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{michael.francois,pascal.berthome}@insa-cvl.fr

2 Univ. Perpignan Via Domitia, DALI F-66860, LIRMM UMR 5506 F-34095,
Perpignan, France

david.defour@univ-perp.fr

Abstract. A novel pseudo-random bit generator (PRBG), combining
three chaotic logistic maps is proposed. The IEEE 754-2008 standard for
floating-point arithmetic is adopted and the binary64 double precision
format is used. A more efficient processing is applied to better extract
the bits, from outputs of the logistic maps. The algorithm enables to
generate at each iteration, a block of 32 random bits by starting from
three chosen seed values. The performance of the generator is evaluated
through various statistical analyzes. The results show that the output
sequences possess high randomness statistical properties for a good se-
curity level. The proposed generator lets appear significant cryptographic
qualities.

Keywords: PRBG, Pseudo-random, Logistic map, Chaotic map, IEEE
754-2008.

1 Introduction

The generation of pseudo-random bits (or numbers) plays a crucial role in a large
number of applications such as statistical mechanics, numerical simulation, gam-
ing industry, communication or cryptography [1]. The term “pseudo-random” is
used to indicate that, the bits (or numbers) appear to be random and are gen-
erated from an algorithmic process so-called generator. From a single initial
parameter (or seed), the generator will always produce the same pseudo-random
sequence. The main advantages of such generators are the rapidity and the re-
peatability of the sequences and require less memory for algorithm storage. Some
fundamental methods are typically used to implement pseudo-random number
generators, such as: non-linear congruences [2], linear feedback shift registers
(LFSR) [3], discrete logarithm problem [4], quadratic residuosity problem [5],
cellular automata [6], etc. In general, the security of a cryptographic pseudo-
random number generator (PRNG), is based on the difficulty to solve the re-
lated mathematical problem. That usually makes the algorithm much slower,
due to heavy computational instructions. For example, the Blum Blum Shub
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algorithm [5] has a security proof, assuming the intractability of the quadratic
residuosity problem. The algorithm is also proven to be secure, under the as-
sumption that the integer factorization problem is difficult. However, the algo-
rithm is very inefficient and impractical unless extreme security is needed. The
Blum-Micali algorithm [4] has also an unconditional security proof based on the
difficulty of the discrete logarithm problem, but is also inefficient.
Another interesting way to design such generators is connected to chaos the-
ory [7]. That theory focuses primarily on the description of these systems that
are often very simple to define, but whose dynamics appears to be very confused.
Indeed, chaotic systems are characterized by their high sensitivity to initial con-
ditions and some properties like ergodicity, pseudo-random behavior and high
complexity [7]. The extreme sensitivity to the initial conditions (i.e. a small
deviation in the input can cause a large variation in the output) makes chaotic
system very attractive for implementing pseudo-random number generators. Ob-
viously, chaos-based generators do not enjoy universal mathematical proofs com-
pared with cryptographic ones, but represent a serious alternative that needs to
be exploited. Moreover, during the last decade, several pseudo-random number
generators have been proposed [8–14]. However, a rigorous analysis is necessary
to evaluate the randomness level and the global security of the generator.

In this paper, a new PRBG using a standard chaotic logistic map is presented.
It combines three logistic maps involving binary64 floating-point arithmetic and
generates a block of 32 random bits at each iteration. The novelty of the paper
is mainly based on the extraction mechanism of bits from the outputs of chaotic
logistic maps. The produced pseudo-random sequences have successfully passed
the various statistical tests. The assets of the generator are: high sensitivity to
initial seed values, high level of randomness and good throughput. The paper is
structured as follows, a brief introduction on floating-point arithmetic and the
used chaotic logistic map is given in Sect. 2. Section 3 presents a detailed descrip-
tion of the algorithm. The statistical analysis applied on two groups of generated
pseudo-random sequences is given in Sect. 4. The global security analysis of the
PRBG is achieved in Sect. 5, before concluding.

2 Background

2.1 IEEE 754-2008 Standard

Digital computers represent numbers in sets of binary digits. For real num-
bers, two formats of representation can be distinguished: fixed-point format and
floating-point format. The fixed-point format is designed to represent and manip-
ulate integers or real numbers with a fixed precision. In the case of real numbers
with variable precision, the representation is made through the floating-point for-
mat. There exists a standard that defines the arithmetic formats, the rounding
rules, the operations and the exception handling for floating-point arithmetic.

The IEEE 754-2008 [15] is the current version of the technical standard, used
by hardware manufacturer to implement floating-point arithmetic. Among them,
binary32 (single precision) and binary64 (double precision) are the two most
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widely used and implemented formats. As the generator described herein relies
exclusively on binary64, we will only consider this format in the rest of the
article.

