
Chapter 8

Ethnic Differences in Insulin Resistance

as a Mediator of Cancer Disparities

Rebecca E. Hasson and Michael I. Goran

Abstract Ethnic differences in the incidence and prevalence of certain obesity-

related cancers are well established. African Americans have increased risk of

prostate, breast (premenopausal), and colorectal cancer and myeloma, compared

to Caucasians with the lowest rates in Latinos, Asians, and Native Americans. Prior

work in this area suggests that there are distinct ethnic differences in obesity-related

metabolic risk factors for cancer, insulin resistance in particular, that are evident

early in life, and may help explain ethnic differences in the incidence and preva-

lence of obesity-related cancers. The focus of this chapter is to review and discuss

ethnic differences in insulin resistance and its link with other cancer-related met-

abolic risk factors including hyperinsulinemia, insulin-like growth factors, body fat

distribution, adipose tissue biology, low-grade inflammation, non-esterified fatty

acids, and oxidative stress. This chapter places a particular emphasis on ethnic

differences between African Americans and Latinos for two reasons: (1) African

Americans and Latinos are the two largest ethnic minority groups in the USA, and

(2) these populations share a similar propensity for obesity and insulin resistance

but markedly different profiles for obesity-related cancers, creating an informative

comparative contrast. Although the literature is limited by an inconsistency in the

terminology used for various ethnicities, in most cases we refer to Caucasian for

any study using the terms Caucasian, White, or non-Hispanic White; Latino to

describe people of Hispanic, Latino, or Mexican-American descent; African

American to describe people of African, African American, or Black-Caribbean

descent; Asian to describe people of Asian, South Asian, East Asian, and Southeast
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Asian descent or any other specific Asian ethnicity; and Native American to

describe people of American Indian, Pima Indian, Aboriginal, First Nation, or

Alaska Native ethnicity. We also recognize that there may be variation within

these subgroups; however, comprehensive review of this literature is beyond the

scope of this chapter.

Keywords Insulin • Insulin resistance • Hyperinsulinemia • Insulin-like growth

factor • Non-esterified fatty acids • Oxidative stress • Psychological stress • Corti-

sol-induced obesity • Body fat distribution • Intramyocellular lipid • Hepatic fat •

Pancreatic fat • Ectopic fat • Adipose tissue biology

The Scope of the Problem: Obesity and Cancer Disparities

According to the 2010 US Current Population Survey, there are 53 million people

of Latino origin and 41 million African Americans in the USA, comprising 17 %

and 13 % of the total population, respectively. Latinos are the fastest growing ethnic

group in this country adding almost 13 million people to the population and

increasing in size by 41 % in the last decade. Obesity is a significant problem in

both African Americans and Latinos with the most recent National Health and

Nutrition Examination Survey (NHANES) estimates from 2009 to 2010 suggesting

higher rates of overweight and obesity in African American and Latino adults

compared to Caucasians [1]. In adults, 20 years of age and older, African

Americans had the highest age-adjusted rates of obesity (49.5 %), followed by

Mexican Americans (40.4 %), all Latinos (39.1 %), and Caucasians (34.3 %). Of

note, the prevalence of grade 2 [body mass index (BMI) of at least 35 kg/m2] and

grade 3 obesity (BMI greater than or equal to 40 kg/m2) were highest among

African Americans (26 % for grade 2, and 13.1 % for grade 3), compared to

Caucasians (14.4 % for grade 2, and 5.7 % for grade 3) and Latinos (14.9 % for

grade 2, and 5.4 % for grade 3). Although American Indians comprise a smaller

proportion of the total US population (1.2 %), obesity is also a significant problem

in this ethnic group with 39.4 % of American Indian men and women categorized as

obese [2]. Among Asians, this ethnic group is 60 % less likely to be obese compared

to Caucasians; however, there is substantial variation in the prevalence of over-

weight and obesity within this ethnic group [3]. Filipino Americans are 70 % more

likely to be obese as compared to the overall Asian population. Interestingly,

Southeast Asians have one of the highest prevalences of type 2 diabetes in the

USA, yet the prevalence of obesity in this group is 6 % with 30–35 % of Southeast

Asians classified as overweight [4]. In contrast, Chinese, Korean, and Vietnamese

Americans have the lowest rates of overweight (BMI, 25 to <30 kg/m2) and one in

ten Korean and Vietnamese Americans are classified as underweight [3].
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In 2010, pediatric obesity rates in the USA also showed a well-defined disparity

by ethnicity, where 42 % of Latinos, 41 % of African Americans, and 30 % of

Caucasians between the ages of 12 and 19 years were classified as overweight or

obese [5]. Of note, Native American adolescents had the highest prevalence of

obesity than those in all other ethnic groups combined [6]. As a result, obesity-

related complications such as prediabetes and type 2 diabetes are more common in

ethnic minority children and adults compared to Caucasians [7–12]. Specifically,

the risk of diagnosed diabetes is 1.8 times higher among African Americans, and

1.7 times higher among Hispanics compared to Caucasians [13]. Moreover, 16.1 %

of the total adult American Indian population has diagnosed diabetes [13]. A similar

trend is noted in children, with African American, Latino, and Native American

children reporting the highest rates of type 2 diabetes compared to other ethnicities

[11, 12, 14]. The higher risk and prevalence of type 2 diabetes among these ethnic

minority groups have been attributed to more severe insulin resistance and

hyperinsulinemia (relative to Caucasians [8, 15–18]).

There is convincing evidence that overweight and obesity are also associated

with cancers of the kidney, breast, colon, esophagus, endometrium, prostate, and

colorectum, whereas studies on the relation between obesity and other forms of

cancers are less consistent [19–23].

