
T. V. Gopal
Manindra Agrawal
Angsheng Li
S. Barry Cooper (Eds.)

 123

LN
CS

 8
40

2

11th Annual Conference, TAMC 2014
Chennai, India, April 11–13, 2014
Proceedings

Theory and Applications
of Models of Computation

T
A

M
C2

0
1

4

Lecture Notes in Computer Science 8402
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

T. V. Gopal Manindra Agrawal
Angsheng Li S. Barry Cooper (Eds.)

Theory and Applications
of Models of Computation

11th Annual Conference, TAMC 2014
Chennai, India, April 11-13, 2014
Proceedings

13

Volume Editors

T. V. Gopal
Anna University, College of Engineering
Department of Computer Science and Engineering,
Chennai, India
E-mail: gopal@annauniv.edu

Manindra Agrawal
Indian Institute of Technology
Department of Computer Science and Engineering
Kanpur, India
E-mail: manindra@iitk.ac.in

Angsheng Li
Chinese Academy of Sciences, Institute of Software
State Key Laboratory of Computer Science
Zhongguancun, Haidian District, Beijing, China
E-mail: angsheng@ios.ac.cn

S. Barry Cooper
University of Leeds, School of Mathematics, UK
E-mail: pmt6sbc@maths.leeds.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06088-0 e-ISBN 978-3-319-06089-7
DOI 10.1007/978-3-319-06089-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934828

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in computer science, mathematics, and the physical sciences.
It is this, together with its predominantly computational and computability the-
oretic focus, which gives the series its special character.

Models of computation span across the traditional discipline boundaries of
computer science, logic and applied mathematics, communication systems, com-
puter networks and the control of dynamical systems to best leverage this ex-
pansive view of information and computation in natural and engineered systems.

The TAMC series explores the algorithmic foundations, computational meth-
ods, and computing devices to meet today’s and tomorrow’s challenges of com-
plexity, scalability, and sustainability, with wide-ranging impacts on everything
from the design of biological systems to the understanding of economic mar-
kets and social networks. The TAMC series is distinguished by an appreciation
for mathematical depth, scientific—rather than heuristic – approaches and the
integration of theory and implementation.

The TAMC conference series clearly indicates a growing influence in the re-
gional and international scientific endeavors in this field. The quality of the
conference has caught the attention of professionals all over the world, who ea-
gerly look forward to the TAMC series of conferences carefully nurtured over the
past ten years by the Steering Committee. All the Steering Committee members
guided this edition of TAMC at Anna University, Chennai, India.

The 11th International Conference on Theory and Applications of Models
of Computation (TAMC 2014) attracted 112 quality submissions by active re-
searchers from 18 countries, from which the Program Committee carefully re-
viewed and selected the best papers for inclusion in this LNCS volume.

The review process was rigorous. There were at least two reviews for every
paper. At least one third of the submissions had three reviews. There were 30
Program Committee members and 35 additional reviewers involved in the review
process. The Program Committee members were actively involved in ranking the
papers, after which 27 excellent papers were selected for inclusion in this volume.

We are very grateful to the Program Committee, and the many external
reviewers they called on, for the hard work and expertise that they brought to the
difficult selection process. We thank all those authors who submitted their work
for our consideration. We thank the members of the Editorial Board of Lecture
Notes in Computer Science and the editors at Springer for their encouragement
and cooperation throughout the preparation of this conference.

Dr. M. Rajaram, Honorable Vice-Chancellor, Anna University, Chennai, In-
dia, was the patron of TAMC 2014. He ensured that all the necessary facilities
for the successful organization of TAMC 2014 were available for the various

VI Preface

committees. The success of TAMC 2014 is due to the unstinted efforts of various
committees and the hard work of the invited speakers and the authors.

TAMC 2014 was the beginning of the next decade of this series of conference.
The 11th International Conference on Theory and Applications of Models of
Computation (TAMC 2014) team has attempted to provide a roadmap for at
least the next decade of TAMC conferences.

February 2014 Gopal T.V.
Manindra Agrawal

Angsheng Li
S. Barry Cooper

Organization

TAMC 2014 was organized at the Vivekananda Auditorium, Anna University,
College of Engineering Guindy [CEG] Campus, Chennai, India.

Patron

M. Rajaram Vice Chancellor, Anna University, Chennai,
India

Conference Chair

T.V. Gopal Anna University, Chennai, India

Conference Co-chair

Manindra Agrawal Indian Institute of Technology, Kanpur, India

Program Committee

Aaron D. Jaggard U.S. Naval Research Laboratory, USA
Ajith Abraham Machine Intelligence Research Labs

(MIR Labs), USA
Bakhadyr Khoussainov University of Auckland, New Zealand
Carlo Alberto Furia ETH Zurich, Switzerland
Chaitanya K. Baru University of California, San Diego, USA
Christel Baier Technische Universität Dresden, Germany
Cristian S. Calude University of Auckland, New Zealand
Dimitris Fotakis National Technical University of Athens,

Greece
Dipti Deodhare Centre for Artificial Intelligence and Robotics

(CAIR), India
Hongan Wang State Key Laboratory for Computer Science

(LCS), China
Jacques Sakarovitch Ecole Nationale Superieure des

Telecommunications, France and
International Federation for Information
Processing (IFIP) TC - 1 - Foundations of
Computer Science

Jianxin Wang Central South University (CSU), China
Jose R. Correa Universidad de Chile, Chile

VIII Organization

Kamal Lodaya Institute of Mathematical Sciences, India
Kazuhisa Makino University of Tokyo, Japan
R. Nadarajan PSG College of Technology, India
Y. Narahari Indian Institute of Science, India
Naijun Zhan State Key Laboratory for Computer Science

(LCS), China
Navin Goyal Microsoft Research, India
Pan Peng Institute of Software, Chinese Academy of

Sciences, China
C. Pandurangan Indian Institute of Technology, Madras, India
Rajagopal Srinivasan Tata Consultancy Services, India
Rajeeva Karandikar Chennai Mathematical Institute, India
Richard Banach University of Manchester, UK
R.K. Shyamasundar Tata Institute of Fundamental Research

(TIFR), India
Somenath Biswas Indian Institute of Technology, Kanpur, India
Toshihiro Fujito Toyohashi University of Technology, Japan
Venkat Chakaravarthy IBM Research, India
Vincent Duffy Purdue University, USA
Wenhui Zhang State Key Laboratory of Computer Science,

China
Xiaoming Sun Institute of Computing Technology, Chinese

Academy of Sciences, China

Steering Committee

Manindra Agrawal Indian Institute of Technology, Kanpur, India
Jin-Yi Cai University of Wisconsin - Madison, USA
S. Barry Cooper University of Leeds, UK
John Hopcroft Cornell University, USA
Angsheng Li Chinese Academy of Sciences
Zhiyong Liu Institute of Computing Technology, Chinese

Academy of Sciences

Organizing Committee

C. Chellappan Dean, CEG, Anna University – Chair
T.V. Geetha HOD, Department of Computer Science and

Engineering, Anna University
Shekhar Sahasrabuddhe Regional Vice President (RVP VI), Computer

Society of India
S.P. Soman Regional Vice President (RVP VII), Computer

Society of India

Organization IX

Dipti Prasad Mukherjee Regional Vice President (RVP II), Computer
Society of India

V. Rhymend Uthariaraj Professor and Director, Ramanujan Computing
Center, Anna University

M. Chandrasekhar Professor and Head, Department of
Mathematics, Anna University

R.S. Bhuvaneswaran Deputy Director - Web Admin, Ramanujan
Computing Center, Anna University

A. Azad Director i/c, Centre for International Affairs,
Anna University

Table of Contents

A Roadmap for TAMC . 1
TV Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper

Contributed Papers

A Tight Lower Bound Instance for k-means++ in Constant
Dimension . 7

Anup Bhattacharya, Ragesh Jaiswal, and Nir Ailon

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 23
Bala Ravikumar and Duncan Innes

Reversibility of Elementary Cellular Automata under Fully
Asynchronous Update . 39

Biswanath Sethi, Nazim Fatès, and Sukanta Das

Finite State Incompressible Infinite Sequences . 50
Cristian S. Calude, Ludwig Staiger, and Frank Stephan

Finding Optimal Strategies of Almost Acyclic Simple Stochastic
Games . 67

David Auger, Pierre Coucheney, and Yann Strozecki

The Parameterized Complexity of Domination-Type Problems and
Application to Linear Codes . 86

David Cattanéo and Simon Perdrix

On Representations of Abstract Systems with Partial Inputs and
Outputs . 104

Ievgen Ivanov

Complexity Information Flow in a Multi-threaded Imperative
Language . 124

Jean-Yves Marion and Romain Péchoux

A Personalized Privacy Preserving Method for Publishing Social
Network Data . 141

Jia Jiao, Peng Liu, and Xianxian Li

A Bit-Encoding Phase Selection Strategy for Satisfiability Solvers 158
Jingchao Chen

XII Table of Contents

Generalized Finite Automata over Real and Complex Numbers 168
Klaus Meer and Ameen Naif

An Incremental Algorithm for Computing Prime Implicates in Modal
Logic . 188

Manoj K. Raut

Approximation Algorithms for the Weight-Reducible Knapsack
Problem . 203

Marc Goerigk, Yogish Sabharwal, Anita Schöbel, and Sandeep Sen

Polynomial-Time Algorithms for Subgraph Isomorphism in Small
Graph Classes of Perfect Graphs . 216

Matsuo Konagaya, Yota Otachi, and Ryuhei Uehara

A Pseudo-Random Bit Generator Based on Three Chaotic Logistic
Maps and IEEE 754-2008 Floating-Point Arithmetic 229

Michael François, David Defour, and Pascal Berthomé

Set Cover, Set Packing and Hitting Set for Tree Convex and Tree-Like
Set Systems . 248

Min Lu, Tian Liu, Weitian Tong, Guohui Lin, and Ke Xu

Efficient Algorithms for the Label Cut Problems . 259
Peng Zhang

A Dynamic Approach to Frequent Flyer Program . 271
Rajiv Veeraraghavan, Rakesh Kashyap, Archita Chopde, and
Swapan Bhattacharya

A Categorical Treatment of Malicious Behavioral Obfuscation 280
Romain Péchoux and Thanh Dinh Ta

Space Complexity of Optimization Problems in Planar Graphs 300
Samir Datta and Raghav Kulkarni

Fine-Tuning Decomposition Theorem for Maximum Weight Bipartite
Matching . 312

Shibsankar Das and Kalpesh Kapoor

Intersection Dimension of Bipartite Graphs . 323
Steven Chaplick, Pavol Hell, Yota Otachi, Toshiki Saitoh, and
Ryuhei Uehara

On the Parameterized Complexity for Token Jumping on Graphs 341
Takehiro Ito, Marcin Kamiński, Hirotaka
Ono, Akira Suzuki, Ryuhei Uehara, and
Katsuhisa Yamanaka

Table of Contents XIII

Universality of Spiking Neural P Systems with Anti-spikes 352
Venkata Padmavati Metta and Alica Kelemenová

Self-stabilizing Minimal Global Offensive Alliance Algorithm with Safe
Convergence in an Arbitrary Graph . 366

Yihua Ding, James Z. Wang, and Pradip K. Srimani

A Local-Global Approach to Solving Ideal Lattice Problems 378
Yuan Tian, Rongxin Sun, and Xueyong Zhu

Modular Form Approach to Solving Lattice Problems 401
Yuan Tian, Xueyong Zhu, and Rongxin Sun

Author Index . 423

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 1–6, 2014.
© Springer International Publishing Switzerland 2014

A Roadmap for TAMC

T V Gopal1, Manindra Agrawal2, Angsheng Li3, and S. Barry Cooper4

1 Department of Computer Science and Engineering, College of Engineering
Anna University, Chennai - 600 025, India

gopal@annauniv.edu, gayamadhgop@hotmail.com
2 Department of Computer Science and Engineering, Dean, Faculty Affairs

Indian Institute of Technology Kanpur, India – 208016
manindra@iitk.ac.in

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, 3rd Floor, Building 5, Software Park, No.4,

South 4th Street, Zhongguancun, Haidian District, Beijing, China
angsheng@ios.ac.cn

4 School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
pmt6sbc@maths.leeds.ac.uk

Computability is certainly one of the most interesting and fundamental concepts in
Mathematics and Computer Science. Computation is any type of calculation or use
of computing technology in information processing. Computation is a process
following a well-defined model understood and expressed as, for example, an
algorithm, or a protocol.

Models of Computation began as an outgrowth of mathematical logic and
information theory in the 1960s. They evolved into addressing the classical
problems with the aesthetics of computational complexity and asking the fundamental
questions concerning non-determinism, randomness, approximation, interaction, and
locality. Models of Computation have a foundational role in addressing challenges
arising in computer systems and networks, such as error-free communication,
cryptography, routing, and search. They are now a rising force in the exact, life, and
social sciences.

Models of Computation maintain a core of fundamental ideas and problems such as
the famous P vs. NP problem or speeding up algorithms for traditional problems
in graph theory, algebra, and geometry. The Models of Computation have
increasingly been branching out with fantastic application in biology, economics,
physics, and many other fields.

Computation and computational problems are understood in their most general,
interactive sense, and are precisely seen as interactions between a machine (computer,
agent, robot) with its environment (user, nature, or the angel / devil itself).

A computation can be seen as a purely physical phenomenon occurring inside a
closed physical system called a computer. Examples of such physical systems include
digital computers, mechanical computers, quantum computers, DNA computers,
molecular computers, analog computers or wetware computers. This point of view is
the one adopted by the branch of theoretical physics called the physics of
computation. An even more radical point of view is the postulate of digital physics
that the evolution of the universe itself is a computation.

2 T.V. Gopal et al.

“The problems of language here are really serious. We wish to speak in some way
about the structure of the atoms… But we cannot speak about atoms in ordinary
language.”

– Werner Heisenberg, Physics and Philosophy, 1963

In 1623, Galileo Galilei published “The Assayer” in which he observed "Nature's
great book is written in mathematical language".

"All our reasoning is nothing but the joining and substituting of characters, whether
these characters be words or symbols or pictures, ... if we could find characters or
signs appropriate for expressing all our thoughts as definitely and as exactly as
arithmetic expresses numbers or geometric analysis expresses lines, we could in all
subjects in so far as they are amenable to reasoning accomplish what is done in
Arithmetic and Geometry."

- Gottfried Wilhelm von Leibniz, On Reasoning, 1677

Mathematics helps us determine the meaning of what is being communicated with
minimum ambiguity and distortion. Clearly mathematics does not have the same
fluency as a natural language and, even more obviously, it is rarely spoken aloud.
This suggests that mathematics is really a more restrictive limited form of language.
Mathematics is an abstract system of ordered and structured thought, existing for its
own sake.

Mathematics is the study of systems of elementary objects, conceived
independently of our world, and whose only nature is to be exact, unambiguous (two
objects are equal or different, related or not; an operation gives an exact result, and so
on). Mathematics is split into diverse branches, frameworks of any mathematical
work, implicit or explicit that may be formalized as (axiomatic) theories. Each theory
is the study of a supposedly fixed system of mathematical objects, whose kind was
initially specified (selected from the whole of possible mathematical systems) by a
mathematical description called the foundation of this theory. There are possible
hierarchies between theories, where some can play a foundational role for others. For
instance, the foundations of several theories may have a common part forming a
simpler theory, whose developments are applicable to all.

The study of the foundations of mathematics as a whole was developed as a branch
of mathematics called mathematical logic, made of definitions and theorems about
systems of objects, answering many philosophical questions and providing
frameworks for all mathematics.

“Pure mathematics consists entirely of assertions to the effect that, if such and
such a proposition is true of anything, then such and such another proposition is
true of that thing. It is essential not to discuss whether the first proposition is
really true, and not to mention what the anything is, of which it is supposed to be
true. [...] Thus mathematics may be defined as the subject in which we never
know what we are talking about, nor whether what we are saying is true. People
who have been puzzled by the beginnings of mathematics will, I hope, find
comfort in this definition, and will probably agree that it is accurate.”

- Bertrand Russell, Mysticism and Logic, 1917

 A Roadmap for TAMC 3

“The skeptic will say: “It may well be true that this system of equations is
reasonable from a logical standpoint. But this does not prove that it corresponds to
nature.” You are right, dear skeptic. Experience alone can decide on truth.”

- Albert Einstein

Mathematical logic is dominated by two theories: Set Theory and Model Theory.

Set theory studies the universe of “all mathematical objects”, from the simplest to
the most complex such as infinite systems. But in details it has a limitless diversity of
possible variants (not always equivalent to each other).

Model theory is the general theory of theories (describing their formalism as
systems of symbols), and of systems (worlds) of objects they may describe, called
their models (their possible interpretations). It is completed by proof theory
(describing the rules of proofs). It is essentially unique, giving a clear meaning to the
concepts of theory and theorem in each theory.

Etymologically, the word “geometry” means “measure of the earth”. There were
classically two geometries of interest: the studies of “the plane” and “the space” as
they naturally appear. In modern mathematics, geometries are a wide and fuzzy range
of mathematical theories describing more general systems also intuitively thought of
as “spaces”, whose basic objects are "points", and other objects are built over them.
Geometry has a formal language (vocabulary) that is a list of symbols (names) of
structures. It has axioms which are the claims assumed to be true and are expressed in
this language.

The process of understanding often unveils structure; and this, in turn, entails
deeper understanding. The structure is formally articulated in mathematical terms.
The mathematical structure typically plays a clarifying role providing new insight and
leading to new results. Ultimately theories are built; and then specialized, generalized,
or unified.

Theory of Computation begins with “What is a model of computation?”

The theory of computation that we have inherited from the 1960's focuses on
algorithmic computation as embodied in the Turing Machine to the exclusion of other
types of computation that Turing had considered.

In the theory of computation, a diversity of mathematical models of computers
have been developed. Typical mathematical models of computers are the following:

• State models including Turing machine, push-down automaton, finite state
automaton, and PRAM

• Functional models including lambda calculus
• Logical models including logic programming
• Concurrent models including actor model and process calculi

The focus of the field changed from the (relatively understood) notion of
"computation" to the (much more elusive) notion of "efficient computation". The
fundamental notion of NP-completeness was formulated and its near universal impact
was gradually understood. Long term goals, such as the P vs NP question, were set.

4 T.V. Gopal et al.

The theory of algorithms was developed, with the fundamental focus on asymptotic
and worst-case analysis. Numerous techniques, maturing in mathematical
sophistication, were invented to solve major computational problems.

A variety of computational models, designed to explain and sometimes anticipate
existing computer systems and practical problems were developed and studied.
Among them are parallel and distributed models, asynchronous and fault-tolerant
computation, on-line algorithms and competitive analysis.

Randomness was introduced as a key tool and resource. This revolutionized the
theory of algorithms. In many cases, probabilistic algorithms and protocols can
achieve goals which are impossible deterministically. In other cases they enable much
more efficient solutions than deterministic ones. Following this, a series of
derandomization techniques developed to convert in general cases probabilistic
algorithms to deterministic ones.

The emergence of the (complexity based) notion of one-way function, together
with essential use of randomness, has lead to the development of modern
cryptography. Probabilistic proof systems, with their many variants --- zero
knowledge, Arthur-Merlin, multi-prover, and probabilistically checkable, have
enriched to a tremendous extent our understanding of basic complexity classes which
have nothing to do with randomness and interaction, such as space bounded
computation or approximate solutions to optimization problems.

The intimate connection between computational difficulty and pseudo-randomness
has brought us closer to understanding the power of randomness in various
computational contexts, as well as in purely information theoretic contexts.

Mathematization of reality (and equivalent forms of expressing an experience) has
been carried out to the unhappy point where the world begins to disappear behind a
ghostly veil of abstraction.

Advances in computation and information technology have already transformed
our lives, giving rise to innovations from smart phones, to search engines, to the
sequencing of the human genome. However, the greatest transformations lie ahead.

Studying the structures that communicate, store, and process information from this
viewpoint will propel computing in new and exciting directions in the years to come.
The structures may be expressed:

• in hardware and called machines; or
• in software and called programs; or
• in abstract notation and called mathematics; or
• in nature and society and called biological or social networks and markets.

The power of computing stems from according priority to resource tradeoffs and
complexity classifications over the structure of machines and their relationships to
languages. It reflects the growing importance of computational models that are more
realistic than the abstract ones studied in the 1950s, '60s and early '70s.

Dealing with discrete objects, questions from theoretical computer science inspired
much interest in the combinatorics community, and for many of its leaders became a
primary scientific goal. This collaboration has been extremely beneficial to both the
discrete mathematics and theoretical computer science communities, with wealthy

 A Roadmap for TAMC 5

exchange of ideas, problems and techniques. It is extremely important that this
conversation between mathematics and theoretical computer science is two-way.
More and more mathematicians are considering "computational" aspects of their
areas, following theorems like an object exists with the problem how efficiently can
this object be constructed?

Trying to answer them typically reveals more structural questions, and a
combination of mathematics and algorithmic theoretical computer science techniques
resulted in active research areas like computational number theory, computational
algebra and computational group theory.

However, the currently available resources of even the newest computer systems
are far from being sufficient for solving some of the well defined problems. A whole
new type of algorithmic problems from natural sciences in which the required output
is not "well defined in advance'' are challenging theoretical computer science.
Exciting models and solutions in the areas computational learning, usage of economic
theories to solve problems such as multitudes of autonomous robots, or of
independent programs on the Web are now budding. The algorithms are "trying to
make sense" of the data, "explain it", "predict future values of it" and so on.

The increasing prominence of the Internet, the Web, and large data-networks in
general is profoundly impacting the “Quality of Life” of every individual. It has
brought about one of the most challenging shifts in Computer Science.

True technologists just can’t stop thinking about tomorrow. The future always
looks bright; the question is who and what will help get us there? TAMC facilitates
the creation of technologists both as individuals and as team members through
vision and ingenuity. TAMC enables a strong architectural plan with input from all
stakeholders creates a vastly different, participative and delivery working
environment. The continued commitment to creating excellence and an atmosphere
that embraces change are foundational characteristics of the Computability and
Computation in future.

Typically, people are overwhelmed by the wonders of the presented computing
technologies. Often times they are oblivious of the Theories and Models that make the
technology work for them. TAMC series addresses a wide range of challenges that are
natural, man-made and imaginary. Big ideas are lenses for envisioning the future.
People have been experiencing “dehumanizing” technology - software or hardware
that seems to diminish our ability to communicate with others or to function
effectively in the world. TAMC points at technology that creates new boundaries
between people rather than erasing old ones. Humanizing entails Safety and Security,
Human Relationships and Personal Growth.

The mathematics of relations among objects with which we deal is provides a
useful model for our investigation of computing systems. Three desirable properties
of such a model are generality, a predictive ability, and appropriateness.

TAMC Series has facilitated better comprehension of the context of Computability
and Computation from generalizing the problems and abstracting away unnecessary
technological details to ensure forming and learning the structures and the
connections to pertinent knowledge. TAMC has changed the way information and
knowledge is combined to solve complex problems. TAMC accords a view of proofs

6 T.V. Gopal et al.

set in a meaningful and purposeful context yielding only the validity of the claim they
vouch for.

The “formative questions” that are ahead indicate the importance of TAMC. The
success of TAMC over the past one decade gives adequate assurance for successful
solutions evolving across many disciplines.

References

[1] Korukonda, A.R.: Taking stock of Turing test: a review, analysis, and appraisal of issues
surrounding thinking machines. International Journal Human-Computer Studies 58, 240–
257 (2003)

[2] Barry Cooper, S., Abramsky, S.: The foundations of computation, physics and mentality:
the Turing legacy, Preface. Philosophical Transactions of the Royal Society, A 370,
3273–3276 (2012)

[3] Abramson, D.: Descartes’ influence on Turing. Studies in History and Philosophy of
Science 42, 544–551 (2011)

[4] Schneider, D.F.: Software Construction: Building a Process Model. Stratus Engineering,
Texas (1997)

[5] Elliott Bell, D., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations,
MITRE Technical Report 2547, I (1973)

[6] Eberbach, E., Goldin, D., Wegner, P.: Turing’s Ideas and Models of Computation
[7] Savage, J.E.: Models of Computation - Exploring the Power of Computing, Creative

Commons License (2008)
[8] Fiore, M.P.: Mathematical Models of Computational and Combinatorial Structures. In:

Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 25–46. Springer, Heidelberg
(2005)

[9] Goldreich, O., Wigderson, A.: Theory of Computation: A Scientific Perspective (1996)
[10] Valdes-Perez, R.E.: A Scientific Basis for Computational Science, CMU-CS-93-162

(1993)
[11] Smale, S.: Mathematical Problems for the Next Century. Mathematical Intelligencer 20(2),

7–15 (1998)

A Tight Lower Bound Instance

for k-means++ in Constant Dimension

Anup Bhattacharya1, Ragesh Jaiswal1, and Nir Ailon2,�

1 IIT Delhi, India
{csz128275,rjaiswal}@cse.iitd.ac.in

2 Technion, Haifa, Israel
nailon@cs.technion.ac.il

Abstract. The k-means++ seeding algorithm is one of the most
popular algorithms that is used for finding the initial k centers when
using the k-means heuristic. The algorithm is a simple sampling
procedure and can be described as follows:

Pick the first center randomly from the given points. For i > 1,
pick a point to be the ith center with probability proportional to
the square of the Euclidean distance of this point to the closest
previously (i− 1) chosen centers.

The k-means++ seeding algorithm is not only simple and fast but also
gives an O(log k) approximation in expectation as shown by Arthur
and Vassilvitskii [7]. There are datasets [7,3] on which this seeding
algorithm gives an approximation factor of Ω(log k) in expectation.
However, it is not clear from these results if the algorithm achieves good
approximation factor with reasonably high probability (say 1/poly(k)).
Brunsch and Röglin [9] gave a dataset where the k-means++ seeding
algorithm achieves an O(log k) approximation ratio with probability that
is exponentially small in k. However, this and all other known lower-
bound examples [7,3] are high dimensional. So, an open problem was to
understand the behavior of the algorithm on low dimensional datasets. In
this work, we give a simple two dimensional dataset on which the seeding
algorithm achieves an O(log k) approximation ratio with probability
exponentially small in k. This solves open problems posed by Mahajan
et al. [13] and by Brunsch and Röglin [9].

Keywords: Clustering, k-means, k-means++.

1 Introduction

The k-means clustering problem is one of the most important problems in Data
Mining and Machine Learning that has been widely studied. The problem is
defined as follows:

� Nir Ailon acknowledges the support of a Marie Curie International Reintegration
Grant PIRG07-GA-2010-268403, as well as the support of The Israel Science
Foundation (ISF) no. 1271/13.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 7–22, 2014.
c© Springer International Publishing Switzerland 2014

8 A. Bhattacharya, R. Jaiswal, and N. Ailon

(k-means problem): Given a set of n points X = {x1, ..., xn} in a d-
dimensional space, find a set of k points C = {c1, ..., ck} (these are called
centers) such that the cost function ΦC(X) =

∑
x∈X minc∈C D(x, c) is

minimized. Here D(x, c) denotes the square of the Euclidean distance
between points x and c. In the discrete version of this problem, the
centers are constrained to be a subset of the given points X .

The problem is known to be NP-hard even for small values of the parameters
such as when k = 2 [10] and when d = 2 [14,13]. There are various approximation
algorithms for the problem. However, in practice, a heuristic known as the
k-means algorithm (also known as Lloyd’s algorithm) is used because of its
excellent performance on real datasets even though it does not give any
performance guarantees. This algorithm is simple and can be described as
follows:

(k-means Algorithm): (i) Arbitrarily, pick k points C as centers. (ii)
Cluster the given points based on the nearest distance to centers in C.
(iii) For all clusters, find the mean of all points within a cluster and
replace the corresponding member of C with this mean. Repeat steps
(ii) and (iii) until convergence.

Even though the above algorithm performs very well on real datasets, it
guarantees only convergence to local minima. This means that this local search
algorithm may either converge to a local optimum solution or may take a large
amount of time to converge [5,6]. Poor choice of the initial k centers (step (i)) is
one of the main reasons for its bad performance with respect to approximation
factor. A number of seeding heuristics have been suggested for choosing the
initial centers. One such seeding algorithm that has become popular is the
k-means++ seeding algorithm. The algorithm is extremely simple and runs
very fast in practice. Moreover, this simple randomized algorithm also gives
an approximation factor of O(log k) in expectation [7]. In practice, this seeding
technique is used for finding the initial k centers to be used with the k-means
algorithm and this ensures a theoretical approximation guarantee. The simplicity
of the algorithm can be seen by its simple description below:

(k-means++ seeding): Pick the first center randomly from the given
points. After picking (i − 1) centers, pick the ith center to be a point p
with probability proportional to the square of the Euclidean distance of
p to the closest previously (i − 1) chosen centers.

A lot of recent work has been done in understanding the power of this
simple sampling based approach for clustering. We discuss these in the following
paragraph.

1.1 Related Work

Arthur and Vassilvitskii [7] showed that the sampling algorithm gives an
approximation guarantee of O(log k) in expectation. They also give an example

A Tight Lower Bound Instance for k-means++ in Constant Dimension 9

dataset on which this approximation guarantee is best possible. Ailon et al. [4]
and Aggarwal et al. [3] showed that sampling more than k centers in the
manner described above gives a constant pseudo-approximation.1 Ackermann
and Blömer [1] showed that the results of Arthur and Vassilvitskii [7] may
be extended to a large class of other distance measures. Jaiswal et al. [12]
showed that the seeding algorithm may be appropriately modified to give a
(1+ ε)-approximation algorithm for the k-means problem. Jaiswal and Garg [11]
and Agarwal et al. [2] showed that if the dataset satisfies certain separation
conditions, then the seeding algorithm gives constant approximation with
probability Ω(1/k). Bahmani et al. [8] showed that the seeding algorithm
performs well even when fewer than k sampling iterations are executed provided
that more than one center is chosen in a sampling iteration. We now discuss our
main results.

1.2 Main Results

The lower-bound examples of Arthur and Vassilvitskii [7] and Aggarwal et al. [3]
have the following two properties: (a) the examples are high dimensional and
(b) the examples lower-bound the expected approximation factor. Brunsch and
Röglin [9] showed that the k-means++ seeding gives an approximation ratio of
at most (2/3 − ε) · log k only with probability that is exponentially small in k.
They constructed a high dimensional example where this is not true and showed
that an O(log k) approximation is achieved with probability exponentially small
in k. An important open problem mentioned in their work is to understand the
behavior of the seeding algorithm on low-dimensional datasets. This problem is
also mentioned as an open problem by Mahajan et al. [13] who showed that the
planar (dimension=2) k-means problem is NP-hard. In this work, we construct
a two dimensional dataset on which the k-means++ seeding algorithm achieves
an approximation ratio O(log k) with probability exponentially small in k. More
formally, here is the main theorem that we prove in this work.

Theorem 1 (Main Theorem). Let r(k) = δ · log k for a fixed real δ ∈ (0, 1
120).

There exists a family of instances for which k-means++ achieves an r(k)-

approximation with probability at most 2−k + e(−(k−1)1−120δ−o(1)).

Note that the theorem refutes the conjecture by Brunsch and Röglin [9].
They conjectured that the k-means++ seeding algorithm gives an O(log d)-
approximation for any d-dimensional instance.

1.3 Our Techniques

All the known lower-bound examples [7,3,9] have the following general
properties:

1 Here pseudo-approximation means that the algorithm is allowed to output more than
k centers but the approximation factor is computed by comparing with the optimal
solution with k centers.

10 A. Bhattacharya, R. Jaiswal, and N. Ailon

(a) All optimal clusters have equal number of points.
(b) The optimal clusters are high dimensional simplices.

In order to construct a counterexample for the two dimensional case, we consider
datasets that have different number of points in different optimal clusters. Our
counterexample is shown in Figure 2. The optimal clusters (indicated in the
figure using shaded areas) are along the vertical lines drawn along the x-axis.
In the next section, we will show that these are indeed the optimal clusters.
Note that the cluster sizes decrease exponentially going from left to right. We
say that an optimal cluster is covered by the algorithm if the algorithm picks
a center from that optimal cluster. We will use the following two high level
observations to show the main theorem:

– Observation 1: The algorithm needs to cover more than a certain minimum
fraction of clusters to achieve a required approximation.

– Observation 2: After any number of iterations, the probability of sampling
the next center from an uncovered cluster is not too large compared to the
probability of sampling from a covered cluster.

We bound the probability of covering more than a certain minimum fraction
of clusters by analyzing a simple Markov chain. This Markov chain is almost the
same as the chain used by Brunsch and Röglin [9]. We also borrow the analysis
of the Markov chain from [9]. So, in some sense, the main contribution of this
paper is to come up with a two dimensional instance the analysis of which may
be reduced to the Markov chain analysis in [9].

In the next section, we give the details of our construction and proof.

2 The Bad Instance

We provide a family of 2-dimensional instances on which performance of k-
means++ is bad in the sense of Theorem 1. This family is depicted in Figure
2. We first recursively define certain quantities that will be useful in describing
the construction. Here m is any positive integer, r is any positive real number,
and Δ is a positive real number dependent on k (we will define this dependency
later during analysis).

r1 = r and ∀i, 2 ≤ i < k, ri = 2 · ri−1

m1 = m and ∀i, 2 ≤ i < k,mi = (1/4) ·mi−1

Note that the input points may overlap in our construction. We will consider
k groups of points G0, ..., Gk−1. These groups are shown as shaded areas in
Figure 2. They are located at only k distinct x-coordinates. These k distinct
x-coordinates are given by (x0, x1, ..., xk−1), where x0 = 0, x1 = Δ · r1, x2 =
Δ · (r1 + r2), ..., xk−1 = Δ · (r1 + ...+ rk−1). The ith group, Gi, consists of points
that have the x-coordinate xi. We will later show that G0, ..., Gk−1 is actually
the optimal k-means clustering for our instance. Group G0 has 12k2km points

A Tight Lower Bound Instance for k-means++ in Constant Dimension 11

located at (x0, 0). For all i ≥ 1, group Gi has 4kmi points located at (xi, 0), and
for all 0 ≤ j < k, Gi has

mi

4j points located at each of
(
xi, 2

jri
)
and

(
xi,−2jri

)
.

Let the total number of points on ith group be denoted by Mi. Therefore, we
can write summing points across all locations on that cluster to get the following:

∀i ≥ 1,Mi = 4kmi + 2mi + 2(mi/4) + ... + 2(mi/4
k−1)

= 4kmi + 2mi(1 + 1/4 + ... + 1/4k−1) (1)

Note that Mi+1 = Mi/4.

Fig. 1. 2-D example instance showing the 0th, 1st, 2nd, and 3rd optimal clusters only.
Note that this figure is not to scale.

2.1 Optimal Solution for Our Instance

We consider the following partitioning of the given points: Let H0 denote the
subset of points on the x-axis and for |i| ≥ 1, let Hi denote the subset of all
points that are located at y-coordinate sgn(i) ·2|i|−1 ·r. For any point p ∈ Hi, we
say that point p is in level i. Given the above definitions of group and level, the
location of a point may be defined by a tuple (i, j), where i denotes the index of
the group to which this point belongs and j denotes the level of this point.

Given a set C of centers and a subset of points Y , the potential of Y
with respect to C is given by ΦC(Y) =

∑
y∈Y minc∈C D(y, c). Furthermore,

the potential of a location l = (i, r) with respect to C is defined as ΦC(l) =∑
p located at l D(p, C). Here, D(p, C) = minc∈C D(p, c). Given a set of locations

12 A. Bhattacharya, R. Jaiswal, and N. Ailon

L = {l1, ..., ls} and a subset of points Y , ΦL(Y) denotes the potential of points
Y with respect to a set of centers located at locations in L.

We start by showing certain basic properties of our instance.

Lemma 1. Let |j| ≥ i > 0. The total number of points at level j in group i is
m

4|j|−1 .

Proof. The points for group i are located at distance ±ri,±2ri,±4ri,
Since ri = 2i−1 · r, this means that the points in Gi are located at
±2i−1r,±2ir,±2i+1r, So, the number of points is given by mi

4|j|−i = m
4|j|−1 .

Lemma 2. For all i > 0 and |j| > 0,

Φ{(i,0)}(Hj)− Φ{(i,j)}(Hj) ≤ kmr2

Proof. From Lemma 1, we know that the total number of points at level j of any
group is either 0 or m/4|j|−1. The net change in the squared Euclidean distance
of any point in Hj with respect to locations (i, 0) and (i, j) is (2|j|−1r)2. So, the
total change in potential is at most k · m

4|j|−1 · (2|j|−1r)2 = kmr2.

Lemma 3. For all i > 0 and |j| > 0,

Φ{(i,0)}(Hj+1·sgn(j) ∪ Hj+2·sgn(j) ∪ ...) ≤
Φ{(i,j)}(Hj+1·sgn(j) ∪ Hj+2·sgn(j) ∪ ...) + 2kmr2.

Proof. WLOG assume that j > 0. From Lemma 1, we can get an upper bound
in the following manner:

Φ{(i,0)}(Hj+1 ∪ Hj+2 ∪ · · ·)− Φ{(i,j)}(Hj+1 ∪ Hj+2 ∪ · · ·)

≤
k∑

t=1

∞∑
l=j+1

m

4l−1
· r2
(
(2l−1)2 − (2l−1 − 2j−1)2

)
= kmr2 ·

∞∑
l=j+1

1

4l−1
·
(
2l+j−1 − 22j−2

)
≤ kmr2 ·

∞∑
l=j+1

2j−l+1

≤ 2kmr2

Let C denote a set of optimal centers for the k-means problem. Let L denote
the set of locations of these centers. We will show that L = {(0, 0), (1, 0), ..., (k−
1, 0)}. We start by showing some simple properties of the set L. We will need the
following additional definitions: We say that a group Gi is covered with respect
to C if C has at least one center from group Gi. Group Gi is said to be uncovered
otherwise.

A Tight Lower Bound Instance for k-means++ in Constant Dimension 13

Lemma 4. (0, 0) ∈ L.

Proof. Let L′ = {(0, 0), (1, 0), ..., (k − 1, 0)}. Then we have:

ΦL′(X) =

k−1∑
i=1

2
(
mir

2
i +

mi

4
(2ri)

2 + ... +
mi

4k−1
(2k−1ri)

2
)

=

k−1∑
i=1

2k ·mir
2
i

= 2k(k − 1)mr2.

Let L′′ be any set of locations that do not include (0, 0), then ΦL′′(X) ≥
12k2kmr2 (since the nearest location to (0, 0) is (1, 0)). So, L necessarily includes
the location (0, 0).

Lemma 5. For any i, if group Gi is covered with respect to C, then (i, 0) ∈ L.

Proof. For the sake of contradiction, assume that (i, 0) /∈ L. Let (i, j) ∈ L be
the location that is farthest from the x-axis among the locations of the form
(i, .) ∈ L. Consider the set of locations L′ = (L \ {(i, j)}) ∪ {(i, 0)}. We will
now show that ΦL′(X) < ΦL(X). WLOG let us assume that j is positive. The
change in center location does not decrease the potential of Hj , Hj+1, ..., does
not increase the potential of Hj−1, Hj−2, ..., and does not increase the potential
of points on the x-axis. From Lemmas 2 and 3, we have that the increase in
potential is at most 3kmr2. On the other hand, since the contribution of the
points located at (i, 0) to the total potential changes from 4kmr2 to 0, the total
decrease in potential is at least 4kmr2. So, we have that the total potential
decreases and hence ΦL′(X) < ΦL(X). This contradicts the fact that L denotes
the location of the optimal centers.

Lemma 6. All groups are covered with respect to C.

Proof. For the sake of contradiction, assume that there is a group Gi that is
uncovered. This means that there is another group Gj such that there are at
least two locations from Gj that is present in L. Note that from the previous
lemma (j, 0) ∈ L. Let (j, l) ∈ L for some l > 0. We now consider the set of
locations L′ = (L \ {(j, l)}) ∪ {(i, 0)}. We will now show that ΦL′(X) < ΦL(X).
Since (j, 0) ∈ L, the change in center location does not decrease the potential
of Hl, Hl+1, ..., does not increase the potential of Hl−1, Hl−2, ... and does not
increase the potential of points on the x-axis. From Lemmas 2 and 3, we have
that the increase in potential is at most 3kmr2. On the other hand, since the
contribution of the points located at (i, 0) to the total potential changes from
4kmr2 to 0, the total decrease in potential is at least 4kmr2. So, we have that
the total potential decreases and hence ΦL′(X) < ΦL(X). This contradicts the
fact that L denotes the location of the optimal centers.

The following is a simple corollary of Lemmas 5 and 6.

14 A. Bhattacharya, R. Jaiswal, and N. Ailon

Corollary 1. Let C denote the optimal set of centers for our k-means problem
instance and let L denote the location of these optimal centers. Then L =
{(0, 0), (1, 0), ..., (k − 1, 0)}.

2.2 Potential of the Optimal Solution

Let us denote the potential of the optimum solution by Φ∗. Since optimum chooses
its centers only from locations on the x-axis, we can compute Φ∗ as follows:

Φ∗ =

k−1∑
i=1

2 · (mir
2
i +

mi

4
(2ri)

2 + · · ·+ mi

4k−1
(2k−1ri)

2)

=

k−1∑
i=1

2kmir
2
i

= 2k(k − 1)mr2 (2)

3 Analysis of k-means++ for Our Instance

We will first show that with very high probability, the first center chosen by the
k-means++ seeding algorithm is located at the location (0, 0). This is simply
due to the large number of points located at the location (0, 0) and the fact that
the first center is chosen uniformly at random from all the given points.

Lemma 7. Let p be the location of the first center chosen by the k-means++
seeding algorithm. Then Pr[p �= (0, 0)] ≤ 2−k.

Proof. For any i ≥ 1 let ω(i) = 1 + 1/4 + ...+ 1/4i−1 = (4/3) · (1− 1/4i). Since
the first center is chosen uniformly at random, we have:

Pr[p = (0, 0)] =
M0

M0 + M1 + ... + Mk−1

=
M0

M0 +
∑k−1

i=1 mi · (4k + 2ω(k))

(since from (1), Mi = mi(4k + 2ω(k)))

=
M0

M0 +
∑k−1

i=1
m

4i−1 · (4k + 2ω(k))

=
M0

M0 + m · ω(k − 1) · (4k + 2ω(k))

=
(12k) · 2k

(12k) · 2k + ω(k − 1) · (4k + 2ω(k))

≥ (12k) · 2k
(12k) · 2k + (4/3) · (4k + (8/3))

≥ (12k) · 2k
(12k) · 2k + 12k

(since k ≥ 1)

≥ 1− 2−k

A Tight Lower Bound Instance for k-means++ in Constant Dimension 15

Let us define the following event:

Definition 1. ξ denotes the event that the location of the first chosen center is
(0, 0).

Lemma 7 shows that ξ happens with a very high probability. We will do the
remaining analysis conditioned on the event ξ. We will later use the above lemma
to remove the conditioning. The advantage of using this event is that once the
first center has the location (0, 0), computing an upper-bound on the potential
of any location becomes easy. This is because we can compute potential with
respect to the center at location (0, 0). Computing such upper bounds will be
crucial in our analysis.

Our analysis closely follows that of [9]. Let us analyze the situation after (1+t)
iterations of the k-means++ seeding algorithm (given that the event ξ happens).
Let Ct denote the set of chosen centers. Let s ≤ t denote the number of optimal
clusters among G1, ..., Gk−1 that are covered by Ct. Let Xc denote the points
in these covered clusters and Xu denote the points in the uncovered clusters.
Conditioned on ξ, the probability that the next center will be chosen from Xu

is Φ(Xu)
Φ(Xu)+Φ(Xc)

. So, the probability of covering a previously uncovered cluster in

iteration (t+ 2) depends on the ratio Φ(Xu)
Φ(Xc)

. The smaller this ratio, the smaller

is the chance of covering a new cluster. We will show that this ratio is small
for most iterations of the algorithm. This means that even when the algorithm
terminates, there are a number of uncovered clusters. This implies that the
algorithm gives a solution that is worse compared to the optimal solution. In

order to upper-bound the ratio Φ(Xu)
Φ(Xc)

, we will upper bound the value of Φ(Xu)

and lower-bound the value of Φ(Xc). We state these bounds formally in the next
two lemmas.

Lemma 8. Φ(Xc) ≥ (2s − 1) · kmr2

4 .

Proof. For any covered cluster Gi for i > 0, we know that Gi has points at levels
0, i− 1,−i+1, i,−i, i+1, For any such location (i, j) (except location (i, 0))
such that Ct does not have a center at this location, the contribution of the points
at this location to Φ(Xc) is at least

mi

4|j|−1 ·(2|j|−1−max(2|j|−2, 1))2 ·r2i ≥ mr2/4.
Furthermore, the contribution of points at location (i, 0) in case Ct does not
contain a center from this location, is at least mr2. Therefore,

Φ(Xc) ≥ ((2k + 1) · s− t) · mr2

4

≥ (2s− 1) · kmr2

4
(since t ≤ k − 1)

Lemma 9. Φ(Xu) ≤ (40k) · (k − s− 1)mr2Δ2.

Proof. Since the number of covered clusters among G1, ..., Gk−1 is s, the number
of uncovered clusters is given by (k−s−1). Let Gi be any such uncovered cluster.
Since ξ happens, there is a center at location (0, 0). Therefore, the contribution
of Gi to Φ(Xu) can be upper bounded by the quantity Φ{(0,0)}(Gi). This can be
computed in the following manner:

16 A. Bhattacharya, R. Jaiswal, and N. Ailon

Φ{(0,0)}(Gi)

= Φ{(i,0)}(Gi) + Mi ·Δ2 · (r1 + r2 + ... + ri)
2

= Φ{(i,0)}(Gi) + Mi ·Δ2 · (2i − 1)2 · r2

= Φ{(i,0)}(Gi) + (4k + 2ω(k))
m

4i−1
·Δ2 · (2i − 1)2 · r2

≤ Φ{(i,0)}(Gi) + (4k + (8/3)) · (4mr2Δ2)

= 2 ·
k∑

j=1

mi

4j−1
· (2j−1ri)

2 + (4k + (8/3)) · (4mr2Δ2)

= 2kmr2 + (4k + (8/3)) · (4mr2Δ2)

≤ (40k)mr2Δ2

Hence, the total contribution from the uncovered clusters Φ(Xu) is upper
bounded by (40k)(k − s − 1)mr2Δ2.