Binary64 comprises two infinities, two kinds of NaN (Not a Number) and
the set of finite numbers. Each finite number is uniquely described by three
integers: s a sign represented on 1 bit, e a biased exponent represented on 11
bits and m a mantissa represented on 52 bits, where the leading bit of the
significand is implicitly encoded in the biased exponent (see Fig. 1). To make
the encoding unique, the value of the significand m is maximized by decreasing
e until either e = emin or m ≥ 1. After this process is done, if e = emin and
0 < m < 1, the floating-point number is subnormal. Subnormal numbers (and
zero) are encoded with a reserved biased exponent value. Interested readers will
find a good introduction to floating point arithmetic and issues that arise while
using it in [16].

sign   exponent             mantissa

63 62 52 51 03132

               mantissa0 mantissa1

Fig. 1. Floating-point representation in double precision format (64 bits)

2.2 The Chaotic Logistic Map

The generator uses a chaotic logistic map given by:

F (X) = λX(1−X) , (1)

with λ between 3.57 and 4.0 [17]. This function has been widely studied [18]
and several pseudo-random number generators have already used such logistic
map [12, 17, 19–22]. To avoid non-chaotic behavior (island of stability, oscilla-
tions, ...), the value of λ is fixed to 3.9999 that corresponds to a highly chaotic
case [23]. The logistic map can be used under the iterative form:

Xn+1 = 3.9999Xn(1−Xn), ∀n ≥ 0 , (2)

where the initial seed X0 is a real number belonging to the interval ]0, 1[. All the
output elements Xn are also real numbers in ]0, 1[.

3 The Proposed Generator

The main idea of the PRBG is to combine several chaotic logistic maps and
carefully arrange them in the same algorithm in order to increase the security
level. A block of 32 random bits per iteration is produced using the following
three logistic maps:
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Fig. 2. Graphical description of the PRBG. In each mantissa1, the used bit (in xor) is
moved at the end of chain and such process is not explicit on the scheme.

Xn+1 = 3.9999Xn(1−Xn), ∀n ≥ 0 , (3)

Yn+1 = 3.9999Yn(1− Yn), ∀n ≥ 0 , (4)

Zn+1 = 3.9999Zn(1− Zn), ∀n ≥ 0 . (5)

For the three chaotic maps, the same value of λ is chosen to maintain its surjec-
tivity in the same interval. The graphical description of the generator is shown
in Fig. 2. The technical details of the implementation in C, using definitions
from the file ieee754.h are given in Algorithm 1. The algorithmic principle of the
PRBG consists in three steps:

1. Line 2: three different seed values X0, Y0 and Z0 are chosen to initiate the
generation process (see Sect. 3.1).

2. Line 3–8: the results of the 30 first iterations are discarded to decorrelate
the beginning of the output sequences (see Sect. 3.2).

3. Line 9–50: a loop of size N is started, with N being the length of the output
sequence in block of 32 bits, then:
(a) line 10–12: iterate the three logistic maps,
(b) line 13–21: in each case, the bits of mantissa0 and mantissa1 are saved

in two variables,
(c) line 23–48: start another loop of size 32, and one bit is selected at a

time from each mantissa1, according to the value of mantissa0. For more
security, the value of the mantissa0 of Zn is used to index the bits of the
mantissa1 of Xn, the value of the mantissa0 of Xn to index the bits of
mantissa1 of Yn, and the value of mantissa0 of Yn to index those of the
mantissa1 in Zn. Indeed, the bits of mantissa0 form a 20-bit integer, and
by making a regressive modulo from 32, that allows to fix the position
of the bit to be used. Thus, the three selected bits are combined by a
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Algorithm 1. The PRBG algorithm
Require: X0;Y0;Z0;N ;
Ensure: A sequence of N blocks of 32 bits
1: Declaration: union ieee754 double ∗F1, ∗F2, ∗F3;
2: Initialization: i = 1; j = 1;X = X0;Y = Y0;Z = Z0;
3: while i ≤ 30 do
4: X ← 3.9999 ×X × (1−X)
5: Y ← 3.9999 × Y × (1 − Y )
6: Z ← 3.9999 × Z × (1 − Z)
7: i ← i+ 1
8: end while
9: while j ≤ N do
10: X ← 3.9999 ×X × (1−X)
11: Y ← 3.9999× Y × (1− Y )
12: Z ← 3.9999× Z × (1− Z)
13: F1 ← (union ieee754 double ∗) & X
14: F2 ← (union ieee754 double ∗) & Y
15: F3 ← (union ieee754 double ∗) & Z
16: M0X ← F1− > ieee.mantissa0
17: M1X ← F1− > ieee.mantissa1
18: M0Y ← F2− > ieee.mantissa0
19: M1Y ← F2− > ieee.mantissa1
20: M0Z ← F3− > ieee.mantissa0
21: M1Z ← F3− > ieee.mantissa1
22: k ← 32
23: while k > 0 do
24: l ← k − 1
25: PX ← M0Z mod k
26: PY ← M0X mod k
27: PZ ← M0Y mod k
28: Bx ← (M1X >> (PX) & 1)
29: By ← (M1Y >> (PY ) & 1)
30: Bz ← (M1Z >> (PZ ) & 1)
31: B ← (Bx +By +Bz) mod 2 {output bit}
32: bx ← (M1X >> (l) & 1)
33: by ← (M1Y >> (l) & 1)