Despite a similar predisposition towards obesity, insulin resistance, and type

2 diabetes among African Americans, Latinos and Native Americans, there are

marked differences in cancer incidence across different ethnic groups [24]. African

Americans have increased risk of certain forms of obesity-related cancers, whereas

for these same outcomes, Latinos and Native Americans appear to be somewhat

“protected.” In support of this hypothesis, data from the Surveillance Epidemiology

and End Results (SEER) Database suggest that African American men have the

highest incidence of cancer (all cancers combined) followed by Caucasians, with

lower cancer rates among Latino, Native American and Asian men [25]. More

specifically, African American men in the USA have the highest rates of prostate

cancer worldwide. The prevalence rate is almost two times higher compared to

Caucasians and Latinos and almost three times higher compared to Native Amer-

icans and Asians [25]. Breast cancer—the most common cancer among women—is

highest among African Americans and Caucasian women compared to Latinas,

Native Americans, and Asians. Interestingly, African American women have the

highest rates of breast cancer before age 40 whereas Caucasians have the highest

rates at older ages [26]. For both men and women, rates of colorectal cancer and

myeloma are highest among African Americans followed by Caucasians with the

lowest rates among Latinos, Native Americans, and Asians [25, 27]. Similar trends

are observed for most other types of cancer, with rates among African Americans or

Caucasians higher than those for other ethnic minority groups including Latinos

[25]. Taken together, distinct differences in obesity-related cancer outcomes persist

between African Americans, Latinos, and Native Americans despite all three
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groups having an increased propensity for obesity and similar risk for type 2 diabe-

tes. This chapter reviews ethnic differences in cancer-related metabolic risk factors,

insulin resistance, and hyperinsulinemia in particular and their potential contribu-

tions to ethnic differences in obesity-related cancer outcomes.

Obesity and Cancer Risk: Potential Mechanisms

Insulin Resistance

Obesity is the strongest contributing factor to insulin resistance and

hyperinsulinemia, and this is evident early in life [8, 15, 28–30]. Many studies

have shown that body fatness is positively associated with circulating fasting

insulin levels in both animals and humans [31]. Insulin is a critical hormone for

regulating metabolism, and its concentration in circulation is carefully coordinated,

varying acutely in response to glucose and meal consumption. Insulin resistance is a

condition in which muscle, fat, and liver cells are less sensitive to the metabolic

effect of insulin. As a result, physiologic actions of insulin are inhibited but can be

compensated for by increased insulin levels in circulation (i.e., hyperinsulinemia)

to clear glucose from circulation [32, 33]. In addition, elevated insulin may

stimulate cellular proliferation in pancreatic beta cells and fat cells, ensuring

additional insulin production and fat storage, respectively [34]. This mechanism

may have substantial advantages because it provides fat cells that can hold on to

ingested fat and prevent its ectopic distribution elsewhere in the body [35,

36]. Thus, obesity results in continuous exposure of body tissues to elevated

background and glucose-stimulated levels of insulin.

One of the leading hypotheses explaining why “fat is bad” relates to the role of

insulin resistance and hyperinsulinemia as the mediating link between obesity and

cancer risk. As mentioned above, besides its metabolic effects, insulin has

promitotic and anti-apoptotic effects that may be tumorigenic [23, 37, 38]. More-

over, increased insulin resistance and hyperinsulinemia have been associated with

increased risk of breast, endometrial, and colon cancer [20, 39–45]. Hence, detailed

studies comparing ethnic differences in insulin resistance and hyperinsulinemia

have been helpful in understanding why certain subgroups of the population are at

increased cancer risk.

Research has consistently demonstrated that African Americans are more insulin

resistant compared to Caucasians, which is only partially explained by greater

overall adiposity in this ethnic group [8, 18, 46–56]. The Insulin Resistance

Atherosclerosis Study (IRAS), a large-scale multicenter epidemiological study,

was the first to provide compelling evidence in support of a metabolic predisposi-

tion towards insulin resistance in African American adults [57]. Compared to
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Caucasians, African Americans had significantly higher fasting and 2-h postpran-

dial insulin concentrations, higher acute insulin responses to glucose, and greater

insulin resistance [57]. These ethnic differences persisted after adjusting for differ-

ences in age, obesity, body fat distribution, self-reported physical activity, and

percent calories from fat and fiber. Data from the NHANES III subsequently

confirmed ethnic differences in mean fasting insulin concentrations between Afri-

can American and Caucasian men and women at each BMI category [55].

Similar to African Americans, large-scale studies of obesity, insulin resistance,

insulin secretion, and beta-cell response in Latino and Native American populations

have consistently reported an increased insulin response to glucose [8, 50, 58–

61]. Glucose-tolerant Native Americans and Latinos were found to have greater

insulin resistance and fasting hyperinsulinemia compared to Caucasians [62–65]. In

addition, both groups were found to have exaggerated early insulin secretory

responses to both intravenous and oral glucose challenges [50, 58, 59, 66,

67]. Others have confirmed that Latino adults have greater fasting and post-

challenge insulin and greater insulin resistance than Caucasians [8, 62].

Studies in children are of increased significance because they allow examination

of potentially underlying biological differences across subgroups of the population

to be performed in the absence of potential confounding factors such as smoking,

alcohol, aging, and menopausal status. Data from the Bogalusa Heart Study were

the first to report increased insulin resistance in African American compared to

Caucasian children based on measures of fasting insulin [68]. Subsequently, other

studies have demonstrated greater insulin resistance and greater acute insulin

response to glucose in African American compared to Caucasian children [30,

69]; these differences were independent of body fat, visceral fat, dietary factors,

and physical activity. A recent study, using a hyperglycemic clamp technique,

supported these observations where overweight African American compared to

Caucasian youth had up to a 75 % higher insulin secretion relative to their insulin

sensitivity [15], an indicator of increased or up-regulated pancreatic beta-cell

responsiveness.

Ethnic differences in insulin resistance have been well documented in Latino,

Asian, and Native American youth, where, independent of overall adiposity, these

ethnic minority groups exhibit more severe insulin resistance but an enhanced

insulin secretory response when compared to Caucasian children [8, 11]. Studies

comparing multiple ethnic groups confirmed greater insulin resistance during an

intravenous glucose tolerance test in Native Americans compared to African

Americans and Caucasians [70]. Another study reported equally greater insulin

resistance assessed via hyperglycemic clamp among African Americans, Latinos,

and Asians than in Caucasians [62]. In addition, Asians were the most insulin

resistant followed by Latinos, African Americans, and Caucasians [62]. In prepu-

bertal children, African American and Latino children were found to be equally

more insulin resistant than Caucasian children [8]. However, in peripubertal

adolescents, obese African Americans were more insulin resistant than Latinos,
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independent of body composition and fat distribution [60]. Pancreatic beta-cell

function and the acute insulin response to a glucose challenge were also higher in

African American than in Latino adolescents, suggesting that ethnic differences in

pubertal induced insulin resistance may be an important contributor to ethnic

differences in insulin resistance [71]. Of interest, the compensatory responses to

insulin resistance were different in African American compared to Latino children

and adolescents [8]. African American children tend to compensate with a higher

acute insulin response to glucose, and this effect was in part due to a reduction in

hepatic insulin extraction [8]. Following the ingestion of oral glucose, lower

extraction rates have also been reported in African American adults [54]. In con-

trast, Latino children and adolescents compensate to the same degree of insulin

resistance with greater second-phase insulin secretion [8]. Both beta-cell secretion

and/or insulin clearance by the liver determine peripheral insulin levels and help to

maintain normal glucose levels in circulation [72]. The mechanisms by which

Native American and Asian populations compensate for insulin resistance is

understudied; nevertheless, increased insulin resistance and secretion as well as

hyperinsulinemia are present among ethnic minority children, adolescents, and

adults compared to Caucasians, and these findings have been confirmed using a

variety of methodologies.

