
Generalized Finite Automata

over Real and Complex Numbers

Klaus Meer and Ameen Naif

Computer Science Institute, BTU Cottbus-Senftenberg
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany

meer@informatik.tu-cottbus.de, naif@tu-cottbus.de

Abstract. In a recent work, Gandhi, Khoussainov, and Liu [7] intro-
duced and studied a generalized model of finite automata able to work
over arbitrary structures. As one relevant area of research for this model
the authors identify studying such automata over partciular structures
such as real and algebraically closed fields.

In this paper we start investigations into this direction. We prove
several structural results about sets accepted by such automata, and
analyse decidability as well as complexity of several classical questions
about automata in the new framework. Our results show quite a diverse
picture when compared to the well known results for finite automata over
finite alphabets.

1 Introduction

Finite automata represent one of the fundamental elementarymodels of algorithms
in Computer Science. There is an elaborated theory about problems that can be
solvedbothwith and concerning finite automatawhich nowusually is taught in ba-
sic theory courses. When dealing with algorithmic questions about finite
automata like thewordproblem, the emptiness andfiniteness problems, the equiva-
lence problemorminimization of such automata, such questions are treatedby ana-
lyzing theTuringmodel of computation as underlying computationalmodel. Thus,
statements like ’the equivalence problem for non-deterministic finite automata is
NP-complete’ are to be understood using complexity theory in the Turing model.

In recent years theoretical computer science has seen an increasing interest
in alternative to the Turing machine models of computation. The reader might
think of quantum computers [13], neural networks [8], analogue computers [4],
several kinds of biologically inspired devices [14], and models for computations
over the real and complex numbers. Models for the latter split into approaches
based on the Turing machine like those followed in recursive analysis [15] and in
algebraically inspired notions of algorithms [3,5].1 One feature of such algorithm

1 For all mentioned areas the given references are not thought to be exhaustive but
should just serve as a starting point for readers being more interested in the corre-
sponding models.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 168–187, 2014.
c© Springer International Publishing Switzerland 2014

Generalized Finite Automata over Real and Complex Numbers 169

models is that they do not any longer exclusively work over finite alphabets as
underlying structures. For example, the Blum-Shub-Smale (shortly BSS) model
introduced in [3] can be and was used to define a computability notion for many
different structures including R and C. It is thus a reasonable question whether
also the concept of a (deterministic and non-deterministic) finite automaton can
be generalized to work over more general structures than just finite alphabets.

In recent work Gandhi, Khoussainov, and Liu [7] introduce such a general-
ized model of finite automata called (S, k)-automata. It is able to work over an
arbitrary structure S, and here in particular over infinite alphabets like the real
numbers. A structure is characterized by an alphabet (also called universe) to-
gether with a finite number of binary functions and relations over that alphabet.
Now, intuitively the model processes words over the underlying alphabet compo-
nentwise. Each single step is made of finitely many test operations relying on the
fixed relations as well as finitely many computational operations relying on the
fixed functions. For performing the latter an (S, k)-automaton can use a finite
number k of registers. As we shall see the latter ability adds significantly power
to the model in comparison to ’old-fashioned’ finite automata. An automaton
then moves between finitely many states and finally accepts or rejects an input.

The motivation to study such generalizations is manifold. In [7] the authors
discuss different previous approaches to design finite automata over infinite al-
phabets and their role in program verification and database theory. One goal is
to look for a generalized framework that is able to homogenize at least some of
these approaches. As the authors remark, many classical automata models like
pushdown automata, Petri nets, visible pushdown automata can be simulated
by the new model. Another major motivation results from work on algebraic
models of computation over structures like the real and complex numbers. Here,
the authors suggest their model as a finite automata variant of the Blum-Shub-
Smale BSS model. They then ask to analyze such automata over structures like
real or algebraically closed fields.

The latter will be the focus of the present work. We restrict our attention to
generalized finite automata over two special structures denoted by SR and SC

and defined precisely below. These are the suitable choices for relating (S, k)-
automata to the BSS model.

The paper is structured as follows. Section 2 recalls the generalized automata
model from [7] for the above two structures and gives some basic examples. It
collects as well the notions from BSS computability theory necessary to relate
the automata model to the latter. We shall then study a bunch of questions well
known from finite automata theory. Section 3 analyzes the word problem for
deterministic and non-deterministic (S, k)-automata in comparison to certain
complexity classes in the BSS model. A complexity class coming into play very
naturally here is the class DNP of problems that can be verified by so called dig-
ital nondeterminism. In particular, we shall get a somehow diverse picture con-
cerning the classes of languages accepted by (non)-deterministic (S, k)-automata.
For example, we shall see that there are easy problems in PC, the class of prob-
lems being polynomial time solvable in the complex number BSS model, that

170 K. Meer and A. Naif

cannot be accepted by any non-deterministic automaton, whereas the complex
Knapsack problem KSC (a problem likely not located in PC) can. This prob-
lem can as well be used to show that languages accepted by non-deterministic
complex (S, k)-automata are not closed under complementation. Towards ob-
taining this result we discuss certain structural properties of languages accepted
by complex (S, k)-automata. We discuss as well the real case, where (partially
by different arguments) the same results hold as well. A second structural result
for complex automata will give a kind of weak pumping lemma.

A number of undecidability results are shown for both structures in Section
4. Among them we find the emptiness problem, the equivalence problem, several
reachability questions as well as the problem to minimize an (S, k)-automaton.
For some restricted classes of automata we also give decidability results. The
paper closes with a discussion concerning open future questions.

2 Generalized Finite Automata over R and C

We suppose the reader to be familiar with the basics of the Blum-Shub-Smale
model of computation and complexity over R and C. Very roughly, algorithms
in this model work over finite strings of real or complex numbers, respectively.
The operations either can be computational, in which case addition, subtraction,
and multiplication is allowed; without much loss of generality we do not consider
divisions in this paper to avoid technical inconveniences. Or an algorithm can
branch depending on the result of a binary test operation. The latter either
will be an inequality test of form ’is x ≥ 0?’ over the reals or an equality test
’is x = 0?’ when working over the complex numbers. The size of a string is
the number of components it has, the cost of an algorithm is the number of
operations it performs until it halts. For more details see [2]. Notions being
central for this paper shall be explained in more detail below.