34: bz ← (M1Z >> (l) & 1)
35: if bx �= Bx then
36: M1X ← M1X ˆ(1 << (l))
37: M1X ← M1X ˆ(1 << (PX))
38: end if
39: if by �= By then
40: M1Y ← M1Y ˆ(1 << (l))
41: M1Y ← M1Y ˆ(1 << (PY ))
42: end if
43: if bz �= Bz then
44: M1Z ← M1Z ˆ(1 << (l))
45: M1Z ← M1Z ˆ(1 << (PZ))
46: end if
47: k ← k − 1
48: end while
49: j ← j + 1
50: end while



234 M. François, D. Defour, and P. Berthomé

xor to give the output bit (line 31). From each mantissa1, the selected
bit is then permuted with the bit at the end of chain to not be used
again (line 35–46). At the end of this loop, a block of 32 random bits is
produced. Such mechanism is definitely costly for the algorithm, but it
allows to better decorrelate the outputs of the PRBG, especially in case
of a possible collision.

3.1 Seed Selection

The input and output values of the logistic map belong to ]0, 1[. To increase the
robustness of the generator, three identical logistic maps are then combined. To
preserve such robustness, one must avoid constructing identical chaotic trajecto-
ries, that may occur when using inappropriate initial seeds. To understand such
mechanism, it is important to know how a difference δ between two computed
values Xn and Yn at a given iteration n will propagate to the next iteration.
Without loss of generality, we can assume that Yn = Xn(1 + δ). From (2) we
know that:

Xn+1 = λXn(1 −Xn) and Yn+1 = λYn(1− Yn) ,

which is equivalent to:

Yn+1 = Xn+1

(
1 +

δ − 2δXn − δ2Xn

(1 −Xn)

)
.

Therefore, the difference between Yn+1 and Xn+1 is:

Yn+1 −Xn+1 = λδXn(1 − 2Xn − δXn) .

We can deduce that, the smallest difference between Yn+1 and Xn+1 is reached
when δ = (1 − 2Xn)/Xn. Finally, as Xn approaches 2−1 we obtain:

lim
Xn→2−1

(Yn+1 −Xn+1) = −λδ2

4
.

To avoid identical representations, this difference must be representable in bi-
nary64, that means λδ2/4 must be greater than 2−53. By hypothesis, we set
λ = 3.9999, then δ > 2−26.5. In this case, such value of δ allows to start with
different chaotic trajectories, but it does not prevent a possible collision of ele-
ments at a certain rank n, which is a rare phenomenon but not impossible. In
binary64 floating-point arithmetic, the computed value (1 − x) is equal to 1.0
for any x ∈]0, 2−53[. This means that, for an initial seed selected in the interval
]0, 2−53[ the computed value of (2) is equivalent to λXn. To avoid such problem,
initial seeds have to be chosen in the interval ]2−53, 2−1[.

Overall, the first seed X0 is a random floating-point number representable
in binary64 in the interval ]2−53, 2−1[. The two other seeds Y0 and Z0 are con-
structed by randomly choosing two binary64 floating-point numbers. However,
the minimum gap between each pair of seeds must be greater than 2−53 to avoid
identical representations.
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3.2 Initial Chaotic Behavior

The trajectory of the logistic map, from a small starting value (here 10−15 ≈
2−49.82) is plotted in Fig. 3. This value can also be considered as the minimum
gap between two initial seeds. The aim is to analyze the evolution of this gap,
through the iterative process. One can remark that, for the first iterations the
trajectory is not chaotic. Indeed, a small initial difference between two seeds,
spreads slowly toward the leading bits of mantissa. This problem does not occur,
when the initial seeds are very different. However, to decorrelate the beginning of
the output sequences in both cases, it is necessary to discard the first iterations
before starting the generation. Thus, to decorrelate the outputs and increase the
security level of the PRBG, we choose that the generation will start from the
31st iteration.
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Fig. 3. Trajectory of the chaotic logistic map given in (2), for X0 = 10−15 and n = 200

4 Statistical Analysis

The output sequences of a PRBG must have a high level of randomness and be
completely uncorrelated from each other. Therefore, a statistical analysis based
on the randomness level and correlation should be carefully conducted to prove
the quality of the sequences.
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4.1 Randomness Evaluation