The well-documented ethnic differences in insulin resistance and secretion in

children and adults have been explained in part by genetic, behavioral, and/or

environmental factors. Previous research has reported a positive association

between African genetic admixture and insulin resistance [73]. In contrast, recent

work has demonstrated that socio-behavioral factors including physical activity and

self-reported racial discrimination, but not African genetic admixture, were asso-

ciated with increased cardiometabolic risk (i.e., blood pressure) among African

Americans [74]. Moreover, research in the area of molecular epigenetic mecha-

nisms of gene expression has also suggested that the genome is subject to environ-

mental regulation [75], suggesting that ethnic differences in insulin resistance may

have a gene-environmental origin. Consequently, in addition to nutrition and

physical activity (which is further discussed in the next chapter), research has

begun to investigate the role of the social environment, particularly psychosocial

stress, and its implications for obesity and insulin resistance. The physiological

stress response originates from the hypothalamic-pituitary-adrenal axis and

undergoes a cascade of reactions including the release of corticotrophin-releasing

hormone from the hypothalamus, causing the release of adrenocorticotrophic hor-

mone by the adrenal pituitary, and ultimately the release of cortisol by the adrenal

cortex into circulation [76]. Cortisol levels increase in response to both stressors in

the laboratory [77] and naturalistic social environments [78]. Designed to increase

energy availability in the short term, cortisol acutely impairs insulin secretion and

increases hepatic glucose output [79]. An environment of prolonged glucocorticoid

exposure (i.e., chronic stress) exerts diabetogenic effects by interfering with insulin

action on several different levels [80–82], including a direct inhibition of insulin

secretion from pancreatic beta cells [83], impaired insulin-mediated glucose uptake

[84], and disruption of the insulin signaling cascade in skeletal muscle [85]. Under
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chronic conditions, healthy lean individuals appear able to compensate for

glucocorticoid-induced insulin resistance with increased beta-cell function or

increased insulin release [86–88]. However, in the obese or the insulin-resistant

state, those compensatory mechanisms fail to counteract glucocorticoid-induced

insulin resistance, resulting in hyperglycemia [87, 88]. Hence, prolonged glucocor-

ticoid exposure may further compromise the already lower insulin sensitivity in

obese African Americans by exacerbating the progression towards insulin resis-

tance in these populations. Previous research has demonstrated the negative asso-

ciation between cortisol and obesity in adults [89, 90], and a recent study showed

that cortisol contributes to the reduction in insulin sensitivity over a 1-year period in

overweight Latino children and adolescents [91], underlining the relevance of

reducing glucocorticoid-induced insulin resistance in ethnic minority populations.

Prolonged glucocorticoid exposure also leads to weight gain and visceral fat

accumulation [92–94], not only through behavioral pathways such as increased

food consumption [92, 95, 96] and sedentariness [97–100] but also directly via the

release of neuropeptide Y [93, 96]. Several longitudinal studies have reported a

positive association between psychological stress and BMI in adults [101,

102]. Another study reported that higher levels of psychological stress over a

10-year period predicted significantly greater increases in BMI over time compared

to lower levels of stress, and this relationship was significantly stronger for African

American compared to Caucasian girls [103]. In Latino youth, a significant asso-

ciation between cortisol, total fat mass, and visceral fat accumulation has not found

[91], suggesting that the mechanisms by which cortisol induced obesity and insulin

resistance may differ by ethnicity.

In addition to responding to stressful events, the HPA axis also follows a strong

circadian rhythm [78, 104]. Typically, cortisol levels are high upon waking; reach a

peak about 30–40 min after waking; and then decline throughout the remainder of

the day, reaching a nadir around midnight [104, 105]. The scientific literature

examining ethnic differences in cortisol is not extensive but demonstrates divergent

diurnal cortisol patterns for African Americans compared to Caucasians [106–

110]. African Americans tend to have flatter diurnal cortisol slopes, with lower

morning levels and higher evening levels, than Caucasians [106–110]. These find-

ings have been replicated across studies of adolescents [107], pregnant women

[110], adults [108, 111], and elderly populations [109]. Two studies examining

ethnic differences in cortisol diurnal patterns in normal-weight African American,

Latino, and Caucasian children and adolescents also reported flatter morning-to-

evening cortisol slopes among African Americans and lower evening cortisol levels

for Latinos relative to Caucasians [107, 112]. Deviations from the typical diurnal

patterns have important implications for insulin resistance [113]. Specifically,

flattened diurnal patterns previously reported in chronically stressed individuals

are associated with insulin resistance and cancer-related metabolic risk factors (i.e.,

inflammation) [113]. Hence, greater exposure to psychosocial and environmental

stressors (e.g., socioeconomic burden and racial discrimination) in African Amer-

ican populations may contribute to the increased obesity and insulin resistance,

hyperinsulinemia, and subsequent cancer risk in this population.
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Hyperinsulinemia and the IGF-1 Pathway

The direct effects of insulin resistance on cancer risk are unclear and likely do not

solely explain the increased cancer risk among African Americans compared to

Latinos and Native Americans since all three ethnic minority groups appear to be

similar in degree of insulin resistance. Accordingly, the effect of insulin resistance

is postulated to be mediated by the effects of chronic hyperinsulinemia on insulin-

like growth factor (IGF)-1 bioactivity [23]. IGF-1 is a growth factor that is

regulated by growth hormone levels [114, 115], present in circulation, and has

insulin-like properties and functions [116]. The bioactivity of IGF-1 is determined

by the circulating IGF-1 and IGF-binding protein (BPs) produced by the liver as

well as paracrine effects of IGF-1, IGFBPs, and IGFBP proteases [23]. Insulin can

also affect IGF-1 bioactivity via increasing IGF-1 secretion, IGF-1/IGFBP-3,

IGFBP-3 proteolysis, and secretion of IGFBP-1 and IGFBP-2 and increased respon-

siveness of cells to IGF-1 and other growth factors. Numerous studies suggest that

high level of IGF-1 is a risk factor for several cancers including breast, prostate,

colon, and lung cancer [117–122].