The generalized finite automata introduced in [7] work over structures. Here,
a structure S consists of a universe D as well as of finite sets of (binary) func-
tions and relations over the universe. A more precise definition concerning the
structures we are interested in follows below. An automaton informally works as
follows. It reads a word from the universe, i.e., a finite string of components from
D and processes each component once. Reading a component the automaton can
set up some tests using the relations in the structure. The tests might involve a
fixed set of constants from the universe D that the automaton can use. It can as
well perform in a limited way computations on the current component. Towards
this aim, there is a fixed number k of registers that can store elements from D.
Those registers can be changed using their current value, the current input and
the functions related to S. After having read the entire input word the automa-
ton accepts or rejects it depending on the state in which the computation stops.
These automata can both be deterministic and non-deterministic.

Since the approach allows structures to have arbitrary universes, the model
in particular easily can be adapted to define generalized finite automata over
structures like R and C. We shall in the rest of the paper focus on these uni-
verses. Our goal is to study questions for these automata in the framework of

Generalized Finite Automata over Real and Complex Numbers 171

the BSS model of computations over those structures. We thus define two struc-
tures SR and SC according to the operations used in the BSS model over R and
C, respectively. As in the original work [7] we equip all our structures as well
with the projection operators pr1, pr2 which give back the first and the second
component of a tuple, respectively.

Definition 1. Let SR := (R,+,−, •, pr1, pr2,≥,=) denote the structure of the
reals as ring with order. Similarly, the structure of the complex numbers as ring
with equality is given by SC := (C,+,−, •, pr1, pr2,=).

In order to avoid technicalities for operation − we allow both orders of the
involved arguments, i.e., applying − to two values x, v can mean x− v or v− x.
Similarly, the order test can be performed both as x ≤ v? and v ≤ x? As
mentioned above without loss of generality we do not include division as an
operation. This will not significantly change our results.

The following definition is from [7] but adapted for the special structures
exclusively considered here.

Definition 2. (Finite automata over SR and SC, [7]) Let k ∈ N be fixed.

a) A deterministic (SR, k)-automaton A consists of the following objects:

- a finite state space Q and an initial state q0 ∈ Q,
- a set F ⊆ Q of accepting states,
- a set of � registers which contain fixed given constants c1, . . . , c� ∈ R

- a set of k registers which can store real numbers denoted by v1, . . . , vk,
- a transition function δ : Q× R× R

k × {0, 1}k+� �→ Q × R
k.

The automaton processes elements of R∗, i.e., words of finite length with real
components. For such an (x1, . . . , xn) ∈ R

n it works as follows. The compu-
tation starts in q0 with an initial configuration for the values v1, . . . , vk ∈ R,
say all vi = 0. Then, A reads the input components step by step. Suppose a
value x is read in state q ∈ Q. Now the next state together with an update of
the values vi is computed as follows:

- A performs the k+ � comparisons xσ1v1?, xσ2v2?, . . . , xσkvk?, xσk+1c1?,
. . . , xσk+�c�?, where σi ∈ {≥,≤,=}. This gives a vector b ∈ {0, 1}k+�,
where a component 0 indicates that the comparison that was tested is
violated whereas 1 codes that it is valid;

- depending on state q and b the automaton moves to a state q′ ∈ Q (which
could again be q) and updates the vi applying one of the operations in the
structure: vi ← x ◦i vi. Here, ◦i ∈ {+,−, •, pr1, pr2}, 1 ≤ i ≤ k depends
on q and b only.

When the final component of an input is read A performs the tests for this
component and moves to its final state without any further computation. It
accepts the input if this final state belongs to F , otherwise A rejects.

b) Non-deterministic (SR, k)-automata are defined similarly with the only dif-
ference that δ becomes a relation in the following sense: If in state q the
tests result in b ∈ {0, 1}k+� the automaton can non-deterministically choose

172 K. Meer and A. Naif

for the next state and the update operations one among finitely many tuples
(q′, ◦1, . . . , ◦k) ∈ Q× {+,−, •, pr1, pr2}k.
As usual, a non-deterministic automaton accepts an input if there is at least
one accepting computation.

c) (Non-)Deterministic automata over SC are defined similarly, the only differ-
ence being that the tests all have to be equality tests.

d) For an automaton A the language of finite strings accepted by A is denoted
by L(A). Clearly, L(A) ⊆ R

∗ or L(A) ⊆ C∗, depending on the structure
considered.

Remark 1. a) A few words concerning the intuitive abilities and some techni-
cal aspects of generalized automata are appropriate here. Given k registers an
automaton can perform calculations. Depending on the problem considered this
ability can be relatively strong. It is, for example, easy to see that in appropriate
structures like SR and SC one can count in certain situations. For example, a
language like {(−1)n1n|n ∈ N} easily is seen to be acceptable by such an au-
tomaton if 1 is available as constant. On the other hand input components still
can be read only once. If we want to use it several times it has to be stored in
one of the k registers in order to be used again. This of course might be a severe
restriction.

b) Another technical aspect refers to the initialization of a computation. In
the original definition in [7] one can start a computation with an arbitrary as-
signment for the registers vi. However, this might mean that additional constants
are introduced into calculations. Below we do not want to analyze which impact
the use of an initialization in general has with respect to the constants used.
For our results it seems not to change arguments significantly. Therefore, all our
computations start with initial values 0 for the vi. Nevertheless, the impact of
different initializations seems an interesting problem to be analyzed further.

c) The final component of an input somehow is treated differently than all the
others by the model. The reason is that after having read the final component
only a test but no computation is performed. So in a certain sense an automaton
is working only restrictedly with it. In some cases below we circumvent this effect
by choosing a kind of dummy final component which will be the same for all
inputs of a problem. That way the crucial parts of an input all are handled the
same way by an automaton.

Since below we want to treat some elementary questions about such automata
within the framework of real and complex BSS machines, we finish this section
with the definition of a special non-deterministic complexity class in the BSS
model that turns out to be interesting for analyzing non-deterministic general-
ized automata.

Definition 3. (Digital non-determinism)
a) In the BSS-model over R a problem L ⊆ R

∗ belongs to the class DNPR

of problems verifiable in polynomial time using digital non-determinism if there
is a BSS algorithm M working as follows: M gets as its inputs tuples (x, y) ∈
R

∗ × {0, 1}∗ and computes a result in {0, 1} interpreted as reject or accept,

Generalized Finite Automata over Real and Complex Numbers 173

respectively. For an x ∈ L there has to be a y ∈ {0, 1}∗ such that M(x, y) = 1,
for x
∈ L the result M(x, y) has to be 0, no matter which y is chosen.

The running time of M has to be polynomial in the (algebraic) size of x.
b) Similarly, the complex counterpart DNPC is defined.