We will also need a lower bound on Φ(Xu). This is given in the next lemma.

Lemma 10. Φ(Xu) ≥ 4k(k − s− 1)mr2Δ2.

Proof. Let Gi be an uncovered cluster for some i ≥ 1. For any location (i, j),
the contribution of the points at this location to Φ(Xu) is at least r2i Δ

2 times
the number of points at that location. So we have:

Φ(Xu) ≥
∑

{i|Gi uncovered}
Mi · r2i Δ2

=
∑

{i|Gi uncovered}
mi(4k + 2ω(k)) · r2i Δ2

≥
∑

{i|Gi uncovered}
4k · mr2Δ2

≥ 4k(k − s − 1) ·mr2Δ2

Since most of our bounds have the term k− 1, we define k̄ = k− 1 and do the
remaining analysis in terms of k̄. Note that all the bounds on Φ(Xu) and Φ(Xc)
are dependent only on s and not on t. This allows us to define the following
quantity that will be used in the remaining analysis. This is an upper bound on

the ratio Φu(X)
Φc(X) obtained from Lemmas 8 and 9.

zs
def
=

(k̄ − s)(80Δ2)

s− 1/2
=

(k − s− 1)(80Δ2)

s− 1/2
(3)

We now get a bound on the number of clusters among G1, ..., Gk̄ that are
needed to be covered to achieve an approximation factor of α for a fixed α. For
any such fixed approximation factor α, we define the following quantities that
will be used in the analysis.

u
def
=

α

2Δ2
and s∗

def
= �k̄ · (1 − u)	 (4)

A Tight Lower Bound Instance for k-means++ in Constant Dimension 17

Lemma 11. Any α-approximate clustering covers G0 and at least s∗ clusters
among G1, ..., Gk̄.

Proof. The optimal potential is given by Φ∗ = 2kk̄mr2 (by (2)). Consider
any α-approximate clustering. Suppose this clustering covers s clusters among
G1, ..., Gk̄. Let the covered and uncovered clusters be denoted by Xc and Xu

respectively. Then we have:

α =
Φ(X)

Φ∗ ≥ Φ(Xu)

Φ∗ ≥ 4k(k̄ − s)mr2Δ2

2kk̄mr2
≥ 2(k̄ − s)Δ2

k̄

The second inequality above is using Lemma 10. This means that the number
of covered clusters among G1, ..., Gk−1 should satisfy

s ≥
⌈
k̄ ·
(
1− α

2Δ2

)⌉
= s∗.

Fig. 2. Markov chain used for analyzing the algorithm

We analyze the behavior of the k-means++ seeding algorithm with respect to
the number of covered optimal clusters using a Markov chain (see Figure 2). This
Markov chain is almost the same as the Markov chain used to analyze the bad
instance by Brunsch and Röglin [9]. In fact, the remaining analysis will mostly
mimic that analysis in [9]. The next lemma formally relates the probability that
the algorithm achieves an α approximation to the Markov chain reaching its end
state. We analyze this Markov chain in the next subsection.

Lemma 12. Let p0 = 1 and for s = 1, 2, ..., s∗, let ps = 1
1+ 1

zs

We consider

the linear Markov chain with states v0, v1, ..., vs∗ with starting state v0 (see
Figure 2). Edges (vs, vs+1) have transition probabilities ps and the self-loops
(vs, vs) have transition probabilities qs = (1 − ps). Then the probability that the
k-means++ seeding algorithm gives an α-approximate solution is upper bounded
by the probability that the state vs∗ is reached by the Markov chain within k̄ steps.

Proof. The proof is trivial from the observation that the probability that a
previously uncovered cluster will be covered in iteration i > 2 is given by

Φ(Xu)
Φ(Xc)+Φ(Xu)

≤ 1
1+ 1

zs

= ps.

18 A. Bhattacharya, R. Jaiswal, and N. Ailon

3.1 Definitions and Inequalities

A number of quantities will be used for the analysis of the Markov chain. The
reader is advised to refer to this subsection when reading the next subsection
dealing with the analysis of the Markov chain. The following quantities written
as a function of k̄ will be used in the analysis:

α(k̄) = δ · log k̄ (5)

ε(k̄) =
1

120
· logα(k̄)

α(k̄)
(6)

Δ(k̄) =

⌈√
α(k̄) · exp

(
80 · α(k̄) · 1 + ε(k̄)

4

)⌉
(7)

u(k̄) =
α(k̄)

2Δ2(k̄)
(8)

s∗(k̄) = �k̄ · (1− u(k̄))	 (9)

zs(k̄) =
(k̄ − s) · (80Δ2)

s− 1/2
(10)

ps(k̄) =
1

1 + 1
zs(k̄)

(11)

We will also use the following inequalities. Here, whenever we say that f(k̄) ≤
g(k̄) for two functions f and g, we actually mean to say that f(k̄) ≤ g(k̄) for all
sufficiently large k̄.

1

k
≤ u(k̄) <

1

2
(12)

(1 + 40α(k̄))Δ(k̄) ≥ 1

u2(k̄)
(13)

1

k̄
≤ ε(k̄)

9
(14)

1

80Δ2(k̄)
≤ ε(k̄)

3
· u(k̄) (15)

u(k̄) +
ε(k̄)

3
·
(
1 +

ε(k̄)

3

)
· u2(k̄) ≤

(
ε(k̄)

3

)2

(16)

Except for inequality (13), all the inequalities are the same as in [9]. We refer
the reader to [9] for the correctness of these inequalities. As for (13), note that

(1 + 40α(k̄))Δ(k̄) ≥ 2Δ(k̄) = 2Ω(
√

α(k̄)·eα(k̄)/4) and 1/u2(k̄) = O(e2α(k̄)). So, for
sufficiently large values of k̄, the inequality is true.

For the remaining analysis, we will assume that the value of k̄ is fixed such
that inequalities (12), (13), (14), (15), and (16) are true. Given this, we will
avoid using the functional notation and simply use the name of the quantities.
For example, we will use u instead of u(k̄) and ε instead of ε(k̄) etc.

A Tight Lower Bound Instance for k-means++ in Constant Dimension 19

3.2 Analysis of Markov Chain

We now analyze the Markov chain and upper bound the probability of this
Markov chain reaching the state vs∗ within k̄ steps. To be able to do so, we
define random variables X0, X1, ..., Xs∗−1, where the Xs denotes the number
of steps to move from state vs to state vs+1. We consider the random variable

X =
∑s∗−1

s=0 Xs. We would like to show that the expected value of X is much
larger than k̄ and then use the Hoeffding inequality to bound the probability. To
do this using the well known Hoeffding bound, we need to have a bound on the
value of each of the random variables. So, we define related random variables
Y0, Y1, ..., Ys∗−1, where Ys = min(Xs, Δ). We will analyze the random variable

Y =
∑s∗−1

s=0 Ys ≤ X . We will use the following lemma from [9].

Lemma 13 (Claim 5 from [9]). The expected value of Xs is 1/ps and the
expected value of Ys is (1− qΔs)/ps.

The next lemma relates the expected values of Xs and Ys.

Lemma 14 (Similar to Lemma 6 in [9]). E[Ys]
E[Xs]

≥ 1− u2.

Proof. First we get a lower bound on zs in the following manner:

zs =
(k̄ − s)(80Δ2)

s − 1/2

≥ u · (80Δ2)

1− u − 1
2k̄

(since s ≤ s∗ − 1 ≤ k̄(1− u))

=
40α

1− u − 1
2k̄

(using (8))

≥ 40α (using (12))

Also, from the previous lemma we have:

E[Ys]

E[Xs]
= 1− qΔs = 1− (1− ps)

Δ = 1−
(

1

1 + zs

)Δ

≥ 1−
(

1

1 + 40α

)Δ

≥ 1− u2.

The last inequality used (13).

Next, we we get a lower bound on E[X].

20 A. Bhattacharya, R. Jaiswal, and N. Ailon

Lemma 15 (Similar to Lemma 7 in [9]). E[X]

k̄
≥ 1 + ε

3 ·
(
1 + ε

3

)
· u.

Proof. We can lower-bound E[X] in the following manner:

E[X] =

s∗−1∑
s=0

1

ps

= 1 +

s∗−1∑
s=1

(
1 +

s− 1/2

(k̄ − s)(80Δ2)

)

= s∗ +
k−1∑

i=k̄−s∗+1

k̄ − 1/2− i

i · (80Δ2)

≥ s∗ − s∗ − 1

80Δ2
+

k̄ − 1

80Δ2
·

k̄−1∑
i=k̄−s∗+1

1

i

≥ s∗ ·
(
1− 1

80Δ2

)
+

k̄ − 1

80Δ2
· log

(
k̄

k̄ − s∗ + 1

)

Since s∗ ≥ k̄(1 − u), we can write,

E[X]

≥ k̄(1− u)

(
1− 1

80Δ2

)
+

k̄ − 1

80Δ2
· log

(
k̄

k̄ − k̄(1− u) + 1

)
≥ k̄

(
1− u− 1

80Δ2
+

k̄ − 1

k̄
· 1

80Δ2
· log

(
1

u + 1
k̄

))
Using this, we have:

E[X]

k̄

≥
(
1− u − εu

3
+

k̄ − 1

k̄
· 1

80Δ2
· log

(
1

u + 1
k̄

))
(using (15))

≥
(
1− u

(
1 +

ε

3

)
+

k̄ − 1

k̄
· 1

80Δ2
· log

(
1

2u

))
(using (12))

≥
(
1− u

(
1 +

ε

3

)
+
(
1− ε

9

)
· 1

80Δ2
· log

(
1

2u

))
(using (14))

=

(
1− u

(
1 +

ε

3

)
+
(
1− ε

9

)
· 1

80Δ2
· log

(
Δ2

α

))
(using (8))

≥
(
1− u

(
1 +

ε

3

)
+
(
1− ε

9

) 1

Δ2
· α · 1 + ε

2

)
(using (7))

=
(
1− u

(
1 +

ε

3

)
+
(
1− ε

9

)
(1 + ε)u

)
(using (8))

= 1 +
ε

3

(
1 +

ε

3

)
u

A Tight Lower Bound Instance for k-means++ in Constant Dimension 21

Using the previous two lemmas, we can now obtain a lower bound on E[Y].

Lemma 16 (Same as Corollary 8 in [9]). E[Y]

k̄
≥ 1 + ε

3 · u.

Proof. Using the last two lemmas, we have

E[Y]

k̄
≥ (1 − u2) · E[X]

k̄

≥ (1 − u2) ·
(
1 +

ε

3

(
1 +

ε

3

)
u
)

= 1 + u ·
(ε

3

(
1 +

ε

3

)
−
(
u +

ε

3

(
1 +

ε

3

)
u2
))

≥ 1 + u ·
(

ε

3

(
1 +

ε

3

)
−
(ε

3

)2)
(using (16))

= 1 +
ε

3
· u

We can finally bound the probability that the Markov chain reaches the state
vs∗ .

Lemma 17 (Similar to Lemma 9 in [9]). The probability that the state vs∗

is reached within k̄ steps is bounded by exp(−k̄1−120δ−o(1)).

Proof. The bound on the probability is obtained through the following
calculations:

Pr[X ≤ k̄] ≤ Pr[Y ≤ k̄] (since Y ≤ X)

≤ Pr
[
E[Y]− Y ≥ ε

3
· u · k̄

]
(by Lemma 16)

≤ exp

(
−
2 · (ε3 · u · k̄)2

s∗Δ2

)
(by Hoeffding bound)

≤ exp

(
−2ε2u2k̄2

9kΔ2

)
= exp

(
−k̄ · 2ε

2u2

9Δ2

)
We will now get a bound on 2ε2u2

9Δ2 .

2ε2u2

9Δ2
=

ε2α2

18Δ6

=
ε2α2

18 · α3 · exp
(
80 · 6 · α · 1+ε

4

) (using (7))

=
ε2 · α−2 · e−120α

18

= k̄−o(1) · k̄−o(1) · k̄−120δ

Now we can put everything together and prove our main theorem.

22 A. Bhattacharya, R. Jaiswal, and N. Ailon

Proof ((Proof of main theorem)). Given that the event ξ occurs, the probability
that the k-means++ seeding algorithm gives an approximation factor of at most
(δ·log (k − 1)) is upper bounded by the probability that the Markov chain reaches
the state vs∗ in at most (k−1) steps. This is bounded by exp(−(k−1)1−o(1)−120δ)
from Lemma 17. Also, from Lemma 7, we know that Pr[¬ξ] ≤ 2−k. Combining
these, we get that the probability that the algorithm gives an approximation
factor of (δ · log k) is at most 2−k + exp(−(k − 1)1−o(1)−120δ)

Acknowledgements. Ragesh Jaiswal would like to thank Prachi Jain, Saumya
Yadav, Nitin Garg, and Abhishek Gupta for helpful discussions.

References

1. Ackermann, M.R., Blömer, J.: Bregman clustering for separable instances. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 212–223. Springer, Heidelberg
(2010)

2. Agarwal, M., Jaiswal, R., Pal, A.: k-means++ under approximation stability. In:
Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp.
84–95. Springer, Heidelberg (2013)

3. Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive sampling for k-means
clustering. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approx and Random
2009. LNCS, vol. 5687, pp. 15–28. Springer, Heidelberg (2009)

4. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In:
NIPS, pp. 10–18 (2009)

5. Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proceedings of
the Twenty-second Annual Symposium on Computational Geometry, SCG 2006,
pp. 144–153. ACM, New York (2006)

6. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP
algorithm, with an application to the k-means method. In: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006,
pp. 153–164. IEEE Computer Society, Washington, DC (2006)

7. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding.
In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, pp. 1027–1035. Society for Industrial and Applied
Mathematics, Philadelphia (2007)

8. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-
means++. Proc. VLDB Endow. 5(7), 622–633 (2012)

9. Brunsch, T., Röglin, H.: A bad instance for k-means++. Theoretical Computer
Science (2012)

10. Dasgupta, S.: The hardness of k-means clustering. Technical report, University of
California San Diego

11. Jaiswal, R., Garg, N.: Analysis of k-means++ for separable data. In: Gupta,
A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS,
vol. 7408, pp. 591–602. Springer, Heidelberg (2012)

12. Jaiswal, R., Kumar, A., Sen, S.: A simple D2-sampling based PTAS for k-means
and other clustering problems. Algorithmica (2013)

13. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theoretical Computer Science 442, 13–21 (2012); Special Issue on the
Workshop on Algorithms and Computation (WALCOM 2009)

14. Vattani, A.: The planar k-means problem is NP-hard. Manuscript (2009)

An Improved Upper-Bound

for Rivest et al.’s Half-Lie Problem

Bala Ravikumar1 and Duncan Innes2

1 Department of Computer and Engineering Science
Sonoma State University, Rohnert Park, CA 94928, USA

ravi@cs.sonoma.edu
2 Department of Computer Science

University of Rhode Island, Kingston, RI 02881, USA
innes@cs.uri.edu

Abstract. Ulam proposed the problem of determining an optimum strat-
egy for finding an integer x ∈ {1, 2, ..., n} using binary queries (i.e., queries
with yes/no answer) in which the responses to up to k queries (for a fixed
k) can be incorrect. This problem has been extensively studied for the past
fifty years. The paper by Rivest et al. [9] that made a major advance in
Ulam’s problem introduced a restricted type of error in responses known
as half-lies. Rivest et al. presented a lower-bound on theminimax complex-
ity of the half-lie version of Ulam’s search problem. Here we present a new
algorithm that improves the previous upper-bound for the half-lie prob-
lem (in the case of k = 1) for all sufficiently large values of n. Specifically,
we show that the number of queries of the form ’Is x > s?’ sufficient (in
the worst-case) to find an unknown integer x ∈ {1, 2, ..., n}, when the re-
sponder’s ’yes’ answers are always true, but at most one of the ’no’ answers
may be false, is at most �log2((n+4.5) ln(n+4.5)− 4.5 ln(4.5))�. We also
present an improvement to Rivest et al.’s lower-bound for the special case
of n = 106.

Keywords: algorithmanalysis, upper-bound,decision tree, lower-bound,
weight balancing.

1 Introduction

Ulam [14] in his autobiography, Adventures of a Mathematician stated the fol-
lowing problem:

– Hawkins and I have speculated on the following related problem: a variation
on the game of Twenty Questions. Someone thinks of a number between one
and one million (which is just less than 220). Another person is allowed to
ask up to twenty questions, to each of which the first person is supposed to
answer only yes or no. Obviously the number can be guessed by asking first:
Is the number in the first half million? then again reduce the reservoir of
numbers in the next question by one half, and so on. Finally the number
is obtained in less than log2 (1, 000, 000). Now suppose one were allowed to

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 23–38, 2014.
c© Springer International Publishing Switzerland 2014

24 B. Ravikumar and D. Innes

lie once or twice, then how many questions would one need to get the right
answer? One clearly needs more than n questions for guessing one of 2n

objects because one does not know when the lie was told. This problem is not
solved in general.

In this paper, we study a variation of Ulam’s problem stated above in the case
of one lie. The variation is as follows: we restrict the questioner to questions of
the form ’Is x > s?’ and the responder’s one lie (if she chooses to exercise it)
is restricted to only ’no’ answers. This variation has been studied before, and
the main contribution of this work is to improve asymptotially (i.e., for all large
enough values of n) the best known upper-bound on the number of questions
needed to find the unknown in the worst-case.

The first major work that addressed the Ulam problem was due to Rivest et al.
[9] who gave upper and lower-bounds on the worst-case number of queries needed
to find the unknown x ∈ {1, ..., n} as a function of n and k, the number of permit-
ted lies. In that paper, they introduced a variation of Ulam’s problem that they
called a half-lie problem. The half-lie problem as studied in [9] deals with the case
in which the questioner is restricted to asking questions of the form ”Is x > c?”
for a constant s. The choice of c on a query can be based on all the previous re-
sponses received, a model known as adaptive. (In later works [12], such questions
were referred to as cut questions.) Rivest et al. [9] presented an upper-bound on the
number of queries needed for the full-lie problem, and this has remained the upper-
bound for the half-lie problem as well. The main idea behind the algorithm pre-
sented by Rivest et al. was a clever generalization of the well-known binary search
strategy that gives an optimal solution in the case of no lies.

Although Rivest et al. presented a lower-bound for the half-lie problem, they
did not present any upper-bound and hence the only known upper-bound for the
half-lie problem is the one comes directly from the full-lie problem (since any
algorithm for the full-lie also works in the half-lie case). There has been a lot
of study of the half-lie problem since 1980 (e.g. [12], [3], [13], [2] etc.). However,
all these papers consider the half-lie version in which the questioner is allowed
to ask arbitrary yes/no question. Notably, [2] deals with the half-lie problem
with k = 1, and presents both upper- and lower-bound results. However, since
it uses arbitrary yes/no questions (bit questions) rather than cut questions, his
upper-bound results do not translate to an upper-bound for the cut question
model. However, his lower-bound provides a lower-bound for our restricted ’cut
question’ model, as we note later (in Section 7).

There are reasons why the cut question model is more interesting than the
bit question model. One of them is a result of Rivest et al. [9] that showed
that the cut question model of the half-lie problem is closely related to the
problem of finding the maximum of a collection of keys using only comparison
of keys to constants, but not each other [5] - a problem of interest in its own
right (see Section 6 for details). Such connections do not exist in the case of bit
question model of the half-lie problem. In any case, in this paper, we consider
only the half-lie problem with cut questions and present an upper-bound for this
problem that is an improvement over the corresponding full-lie problem for all

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 25

large enough values of n. For the specific case of n = 106, our new upper-bound
is 24 while the previous upper-bound was 25. We also make an improvement in
the lower-bound for this problem (from 22 to 23) in the specific case of n = 106.

The rest of the paper is organized as follows. In Section 2, we present an
overview of prior results in this area that are relevant to the current work. In
Section 3, we present an overview of the new algorithm that leads to the improved
upper-bound. In Section 4, we present an analysis of the algorithm during the
opening phase, i.e., until a weight of 512 or less is reached. In Section 5, we
present the end-game analysis that shows that at most 9 additional queries are
needed to complete the end-game. In Section 6, a lower-bound for the half-lie
problem with one lie is prsented in the special case of n = 106 that improves the
bound of [9] by one. In Section 7, a connection between the half-lie problem and
a fundamental problem of two-player binary search is used to improve a solution
to the latter problem using our new algorithm. In Section 8, some open problems
and conclusions are presented.

2 Background

As stated in the Introduction, it was [9] that introduced the half-lie problem.
This work also established an upper-bound and a lower-bound for the full-lie
problem, while presenting only a lower-bound for the half-lie problem. Since we
are mainly interested in k (the number of lies) = 1 here, we will state the results
of Rivest et al. [9] for this case.

Theorem 1. ([9]) Let Q(n) be the number of cut questions needed in the worst-
case to identify an unknown x ∈ {1, 2, ..., n} when at most one of the answers
received can be erroneous. Then:

min {Q′ | 2Q′ ≥ n(Q′ + 1)} ≤ Q(n) ≤ min {Q′|2Q′−1 ≥ nQ′}.

Since the upper-bound on the full-lie case applies to half-lie case as well, the
above upper-bound also holds for the half-lie case.

Rivest et al. also showed a lower-bound for the half-lie problem.

Theorem 2. ([9]) Let QH(n) be the number of queries needed in the worst-case
to find an unknown x ∈ {1, 2, ..., n} using comparison queries of the form ’Is
x > s?’ when none of the ’yes’ answers are incorrect, but at most one of the ’no’
answers may be incorrect. Then, QF (n) ≥ log2 n + log2(log2 n)− 3.

The upper-bound presented in 2 has been improved by several researchers.
For example, Spencer [10] showed

Q(n) ≤ min {Q′ | 5 ∗ 2Q′ ≥ 8n

5
(Q′ + 1)}.

and the second author of this paper [4] improved it to

Q(n) ≤ min {Q′ | 7 ∗ 2Q′ ≥ 8n

5
(Q′ + 3)}.

26 B. Ravikumar and D. Innes

Our main result is the upper bound QH(n) ≤ �log2((n + 4.5) ln(n + 4.5)−
4.5 ln(4.5))	 which is an improvement over the previous upper-bound stated in
Theorem 1 above for all sufficiently large values of n. We show this by using
a weight-balancing strategy followed by a detailed end-game analysis. What
differentiates this work is the use of a continuous weight function instead of
combinatorial weight function used in other works.

3 The Algorithm

In this section, we present an overview of the main algorithm presented in this
paper. The analysis of the algorithm is quite complicated, and so in this section,
an overview of the algorithm is presented without all the formal details. We
begin an informal description of the algorithm, and conclude with a more formal
description of it. But even this description that appears at the end of the section
is not complete since it refers to some key ideas that are presented in Sections
4 and 5. In particular, we will defer to future sections a formal description of a
potential function (the weight function) that plays a key role in showing that
the algorithm achieves the claimed upper-bound in the worst-case.

It is perhaps the easiest to think of the searching problem as a guessing game.
One person, commonly called Carole, picks an integer x ∈ {1, 2, ..., n}. Paul, who
wants to find out x, asks questions of the form ”Is x > s?” for some selected
s. Carole is allowed to say ”no” once when x is greater than s, but be truthful
at all other times. Paul, therefore, knows that ”yes” answers are truthful, but is
suspicious of all ”no” answers. Let q = �log2((n+4.5) ln(n+4.5)− 4.5 ln(4.5))	.
We will say that the problem has been solved or that Paul wins if there is
exactly one x that is consistent with the responses of Carole and the number of
questions Paul has asked is at most q. As is the case with most of the analysis
of liar games, Carole need not pick x ahead of time. Instead, she would respond
to the questions in a way to prolong the game as long as possible.

At any stage of the game, Paul’s knowledge is represented by two adjacent
intervals of real numbers in the form C = < I1, I2 > where I1 = (p, q] and I2 =
(q, r] for some real numbers p, q and r. (Note that the half-open interval (n, n]
represents the empty set.) The configuration C has the following meaning: the
unknown x is in I1 if Carole has never lied so far, and is I2 if Carole has lied
exactly once. The following simple induction will show that Paul’s knowledge can
always be represented as a configuration, provided Paul never asks a wasteful
question: a question for which Carole can give a truthful answer that will not
add any new information to Paul’s knowledge.

Lemma 1. Assuming Paul never wastes a question, Paul’s knowledge of the
unknown x can always be represented as a configuration as defined above.

Proof. The proof is by induction on the number of questions t asked thus far.When
t = 0, Paul’s knowledge is represented by the configuration < (0, n],∅ >. For the
induction step, assume that the current configuration is C = < I1, I2 > where I1
= (p, q] and I2 = (q, r]. It is easy to see that a question of the form ’Is x > s?’ is

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 27

wasteful if s > r, or c ≤ p. Thus, we can assume that in Paul’s next question ’Is
x > s?’, s satisfies the bound p < s ≤ r. There are two cases to consider.

Case 1. p ≤ x ≤ q. The ’yes’ and ’no’ answers result in configurations < (c, q],
(q, r] > and < (p, c], (c, q] >, respectively.

Case 2. q ≤ x ≤ r. The ’yes’ and ’no’ answers result in configurations < (c, c],
(c, r] > and < (p, q], (q, c] >, respectively.

This concludes the proof. �

We define a weight function w that maps each configuration C to a real number.
The exact weight function is not necessary to understand the overall strategy so
we defer it to next section.

Paul’s strategy consists of two phases. In phase 1 (denoted by opening game),
he picks the split point s at each step in such a way that the weight of a ”yes”
response will equal the weight of a ”no” response and asks the question ’Is
x > s?’. If the response is ’yes’, then Paul can eliminate all numbers less than or
equal to s. If the response is ’no’, he can only eliminate those numbers greater
than x that have already been lied about. This set is the second component
of the configuration as described above. To give a concrete example, suppose
the current configuration is < (50, 100], (100, 150] >. If Paul’s next question is
’Is x > 75?’ If he receives a ’yes’ answer, the resulting configuration will be
< (75, 100], (100, 150] >. If the answer is ’no’, the resulting configuration will
be < (50, 75], (75, 100] >. During the first phase, Paul will balance the weights
associated with the ’yes’ and ’no’ answer and select the query point s which
would, in general, be a real number.

Phase 2 (or the end game) begins when the weight of those numbers that can
be potential candidates for the unknown x is less than or equal to 512. In phase
2, the questioner finds the sets of integers contained in each of the continuous
intervals he has been keeping track of. Then by consulting a table constructed by
working backwards from the winning positions, Paul determines the split point
based on the number of integers in each set.

It will be shown that in phase 1 the questioner can cut the weight in half
on each question and can thus be assured that after j − 9 questions, the weight
will be less than 512 if the initial weight w was between 2j−1 and 2j for some
j ≥ 10. The end-game analysis will show that any configuration with weight at
most 512 can be won with at most 9 questions. This allows us to conclude that
the worst-case number of questions sufficient to win is at most �log2 w0	 where
w0 is the initial weight.

In summary, Paul’s algorithm (which leads to the new upper-bound for the
half lie problem and forms the main result of this paper) can be described as
follows:

1. The game starts with the state I1 = < 1, n > and I2 = ∅, and the associated
weight w0 = f(n) (where f is as defined in the next section). Carole chooses
an integer x in [1, n], and Paul’s goal is to find x by asking Carole questions
of the form ’Is x > s?’ for adaptively chosen values of s. Carole will respond

28 B. Ravikumar and D. Innes

with a ’yes’ or ’no’ answer subject to the condition that all her answers are
true, and at most one of the answers can be false.

2. (opening game) While the weight associated with the current state is less
than 512, Paul selects a real number s and asks Carole the question ’Is
x > s?’. As shown in Section 4, such a real number s always exists with the
following property: independent of whether Carole’s response is ’yes’ or ’no’,
the weight associated with the next state is exactly one-half of the weight
associated with the current state.

3. (end game) When the while loop of Step 2 above ends, the game enters the
end game. Paul plays the end game as described in Section 5 (using a look-up
table). It will be shown in Section 5 that Paul can determine x with at most
9 queries.

Analysis of this algorithm is presented in detail in the next two sections.

4 Opening-game Analysis

Let c = 4.5 and let f(x) =
∫ x+c

c
(ln t+ 1)dt = (x + c) ln (x + c)− c ln c.

If I1 = (a, b] is the set of numbers which are consistent with the answers given
so far, and I2 = (b, d] is the set of numbers about which one lie has been told,
then we let m = b− a and k = d− b.

The weight of such a state < I1, I2 > will be defined as

W (m, k) = f(m) + k. (2)

We will also use wi for the weight of the state reached after i questions asked.
In particular, the weight associated with the initial configuration is w0 = W (n, 0)

= f(n). Thus W (m, k) =
∫m+r

r
(ln (x − r + c) + 1)dx +

∫ k+m+r

m+r
dx =

(m+ c) ln (m + c)− c ln c + k
The next query point s will be chosen such that the weight resulting from a

’yes’ answer will equal the weight resulting from a ’no’ answer.

1. If k > f(m) then s should satisfy:

W (m, s− m) = W (0,m+ k − 2). (3)

Specifically, choose s such that,

f(m) + s− m = m+ k − s.

2. If k ≤ f(m), s will be chosen so that

W (s,m − s) = W (m− s, k).

Specifically, choose s such that

(s + c) ln (s + c) + m − s = (m − s+ c) ln(m− s + c) + k. (4)

The next result (which is the main theorem of this paper) shows that the weight
of a configuration (that is at least 512) reduces by a factor of two after a query.

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 29

Theorem 3. Given any weight state after i questions, 512 < wi ≤ 2j, j = 10,
11, 12, ..., the new weight after one more question will be bounded by wi+1 ≤
2j−1.

Proof. Case 1.
When k > f(m) then from (3) and (2) we choose s such that

f(m) + s − m = m + k − s.

Since
f(m) + s − m+ m+ k − s = f(m) + k,

it follows that

m + k − s =
f(m) + k

2
.

Thus,
wi+1 = W (m, s − m) = W (0,m+ k − s) = m+ k − s

and wi = f(m) + k, it follows that

wi+1 ≤ wi

2
≤ 2j−1.

Case 2.
When k ≤ f(m), we need to show that, with 512 ≤ wi ≤ 2j

wi+1 = W (s,m− s) = W (m − s, k) ≤ 2j−1.

or equivalently,
wi − 2wi+1 ≥ wi − 2j .

Let the gain in weight from one question to the next , as a function of m and k,
be defined as

g(m, k) = wi − 2wi+1.

Then from (1) and (2),
g(m, k) = (m+ c) ln(m+ c)− (s + c) ln(s + c)−

(m− s+ c) ln(m − s+ c)− m+ s + c ln c.
It is enough to show that g(m, k) ≥ 0 since it would imply that wi+1 ≤ wi/2 ≤

2j−1. For those values where it is difficult to show that g(m, k) ≥ 0, it will be
sufficient to show that

g(m, k) ≥ wi − 2j .

First consider the partial derivative of g with respect to k. Since s depends on
k, we must first find ∂s

∂k . Differentiating implicitly with respect to k we get

∂s

∂k
ln(s + c) = − ∂s

∂k
ln(m− s + c)− ∂s

∂k
+ 1.

Thus,
∂s

∂k
=

1

ln(s + c) + ln(m− s + c) + 1

30 B. Ravikumar and D. Innes

Notice that, since s,m,m− s ≥ 0,

∂s

∂k
> 0. (5)

Now differentiating g with respect to k, we get

∂g

∂k
=

∂s

∂k
(ln(m− s + c)− ln(s+ c) + 1).

Thus the partial derivative with respect to k will be 0 when

ln(m − s+ c)− ln(s+ c) + 1 = 0.

Thus the partial derivative with respect to k will be 0 when

m− s + c = (s + c)/e.

Solving for s,

s =
me+ ce− c

1 + e
.

Since s must also satisfy (4), we can solve for k in (4), and substitute for s. Thus
we get

k =
e(m+ 2c)

1 + e
ln
(e(m+ 2c)

1 + e

)
− (m+ 2c)

1 + e
.

With some simplification, we conclude that ∂s
∂k = 0 when

k =
e− 1

1 + e

[
(m + 2c) ln(m + 2c)− (m + 2c) ln(1 + e)

]
+ m+ c.

From (5) we see that for a fixed value of m as k increases, so does s. As
s increases, g will increase until ln(m − s + c) − ln(s + c) + 1 = 0 and g will
decrease thereafter. Since g(m, f(m)) = 0 for all m when (m, k) is such that
ln(m − s + c) − ln(s + c) + 1 ≤ 0 and k ≤ f(m) we know that g must increase
as k decreases. Therefore g(m, k) ≥ 0 for these pairs (m, k).

Figure 1 shows values for the domain of g and the regions where the partial
derivative with respect to k is positive or negative. The domain D is given by

D = {(m, k) | f(m) > k and f(m) + k ≥ 512 and k ≥ 0}.

The curve described by

{(m, k) | k =
e− 1

1 + e

[
(m + 2c) ln(m + 2c)− (m + 2c) ln(1 + e)

]
+ m+ c.

indicates the points at which ∂g
∂k = 0 and g attains a maximum for a fixed value

of m. It has just been shown that for all the points in the domain above the line,
g will be non-negative. It remains to be shown that those below the line will also
result in a non-negative g.

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 31

Fig. 1. Domain of g(m,k)

Consider the function ĝ(m) = g(m, 0). Substituting k = 0 and

(s + c) ln(s + c) + m− s = (m− sc + c) ln(m − s+ c),

we can write ĝ as

ĝ(m) = (m + c) ln(m + c)− 2(s + e) ln(s+ c)− 2m+ 2s+ c ln c.

Differentiating we get,

dĝ

dm
= ln(m+ c)− 1− 2

ds

dm
ln(s+ c). (6)

With k = 0, we will choose s such that

(s + c) ln(s + c) + m− s = (m− sc + c) ln(m − s+ c). (7)

We can now consider s as a function of m (rather than m and k) and differentiate
(7) to obtain:

ds

dm
=

ln(m − s+ c)− 1

ln(m− s + c) + ln(s+ c)
.

It is clear from (7) that

ln(s + c) < ln(m− s + c).

This together with the fact that m > m − s allows the conclusion that

ds

dm
=

ln(m− s + c)− 1

ln(m− sc + c) + ln(s + c)
<

ln(m + c)− 1

2 ln(s + c)

32 B. Ravikumar and D. Innes

when k = 0. Using (6) we get the following inequality:

dĝ

dm
> ln(m + c)− 1− 2 ln(s + c)

ln(m + c)− 1

2 ln(s + c)
= 0.

Thus ĝ(m) = g(m, 0) will increase as m increases.
Since g(94, 0) > 0, we can conclude that g(m, 0) > 0 for m ≥ 94. Now since

∂g
∂k > 0 below the line k = e−1

1+e

[
(m+2c) ln(m+2c)− (m+2c) ln(1+ e)

]
+m+ c,

we know that g(m, k) ≥ 0 when m ≥ 94 and (m, k) is below the line. We have
now shown that g(m, k) ≥ 0 for all elements of the domain except the shaded
region in Figure 2, i.e.,

{(m, k) | k < e−1
1+e

[
(m + 2c) ln(m + 2c)− (m + 2c) ln(1 + e)

]
+ m+ c,

f(m) + k ≥ 512, m < 94}.

Fig. 2. Points (m, k) where it is hard to show wi ≤ 2wi+1

To deal with this region, we will rely on the fact that g(m, k) only need be
greater than W (m, k)−2j rather than the harder to prove condition g(m, k) ≥ 0
(although this seems to be true). It seems obvious from the graph that the largest
weight occurring in this interval will be less than W (94, 256.59) = 701.94. To
show that this is the largest weight, we need to show that all these points will
have k < 256.59 since we know that m < 94 for all points in the region. The
slope of the curve where

k =
e− 1

1 + e

[
(m+ 2c) ln(m + 2c)− (m+ 2c) ln(1 + e)

]
+ m + c

will be
dk

dm
=

e− 1

1 + e

[
ln(m+ 2c)− ln(1 + e)

]
+

2e

1 + e
.

Because m + 2c > 1 + e for all m ≥ 0,

dk

dm
= 0.

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 33

So as m decreases, k will also decrease. All the points in the region have m < 94
and k < 256.59 and therefore a weight less than 702.

Thus, W (m, k) < 702 < 210 and j ≥ 10 for these troublesome points. We need
only show then that, for all the points in this region, g(m, k) ≥ 702−210 = −322.
Notice that m ≥ 70 for all these points. With m = 70 and k = 0, s ≈ 30.73
and g(70, 0) ≈ −2.23. As before, since dĝ

dm > 0, we can conclude that g(m, 0) >

−2.23 > −322 for all these points. Also since ∂g
∂k > 0 for all the points in this

region, g(m, k) > g(m, 0) > −322 for all these points. For the other points, we
were able to show we could split the weight to half or less after each question,
but when the weight is less than or equal to 702, we don’t need to split it half
exactly to get a weight less than or equal to 512. Thus when 512 ≤ wi ≤ 2j , we
have shown that wi+1 ≤ 2j−1. �

We have thus shown that until the end-game is reached (when the weight is
512 or less) we are able to balance the weights so that irrespective of how Carole
responds, Paul can reduce the weights by a factor of 2. By repeating this weight
balancing strategy, we conclude the following:

Theorem 4. For any initial weight w0 ≥ 512 of a configuration, where 2j−1 <
w0 ≤ 2j for some j ≥ 10, the weight after i questions using the algorithm
presented in Section 3 will be:

wi ≤ 2j−i, j − i ≥ 9

and thus Paul can reach a weight of 512 or less in no more than j− 9 questions.

5 End-game Analysis

In this section, we present the end-game analysis. This involves showing that
any configuration with weight at most 512 can be won by Paul with at most 9
questions. Since the total number of such configurations is finite, a brute-force
way of showing this claim is to consider every one of these cases. But even for
a single starting configuration, establishing the upper-bound involves inspecting
a decision tree of depth k where k can be as large as 9, and thus this approach
is not feasible. While our approach still requires building a look-up table, the
table size we build is small (see Appendix) - and we show that all the cases of
the end-game are covered by this table.

Theorem 5. Paul can win starting from any configuration C with weight at
most 512 in nine or fewer questions.

Proof. Up until now, we have chosen s to be a real number and the intervals
represented by the sets M and K have been composed of real numbers. We need
to show that the number of integers, m′ and k′ contained, respectively, in each
of these sets is such that the discrete pattern (m′, k′) guarantees a win for Paul
in nine additional questions. The table in Appendix shows for each value of m′,
the maximum value for k′, called ’max’, that guarantees a win.

34 B. Ravikumar and D. Innes

To establish this, we need to make two observations. First, since the sets I1
and I2 corresponding to configuration C = < I1, I2 > are disjoint,

m′ + k′ ≤ �m+ k	. (8)

The second observation deals with the size of k compared to m. We know that
the weight at this point must be no more than 512 and therefore k ≤ 512−f(m).
We want to show that any increase in m will decrease the upper bound on k by
an even greater amount. That is,

m1 + (512− f(m1)) > m2 + (512− f(m2)),

if m1 < m2.
Let k̂ be the largest possible k for each value of m, so that

k̂ = 512− f(m).

Substituting for f(m) and differentiating we get:

dk̂

dm
= − ln(m + c)− 1 < −1

for all m ≥ 0.
Therefore, k̂ decreases faster than m increases. Thus with k̂i = 512− f(mi)

m1 + k̂1 > m2 + k̂2 if m1 < m2.

Suppose L ≤ m ≤ L + 1, L ∈ {0, 1, ..., 105}. Then

m+ k ≤ m+ k̂ ≤ L + 512− f(L). (9)

From inequalities (7) and (8)

m′ + k′ ≤ �L + 512− f(L)	.

This means that either

1. m′ = L = �m� and k′ ≤ �512− f(L)	, or
2. m′ = L + 1 = �m	 and k′ ≤ �512− f(L)�

The table below shows m′ = L+1 and k′ = �512−f(L)� for all L ∈ {1, 2, ..., 105}.
We can verify that the second possibility above assures a win by comparing k′

with max for each L and seeing that it is small enough. Since �512 − f(L)	 ≤
�512−f(L−1)� (L and L−1 differ by one, therefore 512−f(L) and 512−f(L−1)
differ by more than one), we can verify the first possibility by looking at the
previous row. Therefore, we only need to check that all values of k′ are no more
than the corresponding value for max.

This concludes the proof. �

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 35

Fig. 3. Possible values of m′ and k′ for positions of weight ≤ 512

6 Lower-bound for the Case of n = 106

Rivest et al. [9] show a lower-bound of log2 n+ log2 log2 n− 3 for QH(n). When
n = 106, this gives a lower-bound of 22. In this section, we will show a slightly
stronger result, namely QH(106) ≥ 23.

Theorem 6. QH(106) ≥ 23.

Proof. The lower-bound for QH(n) was presented by Rivest et al. [9] in their
Theorem 4. We will briefly present the main ideas of their proof as we suitably
adapt it to the case of k = 1. (Their proof applies to an arbitrary k that is
independent of n.) Consider an arbitrary optimal (in the worst-case) strategy S

36 B. Ravikumar and D. Innes

of Paul. One can represent such a strategy as a binary search tree TS in which
each internal node has a query ”Is x > ct?”, the left (right) child of the node is
the one that results from a ’yes’ (’no’) answer. A leaf node is one in which Paul
has found the unknown x and the label associated with the node is x. We use
label(n) = x to denote this. With each leaf node l, we also associate two more
quantities: yes(l) is the set of queries on the path from root to the leaf l that
correspond to a ’yes’ (left) branch. Also lies(l) is the set of queries on the path
from root to l that received an erroneous answer. It is clear that lies(l) is either
a singleton or empty. Let Q be the height of the tree. We will also assume that
all the paths in the tree (from the root to a leaf) have the same path length Q.
This can be accomplished by repeating a fixed query (such as ”Is x > 0?”) Q−k
times at a leaf node at depth k and thus replace this node by a tree of height
Q− k. In this proof, clearly, n = 106.

Next we define a t-regular path from root to a leaf as a path that has at least
t yes branches. We say that an x ∈ {1, 2, ..., n} is t-regular if all the paths from
the root to a leaf that contains the key x are t-regular.

The proof of the theorem is as follows: suppose the height of the tree TS is 22
(or less). We will show the following claims.

Claim 1. There are at most
(
22
0

)
+
(
22
1

)
+ ... +

(
22
7

)
= 280599 paths in TS that

are not 8-regular. Thus there are at least 719401 numbers in {1, 2, ..., n} that are
8-regular.

The proof of claim 1 is based on simple counting. Each path that is not 8
regular results in at most one key becoming non-regular.

Claim 2. If a key x ∈ {1, 2, ..., n} is t-regular, then there are t leaves l such that
label(l) = x and |lies(l)| = 1.

Claim 2 is shown as follows: Consider a leaf node l such that label(l) = x and
|lies(x)| = 0. (There is always at least one such leaf node that Paul will reach if
Carole chooses x as the unknown and never exercises the lying option.) On the
path from the root to l, there are at least t internal nodes with ’yes’ branch. In
each of those internal nodes, if we branch off with a ’no’ answer, and then follow
the path with no more lies (assuming the unknown as x), we will arrive at a
new leaf node with label x and the number of lies = 1. Since this can be done t
times, and each leaf node we arrive at by following this procedure will result in
a new leaf node, the claim follows.

Now we arrive at a contradiction as follows: Since there are at least 719401
numbers that are 8-regular, by Claim 2, there are at least 719401*8 leaf nodes
associated with these keys, such that |lies(l)| = 1 at each of these nodes. In
addition, there are at least 106 more leaf nodes each associated with number
of lies = 0. Thus TS has at least 719401*8 + 1000000 = 6755208 leaf nodes.
However, we started with the assumption that the height of TS is 22, and hence
it has at most 222 = 4194304 leaf nodes. This contradiction implies that the
height of TS must be at least 23. �

An Improved Upper-Bound for Rivest et al.’s Half-Lie Problem 37

Let Q′
H(n) denote the number of queries needed in the worst-case for the half-

lie problem when the number of lies is 1, and when arbitrary yes/no questions
are allowed. It is clear that QH(n) ≥ Q′

H(n).
It should be noted that [2] presents a tight lower-bound for Q′

H(n). In fact, [2]
establishes an upper- and lower-bound for Q′

H(n) that is within 1 of optimum,
and hence, Theorem 6 can also be deduced from their paper. However, their
general lower-bound argument is considerably more complicated and our proof
is much simpler.

Unfortunately, there does not seem to be an easy way to narrow the gap of 1
between the upper- and lower-bounds for this case.

7 Connection to Two-Player Search Game

Consider a fundamental generalization of the standard binary search game. In
the standard version, one player chooses a number between 1 and n (for some
fixed n known to both players) and the other player tries to find x with the
fewest number of questions (in the worst-case) by asking questions of the form
”Is x > s?” Now there are three players Carole, Loreca and Paul. Carole and
Loreca each chooses a number xC and xL in {1, 2, ..., n}. Paul can ask either of
them about her number in the form ”Is your number greater than c?” He can
question them in any order and he chooses his questions based on all the past
responses. His goal is to find the bigger of the two numbers xL and xC . What
is his best strategy assuming Loreca and Carole will make his task as hard as
possible? Note, however, that neither Carole nor Loreca lie. At the outset, it is
not clear how to improve (in the worst-case) the obvious strategy of finding both
xL and xC separately using binary search - a strategy that gives an upper-bound
of 2 �log2 n	.