IGF-1 bioactivity has been implicated in carcinogenesis as a function of its

ability to stimulate the differentiation and proliferation of myoblasts as well as

inhibit apoptosis [38]. Moreover, increasing evidence suggests that chronic

hyperinsulinemia increases the risk of colon and endometrial cancer [20]. Thus,

chronic exposure to high levels of insulin and IGF-1 is hypothesized to mediate

many cancer risk factors [23], and as a result the IGF/insulin system has been

suggested as a potential target for cancer therapy [37].

While obesity status is known to correlate with serum IGF-1 levels [123, 124],

studies have reported an independent effect of ethnicity on IGF-1 bioactivity in

children and adults, potentially explaining ethnic specific differences in cancer risk.

Previous research has reported higher levels of IGF-1 and IGFBP-3 in African

Americans compared to Caucasian and Latino adults, independent of adiposity

[125]. Another study reported race by gender differences where African American

females had higher IGF-1 levels compared to Caucasians with similar IGF-1 levels

in males in both ethnic groups [126]. The lower IGF-1 levels in Latinos relative to

African American have also been shown in prepubertal females [127].

It is important to note that previous studies have been inconsistent with respect to

the relationships between obesity and circulating levels of IGF-1 [128]. Studies

among healthy adults have reported a null association [129–131], a positive asso-

ciation [132], an inverse association [128, 133–135], and a nonlinear association

[136, 137] between BMI and IGF-1 levels. However, data from studies examining

ethnic differences in the relationship between obesity and circulating IGF-1 have

shown more consistent trends and may help to explain the abovementioned incon-

sistencies in obesity–IGF relationships. In a multiethnic cohort study of 200,000

adults in Los Angeles and Hawaii, researchers reported a decline in plasma IGF-1

levels with increasing BMI in Latinos and Asians; this decline was attenuated in

Caucasians and absent in African Americans [138]. After adjustment for age and
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BMI, African Americans had the highest IGF-1 bioactivity compared to other

ethnic groups. Taken together, there appears to be a progressive increase in IGF-1

levels with increasing obesity status in African Americans compared to a decline in

IGF-1 with increasing obesity in other ethnic minority groups, particularly Latinos.

Ethnic differences in IGF-1 bioactivity among children are generally similar to

those observed in adults. It has been shown that African American prepubertal

females have higher IGF-1 levels compared to Caucasian and Latino females [125,

127]. An inverse relationship between IGF-1 and IGFBP-3 with total fat mass and

body fat distribution has been reported in overweight Latino children, whereas

others have demonstrated a positive association between total body fat and IGF-1

levels in both African American and Caucasian children [139, 140]. These findings

were not explained by diet, physical activity, socioeconomic status, or adiposity but

were related to the degree of African admixture [141], suggesting a potential

genetic basis for this difference. Taken together, these results demonstrate that

African American children and adults have the highest levels of IGF-1 and exhibit a

positive relationship between IGF-1 and obesity, likely contributing to the

increased risk of obesity-related cancers in this population.

A possible biological mechanism mediating the association between obesity and

IGF-1 may be through the effect of growth hormone. Typically, obesity results in

lower circulating IGFBP-1 and IGFBP-2 levels, leading to an increased negative

feedback by free IGF-1 on pituitary growth hormone secretion and a decreased

IGF-1 synthesis [142]. Given the positive association between obesity and IGF-1

levels in African Americans, it is possible that the growth hormone–IGF axis may

be regulated differently in this population compared to other ethnic groups. Another

possible mechanism may be through the effects of cortisol on IGF-1 and growth

hormone levels. IGF-1 is mainly derived from the liver, which also is the sole site of

splanchnic cortisol production, which suggests a close interaction between cortisol

and IGF-1 [143]. Previous research has reported a negative association between

cortisol and IGF-1 in obese Latino children and adolescents [80]. Hence, high

cortisol and low IGF-1 may act in concert to reduce cancer risk in Latino children

and adolescents. A final mechanism centers on the relationship between IGF-1,

IGFBP-1, and body fat distribution. A recent study identified a modifying effect of

ethnicity on the relationship between IGF-1 and subcutaneous fat as well as IGFBP-

1 and hepatic fat in overweight African American and Latino adolescents, respec-

tively [144]. IGF-1 and IGFBP-1 were inversely correlated with BMI, total fat

mass, visceral fat, and hepatic fat, while IGFBP-1 was inversely correlated with

subcutaneous fat. These relationships did not differ by ethnicity; however, the

relationship between IGF-1 and subcutaneous fat, as well as IGFBP-1 and hepatic

fat, was stronger in African Americans compared to Latinos [144]. These results

suggest that the relationship between IGF-1, IGFBP-1, and body fat distribution

differs among African American and Latino adolescents, which may contribute to

the higher IGF-1 levels and subsequent cancer risk in African Americans. Hence, a

more in-depth discussion regarding the role of body fat distribution and its associ-

ation with cancer risk is given in the section below.
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Body Fat Distribution

Visceral Fat

The location of body fat is important, especially with regard to how it might affect

insulin resistance. Visceral fat (adipose tissue inside the abdominal cavity) in

particular has been hypothesized to be one of the major factors linking increased

obesity to increased insulin resistance and subsequent cancer risk mainly due to the

effects of free fatty acids released from visceral fat into the hepatic portal vein with

direct exposure to the liver [145]. In addition, several studies have found that

insulin sensitivity is negatively associated with adipose stores in the abdominal

region [146–151], particularly visceral fat, and this is consistent across age and

ethnicity [152, 153], with one notable exception [154]. Increases in visceral adipose

tissue in Native American adults do not explain the greater insulin resistance and

hyperinsulinemia in this population when compared to equally obese

Caucasians [154].

Emerging evidence however suggests that there are ethnic differences in the

relationships between BMI, waist circumference, percent body fat, and visceral fat.