Digital non-determinism is a kind of restricted non-determinism in the real
and complex BSS model. Here, usually the guess y is allowed to stem from R

∗

or C
∗ having polynomial length in the size of x. Most natural generalizations

of discrete NP-complete problems to the real framework lead to problems in
DNPR; the Knapsack problem treated below is a typical example. However,
there are important open questions related to this class. It is easy to see that
PR ⊆ DNPR ⊆ NPR, but it is currently only conjectured that both inclusions
are strict. As a consequence, problems in DNPR are conjectured not to be NPR-
complete in the BSS model. The same is conjectured to be true for the classes
PC ⊆ DNPC ⊆ NPC.

3 Basic Results, a Structural Theorem and a Weak
Pumping Lemma for Complex Automata

Given the above definition of digital non-determinism our first result is immedi-
ate. The word problem for a fixed (S, k)-automaton asks whether a given input
w ∈ D∗ is accepted by the automaton. The following is easily proved.

Lemma 1. The word problem belongs to class PR for deterministic (SR, k)-
automata and to class DNPR for non-deterministic such automata. This holds
as well if the automaton is considered part of the input. It is analogously true
for complex automata and the complex BSS model.

The previous result gives rise to several further questions which we shall treat
next dealing with complex automata. Are all problems in PC acceptable by
a non-deterministic (SC, k)-automaton, are there any DNPC problems which
potentially do not belong to PC but will be accepted by such an automaton, are
non-deterministic automata closed under complementation?

We shall see that the answers to the above questions show a somewhat skew
picture of the relation between acceptable languages in the generalized automata
model and complexity classes in the BSS model.

Let us start with defining an extension of the classical NP-complete Knapsack
problem.

Definition 4. The complex Knapsack problem KSC is defined as follows: Given
n ∈ N and n complex numbers x1, . . . , xn, is there a subset S ⊆ {1, . . . , n} such
that

∑

i∈S

xi = 1?

The real Knapsack problem KSR is defined similarly.

Remark 2. Dealing with this problem using (SC, k)-automata we consider inputs
of the form (x1, . . . , xn, 1) of length n + 1. This is done in order to guarantee
that the numbers x1, . . . , xn are treated equally, see Remark 1 c) above. This
could of course be done differently.

174 K. Meer and A. Naif

Note that the complexities of both KSC and KSR in the respective BSS model
are unknown. This is the case for many reasonable extensions of classically NP-
complete problems to the real or complex number model. On the one hand side
such problems usually fall into the classes DNPK defined above, where K ∈
{R,C}. It is not known whether DNPK contains NPK-complete problem for
one of the settings (and actually conjectured to be false [9]), so the respective
generalized Knapsack problems likely will neither be NPC- nor NPR-complete.
On the other side it is neither known whether problems being NP-complete in
the Turing model can be solved more efficiently in the BSS model.

Example 1. KSC can be accepted by a non-deterministic (SC, 1)-automaton.
The non-deterministic automaton uses 1 as its only constant and a single reg-
ister v1. When reading a new component xi of the input the automaton non-
deterministically chooses whether xi should participate in the final sum or not.
If it should, then xi is added to v1, otherwise v1 remains unchanged. When
(x1, . . . , xn) has been processed the automaton finally checks whether the last
input component xn+1 equals 1. If not A rejects, if yes (i.e., xn+1 = 1) it is also
compared with v1. The automaton accepts iff v1 = 1.

3.1 A Structure Theorem for Complex Automata

Our first major result will be a structural theorem concerning the languages
accepted by complex deterministic and non-deterministic automata. As an easy
consequence of this theorem it follows that the class of languages accepted by
non-deterministic complex automata is not closed under complementation. For
a particular restricted structure over the integers the corresponding result was
shown in [7]. We prove it using topological arguments. More precisely, the Knap-
sack problem turns out to be a counterexample here. Before doing so we recall
the definition of typical paths for a BSS algorithm [2], adapted accordingly to
(SC, k)-automata. Characteristic paths are important since the sets of inputs
that follow those paths have a useful topological structure.

Definition 5. a) Let A be a deterministic (SC, k)-automaton using � constants.
Let P be a path of this automaton, i.e., a finite sequence (q0, q1, . . . , qs) of states
of A together with a sequence (b(0), b(1), . . . , b(s−1)) of test results in {0, 1}k+�

such that the automaton moves from qi to qi+1 when b(i) represents the outcome
of the tests. Here, q0 denotes the start state of A.

i) The path set VP related to a path P of length s is the set of points in C
s

that are branched by A’s computation along P.
ii) The characteristic path of length s of A is the one obtained if all b(i) = 0,

i.e., all k+ � equality tests performed at each step of the computation give result
’false’.

b) If A is a non-deterministic automaton any path that corresponds to a
computation where all test results give b(i) = 0 is called a characteristic path.

Note that characteristic paths always are realizable by some computation, i.e.,
the corresponding path sets are non-empty. This is true because at each step of

Generalized Finite Automata over Real and Complex Numbers 175

a computation only a constant number of values are stored in the registers, so
there is always a next complex input component being different from all of them.

Characteristic path sets have a very special structure. This structure is made
more precise in the following definition.

Definition 6. For a set L ⊆ C
n, n ≥ 1 let P1(L) denote the projection of L

to the first component. Then L is called recursively co-finite, or rcf for short, if
the following two conditions hold:

i) P1(L) is co-finite;
ii) if n > 1 for any x∗ ∈ P1(L) the set

{(x2, . . . , xn) ∈ C
n−1|(x∗, x2, . . . , xn) ∈ L}

is recursively co-finite.

In particular, a set L ⊆ C is rcf if it is co-finite.
We say that L is recursively co-finite of cardinality s ∈ N if the cardinalities

of all the complements of projections involved in the above definition are less
than or equal to s.

Now the following structural theorem can be proven.

Theorem 1. Let A be a (SC, k)-automaton with � constant registers, L(A) ⊆ C
∗

the language accepted by A. For each n ∈ N let Ln(A) := L(A)∩C
n and Ln(A)

its complement in C
n.

a) If A is deterministic, then for each n ∈ N exactly one of the two sets Ln(A)
and Ln(A) contains a rcf set of cardinality at most s := k+ �. In particular, for
all n the cardinalities of the respective complements are bounded by a constant
that is independent of n. Which of the two sets contains the rcf set can vary with
n.

b) If A is non-deterministic, then there is a constant M such that for each n ∈
N exactly one of the two sets Ln(A) and Ln(A) contains a rcf set of cardinality
at most O(Mn).

Moreover, for those n where the rcf set is contained in Ln(A) the cardinalities
of the respective complements can again be bounded by s = k + �.

Thus the difference between the statements for deterministic and non-deter-
ministic automata is the cardinality bound for the rcf sets in Ln(A). In the
non-deterministic case in general it cannot be bounded by a constant being
independent of n.