The analysis consists in evaluating the randomness quality of the sequences pro-
duced by the generator. Therefore, the sequences are evaluated through statisti-
cal tests suite NIST (National Institute of Standards and Technology of the U.S.
Government). Such suite consists in a statistical package of fifteen tests devel-
oped to quantify and to evaluate the randomness of binary sequences produced
by cryptographic random or pseudo-random number generators [24]. For each
statistical test, a set of pvalue is produced and compared to a fixed significance
level α = 0.01. A pvalue of zero indicates that, the tested sequence appears to be
not random. A pvalue larger than α means that, the tested sequence is consid-
ered to be random with a confidence level of 99%. Therefore, a sequence passes a
statistical test for pvalue ≥ α and fails otherwise. If at the same time more than
one sequence is tested, each statistical test defines a proportion η as the ratio of
sequences passing successfully the test relatively to the total number of tested
sequences T (i.e. η = n[pvalue ≥ 0.01]/T ). The proportion η is compared to an
acceptable proportion ηaccept which corresponds to the ratio of sequences that
should pass the test. The range of acceptable proportions, excepted for the tests
Random Excursion-(Variant) is determined by using the confidence interval de-
fined as (1− 0.01)± 3

√
0.01(1− 0.01)/T [24]. To analyze various aspects of the

sequences, the NIST tests are applied on: individual sequences, the concatenated
sequence and resulting sequences.

1. Individual sequences: all the produced sequences are individually tested and
the results are given as ratio of success relatively to the threshold ηaccept.
Such test indicates the global randomness level of generated sequences.

2. Concatenated sequence: a new sequence of binary size 32 × N × T is con-
structed by concatenating all the individual sequences. The randomness level
of the constructed sequence is also analyzed with the NIST tests. In the case
of truly uncorrelated random sequences, the concatenated sequence should
also be random.

3. Resulting sequences: are the sequences obtained from the columns, if the
produced sequences are superimposed on each other. Thus, N resulting se-
quences of binary size 32×T are constructed, by collecting for each position
1 ≤ j ≤ N , the 32-bit bloc of each sequence. The NIST tests are used to
analyze such resulting sequences. This approach is interesting especially for
sequences generated with successive seed values and can show whether there
is some hidden linear structures between the original sequences.

4.2 Correlation Evaluation

The correlation evaluation is achieved in two different ways. Firstly, the corre-
lation between the generated sequences is analyzed globally by computing the
Pearson’s correlation coefficient of each pair of sequences [25]. Consider a pair
of sequences given by: S1 = [x0, . . . , xN−1] and S2 = [y0, . . . , yN−1]. Therefore,
the corresponding correlation coefficient is:
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CS1,S2 =

N−1∑
i=0

(xi − x) · (yi − y)

[
N−1∑
i=0

(xi − x)2
]1/2

·
[
N−1∑
i=0

(yi − y)2
]1/2 , (6)

where xi and yi are 32-bit integers, x =
N−1∑
i=0

xi/N and y =
N−1∑
i=0

yi/N the mean

values of S1 and S2, respectively. For two uncorrelated sequences, CS1,S2 = 0. A
strong correlation occurs for CS1,S2 � ±1. The coefficients CS1,S2 are computed
for each pair of produced sequences and the distribution of the values is presented
by a histogram.

In the second approach, a correlation based directly on the bits of sequences
is analyzed. The Hamming distance between two binary sequences (of the same
length M) is the number of places where they differ, i.e., the number of positions
where one has a 0 and the other a 1. Thus, for two binary sequences Sb

1 and Sb
2,

the corresponding Hamming distance is:

d(Sb
1, S

b
2) =

M−1∑
j=0

(xj ⊕ yj) , (7)

where xj (resp. yj) are the elements of Sb
1 (resp. Sb

2). In the case of truly random
binary sequences, such distance is typically around M/2, which gives a propor-
tion (i.e. d(Sb

1, S
b
2)/M) of about 0.50. For each pair of produced sequences, this

proportion is determined and all values are represented through a histogram. The
interest of both approaches is to check the correlation for generated sequences
mainly from nearby or successive seed values.

4.3 Analysis of Pseudo-Random Sequences

In the case of very distant seed values, the chaotic trajectories are very different,
which usually allows to obtain good pseudo-random sequences. That is why the
analysis is achieved on sequences produced from nearby or successive seed values.
Here, two groups of pseudo-random sequences are considered. The binary length
of each sequence is 32×N with N = 1024 and the total number of sequences per
group is T = 15000. The first group (GRP1) is generated from the seed values
X0 = 1 × 10−15, Y0 = 2 × 10−15 and Z0 = 3 × 10−15 where each new sequence
is obtained with the same values of X0, Y0 and by incrementing of 10−15 the
last seed value Z0. For the second group (GRP2), the same strategy is applied
to the starting seeds X ′

0 = 0.325873724698325, Y ′
0 = 0.325873724698326 and

Z ′
0 = 0.325873724698327. A simple loop on the latest seed values Z0 and Z ′

0

allows to generate the two groups of sequences GRP1 and GRP2. The aim is to
show whatever the structure of the initial seeds, the PRBG produces sequences
of high quality.
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Results of Randomness Evaluation. The results of NIST tests obtained
on the two groups of 15000 sequences are presented in Table 1 and Table 2,
respectively. For individual sequences (resp. resulting sequences), the acceptable
proportion should lie above ηaccept = 98.75% (resp. η′accept = 98.04% ). For
the tests Non-Overlapping and Random Excursions-(Variant), only the smallest
percentage of all under tests is presented. In the case of individual sequences,
the Universal test is not applicable due to the size of sequences. Table 1 and
Table 2 show that, all the tested sequences pass successfully the NIST tests.