Much research has focused on comparisons between Caucasians and Asians, with

greater visceral fat in Southeast Asian women compared with their Caucasian

counterparts even at the same BMI [155–158]. In addition, Latino children and

adults also have greater visceral fat compared to similarly obese Caucasians [146,

159]. In contrast, several studies have reported lower amounts of visceral fat for a

given waist circumference, BMI, or waist-to-hip ratio in African American com-

pared to Caucasian women [152, 160–163]. One study confirmed similar BMIs and

waist circumference measurements in middle-aged and older African American

men and women compared with Caucasians and Latinos but lower visceral fat (total

visceral fat and measured at the L4L5 spinal level) in African Americans. Other

studies confirmed these findings and consistently reported ethnic differences in fat

distribution between African Americans and Caucasians even after significant

weight gain [279] and weight loss [164, 165]. Moreover, these differences are

evident before puberty, both cross-sectionally and longitudinally, with a lower

growth-related increase in visceral adipose tissue in African Americans compared

to Caucasians [166, 167]. Taken together, these data suggest that visceral fat is

associated with insulin resistance; however, the lower volumes of visceral fat

previously reported in African Americans do not appear to explain the greater

insulin resistance and subsequent cancer risk in this population. On the other

hand, African Americans tend to have more subcutaneous fat, which may provide

a better explanation for ethnic differences in cancer-related outcomes.

174 R.E. Hasson and M.I. Goran



Subcutaneous Fat

Although some studies suggest that visceral fat plays a larger role in the develop-

ment of insulin resistance [146, 147], other studies in adults suggest that subcuta-

neous fat has a significant impact on metabolic disease risk given its larger volume

and functional characteristics, making it more susceptible to inflammation and

subsequent deposition of ectopic fat [149, 168]. More specifically, subcutaneous

fat has two distinct compartments, the deep and superficial depots, which differ in

their contribution to metabolic disease risk [169, 170]. For example, a study in lean

and obese adults found that deep subcutaneous fat and visceral fat, but not super-

ficial subcutaneous fat, were inversely correlated with insulin sensitivity as mea-

sured by euglycemic clamp [169]. At the same time, recent studies have identified

ethnic differences in the distribution of deep and superficial subcutaneous fat with

Asians reporting the lowest BMI, but the largest accumulation of visceral fat and

deep subcutaneous fat when compared to Caucasian, African American, and Latino

adults [171–174]. In another study, higher amounts of deep subcutaneous fat were

reported in Native American and Asian adults compared to Caucasians [172]. With

respect to African Americans, higher levels of subcutaneous fat have been consis-

tently reported across populations of African descent including residents in the

USA, the Caribbean, South America, or Europe [175]. Taken together, these

findings suggest that ethnic differences in deep and superficial subcutaneous fat

could partially explain ethnic differences in insulin sensitivity and secretion. More

importantly, the greater volumes of subcutaneous fat and the previously reported

stronger relationship between this fat depot and IGF-1 in African Americans offer

another potential explanation for the greater insulin resistance and cancer risk

previously reported in this ethnic group.

Intramyocellular Lipid

More recently evidence suggests that fat deposition outside of adipose tissue (e.g.,

in muscle, liver, or pancreas) contributes to increased insulin resistance [176–

183]. Intramyocellular lipid, for example, has been shown to be a major determi-

nant of insulin resistance in adults [179], obese individuals [176, 178], and obese

adolescents [183]. Several studies have also reported an inverse relationship

between intramyocellular lipid and insulin sensitivity in inactive individuals, inde-

pendent of total body fat in both animal [184] and human models [185]. Reductions

in intramyocellular lipid content have also been implicated in the improvements of

insulin sensitivity in response to a short-term hypocaloric diet in both

normoglycemic and type 2 diabetic patients [186]. Similar improvements in insulin

sensitivity have also been observed in parallel with intramyocellular lipid depletion

in morbidly obese subjects after surgical treatment of obesity [187]. These findings
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highlight the importance of intramyocellular lipid as a metabolically active fat

depot that influences insulin resistance independent of total body fat.

Few studies have examined ethnic differences in intramyocellular lipid in adults.

One study in Asian and Caucasian men reported higher intramyocellular lipid

content in Asians compared to age- and BMI-matched Caucasians [178]. Interest-

ingly, intramyocellular lipid in Asians was not related to insulin sensitivity or

adiposity; this relationship was present in Caucasians [178]. Similar differences

by ethnicity were reported between African Americans and Caucasians, with

intramyocellular lipid content related to insulin sensitivity and adiposity in Cauca-

sians, but not African Americans [188]. Another study in Native Americans also

noted that intramyocellular lipid did not predict a reduction in peripheral or hepatic

insulin sensitivity [189]. Hence, intramyocellular lipid content does not appear to

explain or contribute to the increased insulin resistance in ethnic minority adults. To

date, the relationship between intramyocellular lipid content and insulin sensitivity

in Latino adults has not been studied.

Many more ethnic comparison studies of intramyocellular lipid content have

been conducted in overweight and obese youth. One recent report demonstrated that

African Americans and Latinos have more intramyocellular lipid than Caucasians,

even after controlling for BMI and visceral fat [181]. Another study in African

American, Latino, and Caucasian children observed an inverse relationship

between intramyocellular lipid and markers of inflammation; however, the majority

of these relationships were eliminated after controlling for BMI and subcutaneous

and visceral fat [181], suggesting that other fat depots may be more strongly

associated with low-grade inflammation and insulin resistance in ethnic minority

groups. To our knowledge there are no studies examining intramyocellular lipid in

Native American or Asian children. Taken together, these studies suggest that

increases in intramyocellular lipid may contribute to insulin resistance in an ethnic

specific manner; however, the documented correlation between intramyocellular

lipid, subcutaneous, visceral, and hepatic fat makes it difficult to tease apart the

exact influence of each fat depot [177, 181, 190, 191]. Hence, additional studies

comparing the contribution of intramyocellular, subcutaneous, and visceral fat are

warranted to better understand the relationship between body fat distribution and

observed ethnic differences in insulin resistance and subsequent cancer risk in

ethnic minority populations.

Hepatic Fat

Numerous studies have documented inverse associations between hepatic fat,

insulin sensitivity, and pancreatic beta-cell function [171, 192–197]. In a previous

study of normal-weight, overweight, and obese Caucasian adolescents, those with

hepatic steatosis had lower insulin sensitivity and a twofold greater prevalence of

metabolic syndrome compared to those without hepatic steatosis [196]. In another

study in both Canadian Caucasian and Native American adolescents, those with
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type 2 diabetes had higher hepatic fat compared to those without type 2 diabetes;

moreover, hepatic fat was negatively associated with insulin sensitivity [197]. A US

study that included Caucasian, African American, and Asian adolescents found that

obese adolescents with nonalcoholic fatty liver disease (NAFLD) had a lower

pancreatic beta-cell function compared to those who were obese and without

NAFLD [193]. Others have confirmed these relationships in obese Latino adoles-

cents where those with elevated hepatic fat (>5.5 %) had a significantly lower

insulin sensitivity and higher acute insulin response to intravenous glucose com-

pared to those with lower hepatic fat [192]. These results suggest that hepatic fat is

associated with metabolic abnormalities including insulin resistance and the dele-

terious effects of hepatic fat on insulin resistance appear consistent across different

ethnic groups [171, 194, 195, 198, 199].