Proof. a) Suppose first that A is deterministic. Fix n and consider the char-
acteristic path γn of length n. Its path set Vγn is rcf with cardinality at most
s = k + �; in each computational step i of A along the characteristic path if xi

denotes the current input component all but at most s many choices for xi ∈ C

will be branched further along γn. Thus, Vγn is rcf of cardinality at most s. If

path γn accepts, then Ln(A) contains a rcf set, otherwise Ln(A) contains such
a set.

176 K. Meer and A. Naif

It remains to show that only one of the two sets contains a rcf set. To-
wards this aim let U ⊂ C

n denote a subset of an arbitrary union of path sets
of length n other than Vγn . We claim that U is not a rcf set. For any point
x ∈ U define t(x) ∈ {1, . . . , n} as index of the first component of x such that
A’s computation on x answers a test with = . Since by assumption x
∈ Vγn

such an index exists. Now choose x∗ ∈ U with maximal value t(x∗). For the
point (x∗

1, . . . , x
∗
t(x∗)−1) all tests so far have been answered by
=, for compo-

nent x∗
t(x∗) an equality test is satisfied. If U would be rcf the projection of

the set {(xt(x∗), . . . , xn)|(x∗
1, . . . , x

∗
t(x∗)−1, xt(x∗), . . . , xn) ∈ U} to its first com-

ponent has to be co-finite. Thus, there has to exist an xt ∈ C such that all
tests performed by A on input (x∗

1, . . . , x
∗
t(x∗)−1, xt) are answered negatively and

(x∗
1, . . . , x

∗
t(x∗)−1, xt) can be extended to a point x̂ in U . However, for such a

point t(x̂) would be larger than t(x∗) thus contradicting our choice of x∗. It
follows that U cannot be a rcf set.

b) Next, let A be non-deterministic. There are two cases two consider due
to the fact that now several characteristic paths of a given length can exist. Let
n ∈ N be fixed.

Case 1: All characteristic paths of length n reject. Then Ln has the same
structure as in the deterministic case, i.e., it is the finite union of paths which
are not characteristic. By the same argument as above Ln does not contain a rcf
set.

Concerning the structure of Ln in Case 1 let M ∈ N denote the maximal
number of non-deterministic choices automaton A can follow in one of its states.
If ϕ is a characteristic path of A note that not necessarily Vϕ ⊆ Ln since a point
x ∈ Vϕ could be branched as well along an accepting non-characteristic path.
Nevertheless, along a characteristic path in each step at most k + � values are
branched away from the path. There are at most Mn many characteristic paths
of length n, thus at most (k + �)Mn values for a fixed input component can be
branched away from all characteristic paths (note that there might be inputs
which can follow all characteristic paths of A). It follows that Ln contains a rcf
set of cardinality O(Mn).

Case 2: There are characteristic paths which accept. Let ϕ denote one of them.
Since the path accepts it follows Vϕ ⊆ Ln. Clearly, Vϕ is rcf of cardinality k+ �.
Finally, Ln does not contain a rcf set. Because if U ⊆ Ln would be rcf each
point in U has to be branched away from the accepting characteristic path ϕ.
The same argument as in the deterministic case gives a contradiction. �

We derive two further results from the theorem. Example 1 has shown that
the Knapsack problem, which is conjectured not to be efficiently solvable in
the BSS model, can be accepted by a non-deterministic automaton. However,
the next result shows that easier problems cannot. Thus, the class of languages
acceptable by non-deterministic (S, k)-automata is contained in DNPR or DNPC,
respectively, but lies kind of skew with respect to the class of languages decidable
in polynomial time in the BSS model.

Generalized Finite Automata over Real and Complex Numbers 177

Corollary 1. There are problems in complexity class PC which can not be ac-
cepted by any non-deterministic (SC, k)-automaton. Similarly for PR. As a con-
sequence, the class of languages accepted by non-deterministic real or complex
automata is strictly contained in DNPC and DNPR, respectively.

Proof. For the complex case define a language L as

L := {(a0, . . . , an, x) ∈ C
n+2|n ∈ N,

n∑

i=0

ai ·
(
xnn

)i

= 0}

By repeated squaring of x and subsequent evaluation of the univariate polyno-
mial given through the ai membership in L can be decided in the complex BSS
model in polynomial time in n, i.e., L ∈ PC. Now suppose a non-deterministic
(SC, k)-automaton A accepts L. As in the proof of Theorem 1 let M denote
an upper bound on the number of non-deterministic choices in any state. For

a canonical choice of (a0, . . . , an) ∈ C
n+1 the polynomial z �→

n∑

i=0

aiz
i has n

different complex roots and each of them has nn different nn-th roots. Thus,
there are n ·nn choices for x such that (a0, . . . , an, x) ∈ L. Now on the one hand
side L ∩ C

n+2 does not contain a rcf set since given (a0, . . . , an)
= 0 there are
always only finitely many choices for x yielding a point in L. On the other hand,
for large enough n we have n · nn > const · Mn which contradicts as well part
b) of Theorem 1. It follows that A cannot exist.

The proof for the real number is similar and postponed to the full paper. The
last claim now follows from Lemma 1 and the containment of PR in DNPR and
of PC in DNPC. �

The above proof for the real case uses a certain structural property of accepted
sets similar to rcf sets but seemingly weaker with respect to deriving interesting
structural results. Therefore, we did not formulate it separately.

The following corollary shows another application of Theorem 1. Note that
part a) follows from b), however we add the simple argument based on the
previous theorem.

Corollary 2. a) For all k ∈ N there is no deterministic (SC, k)-automaton
accepting KSC.

b) For all k ∈ N there is no non-deterministic (SC, k)-automaton accepting
the complement of KSC, i.e., the set

KSC = {(x1, . . . , xn, xn+1)|n ∈ N and either xn+1
= 1 or
∀S ⊆ {1, . . . , n} ∑

i∈S

xi
= 1}.

c) The class of languages accepted by non-deterministic complex automata
is stritcly larger than the class of languages accepted by deterministic such au-
tomata.

Proof. a) Our definition of KSC requires as positive instances n+1-dimensional
vectors whose final component is 1. Thus no rcf set can be a subset of KSC.