Table 1. Results of the NIST tests on the 15000 generated sequences of GRP1. The
ratio η (resp. η′) of pvalue passing the tests are given for individual (resp. resulting)
sequences and the pvalue is given for the concatenated sequence.

Test Name Indiv. Seq. Concat. Seq. Result. Seq.
η Result pvalue Result η′ Result

Frequency 99.06 Success 0.338497 Success 99.31 Success
Block-Frequency 99.11 Success 0.673515 Success 98.92 Success
Cumulative Sums (1) 99.08 Success 0.589087 Success 99.21 Success
Cumulative Sums (2) 99.00 Success 0.408891 Success 99.21 Success
Runs 98.93 Success 0.343876 Success 99.02 Success
Longest Run 98.99 Success 0.417880 Success 99.02 Success
Rank 98.86 Success 0.788352 Success 98.63 Success
FFT 98.90 Success 0.609162 Success 98.24 Success
Non-Overlapping 99.26 Success 0.012083 Success 98.04 Success
Overlapping 99.00 Success 0.175000 Success 98.92 Success
Universal - - 0.366163 Success 98.43 Success
Approximate Entropy 98.93 Success 0.138980 Success 98.14 Success
Random Excursions 98.75 Success 0.100729 Success 98.12 Success
Random Ex-Variant 98.75 Success 0.043821 Success 97.71 Success
Serial (1) 98.91 Success 0.158943 Success 99.12 Success
Serial (2) 99.06 Success 0.367717 Success 98.92 Success
Linear Complexity 98.98 Success 0.975515 Success 98.73 Success

Results of Correlation Evaluation. Concerning the correlation analysis, the
Pearson’s correlation coefficient between each pair of the 15000 produced se-
quences is computed. For each group, the corresponding histogram is presented
in Fig. 4. One can see that, the two histograms have the same shape and show
that the computed coefficients are very close to 0. For the group GRP1 (resp.
GRP2), around 99.02% (resp. 99.00%) of the coefficients have an absolute value
smaller than 0.08. The histograms show that, the correlation between the pro-
duced sequences is very small. About the correlation analysis using the Hamming
distance, the histograms are presented in Fig. 5. The distributions show that,
all the proportions are around 50%. For the group GRP1 (resp. GRP2), around
98.45% (resp. 99.98%) of the coefficients belong to ]0.488, 0.512[. The values for
GRP2 are better, due to the entropy of seed values.
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Table 2. Results of the NIST tests on the 15000 produced sequences of GRP2. The
ratio η (resp. η′) of pvalue passing the tests are given for individual (resp. resulting)
sequences and the pvalue for the concatenated sequence is also given.

Test Name Indiv. Seq. Concat. Seq. Result. Seq.
η Result pvalue Result η′ Result

Frequency 99.09 Success 0.408718 Success 98.73 Success
Block-Frequency 99.14 Success 0.458897 Success 98.63 Success
Cumulative Sums (1) 99.16 Success 0.239274 Success 98.63 Success
Cumulative Sums (2) 99.00 Success 0.494016 Success 99.02 Success
Runs 98.99 Success 0.025894 Success 98.82 Success
Longest Run 98.92 Success 0.281249 Success 99.12 Success
Rank 99.01 Success 0.806842 Success 99.12 Success
FFT 98.75 Success 0.673608 Success 98.73 Success
Non-Overlapping 99.27 Success 0.012472 Success 98.04 Success
Overlapping 99.02 Success 0.711625 Success 99.12 Success
Universal - - 0.149652 Success 98.53 Success
Approximate Entropy 99.02 Success 0.532585 Success 98.33 Success
Random Excursions 96.29 Success 0.060350 Success 98.52 Success
Random Ex-Variant 97.53 Success 0.134550 Success 98.73 Success
Serial (1) 98.92 Success 0.291906 Success 99.60 Success
Serial (2) 99.04 Success 0.196383 Success 99.51 Success
Linear Complexity 98.99 Success 0.215418 Success 99.60 Success

5 Security Analysis

The global security analysis of the generator is carefully conducted. The analysis
is based on all the critical points allowing to detect weaknesses in the generator.
The investigated points are: the size of key space, key sensitivity, quality of out-
puts, weak or degenerate keys, speed performance and period length of the logistic
map. Even if all the existing attacks can not be tested, the PRBG must resist to
some basic-known attacks. In the present case, the resistance to three basic attacks
(brute-force attack, differential and guess-and-determine attacks) is discussed.