A remarkable result shown by Rivest et al. [9] was that the number of queries
needed by Paul in the worst-case to solve this three-player search game is ex-
actly QH(n). See Theorem 3 of their paper. This means the new upper-bound
presented in this paper provides an improved upper-bound for this problem.
Specifically for the case of 106, our improvement in the upper- and the lower-
bounds gives an estimate within 1 of the optimal bound for this problem.

8 Conclusions

The main result shown in this work is a new upper-bound QH(n) ≤ �log2((n +
4.5) ln(n + 4.5) − 4.5 ln(4.5))	. The main ideas presented in this paper can be
extended to the case where number of lies is more than 1, although the analysis
becomes even more complicated. To the best of our knowledge, the upper-bound
presented here is the best for the half-lie problem for the case of cut questionsmodel
with one lie. However, we believe that the upper-bound presented here is not op-
timal. The current lower-bound for this problem (due to [9]) does not seem to be
optimal either - as we were able to improve it at least in the special case of n= 106.
Improving either (or both) of these is the main open problem left.

38 B. Ravikumar and D. Innes

References

1. Aslam, J., Dhagat, A.: Searching in the presence of linear bounded errors. In: Proc.
of 23rd ACM Symp. on Theory of Computing, pp. 487–493 (1991)

2. Cicalese, F., Mundici, D.: Optimal Coding with One Asymmetric Error: Below the
Sphere Packing Bound. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-
Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 159–169. Springer, Heidel-
berg (2000)

3. Ellis, R., Yan, C.: Ulam’s pathological liar game with one half-lie. International
Journal of Mathematics and Mathematical Sciences 2004(29), 1523–1532 (2004)

4. Innes, D.: Searching with a lie using only comparison questions. In: International
Conference on Computing and Information, pp. 87–90 (1992)

5. Gao, F., Guibas, L.J., Kirkpatrick, D.G., Laaser, W.T., Saxe, J.: Finding extrema
with unary predicates. Algorithmica 9, 591–600 (1993)

6. Pelc, A.: Solution to Ulam’s problem on searching with a lie. Journal of Combina-
torial Theory Series A 40(9), 1081–1089 (1991)

7. Pelc, A.: Searching games with errors 50 years of coping with liars. Theoretical
Computer Science 270, 71–109 (2002)

8. Ravikumar, B., Lakshmanan, K.B.: Coping with known patterns of lies in a search
game. Theoretical Computer Science 33, 85–94 (1984)

9. Rivest, R., Meyer, A.R., Kleitman, D.J., Spencer, J., Winklmann, K.: Coping with
errors in binary search procedures. Journal of Computer and System Sciences 20(3),
396–404 (1980)

10. Spencer, J.: Guess a number - with lying. Mathematics Magazine 57(2) (1984)
11. Spencer, J.: Ulam’s searching game with a fixed number of lies. Theoretical Com-

puter Science 95, 307–321 (1992)
12. Spencer, J., Winkler, P.: Three thresholds for a liar. Combinatorics, Probability

and Computing 1(1), 81–93 (1992)
13. Spencer, J., Yan, C.H.: The half-lie problem. Journal of Combinatorial Theory,

Series A 103, 69–89 (2003)
14. Ulam, S.: Adventures of a Mathematician. Scribner, New York (1976)

Reversibility of Elementary Cellular Automata

under Fully Asynchronous Update�

Biswanath Sethi1, Nazim Fatès2, and Sukanta Das3

1 Department of Computer Science Engineering and Applications
Indira Gandhi Institute of Technology, Sarang

Dhenkanal, Odisha, India-759146
sethi.biswanath@gmail.com

2 Inria Nancy Grand-Est
LORIA UMR 7503

Université de Lorraine, CNRS
F-54 600, Villers-lès-Nancy, France

nazim.fates@loria.fr
3 Department of Information Technology

Bengal Engineering and Science University, Shibpur
Howrah, West Bengal, India-711103

sukanta@it.becs.ac.in

Abstract. We investigate the dynamics of Elementary Cellular Au-
tomata (ECA) under fully asynchronous update with periodic boundary
conditions. We tackle the reversibility issue, that is, we want to deter-
mine whether, starting from any initial condition, it is possible to go
back to this initial condition with random updates. We present analyt-
ical tools that allow us to partition the ECA space into three classes:
strongly irreversible, irreversible and recurrent.

Keywords: asynchronous cellular automata, reversibility, recurrence,
Markov chain modelling, classification.

1 Introduction

Cellular automata (CA) are spatially-extended dynamical systems which evolve
in discrete time and space. They have been extensively studied as models of
physical systems and as models of massively parallel computing devices.

Cellular automata are classically defined with a synchronous update, that is,
all the cells simultaneously apply the local transition rule to produce the new
state of the automaton. This definition has however been questioned in vari-
ous works and different models of asynchronous cellular automata have been
proposed. There are numerous reasons for studying asynchronism, such as: de-
signing robust distributed algorithms (e.g. for self-stabilisation), studying the

� This work is supported by DST Fast Track Project Fund (No.SR/FTP/ETA-
0071/2011).

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 39–49, 2014.
c© Springer International Publishing Switzerland 2014

40 B. Sethi, N. Fatès, and S. Das

robustness of discrete models of natural phenomena, obtaining a better under-
standing of the dynamics of cellular automata, etc. Interested readers may refer
to a recent survey paper for an overview of this field [1].

Our aim is to study how the notion of reversibility in the context of simple
asynchronous CA with a stochastic updating. We focus on Elementary Cellular
Automata (ECA), that is, binary, one-dimensional CA, where the next state of
a cell after an update is determined by the current states of the left and right
neighbors and the state of the cell itself.

Reversibility of synchronous deterministic cellular automata has been studied
for decades [2–6]. However, the study of reversibility of asynchronous cellular au-
tomata has been only recently explored. Two different aspects have been studied:
on the one hand, the question was asked as to how to update an asynchronous
CA so that the system returns to its initial condition. It was shown that it is
possible to find an answer for a given subset of one-dimensional asynchronous
CA [7–9]. The construction of the arguments was possible under the hypothesis
that one may choose the sequence of updates to apply to the cellular automaton.
This introduction of update patterns relies on the hypothesis that an external
operator is allowed to choose the cells to update in order to return to a given
initial condition.

On the other hand, given a CA rule and a type of updating, it was asked
to which extent it is possible to construct another rule whose transition graph
would be an “inverse” of the transition graph of the original rule. Formally, this
means that, given a rule f , we want to know if there is a rule f ′ such that if for
f a state y is reachable from x, then, for f ′, x is reachable from y [10].

We now tackle a different case: we consider that the ECA are updated in a
(stochastic) fully asynchronous mode, that is, at each discrete time step, a single
cell is chosen randomly and uniformly for update. In this context, as we will see
below, studying reversibility amounts to answering the following question: can
we decide whether an asynchronous cellular automaton is recurrent, that is, if
the system will almost surely return to the initial condition?

Using the definitions from the theory of Markov chains, we propose a full
characterisation of the ECA rules into three classes: the strongly irreversible,
irreversible, and recurrent rules. Intuitively, these class respectively correspond
to the following behaviours: no possibility to return to the initial condition, a
possibility to return to the initial condition a finite number of times and, an
infinite number of returns to the initial condition.

2 Definitions

The cellular automata we consider use periodic boundary conditions: cells are
arranged as a ring and we denote by L = Z/nZ the set of cells. The global state
of the system at a given time will be represented by an element of {0, 1}L ; for
example, for a ring of n = 6 cells, we will simply write x = 011001 a particular
state and denote by xi the state of a particular cell i ∈ L. We denote by 0 and 1
the two homogeneous states with cell state 0 and 1, respectively. Similarly, 01

Reversibility of ECA under Fully Asynchronous Update 41

denote a state of even size in which cell states 0 and 1 alternate, 001 a state
whose size is a multiple of three, where two 0s are followed by a 1, etc.

An ECA is defined by a local transition function f : {0, 1}3 �→ {0, 1} ; it is
common to define such a function with a look-up table (see Table 1). There are
28 = 256 ECA rules, each one referred to with the number that corresponds
to the decimal equivalent of the binary number formed by the sequence of its
transitions results [11]. Three such rules (87, 99 and 110) are shown in Table 1.

Definition 1. The association of the neighbourhood x, y, z to the value f(x, y, z),
which represents the result of the updating function, is called Rule Min Term
(RMT). Each RMT is associated to a number R(x, y, z) = 4x+2y+ z. An RMT
R(x, y, z) is active f(x, y, z) �= y and otherwise passive.

For example, for rule 110, RMT 1 is active and RMT 6 is passive (see Table 1).

Table 1. Look-up table for rule 87, 99 and 110

x,y,z 111 110 101 100 011 010 001 000 Rule
RMT (7) (6) (5) (4) (3) (2) (1) (0)
f(x,y,z) 0 1 0 1 0 1 1 1 87
f(x,y,z) 0 1 1 0 0 0 1 1 99
f(x,y,z) 0 1 1 0 1 1 1 0 110

We now consider fully asynchronous updating, that is, the case where only
a single cell is updated randomly and uniformly at each time step. While a
synchronous CA is a deterministic system, in an asynchronous CA (ACA), the
next state not only depends on the local rule but also on the cells which are
updated.

We denote by ut the cell that updated at time t ; the sequence U = (ut)t∈N

is called an update pattern. For an initial condition x and an update pattern U ,
the evolution of the system is given by the sequence of states (xt) obtained by
successive applications of the updates of U . Formally, we have: xt+1 = F (xt, ut)
and x0 = x, with:

xt+1
i =

{
f(xt

i−1, x
t
i, x

t
i+1) if i = ut

xt
i otherwise.

This evolution can be represented in the form of a state transition diagram. For
example, Fig. 1 shows a partial state transition diagram of rule 110 with state
x = 1010 and update pattern U = (2, 1, 4, 3, 1, 3, . . .). The index of the cell that
is updated is noted over the arrows.

Definition 2. A state x is reachable if it has at least one predecessor, that
is, if there exists a CA state y ∈ En and an update position u ∈ L such that
F (y, u) = x ; otherwise the state is non-reachable (or a garden-of-Eden state).

42 B. Sethi, N. Fatès, and S. Das

For instance, for ECA 110, the state 1110 is reachable as it has 1010 as a
predecessor (see Fig. 1). By contrast, for ECA 87, 1111 is non-reachable (see
Fig. 2). Indeed, if it had a predecessor, it would necessarily be equal to 1101, up
to shifts, as only one cell can change at a time. But as the transition 101 (RMT
5) is passive, the last 0 can not disappear. Remark that a system may contain
both types of states, reachable and non-reachable.

A state x is converted to an RMT sequence x̃ with: x̃i = R(xi−1, xi, xi+1) for
all i ∈ L. For example, the state x = 001010 is associated to the RMT sequence
x̃ = 012524. RMT sequences will be used to establish the proofs of recurrence
or irreversibility of the ECA rules.

... 110101010111
313

11111110 41110 12
1010

Fig. 1. Partial state transition diagram of rule 110 with n = 4. The cells updated
during evolution are noted over arrows (convention kept).

1111
1 2

...

 1

0011 1011

100110001010

0111

43 3

Fig. 2. Partial state transition diagram of ECA 87 with n = 4

3 (Ir) Reversibility of ACA

The issue of reversibility of CA has given rise to the use of various terms to
name the same properties; for instance, the term “invertible” has been used as a
synonymous of “reversible” [12]. This variety of terms comes from the proximity
between the physical notion of reversibility and its equivalent in discrete dy-
namical systems. We emphasise that, in the CA context, reversibility informally
denotes the possibility to “invert” the evolution of a cellular automaton, by using
potentially another cellular automaton and not the fact that the evolution of the
system is similar when it is run “backwards”. The term time-symmetric has been
recently used to qualify the rules whose evolution is similar if the arrow of time
is “inverted” [13]. As there are multiple views on reversible CA, we note that in
the deterministic synchronous case, the following statements are equivalent:

1. Each CA state has exactly one predecessor.
2. There exists no CA state that is non-reachable.
3. Each CA state lies on a cycle.
4. Each CA state is returned back in the course of dynamic evolution.

Reversibility of ECA under Fully Asynchronous Update 43

However, these definitions can not be transposed in a straightforward way
to asynchronous cellular automata and in that case, the classical definition of
reversibility needs to be revisited. One solution was that proposed consisted in
associating the notion of reversibility with a given update pattern, that is, to
a sequence of updates decided in advance [9]. However, in the case where cells
are updated randomly, new difficulties arise. For instance, in the ACA case,
Statement 4 also implies Statement 2 and Statement 3, but does not imply
Statement 1. This leads us to search for another definition of reversibility for an
ACA. Here, we choose to start from Statement 4 for defining the reversibility
of ACA: we require that in an asynchronous reversible CA, each state has to be
returned back almost surely during the evolution of the system.

As we use the fully asynchronous updating, the evolution of our ACA is de-
scribed by a Markov chain over the space of CA states QL. We thus define the
reversibility properties using the classical tools from Markov chain theory, which
leads to identify reversibility and recurrence.

Definition 3. For a couple of states x, y ∈ QL, we say that y is reachable from
x if there is a sequence of updates that leads from x to y, that is:

∃k ∈ N∗, U = (u0, . . . , uk−1), x
0 = x, xk = y

and
xi+1 = F (xi, ui) for all i ∈ {0, . . . , k − 1}.

We now introduce the main tool of our study :

Definition 4. A state x ∈ QL is recurrent if for every state y that is reachable
for x, x is also reachable from y. A state that is not recurrent is transient.

Intuitively, a transient state is such that a particular sequence of updates may
bring into a particular state from which it will never be possible to return back to
the initial state. More formally, if y is reachable from x and x is reachable from
y, we say that x and y communicate. By convention, all states communicate with
themselves. Clearly, the relationship “communicate” is an equivalence relation;
this relation partitions the set of states into communication classes. In words,
two major behaviours exist: for the transient states, the system remains for an
almost surely finite time in the communication class, then “escapes” this class
and never returns back to it. In contrast, when the system is in a recurrent state,
it remains in the communication class for ever.

We can now define the (ir)reversible cellular automata:

Definition 5. An ACA is recurrent if each CA state is recurrent, otherwise it
is irreversible.

The definitions above allow us to know if some irreversibility is present in the
system but they do not say anything about the “degree of irreversibility” of the
system. Indeed, it may well be that the system does possess a transient state
but that the sequence of updates that leads to observe the irreversibility is never
observed in practice when the updates are random. This is a difficult problem
to tackle in all generality. As first step, we propose here to deal with the states
where it is not possible to return back whatever the sequence of updates.

44 B. Sethi, N. Fatès, and S. Das

Definition 6. A state x is evanescent if it is not reachable from itself. An ACA
that possesses an evanescent state is strongly irreversible.

It is interesting to remark that the set of evanescent and non-reachable states
are equal. Indeed, by definition a non-reachable state is evanescent. To see why
the converse is true, let us assume by contradiction that x is an evanescent state
that is reachable from y. We say that the cell i ∈ L of a state x ∈ QL is active if
the transition which applies in i is active, that is, if f(xi−1, xi, xi+1) �= xi. Note
that x is a fully unstable state (all its cells are active). It is then easy to see that
y is also reachable from x (as the two states differ in only one cell) and thus,
that x is reachable from itself, which contradicts the evanescence hypothesis.

As a consequence, if a rule is strongly irreversible it possesses at least one
non-reachable state. However, the converse is not true: for instance, for rule 51
(the NOT rule), all states are fully unstable but the rule is reversible.

0001

1111

0001 0101 0001 0110

1110

101001110111

1101

1111

1

2

1

3

 233

2

211

4

Fig. 3. Transition diagram for ECA 99 with n = 4

Fig. 3 depicts an example for a recurrent CA. In the state transition diagram
of ECA 99, each state can be returned to with some given update of cells noted
over the arrows. It can be shown (e.g., with an exhaustive search) that all the
states of rule 99 ACA are recurrent.

4 Identifying the Strongly Irreversible Rules

We first present the theorem that allows us to identify strongly irreversible ECA:

Theorem 1. An ECA is strongly irreversible if and only if one of the following
conditions is verified:

1. RMT 0 (resp. RMT 7) is active and RMT 2 (resp. RMT 5) is passive.
2. RMTs 2 and 5 are active and RMTs 0 and 7 are passive.
3. RMTs 1, 2 and 4 (resp. RMTs 3, 6 and 5) are active, and RMTs 0, 3 and

6 (resp. 1, 4 and 7) are passive.

Reversibility of ECA under Fully Asynchronous Update 45

Proof. First, let us prove the “if” part, that is, if one of the conditions is verified
then the ECA is strongly irreversible. We proceed by examining the conditions
one by one and by exhibiting for each case a non-reachable (and thus an evanes-
cent) state.

Case 1: Let us show that 0 (with RMT 0 only) is non-reachable. Assume that
y is a predecessor of 0. First y �= 0 as 0 is fully unstable (RMT 0 is active). The
CA state y thus contains a single 1 (as the number of ones can only vary by 1
in the fully asynchronous update) and the transition from y to 0 was applied on
the single 1 and with RMT 2. However, this is impossible as RMT 2 is passive.
The case of RMT 5 and 7 is identical up to the 0/1 exchange.

Case 2: Let us show that 01 (with RMT 2 and 5 only) is non-reachable. First,
if RMTs 2 and 5 are active, then this CA state is fully unstable. Now, assume
that there is a CA state x �= 01 and an updated cell i such that F (x, i) = 01,
then, as x and 01 differ on only cell, it is easy to see that either RMT 0 or 7
produced a change of state on i, which is impossible if RMT 0 and RMT 7 are
both passive.

Case 3: Let us show that 001 (with RMT 1, 2 and 4 only) is non-reachable.
First, we note that this CA state is fully unstable as its RMT sequence is 124.
Again, if 001 had a predecessor x �= 001, then the last update on x is either a
0 changed into a 1 (application of RMT 0) or a 1 changed into a 0 (application
of RMT 3 or 6), which in both cases can not happen if RMTs 0, 3 and 6 are all
passive. The proof for the RMTs shown into parentheses is identical up to the
0/1 exchange.

Let us now show that the three conditions above of Th. 1 are also necessary
for an ECA to be strongly irreversible.

Proof. Let us consider an ECA that has a non-reachable state x. We will show
that x has only four “forms” (up to the 0/1 exchange) that each brings us to the
three conditions of the theorem. Let x be a non-reachable state. First, let us note
that x is fully unstable and that no transition can lead to x. As a consequence,
we can state an exclusion rule : x̃, the RMT sequence of x, can not contain two
transitions in one of the following couples of RMTs {0, 2}, {1, 3}, {4, 6} and
{5, 7}. To see why, assume for example that RMTs 0 and 2 are both present in
x̃, that is, ∃i, j ∈ L, x̃i = 0 and x̃j = 2. As x is fully unstable, RMT 0 and 2 are
both active, then, it can be remarked that two successive updates on i (or j)
make the system return to x, that is, F (F (x, i), i) = x, which is in contradiction
with the fact that x is non-reachable.

Now, let us discuss the various possibilities for x.
Case a: Let us assume that x̃ contains a 0. If x contains at least one 1, that

is, if x �= 0, then, we can note that x contains either the sequence 00010 or the
sequence 00011, that is, x̃ either contains the sequence 012 or the sequence 013.
However, the two cases lead to a contradiction due to the exclusion rule. The
only possibility is then x = 0, which implies that RMT 0 is active and RMT 2
is passive (due to the exclusion rule). We are thus in case 1 of the theorem. The
case with RMTs 5 and 7 is symmetric by 0/1 exchange.

46 B. Sethi, N. Fatès, and S. Das

Now, let us assume that x̃ does not contain RMT 0 nor RMT 7. This implies
that x contains at least one 01 pattern. We need to distinguish several sub-cases.

Case b: If x does not contain the 00 or 11 pattern, that is x = 01 and x̃ = 25,
we can deduce that RMT 0 and 5 are active and that RMT 1 and 7 are passive
(exclusion rule); we are then verifying Case 2 of the theorem.

Case c: Let us now assume that x �= 01, and without loss of generality,
that x contains the 00 pattern. Then, x necessarily contains the pattern 1001
(otherwise, it would contain the pattern 000) which means that x̃ thus contains
the RMTs 4 and 1, and, because of the exclusion rule, does not contain RMT 3
nor 6. Two possibilities are now offered :

Case d: x contains the pattern 10011 : this is excluded because of the exclusion
rule as this would imply that x̃ contains RMT 1 and 3.

Case e: x contains the pattern 10010 but does not contain pattern 000 (RMT
0), nor 011 (RMT 3), nor 110 (RMT 6). This means that x̃ contains 1, 2 and
4 (if x = 001) and possibly RMT 5 (if x contains 100101). In both cases, this
means that RMT 1, 2 and 4 are active and that RMT 0, 3, 6 are passive and
the last case of the theorem is proved.

The parts of the theorem presented into parentheses are symmetric to the
cases discussed above by the 0/1 exchange.

As a consequence, it can be seen that the RMT sequence of a non-reachable
state necessarily verifies one of the four following combinations of RMTs: (a)
only RMT 0 (or only RMT 7), (b) only RMTs 2 and 5 (c) only RMTs 1, 2 and
4 (or only RMTs 3, 5 and 6), (d) only RMTs 1, 2, 4 and 5 (or only RMTs 2, 3,
5 and 6).

There are 132 such strongly irreversible rules; they are listed in Table 2.

Table 2. List of the 132 strongly irreversible rules that verify Theorem 1. Bold fonts
show the minimal representative rules (rules with the smallest code among the group
of rules that are obtained by left-right and 0-1 exchange).

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 37 39 45 47 53 55 61 63
64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93
94 95 101 103 109 111 117 119 122 125
127 133 135 141 143 149 151 157 159 160
161 162 164 165 167 168 170 173 175 176
178 181 183 184 186 189 191 197 199 205
207 213 215 218 221 223 224 226 229 231
232 234 237 239 240 242 245 247 248 250
253 255

Reversibility of ECA under Fully Asynchronous Update 47

Example 1. Let us consider ECA 87, a rule which satisfies the conditions of
Th. 1 as RMT 7 is active and RMT 5 is passive (see Table 1). Consider the
evolution of state 1. If a cell is updated with RMT 7, then one 0 appears and
it is easy to see that afterwards the last 0 cannot disappear as RMT 5 is pas-
sive. Hence, 1 is non-reachable and is evanescent which makes the rule strongly
irreversible.

5 Identification of the Recurrent Rules

This section identifies the set of rules which are irreversible and, by complemen-
tation, those which are recurrent. We proceed by identifying the rules for which
particular states are transient.

Theorem 2. A rule R is irreversible if one of the following conditions is veri-
fied:

1. RMT 0 (resp. RMT 7) is active and RMT 2 (resp. RMT 5) is passive or
RMT 2 (resp. RMT 5) is active and RMT 0 (resp. RMT 7) is passive.

2. RMTs 0, 1, 2 and 4 (resp. RMTs 3, 5, 6 and 7) are passive and RMT 3 or
6 (resp. RMT 1 or 4) are active.

3. RMTs 0, 2, 3 and 6 (resp. RMTs 1, 4, 5 and 7) are passive and RMT 1 or
4 (resp. RMT 3 or 6) are active.

Proof. Case 1: If RMT 0 is active and RMT 2 is passive, as shown the proof
of Case 1 of Th. 1, 0 is evanescent and thus transient. If RMT 2 is active and
RMT 0 is passive, let us consider the state x = 00100. If the third cell is updated,
the system reaches 0, which is a fixed point, and which implies that x transient.

Case 2: Now, consider x = 001100; its RMT sequence is x̃ = 013640. If RMT
3 is active, y = 000100 can be reached by updating the third cell. This a fixed
point as its RMT sequence contains only 0, 1, 2 and 4, which all correspond to
passive RMTs. Similarly, if RMT 6 is active the fixed point y = 001000 can be
reached; which shows that x is transient.

Case 3: We start with x = 00100; its RMT sequence is x̃ = 01240. As RMT
1 and 4 are active, y = 00110 or y′ = 01100 can be reached. However, from any
CA state that contains two or more 1s, it is not possible to return to x as RMTs
2, 3 and 6 are passive. (This implies that a 1 that has at least one 0 next to it
can not disappear). Hence, x is transient.

The proofs for the RMTs mentioned in the parentheses is identical by ex-
changing the cell states 0 and 1.

By rewriting the conditions of the theorem, it can be verified that the rules
for which it does not apply verify the following conditions: RMTs 0 and 2 (resp.
5 and 7) are either both active or both passive, and : a) there is at least one
couple of active RMTs in the following sets: {2, 5}, {1, 6}, {3, 4}, {1, 3}, {4, 6}
or b) RMTs 1, 3, 4 and 6 are all passive. There are 46 rules which verify these
conditions, which are listed in Table 3. Our conjecture is that all these rules are
recurrent, that is, all their states are recurrent.

48 B. Sethi, N. Fatès, and S. Das

Table 3. List of the 46 rules that are conjectured to be recurrent

33 35 38 41 43 46 49 51 52 54
57 59 60 62 97 99 102 105 107 108
113 115 116 118 121 123 131 134 139 142
145 147 148 150 153 155 156 158 195 198
201 204 209 211 212 214

Table 4. List of the 78 remaining rules: conjectured to be the irreversible ACA that
are not strongly irreversible

32 34 36 40 42 44 48 50 56 58
96 98 100 104 106 110 112 114 120 124
126 128 129 130 132 136 137 138 140 144
146 152 154 163 166 169 171 172 174 177
179 180 182 185 187 188 190 192 193 194
196 200 202 203 206 208 210 216 217 219
220 222 225 227 228 230 233 235 236 238
241 243 244 246 249 251 252 254

The 210 rules which satisfies at least one condition of Th. 2 are irreversible.We
have already identified 132 rules (Tab. 2) as strongly irreversible. The remaining
78 irreversible ACA are listed in Table 4; we conjecture that they are not strongly
irreversible, that is, they have at least one transient state but no evanescent state.

6 Conclusion

We reported a classification of the ECA space according to reversibility prop-
erties under fully asynchronous update with periodic boundary conditions. The
main step now consists in completing this classification by showing that the list
of recurrent rules presented are closed. This could be done analysing the commu-
nication classes of the state space of these rules. While the classifications based
on the convergence time to a fixed point remain mainly open [14], achieving this
result would represent an important step in the understanding of the dynamics
of asynchronous CA.

As usual in the field of CA, one may ask how to extend the results to other
types of asynchronism and to the CA spaces with a higher radius or higher
dimension. As suggested by I. Marcovici, the classification can also be refined by
considering “escaping states”, that is, states where there is a possibility to stay
but for which once this state is leaved, it can not be returned to.

Another question is to know if the reversibility issues presented here are similar
to other views, for instance the one recently studied by Wacker and Worsch [10].

Reversibility of ECA under Fully Asynchronous Update 49

References

1. Fatès, N.: A guided tour of asynchronous cellular automata. In: Kari, J.,
Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp.
15–30. Springer, Heidelberg (2013); An extended version is available from:
http://hal.inria.fr/hal-00908373

2. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of par-
allel maps for tesselation structures. Journal of Computer and System Sciences 6,
448–464 (1972)

3. Richardson, D.: Tessellations with local transformations. Journal of Computer Sys-
tems and Sciences 6, 373–388 (1972)

4. Toffoli, T.: Computation and construction universality of reversible cellular au-
tomata. Journal of Computer Systems and Sciences 15, 213–231 (1977)

5. Das, S., Sikdar, B.K.: Classification of CA rules targeting synthesis of reversible
cellular automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006.
LNCS, vol. 4173, pp. 68–77. Springer, Heidelberg (2006)

6. Das, S., Sikdar, B.K.: Characterization of 1-d periodic boundary reversible CA.
Electronic Notes in Theoretical Computer Science 252, 205–227 (2009)

7. Das, S., Sarkar, A., Sikdar, B.K.: Synthesis of reversible asynchronous cellular au-
tomata for pattern generation with specific hamming distance. In: Sirakoulis, G.C.,
Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 643–652. Springer, Heidelberg
(2012)

8. Sarkar, A., Das, S.: On the Reversibility of 1-dimensional Asynchronous Cel-
lular Automata. In: Local Proceedings of Automata 2011, pp. 29–40 (2011),
http://hal.inria.fr/hal-00654706

9. Sarkar, A., Mukherjee, A., Das, S.: Reversibility in asynchronous cellular automata.
Complex Systems 21(1), 71–84 (2012)

10. Wacker, S., Worsch, T.: On completeness and decidability of phase space invert-
ible asynchronous cellular automata. Fundamenta Informaticae 126(2-3), 157–181
(2013)

11. Wolfram, S.: Theory and applications of cellular automata. World Scientific, Sin-
gapore (1986)

12. Toffoli, T., Margolus, N.: Invertible cellular automata: A review. Physica D 45(13),
229–253 (1990)

13. Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. Journal
of Computer and Systems Sciences 78(4), 1115–1126 (2012)

14. Fatès, N.: A note on the classification of the most simple asynchronous cellular
automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS,
vol. 8155, pp. 31–45. Springer, Heidelberg (2013)

http://hal.inria.fr/hal-00908373
http://hal.inria.fr/hal-00654706

Finite State Incompressible Infinite Sequences�

Cristian S. Calude1, Ludwig Staiger2, and Frank Stephan3

1 Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

cristian@cs.auckland.ac.nz
2 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,

Von-Seckendorff-Platz 1, D - 06099 Halle, Germany
staiger@informatik.uni-halle.de

3 Department of Mathematics and Department of Computer Science,
National University of Singapore, Singapore 119076, Republic of Singapore

fstephan@comp.nus.edu.sg

Abstract. In this paper we define and study finite state complexity of
finite strings and infinite sequences and study connections of these com-
plexity notions to randomness and normality. We show that the finite
state complexity does not only depend on the codes for finite transducers,
but also on how the codes are mapped to transducers. As a consequence
we relate the finite state complexity to the plain (Kolmogorov) complex-
ity, to the process complexity and to prefix-free complexity. Working with
prefix-free sets of codes we characterise Martin-Löf random sequences in
terms of finite state complexity: the weak power of finite transducers is
compensated by the high complexity of enumeration of finite transducers.
We also prove that every finite state incompressible sequence is normal,
but the converse implication is not true. These results also show that
our definition of finite state incompressibility is stronger than all other
known forms of finite automata based incompressibility, in particular the
notion related to finite automaton based betting systems introduced by
Schnorr and Stimm [28]. The paper concludes with a discussion of open
questions.

1 Introduction

Algorithmic Information Theory (AIT) [7,18,25] uses various measures of de-
scriptional complexity to define and study various classes of “algorithmically
random” finite strings or infinite sequences. The theory, based on the existence
of a universal Turing machine (of various types), is very elegant and has produced
many important results.

� This work was done in part during C. S. Calude’s visits to the Martin-Luther-
Universität Halle-Wittenberg in October 2012 and the National University of Sin-
gapore in November 2013, and L. Staiger’s visits to the CDMTCS, University of
Auckland and the National University of Singapore in March 2013. The work was
supported in part by NUS grant R146-000-181-112 (PI F. Stephan).

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 50–66, 2014.
c© Springer International Publishing Switzerland 2014

Finite State Incompressible Infinite Sequences 51

The incomputability of all descriptional complexities was an obstacle towards
more “down-to-earth” applications of AIT (e.g. for practical compression). One
possibility to avoid incomputability is to restrict the resources available to the
universal Turing machine and the result is resource-bounded descriptional com-
plexity [6]. Another approach is to restrict the computational power of the ma-
chines used, for example, using context-free grammars or straight-line programs
instead of Turing machines [13,20,21,27].

The first connections between finite state machine computations and random-
ness have been obtained for infinite sequences. Agafonov [1] proved that every
subsequence selected from a (Borel) normal sequence by a regular language is
also normal. Characterisations of normal infinite sequences have been obtained
in terms of finite state gamblers, information lossless finite state compressors
and finite state dimension: (a) a sequence is normal if and only if there is no
finite state gambler that succeeds on it [28] (see also [5,15]) and (b) a sequence
is normal if and only if it is incompressible by any information lossless finite
state compressor [33]. Doty and Moser [16,17] used computations with finite
transducers for the definition of finite state dimension of infinite sequences. The
NFA-complexity of a string [13] can be defined in terms of finite transducers that
are called in [13] “NFAs with advice”; the main problem with this approach is
that NFAs used for compression can always be assumed to have only one state.

The definition of finite state complexity of a finite string x in terms of a
computable enumeration of finite transducers and the input strings used by
transducers which output x proposed in [9,10] is utilised to define finite state
incompressible sequences. We show basic connections of this new notion com-
pared to standard complexity measures in Theorem 5: It lies properly between
the plain complexity as a lower bound and the prefix-free complexity as an upper
bound in the case that the enumeration of transducers considered is a universal
one. Furthermore, while finite state incompressibility depends on the enumera-
tion of finite transducers, many results presented here are independent of the
chosen enumeration. For example, we show that for every enumeration S every
CS–incompressible sequence is normal, Theorem 13. Furthermore, we can show
that a sequence is Martin-Löf random iff it satisfies a strong incompressibility
condition (parallel to the one for prefix-free Kolmogorov complexity) for every
measure CS based on some perfect enumeration S. One can furthermore transfer
this characterisation to the measure CS for universal enumerations S.

Our notation follows standard textbooks [4,7]:

– By {0, 1}∗ we denote the set of all binary strings (words) with ε denoting
the empty string; {0, 1}ω is the set of all (infinite) binary sequences.

– The length of x ∈ X∗ is denoted by |x|.
– Sequences are denoted by x,y; the prefix of length n of the sequence x is

denoted by x � n; the nth element of x is denoted by x(n).
– By w � u and w � y we denote that w is a prefix of u and y, respectively.
– If A,B are sets of strings then the concatenation is defined as A ·B = {xy :

x ∈ A, y ∈ B}.
– A prefix-free set A ⊂ X∗ is a set with the property that for all strings

p, q ∈ X∗, if p, pq ∈ A then p = pq.

52 C.S. Calude, L. Staiger, and F. Stephan

– By K, KmD, and H we denote, respectively, the plain (Kolmogorov) com-
plexity, the process complexity and the prefix-free complexity for appropri-
ately fixed universal Turing machines.

2 Admissible Transducers and Their Enumerations

We consider transducers which try to generate prefixes of infinite binary se-
quences from shorter binary strings and consider hence the following transduc-
ers: An admissible transducer is a deterministic transducer given by a finite set
of states Q with starting state q0 and transition functions δ, μ with domain
Q× {0, 1}, and say that the transducer on state q and current input bit a tran-
sitions to q′ = δ(q, a) and appends w = μ(q, a) to the output produced so far.

One can generalise inductively the functions μ and δ by stating that μ(q, ε) = ε
and μ(q, av) = μ(q, a) ·μ(δ(q, a), v) for states q and input strings av with a being
one bit; similarly, δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v). The output T (v) of a
transducer T on input-string v is then μ(q0, v).

A partially computable function S with a prefix-free domain mapping binary
strings to admissible transducers is called an enumeration; for a σ in the domain
of S, the admissible transducer assigned by S to σ is denoted as T S

σ .

Definition 1 (Calude, Salomaa and Roblot [9,10]). A perfect enumeration
S of all admissible transducers is a partially computable function with a prefix-
free and computable domain mapping each binary string σ in the domain to an
admissible transducer T S

σ in a one-one and onto way.

Note that partially computable one-one functions with a computable range (as
considered here) have also a computable inverse. It is known that there are
perfect enumerations with a regular domain and that every perfect enumeration
S can be improved to a better perfect enumeration S′ such that for each c there
is transducer represented by σ in S and σ′ in S′ and these representations satisfy
|σ′| < |σ| − c, [9,10].

Definition 2. A universal enumeration S of transducers is a partially com-
putable function with prefix-free domain whose range contains all admissible
transducers such that for each further enumeration S′ of admissible transducers
there exists a constant c such that for all σ′ in the domain of S′, the transducer
T S′
σ′ equals to some transducer T S

σ where σ is in the domain of S and |σ| ≤ |σ′|+c.

The construction of a universal enumeration S can be carried over from Kol-
mogorov complexity: If U is a universal machine for prefix-free Kolmogorov
complexity and S′ is a perfect enumeration of the admissible transducers, then
the domain of S is the set of all σ such that U(σ) is defined and in the domain
of S′ and T S

σ is T S′
U(σ). The fact that U is a universal machine for prefix-free Kol-

mogorov complexity implies that also S is a universal enumeration of admissible
transducers.

Finite State Incompressible Infinite Sequences 53

3 Complexity and Randomness

Recall that the plain complexity (Kolmogorov) of a string x ∈ {0, 1}∗ w.r.t. a
partially computable function φ : {0, 1}∗ → {0, 1}∗ is Kφ(x) = inf{|p| : φ(p) =
x}. It is well-known that there is a universal partially computable function U :
{0, 1}∗ → {0, 1}∗ such that

KU (x) ≤ Kφ(x) + cφ

holds for all strings x ∈ {0, 1}∗. Here the constant cφ depends only on U and φ
but not on the particular string x ∈ {0, 1}∗. We will denote the complexity KU

simply by K. Furthermore, in the case that one considers only partially com-
putable functions with prefix-free domain, there are also universal ones among
them and the corresponding complexity, called prefix complexity is denoted with
H ; like K, the prefix-free complexity H depends only up to a constant on the
given choice of the underlying universal machine.

Schnorr [29] considered the subclass of partially computable prefix-monotone
functions (or processes) ψ : {0, 1}∗ → {0, 1}∗, that is, functions which satisfy the
additional property that for strings v, w ∈ dom(ψ), if v � w, then ψ(v) � ψ(w).
For this class of functions there is also a universal partially computable prefix-
monotone function W : {0, 1}∗ → {0, 1}∗ such that for every further such ψ
(with the same properties) there is a constant cψ, depending only on W and ψ,
fulfilling

KW (x) ≤ Kψ(x) + cψ, (1)

for all binary strings x ∈ {0, 1}∗.
Martin-Löf [23] introduced the notion of the random sequences in terms of

tests and Schnorr — as cited by Chaitin [11] — characterised them in terms of
prefix-free complexity; we take this characterisation as a definition. Furthermore,
Schnorr [29] showed that the same definition holds for process complexity.

Definition 3 (Martin-Löf [23]; Schnorr [11,29]). An infinite sequence x ∈
{0, 1}ω is Martin-Löf random if there is a constant c such that H (x � n) ≥ |n|−c,
for all n ≥ 1. Equivalently one can say that x is Martin-Löf random iff there is
a constant c such that KmD(x � n) ≥ |n| − c, for all n ≥ 1.

4 Complexity Based on Transducers

For a fixed admissible transducer T , one usually denotes the complexity CT (x) of
a binary string x as the length of the shortest binary string y such that T (y) = x.
This definition is now adjusted to enumerations S of admissible transducers.

Definition 4. Let S be an enumeration of the admissible transducers. For each
string x, the S-complexity CS(x) is the minimum |σ| + |y| taken over all σ in
the domain of S and y in the domain of T S

σ such that T S
σ (y) = x.

54 C.S. Calude, L. Staiger, and F. Stephan

This S-complexity is also called the finite state complexity based on S of a given
string. Note that if S is universal and S′ is any other enumeration then there is
a constant c such that

CS(x) ≤ CS′(x) + c

for all binary strings x. Thus the universal enumerations define an abstract finite
state complexity in the same way as it is done for prefix-free and plain complexity.
The next result relates the complexity CS for universal enumerations S to the
plain complexity K, the prefix-free complexity H and the process complexity
KmD.

Theorem 5. Let S be a universal enumeration of the admissible transducers.
Then there are constants c, c′, c′′ such that, for all binary strings x,

K(x) ≤ CS(x) + c, KmD(x) ≤ CS(x) + c′, CS(x) ≤ H(x) + c′′.

Furthermore, one cannot obtain equality up to constant for any of these inequal-
ities.

Proof. For the first inequality, note that if T S
σ (y) = x then σ stems from

a prefix-free set and hence there is a plain Turing machine ψ which on input
p first searches for a prefix σ of p which is in dom(S) and, in the case that
such a σ is found, outputs T S

σ (y) for the unique y with σy = p. Thus the
mapping from all σy to T S

σ (y) with σ ∈ dom(S) and y ∈ dom(T S
σ) is partially

computable and well-defined. The inequality follows then from the universality
of the plain Kolmogorov complexity K. One can furthermore see that ψ is also
prefix-monotone and therefore also witnessing that KmD(x) ≤ CS(x) + c′ for
some constant c′.

To see that the first inequality is proper, note that K(x) ≤ KmD(x)+ c′′′ but
there is no constant c′′′′ such that KmD(x) ≤ K(x) + c′′′′ for all x [29].

Theorem 6 below implies that the second inequality is proper.
Let S′ be a fixed perfect enumeration of all admissible transducers; it is known

that S′ exists [9,10]. The inequality CS(x) ≤ H(x) + c′′ might be obtained by
choosing an enumeration S which for every p in the domain of a prefix-free
universal machine U assigns to p0 a transducer mapping ε to U(p) and, in the
case that U(p) ∈ dom(S′), to p1 the transducer T S′

U(p). Clearly, if U(p) = x then

T S
p0(ε) = x and therefore CS(x) ≤ |p| + 1. This enumeration of transducers is

universal.
Furthermore, there is a fixed code σ for the transducer realising the identity

(T S
σ (x) = x), hence CS(x) ≤ |x|+ |σ| for all x. It is known that this bound is not

matched by longer and longer prefixes of Chaitin’s Ω with respect to H , hence
one cannot reverse the third inequality to an equality up to constant. �
The properness of one inequality was missing in the previous result. It follows
from the following theorem.

Theorem 6. There is a prefix-monotone partially computable function ψ such
that for every enumeration S and each constant c there is a binary string x with
Kψ(x) < CS(x)− c.

Finite State Incompressible Infinite Sequences 55

Proof. Let Ω be Chaitin’s random set and let Ωs be an approximation to Ω
from the left for s steps. Now define

ψ(x) = 0min{s:x≤lexΩs}.

Note that this function is partially computable and furthermore it is monotone.
It is defined on all x with x ≤lex Ω. Note that for x = Ω � n, ψ(x) coincides
with the convergence module cΩ(n) = min{s : ∀m < n [Ωs(m) = Ω(m)]}.

The goal of the construction is now to show that for all constants c and all
enumerations S of admissible transducers, almost all prefixes x � Ω satisfy that
ψ(x) is larger than the length of any value T S

σ (y) with |σy| ≤ |x|+ c. So fix one
enumeration S.

The first ingredient for this is to use that for almost all σ, if T S
σ (y) is longer

than ψ(Ω � |σ|+|y|−c) then y is shorter than |σ|. Assume by way of contradiction
that this is not be true and that there are infinitely many n with corresponding
σ, y such that n = |σ|+ |y| − c and |T S

σ (y)| ≥ ψ(Ω � n) = cΩ(n) and |σ| ≤ n/2.
Now one can compute from σ and |y| the maximum length s of an output of
T S
σ (z) with |z| ≤ |y| and then take Ω � n as Ωs � n. Hence H(Ω � n) is, up to a

constant, bounded by |σ| + 2 log(|y|) which is bounded by n/2 plus a constant,
in contradiction to the fact that H(Ω � n) ≥ n for almost all n. Thus the above
assumption cannot be true.

Hence, for the further proof, one has only to consider transducers whose input
is at most as long as the code. The correspdonding definition would be to let,
for each σ ∈ dom(S), φ(σ) be the length of the longest output of the form T S

σ (y)
with y ≤ |σ|.

Now assume by way of contradiction that there are a constant c and infinitely
many x � Ω such that there exists a σ with |ψ(x)| ≤ φ(σ) and |σ| ≤ |x| + c.
Then one can construct a prefix-free machine V with the same domain as S such
that V (σ) for all σ ∈ dom(S) outputs z = Ωφ(σ) � |σ| − c. As |σ| ≤ |x| + c it
follows that z is a prefix of x and a prefix of Ω.

The domains of V and S are the same, hence V is a partially computable
function with prefix-free domain which has for infinitely many prefixes z � Ω
an input σ of length up to |z| + 2c with V (σ) = z, that is, which satisfies
HV (z) ≤ |z|+ 2c for infinitely many prefixes z of Ω. This again contradicts the
fact that Ω is Martin-Löf random, hence this does not happen.

Note that Kψ(x) ≤ KmD(x)+c′ for some constant c′. Now one has, for almost
all n that the string un = 0cΩ(n) satisfies un = ψ(Ω � n) and Kψ(un) = n and
KmD(un) ≤ n+c′ while, for all S and c and almost all n, CS(un) > n+c, hence
CS(un) − KmD(un) goes to ∞ for n → ∞. So CS and KmD cannot be equal
up to constant for any enumeration S of admissible transducers. �
Furthermore, for perfect enumerations S, one can show that there is an algorithm
to compute CS .

Proposition 7. Let S be a perfect enumeration of the admissible transducers.
Then the mapping x �→ CS(x) is computable.

Proof. Note that there is a fixed transducer T S
τ such that T S

τ (x) = x for all
x. Now CS(x) is the length of the shortest σy with σ ∈ dom(S), y ∈ {0, 1}∗,

56 C.S. Calude, L. Staiger, and F. Stephan

|σy| ≤ |τx| and T S
σ (y) = x. Due to the length-restriction |σy| ≤ |τx|, the search

space is finite and due to the perfectness of the enumeration S, the search can
be carried out effectively. �

5 Complexity of Infinite Sequences

Martin-Löf randomness can be formalised using both prefix-free Kolmogorov
complexity and process complexity, see Definition 3. Therefore it is natural to
ask whether such a characterisation does also hold for the CS complexity. The
answer is affirmative as given in the following theorem.

Theorem 8. The following statements are equivalent:

(a) The sequence x is not Martin-Löf random;
(b) There is a perfect enumeration S such that for every c > 0 and almost all

n > 0 we have CS(x � n) < n− c;
(c) There is a perfect enumeration S such that for every c > 0 there exists an

n > 0 with CS(x � n) < n− c;
(d) For every universal enumeration S and for every c > 0 and almost all n > 0

we have CS(x � n) < n− c;
(e) For every universal enumeration S and for every c > 0 there exists an n > 0

with CS(x � n) < n − c.