178 K. Meer and A. Naif

According to the theorem the only characteristic path of a potential deterministic
automaton has to contain an rcf set. Consider an input (x1, . . . , xn−1) ∈ C

n−1

such that all 2n−1 possible sums of components give a different result and such
that the automaton follows the characteristic path when reading (x1, . . . , xn−1).
Clearly, such a sequence exists. Then there are 2n−1 many choices for xn such
that (x1, . . . , xn, 1) ∈ KSC, but for component xn the characteristic path can
only branch away a constant number s of values for xn. Thus, such an automaton
cannot exist.

b) Suppose a non-deterministic automaton A accepts KSC. The theorem
implies that precisely one of the sets KSC and KSC contains an rcf set. For
KSC this is not possible since the final component of an input in KSC is forced
to equal 1. For deriving as well a contradiction in the remaining case we need an
additional argument. As in a) choose n large enough and (x1, . . . , xn−1) ∈ C

n−1

such that all 2n−1 possible sums of components give a different result, this time
also different from 1. In addition we require that A follows for an infinite number
of choices for xn an accepting characteristic path when reading (x1, . . . , xn−1).
Note that fixing (x1, . . . , xn−1) as above there is an infinite number of xn such
that (x1, . . . , xn, 1) /∈ KSC and all such inputs must be accepted by A. Thus the
existence of such a path ϕ is guaranteed because there are only finitely many
paths of a given length. Consider the two final computational steps of A when
reading xn and xn+1 = 1. Since A accepts for infinitely many choices of xn

along ϕ, for the final tests with xn+1 = 1 only those register values vi have
an influence that depend on the choice of xn. Each of them, however, can only
branch a single value away from ϕ. Since there are 2n−1 > k choices for xn such
that (x1, . . . , xn, 1) ∈ KSC the automaton can still branch most of them along
ϕ and accept, thus leading to a contradiction.

Finally, claim c) directly follows since the class of languages accepted by a
deterministic automaton clearly is closed under complementation. Example 1
together with parts a), b) imply the statement. �

Though the notion of characteristic path(s) makes sense for real automata as
well it is not clear how to use it to obtain a meaningful structural result like
Theorem 1. This is discussed a bit further in the final section. With respect
to the real Knapsack problem, however, we can prove the same statement by
applying well known results from algebraic complexity theory [1,12]. Due to
space limitations a proof will be postponed to the full version.

Note that a much more general result for KSR in the realm of the real BSS
model has been shown in [6].

Proposition 1. For all k ∈ N there is no non-deterministic (SR, k)-automaton
accepting the complement of KSR. Thus, the class of languages accepted by non-
deterministic real automata is not closed under complementation. The real Knap-
sack problem is not accepted by a deterministic (SR, k)-automaton.

Generalized Finite Automata over Real and Complex Numbers 179

3.2 A Weak Pumping Lemma

One major structural tool for establishing a language not to be regular in the
classical finite automata framework is the pumping lemma. It is thus natural
to ask whether a similar property holds for our generalized automata. However,
a short consideration immediately implies that - if at all - such a statement
has to be more involved. Consider the language L := {(x1, 1, x2, 1, . . . , 1, xn) ∈
C

n|n ∈ N, x1 = 1, xi+1 = xi+1, 1 ≤ i ≤ n−1}, i.e., (x1, . . . , xn) represent initial
segments of N. L clearly is acceptable by a deterministic (SC, 1)-automaton.2

Now, if in a word w ∈ L we pump any of its substrings the structure of the
defining recursion formula for the components clearly is destroyed.

One major obstacle for obtaining a kind of pumping lemma is the ability to
perform computations. Even if an automaton runs through a loop with respect
to its state set it is by no means clear whether the loop is realizable even only
once more repeating the same subsequence of input components. The reason
is that in most cases the assignments of registers will change. And a different
assignment clearly can result in a different computation path when reading the
same part of an input repeatedly.

For complex automata and some loops it turns out that we can say a bit
more. Here, once again the characteristic path of a deterministic automaton is
helpful because many inputs follow it. We shall now show that a weak kind of
pumping is possible. As drawback two features of the classical pumping lemma
are lost. First, the pumping might not be possible for words in the language but
for rejected words; and secondly, it cannot be guaranteed to hold for all words
of a certain length. Nevertheless, we shall see that the statement can be used to
show certain problems not being acceptable by deterministic complex automata.

Theorem 2. Let L ⊆ C
∗ be accepted by a deterministic (SC, k)-automaton A.

Then there is a word w := uz ∈ C
∗ such that either all uzt, t ∈ N0 belong to L

or they all belong to C
∗ \ L. Moreover, u and z have an algebraic length of at

most K and 2K, respectively, where K denotes the number of states of A.

Proof. Before going into detail we outline the main idea of the proof. We are
looking for inputs that follow the characteristic path of A when the input dimen-
sion becomes larger. As mentioned earlier this path is realizable. For example,
we could take a sequence of algebraically independent numbers. So there is a
loop that can be realized as many times as we want. Let q denote the starting
and final state of the first such loop; here, by first we mean first time the loop
is completed. We fix this loop as the one we are interested in for the rest of the
proof. Then there is a u of length at most K such that when reading u as its
first input components A follows the characteristic path and enters q for a first
time. The length of the loop is some s ≤ K.

The problem, however, is that the above easy argument implies realizability
of the characteristic path only when the input components can be changed all

2 The intermediate 1’s are used to avoid including the operation +1 in the structure;
they could be removed if the operation is available.

180 K. Meer and A. Naif

the time. Ad hoc there is no guarantee that we can follow the loop any given
number of runs always taking the same complex vector z ∈ C

s. The main task
in the proof is to establish the existence of such a z. This will be done as follows:
First, we show the existence of an open set X ⊆ C

s such that for each x ∈ X
automaton A on input ux follows the loop once. For this purpose we can use a
sequence ux with the set of components being algebraically independent. In that
case, no equality test will be answered positively, so ux follows the characteristic
path. Since the test functions are continuous in the input components there is
an open set X containing x such that for all y ∈ X the input uy follows the
characteristic path as well.

The main part of the proof now shows that for each additional run through the
loop only a reasonably small set of points from X have to be removed because
they might not be branched along the characteristic path when passing another
time the loop.

Now towards the details. In the proof we restrict ourselves to an automaton
A that uses no contants and a single register only. However, after it has been
given it should be obvious that this is no restriction at all. We add a comment
on this at the end.

Let u and X ⊆ C
s be as above. When A has read u it is in state q; let v∗

denote the value of the register at that moment. For all x ∈ X the computation
on ux follows the characteristic path. Fix u and x∗ := (x∗

1, . . . , x
∗
s) ∈ X such

that all components are algebraically independent. Our goal is to find a z ∈ X
such that uzt for all t ∈ N0 follows the characteristic path. To do so it must be
guaranteed that for each run of A through the loop the current input component
zj never equals the current value in the register, for all 1 ≤ j ≤ s. The latter of
course can change with each new run through the loop. We thus have to analyze
how the register value evolves.