5.1 Key Space

It is generally accepted that, today a key space of size smaller than 2128 is not
secure enough. A good PRBG should have a large key space, to have a high
diversity of choices for the generation. The proposed generator combines three
chaotic logistic maps. A key is then a combination of three initial seeds, used
to generate a pseudo-random bit sequence. We have set the conditions for seed
selection in Sect. 3.1. The seed X0 is a binary64 floating-point number selected
from the interval ]2−53, 2−1[. That corresponds to 252 different combinations
of mantissa times 51 different values for the exponent, which gives 51 × 252

different seeds. The seeds Y0 and Z0 are selected such that there is a minimum
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GRP2 

GRP1

 

 

 

 

 

 

 

 0

 2

 4

 6

 8

 10

 12
Fr

eq
ue

nc
y 

(i
n 

%
)

 0.05 0−0.05−0.1  0.1

Correlation coefficient value

Fig. 4. Histogram of Pearson’s correlation coefficient values on interval [−0.1, 0.1] for
the group GRP1 (resp. GRP2)

GRP2 

GRP1

 

 

 

 

 

 

 

 

 0.485  0.49   0.505  0.51  0.515
 0

 2

 4

 6

 8

 10

 12

 14

 0.5

Fr
eq

ue
nc

y 
(i

n 
%

)

 0.495

Hamming distance

Fig. 5. Histogram of Hamming distance on interval [0.485, 0.515] for the group GRP1
(resp. GRP2)



A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 241

gap of 2−49.82 among each seeds. This means that Y0 is selected in a space of
51 × 252 − 249.82 possible seeds and Z0 in a space of 51 × 252 − 250.82 different
numbers. The total space of seeds is approximately 2173.

5.2 Key Sensitivity

The sensitivity related to the key (i.e. the seeds) is an essential aspect for chaos-
based PRBG. Indeed, a small deviation in the starting seeds should cause a
large change in the pseudo-random sequences. Actually in the test of correla-
tion (Sect. 4.3), the seed sensitivity was already tested due to the successive
seed values. To bring an additional analysis, large pseudo-random sequences
of size N = 5000000 (i.e. 160000000 random bits) are considered. A sequence
S1 is produced by using the seed values X0 = 1 × 10−15, Y0 = 2 × 10−15

and Z0 = 4 × 10−15. Two others sequences S2 and S3 are produced with
X ′

0 = X0, Y
′
0 = Y0, Z

′
0 = 3 × 10−15 and X

′′
0 = X0, Y

′′
0 = Y0, Z

′′
0 = 5 × 10−15,

respectively. The set of the three produced sequences is denoted KS1. The same
approach is achieved from another set of sequences denoted KS2. The first se-
quence is generated with X0 = 0.328964524728163, Y0 = 0.423936234268352
and Z0 = 0.267367904037358. The two supplementary sequences are obtained
by decrementing and incrementing of 10−15 the last seed. In both cases, the
analysis is done using the linear correlation coefficient of Pearson, the correla-
tion coefficient of Kendall [26] and the Hamming distance. The same analysis is
conducted on the sets KS1 and KS2 by using the algorithm proposed by Patidar
et al. [2009], with the parameter λ = 3.9999. As the algorithm uses only two
chaotic logistic maps, for each set of sequences only the last two seed values are
considered. The results are given in Table 3 and show that, for the proposed
algorithm the correlation coefficient values are close to 0 and the proportion of
elements that differ in sequences are around 50%. The results show also that,
the sequences are highly correlated for the Patidar’s algorithm.

Another test of correlation using the randomness of the sequences is achieved.
The test is to concatenate the three generated sequences and evaluate the ob-
tained sequence through the NIST tests. The results are presented in Table 4. In
each case, all the pvalue are larger than 0.01 for the current PRBG. Therefore,
the concatenated sequence can be viewed as a random sequence, which prove
that the sequences S1, S2 and S3 are completely uncorrelated. The results of the
Patidar et al. algorithm are added to show that, it is not enough just to combine
multiple chaotic logistic maps to build a secure generator.

5.3 Quality of Pseudo-Random Sequences

The strength of any generator is undeniably related to the quality of its outputs.
Indeed, whichever way the algorithm is designed, the produced sequences must
be strong (i.e. random, uncorrelated and sensitive). In the literature, various
statistical tests are available to analyze the randomness of sequences. In fact,
the NIST proposes a battery of tests, that must be applied on the binary se-
quences [24]. One can also find other batteries of tests, such as TestU01 [27] or
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Table 3. Pearson’s and Kendall’s correlation coefficients and Hamming distance (in
term of proportion) between large output sequences S1, S2, S3 produced from slightly
different initial seeds

PRBG Set Test S1/S2 S1/S3 S2/S3

Proposed
algorithm

Pearson Corr. −0.000422 −0.000201 0.000127
KS1 Kendall Corr. −0.000150 −0.000437 −0.000141

Ham. Dist. 0.499985 0.500064 0.500033

Pearson Corr. −0.000423 0.000235 0.000583
KS2 Kendall Corr. −0.000116 −0.000025 0.000199

Ham. Dist. 0.500002 0.500055 0.499931

Patidar et al.
algorithm

Pearson Corr. 0.329043 0.329214 0.329024
KS1 Kendall Corr. 0.233170 0.231704 0.231653

Ham. Dist. 0.333416 0.333362 0.333366

Pearson Corr. 0.329542 0.329417 0.330055
KS2 Kendall Corr. 0.231709 0.232413 0.231693

Ham. Dist. 0.333284 0.333324 0.333354

the DieHARD suites [28]. Here, the NIST tests are adopted and all the produced
sequences passed successfully the tests. The correlation between the outputs is
evaluated and the results showed that, only a very small (or negligible) corre-
lation exists between sequences. The proposed PRBG is also very sensitive to
starting seeds, even when using slightly different seed values. That shows the
quality of the pseudo-random sequences produced by the proposed generator.