When making ethnic comparisons of hepatic fat content, similar to visceral fat,

both African American adolescents and adults have lower amounts of hepatic fat

compared to Latinos and Caucasians [200–202]. Nevertheless, the relationship

between hepatic fat and insulin resistance appears to be stronger in this ethnic

group. In one study, hepatic fat, not visceral fat, was inversely associated with

insulin sensitivity and the effect of high hepatic fat (>5.5 %) compared to low

hepatic fat was more pronounced in African American compared to Latino children

[192]. In Latinos, high hepatic fat was associated with a 24 % lower insulin

sensitivity, whereas in African Americans, high hepatic fat was associated with a

49 % lower insulin sensitivity [195]. These results suggest a stronger relationship

between hepatic fat and insulin resistance in African Americans. Similar studies

have not been performed in children belonging to other ethnic groups. Taken

together, these findings suggest that for African Americans who have greater

volumes of hepatic fat, this depot may contribute to increased insulin resistance.

However, for the majority of African Americans who tend to have extremely low

volumes of hepatic fat, this depot is not likely to be a major contributor to the

increased insulin resistance and subsequent cancer risk in this population.

Pancreatic Fat

Accumulation of fat in the pancreas has also been associated with insulin resistance

and hyperinsulinemia in both normal-weight and obese/type 2 diabetic individuals;

this relationship appears to be independent of total body fat [195, 199, 203]. More-

over, pancreatic fat has been used as a marker of pancreatic beta-cell dysfunction,

especially in Latinos [199]. A recent study examining ethnic differences in pancre-

atic fat determined that when comparing Caucasian, African American, and Latino

adults at similar levels of adiposity, Latinos had a twofold greater volume of

pancreatic fat compared to African Americans; Latinos and Caucasians had similar

levels of pancreatic fat [199].

Studies in children and adolescents are limited, and no studies to date have been

conducted in Asians or Native Americans. In African American and Latino
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overweight and obese adolescents and young adults [195, 198], one study reported

greater hepatic and pancreatic fat volumes in those with prediabetes compared to

those with normal glucose tolerance [195]. However, pancreatic fat predicted

prediabetes in African Americans whereas hepatic fat predicted prediabetes in

Latinos [195]. These results suggest that ethnic differences in the relationship

between ectopic fat depots and metabolic disease risk are present with pancreatic

fat playing a larger role in the metabolic abnormalities previously reported in

African Americans. Of note, visceral, hepatic, and pancreatic fat are highly corre-

lated; hence, future studies should aim to examine fat depots in an effort to elucidate

the exact contributions of each fat depot, particularly pancreatic fat, to the increases

in insulin resistance and subsequent cancer risk in African American populations.

Adipose Tissue Biology

There is increasing evidence to suggest that differences in body fat accumulation

and patterning may result from fundamental differences in adipose tissue biology

[145, 204]. The increase in body fat content with obesity can occur by either an

increase in adipocyte cell size or number or the spillover of triglycerides to ectopic

tissues [145, 204]. When adipocyte cell size increases with progressing obesity, it is

an indication of the inability of adipocytes to expand in number to accommodate the

extra triglyceride accumulation [204]. Increased adipocyte cell size is also related

to greater insulin resistance independent of total body fat [67]. Larger adipocytes

have also been shown to be associated with more lipid deposition in visceral and

hepatic fat depots (but not muscle), and this may also contribute to insulin resis-

tance [205]. Furthermore, it is now evident that adipose tissue is infiltrated with

macrophages [206]. One animal study has shown that accumulation of excess body

fat in response to excess caloric intake leads to increasing fat cell size and then to

adipocyte death, with the excess fat deposited in the liver [207].

Despite the important role that adipose tissue biology appears to play in the link

between obesity, insulin resistance, and related cancer risk, there are no studies to

date examining potential ethnic differences in the metabolic risk factor. Some

studies have compared adipocyte cell size in African Americans and Caucasians

but have not shown any difference in subcutaneous abdominal or gluteal adipocytes

from obese women [208]. There are no data in the literature comparing ethnic

differences in adipose tissue biology in Latinos and the potential relationship

between adipocyte cell size and spillover of triglycerides to other ectopic storage

depots like liver and pancreas. It is plausible that Latinos may have larger fat cells

than African Americans that are more likely to die due to greater macrophage

infiltration, thus leading to the greater likelihood of ectopic fat accumulation in

Latinos. On the other hand, the higher circulating IGF-1 present in African Amer-

icans may contribute to a greater likelihood for adipocyte proliferation during

obesity [209], leading to less likelihood for spillover of fat into ectopic depots;

the opposite scenario is present in Latinos (lower obesity-related IGF-1 profile).

178 R.E. Hasson and M.I. Goran



Thus, differences in the obesity–IGF pathway and adipocyte differentiation/growth

factor pathways may also elucidate mechanisms explaining ethnic differences in

body fat accumulation, body fat patterning, and subsequent cancer risk; additional

research is warranted.

Adipose Tissue Inflammation

In conjunction with the accumulation and distribution of fat throughout the body,

another potential explanation for ethnic differences in insulin resistance and sub-

sequent cancer risk involves inflammation. Studies have shown that obesity is

associated with a state of chronic low-grade inflammation, which is correlated

with increased insulin resistance, and impaired glucose metabolism [210–

213]. Although it was once believed that adipose tissue was only involved in the

storage of free fatty acids as triglycerides, researchers now recognized that this

tissue also acts as a dynamic endocrine organ, contributing to the chronic low-grade

inflammation seen during obesity. For instance, during excess weight gain there is a

marked increase in adipose tissue inflammation, which has been shown to be

associated with insulin resistance seen during obesity [214]. Obesity is character-

ized by elevated circulating levels of acute-phase proteins, for example leptin,

tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and decreased adiponectin

[215]. Although the cause and effect nature of these proteins on insulin action is not

clear, it has been suggested that these inflammatory markers affect disease pro-

cesses in part by causing or exacerbating insulin resistance. Epidemiologic studies

have demonstrated a positive association between acute-phase proteins and insulin

resistance [216]. For example, leptin serves as part of an “adipostat” mechanism,

whereby increased fat mass sets in motion responses that will eventually reduce

adiposity. Hence, the reduced responsiveness to leptin that accompanies obesity

may play a role in causing obesity and also contribute to insulin resistance [217,