Let us begin with some easy cases. First, if all computations performed during
the loop are the projection pr2 onto v, then v does not change. Since u and x∗

have independent components all tests x∗
j = v? are answered negatively and we

are done. Secondly, suppose there is an operation pr1(x
∗
j , v) performed and this

is the only one that changes v, i.e., all other operations are pr2. Then from this
step on v = x∗

j and in the next run through the loop the corresponding equality
test is positive, so the computation leaves the characteristic path. This can easily
be resolved replacing x∗ by x∗x̃∗ ∈ C

2s with all components independent (and
thus different) and running twice through the loop. Now if v = x∗

j in the next
run v = x̃∗

j? will be tested with negative outcome; the projection pr1 changes
v’s value into x̃∗

j . We then consider two consecutive runs through the loop as a
new loop of double length. The only price to pay for this is the length of z in
the theorem’s statement which changes from at most K to at most 2K.

Thirdly, if all operations are projections but different from the first two cases
the statement trivially is correct. Finally, the case that projections occur but not
exclusively is covered by the arguments that follow below. We therefore without
loss of generality assume that during each step j, 1 ≤ j ≤ s along the loop an

Generalized Finite Automata over Real and Complex Numbers 181

arithmetic operation v ◦j xj is performed. For sake of notational simplicity we
only consider ◦j ∈ {+, ∗}; subtractions do not change the arguments.

The way how v’s value evolves during one sweep through the loop starting
from initial value vt, t ≥ 1 can be described as follows:

vt+1 = [((vt + a1) ∗m1 + a2) ∗m2 + . . .+ as−1] ∗ms−1 ◦s xs

Here, we have ai = xi,mi = 1 in case ◦i = + and ai = 0,mi = xi if ◦i = ∗.
Moreover note that (1) includes s updates, one for each move along the states
constituting the loop. The structure of the register value at intermediate steps
can be easily extracted from the above formula, this will be used below.

Each additional run through the loop formally gives the same update starting
from the respective value vt. We now have to show that there is a point z ∈ X
such that all updates given by (1) are different from the respective components
of z, no matter how often the loop is passed.

For all intermediate updates leading from v1 = v∗ to v2 this is true for all
points in X . We now show for each t ≥ 1 the following

Claim: Suppose X(t) is the subset of points x ∈ X such that A for each
input uxj , 0 ≤ j ≤ t follows the characteristic path and thus ends in state q.
Then X(t+1) is obtained from X(t) by removing a set R(t) of points whose final
component xs belongs to a finite set.

The claim implies the theorem: Since X is open, if at each loop such a set
R(t) has to be removed, then X \ ⋃

t≥1

R(t) has a non-empty projection onto the

s-th component. This is true since with respect to this component an at most
countable set is removed from an interval. It follows that X contains a point z
that follows the characteristic path for any given number of loops.

Proof of the claim: Suppose x∗ = (x∗
1, . . . , x

∗
s−1, x

∗
s) is chosen from the open

set X as explained before. Let us fix the first s− 1 components and analyze for
which values of xs the input u(x∗

1, . . . , x
∗
s−1, xs)

t is branched along the loop for
t = 1, 2, 3, . . . times. If t = 1 this is the case at least for xs belonging to the open
interval we obtain when projecting X to its final component.

Case 1: A’s operation when reading xs along the loop is an addition, i.e., ◦s =
+ and vt+1 = f(vt, x

∗
1, . . . , x

∗
s−1)+ xs with f the appropriate function extracted

from (1). In order to make sure that the computation follows the characteristic
path all intermediate results given implicitely by (1) must be different from the
respective component x∗

j and from xs at the final step. This restricts the possible
choices for xs. The first condition when entering the loop for the next sweep is
that v
= x∗

1. This implies that only one value for xs has to be avoided, namely
x∗
1−f(vt, x

∗
1, . . . , x

∗
s−1). By expanding the representation in (1) each intermediate

result for the register value can easily be seen to be a degree one polynomial
in xs as variable. The coefficient of xs is of the form mα1

1 mα2

2 . . .m
αs−1

s−1 with
some αi = t − 1 and the other αi = t, depending on where in the loop the
computation currently resides. Thus the coefficient always is a product of some x∗

i

with certain powers. The choice of the x∗
i as algebraically independent numbers

guarantees this product to be always non-zero and different from 1. This implies
that a comparison between the current value of v and the actual component

182 K. Meer and A. Naif

x∗
j , 1 ≤ j ≤ s − 1 always gives a negative result except for one assignment

of xs. This ’bad’ value is the unique complex solution of a linear equation in
xs. The same holds for the final step in the loop and the comparison with xs.
As consequence, the computation continues to stay for one more step on the
characteristic path.

Case 2: ◦s = ∗ and vt+1 = f(vt, x
∗
1, . . . , x

∗
s−1) ∗ xs. A similar reasoning as

before shows that if the computation runs for the t-th time through the loop
(t ≥ 1) the current register value is expressible as a polynomial of degree t−1 in
xs. More precisely, the highest coefficient, i.e., the coefficient of xt−1

s has the form
f(vt, x

∗
1, . . . , x

∗
s−1) ·mα1

1 mα2
2 . . .m

αs−1

s−1 . Here, again some αi = t−1 and the other
αi = t. Due to the choice of u and x∗ the value f(vt, x

∗
1, . . . , x

∗
s−1)
= 0 because

f is a polynomial and there is no algebraic relation between the components. It
follows that the comparison between the register value and one of the x∗

j or xs

only is positive for at most t − 1 many choices of xs. These choices have to be
excluded in order to stay on the charateristic path.

The above reasoning shows that for each run through the loop all but a finite
number of assignments to xs are suitable in order to guarantee that the point
ux∗

1 . . . x
∗
s−1xs is branched along the characteristic path of A. Each such point

is a suitable choice for uz. The Claim and thus the theorem follow.
Two final remarks are appropriate: If the automaton has k registers and �

constants the arguments apply in precisely the same way. Once again, only a
finite number of values have to be forbidden for one of the variables xi with
respect to each register and each sweep through the loop. Moreover, for several
registers it might be the case that instead of xs another component has to be
taken into account, for example, when one register value does not depend on xs.
Once again, this does not harm the above proof. �

We end this section with an easy example showing how the weak pumping
lemma can be applied. We are confident that other interesting examples can be
treated that way as well.