5.4 Weak or Degenerate Keys

A crucial element for any PRBG is to ensure that, the output sequences are
always produced from strong keys. Here, a careful study of the chaotic regions
from the seed space, is necessary for avoiding weak keys. However, the first task
is to choose a parameter λ of the logistic map, that contributes to have an ex-
cellent chaotic behavior. To avoid similar chaotic trajectories, the seed values
must be chosen in ]2−53, 2−1[, with a representable difference in binary64. The
various statistical tests clearly showed the quality of tested sequences, from suc-
cessive seed values. Thus, these regions are considered as homogeneously chaotic,
allowing to choose independently the seed values in ]2−53, 2−1[. Therefore, the
proposed PRBG should not present weak or degenerate keys.

5.5 Speed Analysis

Beyond the randomness aspect, it is also necessary to have a fast generator.
Indeed, in real-time applications, the temporal constraint in the execution of a
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Table 4. Results of the NIST tests on the concatenated sequence obtained from the
sequences of the set KS1 (resp. KS2) for the proposed and Patidar et al. algorithm

Test Name Proposed algo. Patidar et al. algo.
KS1 KS2 KS1 KS2
pvalue pvalue pvalue pvalue

Frequency 0.888272 0.189097 0.218594 0.933359
Block-Frequency 0.013966 0.409511 1.000000 1.000000
Cumulative Sums (1) 0.851269 0.250461 0.343496 0.679001
Cumulative Sums (2) 0.723802 0.375858 0.284913 0.757413
Runs 0.239428 0.196619 0.000000 0.000000
Longest Run 0.341867 0.124501 0.000000 0.000000
Rank 0.690933 0.468857 0.611764 0.788756
FFT 0.704824 0.837336 0.000000 0.000000
Non-Overlapping 0.014372 0.017263 0.000000 0.000000
Overlapping 0.544746 0.513071 0.000000 0.000000
Universal 0.693543 0.467674 0.000000 0.000000
Approximate Entropy 0.534042 0.087565 0.000000 0.000000
Random Excursions 0.016321 0.014831 0.013588 0.000622
Random Ex-Variant 0.014383 0.013285 0.125754 0.038526
Serial (1) 0.532881 0.383964 0.000000 0.000000
Serial (2) 0.508815 0.828262 0.000000 0.000000
Linear Complexity 0.956706 0.189871 0.817657 0.400909

process is as important as the result of the process. Thus, for a fast generator,
the domain of its applications can be extended. The speed performance analysis
is achieved on a work computer with processor: Intel(R) Xeon(R) CPU E5410
@ 2.33 GHz × 4. The source code is compiled using GCC 4.6.3 on Ubuntu
(64 bits). The proposed generator enables to produce around 7 Gbits/s. This is
an advantage for applications requiring a good security level and a fast execution
time.

5.6 Period Length of the Logistic Map

Here, the period length of the logistic map is discussed. A PRBG should have
a reasonably long period before its output sequence repeats itself. The idea is
to build the trajectories formed by the different seed values and then compute
the lengths of cycles. In a period-p cycle, Xk = F p(Xk) for some Xk, where F p

is the pth iterate of F . To analyze the evolution of cycles of the logistic map,
the mantissa bits are modified by using the GNU MPFR library [29]. Figure 6
shows the curve representing the length of longest (resp. smallest) cycles, when
the mantissa bits are varied between 10 and 25. One can see that, the logistic map
has very small cycle lengths. For example under binary32 format, the computed
longest (resp. smallest) cycle length is equal to 3055 (resp. 1). Such format is
not appropriate for generating pseudo-random numbers. To obtain long periods,
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it is necessary to consider more bits in the mantissa, in other words increase
the precision. Thus, by using the binary64 format, the cycle lengths should be
much longer. Indeed, the length of the longest cycle is 40037583 (≈ 225.25),
while for the smallest cycle is 2169558 (≈ 221.04). In this case, only a given set
of randomly chosen seeds is tested due to the large size of the binary format.
Approximately we found the same cycle lengths than those given in [30]. For
the proposed PRBG, three logistic maps are used during the generation process.
In this way, the length of the global resulting cycle is given by the LCM of
the three cycle lengths. As one can see, the best way to use this PRBG and
then avoid the problem of short period, is to produce sequences of small sizes.
However, if needed, long sequences can be obtained by concatenating several
ones. In the case of maximum security, it might be better to limit the length of
output sequences to the smallest cycle length.
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Fig. 6. The curve “MaxC” (resp. “MinC”) representing the length of longest (resp.
smallest) cycles, when the mantissa bits vary between 10 and 25

5.7 Basic Attacks

Here, the resistance of the generator against three basic attacks, such as brute-
force attack, differential and guess-and-determine attacks is discussed.