Proof. If x is Martin-Löf random then, as noted after Definition 3, KmD(x �
n) ≥ n− c for some constant c and all n. It follows that, for every enumeration
S, from Theorem 5 that CS(x � n) ≥ n−c′ for some constant c′ and all n. Hence
non of the conditions (a-e) is satisfied.

Now assume that (a) is satisfied, that is, that x is not Martin-Löf random.
Let U be a universal prefix-free machine and HU = H . Using U we define the
following enumeration S of finite transducers:

For ση such that σ ∈ dom(U) and time(U(σ)) = |η|, let T S
σ be defined

as the trnasucer which maps every string τ to U(σ)ητ .

Here time(U(σ)) denotes the time till the computation stops; S is computable
and prefix-free because dom(U) is prefix-free.

If the sequence x is not Martin-Löf random, then for every c > 0 there exists
an n > 0 such that H(x � n) < n − c. Hence, for every c > 0 there exist n > 0,
σ ∈ {0, 1}∗, s > 0 such that U(σ) = x � n, |σ| < n − c and time(U(σ)) = s.
Consequently, for every c > 0 there exist n > 0, σ ∈ {0, 1}∗, s > 0 and η ∈ {0, 1}s
such that ση ∈ dom(S), |σ| < n − c, T S

ση(ε) = x � (n + s), hence for every c > 0
there exist n, s > 0 such that CS(x � (n+ s)) < n+ s− c. We have showed that
for every c > 0 and almost all m > 0, CS(x � m) < m − c. Thus (b) holds. If
S′ is a universal enumeration, then CS(x) ≤ CS′(x) + c′′ for some constant c′′

and all binary strings x. Hence (d) holds. Furthermore, (b) implies (c) and (d)
implies (e). So (a-e) hold. Hence the conditions (a-e) are equivalent. �

Corollary 9. A sequence x is Martin-Löf random iff for every enumeration S
there is a constant c such that for every n ≥ 1 the inequality CS(x � n) ≥ n− c
holds true.

Finite State Incompressible Infinite Sequences 57

6 Finite State Incompressibility and Normality

In this section we define finite state incompressible sequences and prove that each
such sequence is normal. Given an enumeration S of all admissible transducers,
a sequence x = x1x2 · · ·xn · · · is CS–incompressible if lim infn CS(x � n)/n = 1.

Proposition 10. Every Martin-Löf random sequence is CS–incompressible for
all enumerations S, but the converse implication is not true.

Proof. If x is a Martin-Löf random sequence, then lim infn K(x � n)/n = 1,
so by Theorem 5, x is CS–incompressible. Next we take a Martin-Löf random
sequence x and modify it to be not random: define x′(n) = 0 whenever n is a
power of 2 and x′(n) = x(n), otherwise. Clearly, x′ is not Martin-Löf random,
but lim infn K(x � n)/n = 1, so x is CS–incompressible for every enumeration S
of all admissible transducers. �
A sequence is normal if all digits are equally likely, all pairs of digits are equally
likely, all triplets of digits equally likely, etc. This means that the sequence
x = x1x2 · · ·xn · · · is normal if the frequency of every string y in x is 2−|y|,
where |y| is the length of y.

Lemma 11. If the sequence x is not normal, then there exist a transducer T S
σ

and a constant α with 0 < α < 1 (depending on x, σ, S) such that for infinitely
many integers n > 0 we have CTS

σ
(x � n) < α · n.

Proof. According to [16,17,28], if the sequence x is not normal, then there exist
a transducer T S

σ , a sequence y, and a real α ∈ (0, 1) such that limm→∞ T S
σ (y �

m) = x and for infinitely many m > 0

T S
σ (y � m) � x and m < α · |T S

σ (y � m)|.

Consequently, for infinitely many m > 0

CTS
σ
(T S

σ (y � m)) ≤ m < α · |T S
σ (y � m)|,

hence CTS
σ
(x � n) < α · n for infinitely many n > 0 because T S

σ (y � m) � x for
infinitely many m > 0. �

Example 12. Ambos-Spies and Busse [2,3] as well as Tadaki [31] investigated
infinite sequences x which can be predicted by finite automata in a certain
way. The formalisations result in the following equivalent characterisations for a
sequence x to be finite state predictable:

– The sequence x can be predicted by a finite automaton in the sense that
every state is either passing or has a prediction on the next bit and when
reading x the finite automaton makes infinitely often a correct prediction
and passes in those cases where it does not make a correct prediction, that
is, it never predicts wrongly.

58 C.S. Calude, L. Staiger, and F. Stephan

– There is a finite automaton which has in every state a label from {0, 1}∗
such that, whenever the automaton is in a state with a non-empty label w
then some of the next bits of x are different from the corresponding ones in
w.

– x fails to contain some string w as a substring.
– There is a finite connected automaton with binary input alphabet such that

not all states of it are visited when reading x.
– The sequence x is the image T (y) for some binary sequence y and a finite

transducer T which has only labels of the form (a, aw) with a ∈ {0, 1} and
w ∈ {0, 1}∗ and where in the translation from y into x infinitely often a
label (a, aw) with w �= ε is used.

Finite state predictable sequences are not normal and, by the work of Schnorr
and Stimm [28], there is a finite-automaton martingale which succeeds on such
a sequence. Furthermore, there are sequences which are not normal but also not
finite-state predictable. An example can be obtained by translating the decimal
Champernowne sequence y [12] into a binary sequence x such that x(k) = 1
iff y(k) ∈ {1, 2, . . . , 9} and x(k) = 0 iff y(k) = 0; now the resulting x is not
normal; however, x contains every substring as a substring and is thus also not
finite-state predictable.

Theorem 13. Every CS–incompressible sequence is normal.

Proof. Assume that the sequence x is not normal. According to Lemma 11
there exist α ∈ (0, 1) and σ ∈ dom(S) such that for infinitely many integers n > 0
we have CTS

σ
(x � n)) < α ·n. For these n it also holds that CS(x � n) < α ·n+ |σ|.

Since α < 1, x is not CS–incompressible. �

7 How Large Is the Set of Incompressible Sequences?

It is natural to ask whether the converse of Theorem 13 is true. The results in
[1,5,28,33] discussed in Introduction might suggest a positive answer. In fact, the
answer is negative.

To prove this result we will use binary de Bruijn strings of order r ≥ 1 which
are strings w of length 2r + r − 1 over alphabet {0, 1} such that any binary
string of length r occurs as a substring of w (exactly once). It is well-known that
de Bruijn strings of any order exist, and have an explicit construction [14,32].
For example, 00110 and 0001011100 are de Bruijn strings of orders 2 and 3
respectively.

Note that de Bruijn strings are derived in a circular way, hence their prefix of
length r − 1 coincides with the suffix of length r − 1. Denote by B(r) the prefix
of length 2r of a de Bruijn string of order r. The examples of de Bruijn strings
of orders 2 and 3 previously presented are derived from the strings B(2) = 0011
and B(3) = 00010111, respectively. Thus the string B(r) · B′(r), where B′(r) is
the length r − 1 prefix of B(r), contains every binary string of length string r
exactly once as a substring.

Finite State Incompressible Infinite Sequences 59

In [26] it is shown that every sequence of the form

bf = B(1)f(1)B(2)f(2) · · ·B(n)f(n) · · ·

is normal provided that the function f : N → N is increasing and satisfies
the condition f(i) ≥ ii for all i ≥ 1. Moreover, in this case the real 0.bf is a
Liouville number, i.e. it is a transcendental real number with the property that,
for every positive integer n, there exist integers p and q with q > 1 and such
that 0 < |0.bf − p

q | < q−n.

Lemma 14. Every string w, B(1) � w � bf can be represented in the form

w = B(1)f(1)B(2)f(2) · · ·B(n − 1)f(n−1)B(n)jw′ (2)

where n ≥ 1, 1 ≤ j ≤ f(n) and |w′| < 2n+1 = |B(n + 1)|.

Proof. Indeed, in the case

B(1)f(1)B(2)f(2) · · ·B(n− 1)f(n−1) � w � B(1)f(1)B(2)f(2) · · ·B(n)f(n)

we can choose w′ � B(n), and if

B(1)f(1)B(2)f(2) · · ·B(n)f(n) � w � B(1)f(1)B(2)f(2) · · ·B(n)f(n)B(n+ 1)

we can choose w′ � B(n + 1). �
Next we show that there are normal sequences which are simultaneously Liouville
numbers and compressible by transducers, that is, the converse of Theorem 13
is false. This also proves that CS–incompressibility is stronger than all other
known forms of finite automata based incompressibility, cf. [1,5,15,28,33].

Theorem 15. For every enumeration S there are normal sequences x such that
limn→∞ CS(x � n)/|n| = 0, so x is CS–compressible.

Proof. Define the transducer Tn = ({0, 1}, {s1, . . . , sn+1}, s1, δn, μn) as follows:

δn(si, 0) = si, μn(si, 0) = B(i), for i ≤ n,
δn(si, 1) = si+1, μn(si, 1) = B(i), for i ≤ n,

δn(sn+1, a) = sn+1, μn(sn+1, a) = a, for a ∈ {0, 1} .

For example, the transducer T4 is presented in Figure 1. Let σn be an encoding
of Tn according to S. Choose a function f : N → N which satisfied the following
two conditions for all n ≥ 1, i > 1:

f(n) ≥ max{|σn+1|, nn, 2n+2} and f(i) ≥ 2 · f(i − 1). (3)

Finally, let pi = 0f(i)−11 and p′j = 0j−11. Eq. (2) shows that

Tn(p1 · · · pn−1p
′
jw

′) = B(1)f(1) · · ·B(n − 1)f(n−1)B(n)jw′

is a prefix of the normal sequence x = bf . We then have:

60 C.S. Calude, L. Staiger, and F. Stephan

s1 s2 s3 s4 s5

0/B(1) 0/B(2) 0/B(3) 0/B(4)

1/B(1) 1/B(2) 1/B(3) 1/B(4)

0/0

1/1

Fig. 1. Block representation of the transducer T4

|Tn(p1 · · · pn−1p
′
jw

′)| =
n−1∑
i=1

2if(i) + 2nj + |w′|

≥ 2n−1f(n− 1) + 2nj,

and

|σn|+ |p1 · · · pn−1 · p′j · w′|

= |σn|+
n−1∑
i=1

|pi|+ |p′n−1|+ |w′|

≤ f(n − 1) + 2f(n− 1) + j + f(n− 1)

= 4f(n− 1) + j.

This shows that for every prefix w of bf presented in the form (2) as

w = B(1)f(1) · · ·B(n − 1)f(n−1) ·B(n)j · w′,

we have B(1) � w � bf and (by using the inequality a+b
c+d ≤ max

{
a
c ,

b
d

}
, when

0 < a, b, c, d):
CS(w)

|w| ≤ 4f(n− 1) + j

2n−1f(n− 1) + 2nj
≤ 4

2n−1
.

This shows that limn→∞ CS(x � n)/|n| = 0. �
In the proof of Theorem 15 we have used an arbitrary function f satisfying (3).
Of course, there exist computable and incomputable such functions.

Corollary 16. For every perfect enumeration S there are normal and CS–
compressible computable and incomputable sequences.

One might also consider transducers which satisfy that |μ(q, a)| ≤ m for all
(q, a) ∈ Q×{0, 1}, that is, the output can always be at most m times as long as

the input. For these one can then also consider the variantC
(m)
S ofCS which looks

at complexity using m-bounded transducers. The following result is a sample
result for this area.

Finite State Incompressible Infinite Sequences 61

Theorem 17. For every enumeration S of all 2-bounded admissible transducers,

there are normal sequences x such that limn→∞ C
(2)
S (x � n)/n = 1/2.

Proof. We start from the transducers Tn defined in the proof of Theorem 15
and we split every long output B(i) of Tn into 2i−1 pieces of length 2. Formally,

we replace the states si, i ≤ n, by sub-transducers Ai = ({0, 1}, Ri, ri,1, δ
(i)
n , μ

(i)
n)

where Ri = {ri,1, . . . , ri,2i−1},

δ
(i)
n (ri,j , a)=ri,j+1, μ

(i)
n (ri,j , a)=ui,j , j < 2i, a < 2,

δ
(i)
n (ri,2i−1 , 0)=ri,1, μ

(i)
n (ri,2i−1 , 0)=ui,2i−1 ,

δ
(i)
n (ri,2i−1 , 1)=ri+1,1, μ

(i)
n (ri,2i−1 , 1)=ui,2i−1 ,

and B(i) = ui,1 · · ·ui,2i−1 with |uij | = 2. Observe that the transition with input
1 on state ri,2i−1 leads to the initial state of the next sub-transducer (for i = n
this leads to state rn+2,1 = sn+1 of Tn).

Then, the new transducer is defined as follows:

Qn =

n⋃
i=1

Ri ∪ {sn+1}, q0n = r1,1,

δ′n =

n⋃
i=1

δ(i)n ∪ {(sn+1, 0, sn+1), (sn+1, 1, sn+1)} ,

and

μ′
n =

n⋃
i=1

μ(i)
n ∪ {(sn+1, 0, 0), (sn+1, 1, 1)}.

Again let σ′
n be an encoding of T ′

n in S, and let p̄i = (02
i−1

)f(i)−102
i−1−11 where

f : N → N, f(n) ≥ max{|σ′
n+1|, nn, 2n+2}, f(i) ≥ 2 · f(i− 1), is as in the proof

of Theorem 15. Let p̄′i,j = (02
i−1

)j−102
i−1−11.

Furthermore, let B(1) � w � bf . According to Eq. (2) we have:

w = B(1)f(1) · · ·B(n− 1)f(n−1)B(n)jw′ = T ′
n(p̄1 · · · p̄n−1p̄

′
jw

′).

We then have:

|T ′
n(p̄1 · · · p̄n−1(0

j−1)1 · w′)| =
∑n−1

i=1 2i · f(i) + 2nj + |w′|
≥
∑n−1

i=1 2i · f(i) + 2nj,

and
C

(m)
S (w) ≤ |σ′

n|+
∑n−1

i=1 2i−1f(i) + 2n−1j + |w′|
≤ f(n− 1) +

∑n−1
i=1 2i−1f(i) + 2n−1j + f(n− 1),

finally obtaining

C
(m)
S (w)

|w| ≤
∑n−2

i=1 2i−1f(i) + 2n−1j + (2n−2 + 2)f(n− 1)∑n−2
i=1 2if(i) + 2nj + 2n−1f(n− 1)

≤ 2n−2 + 2

2n−1
.

62 C.S. Calude, L. Staiger, and F. Stephan

This proves that limt→∞ C
(2)
S (x � t)/t = 1/2. �

Theorem 17 can be easily generalised to m-bounded complexity thereby yielding

the bound limn→∞ C
(m)
S (x � n)/n = 1/m. Moreover, the results of Theorems 15

and 17 can be also generalised to arbitrary (output) alphabets Y . Here the
circular de Bruijn strings of order n, CB |Y |(n), have length |Y |n.

In connection with Theorem 15, we can ask whether the finite state com-
plexity of each sequence x representing a Liouville number satisfies the in-
equality lim supn→∞ CS(x � n)/n < 1. The answer is negative: Example 12
of [30] shows that there are sequences x representing Liouville numbers having
lim supn→∞ K(x � n)/n = 1, hence by Theorem 5, lim supn→∞ CS(x � n)/n = 1.

The following result complements Theorem 15: the construction is valid for every
enumeration, but the degree of incompressibility is slightly smaller.

Theorem 18. There exists an infinite, normal and computable sequence x
which satisfies the condition lim infn→∞ CS(x � n)/n = 0, for all enumerations
S.

Proof. Fix a computable enumeration (Tm)m≥1 of all admissible transducers
such that each Tm has at most m states and each transition in Tm from one state
to another has only labels which produce outgoing strings of at most length m
(that is, complicated transducers appear sufficiently late in the list).

Now define a sequence of strings αn such that each αn is the length-
lexicographic first string longer than n such that for all transducers Tm with
1 ≤ m ≤ n, for all states q of Tm and for each string γ of less than n bits,
there is no string β of length below n−1

n · |αn| such that γTm(q, β) is αn or an
extension of it. Note that these αn must exist, as every sufficiently long prefix of
the Champernowne sequence meets the above given specifications due to Cham-
pernowne sequence normality [12]. Furthermore, α0 = 0 as the only constraint
is that α0 is longer than 0. An easy observation shows that also |αn| ≤ |αn+1|
for all n.

In what follows we will use an acceptable numbering of all partially com-
putable functions from natural numbers to natural numbers of one variable
(ϕe)e≥1. Now let f be a computable function from natural numbers to natu-
ral numbers satisfying the following conditions:

Short: For all t ≥ 1, |αf(t)| ≤
√

t.
Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f(t) > n.
Match: ∀n ∀e < n ∃t [ϕe(n) < ∞ =⇒ t > ϕe(n) ∧ f(t) = n ∧ f(t + 1) =

n ∧ . . . ∧ f(t2) = n].

In order to construct f , consider first a computable one-one enumeration
(e0, n0,m0), (e1, n1,m1), . . . of the set of all (e, n,m) such that e < n∧ϕe(n) = m.
The function f is now constructed in stages where the requirement “Short” is
satisfied all the time, the requirement “Finite-to-one” will be a corollary of the
way the function is constructed and the requirement “Match” will be satisfied
for the k-th constraint (ek, nk,mk) in the k-th stage.

Finite State Incompressible Infinite Sequences 63

In the k-th stage, let sk be the first value where f(sk) was not defined in
an earlier stage and let tk be the first number such that tk > sk+mk and
|αnk

| ≤ √
sk. Having these properties, for u with sk ≤ u < tk, let f(u)

be the maximal � with |α�| ≤
√
max{1, u}, and for u with tk ≤ u ≤ t2k,

let f(u) = nk.

It is clear that the function f is computable. Next we verify that it satisfies the
required three conditions.

Short: This condition, which is more or less hard-coded into the algorithm,
directly follows from the way tk is selected and f(u) is defined in the two
cases.

Finite-to-one: The inequality f(u) ≤ n is true only in stages k where for some
u either |αn+1| >

√
sk or nk ≤ n; both conditions happen only for finitely

many stages k.
Match: For each n and e with ϕe(n) being defined, there is a stage k such that

(ek, nk,mk) = (e, n, ϕe(n)). The choice of tk makes then f to be equal to nk

on tk, tk + 1, . . . , t2k and furthermore tk > ϕek (nk).

Let x be the sequence αf(0)αf(1)αf(2) . . . which is obtained by concatenating all
the strings αf(n) for the n in default order. It is clear that x is computable.

Consider any enumeration S of transducers. Choose e such that ϕe(n) takes
the value the length of the code of that transducer Tn which has the starting
state q and a further state q′ and follows the following transition table:

state input output new state
q 0 ε q′

q 1 αn q
q′ 0 0 q
q′ 1 1 q

As ϕe is total, there is for each n > e a t larger than the code of the transducer
Tn such that f(t), f(t + 1), . . . , f(t2) are all n. Now σ = αf(0) . . . αf(t2) can be

generated by Tn by a code of the form β = 0σ(0)0σ(1) . . . 0σ(u − 1)1t
2−t where

u is the length of αf(0)αf(1) . . . αf(t−1). The length of β is 2u+ t2 − t. Note that

u ≤ t·
√

t by the condition “Short” and therefore |β| ≤ t2+t3/2−t while the string
σ generated from β by the transducer Tn has at least the length (t2 − t) · |αn|
which is at least (t2− t) · (n+1). Furthermore, the representation of Tn in S has
at most length t, thus

CS(σ)/|σ| ≤ (t2 + t3/2)/(n · (t2 − t)) ≤ 2

n
.

It follows that lim infn→∞ CS(x � n)/n = 0.
Next we prove that x is normal. Fix a transducer Tm. Then, for every n > m,

there is a sufficiently large t such that (n− 1) · t of the first n · t values s < n · t
satisfy f(s) > n. Fix such a t and let β = β0β1 . . . βn·t be such that β0 . . . βs

is the shortest prefix of β with Tm producing from the starting state and input

64 C.S. Calude, L. Staiger, and F. Stephan

β0 . . . βs an extension of αf(0) . . . αf(s). Note that the image of β0 . . . βs is at
most m − 1 symbols longer than αf(0) . . . αf(s). Let σ = αf(0) . . . αf(t·n). One
can prove by induction that for all s with f(s) ≥ n we have

|βs| ≥
n− 1

n
· |αf(s)|,

and for all s where f(s) < n we have

|αf(s)| ≤ |σ|/(t · n).

It follows that |β| ≥ (n−1)2

n2 · |σ| and therefore we have sufficiently long prefixes of
x which are concatenations of the strings αf(0) . . . αf(t·n), all having complexity
relative to Tm near 1. Furthermore, the length difference between any given
prefix and a prefix of such a form is smaller than the square root of the length
and therefore one can conclude that the sequence is incompressible with respect
to each fixed transducer Tm. Hence, by Theorem 13, it is normal. �

The proof method in Theorem 18 can be adapted to obtain the following result.

Theorem 19. There exists a perfect enumeration S and a sequence which is
computable, normal and CS–incompressible.

Proof. The sequence of the Tn and αn is defined as in the proof of Theorem 18;
furthermore, it is assumed that the listing of the Tn is one-one. However, f has
is chosen such that it satisfies the following three conditions:

Short: For all t ≥ 1, |αf(t)| ≤
√

t.

Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f(t) > n.

Monotone: For all t ≥ 1, f(t) ≤ f(t + 1).

This is achieved by selecting

f(t) = max{m : |αm| ≤
√

t}.

It is clear that f is computable and satisfies the conditions “Short” and “Mono-
tone”. The condition “Finite-to-one” follows from the observation that f(t) > n
for all t with |αn+1| ≤

√
t and the fact that almost all t satisfy this condition.

As above one can see that whenever f(t) > n and m ≤ n then Tm(β) extends
αf(0)αf(1) . . . αf(n·t) only if |β| ≥ (n − 1)2/n2. Now one makes S such that the

transducer Tm has the code word 0m1m
2·tm for the first tm such that f(tm) > m.

It can be concluded that CTm(σ)/|σ| ≥ (m − 1)2/m2 · |σ|, for all prefixes σ of
x and that CTm(σ)/|σ| goes to 1 for longer and longer prefixes of x. Thus the
sequence x is normal and furthermore x is incompressible with respect to the
here chosen S. �

Finite State Incompressible Infinite Sequences 65

8 Conclusion and Open Questions

Enumerations are — in the context of this paper — computable listings of all
admissible transducers and have a prefix-free domain. We have investigated two
main notions of enumerations, the perfect ones (which have a decidable domain,
are one-one, are surjective and have a computable inverse) and the universal
ones (which optimise the codes for the transducers up to a constant for the
best possible value). We have showed that Martin-Löf randomness of infinite
sequences can be characterised with both types of enumerations. Furthermore,
we have related the finite-state complexity based on universal enumerations with
the prominent notions of algorithmic description complexity of binary strings.

The results of Sections 6 and 7 show that our definition of finite state in-
compressibility is stronger than all other known forms of finite automata based
incompressibility, in particular the notion related to finite automaton based bet-
ting systems introduced by Schnorr [28].

There are various interesting open questions. Here are three more: Are there
an enumeration S, a computable sequence x and a constant c such that CS(σ) >
|σ| − c, for all prefixes σ of x? For which enumerations S is it true that every
sequence satisfying CS(x � n) ≥ n−c is Martin-Löf random?What is the relation
between CS–incompressible sequences and ε–random sequences, [8]? Note that
some ε–random sequences can be finite-state predictable by not having a certain
substring, cf. [31], hence they can be compressed by a single transducer; this is,
however, not true for all ε–random sequences.

Acknowledgments. The authors would like to thank Sanjay Jain and the
anonymous referees of TAMC 2014 for helpful comments.

References

1. Agafonov, V.N.: Normal sequences and finite automata. Soviet Mathematics Dok-
lady 9, 324–325 (1968)

2. Ambos-Spies, K., Busse, E.: Automatic forcing and genericity: On the diagonaliza-
tion strength of finite automata. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V.
(eds.) DMTCS 2003. LNCS, vol. 2731, pp. 97–108. Springer, Heidelberg (2003)

3. Ambos-Spies, K., Busse, E.: Computational aspects of disjunctive sequences. In: Fi-
ala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 711–722.
Springer, Heidelberg (2004)

4. Berstel, J.: Transductions and Context-free Languages. Teubner (1979)
5. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state

dimension. Theoretical Computer Science 349(3), 392–406 (2005)
6. Buhrman, H., Fortnow, L.: Resource-bounded Kolmogorov complexity revisited.

In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 105–116.
Springer, Heidelberg (1997)

7. Calude, C.S.: Information and Randomness. An Algorithmic Perspective, 2nd edn.
Springer, Berlin (2002)

8. Calude, C.S., Hay, N.J., Stephan, F.: Representation of left-computable ε–random
reals. Journal of Computer and System Sciences 77, 812–839 (2011)

66 C.S. Calude, L. Staiger, and F. Stephan

9. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoretical Com-
puter Science 412, 5668–5677 (2011)

10. Calude, C.S., Salomaa, K., Roblot, T.K.: State-size hierarchy for FS-complexity.
International Journal of Foundations of Computer Science 25(1), 37–50 (2012)

11. Chaitin, G.J.: A theory of program size formally identical to information theory.
Journal of the Association for Computing Machinery 22, 329–340 (1975)

12. Champernowne, D.G.: The construction of decimals normal in the scale of ten.
Journal of the London Mathematical Society 8, 254–260 (1933)

13. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A.,
Sahai, A., Shelat, A.: Approximating the smallest grammar: Kolmogorov complex-
ity in natural models. In: Proceedings of STOC 2002, pp. 792–801. ACM Press
(2002)

14. de Bruijn, N.: A combinatorial problem. Proceedings of the Koninklijke Neder-
landse Akademie van Wetenschappen 49, 758–764 (1946)

15. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theo-
retical Computer Science 310, 1–33 (2004)

16. Doty, D., Moser, P.: Finite-state dimension and lossy compressors,
arxiv:cs/0609096v2 (2006)

17. Doty, D., Moser, P.: Feasible Depth. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.)
CiE 2007. LNCS, vol. 4497, pp. 228–237. Springer, Heidelberg (2007)

18. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,
Heidelberg (2010)

19. Katseff, H.P.: Complexity dips in random infinite binary sequences. Information
and Control 38(3), 258–263 (1978)

20. Lehman, E.: Approximation Algorithms for Grammar-based Compression, PhD
Thesis. MIT (2002)

21. Lehman, E., Shelat, A.: Approximation algorithms for grammar-based compres-
sion. In: Proceedings of SODA 2002, pp. 205–212. SIAM Press (2002)

22. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer (2007)

23. Martin-Löf, P.: The definition of random sequences. Information and Control 9,
602–619 (1966)

24. Martin-Löf, P.: Complexity oscillations in infinite binary sequences. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 19, 225–230 (1971)

25. Nies, A.: Computability and Randomness. Clarendon Press, Oxford (2009)
26. Nandakumar, S., Vangapelli, S.K.: Normality and finite-state dimension of Liou-

ville numbers, arxiv:1204.4104v1 [cs.IT] (2012)
27. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of

grammar-based compression. Theoretical Computer Science 302, 211–222 (2002)
28. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informat-

ica 1, 345–359 (1972)
29. Schnorr, C.P.: Process complexity and effective randomness tests. Journal of Com-

put. System Sciences 7, 376–388 (1973)
30. Staiger, L.: The Kolmogorov complexity of real numbers. Theoretical Computer

Science 284, 455–466 (2002)
31. Tadaki, K.: Phase Transition and Strong Predictability, CDMTCS Research Report

435 (2013)
32. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University

Press (1993)
33. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory 24, 530–536 (1978)

Finding Optimal Strategies of Almost Acyclic

Simple Stochastic Games

David Auger, Pierre Coucheney, and Yann Strozecki

PRiSM, Université de Versailles Saint-Quentin-en-Yvelines,
Versailles, France

{david.auger,pierre.coucheney,yann.strozecki}@uvsq.fr

Abstract. The optimal value computation for turned-based stochas-
tic games with reachability objectives, also known as simple stochastic
games, is one of the few problems in NP ∩ coNP which are not known
to be in P. However, there are some cases where these games can be
easily solved, as for instance when the underlying graph is acyclic. In
this work, we try to extend this tractability to several classes of games
that can be thought as ”almost” acyclic. We give some fixed-parameter
tractable or polynomial algorithms in terms of different parameters such
as the number of cycles or the size of the minimal feedback vertex set.

Keywords: algorithmic game theory, stochastic games, FPT algorithms.

Introduction

A simple stochastic game, SSG for short, is a zero-sum, two-player, turn-based
version, of the more general stochastic games introduced by Shapley [17]. SSGs
were introduced by Condon [6] and they provide a simple framework that allows
to study the algorithmic complexity issues underlying reachability objectives. A
SSG is played by moving a pebble on a graph. Some vertices are divided between
players MIN and MAX: if the pebble attains a vertex controlled by a player then
he has to move the pebble along an arc leading to another vertex. Some other
vertices are ruled by chance; typically they have two outgoing arcs and a fair
coin is tossed to decide where the pebble will go. Finally, there is a special vertex
named the 1-sink, such that if the pebble reaches it player MAX wins, otherwise
player MIN wins.

Player MAX’s objective is, given a starting vertex for the pebble, to maximize
the probability of winning against any strategy of MIN. One can show that it
is enough to consider stationary deterministic strategies for both players [6].
Though seemingly simple since the number of stationary deterministic strategies
is finite, the task of finding the pair of optimal strategies, or equivalently, of
computing the so-called optimal values of vertices, is not known to be in P.

SSGs are closely related to other games such as parity games or discounted
payoff games to cite a few [2]. Interestingly, those games provide natural applica-
tions in model checking of the modal μ-calculus [18] or in economics. While it is

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 67–85, 2014.
c© Springer International Publishing Switzerland 2014

68 D. Auger, P. Coucheney, and Y. Strozecki

known that they can be reduced to simple stochastic games [4], hence seemingly
easier to solve, so far no polynomial algorithm are known for these games either.

Nevertheless, there are some very simple restrictions for SSGs for which the
problem of finding optimal strategies is tractable. Firstly, if there is only one
player, the game is reduced to a Markov Decision Process (MDP) which can be
solved by linear programming. In the same vein, if there is no randomness, the
game can be solved in almost linear time [1].

As an extension of that fact, there is a Fixed Parameter Tractable (FPT)
algorithm, where the parameter is the number of average vertices [11]. The idea
is to get rid of the average vertices by sorting them according to a guessed
order. Finally, when the (graph underlying the) game is a directed acyclic graph
(DAG), the values can be found in linear time by computing them backwardly
from sinks.

Without the previous restrictions, algorithms running in exponential time are
known. Among them, the Hoffman-Karp [13] algorithm proceeds by successively
playing a local best-response named switch for one player, and then a global
best-response for the other player. Generalizations of this algorithm have been
proposed and, though efficient in practice, they fail to run in polynomial time
on a well designed example [9], even in the simple case of MDPs [8]. These
variations mainly concern the choice of vertices to switch at each turn of the
algorithm which is quite similar to the choice of pivoting in the simplex algorithm
for linear programming. This is not so surprising since computing the values of
an SSG can be seen as a generalization of solving a linear program. The best
algorithm so far is a randomized sub-exponential algorithm [15] that is based on
an adaptation of a pivoting rule used for the simplex.

Our Contribution

In this article, we present several graph parameters such that, when the parame-
ter is fixed, there is a polynomial time algorithm to solve the SSG value problem.
More precisely, the parameters we look at will quantify how close to a DAG is
the underlying graph of the SSG, a case that is solvable in linear time. The most
natural parameters that quantify the distance to a DAG would be one of the
directed versions of the tree-width such as the DAG-width. Unfortunately, we
are not yet able to prove a result even for SSG of bounded pathwidth. In fact, in
the simpler case of parity games the best algorithms for DAG-width and clique-
width are polynomials but not even FPT [16,3]. Thus we focus on restrictions
on the number of cycles and the size of a minimal feedback vertex set.

First, we introduce in Section 2 a new class of games, namely MAX-acyclic
games, which contains and generalizes the class of acyclic games. We show that
the standard Hoffman-Karp algorithm, also known as strategy iteration algo-
rithm, terminates in a linear number of steps for games in this class, yielding
a polynomial algorithm to compute optimal values and strategies. It is known
that, in the general case, this algorithm needs an exponential number of steps to
compute optimal strategies, even in the simple case of Markov Decision Processes
[8,9].

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 69

Then, we extend in Section 3 this result to games with very few cycles, by
giving an FPT-algorithm where the parameter is the number of fork vertices
which bounds the number of cycles. To obtain a linear dependance in the total
number of vertices, we have to reduce our problem to several instances of acyclic
games since we cannot even rely on computing the values in a general game.

Finally, in Section 4, we provide an original method to “eliminate” vertices
in an SSG. We apply it to obtain a polynomial time algorithm for the value
problem on SSGs with a feedback vertex set of bounded size (Theorem 8).

1 Definitions and Standard Results

Simple stochastic games are turn-based stochastic games with reachability ob-
jectives involving two players named MAX and MIN. In the original version of
Condon [6], all vertices except sinks have outdegree exactly two, and there are
only two sinks, one with value 0 and another with value 1. Here, we allow more
than two sinks with general rational values, and more than an outdegree two for
positional vertices.

Definition 1 (SSG). A simple stochastic game (SSG) is defined by a directed
graph G = (V,A), together with a partition of the vertex set V in four parts
VMAX , VMIN , VAV E and VSINK . To every x ∈ VSINK corresponds a value
Val(x) which is a rational number in [0, 1]. Moreover, vertices of VAVE have
outdegree exactly 2, while sink vertices have outdegree 1 consisting of a single
loop on themselves.

In the article, we denote by nM , nm and na the size of VMAX , VMIN and
VAV E respectively and by n the size of V . The set of positional vertices, denoted
VPOS , is VPOS = VMAX ∪ VMIN . We now define strategies which we restrict
to be stationary and pure, which turns out to be sufficient for optimality. Such
strategies specify for each vertex of a player the choice of a neighbour.

Definition 2 (Strategy). A strategy for player MAX is a map σ from VMAX

to V such that
∀x ∈ VMAX , (x, σ(x)) ∈ A.

Strategies for player MIN are defined analogously and are usually denoted
by τ . We denote Σ and T the sets of strategies for players MAX and MIN
respectively.

Definition 3 (play). A play is a sequence of vertices x0, x1, x2, . . . such that
for all t ≥ 0,

(xt, xt+1) ∈ A.

Such a play is consistent with strategies σ and τ , respectively for player MAX
and player MIN, if for all t ≥ 0,

xt ∈ VMAX ⇒ xt+1 = σ(xt)

and
xt ∈ VMIN ⇒ xt+1 = τ(xt).

70 D. Auger, P. Coucheney, and Y. Strozecki

A couple of strategies σ, τ and an initial vertex x0 ∈ V define recursively a
random play consistent with σ, τ by setting:

– if xt ∈ VMAX then xt+1 = σ(xt);
– if xt ∈ VMIN then xt+1 = τ(xt);
– if xt ∈ VSINK then xt+1 = xt;
– if xt ∈ VAV E , then xt+1 is one of the two neighbours of xt, the choice being

made by a fair coin, independently of all other random choices.

Hence, two strategies σ, τ , together with an initial vertex x0 define a measure
of probability Px0

σ,τ on plays consistent with σ, τ . Note that if a play contains a
sink vertex x, then at every subsequent time the play stays in x. Such a play
is said to reach sink x. To every play x0, x1, . . . we associate a value which is
the value of the sink reached by the play if any, and 0 otherwise. This defines
a random variable X once two strategies are fixed. We are interested in the
expected value of this quantity, which we call the value of a vertex x ∈ V under
strategies σ, τ :

Valσ,τ (x) = Ex
σ,τ (X)

where Ex
σ,τ is the expected value under probability Px

σ,τ . The goal of player
MAX is to maximize this (expected) value, and the best he can ensure against
a strategy τ is

Valτ (x) = max
σ∈Σ

Valσ,τ (x)

while against σ player MIN can ensure that the expected value is at most

Valσ(x) = min
τ∈T

Valσ,τ (x).

Finally, the value of a vertex x, is the common value

Val(x) = max
σ∈Σ

min
τ∈T

Valσ,τ (x) = min
τ∈T

max
σ∈Σ

Valσ,τ (x). (1)

The fact that these two quantities are equal is nontrivial, and it can be found
for instance in [6]. A pair of strategies σ∗, τ∗ such that, for all vertices x,

Valσ∗,τ∗(x) = Val(x)

always exists and these strategies are said to be optimal strategies. It is polynomial-
time equivalent to compute optimal strategies or to compute the values of all
vertices in the game, since values can be obtained from strategies by solving a lin-
ear system. Conversely if values are known, optimal strategies are given by greedy
choices in linear time (see [6] and Lemma 1). Hence, we shall simply write ”solve
the game” for these tasks.

We shall need the following notion:

Definition 4 (Stopping SSG). A SSG is said to be stopping if for every
couple of strategies all plays eventually reach a sink vertex with probability 1.

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 71

Condon [6] proved that every SSG G can be reduced in polynomial time into
a stopping SSG G′ whose size is quadratic in the size of G, and whose values
almost remain the same.

Theorem 1 (Optimality conditions, [6]). Let G be a stopping SSG. The
vector of values (Val(x))x∈V is the only vector w satisfying:

– for every x ∈ VMAX , w(x) = max{w(y) | (x, y) ∈ A};
– for every x ∈ VMIN , w(x) = min{w(y) | (x, y) ∈ A};
– for every x ∈ VAV E w(x) = 1

2w(x1) + 1
2w(x2) where x1 and x2 are the two

neighbours of x;
– for every x ∈ VSINK , w(x) = Val(x).

If the underlying graph of an SSG is acyclic, then the game is stopping and the
previous local optimality conditions yield a very simple way to compute values.
Indeed, we can use backward propagation of values since all leaves are sinks, and
the values of sinks are known. We naturally call these games acyclic SSGs.

Once a pair of strategies has been fixed, the previous theorem enables us to see
the values as solution of a system of linear equations. This yields the following
lemma, which is an improvement on a similar result in [6], where the bound is
4n instead of 6

na
2 .

Lemma 1. Let G be an SSG with sinks having rational values of common de-
nominator q. Then under any pair of strategies σ, τ , the value Valσ,τ (x) of any
vertex x can be computed in time O(nω

a), where ω is the exponent of the matrix
multiplication, and na the number of average (binary) vertices. Moreover, the
value can be written as a rational number a

b , with

0 ≤ a, b ≤ 6
na
2 × q.

Proof. We sketch the proof since it is standard. First, one can easily compute
all vertices x such that

Valσ,τ (x) = 0.

Let Z be the set of these vertices. Then:

– all AVE vertices in Z have all their neighbours in Z;
– all MAX (resp. MIN) vertices x in Z are such that σ(x) (resp. τ(x)) is in Z.

To compute Z, we can start with the set Z of all vertices except sinks with
positive value and iterate the following

– if Z contains an AVE vertex x with a neighbour out of Z, remove x from Z;
– if Z contains a MAX (resp. MIN) vertex x with σ(x) (resp. τ(x)) out of Z,

remove x from Z.

This process will stabilize in at most n steps and compute the required set
Z. Once this is done, we can replace all vertices of Z by a sink with value

72 D. Auger, P. Coucheney, and Y. Strozecki

zero, obtaining a game G′ where under σ, τ , the values of all vertices will be
unchanged.

Consider now in G’ two corresponding strategies σ, τ (keeping the same names
to simplify) and a positional vertex x. Let x′ be the first non positional vertex
that can be reached from x under strategies σ, τ . Clearly, x′ is well defined and

Valσ,τ (x) = Valσ,τ (x
′).

This shows that the possible values under σ, τ of all vertices are the values of
average and sink vertices. The same is true if one average vertex has its two arcs
towards the same vertex, thus we can forget those also. The value of an average
vertex being equal to the average value of its two neighbours, we see that we can
write a system

z = Az + b (2)

where

– z is the na-dimensional vector containing the values of average vertices
– A is a matrix where all lines have at most two 1

2 coefficients, the rest being
zeros

– b is a vector whose entries are of the form 0, pi

2q or
pi+pj

2q , corresponding to
transitions from average vertices to sink vertices.

Since no vertices but sinks have value zero, it can be shown that this sys-
tem has a unique solution, i.e. matrix I − A is nonsingular, where I is the
na-dimensional identity matrix. We refer to [6] for details, the idea being that
since in n − 1 steps there is a small probability of transition from any vertex of
G′ to a sink vertex, the sum of all coefficients on a line of An−1 is strictly less
than one, hence the convergence of∑

k≥0

Ak = (I − A)−1.

Rewriting (2) as
2(I − A)z = 2b,

we can use Cramer’s rule to obtain that the value zv of an average vertex v is

zv =
detBv

det 2(I − A)

where Bv is the matrix 2(I − A) with the column corresponding to v replaced
by 2b. Hence by expanding the determinant we see that zv is of the form

1

det 2(I − A)

∑
w∈VAV E

±2bw det(2(I − A)v,w)

where 2(I −A)v,w is the matrix 2(I −A) where the line corresponding to v and
the column corresponding to w have been removed.

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 73

Since 2bw has either value 0, pi

q or
pi+pj

q for some 1 ≤ i, j ≤ na, we can write
the value of zv as a fraction of integers∑

w∈v ±2bwq · det(2(I − A)v,w)

det 2(I − A) · q

It remains to be seen, by Hadamard’s inequality, that since the nonzero entries
of 2(I − A) on a line are a 2 and at most two −1, we have

det 2(I − A) ≤ 6
na
2 ,

which concludes the proof.

The bound 6
na
2 is almost optimal. Indeed a caterpillar tree of n average ver-

tices connected to the 0 sink except the last one, which is connected to the 1
sink, has a value of 1

2

n
at the root. Note that the lemma is slightly more general

(rational values on sinks) and the bound a bit better (
√
6 instead of 4) than

what is usually found in the literature.
In all this paper, the complexity of the algorithms will be given in term of

number of arithmetic operations and comparisons on the values as it is cus-
tomary. The numbers occurring in the algorithms are rationals of value at most
exponential in the number of vertices in the game, therefore the bit complexity
is increased by at most an almost linear factor.

2 MAX-acyclic SSGs

In this section we define a class of SSG that generalize acyclic SSGs and still
have a polynomial-time algorithm solving the value problem.

A cycle of an SSG is an oriented cycle of the underlying graph.

Definition 5. We say that an SSG is MAX-acyclic (respectively MIN-acyclic)
if from any MAX vertex x (resp. MIN vertex), for all outgoing arcs a but one,
all plays going through a never reach x again.

Therefore this class contains the class of acyclic SSGs and we can see this
hypothesis as being a mild form of acyclicity. From now on, we will stick to
MAX-acyclic SSGs, but any result would be true for MIN-acyclic SSGs also.
There is a simple characterization of MAX-acyclicity in term of the structure of
the underlying graph.

Lemma 2. An SSG is MAX-acyclic if and only if every MAX vertex has at
most one outgoing arc in a cycle.

Let us specify the following notion.

Definition 6. We say that an SSG is strongly connected if the underlying di-
rected graph, once sinks are removed, is strongly connected.

74 D. Auger, P. Coucheney, and Y. Strozecki

Lemma 3. Let G be a MAX-acyclic, strongly connected SSG. Then for each
MAX x, all neighbours of x but one must be sinks.

Proof. Indeed, if x has two neighbours y and z which are not sinks, then by strong
connexity there are directed paths from y to x and from z to x. Hence, both arcs
xy and xz are on a cycle, contradicting the assumption of MAX-acyclicity.

From now on, we will focus on computing the values of a strongly connected
MAX-acyclic SSG. Indeed, it easy to reduce the general case of a MAX-acyclic
SSG to strongly connected by computing the DAG of the strongly connected
components in linear time. We then only need to compute the values in each of
the components, beginning by the leaves.

We will show that the Hoffman-Karp algorithm [13,7], when applied to a
strongly connected MAX-acyclic SSG, runs for at most a linear number of steps
before reaching an optimal solution. Let us remind the notion of switchability in
simple stochastic games. If σ is a strategy for MAX, then a MAX vertex x is
switchable for σ if there is an neighbour y of x such that Valσ(y) > Valσ(σ(x)).
Switching such a vertex x consists in considering the strategy σ′, equal to σ but
for σ′(x) = y.

For two vectors v and w, we note v ≥ w if the inequality holds componentwise,
and v > w if moreover at least one component is strictly larger.

Lemma 4 (See Lemma 3.5 in [19]). Let σ be a strategy for MAX and S be
a set of switchable vertices. Let σ′ be the strategy obtained when all vertices of
S are switched. Then

Valσ′ > Valσ.

Let us recall the Hoffman-Karp algorithm:

1. Let σ0 be any strategy for MAX and τ0 be a best response to σ0

2. while (σt, τt) is not optimal:
(a) let σt+1 be obtained from σt by switching one (or more) switchable vertex
(b) let τt+1 be a best response to σt+1

The Hoffman-Karp algorithm computes a finite sequence (σt)0≤t≤T of strate-
gies for the MAX player such that

∀0 ≤ t ≤ T − 1, Valσt+1 > Valσt .

If any MAX vertex x in a strongly connected MAX-acyclic SSG has more
than one sink neighbour, say s1, s2, · · · sk, then these can be replaced by a single
sink neighbour s′ whose value is

Val(s′) := max
i=1..k

Val(si).

Hence, we can suppose that all MAX vertices in a strongly connected MAX-
acyclic SSG have degree two. For such a reduced game, we shall say that a MAX
vertex x is open for a strategy σ if σ(x) is the sink neighbour of x and that x is
closed otherwise.

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 75

Lemma 5. Let G be a strongly connected, MAX-acyclic SSG, where all MAX
vertices have degree 2. Then the Hoffman-Karp algorithm, starting from any
strategy σ0, halts in at most 2nM steps. Moreover, starting from the strategy
where every MAX vertex is open, the algorithm halts in at most nM steps. All
in all, the computation is polynomial in the size of the game.