Example 2. Consider the following modification of the Subset Sum problem.
Define the language L ⊂ C

∗ to consist of all points (x1, . . . , xn) ∈ C
n such

that there are two disjoint and non-empty sets S1, S2 ⊂ {1, . . . , n} satisfying∑

i∈S1

xi =
∑

i∈S2

xi. Then L cannot be accepted by a deterministic complex (SC, k)-

automaton. The proof of the weak pumping lemma implies that we can choose all
components of u, z algebraically independent. Consequently, the input uz must
be rejected since validity of the defining property for L implies an algebraic
relation between the input components. But uz2 clearly is an input in L since
we can choose S1 to cover the first occurence of z and S2 its second. This is not
possible since it would imply the starting state of the loop to be at the same
time accepting and rejecting. L thus cannot be accepted.

4 Undecidability Results

We now turn to a bunch of undecidability results for the generalized automata
model dealing with classical problems from finite automata theory. The basic of

Generalized Finite Automata over Real and Complex Numbers 183

all these results is the following well known fundamental undecidability result
for the BSS model, see [3].

Proposition 2. The set Q+ of positive rational numbers is neither decidable in
the real nor in the complex BSS model.3

The undecidability results below are obtained by embedding the decidability
question for the rationals into the problems under consideration. In all cases
this will be done using in one or the other way a fundamental automaton that
is described in the next result.

Proposition 3. There is a deterministic (SR, 3)-automaton A that accepts the
language L ⊆ R

∗, defined as

L := {(r, x1, x2, . . . , xn, 0, t, s)|n, t, s ∈ N, xi ∈ {−1, 1},
s =

∑

i,xi=1

xi, t =
∑

i,xi=−1

|xi|, r = s
t }.

The automaton uses three constants −1, 0, 1.
L as well can be accepted by a deterministic (SC, 3)-automaton when consid-

ered as language in C
∗.

Proof. Before describing A in more detail its way of functioning is outlined
briefly. A tuple accepted byA as its first component must have a positive rational
number r of form s

t . The correct values for s and t are determined by means of
the intermediate components xi which are used as counters: a value xi = 1 is
used by A to increase a counter for s by 1, xi = −1 similarly is used for t. Those
counters are realized in two of the registers of the automaton.

Now towards the details. From the following description it should be obvious
how the automaton formally can be devised, so we do not specify each possible
transition in detail. The automaton uses three registers v1, v2, v3 that are ini-
tialized with 0. It uses as its constants −1, 0, 1 (this is not intended to be the
minimal number possible to achieve the all-over goal). Any input that does not
respect the formal constraints given in the definition of L is branched into a
sink state. More precisely, the automaton checks all xi to belong to {−1, 1} by
comparing a current xi with the two constant registers storing −1, 1. Similarly,
A expects the sequence of xi’s to terminate reading a 0 component followed by
two additional non-zero components s and t.

Let us then assume that an input satisfies these formal requirements (which of
course can only be guaranteed after having read the entire input). A copies the
first component r into register v1. Now each time A reads a component xi = 1
it adds the value 1 to register v2, i.e., v2 ← v2 + xi. Registers v1 and v3 are
not changed in this case. Similarly, reading xi = −1 register v3 is increased by
1 using the operation v3 ← v3 − xi and v1, v2 remain unchanged. The first 0
read indicates that the automaton enters a new phase of its algorithm. Notice

3 We work with Q
+ instead of Q for sake of simplicity below, not because of any

particular importance using positive rationals only.

184 K. Meer and A. Naif

that if already x1 = 0 the computation should end in a sink as well. In the next
phase the automaton checks whether the numbers constructed so far in registers
v2, v3 constitute a representation of r as fraction, thus yielding r to be a positive
rational number. First A checks by a corresponding test whether v2 = t. If not
it moves into a sink state; otherwise t is a potential candidate for the correct
denominator and the automaton performs the operation v1 ← v1 · t. Then, it
reads s and compares it to both v3 and the updated value of v1. Only if both
these equality tests are satisfied the automaton runs into its unique accepting
state, otherwise it moves again into a sink.

It is then obvious that A only accepts tuples of the corresponding form for
which r is a positive rational and s, t represent a valid fraction for r. Since the
automaton does not use inequality branches the algorithm works exactly the
same in the complex model. �

The proposition immediately implies several undecidability results. Since the
theorem deals with deterministic automata the corresponding problems are as
well undecidable for non-deterministic automata. The size of an automaton can
be taken as sum of its number of registers and number of states.

Theorem 3. The following problems on (SR, 3)-automata are undecidable in
the real number BSS model. The analogue statements hold for complex automata
and the complex BSS model; all A used below (except in part d) are deterministic
(SR, 3)-automata, q0 denotes their respective initial state.

a) Emptiness Problem: Given A, is L(A) = ∅?
b) Equivalence Problem: Given two automata, do they accept the same lan-

guage?
c) Reachability Problem I: Given A and a state p of A, is there a compu-

tation of A that starts in q0 and reaches p?
d) Reachability Problem II: There is an (SR, 4)-automaton A (not part of

the input) such that the following problem is undecidable: Given a state p of
A and an assignment v ∈ R

k of the 4 registers of A, is there a computation
of A starting in its initial state with initialization 0 ∈ R

4 and leading to p
attaining register values v?

e) Minimization Problem: Given A, is it state minimal among all determin-
istic automata accepting L(A)?
As consequence, there is no BSS algorithm minimizing any given generalized
automaton.

Proof. All statements are implied by using suitable variants of the automaton
constructed in Proposition 3.

For the emptiness problem consider as input an automaton A that uses in
addition to constants −1, 0, 1 a constant c ∈ R. This constant thus is part of
the input and can be used to relate the emptiness problem with deciding the
positive rationals. This can be done by modifying the automaton in Proposition
3 in such a way that in its first step it compares the first input component r
with constant c. Only if r = c the automaton continues to work as described in

Generalized Finite Automata over Real and Complex Numbers 185

the proposition, otherwise it moves into a sink state. Now this A will accept a
word if and only if c is rational. Thus deciding whether a given real number is
a positive rational number can be reduced to deciding whether L(A)
= ∅. The
latter problem is undecidable.

Claim b) is a direct consequence since one easily can construct an automaton
that accepts no word from R

∗. Taking this automaton together with the one
from a) as input the emptiness problem reduces to the equivalence problem.

Reachability problem I is easily seen to be undecidable as well using part
a) since the automaton reaches its only accepting state iff the constant c is a
positive rational.