Brute-force Attack. A brute-force attack [7] is a standard attack that can
be used against any PRNG. The strategy consists in checking systematically all
possible keys, until the correct key is found. In the worst case, all the combina-
tions are tested, that necessitates to try all the key space. On average, just half
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of the key space needs to be tested to find the original key. Such an attack might
be utilized when it is not possible to detect any weakness in the algorithm, that
would make the task easier. To resist this kind of attack, the size of the key
space must be large. It is generally accepted that, a key space of size larger than
2128 is computationally secure against such attack. In this case, the size of the
key space is around 2173, which clearly allows to resist the brute force-attack.

Differential Attack. Such technique of cryptanalysis was introduced by Bi-
ham and Shamir [31]. As a chosen-plaintext attack, its principle is to analyze
and exploit the effect of a small difference in input pairs on the difference of
corresponding output pairs. This strategy allows to find the most probable key
that was used to produce the pseudo-random sequence. Given two inputs I and
I ′ (e.g. X0, Y0, Z0 and X ′

0, Y
′
0 , Z

′
0) and the corresponding outputs O and O′, the

most commonly used differences are:

1. Subtraction modulus: the differences related to both inputs and outputs are
defined by Δin = |I − I ′| and Δout = |O−O′|, respectively. Here, for inputs
the difference can be computed between (X0, X

′
0), (Y0, Y

′
0) and (Z0, Z

′
0) and

for outputs, between the bits of pseudo-random sequences.
2. Xor difference: defined by Δin = I ⊕ I ′ and Δout = O ⊕ O′.

The diffusion aspect on the initial conditions is then measured by a differential
probability. However, in the design of the algorithm, the decorrelation of out-
puts was taken into account by choosing the seed values in ]2−53, 2−1[, and by
making 30 iterations before starting the generation. Moreover, even with slightly
different seeds, the produced sequences are almost independent from each other.
Therefore, the proposed PRBG should resist to the differential attack.

Guess-and-determine Attack. Such kind of attack is proven to be effective
against word-oriented stream ciphers [32]. As it comes from the name, in guess-
and-determine attack, the strategy is to guess firstly the value of few unknown
variables of the cipher and then, the remaining unknown variables are deduced by
iterating the system a few times and by comparing the output sequence with the
original sequence. If these two sequences are the same, then the guessed values
are correct and the generator is broken, otherwise the attack should be repeated
with new guessed values. It seems that the attack discussed in reference [32]
can not be directly applied on the proposed algorithm, which is not of the same
family of involved stream ciphers. Indeed, the internal structure of the cipher
algorithm is completely different from a Linear Feedback Shift Register (LFSR).
Here the algorithm starts with three seed values and generates a 32-bit bloc after
each iteration. An alternative way to apply such attack would be to guess and
fix the two seed values X0 and Y0, then iterate the algorithm to find the seed Z0.
Knowing that the algorithm is very sensitive to starting seeds, one should try
in the worst case 257.67 different values. Once all the comparisons made without
success, the two initial seeds (X0 and Y0) are guessed again and the process is
repeated in the same way until success. However, this approach has almost the
same complexity than a classic brute-force attack.
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6 Conclusions

A novel pseudo-random bit generator based on the combination of three chaotic
logistic maps was presented. The generator uses the IEEE 754-2008 standard for
floating-point arithmetic and especially the binary64 double precision format.
For three given initial seeds, the algorithm produces a pseudo-random sequence
formed of 32-bit blocks. The main strength of the generator is based on a special
mechanism allowing to effectively extract the random bits. Such a generator has
shown its ability to produce a very large number of pseudo-random sequences.
The advantages of this PRBG are: a high sensitivity related to the initial seed
values, a high randomness level of output sequences and the rapidity of the
algorithm. The proposed scheme can be considered to be a serious alternative
for generating pseudo-random bit sequences.

References

1. Sun, F., Liu, S.: Cryptographic pseudo-random sequence from the spatial chaotic
map. Chaos Solit. Fract. 41(5), 2216–2219 (2009)

2. Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number gener-
ator. Statistische Hefte 27(1), 315–326 (1986)

3. Rose, G.: A stream cipher based on linear feedback over GF (28). In: Boyd, C.,
Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 135–146. Springer, Heidelberg
(1998)

4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

6. Tomassini, M., Sipper, M., Zolla, M., Perrenoud, M.: Generating high-quality ran-
dom numbers in parallel by cellular automata. Future Gener. Comput. Syst. 16(2),
291–305 (1999)
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