Proof. We just observe that if a MAX vertex x is closed at time t , then it
remains so until the end of the computation. More precisely, if s := σt−1(x) is a
sink vertex, and y := σt(x) is not, then since x has been switched we must have

Valσt(y) > Valσt(s).

For all subsequent times t′ > t, since strategies are improving we will have

Valσt′ (y) ≥ Valσt(y) > Valσt(s) = Valσt′ (s) = Val(s),

so that x will never be switchable again.
Thus starting from any strategy, if a MAX vertex is closed it cannot be opened

and closed again, and if it is open it can only be closed once.

Each step of the Hoffman-Karp algorithm requires to compute a best-response
for the MIN player. A best-response to any strategy can be simply computed
with a linear program with as many variables as vertices in the SSG, hence in
polynomial time. We will denote this complexity by O(nη); it is well known that
we can have η ≤ 4, for instance with Karmarkar’s algorithm.

Theorem 2. A strongly connected MAX-acyclic SSG can be solved in time
O(nMnη).

Before ending this part, let us note that in the case where the game is also
MIN-acyclic, one can compute directly a best response to a MAX strategy σ
without linear programming: starting with a MIN strategy τ0 where all MIN
vertices are open, close all MIN vertices x such that their neighbour has a value
strictly less than their sink. One obtains a strategy τ1 such that

Valσ,τ1 < Valσ,τ0,

and the same process can be repeated. By a similar argument than in the previous
proof, a closed MIN vertex will never be opened again, hence the number of
steps is at most the number of MIN vertices, and each step only necessitates to
compute the values, i.e. to solve a linear system (see Lemma 1).

Corollary 1. A strongly connected MAX and MIN-acyclic SSG can be solved
in time O(nMnmnω), where ω is the exponent of matrix multiplication.

3 SSG with Few Fork Vertices

Work on this section has begun with Yannis Juglaret during his Master intern-
ship at PRiSM laboratory. Preliminary results about SSGs with one simple cycle

76 D. Auger, P. Coucheney, and Y. Strozecki

can be found in his report [14]. We shall here obtain fixed-parameter tractable
(FPT) algorithms in terms of parameters quantifying how far a graph is from
being MAX-acyclic and MIN-acyclic, in the sense of section 2. These parameters
are:

kp =
∑

x∈VPOS

(|{y : (x, y) ∈ A and is in a cycle}| − 1)

and
ka =

∑
x∈VAV E

(|{y : (x, y) ∈ A and is in a cycle}| − 1).

We say that an SSG is POS-acyclic (for positional acyclic) when it is both
MAX and MIN-acyclic. Clearly, parameter kp counts the number of edges vio-
lating this condition in the game. Similarly, we say that the game is AVE-acyclic
when average vertices have at most one outgoing arc in a cycle. We call fork
vertices, those vertices that have at least two outgoing arcs in a cycle. Since
averages vertices have only two neighbours, ka is the number of fork average
vertices.

Note that:

1. When kp = 0 (respectively ka = 0), the game is POS-acyclic (resp. AVE-
acyclic).

2. When ka = kp = 0, the strongly connected components of the game are
cycles. We study these games, which we call almost acyclic, in detail in
subsection 3.1.

3. Finally, the number of simple cycles of the SSG is always less than kp + ka,
therefore getting an FTP algorithm in kp and ka immediately gives an FTP
algorithm in the number of cycles.

We obtain:

Theorem 3. There is an algorithm which solves the value problem for SSGs in
time O(nf(kp, ka)), with f(kp, ka) = ka!4

ka2kp .

As a corollary, by remark 3 above we have:

Theorem 4. There is an algorithm which solves the value problem for SSGs
with k simple cycles in time O(ng(k)) with g(k) = (k − 1)!4k−1.

Note that in both cases, when parameters are fixed, the dependance in n is
linear.

Before going further, let us explain how one could easily build on the previous
part and obtain an FPT algorithm in parameter kp, but with a much worse
dependance in n.

When kp > 0, one can fix partially a strategy on positional fork vertices,
hence obtaining a POS-acyclic subgame that can be solved in polynomial time
according to Corollary 1, using the Hoffman-Karp algorithm. Combining this

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 77

with a bruteforce approach looking exhaustively through all possible local choices
at positional fork vertices, we readily obtain a polynomial algorithm for the value
problem when kp is fixed:

Theorem 5. There is an algorithm to solve the value problem of an SSG in
time O(nMnmnω2kp).

We shall conserve this brute-force approach. In the following, we give an
algorithm that reduces the polynomial complexity to a linear complexity when
ka is fixed. From now on, up to applying the same bruteforce procedure, we
assume kp = 0 (all fork vertices are average vertices). We also consider the case
of a strongly connected SSG, since otherwise the problem can be solved for each
strongly connected component as done in Section 2. We begin with the baseline
ka = 0 and extend the algorithm to general values of ka. Before this, we provide
some preliminary lemmas and definitions that will be used in the rest of the
section.

A partial strategy is a strategy defined on a subset of vertices controlled by
the player. Let σ be such a partial strategy for player MAX, we denote by G[σ]
the subgame of G where the set of strategies of MAX is reduced to the ones that
coincide with σ on its support. According to equation (1), the value of an SSG
is the highest expected value that MAX can guarantee, then it decreases with
the set of actions of MAX:

Lemma 6. Let G be an SSG with value v, σ a partial strategy of MAX, and
G[σ] the subgame induced by σ with value v′. Then v ≥ v′.

In strongly connected POS-acyclic games, positional vertices have at least one
outgoing arc to a sink. Recall that, in case the strategy chooses a sink, we say
that it is open at this vertex (the strategy is said open if it is open at a vertex),
and closed otherwise. We can then compare the value of an SSG with that of
the subgame generated by any open strategy.

Lemma 7. Let x be a MAX vertex of an SSG G with a sink neighbour, and σ
the partial strategy open at x. If it is optimal to open x in G, then it is optimal
to open it in G[σ].

Proof. Since it is optimal to open x in G, the value of its neighbour sink is at
least that of any neighbour vertex, say y. But, in view of Lemma 6, the value of
y in G[σ] is smaller than in G, and then it is again optimal to play a strategy
open at x in the subgame.

This lemma allows to reduce an almost acyclic SSG (resp. an SSG with pa-
rameter ka > 0) to an acyclic SSG (resp. an SSG with parameter ka−1). Indeed,
if the optimal MAX strategy is open at vertex x, then the optimal strategy of the
subgame open at any MAX vertex will be open at x. A solution to find x once
the subgame is solved (and then to reduce the parameter ka) consists in testing
all the open MAX vertices. But it may be the case that all MAX vertices are
open which would not yield a FPT algorithm. In Lemma 8 (resp. Lemma 9), we
give a restriction on the set of MAX vertices that has to be tested when ka = 0
(resp. ka > 0) which provides an FPT algorithm.

78 D. Auger, P. Coucheney, and Y. Strozecki

3.1 Almost Acyclic SSGs

We consider an SSG with ka = 0. Together with the hypothesis that it is POS-
acyclic and strongly connected, its graph, once sinks are removed, consists of
a single cycle. A naive algorithm to compute the value of such SSG consists in
looking for, if it exists, a vertex that is open in the optimal strategy, and then
solve the acyclic subgame:

1. For each positional vertex x:
(a) compute the values of the acyclic SSG G[σ], where σ is the partial strat-

egy open at x,
(b) if the local optimality condition is satisfied for x in G, return the values.

2. If optimal strategies have not been found, return the value when all vertices
are closed.

This naive algorithm uses the routine that computes the value of an SSG with
only one cycle. When the strategies are closed, the values can be computed in
linear time as for an acyclic game. Indeed, let x be an average vertex (if none,
the game can be solved in linear time) and s1 . . . s� be the values of the average
neighbour sinks in the order given by a walk on the cycle starting from x. Then
the value of x satisfies the equation Val(x) = 1

2s1 + 1
2 (

1
2s2 + 1

2 (· · · +
1
2 (

1
2s� +

1
2Val(x)))), so that

Val(x) =
2�

2� − 1

�∑
i=1

2−isi, (3)

which can be computed in time linear in the size of the cycle. The value of the
other vertices can be computed by walking backward from x, again in linear time.
Finally, since solving an acyclic SSG is linear, the complexity of the algorithm is
O(n2) which is still better than the complexity O(nMnmnω) obtained with the
Hoffman-Karp algorithm (see Theorem 5).

Remark that this algorithm can readily be extended to a SSG with k cycles
with a complexity O(nk+1). Hence it is not an FPT algorithm for the number
of cycles. However, we can improve on this naive algorithm by noting that the
optimal strategy belongs to one of the following subclasses of strategies:

(i) strategies closed everywhere,
(ii) strategies open at least at one MAX vertex,
(iii) strategies open at least at one MIN vertex.

The trick of the algorithm is that, knowing which of the three classes the optimal
strategy belongs to, the game can be solved in linear time. Indeed:

(i) If the optimal strategy is closed at every vertex, the value can be computed
in linear time as shown before.

(ii) If the optimal strategy is open at a MAX vertex (the MIN case is similar),
then it suffices to solve in linear time the acyclic game G[σ] where σ is any
partial strategy open at a MAX vertex, and then use the following Lemma
to find an open vertex for the optimal strategy of the initial game.

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 79

Lemma 8. Let G be a strongly connected almost-acyclic SSG. Assume that the
optimal strategy is open at a MAX vertex. For any partial strategy σ open at
a MAX vertex x, let x = x0, x1 . . . x� = x be the sequence of the � open MAX
vertices for the optimal strategy of G[σ] listed in the cycle order. Then it is
optimal to open x1.

Proof. Let x̄ be a MAX vertex that is open when solving G. From Lemma 7,
there is an index i such that xi = x̄ (in particular there exists an open MAX
vertex when solving G[σ]). If � = 1 then x0 = x̄ so that the optimal strategies
of G[σ] and G coincide. Otherwise, if i = 1, the result is immediate. At last, if
i > 1, xi has the same value in G and G[σ] (the value of its sink), and so has
the vertex just before if it is different from x0. Going backward from xi in the
cycle, all the vertices until x0 (not included) have the same value in G and G[σ].
In particular, if i > 1, this is the case for x1 whose value is then the value of its
sink. So it is optimal to open x1 in G as well.

All in all, a linear algorithm that solves a strongly connected almost-acyclic
SSG G is:

1. Compute the values of the strategies closed everywhere. If optimal, return
the values.

2. Else compute the optimal strategies of G[σ1] where σ1 is a partial strategy
open at a MAX vertex x; let y be the first open MAX vertex after x; compute
the values of G[σ2] where σ2 is the partial strategy open at y; if the local
optimality condition is satisfied for y in G, return the values.

3. Else apply the same procedure to any MIN vertex.

Theorem 6. There is an algorithm to solve the value problem of a strongly
connected almost-acyclic SSG in time O(n) with n the number of vertices.

3.2 Fixed Number of Non Acyclic Average Vertices

Again, we assume that the SSG is strongly connected and POS-acyclic. The
algorithm for almost-acyclic games can be generalized as follow.

Firstly, it is possible to compute the values of the strategies closed everywhere
in polynomial time in ka and check if this strategy is optimal. Indeed the value
of each fork vertex can be expressed as an affine function of the value of all fork
vertices in the spirit of Eq. (3). Then the linear system of size ka can be solved
in polynomial time, and the value of the remaining vertices computed by going
backward from each fork vertex. This shows that computing the values of a game
once strategies are fixed is polynomial in the number of fork average vertices,
which slightly improves the complexity of Lemma 1.

Otherwise, the following Lemma allows to find a positional vertex that is open
for the optimal strategy. We say that a vertex x is the last (resp. first) vertex
in a set S before (resp. after) another vertex y if there is a unique simple path
from x to y (resp. y to x) that does not contain any vertex in S, x and y being
excluded.

80 D. Auger, P. Coucheney, and Y. Strozecki

Lemma 9. Let G be a strongly connected SSG with a set A = {a1, . . . , a�} of
fork average vertices and no positional fork vertices. Assume that the optimal
strategy of G is open at a MAX vertex. Let σ be a partial strategy open at any
vertex that is the last MAX vertex before a vertex in A. Let S[σ] be the set of
open MAX vertices when solving G[σ]. Then, there exists x ∈ S[σ] that satisfies

– it is optimal to open x in G,
– x is the first vertex in S[σ] after a vertex in A.

Proof. Let x̄ be a MAX vertex that is open when solving G, and i be such that ai
is the last vertex in A before x̄. By Lemma 7, x̄ is open in G[σ] and since σ is not
open at a MAX vertex between ai and x̄, all the vertices between the successor
of ai and x̄ have the same value in G[σ] and G, and then the optimal strategy
of G[σ] at these vertices is optimal for G. This property holds in particular for
the first vertex in S[σ] after ai in the path leading to x̄.

The Lemma is illustrated on Figure 1.

max1 . . . maxk

s1 . . . sk

a1 a2. . .

Fig. 1. Illustration of Lemma 9: a1 and a2 are average fork vertices. Vertices on the
top are MAX vertices, labelled from 1 to k, that lead to sinks. maxk is the last MAX
vertex before a fork vertex. Assume it is optimal to open at least one MAX vertex.
Then, the first open MAX vertex (wrt to the labelling) of the optimal strategy of the
subgame open at maxk is open as well in the optimal strategy of the initial game.

Finally, if the optimal strategy is open at some MAX vertex, then the following
algorithm can be run to compute the values of G:

1. Let x be the last MAX vertex before some fork vertex, and σ1 the partial
strategy open at x. G[σ1] is an SSG that has ka − 1 fork vertices (recall that
G is strongly connected). When solved, it provides a set S[σ1] of open MAX
vertices. There are at most ka + ka − 1 vertices that are the first in S[σ1]
after a fork vertex. Then, from Lemma 9, it is optimal to open at least one
of them in G.

2. For each y that is the first in S[σ1] after a fork vertex:
(a) compute the values of G[σ2], σ2 being the partial strategy open at y,
(b) if local optimality condition is satisfied for y in G, return the values.

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 81

This algorithm computes at most 2ka SSGs with ka − 1 average fork vertices.
In the worst case, the same algorithm must be run for the MIN vertices. Using
theorem 6 for the case kp = ka = 0, we obtain Theorem 3 and its corollary.

4 Feedback Vertex Set

A feedback vertex set is a set of vertices in a directed graph such that removing
them yields a DAG. Computing a minimal vertex set is an NP-hard problem [10],
but it can be solved with a FPT algorithm [5]. Assume the size of the minimal
vertex set is fixed, we prove in this section that we can find the optimal strategies
in polynomial time. Remark that, to prove such a theorem, we cannot use the
result on bounded number of cycles since a DAG plus one vertex may have an
exponential number of cycles. Moreover a DAG plus one vertex may have a large
number of positional vertices with several arcs in a cycle, thus we cannot use the
algorithm to solve MAX-acyclic plus a few non acyclic MAX vertices.

The method we present works by transforming k vertices into sinks and could
thus be used for other classes of SSGs. For instance, it could solve in polynomial
time the value problem for games which are MAX-acyclic when k vertices are
removed.

4.1 The Dichotomy Method

We assume from now on that all SSGs are stopping. In this subsection, we explain
how to solve an SSG by solving it several times but with one vertex less.

First we remark that turning any vertex into a sink of its own value in the
original game does not change any value.

Lemma 10. Let G be an SSG and x one of its vertex. Let G′ be the same SSG
as G except that x has been turned into a sink vertex of value ValG(x). For all
vertices y, ValG(y) = ValG′(y).

Proof. The optimality condition of Theorem 1 are exactly the same in G and G′.
Since the game is stopping, there is one and only one solution to these equations
and thus the values of the vertices are identical in both games.

The values in an SSG are monotone with regards to the values of the sinks,
as proved in the next lemma.

Lemma 11. Let G be an SSG and s one of its sink vertex. Let G′ be the same
SSG as G except that the value of s has been increased. For all vertices x,
ValG(x) ≤ ValG′(x).

Proof. Let fix a pair of strategy (σ, τ) and a vertex x. We have:

Val(σ,τ),G(x) =
∑

y∈VSINK

P (x � y)ValG(y)

82 D. Auger, P. Coucheney, and Y. Strozecki

Val(σ,τ),G(x) ≤
∑

y∈VSINK

P (x � y)ValG′(y) = Val(σ,τ),G′(x)

because ValG(x) = ValG′(x) except when x = s, ValG(s) ≤ ValG′(s). Since the
inequality is true for every pair of strategies and every vertex, the lemma is
proved.

Let x be an arbitrary vertex of G and let G[v] be the same SSG, except that
x becomes a SINK vertex of value v. We define the function f by:⎧⎨⎩

if x is a MAX vertex, f(v) = max{ValG[v](y) : (x, y) ∈ A}
if x is a MIN vertex, f(v) = min{ValG[v](y) : (x, y) ∈ A}
if x is an AVE vertex, f(v) = 1

2ValG[v](x
1) + ValG[v](x

2)

Lemma 12. There is a unique v0 such that f(v0) = v0 which is v0 = ValG(x).
Moreover, for all v > v0, f(v0) < v0 and for all v < v0, f(v0) > v0.

Proof. The local optimality conditions given in Theorem 1 are the same in G and
G[v] except the equation f(ValG(x)) = ValG(x). Therefore, when f(v0) = v0,
the values of G[v] satisfy all the local optimality conditions of G. Thus v0 is the
value of s in G. Since the game is stopping there is at most one such value.

Conversely, let v0 be the value of s in G. By Lemma 10, the values in G[v0]
are the same as in G for all vertices. Therefore the local optimality conditions
in G contains the equation f(v0) = v0.

We have seen that f(v) = v is true for exactly one value of v. Since the
function f is increasing by Lemma 11 and because f(0) ≥ 0 and f(1) ≤ 1, we
have for all v > v0, f(v0) < v0 and for all v < v0, f(v0) > v0.

The previous lemma allows to determine the value of x in G by a dichotomic
search by the following algorithm. We keep refining an interval [min,max] which
contains the value of x, with starting values min = 0 and max = 1.

1. While max − min ≤ 6−na do:
(a) v = (min+ max)/2
(b) Compute the values of G[v]
(c) If f(v) > v then min = v
(d) If f(v) < v then max = v

2. Return the unique rational in [min,max] of denominator less than 6−
na
2

Theorem 7. Let G be an SSG with n vertices and x one of its vertex. Denote by
C(n) the complexity to solve G[v], then we can compute the values of G in time
O(nC(n)). In particular an SSG which can be turned into a DAG by removing
one vertex can be solved in time O(n2).

Proof. Let v0 be the value of x in G, which exists since the game is stopping.
By Lemma 12 it is clear that the previous algorithm is such that v0 is in the
interval [min,max] at any time. Moreover, by Lemma 1 we know that v0 = a

b

where b ≤ 6
na
2 . At the end of the algorithm, max−min ≤ 6−na therefore there

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 83

is at most one rational of denominator less than 6
na
2 in this interval. It can be

found exactly with O(na) arithmetic operations by doing a binary search in the
Stern-Brocot tree (see for instance [12]).

One last call to G[v0] gives us all the exact values of G. Since the algorithm
stops when max − min ≤ 6−na , we have at most O(na) calls to the algorithm
solving G[v]. All in all the complexity is O(naC(n) + na) that is O(naC(n)).

In the case where G[v] is an acyclic graph, we can solve it in linear time which
gives us the stated complexity.

4.2 Feedback Vertex Set of Fixed Size

Let G be an SSG such that X is one of its minimal vertex feedback set. Let
k = |X |. The game is assumed to be stopping. Since the classical transforma-
tion [6] into a stopping game does not change the size of a minimal vertex
feedback set, it will not change the polynomiality of the described algorithm.
However the transformation produces an SSG which is quadratically larger, thus
a good way to improve the algorithm we present would be to relax the stopping
assumption.

In this subsection we will consider games whose sinks have dyadic values, since
they come from the dichotomy of the last subsection. The gcd of the values of
the sinks will thus be the maximum of the denominators. The idea to solve G
is to get rid of X , one vertex at a time by the previous technique. The only
thing we have to be careful about is the precision up to which we have to do the
dichotomy, since each step adds a new sink whose value has a larger denominator.

Theorem 8. There is an algorithm which solves any stopping SSG in time
O(nk+1) where n is the number of vertices and k the size of the minimal feedback
vertex set.

Proof. First recall that we can find a minimal vertex with an FPT algorithm.
You can also check every set of size k and test in linear time whether it is a
feedback vertex set. Thus the complexity of finding such a set, that we denote
by X = {x1, . . . , xk}, is at worst O(nk+1). Let denote by Gi the game G where
x1 to xi has been turned into sinks of some values. If we want to make these
values explicit we write Gi[v1, . . . , vi] where v1 to vi are the values of the sinks.

We now use the algorithm of Theorem 7 recursively, that is we apply it to re-
duce the problem of solving Gi[v1, . . . , vi] to the problem of solving Gi+1[v1, . . . ,
vi, vi+1] for several values of vi+1. Since Gk is acyclic, it can be solved in linear
time. Therefore the only thing we have to evaluate is the number of calls to this
last step. To do that we have to explain how precise should be the dichotomy
to solve Gi, which will give us the number of calls to solve Gi in function of the
number of calls to solve Gi+1.

We prove by induction on i that the algorithm, to solve Gi, makes log(pi) calls
to solve Gi+1, where the value vi+1 is a dyadic number of numerator bounded

by pi = 6(2
i+1−1)na . Theorem 7 proves the case i = 0. Assume the property is

proved for i− 1, we prove it for i. By induction hypothesis, all the denominators

84 D. Auger, P. Coucheney, and Y. Strozecki

of v1, . . . , vi are power of two and their gcd is bounded by pi. By Lemma 1,
the value of xi is a rational of the form a

b where b ≤ pi6
na
2 . We have to do

the dichotomy up to the square of pi6
na
2 to recover the exact value of xi in the

game Gi(v1, . . . , vi−1). Thus the bound on the denominator of vi+1 is pi+1 =

p2i 6
na . That is pi+1 = 62(2

i+1−1)na6na = 6(2
i+2−1)na , which proves the induction

hypothesis. Since we do a dichotomy up to a precision pi+1, the number of calls
is clearly log(pi+1).

In conclusion, the number of calls to Gk is

k−1∏
i=0

log(6(2
i+1−1)na) ≤ 2k

2

log(6)knk
a.

Since solving a game Gk can be done in linear time the total complexity is in
O(nk+1).

Acknowledgements. This research was supported by grant ANR 12 MONU-
0019 (project MARMOTE). Thanks to Yannis Juglaret for being so motivated
to learn about SSGs and to Luca de Feo for insights on rationals and their
representations.

References

1. Andersson, D., Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: Deterministic graph-
ical games revisited. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE
2008. LNCS, vol. 5028, pp. 1–10. Springer, Heidelberg (2008)

2. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on
graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 112–121. Springer, Heidelberg (2009)

3. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdržálek, J.: The dag-width
of directed graphs. Journal of Combinatorial Theory, Series B 102(4), 900–923
(2012)

4. Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple stochastic
games. In: GandALF, pp. 74–86 (2011)

5. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. Journal of the ACM (JACM) 55(5),
21 (2008)

6. Condon, A.: The complexity of stochastic games. Information and Computa-
tion 96(2), 203–224 (1992)

7. Condon, A.: On algorithms for simple stochastic games. Advances in Computa-
tional Complexity Theory 13, 51–73 (1993)

8. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)

9. Friedmann, O.: An exponential lower bound for the parity game strategy improve-
ment algorithm as we know it. In: 24th Annual IEEE Symposium on Logic In
Computer Science, LICS 2009, pp. 145–156. IEEE (2009)

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games 85

10. Gary, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness (1979)

11. Gimbert, H., Horn, F.: Simple stochastic games with few random vertices are easy to
solve. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 5–19. Springer,
Heidelberg (2008)

12. Graham, K., Knuth, D.E.: Patashnik, concrete mathematics. In: A Foundation for
Computer Science (1989)

13. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Management
Science 12(5), 359–370 (1966)

14. Juglaret, Y.: Étude des simple stochastic games
15. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic

game problem. Information and Computation 117(1), 151–155 (1995)
16. Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A.

(eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)
17. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences

of the United States of America 39(10), 1095 (1953)
18. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal

of IGPL 7(1), 103–124 (1999)
19. Tripathi, R., Valkanova, E., Anil Kumar, V.S.: On strategy improvement algo-

rithms for simple stochastic games. Journal of Discrete Algorithms 9(3), 263–278
(2011)

The Parameterized Complexity

of Domination-Type Problems
and Application to Linear Codes

David Cattanéo1 and Simon Perdrix2

1 LIG UMR 5217, University of Grenoble, France
David.Cattaneo@imag.fr

2 CNRS, LORIA UMR 7503, Nancy, France
Simon.Perdrix@loria.fr

Abstract. We study the parameterized complexity of domination-type
problems. (σ, ρ)-domination is a general and unifying framework intro-
duced by Telle: given σ, ρ ⊆ N, a set D of vertices of a graph G is
(σ, ρ)-dominating if for any v ∈ D, |N(v) ∩ D| ∈ σ and for any v /∈
D, |N(v) ∩ D| ∈ ρ. Our main result is that for any σ and ρ recursive
sets, deciding whether there exists a (σ, ρ)-dominating set of size k, or
of size at most k, are both in W[2]. This general statement is optimal
in the sense that several particular instances of (σ, ρ)-domination are
W[2]-complete (e.g. Dominating Set). We prove the W[2]-membership
for the dual parameterization too, i.e. deciding whether there exists a
(σ, ρ)-dominating set of size n − k (or at least n − k) is in W[2], where
n is the order of the input graph. We extend this result to a class of
domination-type problems which do not fall into the (σ, ρ)-domination
framework, including Connected Dominating Set. We also consider
problems of coding theory which are related to domination-type prob-
lems with parity constraints. In particular, we prove that the problem of
the minimal distance of a linear code over Fq is in W[2] when q is a power
of prime, for both standard and dual parameterizations, and W[1]-hard
for the dual parameterization.

To prove the W[2]-membership of the domination-type problems we
extend the Turing-way to parameterized complexity by introducing a
new kind of non-deterministic Turing machine with the ability to perform
‘blind’ transitions, i.e. transitions which do not depend on the content
of the tapes. We prove that the corresponding problem Short Blind

Multi-Tape Non-Deterministic Turing Machine is W[2]-complete.
We believe that this new machine can be used to prove W[2]-membership
of other problems, not necessarily related to domination.

1 Introduction

Domination-Type Problems. Domination problems are central in graph the-
ory. Telle [20] introduced the notion of (σ, ρ)-domination as a unifying framework
formany problems of domination: for any two sets of integers σand ρ, a setD of ver-
tices of a graphG is (σ, ρ)-dominating if for any vertex v ∈ D, |N(v)∩D| ∈ σ and

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 86–103, 2014.
c© Springer International Publishing Switzerland 2014

The Parameterized Complexity of Domination-Type Problems 87

for any vertex v /∈ D, |N(v)∩D| ∈ ρ. Among others, dominating sets, independent
sets, and perfect codes are some particular instances of (σ, ρ)-domination. When
σ, ρ ∈ {ODD,EVEN} (where EVEN := {2n, n ∈ N} and ODD := N \ EVEN),
(σ, ρ)-domination is strongly related to problems in coding theory such as find-
ing the minimal distance of a linear code [17]. Despite its generality, the (σ, ρ)-
domination framework does not capture all the variants of domination. For in-
stance, connected dominating set (i.e. a dominating set which induces a connected
subgraph) does not fall into the (σ, ρ)-domination framework.

Parameterized Complexity of Domination-Type Problems. Most of the
domination-type problems are NP-hard [20], though some of them are fixed-
parameter tractable. We assume the reader is familiar with parameterized com-
plexity and the W-hierarchy, otherwise we refer to [10,12]. The parameterized
complexity of domination-type problems has been intensively studied [14,18,19]
since the seminal paper by Downey and Fellows [7]. For instance, Dominat-

ing Set is known to be W[2]-complete [7], whereas Independent Set and
Perfect Code are W[1]-complete [7,3] (see Figure 1 for a list of domination-
type problems with their parameterized complexity). Another example is Total

Dominating Set which is known to be W[2]-hard [1]. Parameterized complex-
ity of domination-type problems with parity constraints – and as a consequence
the parameterized complexity of the corresponding problems in coding theory
– has been studied in [9]: OddSet and Weight Distribution are W[1]-hard
and in W[2], whereas EvenSet and Minimal Distance are in W[2]. Addi-
tionally to these particular cases of domination-type problems, general results
reveal how the parameterized complexity of (σ, ρ)-domination depends on the
choice of σ and ρ. For instance, Golovach et al. [14] proved that when σ ⊆ N and
ρ ⊆ N+ are non-empty finite sets, the problem of deciding whether a graph has a
(σ, ρ)-dominating set of size greater than a fixed-parameter k is W[1]-complete.

In parameterized complexity, the choice of the parameter is decisive. For all the
problems mentioned above the standard parameterization is considered, i.e. the
parameter is the size of the solution, i.e. the (σ, ρ)-dominating set. Domination-
type problems have also been studied according to the dual parameterization,
i.e. the parameter is the size of the (σ, ρ)-dominated set. With the dual pa-
rameterization, the problem associated with (σ, ρ)-domination is FPT when σ
and ρ are either finite or cofinite [14]. As a consequence, Independent Set,
Dominating Set and Perfect Code are FPT for the dual parameteriza-
tion. With parity constraints (i.e. σ, ρ ∈ {ODD,EVEN}), the problem associ-
ated with (σ, ρ)-domination has been proved to be W[1]-hard [14] for the dual
parameterization. Attention was also paid to the parameterized complexity of
(σ, ρ)-domination when parameterized by the tree-width of the graph [6,21].

Our Results. The main result of the paper is that for any σ and ρ recursive
sets, (σ, ρ)-domination belongs to W[2] for the standard parameterization i.e.
(σ, ρ)-dominating set of size k (and at most k).

This general statement is optimal in the sense that problems of (σ, ρ)-domi-
nation are known to be W[2]-hard for some particular instances of σ and ρ (e.g.

88 D. Cattanéo and S. Perdrix

Dominating Set). We also prove that for any σ and ρ recursive sets, (σ, ρ)-
domination belongs to W[2] for the dual parameterization i.e. (σ, ρ)-dominating
set of size n− k (and at least n− k). For several particular instances of σ and ρ,
the W[2]-membership was unknown: the standard parameterization of Total

Dominating Set was not known to belong to W[2], and neither did the dual
parameterization of (σ, ρ)-domination for σ, ρ ∈ {ODD,EVEN}.

Moreover, we prove that Strong Stable Set (known to be in W[1] [14]) is
W[1]-complete for the standard parameterization.

Wealso considermore general problems thatdonot fall into the (σ, ρ)-domination
framework. For any property P and any set ρ of integers,D is a (P, ρ)-dominating
set in a graphG if (i) the subgraph induced by D satisfies the property P and (ii)
for any vertex v /∈ D, |N(v) ∩D| ∈ ρ. A connected dominating set corresponds to
ρ = N+ and P being the property that the graph is connected. We prove that the
standard parameterization of (P, ρ)-domination is in W[2] i.e. (P, ρ)-dominating
set of size k (and at most k) for any P and ρ recursive. As a consequence, Con-

nected Dominating Set is W[2]-complete. We also prove that another domina-
tion problem,Digraph Kernel, is W[2]-complete.

Finally, regarding problems in linear coding theory, we show that the dual
parameterization of Weight Distribution and Minimal Distance are both
in W[2]. We also consider extensions of these two problems from the field F2 to
Fq for any power of prime q, and show that Weight Distribution over Fq is
W[1]-hard and in W[2] for both standard and dual parameterizations; and that
Minimal Distance over Fq is in W[2] for the standard parameterization, and
W[1]-hard and in W[2] for the dual parameterization.

Our contributions are summarized in Figure 1.

Our Approach: Extending the Turing Way to Parameterized Com-
plexity. The Turing way to parameterized complexity [4] consists in solving a
problem with a particular kind of Turing machine to prove that the problem
belongs to some class of the W-hierarchy. For instance, if a problem can be
solved by a single-tape non-deterministic Turing machine in a number of steps
which only depends on the parameter, then the problem is in W[1]. The W[1]-
membership of Perfect Code has been proved using such a Turing machine
[3]. When the problem is solved by a multi-tape non-deterministic machine in
a number of steps which only depends on the parameter, it proves that the
problem is in W[2]. To prove the W[2]-membership of (σ, ρ)-domination for any
σ and ρ when parameterized by the size of the solution, we introduce an ex-
tension of the multi-tape non-deterministic Turing machine by allowing ‘blind’
transitions, i.e. transitions which do not depend on the symbols pointed out by
the heads. We show that the extra capability of doing blind transitions does
not change the computational power of the machine in terms of parameterized
complexity by proving that the problem Short Blind Multi-Tape Turing

Machine is W[2]-complete. Blindness of the transitions makes the design of the
Turing machine far more easier; moreover it seems that there is no simple and
efficient simulation of the blind transitions using the standard Turing machine,
even though a (not necessarily simple) efficient simulation exists because of the

The Parameterized Complexity of Domination-Type Problems 89

W[2]-completeness of Short Multi-Tape Turing Machine. For these rea-
sons, we believe that the blind Turing machine can be used to prove W[2]-
membership of other problems, not necessarily related to domination-type prob-
lems.

The Paper is Organized as Follows: the next section is dedicated to the
introduction of the blind multi-tape Turing machine and the proof that the cor-
responding parameterized problem is W[2]-complete. In Section 3, several results
on the parameterized complexity of (σ, ρ)-domination are given. In Section 4, the
parameterized complexity of domination-type problems which do not fall in the
(σ, ρ)-domination framework are given. Finally, Section 5 is dedicated to prob-
lems from coding theory which are related to domination-type problems with
parity conditions.

2 Blind Multi-tape Non-deterministic Turing Machine

A blind Turing machine is a Turing Machine able to do ‘blind’ transitions, i.e.
transitions which do not depend on the symbol under the head. Blind transitions
are of interest in the multi-tape case when the size of the Turing machine (i.e.
the number of defined transitions) matters, since a single blind transition can
be seen as a shortcut for up to |Γ |m transitions, where Γ is the alphabet and
m the number of tapes. For the description of the transitions of a blind m-tape
Turing Machine M = (Q,Γ,Δ,Σ, b, qI , QA), we introduce a neutral symbol ‘ ’
and define the transitions as: Δ ⊆ Γm ×Q× Γm ×Q×{(−1), 0, (+1)}m, where
Γ = Γ ∪{ }. A neutral symbol on the left part means that the transition can be
applied whatever the symbol of the alphabet on the corresponding tape is, and
a neutral symbol on the right part means that the symbol on the tape is kept.
For instance 〈 , q, aa, q′, 00〉 is a blind transition of a 2-tape machine which,
whatever the symbols under the heads are, changes the internal state q into q′

and writes ‘a’ on both tapes. 〈 m, q, m, q, 1m〉 (where σm stands for σ, . . . , σ, m
times) is a blind transition of a m-tape machine which moves all the m heads to
the right without modifying the content of the tapes.

The parameterized problem associated with the Blind Multi-Tape Non-Deter-
ministic Turing Machines is defined as:

Short Blind Multi-Tape Non-Deterministic Turing Machine Compu-

tation

Input: A blind m-tape non-deterministic Turing Machine M , a word w on the
alphabet Σ, an integer k.
Parameter: k.
Question: Is there a computation of M on w that reaches an accepting state in
at most k steps?

1 When parameterized by the size of the dominating set, the parameterized complexity
of (σ,ODD)-domination (resp. (σ,EVEN)-domination) for σ ∈ {ODD,EVEN} can
be derived from the parameterized complexity of OddSet (resp. EvenSet) which
has been proved in [14].

90 D. Cattanéo and S. Perdrix

(σ, ρ)-Domination

Name (σ, ρ) Formulation Standard Dual

Dominating Set (N,N+) W[2]-complete [7] FPT [14]

Independent Set ({0},N) W[1]-complete [8] FPT [14]

Perfect Code ({0}, {1}) W[1]-complete [8,3] FPT [14]

Strong Stable Set ({0}, {0, 1}) W[1]-complete
(W[1] [14])

FPT [14]

Total Dominating Set (N+,N+)
W[2]-complete
(W[2]-hard [1])

FPT [14]

(σ,ODD)-Dominating Set,
σ∈{ODD,EVEN} W[1]-hard, W[2]1

W[1]-hard [14],
W[2]

(σ,EVEN)-Dominating Set,
σ∈{ODD,EVEN} W[2]1

W[1]-hard [14],
W[2]

(σ, ρ)-Dominating Set,
when σ, ρ recursive

W[2] W[2]

Other Domination Problems

Connected Dominating Set

(Dual: Maximal Leaf Spanning Tree)
W[2]-complete
(W[2]-hard [11])

FPT [13]

Digraph Kernel
W[2]-complete
(W[2]-hard [16])

Unknown

Problems in Coding Theory

Weight Distribution W[1]-hard,W[2] [9]
W[1]-hard [14],

W[2]

Minimum Distance W[2] [9]
W[1]-hard [14],

W[2]

Weight Distribution Over Fq,
(q power of prime)

W[1]-hard,W[2]
W[1]-hard,

W[2]

Minimum Distance Over Fq,
(q power of prime)

W[2]
W[1]-hard,

W[2]

Fig. 1. Overview of the parameterized complexity of domination-type problems and
some problems from coding theory. The ‘Standard’ column corresponds to a parame-
terization by the size of the (σ, ρ)-dominating set (or the Hamming weight for the prob-
lems in coding theory). In this column we consider the problem of (σ, ρ)-dominating
set of size k and at most k except for Independent Set and Strong Stable Set

which are considered for the equality case only. The ‘Dual’ column corresponds to
the dual parameterization, e.g. parameterized by the size of the (σ, ρ)-dominated set
for domination-type problems. Our contributions, depicted in bold font, improve the
results indicated in parenthesis.

The Parameterized Complexity of Domination-Type Problems 91

Theorem 1. Short Blind Multi-Tape Non-Deterministic Turing Ma-

chine Computation is complete for W[2].

Proof. The hardness for W[2] comes from the non-blind case which has been
proven to be complete for W[2] [5]. The proof of the W[2]-membership is similar
to the non-blind case [4] and consists in a reduction to Weighted Weft-2

Circuit Satisfiability. This problem consists in deciding whether a weft-2
mixed-type boolean circuit of depth bounded by a function of the parameter k,
accepts some input of Hamming weight k. A mixed type circuit is composed of
‘small’ gates of fan-in ≤ 2 and ‘large’ AND and OR gates of unbounded fan-in.
The weft of the circuit is the maximum number of unbounded fan-in gates on
an input/output path.

First, we transform M into a machine which accepts its input in (exactly)
k steps iff M accepts its input in at most k steps. To this end, all accepting
states of M are merged into a fresh accepting state qA and the blind transition
〈 m, qA, m, qA, 0m〉 is added.

In the following, a weft-2 mixed circuit C is constructed in such a way that
the accepted inputs correspond to the sequences of k transitions of a machine M
from the initial state to the accepting state. The set Δ of the transitions of M
are indexed by j ∈ [1, |Δ|]. The symbols of Γ are indexed by s ∈ [0, |Γ |], where
0 is the index of the blank symbol and |Γ | is the index of the neutral symbol
‘ ’. Let x[i, j] for i ∈ [1, k], j ∈ [1, |Δ|] and x[−1,−1] be the input wires of the
circuit. For i ∈ [1, k], j ∈ [1, |Δ|], x[i, j] is true if and only if the ith transition
of the sequence is the transition indexed by j, x[−1,−1] represents the constant
0. The following gates encode some information about the transitions of M :
∀i ∈ [1, k], ∀q ∈ [1, |Q|], ∀s ∈ [0, |Γ |], ∀t ∈ [1,m], ∀d ∈ {-1, 0, 1},

– τo(i, q) outputs true iff the initial state on the ith transition is q:

τo(i, q) :=
∨
j∈Jq

x[i, j]

where Jq = Δ ∩ (Γm×{q}×Γm×Q×{-1, 0, 1}m)

– τn(i, q) outputs true iff the final state on the ith transition is q:

τn(i, q) :=
∨
j∈J′

q

x[i, j]

where J ′
q = Δ ∩ (Γm×Q×Γm×{q}×{-1, 0, 1}m)

– σo(i, s, t) outputs true iff either the symbol read by the ith transition on tape
t is s, or the transition does not read the symbol on tape t in the ‘blind’ case
s = |Γ |:

σo(i, s, t) :=
∨

j∈Js,t

x[i, j]

where Js,t = Δ ∩ (Γ t−1×{s}×Γm−t×Q×Γm×Q×{-1, 0, 1}m)

92 D. Cattanéo and S. Perdrix

– σn(i, s, t) outputs true iff either the symbol written by the ith transition on
tape t is s, or the transition does not write any symbol on tape t in the
‘blind’ case s = |Γ |:

σn(i, s, t) :=
∨

j∈J′
s,t

x[i, j]

where J ′
s,t = Δ ∩ (Γm×Q×Γ t−1×{s}×Γm−t×Q×{-1, 0, 1}m)

– μ(i, d, t) outputs true iff the head of t has a movement d on the ith transition:

μ(i, d, t) :=
∨

j∈Jd,t

x[i, j]

where Jd,t = Δ ∩ (Γm×Q×Γm×Q×{-1, 0, 1}t−1×{d}×{-1, 0, 1}m−t)

Notice that most of these gates require unbounded fan-in OR gates in general.
The following gates encode the position of the heads and all the symbols in

every cell of the tapes. These gates guarantee the correctness of the transition
sequence. ∀i ∈ [1, k], ∀l ∈ [-k, k], ∀t ∈ [1,m], ∀s ∈ [0, |Γ | − 1],

– β(i, l, t) outputs true iff the head of tape t is at position l before step i. Since
the transition sequence is of length k, l is in the interval [-k, k]. The gate is
defined as:

β(0, l, t) :=

{
1 if l = 0

0 otherwise

β(i, l, t) := (β(i−1, l, t) ∧ μ(i−1, 0, t))

∨ (β(i−1, l−1, t)∧ μ(i−1, 1, t))

∨ (β(i−1, l+1, t)∧ μ(i−1, -1, t))

– σ(i, l, s, t) outputs true iff the cell l of tape t contains the symbol s before
step i. Let w be the input word of the machine, located on tape 1.

σ(0, l, s, t) :=

⎧⎪⎨⎪⎩
1 if

(
(s is the index of w[l]) ∧ (t = 1) ∧ (0 ≤ l < |w|)

)
1 if

(
(s = 0) ∧ (t �= 1 ∨ l < 0 ∨ l ≥ |w|)

)
0 otherwise

σ(i, l, s, t) := (¬β(i − 1, l, t) ∧ σ(i − 1, l, s, t))

∨ (β(i − 1, l, t) ∧ σn(i − 1, s, t))

∨ (β(i − 1, l, t) ∧ σn(i − 1, |Γ |, t) ∧ σ(i − 1, l, s, t))

One can see in the definition of σ(i, l, s, t) for i > 0 that there are three
different cases: either the head was not pointing at the cell l, so the symbol
remains unchanged; or the head was pointing at the cell l, and the symbol
has been written in the previous step; or the head was on the cell but the
transition was blind, so the symbol was already s.

The Parameterized Complexity of Domination-Type Problems 93

Notice that these gates have a bounded fan-in, and that the recursion is on
the number of transitions, so their depth is bounded by the parameter k. Notice
also that there is a polynomial number of such gates since there are k · 2k ·m, β
gates and k · 2k · |Γ | · m, σ gates.

All the information about the computation path has been encoded so the
remaining gates check the validity of this transition sequence:

– E := E0∧E1∧E2∧E3∧E4 is the final gate of the circuit. As a consequence,
for any input accepted by the circuit, the following conditions E0, . . . , E4

must be satisfied.
– E0 := ¬x[-1, -1] ensures that x[-1, -1] is the constant 0, so ¬x[-1, -1] is the

constant 1 used by the other gates.
– E1 ensures that for every i, at most one wire among the block x[i, 1], . . . ,

x[i, |Δ|] is true, which means that at each step at most one transition is
performed. E1 is defined as:

E1 :=

k∧
i=1

|Δ|∧
j=1

|Δ|∧
j′=1,j′
=j

(¬x[i, j] ∨ ¬x[i, j′])

– E2 ensures that the initial state of each step is equal to the final state of the
previous step. E2 is defined as:

E2 :=

k∧
i=2

|Q|∧
q=1

(¬τn(i − 1, q) ∨ τo(i, q))

Notice that this formula encodes: ∀i ∈ [2, k], ∀q∈[1, |Q|], τn(i−1, q) ⇒ τo(i, q).
– E3 ensures that the symbol read by a transition on a tape is either the one

pointed out by the head or any symbol when the transition is blind.

E3 :=
k∧

i=1

m∧
t=1

k∧
l=−k

|Γ |−1∧
s=0

(¬β(i, l, t) ∨ ¬σ(i, l, s, t) ∨ σo(i, s, t) ∨ σo(i, |Γ |, t))

Notice that this formula encodes: ∀i ∈ [1, k], ∀l ∈ [−k, k], ∀s ∈ [0, |Γ |], ∀t ∈
[1,m], (β(i, l, t) ∧ σ(i, l, s, t)) ⇒ (σo(i, s, t) ∨ σo(i, |Γ |, t)).