218]. Another example is TNF-alpha, which has been shown to impair insulin

signaling by activating serine/threonine kinases in skeletal muscle and

downregulate glucose transporter type 4 (GLUT 4) in adipose tissue [216]. Circu-

lating levels of IL-6 increase hepatic glucose production and stimulate the release

of free fatty acids; however IL-6 also appears to have anti-inflammatory actions

since it decreases TNF-alpha [219]. Adiponectin is exclusively produced in adipose

tissue, and in humans its production is slightly higher in subcutaneous fat than

visceral fat [220]. Adiponectin levels are negatively correlated with BMI and body

fat, and this protein has been shown to play a role in hepatic insulin sensitivity and

whole-body metabolism [221]. Both experiments in humans [222] and in animals

[223] have demonstrated that low-grade inflammation predicts the development of

insulin resistance.

Recent studies have also examined low-grade inflammation from adipose tissue

biopsies in young adults. Specifically, subcutaneous adipose tissue biopsies

performed in Caucasian, African American, Latino, and Native American adults

have shown that in addition to elevations in plasma markers of inflammation,
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increases in pro-inflammatory immune cells in adipose tissue are associated with

systemic and local inflammation [224–227]. In another study, subcutaneous adipose

tissue inflammation was assessed by the presence of crown-like structures in obese

African American and Latino young adults. Individuals with subcutaneous adipose

tissue inflammation had greater levels of visceral fat, hepatic fat, TNF-alpha, and

fasting insulin and glucose and a lower beta-cell function compared to those

without subcutaneous inflammation [226].

Although there are no studies in children involving adipose tissue biopsies, one

study in obese youth observed macrophages and lymphocytes in perivascular

positions in the adipose tissue [228] while another study in children found macro-

phages in the subcutaneous adipose tissue of normal-weight, overweight, and obese

children as young as 5 years of age [229]. Studies using plasma markers of

inflammation have also found strong associations with insulin resistance in over-

weight and obese youth from various ethnic groups. For example, a study in boys

found that those who were overweight had higher serum levels of IL-6, IL-8,

interferon-γ, monocyte chemoattractant protein (MCP)-1, and C-reactive protein

(CRP) compared to those of normal weight [230]. Compared to normal-weight

Latino children, higher levels of CRP and IL-1beta were reported in obese Latino

children [210]. Another study in African American and Latino peripubertal females

demonstrated that CRP was positively related to BMI, percent body fat, fasting

insulin, and acute insulin response to glucose as well as negatively correlated with

insulin sensitivity [211]. One of the few recent studies including Asian children

found that, after controlling for adiposity, Asians had higher levels of CRP, A1C,

and insulin levels compared to Caucasian and African American children [213]. To

our knowledge, there is only one study examining inflammation in Native Amer-

ican children. This study found elevated levels of CRP that were associated with

increased adiposity, insulin resistance, worsening lipid profile, and decreased

adiponectin levels [231]. Findings from these studies in children suggest that

obesity is accompanied by chronic levels of low-grade inflammation starting at

an early age into adulthood, possibly contributing to increased insulin resistance in

these populations.

There are only sparse data on inflammatory profiles in multiethnic cohorts in the

USA. These studies suggested that inflammation may be higher in African Amer-

icans [232–234], although not all studies showed this trend [235]. Specifically, CRP

concentrations were higher in African Americans than in Caucasians in several

large studies [232, 234, 236]. The Women’s Health Study reported higher levels of

CRP in African Americans than in Caucasians [232]. In contrast, NHANES data did

not show this trend and instead observed higher CRP in Latina women compared

with Caucasians [237]. In another study that measured visceral fat, the negative

association between visceral adipose tissue and adiponectin was stronger in African

Americans [237]. However, overall body fatness may still have played a role in

inflammation because subcutaneous fat also had significant independent association

with CRP in this ethnic group. Of note, African American women consistently

exhibited greater markers of inflammation even after controlling for both L4L5

visceral and subcutaneous fat [159]. More importantly, the greater inflammation
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among these African American women was present despite similar or lower self-

reported rates of smoking and similar or higher self-reported rates of taking lipid-

lowering medications and nonsteroidal anti-inflammatory drugs [159]. The mech-

anisms contributing to greater low-grade inflammation in African Americans are

unclear, but possibilities include higher intrinsic activity of cytokine pathways

and/or different behavioral influences (i.e., high-fat diet and physical inactivity)

on inflammation.

Aside from intrinsic cytokine production pathways, lifestyle factors such as diet

or exercise may play a role in the altered visceral fat/body fat–inflammatory

biomarker relationship. An observational study found that diets high in glycemic

load were associated with increased concentrations of inflammation and that the

dose–response gradient between glycemic load and inflammation was more exag-

gerated in overweight women [238]. Other dietary factors that have been shown to

increase low-grade inflammation include sucrose, artificial sweeteners, fats, and

processed meats [239]. In contrast, fiber, fruits, and vegetables have been associated

with reduced inflammation [240]. Previous research has reported eating patterns

reflecting higher consumption of fat and calories and lower consumption of fruits

and vegetables in African Americans [241], which may contribute to the greater

inflammation in this ethnic group. Moreover, African American women in

particular have been shown to have lower rates of physical activity participation

compared to Caucasians [242–245], which may independently contribute to inflam-

mation. Hence, studies examining whether ethnic differences in exercise or dietary

patterns account for the altered visceral fat–inflammation relationships among

African Americans are warranted to better understand the increased cancer risk in

this population.

Non-esterified Fatty Acids

Studies in obese adults have documented a relationship between adipose tissue

insulin resistance and non-esterified fatty acids (NEFA) [246]. Given that increased

hepatic fat, intramyocellular lipid [247, 248], and inflamed adipose tissue [249] are

associated with increased whole-body insulin resistance, it is possible that NEFA

play a mediating role in the link between ethnic differences in ectopic fat, inflam-

mation, and insulin resistance. However, most of the research in this area has been

conducted in children. Studies in overweight and obese youth have observed

elevations in fasting NEFA and NEFA levels after an oral glucose or intravenous

lipid challenge. Longitudinal data has confirmed an inverse relationship between

fasting NEFA and insulin secretion following a 30-min oral glucose challenge in

children with normal glucose tolerance [250]. Other researchers have shown that

when compared to normoglycemic Latino children, those with prediabetes had

higher fasting NEFA that were also inversely related to insulin secretion [195].