Reachability problem II needs another modification of our standard automa-
ton. It is necessary because now the automaton should be fixed, so we cannot
code the rationals as decision problem by varying the automaton using different
constants. Instead we code the rationals in the final desired register assignment
as follows. First, recall that automaton A from Proposition 3 finishes an accept-
ing computation on a tuple (r, x1, . . . , xn, 0, t, s) in its unique accepting state,
say p, with register assignment (r · t, t, s). In that case r = s

t is rational. How-
ever, we do not know in advance how s, t look like and whether they exist, so
they cannot be used as the desired assignment for an instance of Reachability
Problem II. Therefore, A is modified as follows giving a new (SR, 4)-automaton
A′. This automaton uses one additional register in order to store twice the first
component r read. The second copy is stored in register v4 and this register
will not be changed any more during the rest of the computation of A′. If A
has reached its final state p, then A′ continues its computation requiring one
additional 0-component as remaining input and using the projection operation
to set registers v1 = v2 = v3 = 0. The only accepting state of A′ is a new state
p′ and it can only be reached from p in the above described way. If this is the
case, then the four registers of A′ have the assignment (0, 0, 0, r), where r is the
rational leading as first component of an input to the above final configuration.
Thus, for the fixed automaton A′ there is a computation leading from q0 to state
p′ and resulting in a register assignment (0, 0, 0, r) iff r ∈ Q

+. It follows that the
second version of the reachability problem is undecidable as well.

Finally, the minimization problem clearly cannot be computable for determin-
istic generalized automata; if it were one could decide the emptiness problem
since a minimal automaton for the empty set has one state only. �

4.1 Conclusion and Open Questions

In this paper we have studied the generalized model of finite automata intro-
duced in [7] in the framework of BSS computability and complexity. The focus
has been on real and complex number computability. Our results show that a
lot of classical questions about finite automata in the generalized framework
have different answers. Among them we find both different complexity and com-
putability results. In addition, they lead to a lot of further open questions, a few
of which are outlined below.

186 K. Meer and A. Naif

Another kind of reachability problem than those of Theorem 3 was studied in
[7]. There, the question is whether given a (non-deterministic) automaton and a
computation path there is an input such that the automaton follows the given
path with its computation. One of the main results in [7] is that this problem
is decidable. Since the path is part of the instance there is a finite number of
steps to be performed, i.e., the dimension of a suitable input x ∈ R

∗ for the au-
tomaton’s computation to realize the path is given. Then the problem translates
into an existential formula in first order logic over the reals. The formula just
asks for the existence of an input realizing the required computational steps.
Thus the problem is decidable by quantifier elimination. The same holds over C.
The difference with the above Reachability problem II is that we do not know
in advance (a bound for) the length of a potential accepting path. The problem
thus looks a bit similar to the real Halting Problem [3]. It would then be inter-
esting to analyze whether reachability problems can be of the same degree of
undecidability than the real Halting Problem. Note, however, that the rationals
are known to be of a weaker degree of undecidability [11]. This question seems
interesting also from the BSS side since not many problems are known that are
of the same difficulty of the Halting Problem, see [10] for one such.

Theorem 3 gives as well rise to investigate the limits of the respective undecid-
ability results, i.e., for which kind of restricted automata some of the problems
might turn out to be decidable. Here, restrictions for example can apply to the
number of registers and/or the number of constants used by the automaton. One
easy result into this direction is the following.

Lemma 2. For (SC, 1)-automata and (SR, 1)-automata that use no constants
the emptiness problem is decidable in polynomial time in the size of the automa-
ton over the corresponding structure.

Note that the above problem is purely discrete if the initial configuration contains
no complex data. This holds as well if the automaton has k registers but no
constants. Since all purely discrete problems are decidable in the BSS model [3]
(though not necessarily in polynomial time) restrictions of the problems treated
in Theorem 3 only become interesting if either constants are present or the initial
configuration is part of the input as well. This of course does not apply to the
second reachability problem since here the final register values are part of an
instance. In general, we could also wonder about the impact arbitrary initial
assignments to the registers have, for example, with respect to the interplay
with the set of constants used.

Other open questions relate to the weak pumping lemma and further struc-
tural properties of languages accepted. Is there a similar result for real automata?
One can easliy define characteristic paths in the real setting as well. Instead of
requiring all tests to give a negative answer one could demand that the tests
establish the current input component to be larger (or smaller) than all values it
is compared to. This conditions even could be mixed with changing states. How-
ever, it is not clear to us whether a meaningful statement about the evolvement
of register values could be deducted for computations along such real charac-
teristic paths. Another problem related of course would be a stronger pumping

Generalized Finite Automata over Real and Complex Numbers 187

lemma, i.e., one dealing with accepting computations. Once again, a main diffi-
culty here seems to be to control the register values. And even more ambitious:
What’s about a Myhill-Nerode like characterization of languages accepted by
(S, k)-automata? Though Theorem 3 indicates that such a result would likely
look very different from the classical one, since it might not result in computable
properties like state minimization, it would certainly be interesting to find such
characterizations.

References

1. Ben-Or, M.: Lower bounds for algebraic decision trees. In: Proc. 15th ACM STOC,
pp. 80–86 (1983)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer (1998)

3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. 21, 1–46 (1989)

4. Bournez, O., Campagnolo, M.L.: A Survey on Continuous Time Computations. In:
Cooper, B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, Changing
Conceptions of What is Computable, pp. 383–423. Springer, New York (2008)

5. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren, vol. 315. Springer (1997)

6. Cucker, F., Shub, M.: Generalized Knapsack problems and fixed degree separation.
Theoretical Computer Science 161, 301–306 (1996)

7. Gandhi, A., Khoussainov, B., Liu, J.: Finite Automata over Structures. In: Agrawal,
M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 373–384. Springer,
Heidelberg (2012)

8. Haykin, S.: Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice
Hall (1999)

9. Meer, K.: On the complexity of Quadratic Programming in real number models of
computation. Theoretical Computer Science 133(1), 85–94 (1994)

10. Meer, K., Ziegler, M.: Real Computational Universality: The word problem for a
class of groups with infinite presentation. Foundations of Computational Mathe-
matics 9(5), 599–609 (2009)

11. Meer, K., Ziegler, M.: An explicit solution to Post’s problem over the reals. Journal
of Complexity 24(1), 3–15 (2008)

12. Meyer auf der Heide, F.: Lower bounds for solving linear diophantine equations on
random access machines. Journal ACM 32(4), 929–937 (1985)

13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

14. Paun, G.: Membrane Computing: An Introduction. Springer (2002)
15. Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)

	Generalized Finite Automata
over Real and Complex Numbers

	1 Introduction
	2 Generalized Finite Automata over
	3 Basic Results, a Structural Theorem and a Weak Pumping Lemma for Complex Automata
	3.1 A Structure Theorem for Complex Automata
	3.2 A Weak Pumping Lemma

	4 Undecidability Results
	4.1 Conclusion and Open Questions

	References