– E4 ensures that the initial state on the first step is q0, the initial state of M
of index 0, and that the last state is the accepting state qA of index |Q| − 1.
So E4 is defined as:

E4 := τo(0, 0) ∧ τn(k − 1, |Q| − 1)

All the Ei, i ∈ [0, 4] gates are independent, so every input-output path goes
through at most one of these unbounded fan-in gates. Since it is also the case for
the gates encoding the transitions, and that the σ and β gates are bounded fan-
in gates, the weft of this circuit is 2. Since the only recursive gates have a depth
bounded by the parameter, the depth of this circuit is bounded by the parameter.
Notice also that the number of gates is polynomial in |M |. This circuit outputs

94 D. Cattanéo and S. Perdrix

true if and only if M has an accepting computation path of length k on the word
w, i.e. if and only if M has an accepting computation path of length at most
k on w. Therefore, Short Blind Multi-Tape Non-Deterministic Turing

Machine Computation belongs to W[2]. �

What is interesting is that although the blindness of the transition does not
change the computational power of short multi-tape non-deterministic Turing
machines, there is no simple way to simulate the blind machine with the original
one. Indeed, intuitively, a blind transition on m tapes is a short-cut for up to |Γ |m
transitions, so a machine with no blind transition may have an exponentially
larger size. A tape-by-tape (sequentialization) simulation would avoid this blow
up of the number of transitions, but will not reach an accepting state within a
number of steps depending only on the parameter.

3 Parameterized Complexity of (σ, ρ)-Domination

In this section, we prove the central result of the paper: for any recursive sets
σ and ρ, (σ, ρ)-domination belongs to W[2] for both standard and dual param-
eterizations, i.e. the four problems which consists in deciding whether a graph
has a (σ, ρ)-dominating set of size k; of size n− k; of size at most k; and of size
at least n − k are in W[2] with respect to k. To this end, we show that for any
σ, ρ recursive sets, these problems of (σ, ρ)-domination can be decided using a
blind multi-tape Turing machine. The only assumption on σ and ρ is that they
are recursive, i.e. there exists a Turing machine which decides whether a given
integer j belongs to σ (resp. ρ).

(σ, ρ)-Dominating Set of Size at Most k:
Input: A graph G = (V,E), an integer k.
Parameter: k.
Question: Is there a (σ, ρ)-dominating set D ⊆ V such that |D| ≤ k?

(σ, ρ)-Dominating Set of Size k, (σ, ρ)-Dominating Set of Size n−k,
and (σ, ρ)-Dominating Set of Size at Least n− k are defined likewise.

Theorem 2. For any recursive sets of integers σ and ρ, (σ, ρ)-Dominating

Set of Size at Most k and (σ, ρ)-Dominating Set of Size k belong to
W[2].

Proof. We prove that (σ, ρ)-Dominating Set of Size at Most k is in W[2],
the proof that (σ, ρ)-Dominating Set of Size k belongs to W[2] is similar.
Given two recursive sets σ, ρ ⊆ N, an integer k, and a graphG = ({v1, . . . , vn}, E),
we consider the following (n+1)-tape Turing machine M , which decides whether
G has a (σ, ρ)-dominating set of size at most k. M works in 3 phases (see an
example in Figure 2): (1) a subset D of size at most k is non-deterministically
chosen and written on the first tape. Moreover, the first k + 1 cells of the fol-
lowing n tapes – one tape for each vertex of the graph – are filled with 0s and
1s such that the ith cell of each tape is 1 iff i ∈ ρ; (2) The content of the tapes

The Parameterized Complexity of Domination-Type Problems 95

associated with the vertices in D is removed and replaced by the characteristic
vector of σ, i.e. the ith cell is 1 iff i ∈ σ. At the end of this second phase, all
heads are located on the leftmost non-blank symbol; (3) For each vertex v in D,
the heads of all the tapes associated with a neighbor of v move to the right. At
the end of this third phase, for every v ∈ D (resp. v ∈ D), the head of the tape
associated with v reads 1 iff |N(v) ∩ D| ∈ σ (resp. |N(v) ∩ D| ∈ ρ), so D is a
(σ, ρ)-dominating set iff all heads but the first one read a symbol 1.

The actual description of the blind (n+1)-tape non-deterministic Turing ma-
chine is as follows: M = (Q,Γ,Δ,Σ, b, qI , QA), where Γ = {�, 0, 1, v1, . . . , vn},
b = �, Σ = ∅,Q = {qr,s | r ∈ [1, n+1], s ∈ [0, k]}∪{qrets | s ∈ [1, k+1]}∪{qsigi,s | i ∈
[1, n], s ∈ [0, k]}∪ {qsig, qendρ , qendσ , qread, qA}, qI = q1,0 and QA = {qA}. Given an

integer set A, A is the complementary set of A, it is defined as the only set such
that A∩A = ∅ and A∪A = N. The initial word w is the empty word, so every
cell initially contains the blank symbol �. The transitions are:

Phase 1 – Initialization of D and ρ:

〈��n, qr,s, vi1
n, qi+1,s+1, (+1)(+1)n〉 r ∈ [1, n], s ∈ ρ ∩ [0, k − 1], i ∈ [r, n]

〈��n, qr,s, vi0
n, qi+1,s+1, (+1)(+1)n〉 r ∈ [1, n], s ∈ ρ ∩ [0, k − 1], i ∈ [r, n]

〈��n, qr,s,�1n, qr,s+1, 0(+1)n〉 r ∈ [1, n+ 1], s ∈ ρ ∩ [0, k − 1]
〈��n, qr,s,�0n, qr,s+1, 0(+1)n〉 r ∈ [1, n+ 1], s ∈ ρ ∩ [0, k − 1]
〈��n, qr,k,�1n, qendρ , (−1)(−1)n〉 r ∈ [1, n+ 1], if k ∈ ρ
〈��n, qr,k,�0n, qendρ , (−1)(−1)n〉 r ∈ [1, n+ 1], if k ∈ ρ
〈vi n, qendρ , vi

n, qendρ , (−1)(−1)n〉 i ∈ [1, n]
〈�1n, qendρ ,�1n, qendρ , 0(−1)n〉
〈�0n, qendρ ,�0n, qendρ , 0(−1)n〉
〈��n, qendρ ,��n, qsig, (+1)(+1)n〉

The state qr,s means that s− 1 vertices among v1, . . . , vr−1 have already been
written on the first tape, qendρ that the initializations of D and ρ are done and
that the heads are going back to the leftmost non blank cell on every tape.

Phase 2 – Initialization of σ:

〈vi n, qsig, vi
n, qsigi,0 , 00

n〉 i ∈ [1, n]

〈vi n, qsigi,s , vi
i−11 n−i, qsigi,s+1, 0(+1)n〉 i ∈ [1, n], s ∈ σ ∩ [0, k − 1]

〈vi n, qsigi,s , vi
i−10 n−i, qsigi,s+1, 0(+1)n〉 i ∈ [1, n], s ∈ σ ∩ [0, k − 1]

〈vi n, qsigi,k, vi
i−11 n−i, qret1 , (+1)0n〉 i ∈ [1, n], if k ∈ σ

〈vi n, qsigi,k, vi
i−10 n−i, qret1 , (+1)0n〉 i ∈ [1, n], if k ∈ σ

〈vi n, qrets , vi
n, qrets+1, 0(−1)n〉 i ∈ [1, n], s ∈ [1, k]

〈vi n, qretk+1, vi
n, qsigi,0 , 00

n〉 i ∈ [1, n]

〈� n, qret1 ,� n, qendσ , (−1)0n〉
〈vi n, qendσ , vi

n, qendσ , (−1)0n〉 i ∈ [1, n]
〈� n, qendσ ,� n, qread, (+1)0n〉

96 D. Cattanéo and S. Perdrix

The state qsigs,i means that the first s symbols of the characteristic vector of σ
have been written on the tape associated with the vertex vi.

Phase 3: Neighborhood Checking

〈vi n, qread, vi
n, qread, (+1)d1 . . . dn〉 i ∈ [1, n], where dt=

{
+1 if vt∈N(vi)

0 otherwise

〈�1n, qread,�1n, qA, 00n〉

Since σ and ρ are recursive, their characteristic vector of length k can be
computed and written on the tapes in time f(k) for some fixed function f . In
the first phase D and ρ of size k are written on the tapes and then the heads
comes back so there are 2(k+1) steps. In the second phase σ of size k is written
sequentially on at most k tapes corresponding to the elements of D and then the
heads come back so there are at most k(2k) steps. Finally the third phase goes
through D and moves the heads on the tapes of the neighbours so there are at
most k steps. The number of transitions is polynomial in |G| and the acceptance
is made in at most 2(k + 1) + k(2k + 2) steps if a (σ, ρ)-dominating set of size
at most k exists. As a consequence, (σ, ρ)-Dominating Set of Size at Most

k belongs to W[2]. Notice that the use of blind transitions in the third phase
is crucial. Indeed, a naive simulation of any of these blind transitions uses 2n

non-blind transitions since the transition should be applicable for any of the 2n

possible configurations read by the heads of the machine. �

Theorem 3. For any recursive sets of integers σ and ρ, (σ, ρ)-Dominating

Set of Size at Least n−k and (σ, ρ)-Dominating Set of Size n−k belong
to W[2].

Proof. We prove that (σ, ρ)-Dominating Set of Size at Least n − k is in
W[2], the proof that (σ, ρ)-Dominating Set of Size n − k belongs to W[2] is
similar. To decide whether a given graph G has a (σ, ρ)-dominating set of size
at least n−k, we slightly modify the blind Turing machine used in the proof of
Theorem 2 in such a way that at the end of phase (2), the first tape contains
the description of a set D of size at most k, and for any v ∈ D (resp. v /∈ D),
the ith cell of the tape associated with v is 1 if δ(v)−i ∈ ρ (resp. δ(v)−i ∈ σ)
and 0 otherwise, where δ(v) is the degree of v. Therefore, the machine reaches
the accepting state if there exists a set D of size at most k such that ∀v ∈ D,
δ(v) − |N(v) ∩ D| ∈ ρ and ∀v ∈ V \ D, δ(v) − |N(v) ∩ D| ∈ σ. Since for any
v ∈ V , |N(v)∩ (V \D)| = δ(v)− |N(v)∩D|, V \D is a (σ, ρ)-dominating set of
size at least n−k. �

For any recursive sets σ and ρ, (σ, ρ)-domination problems are in W[2], but
for some particular instances of σ and ρ this general result can be refined. In
particular, we show that when σ = {0} and ρ = {0, 1}, the problem is W[1]-
complete:

The Parameterized Complexity of Domination-Type Problems 97

v3

v2 v5

v1

v4
��

� �

�

(a)

... � v1 v4 � ...

... � 0 1 1 � ...

... � 0 1 1 � ...

... � 0 1 1 � ...

... � 0 1 1 � ...

... � 0 1 1 � ...

... � v1 v4 � ...

... � 1 0 0 � ...

... � 0 1 1 � ...

... � 0 1 1 � ...

... � 1 0 0 � ...

... � 0 1 1 � ...

... � v1 v4 � ...

... � 1 0 0 � ...

... � 0 1 1 � ...

... � 0 1 1 � ...

... � 1 0 0 � ...

... � 0 1 1 � ...

(b) (c) (d)

Fig. 2. Computation of ({0},N+)-Dominating Set Of Size At Most k on a blind
multitape Turing machine whith k = 2 on C5(see proof of Theorem 2). (a) Input graph;
(b) State of the machine at the end of phase (1). The candidate set D is on the first
tape, the other tapes are initialized according to ρ; (c) End of phase (2): the tapes
associated with vertices in D are now initialized according to σ; (d) End of phase (3):
all heads (underlined symbols) read 1, so {v1, v4} is a ({0},N+)-dominating set.

Strong Stable Set (({0}, {0, 1})-Domination):
Input: A graph G = (V,E), an integer k.
Parameter: k.
Question: Is there an independent set S ⊆ V of size k such that ∀v ∈ V \
S, |N(v) ∩ S| ≤ 1?

Theorem 4. Strong Stable Set is complete for W[1].

Proof. The W[1]-membership is an application of Theorem 8 in [14]. We prove
the hardness by a reduction from Independent Set which is complete for W[1]
[7]. Given an instance (G = (V,E), k) of Independent Set, we consider the
instance (G′, k) of Strong Stable Set where G′ = (V ′, E′) with V ′ = V ∪ E
and E′ = {(u, e) | e incident to u in G} ∪ (E ×E). By construction, G′ consists
of a stable set V and a clique E, the edges between these two sets representing
the edges of G. Let S be an independent set in G, then by construction, S is a
strong stable set in G′. Let S′ be a strong stable set of size k in G′. Since E is a
clique, |S′ ∩E| ∈ {0, 1}. If |S′ ∩E| = 0, then S′ ⊆ V and for any u, v ∈ S′, they
have no common neighbor in G′, so there is no edge between u and v in G, so
S′ is an independent set in G. Otherwise, if |S′ ∩ E| = 1 then every u ∈ S′ ∩ V
is isolated in G′, so there are at least k− 1 isolated vertices in G. Since E is not
empty there also exist non isolated vertices and we can take at least one of them
to form together with the k − 1 isolated vertices, an independent set of size k
in G. �

98 D. Cattanéo and S. Perdrix

4 Other Domination Problems

Some natural domination problems cannot be described in terms of (σ, ρ)-domina-
tion such as Connected Dominating Set. In this section, we show that the
proof of the (σ, ρ)-domination W[2]-membership (Theorem 2) can be general-
ized to (P, ρ)-domination, where P is no longer a domination constraint but any
recursive property. It implies that Connected Dominating Set, known to be
hard for W[2], is actually complete for W[2]. We also show that this technique
can be applied to digraph problems with the example of Digraph Kernel.

(P, ρ)-Dominating Set of Size at Most k:
Input: A graph G = (V,E), an integer k.
Parameter: k.
Question: Is there a subset D ⊆ V such that |D| ≤ k and:
– the sub-graph of G induced by D satisfies the property P ;
– ∀v ∈ V \ D, |N(v) ∩ D| ∈ ρ ?

Theorem 5. If ρ is a recursive set of integers and P is a recursive property,
then (P, ρ)-Dominating Set of Size at Most k belongs to W[2].

Proof. We use the blind multitape Turing machine of Theorem 2 with σ =
N, which outputs a (N, ρ)-dominating set D if it exists, then we compose this
machine with another one which decides whether such a set D induces a subgraph
satisfying the property P . Since the subgraph is of size O(k2) and P is recursive,
the computation time of the second machine is f(k) for some function f . �

Digraph Kernel:
Input: A directed graph G = (V,A), an integer k.
Parameter: k.
Question: Is there a kernel of D of size at most k? A kernel is an independent
set S (there exists no u, v ∈ S such that uv or vu is in A) such that for every
vertex x ∈ V \ S, there exists y ∈ S such that xy ∈ A.

Theorem 6. Digraph Kernel is complete for W[2].

Proof. The hardness for W[2] is proved in [16]. The proof of the membership is
very similar to the W[2] membership of (σ, ρ)-Dominating Set (Theorem 2).
The machine and the initialization are the same, with σ = {0} and ρ = N+. In
phase (3), only the heads of the tapes associated with incoming neighbors move
to the right. �

5 Problems from Coding Theory

Parameterized complexity of problems from coding theory, in particular Mini-

mal Distance and Weight Distribution, have been studied in [9]. We prove
that the dual parameterizations of these problems are in W[2]. Moreover, we
consider extensions of these problems to linear codes over Fq for any q power of
prime.

The Parameterized Complexity of Domination-Type Problems 99

Minimal Distance Over Fq:
Input: q a power of prime, k an integer, an m × n matrix H with entries in Fq.
Parameters: k, q.
Question: Is there a linear combination of at least one and at most k columns of
H which is equal to the all-zero vector?

Weight Distribution Over Fq:
Input: q a power of prime, k an integer, an m × n matrix H with entries in Fq.
Parameters: k, q.
Question: Is there a linear combination of exactly k columns of H which is equal
to the all-zero vector?

Theorem 7. Weight Distribution Over Fq is hard for W[1] and belongs to
W[2], and Minimal Distance Over Fq belongs to W[2].

Proof. Since Weight Distribution is a particular case of Weight Distribu-

tion Over Fq, with q = 2, Weight Distribution Over Fq is hard for W[1]
[9]. For the W[2] membership, let ψ : [0, q) → Fq be an arbitrary indexing of the
elements of Fq s.t. ψ(0) = 0. There exist a prime p and an integer c such that
q = pc, and there is an isomorphism ϕ : Fq → Fp[X]/P (X), where Fp[X]/P (X)
is the set of polynomials in X with coefficients in Fp modulo P (X). Let H ′

be a mc × (n(q−1))-matrix over Fp such that ∀i, j, � ∈ [0,m) × [0, n) × [1, q),∑c−1
u=0 H ′

it,j�X
t = ϕ (ψ(�) ·Hi,j). Intuitively, each of the n(q − 1) columns of

H ′ corresponds to one column of H multiplied by a non-zero element of Fq.

Moreover any element a ∈ Fq is encoded using a c × 1-block

⎛⎜⎝ r0
...

rc−1

⎞⎟⎠ such

that ϕ(a) =
∑c−1

t=0 rtX
t. It leads to the mc× (n(q−1))-matrix H ′ which can be

computed in time m.n.f(q) for some function f .
Notice that there exists a linear combination of k columns of H which is

equal to 0 if and only if there exist 0 ≤ i1 < i2 < . . . < ik < m(q − 1) such that

the corresponding columns of H ′ sums to 0 (i.e. ∀j ∈ [0,mc),
∑k

r=1 H ′
j,ir

= 0)

and ∀r ∈ [1, k),
⌊
ir
m

⌋
�=
⌊
ir+1

m

⌋
. The last condition guarantees that the k chosen

columns in H ′ correspond to actually k distinct columns in H .
To decide whether such i1, . . . , ik exists we use the following blind (mc + 1)-

tape Turing Machine M = (Q,Γ,Δ,Σ, b, qI , QA). The first tape is associated
with the set of columns of H ′ and each of the remaining tape is associated with
a row of H ′. The alphabet is Γ = {�, 0, 1} ∪ {hi|i ∈ [1, n]} and the states are
Q = {qi,s | i ∈ [1, n(q−1)+1], s ∈ [0, k · p]} ∪ {qrets | s ∈ [1, k · p+ 1]} ∪ {qavi,s | i ∈
[1, n], s ∈ [0, p− 1]}∪ {qread, qA}, with qI = q1,0, b = �, Σ = ∅ and QA = {qA}.
The transitions are separated in two phases:

Phase 1 - Initialization: First, k columns of H ′ are non-deterministically chosen
on the first tape, while of the other tapes is initialized with k times the pattern
10p−1 (i.e. 1 followed by p−1 times 0), such that the ith cell is 1 iff i ≡ 0 mod p.
In order to avoid choosing two columns of H ′ corresponding to the same column

100 D. Cattanéo and S. Perdrix

of H but with a different factor, we go strait to the next block of columns, i.e.
when a column j is chosen, the next column is chosen in among the columns
indexed from � to n(q − 1) with � > j and � ≡ 0 mod (q − 1):

〈��m·c, qi,s, hj1
m·c, q�,s+1, (+1)(+1)m·c〉

i∈[1, n(q − 1)], s∈[0, k − 1], j∈[i, n(q − 1)], if s≡0(mod p)
� is the smallest integer such that � > j and �≡0(mod q − 1)

〈��m·c, qi,s, hj0
m·c, q�,s+1, (+1)(+1)m·c〉

i∈[1, n(q − 1)], s∈[0, k − 1], j∈[i, n], if s �≡0(mod p)
� is the smallest integer such that � > j and �≡0(mod q − 1)

〈��m·c, qi,s,�1m·c, qi,s+1, 0(+1)m·c〉
i∈[1, n(q−1)+1], s∈[k, kp), if s≡0(mod p)

〈��m·c, qi,s,�0m·c, qi,s+1, 0(+1)m·c〉
i∈[1, n+1], s∈[k, kp), if s �≡0(mod p)

〈��m·c, qi,k·p,�1m·c, qret1 , (−1)(−1)m·c〉 i∈[1, n(q − 1)+1]

〈 m·c, qrets , m·c, qrets+1, (−1)(−1)m·c〉 s∈[1, k]

〈 m·c, qrets , m·c, qrets+1, 0(−1)m·c〉 s∈[k+1, kp+1]

〈 m·c, qretk·p+1,
m·c, qread, 00m·c〉

Phase 2 - Recognition: In order to check that the sum of those columns is the
all-zero vector on Fp, for any column hi in the chosen set, the head of each tape
j moves to the right H ′

i,j times using blind transitions.

〈hi
mc, qread, hi

mc, qavi,1, (+1)0mc〉 i ∈ [1, n]

〈 mc, qavi,s,
mc, qavi,s+1, 0d1 . . . dmc〉 i ∈ [1, n], s ∈ [0, p− 2]

with ∀j∈[1,mc],dj =

{
1 if H ′

i,j > s

0 otherwise

〈 m, qavi,p−1,
mc, qread, 00mc〉 i ∈ [1, n]

〈�1mc, qread,�1mc, qA, 00mc〉

In the first phase a set D of columns is non-deterministically chosen on the first
tape and on each of the remaining tapes, kp cells are filled with 0 or 1 depending
on the rest modulo p of their position. Then all the heads move back to leftmost
non blanc symbol. Notice that the columns in D are chosen to guarantee that

∀i �= i′ ∈ D,
⌊

i
m

⌋
�=
⌊

i′
m

⌋
. In the second phase, the sum of the columns in D is

The Parameterized Complexity of Domination-Type Problems 101

computed by moving the heads of the tapes to the right. The machine accepts
iff at the end all the heads (but the first one) point out a symbol 0, i.e. the
sum of all the columns in D of H ′ is the zero vector. Regarding the number of
transitions, in the first phase there are 2kp transitions and at most kp in the
second phase. Moreover the size of the machine is polynomial in n,m,q and k.
As a consequence Weight Distribution is in W[2].

The proof of W[2]-membership for Minimal Distance is the similar, except
that D is chosen of size at most k. �

Dual Minimal Distance Over Fq:
Input: q a power of prime, k an integer, an m × n matrix H with entries in Fq.
Parameters: k, q.
Question: Is there a linear combination of at least n− k columns of H equal to
the all-zero vector?

Dual Weight Distribution Over Fq:
Input: q a power of prime, k an integer, an m × n matrix H with entries in Fq.
Parameters: k, q.
Question: Is there a linear combination of exactly n − k columns of H equal to
the all-zero vector?

Theorem 8. Dual Minimum Distance Over Fq and Dual Weight Dis-

tribution Over Fq are in W[2].

Proof. First we execute the same FPT preprocessing as in standard parameter-
ization (Theorem 7) to get the matrix H ′ over Fp where p is the characteristic
of Fq. Let the vector v be the sum of all the columns of H ′, and notice that
there is set D of at n − k columns that sum to the zero vector iff the sum of
all the columns but those in D sum to v. To this end we consider the matrix
H̃ = (−v|H ′) and we slightly modify the machine used in Theorem 7 to decide
whether the exists a set of at most k+1 columns which includes the first column
and which sum to 0. So the phase 1 is modified to force the set of chosen columns
to include the first column of H̃. The proof that Dual Weight Distribution

Over Fq is in W[2] is the same except that the size of S′ is fixed to k. �

Theorem 8 shows that the problem Minimal Distance Over Fq with q
power of prime, which consists in deciding whether there exists a subset of at
most k columns of a matrix H with entries in Fq that sum to the all-zero vector
is in W[2]. We can prove similarly the W[2]-membership of the problem which
consists in deciding whether there exists a set of at most k columns that sum
to a given vector. However it is not clear whether the problem which consists
in deciding the existence of a set of at most k columns that sum to a vector
with no zero entry (or equivalently to a vector of maximal Hamming weight).
To be more precise when q is prime one can use the same machine as in proof
of Theorem 7 and change the last transition to check that non of the entries is
0, but this technique fails when q is not prime (say q = p2).

102 D. Cattanéo and S. Perdrix

6 Conclusion and Perspectives

We have demonstrated several results on the parameterized complexity of domina-
tion-type problems, including that for any (recursive) σ and ρ, (σ, ρ)-domination
is in W[2] for both standard and dual parameterizations i.e. (σ, ρ)-dominating set
of size k (and atmost k) and (σ, ρ)-dominating set of size n−k (and at least n−k).
To this end, we have extended the Turing way to parameterized complexity with
a new way to prove W[2]-membership using ‘blind’ Turing machines. We believe
that this machine can be used to prove W[2]-membership of other problems, not
necessarily related to domination.

Several questions remain open. First, the long-standing question regarding
the W[1]-hardness of Minimal Distance remains open [9]. Moreover, several
problems related to domination with parity constraints, such as Weight Dis-

tribution, are W[1]-hard and in W[2], are they complete for one of these two
classes, or intermediate? This question is particularly interesting since these
problems have been proved to form an equivalence class with other problems
from quantum computing [15,2].

It is interesting to notice that, for the dual parameterization, the difference
between Minimal Distance and Weight Distribution seems to vanish in
the sense that both problems are W[1]-hard, while the completeness for W[1]
or W[2] remains open. In fact, no problem of (σ, ρ)-domination is known to be
W[2]-complete for the dual parameterization, thus one can wonder if such a
problem exists or if for any σ and ρ, (σ, ρ)-domination is in W[1] for the dual
parameterization? It would be interesting to examine σ and ρ not ultimately
periodic since they are among the few known cases of hardness when the problem
is parameterized by the tree-width [6].

Acknowledgments. We would like to thank Sylvain Gravier and Mehdi Mhalla
for several helpful discussions, and anonymous referees for fruitful comments.
This work has been partially funded by the ANR-10-JCJC-0208 CausaQ grant
and by the Rhône-Alpes region.

References

1. Bodlaender, H.L., Kratsch, D.: A note on fixed parameter intractability of some
domination-related problems (1994) (unpublished)

2. Cattanéo, D., Perdrix, S.: Parameterized complexity of weak odd domination prob-
lems. In: G ↪asieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 107–120.
Springer, Heidelberg (2013)

3. Cesati, M.: Perfect Code is W[1]-complete. Inf. Proc. Let. 81, 163–168 (2002)
4. Cesati, M.: The Turing way to parameterized complexity. Journal of Computer

and System Sciences 67, 654–685 (2003)
5. Cesati, M., Di Ianni, M.: Compution models for parametrerized complexity.

MLQ 43, 179–202 (1997)
6. Chapelle, M.: Parameterized Complexity of Generalized Domination Problems on

Bounded Tree-Width Graphs. Computing Research Repository, abs/1004.2 (2010)

The Parameterized Complexity of Domination-Type Problems 103

7. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness I:
Basic Results. SIAM Journal on Computing 24, 873–921 (1995)

8. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness II:
On Completeness for W[1]. Theoretical Computer Science 141, 109–131 (1995)

9. Downey, R.G., Fellows, M.R., Vardy, A., Whittle, G.: The Parametrized Complex-
ity of Some Fundamental Problems in Coding Theory. SIAM Journal on Comput-
ing 29, 545–570 (1999)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
11. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT.

In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidel-
berg (2003)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in theoretical
computer science. Springer (2006)

13. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of
the maximum leaves spanning tree problem. Information Processing Letters 52(1),
45–49 (1994)

14. Golovach, P.A., Kratochv̀ıl, J., Suchỳ, O.: Parameterized complexity of generalized
domination problems. Discrete Applied Mathematics 160(6), 780–792 (2009)

15. Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum secret sharing with graph
states. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.)
MEMICS 2012. LNCS, vol. 7721, pp. 15–31. Springer, Heidelberg (2013)

16. Gutin, G., Kloks, T., Lee, C.-M., Yeo, A.: Kernels in planar digraphs. Journal of
Computer and System Sciences 71(2), 174–184 (2005)

17. Halldórsson, M.M., Kratochv́ıl, J., Telle, J.A.: Mod-2 independence and domination
in graphs. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS,
vol. 1665, pp. 101–109. Springer, Heidelberg (1999)

18. Kloks, T., Cai, L.: Parameterized tractability of some (efficient) y-domination vari-
ants for planar graphs and t-degenerate graphs. In: International Computer Sym-
posium, ICS (2000)

19. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. Journal of Discrete Algorithms 7, 181–190 (2009)

20. Telle, J.A.: Complexity of Domination-Type Problems in Graphs. Nordic Journal
of Computing 1, 157–171 (1994)

21. Telle, J.A., Proskurowski, A.: Algorithms for Vertex Partitioning Problems on Par-
tial k-Trees. SIAM Journal on Discrete Mathematics 10, 529–550 (1997)

On Representations of Abstract Systems

with Partial Inputs and Outputs

Ievgen Ivanov

Université Paul Sabatier
118 route de Narbonne, Toulouse, France

ivanov.eugen@gmail.com

Abstract. We consider a class of mathematical models called blocks
which generalize some input-output models which appear in mathemati-
cal systems theory, control theory, signal processing. A block maps partial
functions of time to nonempty sets of partial functions of time. A class
of strongly nonanticipative blocks can be considered as an analog of the
class of causal time systems studied by M. Mesarovic and Y. Takahara.
The behavior of a strongly nonanticipative block can be represented using
an abstract dynamical system called Nondeterministic Complete Marko-
vian System (NCMS) which is close to the notion of a solution system by
O. Hájek. We show that conversely, each initial input-output NCMS (i.e.
NCMS with inputs and outputs) is a representation of a strongly nonan-
ticipative block. This result generalizes a link between causality and the
existence of state-space representations that exists in several variants of
mathematical systems theory to models with partial inputs and outputs.

Keywords: input-output system, signal, time, partial function, state
space, dynamical system, representation.

1 Introduction

Many computing systems used today act as agents interacting with physical
processes. Such systems are now frequently called cyber-physical systems [1, 2].
Examples include autonomous automotive systems, robots, medical devices, en-
ergy conservation systems, etc. The development and specification languages
that have been recently applied to cyber-physical systems include Simulink,
AADL, SysML, and others. Such languages frequently employ block diagram
notations in which blocks denote system components and links are associated
with time varying quantities (signals) which are shared between components.

From the theoretical perspective, abstract models of systems that interact
with other systems or the environment using signals or time varying quantities
have been studied for a long time in several variants of the mathematical systems
theory, including the works by L. Zadeh [3, 4], R. Kalman [5], M. Arbib [6], G.
Klir [7], W. Wymore [8], M. Mesarovic [9], B.P. Zeigler [10], V.M. Matrosov
[11], and others [12–14]. Many of such studies were influenced by the General
Systems Theory by L. Bertalanffy, Cybernetics by N. Wiener, information theory

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 104–123, 2014.
c© Springer International Publishing Switzerland 2014

On Representations of Abstract Systems with Partial Inputs and Outputs 105

introduced by C. Shannon, control theory, automata theory, and circuit theory in
electrical engineering [15, 7]. Although among these works there is no generally
accepted formal notion or model of a system, many approaches on some level
of abstraction describe the observable (external) behavior a system as an input-
output relation on time-varying quantities, e.g. a general time system [9, Section
2.5], an external behavior of a dynamical system [5, Section 1.1], an oriented
abstract object [3, Chapter 1, Paragraph 4], an I/O observational frame [10,
Section 5.3], etc. The most basic example of this view is a Mesarovic time system
[9] which is defined as a binary relation S ⊆ I×O, where I and O are sets of input
and output functions on a time domain T , i.e. I ⊆ AT and O ⊆ BT . It should
be noted that most attention in many approaches is given to models in which
either both inputs and outputs are total functions of time, or the domains of
corresponding instances of inputs and outputs are equal. The case when a system
is considered on the abstract level as a ”black box” with inputs and outputs that
are partial functions of time with possibly different domains did not receive much
attention. There are certain works in this direction, e.g. [16, 17], but they impose
additional assumptions (e.g. determinism) which are not assumed by default in
the theories which deal with total inputs and outputs.

On the other hand, the aspect of partiality is important in many concrete
mathematical models of system behavior. In particular, the models described by
differential equations and hybrid automata admit situations when the inputs of
a system (e.g. input control signals), if there are any, are defined on the entire
time domain, but the system’s behavior (solution, trajectory, execution) and its
outputs are not defined on the entire time domain. Examples of such situations
are finite time blow-ups in differential equations [18–20] and Zeno behaviors of
hybrid systems [21–23]. They can indicate real phenomena (e.g. termination or
destruction of a real system) or inadequacy of a mathematical model [18]. If
such a situation is present in a particular concrete model, this model cannot be
adequately abstracted to a ”black box” model that admits only total inputs and
outputs, like the Mesarovic time system. This discrepancy between the abilities
of concrete and abstract models makes the problem of investigation of abstract
models of system behavior which admit partial inputs and outputs relevant.

In the previous works [24, 25] we introduced a class of input-output abstrac-
tions of real-world systems which we called a class of blocks. A block can be
thought of as a generalization of a Mesarovic time system which takes into ac-
count partiality of inputs and outputs as functions of time. Basically, a block is
a multifunction which maps a collection of input signals (an input signal bunch,
or simply an input) to a non-empty set of collections of output signals (output
signal bunches, or simply outputs), and a signal is a partial function on the con-
tinuous time domain. The operation of a block can be alternatively described by
a set of input-output pairs (I/O pairs) (i, o), where i is an input signal bunch
and o is a corresponding output signal bunch.

The main aspects of blocks are partiality of inputs and outputs, continuous
time, nondeterminism (multiple output signal bunches may correspond to one
input signal bunch). The main theoretical goals of investigation of blocks are:

106 I. Ivanov

1) to generalize or reinterpret well-known results about abstract systems with
total inputs and outputs or systems which admit only inputs and outputs with
equal time domains;

2) to gain understanding of the phenomena which are inherently associated
with partiality.

With regard to the first goal, in [24] we introduced and studied the notions of
causality (nonanticipation), refinement, and composition for blocks and in [25]
we considered the question of the existence of representations of blocks in the
form of dynamical systems. With regard to the second goal, in [25] we considered
the problem of the existence of total input-output pairs (i.e. pairs (i, o) such that
both i and o are total) as members of the set of all input-output pairs of a block.

In this paper we continue to investigate properties of blocks and consider the
following question (in the scope of first goal). Various variants of the mathemat-
ical systems theory show a link between the property of causality (nonanticipa-
tion) and the existence of a representation of an abstract input-output model of
a system in the form of a dynamical system of a certain kind. For example, in
the theory by M. Mesarovic and Y. Takahara [9] it can be shown that a time
system is causal if and only if it has a state space representation [9, Proposition
2.8]. The goal of this paper is to find an analogy to this fact in the case of blocks.

In [25] we considered a class of abstract dynamical systems called Nondeter-
ministic Complete Markovian Systems (NCMS) which is based on the notion of
a solution system by O. Hájek [26] and showed that each strongly nonanticipa-
tive block [25] has a representation in the form of a so-called initial input-output
(I/O) NCMS (a kind of a dynamical system with inputs and outputs). A strongly
nonanticipative block is an adaptation of the notion of a causal time system [9]
(non-anticipatory system [27]) to blocks. In this work we show that conversely,
each initial I/O NCMS is a representation of a strongly nonanticipative block.

To make the paper self-contained, in Section 2 we give all necessary definitions
and facts about blocks, nonanticipation, NCMS. Also, we give an overview of the
problem of the existence of total input-output pairs of strongly nonanticipative
blocks which is connected with NCMS representations, and describe the proposed
solution and potential applications. In Section 3 we prove the main result.

2 Preliminaries

2.1 Notation

We use the following notation: N = {1, 2, 3, ...}, N0 = N ∪ {0}, R+ is the set of
nonnegative real numbers, f : A → B is a total function from A to B, f : A→̃B
is a partial function from A to B, 2A is the power set of a set A, f |X is the
restriction of a function f to a set X . If A,B are sets, then BA denotes the set
of all total functions from A to B and AB denotes the set of all partial function
from A to B. For a function f : A→̃B the symbol f(x) ↓ (f(x) ↑) means that
f(x) is defined (respectively undefined) on the argument x. We do not distinguish
formally the notion of a function and a functional binary relation. When we write
that a function f : A→̃B is total or surjective, we mean that f is total on A

On Representations of Abstract Systems with Partial Inputs and Outputs 107

specifically (i.e. f(x) ↓ for all x ∈ A), or, respectively, is onto B (i.e. for each
y ∈ B there exists x ∈ A such that y = f(x)). We denote the domain and range of
a function as dom(f) = {x | f(x) ↓} and range(f) = {y | ∃x f(x) ↓ ∧ y = f(x)}
respectively. For partial functions f , g and an argument x, f(x) ∼= g(x) denotes
the strong equality: f(x) ↓ if and only if g(x) ↓, and f(x) ↓ implies f(x) = g(x).
By f ◦g we denote the functional composition: (f ◦g)(x) ∼= f(g(x)). The notation
X �→ y, where X is a given set and y is a given value means a constant function
on X which takes the value y.

By T we denote the non-negative real time scale [0,+∞), equipped with a
topology induced by the standard topology on R. We also define the following
class of intervals: T0 = {∅, T } ∪ {[0, t) | t ∈ T \{0}} ∪ {[0, t] | t ∈ T }.

The symbols ¬, ∨, ∧, ⇒, ⇔ denote the logical operations of negation, dis-
junction, conjunction, implication, and equivalence respectively.

2.2 Multi-valued Functions

A multi-valued function [28] assigns one or more resulting values to each argu-
ment value. An application of a multi-valued function to an argument is inter-
preted as a nondeterministic choice of a result.

Definition 1. [28] A (total) multi-valued function from a set A to a set B

(denoted as f : A
tm−→ B) is a function f : A → 2B\{∅}.

2.3 Named Sets

We will use a simple notion of a named set [28] to formalize an assignment of
values to variable names.

Definition 2. [28] A named set is a function f : V →̃W from a non-empty set
of names V to a set of values W .

We use a special notation for the set of named sets: V W denotes the set of all
named sets f : V →̃W (this notation emphasizes that V is a set of names).

An expression of the form [n1 �→ a1, n2 �→ a2, ...] (where n1, n2, ... are distinct
names) denotes a named set d such that the graph of d is {(n1, a1), (n2, a2), ...}.

The empty named set, denoted as [], is a named set with empty domain.

2.4 Blocks

Informally, a block is an abstract model of a system which receives input signals
and produces output signals (Fig. 1). The input signals can be considered as time-
varying characteristics (attributes) of the external environment of the system
which are relevant for (the operation of) this system. Each instance of an input
signal has an associated time domain on which it is defined (present). An input
signal bunch can be considered as a collection of instances of input signals of
the system. Each input signal bunch i has an associated domain of existence

108 I. Ivanov

(dom(i)) which is a superset of the union of the domains of signals contained in
i. The domain of an input signal bunch can be thought of as a time span of the
existence of the external environment of the system. The output signals can be
considered as effects (results) of the system’s operation. An output signal bunch,
or simply an output of the block, can be considered as a collection of instances
of output signals of the system. The output signals have associated domains of
definition (presence) and each output signal bunch o has a domain of existence
(dom(o)) which is a superset of the union of the domains of signals contained in
o. The domain of an output signal bunch can be thought of as a time span during
which the system operates. It is assumed that for an output signal bunch o which
corresponds to a given input signal bunch i the inclusion dom(o) ⊆ dom(i) holds
(i.e. the system does not operate when the environment does not exist). In the
general case, the presence of a given input signal at a given time moment does
not imply the presence of a certain output signal at the same or any other time
moment. A block can be nondeterministic, i.e. for one input signal bunch it may
choose an output signal bunch from a set of possible variants. But for each input
signal bunch there is at least one corresponding output signal bunch (although
the values of all signals in it may be absent at all times).

Normally a block processes the whole input signal bunch and does or does
not produce output values. But in certain cases a block may not process the
whole input signal bunch and may terminate at a time which precedes the right
endpoint of the domain of the input signal bunch. This situation is interpreted
as an abnormal termination of a block.

Consider formal definitions [24]. Let W be a fixed non-empty set of values.

Definition 3. (1) A signal is a partial function from T to W (f : T →̃W).
(2) A V -signal bunch (where V is a set of names) is a function sb : T →̃V W such

that dom(sb) ∈ T0. The set of all V -signal bunches is denoted as Sb(V,W).
(3) A signal bunch is a V -signal bunch for some V .
(4) A signal bunch sb is trivial, if dom(sb) = ∅ and is total, if dom(sb) = T .

The unique trivial signal bunch is denoted as ⊥.
(5) For a given signal bunch sb, a signal corresponding to a name x is a partial

function t �→ sb(t)(x). This signal is denoted as sb[x].
(6) A signal bunch sb1 is a prefix of a signal bunch sb2 (denoted as sb1 & sb2),

if sb1 = sb2|A for some A ∈ T0.

The relation & on V -signal bunches is a partial order (for an arbitrary V). It can
be generalized to pairs as follows: for any signal bunches sb1, sb2, sb

′
1, sb

′
2 denote

(sb1, sb2) &2 (sb′1, sb
′
2) if and only if there exists A ∈ T0 such that sb1 = sb′1|A

and sb2 = sb′2|A. The relation &2 is a partial order (this is not a product order).
A block has a syntactic aspect (e.g. a description in a specification language)

and a semantic aspect – a partial multi-valued function on signal bunches.

Definition 4. (1) A block is an object B (syntactic aspect) with an associated
set of input names In(B), a set of output names Out(B), and a total multi-

valued function Op(B) : Sb(In(B),W)
tm−→ Sb(Out(B),W) (operation,

semantic aspect) such that o ∈ Op(B)(i) implies dom(o) ⊆ dom(i).

On Representations of Abstract Systems with Partial Inputs and Outputs 109

Fig. 1. An illustration of a block with the input signals x1, x2, ... and the output signals
y1, y2, Solid curves represent (present) signal values. Dashed horizonal segments
denote absence of a signal value. Dashed vertical lines indicate the right boundaries of
the domains of signal bunches.

(2) Blocks B1, B2 are semantically identical, if In(B1) = In(B2), Out(B1) =
Out(B2), and Op(B1) = Op(B2).

(3) An I/O pair of a block B is a pair of signal bunches (i, o) such that o ∈
Op(B)(i). The set of all I/O pairs of B is denoted as IO(B) and is called
the input-output (I/O) relation of B.

An inclusion o ∈ Op(B)(i) or (i, o) ∈ IO(B) means that o is a possible output
of a block B on the input i.

Definition 5. An I/O pair (i, o) of a block B is called

(1) trivial, if (i, o) = (⊥,⊥);
(2) normal, dom(i) = dom(o);
(3) total, if dom(i) = dom(o) = T ;
(4) abnormal, if dom(o) ⊂ dom(i).

An abnormal I/O pair (i, o) can be interpreted as an unrecoverable error
during the operation of a block on the input i. The next lemma supports this.

Lemma 1. Let (i, o) be an abnormal I/O pair of some block and i′, o′ be signal
bunches such that (i, o) &2 (i′, o′). Then o = o′.

Proof. Follows immediately from the definitions. �

110 I. Ivanov

Definition 6. ([25]) A block B is deterministic, if Op(B)(i) is a singleton set
for each In(B)-signal bunch i.

Definition 7. ([25]) A deterministic block B is causal, if for all signal bunches
i1, i2 and A ∈ T0, if i1|A = i2|A and oj ∈ Op(B)(ij), j = 1, 2, then o1|A = o2|A.

Definition 8. ([25]) A block B is a sub-block of a block B′ (denoted as B � B′),
if In(B) = In(B′), Out(B) = Out(B′), and IO(B) ⊆ IO(B′).

Definition 9. ([24]) A block B is (weakly) nonanticipative, if for each A ∈ T0
and i1, i2, if i1|A = i2|A, then {o|A | o ∈ Op(B)(i1)} = {o|A | o ∈ Op(B)(i2)}.

Definition 10. ([25]) A block B is strongly nonanticipative, if for each (i, o) ∈
IO(B) there is a deterministic causal sub-block B′ � B (a deterministic response
strategy) such that (i, o) ∈ IO(B′).

Weakly nonanticipative blocks generalize pre-causal time systems in the sense
of M. Mesarovic and Y. Takahara [9]. Similarly, the notion of a strongly nonan-
ticipative block generalizes the notion of a causal time system [9, 27].

Lemma 2. For any deterministic block B the following holds: B is causal if and
only if B is strongly nonanticipative if and only if B is weakly nonanticipative.

Proof. Follows immediately from the definitions. �

Lemma 3. (1) Each strongly nonanticipative block is weakly nonanticipative.
(2) There is a weakly nonanticipative block which is not strongly nonanticipative.

Proof. Follows from [24, Theorem 2]. �

2.5 Nondeterministic Complete Markovian Systems (NCMS)

The notion of a NCMS was introduced in [29] for the purpose of studying the
relation between the existence of global and local trajectories of dynamical sys-
tems. This notion is close to the notion of a solution system introduced by O.
Hájek in [26], but there are some differences. A comparison was given in [25].

Let T = R+ be the non-negative real time scale. Denote by T the set of all
intervals (connected subsets) in T which have cardinality greater than one.

Let Q be a set (a state space) and Tr be some set of functions of the form
s : A → Q, where A ∈ T. Let us call its elements trajectories.

Definition 11. ([29, 25]) A set of trajectories Tr is closed under proper restric-
tions (CPR), if s|A ∈ Tr for each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Definition 12. ([29, 25])

(1) A trajectory s1 ∈ Tr is a subtrajectory of s2 ∈ Tr (denoted as s1 � s2), if
dom(s1) ⊆ dom(s2) and s1 = s2|dom(s1).

(2) A trajectory s1 ∈ Tr is a proper subtrajectory of s2 ∈ Tr (denoted as s1 �
s2), if s1 � s2 and s1 �= s2.

On Representations of Abstract Systems with Partial Inputs and Outputs 111

The set (Tr,�) is a (possibly empty) partially ordered set (poset).

Definition 13. ([29, 25]) A CPR set of trajectories Tr is

(1) Markovian (Fig. 2), if for each s1, s2 ∈ Tr and t ∈ T such that t =
sup dom(s1) = inf dom(s2), s1(t) ↓, s2(t) ↓, and s1(t) = s2(t), the following
function s belongs to Tr:
s(t) = s1(t), if t ∈ dom(s1), and s(t) = s2(t), if t ∈ dom(s2).

(2) complete, if each non-empty chain in (Tr,�) has a supremum.

Fig. 2. Markovian property of NCMS. If one trajectory ends and another begins in a
state q at time t, then their concatenation is a trajectory.