The earliest work in this field with regard to ethnicity first showed that after an

intravenous lipid infusion, elevations in NEFA were associated with increased
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insulin resistance in African American and Caucasian adolescents [251]. Of note,

ethnicity did not modify the relationship between NEFA and insulin resistance

despite lower insulin sensitivity in African Americans compared to Caucasians

[251]. Another study reported ethnic differences in NEFA during an intravenous

glucose tolerance test [181, 252]. Independent of insulin secretion, African Amer-

ican women and girls had lower NEFA than Caucasian women and girls [181,

252]. To our knowledge, there are no studies examining these relationships in Asian

or NA children, warranting their inclusion in future studies. Hence, NEFA contrib-

utes to insulin resistance and ethnicity does not appear to modify this relationship.

However, African Americans tend to have lower NEFA suggesting that this mech-

anism does not explain the increased insulin resistance and subsequent cancer risk

in this population.

Oxidative Stress

The potential role of oxidative stress in carcinogenesis is rapidly evolving, which

may also link obesity and insulin resistance to increased cancer risk. Oxidative

stress occurs when there is excessive production of reactive oxygen species (ROS)

or insufficient in vivo antioxidant defense mechanisms [253]. This results in

damage to DNA as well as lipid peroxidation, protein modification, membrane

disruption, and mitochondrial damage [218, 254]. Data support the notion that

increased formation of ROS may play an important role in carcinogenesis as well

as atherosclerosis, diabetes, and neurodegenerative diseases [255]. Although

ROS-induced lipid peroxides are usually described as harmful to cellular systems,

they are also critical mediators of apoptosis [256] and have been shown to inhibit

cancer growth in a number of experimental studies [257]. More specifically, factors

that increase lipid peroxidation could also increase cancer and other degenerative

diseases in people with innate or acquired high levels of ROS. However, factors that

increase lipid peroxidation can increase apoptosis of precancerous and cancerous

cells and thus protect against cancer, particularly in people with a low innate

baseline level of ROS [256]. Thus, antioxidants may protect against certain cancers

if background levels of ROS are higher in “at-risk” populations, but not if back-

ground ROS levels are lower because this may place a greater importance on the

suppression of oxidation-induced apoptosis [256].

The relationship between obesity, insulin resistance, and oxidative stress has not

been widely explored, but some supporting evidence suggests a link. Obese adults

have elevated levels of lipid peroxidation that is reversible with weight reduction

[255]. Metabolic conditions associated with insulin resistance are associated with

elevated lipid peroxidation, including hypertension [255], impaired glucose toler-

ance [258, 259], and type 2 diabetes [258, 260–268]. In addition, increased oxidized

low-density lipoprotein or susceptibility to oxidation has been reported in patients

with type 2 diabetes [261, 262, 265, 268, 269]. Small dense low-density lipoprotein

particles, which are also a component of the metabolic syndrome, are more
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susceptible than larger ones to oxidative modification [270, 271]. Finally, lipid

peroxidation and oxidative stress, induced by elevations in glucose and possibly

free fatty acid levels, may play a key role in causing insulin resistance by their

ability to activate stress-sensitive signaling pathways [272].

Relatively few studies have compared lipid peroxidation and oxidative stress in

different ethnic groups. In adults with type 2 diabetes, increased levels of lipid

peroxidation were found in African Caribbeans compared to Caucasians [273]. Pre-

vious work showed greater lipid peroxidation in Latinos compared to Caucasians

with [274] and without type 2 diabetes [275]. In another study, lipid peroxidation

was higher in African Americans than in Caucasians during hyperlipidemia induced

by lipid infusion [276]. Of note, recent data from the multiethnic IRAS cohort

reported lower urinary F2-isoprostane levels, a marker of lipid peroxidation, among

African American compared with Caucasians and Latinos [277, 278]. When strat-

ified by BMI, ethnic differences in F2-isoprostance levels were not observed among

participants with normal BMI but appeared among overweight participants and

increased among obese participants [278]. Hence, additional studies comparing the

markers of oxidative stress are warranted to better understand its potential contri-

butions to ethnic differences in cancer risk.

Summary and Conclusions

Obesity is a predisposing risk factor for certain forms of cancer, and the link

between obesity and cancer appears to be particularly complex. Obesity is associ-

ated with increased insulin resistance, and hyperinsulinemia may play a critical role

in influencing cancer risk. It is notable that obesity-related cancer risk differs

dramatically by ethnicity. African Americans appear particularly prone to

obesity-related cancers including prostate, breast, and colorectal and myeloma,

whereas Latinos appear relatively protected. Based on previous literature, it is

plausible that ethnic differences in the insulin response to obesity may contribute

to ethnic differences in obesity-related cancer profiles. Obese Latinos seem more

prone to an ectopic fat pattern (increased visceral, hepatic, and pancreatic fat), and

this might be driven by greater fat cell size, greater likelihood of adipocyte

macrophage infiltration and cell death, and decreased capacity for fat cells to

differentiate, possibly due to a lower obesity-related IGF-1 profile. On the other

hand, obese African Americans seem more prone to some forms of obesity (sub-

cutaneous fat pattern) and insulin-related cancers compared to Latinos and have

less likelihood of ectopic fat. These differences could be driven by the much higher

obesity-related hyperinsulinemia (especially in response to glucose) and IGF-1

profile in African Americans. This is important because it suggests that reducing

levels of insulin in obesity in this population as a strategy to prevent obesity-related

cancers may have the unwanted side effect of reducing fat cell proliferation and

promotion of hepatic fat, and other ectopic fat deposition, unless it is combined with

behavioral interventions to influence energy balance (reduce energy intake and
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increase physical activity) and subsequent weight status. Additional factors that

contribute to increased insulin resistance and cancer risk in African Americans

include chronic glucocorticoid exposure, chronic inflammation, and possibly

greater oxidative stress. Hence, additional therapies that reduce multiple cancer-

related metabolic risk factors in African American children and adults are

warranted.

In summary, the causes and consequences of obesity and insulin resistance differ

by ethnicity of people and much more work is needed to establish the specific

mechanisms linking obesity and insulin to various cancer outcomes. These mech-

anistic issues are fundamental to understanding the basic pathophysiology of why

increased body fat and hyperinsulinemia are related to cancer outcomes in some

ethnic groups but not others and will ultimately have widespread implications for

the application of more individualized prevention and treatment approaches to

reduce the disparity in obesity-related cancers.
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