle. It involves identifying risks; identifying their proba-
bility of occurrence and impact should they occur; identifying responses to the risks;
and monitoring and reporting. Table 3.4 describes these activities in greater detail.

3.6 Quality Management in Projects 69

The project manager will maintain a risk repository (this may be a tool or a risk
log) to record details of each risk, including its type and description; its likelihood
and its impact (yielding the risk category); as well as the response to the risk.

3.6 Quality Management in Projects

There are various definitions of “quality” such as Juran’s definition that quality is
“fitness for purpose”. Crosby defined quality as “conformance to the requirements”,
and this definition is often useful in the quality management of projects.

It is fundamental premise in the quality field that it is more cost effective to build
quality into the product, rather than adding it later during the testing phase.
Therefore, quality needs to be considered at every step during the project, and
every deliverable needs to be reviewed to ensure its fitness for purpose. The review
may be similar to a software inspection, a structured walkthrough or another
appropriate methodology.

The project plan will include a section on quality planning for the project
(this may be a separate plan). The quality plan will define how the project