Definition 14. ([29]) A nondeterministic complete Markovian system (NCMS)
is a triple (T,Q, T r), where Q is a set (state space) and Tr (trajectories) is a
set of functions s : T →̃Q such that dom(s) ∈ T, which is CPR, complete, and
Markovian.

This is an intensional definition. An alternative extensional definition (or an
overview of the class of all NCMS) can be given using the notion of an LR
representation of NCMS which is described below.

Definition 15. Let s1, s2 : T →̃Q. Then s1 and s2 coincide:

(1) on A ⊆ T (denoted as s1
.
=A s2), if s1|A = s2|A and A ⊆ dom(s1)∩dom(s2);

(2) in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t) such that
s1

.
=(t′,t] s2 (this is denoted as s1

.
=t− s2);

(3) in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1
.
=[t,t′) s2

(this is denoted as s1
.
=t+ s2).

Let Q be a set. Denote by ST (Q) the set of pairs (s, t) where s : A → Q for
some A ∈ T and t ∈ A.

Definition 16. ([29, 25]) A predicate p : ST (Q) → Bool is called

(1) left-local, if p(s1, t) ⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q) and
s1

.
=t− s2, and, moreover, p(s, t) whenever t is the least element of dom(s);

112 I. Ivanov

(2) right-local, if p(s1, t) ⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q), s1
.
=t+ s2,

and, moreover, p(s, t) whenever t is the greatest element of dom(s).

Denote by LR(Q) the set of all pairs (l, r), where l : ST (Q) → Bool is a
left-local predicate and r : ST (Q) → Bool is a right-local predicate.

Definition 17. ([25]) A pair (l, r) ∈ LR(Q) is called a LR representation of a
NCMS Σ = (T,Q, T r), if Tr = {s : A → Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

Theorem 1. ([25, Theorem 1])

(1) Each pair (l, r) ∈ LR(Q) is a LR representation of a NCMS with the set of
states Q.

(2) Each NCMS has a LR representation.

2.6 NCMS Representation of a Strongly Nonanticipative Block

As was shown in [25], NCMS can be used to represent strongly nonanticipative
blocks. Let W denote a fixed non-empty set of values.

Definition 18. ([25]) An input-output (I/O) NCMS is a NCMS (T,Q, T r) such
that Q has a form IW × X × OW for some sets I (set of input names), X �= ∅
(set of internal states), and O (set of output names). The set IW is called an
input data set and OW is called an output data set.

Informally, an I/O NCMS describes possible evolutions of triples (din, x, dout)
of input data (din ∈ IW), internal state (x ∈ X), and output data (dout ∈ OW).

Each I/O NCMS Σ = (T,Q, T r) has unique sets of input names, internal
states, and output names, denoted as In(Σ), IState(Σ), Out(Σ) respectively.

For any state q ∈ Q of an I/O NCMS the symbols in(q), istate(q), out(q) will
denote the projections of q on the first, second, and third coordinate respectively.

For any trajectory s ∈ Tr the symbols in ◦ s, istate ◦ s, out ◦ s will denote the
compositions of the respective projection maps with s.

For each i ∈ Sb(In(Σ),W) denote

– S(Σ, i) = {s ∈ Tr | dom(s) ∈ T0 ∧ in ◦ s & i};
– Smax(Σ, i) is the set of all �-maximal trajectories from S(Σ, i);
– Sinit(Σ, i) = {s(0) | s ∈ S(Σ, i)};
– Sinit(Σ) = {s(0) | s ∈ Tr ∧ dom(s) ∈ T0}.

For each Q′ ⊆ Q denote Sel1,2(Q
′, d, x) = {q ∈ Q′ | ∃d′ q = (d, x, d′)}, i.e. the

states from Q′ selected by the value of the first and second component.
For each Q′ ⊆ Q and i ∈ Sb(In(Σ),W) denote

oall(Σ,Q′, i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{⊥}, if Q′ = ∅ or i =⊥;

{{0} �→ out(q) | q ∈ Q′}, if Q′ �= ∅ and

dom(i) = {0};
{out ◦ s | s ∈ Smax(Σ, i) ∧ s(0) ∈ Q′}∪
∪ {{0} �→ out(q) | q ∈ Q′\Sinit(Σ, i)}, otherwise;

On Representations of Abstract Systems with Partial Inputs and Outputs 113

(where {0} �→ out(q) is a constant function on {0}). For each Q0 ⊆ Q denote

Oall(Σ,Q0, i) =

{
{⊥}, dom(i) = ∅;⋃

x∈IState(Σ) oall(Σ,Sel1,2(Q0, i(0), x), i), dom(i) �= ∅.

Definition 19. ([25]) An initial I/O NCMS is a pair (Σ,Q0), where Σ =
(T,Q, T r) is an I/O NCMS and Q0 is a set (admissible initial states) such
that Sinit(Σ) ⊆ Q0 ⊆ Q.

Definition 20. ([25]) A NCMS representation of a block B is an initial I/O
NCMS (Σ,Q0) such that

(1) In(B) = In(Σ) and Out(B) = Out(Σ);
(2) Op(B)(i) = Oall(Σ,Q0, i) for all i ∈ Sb(In(B),W).

Informally, the operation of a block B represented by an initial I/O NCMS
(Σ,Q0) on an input signal bunch i can be described as follows [25]:

(1) If i(0) is undefined, then B stops (the output signal bunch is ⊥).
(2) Otherwise, B chooses an arbitrary internal state x ∈ IState(Σ).
(3) If there is no admissible initial state q ∈ Q0 with in(q) = i(0) and istate(q) =

x (i.e. Sel1,2(Q0, i(0), x) = ∅), then B stops.
(4) Otherwise, B chooses q ∈ Q0 such that in(q) = i(0) and istate(q) = x.
(5) If dom(i) = {0} or there is no trajectory s which starts in q and is defined

on some interval from T0, then B outputs out(q) at time 0 and stops.
(6) Otherwise, B chooses a maximal trajectory s defined on an interval from T0

such that s(0) = q and in ◦ s & i and outputs the signal bunch out ◦ s.

Theorem 2. ([25, Theorem 2]) Each strongly nonanticipative block has a NCMS
representation.

2.7 Existence of Total I/O Pairs of Strongly Nonanticipative Blocks

As we have noted above, a block can admit input-output pairs (i, o) in which
signal bunches have different domains (dom(o) ⊂ dom(i)). This is interpreted as
an abnormal termination. In particular, a block can output a non-total output
signal bunch for each total input signal bunch, i.e. can have no total I/O pairs.

The problem of the existence of total I/O pairs of strongly nonanticipative
blocks was investigated in [25], where the following questions were considered:

(A) How can one prove that a given strongly nonanticipative block B has a
total I/O pair (if B indeed has a total I/O pair) ?

(B) How can one prove that for a given input signal bunch i ∈ Sb(In(B),W),
where dom(i) = T , there exists o ∈ Op(B)(i) with dom(o) = T ?

From the practical perspective, (A) and (B) can be linked with the problems
of analysis of specifications of cyber-physical systems, real-time information pro-
cessing systems, and other similar systems. If the semantics of such a specification

114 I. Ivanov

is a strongly nonanticipative block and partiality of an I/O pair is interpreted
as an indication of an error (problematic situation) in its behavior, the methods
that give an answer to (A) and (B) can be used for checking that the specification
admits a correct behavior (total I/O pair) and may be applied in such domains
as viability theory, control synthesis, real-time software verification, etc.

The following results obtained in [25] show that for strongly nonanticipative
blocks represented by NCMS the questions (A) and (B) can be reduced to the
problem of the existence of global trajectories of NCMS.

Definition 21. A global trajectory of a NCMS Σ = (T,Q, T r) is a trajectory
s ∈ Tr such that dom(s) = T .

Theorem 3. ([25, Theorem 3]) Let B be a strongly nonanticipative block and
(Σ,Q0) be its NCMS representation. Then B has a total I/O pair if and only if
Σ has a global trajectory.

Theorem 4. ([25, Theorem 4]) Let B be a strongly nonanticipative block and
(Σ,Q0) be its NCMS representation, where Σ = (T,Q, T r).

Let i ∈ Sb(In(B),W) and dom(i) = T . Let (l, r) be a LR representation of Σ
and l′ : ST (Q) → Bool and r′ : ST (Q) → Bool be predicates such that

l′(s, t) ⇔ l(s, t) ∧ (min dom(s) ↓= t ∨ in(s(t)) = i(t));

r′(s, t) ⇔ r(s, t) ∧ (max dom(s) ↓= t ∨ in(s(t)) = i(t)).

Then:

(1) (l′, r′) ∈ LR(Q);
(2) If (l′, r′) is a LR representation of a NCMS Σ′ = (T,Q, T r′), then

{o ∈ Op(B)(i) | dom(o) = T } �= ∅ if and only if Σ′ has a global trajectory.

The latter problem of the existence of global trajectories of NCMS was con-
sidered in [29, 25] and was reduced to the problem of the existence of certain
locally defined trajectories of NCMS (which is usually more tractable).

Both Theorem 3 and Theorem 4 explicitly use a representation of a block in
the form of an initial I/O NCMS (which always exists by Theorem 2) and also
give a motivation to investigate whether any initial I/O NCMS defines a strongly
nonanticipative block (which is a topic of this paper).

2.8 Existence of Global Trajectories of NCMS

To give a better overview of the context of our work, below we briefly state the
main results about the existence of global trajectories of NCMS from [25].

Let Σ = (T,Q, T r) be a fixed NCMS.

Definition 22. ([25]) Σ satisfies

(1) local forward extensibility (LFE) property, if for each s ∈ Tr of the form
s : [a, b] → Q (a < b) there exists a trajectory s′ : [a, b′] → Q such that
s′ ∈ Tr, s � s′ and b′ > b.

On Representations of Abstract Systems with Partial Inputs and Outputs 115

(2) global forward extensibility (GFE) property, if for each s ∈ Tr of the form
s : [a, b] → Q there exists a trajectory s′ : [a,+∞) → Q such that s � s′.

Definition 23. ([29, 25]) A right dead-end path (in Σ) is a trajectory s :
[a, b) → Q, where a, b ∈ T , a < b, such that there is no s′ : [a, b] → Q, s ∈ Tr
such that s � s′ (i.e. s cannot be extended to a trajectory on [a, b]).

Definition 24. ([29, 25]) An escape from a right dead-end path s : [a, b) → Q
(in Σ) is a trajectory s′ : [c, d) → Q (d ∈ T ∪ {+∞}) or s′ : [c, d] → Q (d ∈ T)
such that c ∈ (a, b), d > b, s(c) = s′(c). An escape s′ is called infinite, if d = +∞.

Definition 25. ([29, 25]) A right dead-end path s : [a, b) → Q in Σ is called
strongly escapable, if there exists an infinite escape from s.

Definition 26. (1) A right extensibility measure is a function f+ : R × R→̃R
such that A = {(x, y) ∈ T × T | x ≤ y} ⊆ dom(f+), f(x, y) ≥ 0 for
all (x, y) ∈ A, f+|A is strictly decreasing in the first argument and strictly
increasing in the second argument, and for each x ≥ 0, f+(x, x) = x, and
limy→+∞ f+(x, y) = +∞.

(2) A right extensibility measure f+ is called normal, if f+ is continuous on
{(x, y) ∈ T × T | x ≤ y} and there exists a function α of class K∞ (i.e.
the function α : [0,+∞) → [0,+∞) is continuous, strictly increasing, and
α(0) = 0, limx→+∞ α(x) = +∞) such that α(y) < y for all y > 0 and the
function y �→ f+(α(y), y) is of class K∞.

Let us fix a right extensibility measure f+.

Definition 27. A right dead-end path s : [a, b) → Q is called f+-escapable (Fig.
3), if there exists an escape s′ : [c, d] → Q from s such that d ≥ f+(c, b).

An example of a right extensibility measure is f+(x, y) = 2y−x. In this case,
s is f+-escapable, if there is an escape s′ : [c, d] → Q from s with d − b ≥ b− c.

Theorem 5. ([25, Theorem 6]) Assume that f+ is a normal right extensibility
measure and Σ satisfies LFE. Then each right dead-end path is strongly escapable
if and only if each right dead-end path is f+-escapable.

Lemma 4. ([25, Lemma 14]) Σ satisfies GFE if and only if Σ satisfies LFE
and each right dead-end path is strongly escapable.

Theorem 6. ([25, Theorem 5]) Let (l, r) be a LR representation of Σ. Then Σ
has a global trajectory if and only if there exists a pair (l′, r′) ∈ LR(Q) such that

(1) l′(s, t) ⇒ l(s, t) and r′(s, t) ⇒ r(s, t) for all (s, t) ∈ ST (Q);
(2) ∀t ∈ [0, ε] l′(s, t)∧ r′(s, t) holds for some ε > 0 and a function s : [0, ε] → Q;
(3) if (l′, r′) is a LR representation of a NCMS Σ′, then Σ′ satisfies GFE.

Theorem 6, Lemma 4, and Theorem 6 give a method for proving the existence of
global trajectories of NCMS. Informally, this method consists of finding/guessing

116 I. Ivanov

Fig. 3. An f+-escapable right dead-end path s : [a, b) → Q (a curve) and a correspond-
ing escape s′ : [c, d] → Q (a horizonal segment) with d ≥ f+(c, b)

some region (subset of trajectories) which presumably contains a global trajec-
tory and is described by the (left-/right-local) predicates l′, r′ and then proving
that this region indeed contains a global trajectory. After choosing a suitable
right extensibility measure f+, the latter step can be done by finding certain
locally defined trajectories (f+-escapes) in a neighborhood of each time moment
(the right endpoint of the domain of any potential right dead-end path).

2.9 Potential Applications

The mentioned method of proving the existence of global trajectories of NCMS
can be illustrated on the following example problem: propose sufficient conditions
under which for a given a set D ⊆ Rn, a compact set U ⊂ Rm and a continuous
and bounded function f : T ×Rn×U → Rn which is Lipschitz-continuous in the
second argument, there exists a Lebesgue-measurable function u : T → U and
a corresponding Caratheodory solution x : T → Rn of the differential equation
dx(t)/dt = f(t, x(t), u(t)) (which is absolutely continuous on each compact seg-
ment [a, b] ⊂ T) such that x(t) �= 0 for all t ∈ T and the function u is constant
on each time interval I ⊂ T such that x(t) /∈ D for all t ∈ I. This question can
be interpreted as a question about sufficient conditions under which a controlled
system which travels in accordance with a known law of motion (x describes the
system’s trajectory, u is the input control) can avoid hitting the origin (x(t) �= 0)
under the assumption that the system lacks maneuverability outside a known
set D. Some related problems were considered e.g. in [30] and were studied using
control-theoretic methods, but one can also use NCMS.

One can show that if the problem is properly formalized in terms of NCMS
or strongly nonanticipative blocks, one can derive the following easily verifiable
sufficient conditions for the existence of the required x and u from the results
described above: (1) for each t ∈ T there exist u1, u2 ∈ U such that f(t,0, u1)
and f(t,0, u2) are noncollinear; (2) {0} is a path-component of {0} ∪ (Rn\D).

On Representations of Abstract Systems with Partial Inputs and Outputs 117

3 Main Result

Theorem 7. Each initial I/O NCMS Σ is a NCMS representation of a strongly
nonanticipative block. Moreover, if Σ is a NCMS representation of each of two
blocks B1, B2, then B1 and B2 are semantically identical.

Together with Theorem 2, this theorem gives a generalization of the results
about the existence of state-space representations of time systems in the sense
of M. Mesarovic and Y. Takahara [9] to blocks. Note that unlike a state-space
representation of a time system, a NCMS admits a nondeterministic behavior, i.e.
a situation when several trajectories start in one state at a certain time moment,
so in some sense Theorem 7 describes a more general case than the statement
about causality of time systems which have a state space representation.

In the rest of the section we give a proof of Theorem 7 in the form of a series
of lemmas. A detailed proof of each lemma cannot be given in this paper due
to space limitations, so we will give proofs of the most important lemmas and
sketch proofs of more straightforward lemmas. A detailed proof of Theorem 7
will be given in [31].

Lemma 5. ([25, Lemma 4]) Let Σ be an I/O NCMS, i ∈ Sb(In(Σ),W), and
s ∈ S(Σ, i). Then there exists s′ ∈ Smax(Σ, i) such that s � s′.

Lemma 6. ([25, Lemma 6]) Each initial I/O NCMS is a NCMS representation
of a unique (up to semantic identity) block.

The proofs of the next two lemmas are straightforward, so we omit them.

Lemma 7. Let B be a block with a NCMS representation, (i, o) ∈ IO(B), and
(i′, o′) & (i, o). Then (i′, o′) ∈ IO(B).

Lemma 8. Assume that a block B has a NCMS representation, o ∈ Op(B)(i),
and i&i′. Then there exists o′ ∈ Op(B)(i′) such that (i, o) & (i′, o′).

Lemma 9. If a block B has a NCMS representation, then it is weakly nonan-
ticipative.

Proof. Follows from Lemma 7, Lemma 8, and Theorem 3.

The next two lemmas deal with degenerate cases. We omit the proofs.

Lemma 10. Assume that a block B is weakly nonanticipative and dom(o) ⊆ {0}
for each (i, o) ⊆ IO(B). Then B is strongly nonanticipative.

Lemma 11. Assume that a block B has a NCMS representation, (i∗, o∗) ∈
IO(B), {0} ⊂ dom(i∗), and dom(o∗) = {0}. Then there exists a sub-block
B′ � B such that B′ has a NCMS representation and Op(B′)(i∗) = {o∗}.

Lemma 12. Assume that a block B has a NCMS representation, (i∗, o∗) ∈
IO(B), and {0} ⊂ dom(o∗). Then there exists a deterministic block B′ such
that B′ has a NCMS representation, In(B′) = In(B), Out(B′) = Out(B), and
Op(B′)(i) ⊆ Op(B)(i) for each i ∈ Sb(In(B),W) such that i(0) ↓= i∗(0), and
(i∗, o∗) ∈ IO(B′).

118 I. Ivanov

Proof (Sketch). Let (Σ,Q0) be a NCMS representation of B and Σ = (T,Q, T r).
Then o∗ ∈ Oall(Σ,Q0, i∗). Then i∗ �= ⊥, because {0} ⊂ dom(o∗) ⊆ dom(i∗).
Then there exists x∗ ∈ IState(Σ) such that o∗ ∈ oall(Σ,Sel1,2(Q0, i∗(0), x∗), i∗).
Then because {0} ⊂ dom(o∗), there exists s∗ ∈ Smax(Σ, i∗) such that s∗(0) ∈
Sel1,2(Q0, i∗(0), x∗) and o∗ = out ◦ s∗. Then s∗ ∈ Tr.

Let X be the set of all sets X ⊆ Tr such that

a) s∗ ∈ X ;
b) 0 ∈ dom(s) and s(0) = s∗(0) for each s ∈ X ;
c) for each s ∈ X and t ∈ T \{0}, s|[0,t) ∈ X and s|[0,t] ∈ X ;
d) for each s1, s2 ∈ X , if in ◦ s1 = in ◦ s2, then s1 = s2.

It follows immediately that

{s∗|[0,t)|t ∈ T \{0}} ∪ {s∗|[0,t]|t ∈ T \{0}} ∪ {s∗} ∈ X ,

and
⋃

c ∈ X for each non-empty ⊆-chain c ⊆ X . Then Zorn’s lemma implies
that X has some ⊆-maximal element X∗.

Let us show that each non-empty �-chain in X∗ has a supremum in X∗. Let
C ⊆ X∗ be a non-empty �-chain. Let s0 be a function (the graph of) which
is a union of (graphs of) elements of C (s0 is indeed a function, because C
is a �-chain). Then s0 ∈ Tr by the completeness and CPR properties of the
NCMS Σ. Besides, 0 ∈ dom(s0). It is easy to show that s0 ∈ X∗. It follows
immediately that s0 is a �-supremum of C. Because C is arbitrary, it follows
that each non-empty �-chain in X∗ has a supremum in X∗.

Let Y = IState(Σ) × X∗ and Q′ = In(B)W × Y × Out(B)W . Then Y �= ∅,
because X∗ �= ∅.

For each s ∈ X∗ and y ∈ Y let fy
s : dom(s) → Q′ be a function such that

fy
s (0) = (in(s(0)), y, out(s(0))) and

fy
s (t) =

(
in(s(t)), (istate(s(t)), s|[0,t]), out(s(t))

)
for each t ∈ dom(s)\{0}.

Note that because X∗ ∈ X , for each s ∈ X∗ we have 0 ∈ dom(s), s ∈ Tr, and
s|[0,t] ∈ X∗ for all t > 0. This implies that fy

s indeed takes values in Q′.
Let us define the following set:

Tr′ = {s̃ | ∃s ∈ X∗∃y ∈ Y ∃A ∈ TA ⊆ dom(s) ∧ s̃ = fy
s |A}.

Because dom(fy
s) = dom(s) and range(fy

s) ⊆ Q′ for all s ∈ X∗ and y ∈ Y ,
we have that Tr′ is the set of all functions of the form s̃ : A → Q′, where A ∈ T ,
such that there exist s ∈ X∗ and y ∈ Y such that s̃ � fy

s .
LetΣ′ = (T,Q′, T r′). It is not difficult to show that Σ′ is a NCMS. The

definition of Q′ implies that Σ′ is an I/O NCMS.
For each din ∈ Sb(In(B),W) denote

O0(din) = {dout | ∃x ∈ IState(Σ)(din, x, dout) ∈ Q0)};
D0 = {din ∈ Sb(In(B),W) | O0(din) �= ∅}.

On Representations of Abstract Systems with Partial Inputs and Outputs 119

Note that because s∗ ∈ Tr, s∗(0) ↓, and (Σ,Q0) is an initial I/O NCMS,

(in(s∗(0)), istate(s∗(0)), out(s∗(0))) = s∗(0) ∈ Sinit(Σ),

whence out(s∗(0)) ∈ O0(in(s∗(0))) and in(s∗(0)) ∈ D0.
Then there exists a function η : D0 → Sb(Out(B),W) (selector) such that

η(in(s∗(0))) = out(s∗(0)) and η(din) ∈ O0(din) for each din ∈ D0.
Let us define

Q′
0 = {(din, y, dout)|din ∈ D0 ∧ y ∈ Y ∧ dout = η(din)}.

Obviously, we have Q′
0 ⊆ Q′. It is easy to check that in(q) = in(s∗(0))

and out(q) = out(s∗(0)) for each q ∈ Sinit(Σ
′). Then for each q ∈ Sinit(Σ

′),
η(in(q)) ↓= η(in(s∗(0))) = out(s∗(0)) = out(q), whence Sinit(Σ

′) ⊆ Q′
0. Thus

Sinit(Σ
′) ⊆ Q′

0 ⊆ Q′. Then (Σ′, Q′
0) is an initial I/O NCMS.

Then by Lemma 6, (Σ′, Q′
0) is a NCMS representation of some block B′. Then

In(B′) = In(Σ′) = In(B), Out(B′) = Out(Σ′) = Out(B), and Op(B)(i) =
Oall(Σ

′, Q′
0, i) for all i ∈ Sb(In(B),W).

It is not difficult to show that the block B′ is deterministic and that Op(B′)(i)
⊆ Op(B)(i) for each i ∈ Sb(In(B),W) such that i(0) ↓= i∗(0).

Let us show that (i∗, o∗) ∈ IO(B′). We have s∗ ∈ X∗, s∗ ∈ Smax(Σ, i∗), and
o∗ = out ◦ s∗. Let y ∈ Y be an arbitrary element. Because s∗ ∈ X∗, we have
fy
s∗ ∈ Tr′. Denote s̃ = fy

s∗ . Then dom(s̃) = dom(s∗) and in ◦ s̃ = in ◦ fy
s∗ =

in ◦ s∗&i∗, so s̃ ∈ S(Σ′, i∗). By Lemma 5, there exists s̃′ ∈ Smax(Σ
′, i∗) such

that s̃ � s̃′. Because s̃′ ∈ Tr′, there exists s ∈ X∗ and y′ ∈ Y such that
s̃′ � fy′

s . Then fy
s∗ � fy′

s . This implies that dom(s∗) ⊆ dom(s), y = y′, and
s∗(t) = s(t) for all t ∈ dom(s∗)\{0}. Moreover, s(0) = s∗(0), because s ∈ X∗.
Then s∗ � s. Denote A = dom(s̃′). Then dom(s∗) = dom(s̃) ⊆ dom(s̃′) = A, so
s∗ � s|A. Besides, s|A ∈ X∗, because s ∈ X∗. Then we have fy

s|A � fy
s . Moreover,

dom(fy
s|A) = dom(s|A) = A, because A = dom(s̃′) ⊆ dom(fy′

s) = dom(s). Then

because s̃′ � fy′
s = fy

s and A = dom(s̃′), we have fy
s|A = s̃′. Then in ◦ (s|A) =

in ◦ (fy
s|A) = in ◦ s̃′&i∗. Besides, s|A ∈ X∗ ⊆ Tr, whence s|A ∈ S(Σ, i∗).

Because s∗ � s|A and s∗ ∈ Smax(Σ, i∗), we have s∗ = s|A. Then s̃ = fy
s∗ =

fy
s|A = s̃′ ∈ Smax(Σ

′, i∗). We have s̃(0) ∈ Sinit(Σ
′) ⊆ Q′

0, because (Σ′, Q′
0) is an

initial I/O NCMS. Moreover, in(s̃(0)) = in(s∗(0)) = i∗(0) and istate(s̃(0)) =
istate(fy

s∗(0)) = y ∈ IState(Σ′), whence s̃(0) ∈ Sel1,2(Q
′
0, i∗(0), y). Moreover,

out ◦ s̃ = out ◦ fy
s∗ = out ◦ s∗ = o∗. Then

o∗ ∈ oall(Σ
′, Sel1,2(Q

′
0, i∗(0), y), i∗) ⊆ Oall(Σ

′, Q′
0, i∗).

Thus (i∗, o∗) ∈ IO(B′).

Lemma 13. Assume that a block B has a NCMS representation, (i∗, o∗) ∈
IO(B), and i∗(0) ↓. Then there exists a deterministic causal block B′ such
that In(B′) = In(B), Out(B′) = Out(B), Op(B′)(i) ⊆ Op(B)(i) for each
i ∈ Sb(In(B),W) such that i(0) ↓= i∗(0), and (i∗, o∗) ∈ IO(B′).

120 I. Ivanov

Proof. Consider the following cases.
1) Either dom(i∗) = {0}, or o∗ = ⊥, and also the inclusion dom(o) ⊆ {0}

holds for each (i, o) ∈ IO(B) such that (i∗, o∗) & (i, o).
Let us define a function O : Sb(In(B),W) → 2Sb(Out(B),W) as follows:O(⊥) =

{⊥} and O(i) = {o∗}, if i �= ⊥. Then O(i) is a singleton set for each i. Moreover,
dom(o∗) ⊆ {0}, so dom(o) ⊆ dom(i) holds for all i, o such that o ∈ O(i). Then
there exists a deterministic block B′ such that In(B) = In(B′), Out(B) =
Out(B′), and Op(B′) = O. If o1 ∈ Op(B′)(i1) and o2 ∈ Op(B′)(i2) for some
i1, i2 such that i1|[0,t] = i2|[0,t] for some t ∈ T , then i1 = ⊥ if and only if i2 = ⊥,
so o1 = o2, whence o1|[0,t] = o2|[0,t]. Thus B′ is causal.

Moreover, o∗ ∈ O(i∗) = Op(B′)(i∗), because i∗ �= ⊥. Then (i∗, o∗) ∈ IO(B′).
Let i ∈ Sb(In(B),W) and i(0) ↓= i∗(0).
Consider the case when o∗ = ⊥. Then because (i∗, o∗) ∈ IO(B) and (i∗|{0},⊥)

& (i∗, o∗), we have (i∗|{0},⊥) ∈ IO(B) by Lemma 7. Then because i∗|{0}&i, by
Lemma 8 there exists o′ ∈ Op(B)(i) such that (i∗|{0},⊥) & (i, o′). Then because
i∗(0) ↓, we have o′ = ⊥. Then {⊥} = {o∗} = Op(B′)(i) ⊆ Op(B)(i).

Consider the case when o∗ �= ⊥. Then dom(i∗) = {0} and because (i∗, o∗) ∈
IO(B) and i∗ = i∗|{0}&i, by Lemma 8 there exists o′ ∈ Op(B)(i) such that
(i∗, o∗) & (i, o′). Then dom(o′) ⊆ {0} and dom(o∗) = {0}, so o′ = o∗ and
{o∗} = Op(B′)(i) ⊆ Op(B)(i).

Thus B′ satisfies the statement of the lemma.
2) {0} ⊂ dom(i∗), o∗ �= ⊥, and the inclusion dom(o) ⊆ {0} holds for each

(i, o) ∈ IO(B) such that (i∗, o∗) & (i, o).
Then {0} ⊂ dom(i∗) and dom(o∗) = {0}, so by Lemma 11 there exists a sub-

block B′ � B such that B′ has a NCMS representation and Op(B′)(i∗) = {o∗}.
By Lemma 9, B′ is weakly nonanticipative. Consider the following cases.
2.1) There exists (i0, o0) ∈ IO(B′) such that i0(0) ↓= i∗(0) and {0} ⊂

dom(o0). Then by Lemma 12 (applied to B′), there exists a deterministic block
B′′ which has a NCMS representation, such that In(B′′) = In(B′) = In(B),
Out(B′′) = Out(B′) = Out(B), Op(B′′)(i) ⊆ Op(B′)(i) ⊆ Op(B)(i) for each
i ∈ Sb(In(B′),W) such that i(0) ↓= i0(0) = i∗(0), and (i0, o0) ∈ IO(B′′). Then
Op(B′′)(i∗) ⊆ Op(B′)(i∗) = {o∗}, so (i∗, o∗) ∈ IO(B′′). Besides, B′′ is causal by
Lemma 9 and Lemma 2. Then B′′ satisfies the statement of the lemma.

2.2) For each (i, o) ⊆ IO(B′), if i(0) ↓= i∗(0), then {0} ⊂ dom(o) is not
satisfied (which is implies the inclusion dom(o) ⊆ {0}).

Let B′
0 be a block such that In(B′

0) = In(B), Out(B′
0) = Out(B), and

Op(B′
0)(i) = Op(B′)(i), if i(0) ↓= i∗(0), and Op(B′

0)(i) = {⊥}, otherwise. Ob-
viously, B′

0 is indeed correctly defined as a block.
Let us show that B′

0 is weakly nonanticipative. Let A ∈ T0, i1, i2 ∈ Sb(In(B′
0),

W), and i1|A = i2|A. If A = ∅ or i1 = ⊥ or i2 = ⊥, then

{o|A|o ∈ Op(B′
0)(i1)} = {⊥} = {o|A|o ∈ Op(B′

0)(i2)}.

Assume that 0 ∈ A ∩ dom(i1) ∩ dom(i2). If i1(0) = i∗(0), then i2(0) = i∗(0),
whence Op(B′

0)(ij) = Op(B′)(ij) for j = 1, 2, and so

{o|A|o ∈ Op(B′
0)(i1)} = {o|A|o ∈ Op(B′

0)(i2)}

On Representations of Abstract Systems with Partial Inputs and Outputs 121

because B′ is weakly nonanticipative. Otherwise, i2(0) = i1(0) �= i∗(0), whence
Op(B′

0)(i1) = Op(B′
0)(i2) = {⊥}. Then

{o|A|o ∈ Op(B′
0)(i1)} = {⊥} = {o|A|o ∈ Op(B′

0)(i2)}.

We conclude that B′
0 is weakly nonanticipative. Moreover, dom(o) ⊆ {0} for

each (i, o) ∈ IO(B′
0). Then B′

0 is strongly nonanticipative by Lemma 10, so it
has some deterministic causal sub-block B′′ � B′

0 (because IO(B′
0) �= ∅). Then

Op(B′′)(i∗) ⊆ Op(B′
0)(i∗) = Op(B′)(i∗) = {o∗}, whence (i∗, o∗) ∈ IO(B′′).

Besides, In(B′′) = In(B), Out(B′′) = Out(B), and for each i ∈ Sb(In(B),W)
such that i(0) ↓= i∗(0) we have

Op(B′′)(i) ⊆ Op(B′
0)(i) = Op(B′)(i) ⊆ Op(B)(i).

Then B′′ satisfies the statement of the lemma.
3) There exists (i0, o0) ∈ IO(B) such that (i∗, o∗) & (i0, o0) and dom(o0) ⊆

{0} does not hold. Then {0} ⊂ dom(o0), i0(0) ↓= i∗(0), and by Lemma 12
there exists a deterministic block B′ which has a NCMS representation, such
that In(B′) = In(B), Out(B′) = Out(B), Op(B′)(i) ⊆ Op(B)(i) for each i ∈
Sb(In(B),W) such that i(0) ↓= i0(0) = i∗(0), and (i0, o0) ∈ IO(B′). Then B′

is weakly nonanticipative by Lemma 9, so it is causal by Lemma 2. Because
(i0, o0) ∈ IO(B′) and (i∗, o∗) & (i0, o0), we have (i∗, o∗) ∈ IO(B′) by Theorem
3. Then B′ satisfies the statement of the lemma.

Lemma 14. Assume that a block B has a NCMS representation. Then B is
strongly nonanticipative.

Proof. Let us fix an arbitrary (i0, o0) ∈ IO(B).
If i0 = ⊥, then let i∗ = {0} �→ [] and o∗ be an arbitrary member of Op(B)(i∗).

Otherwise, i.e. if i0 �= ⊥, then let i∗ = i0 and o∗ = o0. In both cases we have
defined a pair (i∗, o∗) such that (i∗, o∗) ∈ IO(B) and i∗ �= ⊥.

Denote D =In(B) W . For each each d ∈ D let id = {0} �→ d, if d �= i∗(0) and
id = i∗, if d = i∗(0). Then id(0) ↓= d and Op(B)(id) �= ∅ for each d ∈ D and o∗ ∈
Op(B)(ii∗(0)). Then there exists a (selector) function f : D → Sb(Out(B),W)
such that f(d) ∈ Op(B)(id) for each d ∈ D and f(i∗(0)) = o∗.

Then by Lemma 13, for each d ∈ D let us choose a deterministic causal block
Bd such that In(Bd) = In(B), Out(Bd) = Out(B), Op(Bd)(i) ⊆ Op(B)(i) for
each i ∈ Sb(In(B),W) such that i(0) ↓= id(0), and (id, f(d)) ∈ IO(Bd).

Let O : Sb(In(B),W) → 2Sb(Out(B),W) be a function such that O(i) =
Op(Bi(0))(i), if i �= ⊥ and O(⊥) = {⊥}.

Then O(i) �= ∅ for all i and dom(o) ⊆ dom(i) whenever o ∈ O(i). Then there
exists a block B′ such that In(B′) = In(B), Out(B′) = Out(B), Op(B′) = O.;

Because for each d ∈ D the block Bd is deterministic, B′ is deterministic.
Let us show that B′ � B. Let (i, o) ∈ IO(B′). If i = ⊥, then (i, o) = (⊥,⊥) ∈

IO(B). Otherwise, o ∈ O(i) = Op(Bi(0))(i) ⊆ Op(B)(i), because i(0) = ii(0)(0),
whence (i, o) ∈ IO(B). Thus B′ � B.

Let us show that B′ is causal. Let i, i′ ∈ Sb(In(B′),W), t ∈ T , i|[0,t] = i′|[0,t],
o ∈ Op(B′)(i), and o′ ∈ Op(B′)(i′). If i = ⊥ or i′ = ⊥, then i = i′ = o = o′ = ⊥,

122 I. Ivanov

so o|[0,t] = o′|[0,t]. Consider the case when i �= ⊥ and i′ �= ⊥. Then i(0) ↓,
i′(0) ↓, and i(0) = i′(0). Denote d = i(0). Then o ∈ Op(B′)(i) = Op(Bd)(i) and
o′ ∈ Op(B′)(i′) = Op(Bd)(i

′) ,whence o|[0,t] = o′|[0,t], because Bd is causal.
We conclude that B′ is causal. Moreover, Op(B′)(i∗) = Op(Bi∗(0))(i∗) =

Op(Bi∗(0))(ii∗(0)) = {o∗}. Then (i∗, o∗) ∈ IO(B′). If i0 �= ⊥, this implies that
(i0, o0) = (i∗, o∗) ∈ IO(B′). Otherwise, i.e. if i0 = ⊥, then (i0, o0) ∈ IO(B′).

We conclude that for each (i0, o0) ∈ IO(B) there exists a deterministic causal
sub-block B′ � B such that (i0, o0) ∈ IO(B′). So B is strongly nonanticipative.

Now we can prove Theorem 7.

Proof (of Theorem 7). Let (Σ,Q0) be an initial I/O NCMS. Then by Lemma 6
and Lemma 14, it is a NCMS representation of a strongly nonanticipative block.

Now assume that (Σ,Q0) is a NCMS representation of each of the blocks B1

and B2. Then by Lemma 6, B1 and B2 are semantically identical. �

Acknowledgments. I would like to thank Dr. Martin Strecker and Prof. Louis
Féraud of Institut de Recherche en Informatique de Toulouse (IRIT), France
and Prof. Mykola Nikitchenko of Taras Shevchenko National University of Kyiv,
Ukraine for their comments and advices regarding this work.

References

1. Baheti, R., Gill, H.: Cyber-physical systems. The Impact of Control Technology,
161–166 (2011)

2. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical sys-
tems approach. Lulu.com (2013)

3. Zadeh, L.A., Desoer, C.A.: Linear System Theory: The State Space Approach.
McGraw-Hill (1963)

4. Zadeh, L.A.: The concepts of system, aggregate, and state in system theory (1969)
5. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory

(Pure & Applied Mathematics S.). McGraw-Hill Education (1969)
6. Padulo, L., Arbib, M.: System theory: a unified state-space approach to continuous

and discrete systems. W.B. Saunders Company (1974)
7. Klir, G.J.: Facets of Systems Science (IFSR International Series on Systems Science

and Engineering). Springer (2001)
8. Wymore, A.W.: A mathematical theory of systems engineering: the elements. Wi-

ley (1967)
9. Mesarovic, M.D., Takahara, Y.: Abstract Systems Theory. LNCIS, vol. 116.

Springer, Heidelberg (1989)
10. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation: inte-

grating discrete event and continuous complex dynamic systems. Academic Press
(2000)

11. Matrosov, V.M., Anapolskiy, L., Vasilyev, S.: The method of comparison in math-
ematical systems theory. Nauka, Novosibirsk (1980) (in Russian)

12. Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems 36(3),
259–294 (1991)

On Representations of Abstract Systems with Partial Inputs and Outputs 123

13. Polderman, J.W., Willems, J.C.: Introduction to mathematical systems theory: a
behavioral approach. Springer, Berlin (1997)

14. Lin, Y.: General systems theory: A mathematical approach. Springer (1999)
15. Seising, R.: Cybernetics, system(s) theory, information theory and fuzzy sets and

systems in the 1950s and 1960s. Information Sciences 180(23), 4459–4476 (2010)
16. Liu, X., Matsikoudis, E., Lee, E.A.: Modeling timed concurrent systems. In: Baier,

C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 1–15. Springer,
Heidelberg (2006)

17. Matsikoudis, E., Lee, E.A.: On fixed points of strictly causal functions. Technical
Report UCB/EECS-2013-27, EECS Department, University of California, Berkeley
(April 2013)

18. Ball, J.: Finite time blow-up in nonlinear problems. Nonlinear Evolution Equations,
189–205 (1978)

19. Galaktionov, V., Vazquez, J.L.: The problem of blow-up in nonlinear parabolic
equations. Discrete and Continuous Dynamical Systems 8(2), 399–433 (2002)

20. Goriely, A.: Integrability and nonintegrability of dynamical systems, vol. 19. World
Scientific Publishing Company (2001)

21. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems 29(2), 28–93 (2009)
22. Henzinger, T.A.: The theory of hybrid automata. In: Proc. Eleventh Annual IEEE

Symp. Logic in Computer Science, LICS 1996, pp. 278–292 (1996)
23. Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Interna-

tional Journal of Robust and Nonlinear Control 11(5), 435–451 (2001)
24. Ivanov, I.: An abstract block formalism for engineering systems. In: Ermolayev,

V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G., Zavileysky,
M., Kravtsov, H., Kobets, V., Peschanenko, V.S. (eds.) ICTERI. CEUR Workshop
Proceedings, vol. 1000, pp. 448–463. CEUR-WS.org (2013)

25. Ivanov, I.: On existence of total input-output pairs of abstract time systems. In:
Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G.
(eds.) ICTERI 2013. CCIS, vol. 412, pp. 308–331. Springer, Heidelberg (2013)

26. Hájek, O.: Theory of processes, i. Czechoslovak Mathematical Journal 17, 159–199
(1967)

27. Windeknecht, T.: Mathematical systems theory: Causality. Mathematical Systems
Theory 1(4), 279–288 (1967)

28. Nikitchenko, N.S.: A composition nominative approach to program semantics.
Technical report, IT-TR 1998-020, Technical University of Denmark (1998)

29. Ivanov, I.: A criterion for existence of global-in-time trajectories of non-
deterministic markovian systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M.,
Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2012. CCIS, vol. 347, pp. 111–130.
Springer, Heidelberg (2013)

30. Frankowska, H.: Optimal control under state constraints. In: Proceedings of the
International Congress of Mathematicians, Hyderabad, India, August 19-27, pp.
2915–2942 (2010)

31. Ivanov, I.: Investigation of abstract systems with inputs and outputs as par-
tial functions of time. PhD thesis, Université Paul Sabatier, France and Taras
Shevchenko National University of Kyiv, Ukraine (to appear, 2014)

Complexity Information Flow

in a Multi-threaded Imperative Language

Jean-Yves Marion and Romain Péchoux

Université de Lorraine, CNRS and INRIA
LORIA, UMR 7503

Nancy, France
{jean-yves.marion,romain.pechoux}@loria.fr

Abstract. In this paper, we propose a type system to analyze the time
consumed by multi-threaded imperative programs with a shared global
memory, which delineates a class of safe multi-threaded programs. We
demonstrate that a safe multi-threaded program runs in polynomial time
if (i) it is strongly terminating wrt a non-deterministic scheduling policy
or (ii) it terminates wrt a deterministic and quiet scheduling policy. As a
consequence, we also characterize the set of polynomial time functions.
The type system presented is based on the fundamental notion of data
tiering, which is central in implicit computational complexity. It regulates
the information flow in a computation. This aspect is interesting in that
the type system bears a resemblance to typed based information flow
analysis and notions of non-interference. As far as we know, this is the
first characterization by a type system of polynomial time multi-threaded
programs.

Keywords: Implicit computational complexity, Ptime, multi-threaded
imperative language, non-interference, type system.

1 Introduction

The objective of this paper is to study the notion of complexity flow analysis
introduced in [20,18] in the setting of concurrency. Our model of concurrency is
a simple multi-threaded imperative programming language where threads com-
municate through global shared variables. The measure of time complexity that
we consider for multi-threaded programs is the processing time. That is the total
time for all threads to complete their tasks. As a result, the time measure gives
an upper bound on the number of scheduling rounds. The first outcome of this
paper is a novel type system, which guarantees that each strongly terminating
safe multi-threaded program runs in polynomial time (See Section 3.2 and The-
orem 6). Moreover, the runtime upper bound holds for all thread interactions.
As a simple example, consider the two-thread program:

x : while(X 1 == Y 1){skip}
C ;
X 1:=¬X 1

y : while(X 1
= Y 1){skip}
C ′;
Y 1:=¬Y 1

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 124–140, 2014.
c© Springer International Publishing Switzerland 2014

Complexity Information Flow in a Multi-threaded Imperative Language 125

This example illustrates a simple synchronization protocol between two threads
x and y. Commands C and C ′ are critical sections, which are assumed not to
modify X and Y . The operator ¬ denotes boolean negation. Both threads are
safe if commands C and C ′ are safe with respect to the same typing environment.
Our first result establishes that this two-thread program runs in polynomial time
(in the size of the initial shared variable values) if it is strongly terminating and
safe.

Then, we consider a class of deterministic schedulers, that we call quiet (see
Section 9). The class of deterministic and quiet schedulers contains all deter-
ministic scheduling policies which depend only on threads. A typical example
is a round-robin scheduler. The last outcome of this paper is that a safe multi-
threaded program which is terminating wrt a deterministic and quiet scheduler,
runs in polynomial time. Despite the fact that it is not strongly terminating, the
two-thread program (see below) terminates under a round-robin scheduler, if C
and C ′ terminate.

x : while(X 1 > 0)
{C ;
Z 1:=0 : 1} : 1

y : while(Z 1 > 0)
{C ′;
X 1:=0 : 1} : 1

As a result, if commands C and C ′ are safe, then this two-thread program runs
in polynomial time wrt to a round-robin scheduler. The last outcome consists
in that if we just consider one-thread programs, then we characterize exactly
FPtime, which is the class of polynomial time functions. (See Theorem 7).

The first rationale behind our type system comes from data-ramification con-
cept of Bellantoni and Cook [5] and Leivant [17]. The type system has two atomic
types 0 and 1 that we call tiers. The type system precludes that values flow from
tier 0 to tier 1 variables. Therefore, it prevents circular algorithmic definitions,
which may possibly lead to an exponential length computation. More precisely,
explicit flow from 0 to 1 is forbidden by requiring that the type level of the as-
signed variable is less or equal to the type level of the source expression. Implicit
flow is prevented by requiring that (i) branches of a conditional are of the same
type and (ii) guard and body of while loops are of tier 1. If we compare with the
data-ramification concept of [5,17], tier 1 parameters correspond to variables on
which a ramified recursion is performed whereas tier 0 parameters correspond
to variables on which recursion is forbidden.

The second rationale behind our type system comes from secure flow anal-
ysis. In order to have an overview on information flow analysis, see Sabelfeld
and Myers survey [24]. In [26] for sequential imperative programs and in [25] for
multi-threaded imperative programming language, Irvine, Smith and Volpano
define a type system to certify confidentiality policies. Types are based on se-
curity levels say H (High) and L (Low). The type system prevents the leak of
information from level H to level L. This is similar to the principle governing
our type system: 0 (resp. 1) corresponds to H (resp. L). In fact, our approach
rather coincides with an integrity policy [6] (i.e the rule ”no read down”) than
with a confidentiality one [4]. A key notion is non-interference. We establish a
first non-interference result which states that values stored in tier 1 variables are

126 J.-Y. Marion and R. Péchoux

independent from tier 0 variables. See Section 5 for a precise statement. Then,
we demonstrate a temporal non-interference property which expresses that the
length of while loops only depends on tier 1 variables, see Section 6. The tempo-
ral non-interference property is the crucial point to establish complexity bounds.
The main contributions of this paper are the following:

1. We demonstrate the ability of the complexity flow analysis for the implicit
computational complexity (ICC) field. It is worth noticing that compared to
ICC’s results, the expressivity is quite interesting. This point is illustrated
by several examples.

2. To our knowledge, this is the first type system which provides a polynomial
time upper bound on a class of multi-threaded programs.

Beside complexity analysis, we may think to applications to security. Indeed,
Nowak and Zhang [23] formalize cryptographic proofs thanks to a type system in
order to guarantee polynomial-time computations. Here, this work could provide
a smoother framework where we can deal with multiple adversaries in security
proofs.

Related Works. Implicit Computational Complexity (ICC) was an important
source of inspiration for this paper. Besides the works of Bellantoni, Cook and
Leivant already cited, there are other works on light logics [10,3], on linear
types [12], and interpretation methods [7,21], just to mention a few. There are
also works on resource control of imperative language like [13,14,22]. Only a
few studies based on ICC methods are related to resource control of concurrent
computational models. In [2], a bound on the resource needed by synchronous
cooperative threads in a functional framework is computed. The paper [1] pro-
vides a static analysis for ensuring feasible reactivity in a synchronous π-calculus.
In [19] an elementary affine logic is introduced to tame the complexity of a modal
call-by-value lambda calculus with multi-threading and side effects. There are
also works on the termination of multi-threaded imperative languages [9]. In this
paper, we separate complexity analysis from termination analysis but the tools
on termination can be combined with our results. In the complexity flow anal-
ysis framework, the main focus of [18] is sequential computation over evolving
structure. In [11], we present a characterization of polynomial space computa-
tion. Finally, the type system of [20] for a sequential imperative language is
similar to [26] while this work is closer to [25] for multi-threaded imperative
programming language.

2 A Complexity Flow Type System

2.1 A Multi-threaded Programming Language

We introduce a multi-threaded imperative programming language similar to the
language of [25,8] and which is an extension of the simple while-imperative pro-
gramming language of [15]. A multi-threaded program consists in a finite set of
threads where each thread is a while-program. Threads run concurrently on a

Complexity Information Flow in a Multi-threaded Imperative Language 127

common shared memory. A thread interacts with other threads by reading and
writing on the shared memory.

Commands and expressions are built from a set V of variables, and a set O
of operators of fixed arity including constants (operators of arity 0) as follows:

Expressions E1, . . . ,En ::= X | op(E1, . . . ,En) X ∈ V, op ∈ O
Commands C ,C ′ ::= X :=E | C ; C ′ | skip

| ifE then C else C ′

| while(E){C}

A multi-threaded program M (or just a program when there is no ambiguity)
is a finite map from thread identifiers x , y, . . . to commands. We write dom(M)
to denote the set of thread identifiers. Note also that we do not consider the
ability of generating new threads. Let V(I) be the set of variables occurring in
I, where I is an expression, a command or a multi-threaded program.

2.2 Semantics, Termination and Time Usage

We give a standard small step operational semantics for multi-threaded pro-
grams. Let W be the set of words1 over a finite alphabet Σ including two words
tt and ff that denote true and false. The length of a word d is denoted |d |. A
store μ is a finite mapping from V to W. We write μ[X1 ← d1, . . . ,Xn ← dn] to
mean the store μ′ where Xi is updated to di.

The evaluation rules for expressions and commands are given in Figure 1.
Each operator of arity n is interpreted by a total function �op� : Wn �→ W. The

judgment μ � E
e→ d means that the expression E is evaluated to d ∈ W wrt μ.

A configuration c is either a pair μ � C composed of a store and of a command,
or a store μ. The judgment μ � C

s→ μ′ expresses that C terminates and outputs
the store μ′. μ � C

s→ μ′ � C ′ means that the evaluation of C is still in progress:
the command has evolved to C ′ and the store has been updated to μ′.

For a multi-threaded programM , the store μ plays the role of a global memory
shared by all threads. The store μ is the only way for threads to communicate.

The definition of the global relation
g→ is given in Figure 1, where M−x is the

restriction of M to dom(M)−{x} and M [x := C1] is the map M where the
command assigned to x is updated to C1. At each step, a thread x is chosen
non-deterministically. Then, one step of x is performed and the control returns
to the upper level. Note that the rule (Stop) halts the computation of a thread.
In what follows, let ∅ be a notation for the (empty) multi-threaded program (i.e.
all threads have terminated). We will discuss about deterministic scheduling
policies in the last section.

A multi-threaded program M is strongly terminating, noted M ⇓, if for any

store, all reduction sequences starting from M are finite. Let
h→
t
be the t-fold

self composition and
h→
∗
be the reflexive and transitive closure of the relation

1 Our result could be generalized to other domains such as binary trees or lists. We
have restricted this study to words to have a concise presentation.

128 J.-Y. Marion and R. Péchoux

μ � X
e→ μ(X)

μ � E1
e→ d1 . . . μ � En

e→ dn

μ � op(E1, . . . ,En)
e→ �op�(d1, . . . , dn)

μ � skip
s→ μ

μ � E
e→ d

μ � X :=E
s→ μ[X ← d]

μ � C1
s→ μ1

μ � C1 ; C2
s→ μ1 � C2

μ � C1
s→ μ1 � C ′

1

μ � C1 ; C2
s→ μ1 � C ′

1;C2

μ � E
e→ w, w ∈ {tt, ff}

μ � if E then Ctt else Cff
s→ μ � Cw

μ � E
e→ ff

μ � while(E){C} s→ μ

μ � E
e→ tt

μ � while(E){C} s→ μ � C ; while(E){C}
(Wtt)

M(x) = C μ � C
s→ μ1

μ � M
g→ μ1 � M − x

(Stop)
M(x) = C μ � C

s→ μ1 � C1

μ � M
g→ μ1 � M [x := C1]

(Step)

Fig. 1. Small step semantics of expressions, commands and multi-threaded programs

h→, h ∈ {s,g}. The running time of a strongly terminating program M is the
function TimeM from Wn to N defined by:

TimeM (d) = max{t | μ0[Xi ← di] � M
g→
t
μ � ∅}

where μ0 is the empty store that maps each variable to the empty word ε ∈ W.
Throughout, μ0[X1 ← d1, . . . ,Xn ← dn] is called the initial store.

A strongly terminating multi-threaded program M is running in polynomial
time if for all d1, . . . , dn ∈ W,

TimeM (d1, . . . , dn) ≤ Q(max
i=1,n

|di|)

for some polynomial Q. Observe that, in the above definition, the time con-
sumption of an operator is considered as constant, which is fair if operators are
supposed to be computable in polynomial time.

2.3 The Type System

Atomic types are elements of the boolean lattice ({0,1},&,0,∨,∧) where 0 & 1.
We call them tiers accordingly to the data ramification principle of [16]. We use
α, β, . . . for tiers. A variable typing environment Γ is a finite mapping from
V to {0,1}, which assigns a single tier to each variable. An operator typing
environment Δ is a mapping that associates to each operator op a set of operator
types Δ(op), where the operator types corresponding to an operator of arity n
are of the shape α1 → . . . αn → α with αi, α ∈ {0,1} using implicit right
associativity of→. We write dom(Γ) (resp. dom(Δ)) to denote the set of variables
typed by Γ (resp. the set of operators typed by Δ). Figure 2 gives the type system

Complexity Information Flow in a Multi-threaded Imperative Language 129

for expressions and commands. Given a multi-threaded program M , a variable
typing environment Γ and an operator typing environment Δ, M is well-typed
if for every x ∈ dom(M), Γ,Δ) M(x) : α for some tier α.

Γ (X) = α

Γ,Δ � X : α

Γ,Δ � X : β Γ,Δ � E : α

Γ,Δ � X :=E : β
β α

Γ,Δ � E1 : α1 . . . Γ,Δ � En : αn α1 → . . . → αn → α ∈ Δ(op)

Γ,Δ � op(E1, . . . ,En) : α

Γ,Δ � E : 1 Γ,Δ � C : α

Γ,Δ � while(E){C} : 1

Γ,Δ � C : α Γ,Δ � C ′ : β

Γ,Δ � C ; C ′ : α ∨ β

Γ,Δ � skip : α

Γ,Δ � E : α Γ,Δ � C : α Γ,Δ � C ′ : α

Γ,Δ � if E then C else C ′ : α

Fig. 2. Type system for expressions and commands

Notice that the subject reduction property is not valid, because we don’t
explicitly have any subtyping rule. However, a weak subject reduction property
holds: If Γ,Δ) C : α and μ � C

s→ μ′ � C ′ then Γ,Δ) C ′ : β where β & α.

3 Safe Multi-threaded Programs

3.1 Neutral and Positive Operators

As in [20], we define two classes of operators called neutral and positive. For
this, let � be the sub-word relation over W, which is defined by v � w , iff there
are u and u ′ such that w = u.v .u ′, where . is the concatenation.
An operator op is neutral if:

1. either �op� : W → {tt, ff} is a predicate;
2. or for all d1, . . . , dn ∈ W,

∃i ∈ {1, . . . , n}, �op�(d1, . . . , dn)� di.

An operator op is positive if there is a constant cop such that:

|�op�(d1, . . . , dn)| ≤ max
i

|di|+ cop

A neutral operator is always a positive operator but the converse is not true.
In the remainder, we assume that operators are all neutral or positive2.

2 Actually, a more general condition would be that the initial segment, generated by
the closure of neutral operators, is polynomial in the size of the greatest element.
Again, we skip this part because of the lack of space and because it is not essential.

130 J.-Y. Marion and R. Péchoux

3.2 Safe Environments and Safe Multi-threaded Programs

An operator typing environment Δ is safe if for each op ∈ dom(Δ) of arity n
and for each α1 → . . . → αn → α ∈ Δ(op), we have α & ∧i=1,nαi, and if the
operator op is positive, but not neutral, then α = 0. Given Γ a variable typing
environment and Δ a operator typing environment, we say that M is a safe
multi-threaded program if M is well-typed and Δ is safe.

Intuitively, a tier 0 argument is unsafe. This means that it cannot be used as
a loop guard. So for ”loop-safety” reasons, if an operator has a tier 0 argument
then the result is necessarily of tier 0. In return, a positive operator can increase
the size of its arguments. On the other hand, a neutral operator does not increase
the size of its arguments. So, we can apply it safely everywhere. The combination
of the type system, which guarantees some safety properties on the information
flow, and of aforementioned operator specificities is crucial to bound the runtime.

4 Examples

In what follows, let Eα, respectively C : α, be a notation meaning that the
expression E , respectively command C , is of type α under the considered typing
environments.

Example 1. Given a word d , the operator eqd tests whether or not its argument
begins with the prefix d and pred computes the predecessor:

�eqd�(u) =

{
= tt if u = d .w

= ff otherwise

�pred�(u) =

{
= ε if u = ε

= w if u = �.w , � ∈ Σ

Both operators are neutral. This means that their types satisfyΔ(pred), Δ(equ) ⊆
{0 → 0,1 → 1,1 → 0} wrt to a safe environment Δ. The operator sucd adds a
prefix d . It is positive, but not neutral. So, Δ(sucd) ⊆ {1 → 0,0 → 0}:

�sucd�(u) = d .u

Example 2. Consider the sequential programs addY and mulZ that compute
respectively addition and multiplication on unary words using the positive suc-
cessor operator +1, in infix notation, and two neutral operators, −1 and a unary
predicate > 0, both in infix notation. Both programs are safe by checking that
their main commands are well-typed wrt the safe operator typing environment
Δ defined by Δ(+1) = {0 → 0} and Δ(−1) = Δ(> 0) = {1 → 1}.
addY : mulZ :

while(X 1 > 0)1{ Z 0:=00; : 0
X 1:=X 1 − 1; : 1 while(X 1 > 0)1{
Y 0:=Y 0 + 1 : 0 X 1:=X 1 − 1; : 1

Complexity Information Flow in a Multi-threaded Imperative Language 131

} : 1 U 1:=Y 1; : 1
while(Y 1 > 0)1{

Y 1:=Y 1 − 1; : 1
Z 0:=Z 0 + 1 : 0

}; : 1
Y 1:=U 1 : 1

} : 1

Example 3. Consider the following multi-thread M composed of two threads x
and y computing on unary numbers:

x : while (X 1 > 0)1{ y : while (Y 1 > 0)1{
Z 0:=Z 0 + 1; : 0 Z 0 = 0; : 0
X 1:=X 1 − 1; : 1 Y 1:=Y 1 − 1; : 1

} : 1 } : 1

This program is strongly terminating. Moreover, given a store μ such that

μ(X) = n and μ(Z) = 0, if μ � M
g→
k
μ′ � ∅ then μ′(Z) ∈ [0, n]. M is safe using

an operator typing environment Δ such that Δ(−1) = Δ(> 0) = {1 → 1} and
Δ(+1) = {0 → 0} and M ⇓. Consequently, by Theorem 5, there is a polynomial
T such that for each store μ, k ≤ T (‖μ‖1).

Example 4. Consider the following multi-thread M that shuffles two strings
given as inputs:

x : while (¬eqε(X
1))1{

Z 0:=concat(head(X 1),Z 0); : 0
X 1:=pred(X 1); : 1

} : 1

y : while (¬eqε(Y
1))1{

Z 0:=concat(head(Y 1),Z 0); : 0
Y 1:=pred(Y 1); : 1

} : 1

The negation operator ¬ and eqε are unary predicates and consequently can
be typed by 1 → 1. The operator head returns the first symbol of a string given
as input and can be typed by 1 → 0 since it is neutral. The pred operator
can typed by 1 → 1 since its computation is a subterm of the input. Finally,
the concat operator that performs the concatenation of the symbol given as
first argument with the second argument can be typed by 0 → 0 → 0 since
|�concat�(u, v)| = |v| + 1. This program is safe and strongly terminating conse-
quently it also terminates in polynomial time.

Example 5. Consider the following multi-thread M :

x : while (X 1 > 0)1{ y : while (Y 1 > 0)1{
Y 1:=X 1; : 1 Z 0:=Z 0 + 1; : 0
X 1:=X 1 − 1; : 1 Y 1:=Y 1 − 1; : 1

} : 1 } : 1

132 J.-Y. Marion and R. Péchoux

Observe that, contrarily to previous examples, the guard of y depends on in-
formation flowing from X to Y . Given a store μ such that μ(X) = n, μ(Y) =

μ(Z) = 0, if μ � M
g→
k

μ′ � ∅ then μ′(Z) ∈ [0, n × (n + 1)/2]. This multi-
thread is safe with respect to a safe typing operator environment Δ such that
Δ(−1) = Δ(> 0) = {1 → 1} and Δ(+1) = {0 → 0}. Moreover it strongly
terminates. Consequently, it also terminates in polynomial time.

Example 6. The following program computes the exponential:

expY (X 1,Y 0) :
while(X 1 > 0){

U ?:=Y 0; : ?

while(U ? > 0){
Y 0:=Y 0 + 1; : 0

U ?:=U ? − 1 : ?
}; : 1
X 1:=X 1 − 1 : 1

}; : 1
It is not typable in our formalism. Indeed, suppose that it is typable. The com-
mand Y :=Y + 1 enforces Y to be of tier 0 since +1 is positive. Consequently,
the command U :=Y enforces U to be of tier 0 because of typing discipline for
assignments. However, the innermost while loop enforces U > 0 to be of tier 1,
so that U has to be of tier 1 (because 0 → 1 is not permitted for a safe operator
typing environment) and we obtain a contradiction.

Example 7. As another counter-example, consider now the addition badd on bi-
nary words:

baddY :

while(X ? > 0)?{
X ?:=X ? − 1; : ?
Y 0:=Y 0 + 1 : 0

} : 1

Contrarily to Example 2, the above program is not typable because the operator
−1 has now type Δ(−1) = {0 → 0}. Indeed it cannot be neutral since binary
predecessor is not a subterm operator. Consequently, −1 is positive and the
assignment X :=X−1 enforces X to be of type 0 whereas the loop guard enforces
X to be of tier 1. Note that this counter-example is not that surprising in the
sense that a binary word of size n may lead to a loop of length 2n using the
−1 operator. Of course this does not imply that the considered typing discipline
rejects computations on binary words, it only means that this type system rejects
exponential time programs. Consequently,“natural” binary addition algorithms
are captured as illustrated by the following program that computes the binary
addition on reversed binary words of equal size:

Complexity Information Flow in a Multi-threaded Imperative Language 133

binary addZ :
while(¬eqε(X

1))1{
R0:=result(bit(X 1), bit(Y 1), bit(C 1)); : 0
C 1:=carry(bit(X 1), bit(Y 1), bit(C 1)); : 1
Z 0:=concat(R0,Z 0); : 0
X 1:=pred(X 1); : 1
Y 1:=pred(Y 1); : 1

} : 1

As usual, pred is typed by 1 → 1. The negation operator ¬ and eqε are predicates
and, consequently, can be typed by 1 → 1, since they are neutral. The operator
bit returns tt or ff depending on whether the word given as input has first digit
1 or 0, respectively. Consequently, it can be typed by 1 → 1. The operators carry
and result, that compute the carry and the result of bit addition, can be typed by
1 → 1 → 1 → 1 since they are neutral. Finally, the operator concat(x, y) defined
by if �bit�(x) = i, i ∈ {0, 1} then �concat�(x, y) = i.y is typed by 0 → 0 → 0.
Indeed it is a positive operator since |�concat�(x, y)| = |y|+ 1.

5 Sequential and Concurrent Non-interferences

In this section, we demonstrate that classical non-interference results are ob-
tained through the use of the type system under consideration. For that purpose,
we introduce some intermediate lemmata. The confinement Lemma expresses the
fact that no tier 1 variables are modified by a command of tier 0.

Lemma 1 (Confinement). Let Γ be a variable typing environment and Δ be
a safe operator typing environment. If Γ,Δ) C : 0, then every variable assigned
to in C is of type 0, and C does not contain while loops.

Proof. By induction on the structure of C . �

The following lemma, called simple security, says that only variables at level
1 will have their content read in order to evaluate an expression E of type 1.

Lemma 2 (Simple security). Let Γ be a variable typing environment and Δ
be a safe operator typing environment. If Γ,Δ) E : 1, then for every X ∈ V(E),
we have Γ (X) = 1. Moreover, all operators in E are neutral.

Proof. By induction on E , and using the fact that E is necessarily only composed
of operators of type 1 → . . . → 1 → 1, because the environment is safe. �

Definition 1. Let Γ be a variable typing environment and Δ be an operator
typing environment.

– The equivalence relation ≈Γ,Δ on stores is defined as follows:
μ ≈Γ,Δ σ iff for every X ∈ dom(Γ) s.t. Γ (X) = 1 we have μ(X) = σ(X)

– The relation ≈Γ,Δ is extended to commands as follows:
1. If C = C ′ then C ≈Γ,Δ C ′

2. If Γ,Δ) C : 0 and Γ,Δ) C ′ : 0 then C ≈Γ,Δ C ′

3. If C ≈Γ,Δ C ′ and D ≈Γ,Δ D ′ then C ;D ≈Γ,Δ C ′;D ′

134 J.-Y. Marion and R. Péchoux

– Finally, it is extended to configurations as follows:
If C ≈Γ,Δ D and μ ≈Γ,Δ σ then μ � C ≈Γ,Δ σ � D

Remark 1. A consequence of Lemma 2 is that if μ ≈Γ,Δ σ and if Γ,Δ) E : 1,

then computations of E are identical under the stores μ and σ , that is μ � E
e→ d

and σ � E
e→ d .

We now establish a sequential non-interference Theorem which states that if
X is variable of tier 1 then the value stored in X is independent from variables
of tier 0.

Theorem 1 (Sequential non-interference). Assume that Γ is a variable typ-
ing environment and Δ is a safe operator typing environment s.t. Γ,Δ) C : α
and Γ,Δ) D : α. Assume also that μ � C ≈Γ,Δ σ � D. Then, we have:

– if μ�C s→μ′�C ′ then there are σ′ and D ′ such that

σ�D s→∗
σ′�D ′ and μ′�C ′ ≈Γ,Δ σ′�D ′

– if μ � C
s→ μ′ then there exists σ′ such that

σ � D
s→
∗
σ′ and μ′ ≈Γ,Δ σ′

Proof. First suppose that α = 0. Confinement Lemma 1 implies that μ′ ≈Γ,Δ σ′

since no tier 1 variable is changed. Thus, μ′ �C ′ ≈Γ,Δ σ′ �D ′. Second suppose
that α = 1. We proceed by induction on C . Suppose that C is while(E){C1}
and the evaluation under μ is:

μ � E
e→ tt

μ � while(E){C1}
s→ μ � C1; while(E){C1}

(Wtt)

By Remark 1, the evaluation of E under σ is necessarily tt. Since C is an atomic
command, C ≈Γ,Δ D implies C = D . As a result, σ � while(E){C1} s→ σ �
C1; while(E){C1}. We have μ′ ≈Γ,Δ σ′ because μ = μ′ and σ = σ′. We conclude
that both configurations are equivalent, that is μ′ � C ′ ≈Γ,Δ σ′ � D ′. The other
cases are treated similarly. �

Sequential non-interference can be adapted to multi-threaded programs. For this,
we extend ≈Γ,Δ to multi-threaded programs and to configurations:

– If dom(M)=dom(M ′) and ∀x∈dom(M),
M(x)≈Γ,ΔM ′(x) then M ≈Γ,Δ M ′

– If M ≈Γ,Δ M ′ and μ ≈Γ,Δ σ then μ � M ≈Γ,Δ σ � M ′

Theorem 2 (Concurrent Non-interference). Assume that Γ is a variable
typing environment, that Δ is a safe operator typing environment such that M is

well-typed. Assume also that μ � M1 ≈Γ,Δ σ � M2. Then, if μ � M1
g→ μ′ � M ′

1

then there are σ′ and M ′
2 s.t. σ � M2

g→
∗
σ′ � M ′

2 and μ′ � M1 ≈Γ,Δ σ′ � M2.

Proof. Consequence of Theorem 1. �

Complexity Information Flow in a Multi-threaded Imperative Language 135

μ � E
e→ d

μ �t X :=E
s→ μ[X ← d] μ �t skip

s→ μ

μ �0 C1
s→ μ1

μ �t C1 ; C2
s→ μ1 �t C2

μ �t C1
s→ μ1 �t′ C

′
1

μ �t C1 ; C2
s→ μ1 �t′ C

′
1;C2

μ � E
e→ w, w ∈ {tt, ff}

μ �t if E then Ctt else Cff
s→ μ �t Cw

μ � E
e→ ff

μ �t while(E){C} s→ μ

μ � E
e→ tt

μ �t while(E){C} s→ μ �t+1 C ;while(E){C}
(TWtt)

M(x) = C μ �0 C
s→ μ′

μ �t M
g→ μ′ �t M − x

M(x) = C μ �t C
s→ μ′ �t′ C

′

μ �t M
g→ μ′ �t′ M [x := C ′]

Fig. 3. Loop length measure for commands and multi-threaded programs

6 Sequential and Concurrent Temporal Non-interferences

Now we establish a property named temporal non-interference. This property
ensures that the length of while-loops does not depend on variables of tier 0,
but depends only on tier 1 variables. Consequently, a change in the value of a
variable of tier 0 does not affect loop lengths.

For this, we define a loop length measure in Figure 3 based on the small step

semantics of Figure 1. σ �0 C
s→
∗

σ′ �t C ′ holds if t is the number of while-
loops, which are unfolded to reach σ′ � C ′ from σ � C , that is t is the number
of applications of the Figure 3’s rule (TWtt) in a computation. It is convenient

to define the relation ⇒t by σ � C ⇒t σ′ � C ′ iff σ �0 C
s→
∗
σ′ �t C

′.

Remark 2. If Γ,Δ) C : 0 and σ � C
s→
∗
σ′ � C ′ then σ � C ⇒0 σ′ � C ′ since

there is no while loop inside C , by Lemma 1. Moreover, if σ � C ⇒t σ′ � C ′, then
for every k ≤ t there are σ′′ and C ′′ such that σ � C ⇒k σ′′ � C ′′ ⇒t−k σ′ � C ′.

Theorem 3 (Temporal non-interference). Assume that Γ is a variable typ-
ing environment and Δ is a safe operator typing environment s.t. Γ,Δ) C : α
and Γ,Δ) D : α. Assume also that μ � C ≈Γ,Δ σ � D. Then, if μ � C ⇒t μ′ �
C ′ then there are σ′ and D ′ s.t. σ � D ⇒t σ′ � D ′ and μ′ � C ′ ≈Γ,Δ σ′ � D ′.

Proof. The proof goes by induction on t. Suppose that t = 0. This means that
no rule (TWtt) has been fired. The conclusion is a consequence of the sequential
non-interference Theorem 1.

Next, suppose that μ � C ⇒t+1 μ′ � C ′. This means that a rule (TWtt) has

been applied. So suppose that C = while(E){C1} and that μ � E
e→ tt. First,

from the hypothesis μ ≈Γ,Δ σ and Lemma 2, we deduce σ � E
e→ tt. Second,

since C ≈Γ,Δ D , we have C = D , by definition of ≈Γ,Δ. Since C ′ = C1;C ,
we also have D ′ = C1;C . Thus, C ′ ≈Γ,Δ D ′ and σ � D ⇒t+1 σ′ � D ′ hold.
Since D runs a while, we have μ′ = μ and σ′ = σ. Thus μ′ ≈Γ,Δ σ′ holds. So,
μ′ � C ′ ≈Γ,Δ σ′ � D ′. The other cases are similar. �

136 J.-Y. Marion and R. Péchoux

We extend the relation ⇒t as follows: μ � M ⇒t μ′ � M ′ if and only if

μ �0 M
g→
∗

μ′ �t M ′. As a corollary, we obtain a temporal non-interference
result for multi-threaded programs.

Theorem 4 (Concurrent temporal non-interference). Assume Γ is a vari-
able typing environment and Δ is a safe operator typing environment s.t. M and
N are well typed. Assume that μ � M ≈Γ,Δ σ � N . Then, if μ � M ⇒t μ′ � M ′

then there are σ′ and N ′ s.t. σ � N ⇒t σ′ � N ′ and μ′ � M ′ ≈Γ,Δ σ′ � N ′.

Proof. Consequence of Theorem 3. �

7 Analysis of Multi-threaded Program Running Time

An important point is that the number of reachable tier 1 configurations in a
computation is polynomially bounded in the size of tier 1 initial values.

Lemma 3. Let M be a safe multi-threaded program wrt environments Γ and Δ.
If μ � M ⇒t μ′ � M ′ then ∀X ∈ V(M) such that Γ (X) = 1 either μ′(X) ∈
{tt, ff} or ∃Y ∈ V(M) such that Γ (Y) = 1 and μ′(X)� μ(Y).

Proof. Take one global computational step μ � M
g→ μ′ � M ′. Let X be a

variable assigned to in M(x), for some thread identifier x , such that Γ (X) = 1.
X can only be assigned to an expression E of tier 1. By simple security lemma 2,
E only contains neutral operators. It means that either μ′(X) is a truth value
(corresponding to the computation of a predicate) or a subterm of a tier 1
variable value. �

In the case where a multi-threaded program strongly terminates (i.e. M ⇓),
we now establish that for all thread interactions, the maximal length of while-
loops is polynomially bounded in the size of tier 1 values of the initial store.
This is a consequence of the temporal non-interference property. Define μ ↓ 1
as the restriction of the store μ to tier 1 variables. Notice that μ ≈Γ,Δ μ′ iff
μ↓1 = μ′ ↓1. It is convenient to also define ‖−‖1 by ‖μ‖1 = maxΓ (X)=1 |μ(X)|.

Theorem 5. Let M be a safe multi-threaded program such that M ⇓. There is a
polynomial T such that for all stores μ, if μ � M ⇒t μ′ � M ′ then t ≤ T (‖μ‖1).

Proof. By Theorem 4, the length of while-loops depends only on variables of tier
1. It implies that if M enters twice into a configuration with the same thread
command, and the same values of tier 1, then M is non-terminating. Indeed, it
is possible to repeat again the same transition up to infinity. So, a computation
never reaches two configurations σ � C and σ′ � C such that σ ≈Γ,Δ σ′.
Let μ be the initial store μ0[X1 ← d1, . . . ,Xn ← dn]. For each thread x , define

Configx = {(σ ↓ 1, N(x)) | μ � M(x)
s→
∗

σ � N(x)}. The total length of loops
is bounded by the cardinality of ∪xConfigx . Since the number of sub-words of a
word of size n is bounded by n2, Lemma 3 implies the number of distinct stores
σ reachable from μ is bounded polynomially in ‖μ‖1. As a result, the cardinality

Complexity Information Flow in a Multi-threaded Imperative Language 137

of Configx is also bounded by a polynomial in ‖μ‖1. Thus, there is a polynomial
T such that the length of each terminating multi-threaded computation starting
from μ is bounded by T (‖μ‖1). Finally, we have that t ≤ T (‖μ‖1). �

We can now state our first main result:

Theorem 6. Assume that M is a safe multi-threaded program. Moreover sup-
pose that M strongly terminates. There is a polynomial Q such that:

∀d1, . . . , dn ∈ W, TimeM (d1, . . . , dn) ≤ Q(max
i=1,n

(|di|))

Proof. We conclude by Theorem 5 and by setting Q(X) = r.T (X) + r for some
r, which depends on M . �

8 A Characterization of Polynomial Time Functions

We now come to a characterization of the set of functions computable in poly-
nomial time. A sequential program M consists in a single thread program (i.e.
dom(M) = {x}) and an output variable, say Y . The partial function �M� com-
puted by M is then defined by:

�M�(d1, . . . , dn) = w iff μ0[X1←d1, . . . ,Xn←dn] � M
g→
∗
μ � ∅ and μ(Y) = w

Theorem 7. The set of functions computed by strongly terminating and safe se-
quential programs whose operators compute polynomial time functions is exactly
FPtime, which is the set of polynomial time computable functions.

Proof. By Theorem 6, the execution time of a safe and strongly terminating
sequential program is bounded by a polynomial in the size of the initial values.
In the other direction, we show that every polynomial time function over the
set of words W can be computed by a safe and terminating program. Consider
a Turing Machine TM , with one tape and one head, which computes within
nk steps for some constant k and where n is the input size. The tape of TM
is represented by two variables Left and Right which contain respectively the
reversed left side of the tape and the right side of the tape. States are encoded by
constant words and the current state is stored in the variable State. We assign
to each of these three variables that hold a configuration of TM the tier 0. A
one step transition is simulated by a finite cascade of if-commands of the form:

if eqa(Right
0)0

then

if eqs(State
0)0

then

State0:=s′0; : 0
Left0:=sucb(Left

0); : 0
Right0:=pred(Right0) : 0

else . . . : 0
. . .

138 J.-Y. Marion and R. Péchoux

The above command expresses that if the current read letter is a and the state
is s, then the next state is s′, the head moves to the right and the read letter
is replaced by b. Since each variable inside the above command is of type 0, the
type of the if-command is also 0. Moreover, since sucb is a positive operator, its
type is forced to be 0 → 0. eqa, eqs and pred being neutral operators, they can
also be typed by 0 → 0.

Finally, it just remains to show that every polynomial can be simulated by
a safe program of tier 1. For this, we construct k nested loop by using the
multiplication template of Example 2. The guards of loops correspond to input
size which are of tier 1 wlog.

9 On Deterministic Scheduling

Actually, we can extend our results to a class of deterministic schedulers. Till
now, we have considered a non-deterministic scheduling policy but in return we
require that multi-threaded programs strongly terminate. Now, say that a deter-
ministic scheduler S is quiet if the scheduling policy depends only on the current
multi-threaded program M and on the tier 1 restriction μ ↓ 1. For example, a
deterministic scheduler whose policy just depends on running threads, is quiet.
Next, we replace the non-deterministic global transition of Figure 1 by:

S(M,μ↓1) = x μ � M(x)
s→ μ′

μ � M
g→ μ′ � M − x

S(M,μ↓1) = x μ � M(x)
s→ μ′ � C ′

μ � M
g→ μ′ � M [x := C ′]

Theorem 8. Let M be a safe multi-threaded program s.t. M is terminating wrt
a deterministic and quiet scheduler S. There is a polynomial Q such that:

∀d1, . . . , dn ∈ W, TimeM (d1, . . . , dn) ≤ Q(max
i=1,n

(|di|))

Proof. The proof follows the outline of proofs of theorems 5 and 6 by taking
into account all command thread interactions.

Example 8. We consider a simple mutual exclusion algorithm. The noncritical
sections are represented by commands C and C ′, which are assumed not to
modify X or Y . Under a fair, deterministic and quiet scheduler, this algorithm
is terminating, if both C and C ′ are terminating.

x : X 1:=tt; : 1
while(Y 1 = tt)1{skip} : 1
C
X 1:=ff; : 1

Complexity Information Flow in a Multi-threaded Imperative Language 139

y : Y 1:=tt; : 1
while(X 1 = tt)1{
Y 1 = ff; : 1
while(X 1 = tt)1{skip} : 1

Y 1:=tt; : 1}
C ′;
Y :=ff; : 1

Now, if C and C ′ are safe, then the runtime is bounded by a polynomial in
the size of tier 1 inputs.

References

1. Amadio, R.M., Dabrowski, F.: Feasible reactivity in a synchronous pi-calculus. In:
PPDP, pp. 221–230 (2007)

2. Amadio, R.M., Dal Zilio, S.: Resource control for synchronous cooperative threads.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 68–82.
Springer, Heidelberg (2004)

3. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-
calculus. In: LICS, pp. 266–275. IEEE Computer Society Press (2004)

4. Bell, D.E., La Padula, L.J.: Secure computer system: unified exposition and multics
interpretation. Technical report, Mitre corp Rep. (1976)

5. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time
functions. Computational Complexity 2, 97–110 (1992)

6. Biba, K.: Integrity considerations for secure computer systems. Technical report,
Mitre corp. Rep. (1977)

7. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations a way to control
resources. Theo. Comput. Sci. (2011)

8. Boudol, G., Castellani, I.: Noninterference for concurrent programs. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 382–395.
Springer, Heidelberg (2001)

9. Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI,
pp. 320–330 (2007)

10. Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
11. Hainry, E., Marion, J.-Y., Péchoux, R.: Type-based complexity analysis for fork

processes. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 305–320.
Springer, Heidelberg (2013)

12. Hofmann, M.: Linear types and non-size-increasing polynomial time computation.
Inf. Comput. 183(1), 57–85 (2003)

13. Jones, N.: The expressive power of higher-order types or, life without cons. J.
Funct. Program. 11(1), 5–94 (2001)

14. Jones, N., Kristiansen, L.: A flow calculus of wp-bounds for complexity analysis.
ACM Trans. Comput. Log. 10(4) (2009)

15. Jones, N.D.: Computability and complexity, from a programming perspective. MIT
Press (1997)

16. Leivant, D.: A foundational delineation of poly-time. Inf. Comput. 110(2), 391–420
(1994)

17. Leivant, D.: Predicative recurrence and computational complexity i: Word recur-
rence and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematrics II
(1994)

140 J.-Y. Marion and R. Péchoux

18. Leivant, D., Marion, J.-Y.: Evolving graph-structures and their implicit computa-
tional complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 349–360. Springer, Heidelberg (2013)

19. Madet, A., Amadio, R.M.: An elementary affine λ-calculus with multithreading and
side effects. In: Ong, L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 138–152. Springer,
Heidelberg (2011)

20. Marion, J.-Y.: A type system for complexity flow analysis. In: LICS, pp. 123–132
(2011)

21. Marion, J.Y., Péchoux, R.: Sup-interpretations, a semantic method for static anal-
ysis of program resources. ACM TOCL 10(4), 27 (2009)

22. Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006)

23. Nowak, D., Zhang, Y.: A calculus for game-based security proofs. IACR Cryptology
ePrint Archive, 2010:230 (2010)

24. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Se-
lected Areas in Communications 21(1), 5–19 (2003)

25. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: POPL, pp. 355–364. ACM (1998)

26. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
Journal of Computer Security 4(2/3), 167–188 (1996)

A Personalized Privacy Preserving Method

for Publishing Social Network Data

Jia Jiao, Peng Liu, and Xianxian Li�

College of Computer Science and Information Technology,
Guangxi Normal University, Guilin, China

jiaojia0623@163.com, {liupeng,lixx}@mailbox.gxnu.edu.cn

Abstract. One of the most important concerns in publishing social net-
work data for social science research and business analysis is to balance
between the individual’s privacy protection and data utility. Recently,
researchers have developed lots of privacy models and anonymous tech-
niques to prevent re-identifying of relevant information of nodes through
structure information of social networks, but most of the existing meth-
ods did not cater for the individuals’ personalized privacy requirements
and did not take full advantage of distributed characteristics of the so-
cial network nodes. Motivated by this, we specify three types of privacy
attributes for various individuals and develop a personalized k-degree-l-
diversity (PKDLD) anonymity model. Furthermore, we design and im-
plement a graph anonymization algorithm with less distortion to the
properties of the original graph. Finally, we conduct experiments on some
real-world datasets to evaluate the practical efficiency of our methods,
and the experimental results show that our algorithm reduces the anony-
mous cost efficiently and improves the data utility.

Keywords: privacy preserving, personalized anonymity, social network.

1 Introduction

Nowadays, partly driven by many Web 2.0 applications, more and more social
network data have been made publicly available and analyzed in one way or
another [1]. The social network data has significant application value for com-
mercial and research purposes. However, the social network data often have
privacy information of individuals as well as their sensitive relationship. So pri-
vacy disclosure risks arise when the data holders publish the social network data.
And it has become a major concern to balance between the individual’s privacy
and the utility of social net work data while publishing the social network data.

Social network data can be represented as a graph, in which nodes and edges
correspond to social entities and social links between them, respectively [2].
Many approaches have been proposed to preserve the privacy of published social
network data in existing research[3–8]. However, most of the existing methods
do not consider the personalized privacy requirement of the individuals of social

� Corresponding author.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 141–157, 2014.
c© Springer International Publishing Switzerland 2014

142 J. Jiao, P. Liu, and X. Li

networks, thus provide excessive preservation to some individuals, and can not
only increase the anonymous cost, but also lower the utility of data.

In this paper we focus on protecting nodes’ degree and nodes’ one sensitive
label, such as salaries [3], to propose our anonymous model and algorithm. Nodes’
degree information and nodes’ sensitive label can help the adversaries re-identify
individuals and their relevant information in a published social network graph.

(a) Original graph (b) 3-degree anonymous graph

(c) 3-degree-3-diversity graph

Fig. 1. A degree and label anonymous graph without considering individual privacy
requirement

For example, if an adversary knows that one person has four friends in Fig.1a,
he can immediately know that node 4 is that person and the related attributes
of node 4 are revealed. In order to solve this problem, Liu et al.[4] proposed
k-degree anonymity model to prevent nodes from degree attack. A graph is k-
degree anonymous if and only if for any node in this graph, there is at least k -1
other nodes with the same degree. Fig.1b is a 3-degree anonymous graph, the
adversary no longer knows that node 4 is that person. When a social network
graph contain nodes with sensitive attributes, alone k-degree anonymity is not
sufficient to prevent the inference attack from sensitive attributes of individuals.
Fig.1b shows a graph that satisfies 3-degree anonymity but node labels are not
considered. In the case, nodes 0, 4, 5 have the same degree 4, but they all have

A Personalized Privacy Preserving Method 143

the label ”60k”. If an attacker knows that someone has four friends in the social
network, he can get that this person’s salary is 60k without exactly re-identifying
the node. For solving this problem, Yuan et al.[3] have proposed the proposed
the KDLD (k-degree-l-diversity) anonymity model, which based on the k-degree
anonymity model. A graph is KDLD anonymous if and only if for any node in
this graph, there exist at least k -1 other nodes with the same degree and at
least l distinct sensitive label values in each equivalent group. Fig.1c shows a
3-degree-3-diversity anonymous graph.

However, both Yuan et al.[3] and Liu et al.[4] focused on a universal approach
that exerted the same amount of preservation for all individuals, and did not
cater for their personalized needs, which is described as Fig.1. The consequence
is that it may be offer excessive privacy control to some individuals who require
only lower privacy-preserving level, and damage the utility of the publishing
data.

In reality, different individuals may have different personal privacy standards
or preference to the same information, and in social network website, such as
Pengyou and Renren, they allow users to specify whether their basic information,
photo albums, blogs and friend list etc., will be accessed or not by others. Besides,
both Yuan et al.[3] and Liu et al.[4] did not take full advantage of the power law
distribution of the large-scale network nodes,which indicate that only a small
number of nodes have high degrees and most of nodes have low degrees[9, 10].
However, the few nodes with high degree have brought a great deal of cost of both
data distortion and computation in the anonymized process. Actually, the few
high degree nodes in social network are the famous nodes whose corresponding
individuals are often the public figures. They usually have relative lower privacy
preserving requirements.

Motivated by above reasons, in this paper, we assume that an adversary with
the background knowledge about the degree of some target individuals wants to
re-identify an individual whose information contained in published social net-
works as mentioned in Yuan et al.[3], but the difference is that we consider the
individual’s privacy requirement. Personalized privacy requirements can be cap-
tured in the privacy information collection process and stored with the associated
data by individuals.

We also assume that individuals can specify whether his own friend list and
sensitive attribute can be access or not by others. We can know the node’s de-
gree and sensitive label by the responding individual’s friend list’s number and
sensitive attributes, such as salary described in Fig.1.We classify the individ-
ual’s privacy requirements into three categories which are denoted by H(high),
M(middle), and L(low) respectively:

H(high) privacy: the individual specifies both his friend list and sensitive
attribute not to be accessed by others, such as node 2 described in Fig.2a and
Fig.2b;

M(middle) privacy: the individual specifies only his friend list not to be ac-
cessed by others, such as node 1 described in Fig.2a and Fig.2b;

144 J. Jiao, P. Liu, and X. Li

L(low) privacy: the individual allow his friend list and sensitive attribute to
be accessed by others, such as node 0 described in Fig.2a and Fig.2b.

Our privacy preserving goal is to prevent an attacker from re-identifying an
individual and finding the fact that a certain individual has a specific sensitive
value, which is similar to Yuan et al.[3], and in the meanwhile every individual’s
privacy requirements will be satisfied.

(a) Original graph (b) personalized 3-degree-3-diversity
graph

(c) personalized 3-degree-3-
diversity graph for publishing

Fig. 2. A degree and label anonymous graph with considering individual privacy re-
quirement

Our contributions are as follows: First, we propose the PKDLD (personalized
k-degree-l-diversity) anonymity model based on KDLD anonymity model. Sec-
ond, we design and implement our own graph anonymous algorithm PKLADP
(Personalized K-degree-L-diversity Against Degree Attack Publication) which has
less distortion to the properties of the original graph such as degrees and dis-
tances between nodes and can protect individual from degree attack. Finally,
we conduct an empirical study which indicates that anonymized social network
generated by our method performs well in cost and utility.

A Personalized Privacy Preserving Method 145

The rest of the paper is organized as follows. Section 2 defines the problems.
Section 3 describes the details of the personalized anonymous algorithm imple-
mentation. We report the experimental results on some real datasets in section
4. Comparison of our work with previous proposals is given in section 5. And
section 6 concludes the paper.

2 Problem Description

In this paper, we focus on the privacy preserving problem for an un-weighted
undirected simple graph with a sensitive label and a privacy attribute on each
node. Fig.2a shows an example of such a graph. A social network graph is defined
as follows:

Definition 1. Social Network Graph. A social network graph is a four tuple
G = (V,E, La, λ), Where V is a set of nodes of the graph, E ⊆ V ×V is a set of
edges between nodes, La is a set of labels, and λ : V → La is a labeling function
which maps nodes to their labels.

The label l in La is a two tuple, i.e. l = (s, r),where s is the sensitive label
of the corresponding node, and r is the privacy attribute of the corresponding
node. The privacy attribute is one of H,M,L. For any node v ∈ V , if r(v) = H
or r(v) = M , it implies that the node v has privacy requirement, and then
we should anonymize it and the nodes with attribute H should have the larger
anonymous extent than that the nodes with attribute M. And r(v) = L means
that information of the node does not need privacy protection. For example, in
Fig.2a r(2) = H , which means that the node 2 needs to be anonymized both the
degree information and the sensitive label, and r(1) = M implies that only the
degree information of the node 1 requires to be protected.

Definition 2. Degree Sequence P. Degree sequence P for a graph G with n
nodes is a sequence with the form: [P [1], P [2], ..., P [n]], where for each 1 ≤ i ≤ n,
P [i] is a 4-tuple (id, d, s, r), in which id identifies a node, d is the degree, s is
the sensitive label and r is the privacy attribute associated with the node id.
Furthermore, it satisfies that P [1].d ≥ P [2].d ≥ ... ≥ P [i].d ≥ ... ≥ P [n].d,
where P [i].d is a project map from the 4-tuple P [i] to its second element, e.g.
(x1, x2, x3, x4).d = x2. As an example, in Fig.2a, the degree sequence is P =
[(4, 4, 60k, L), (5, 3, 60k,H), (0, 3, 60k,M), (2, 2, 80k,H), (3, 2, 80k,H), (8, 2, 80k,
H), (9, 2, 100k,H), (10, 2, 80k,H), (1, 2, 60k,M), (7, 2, 60k, L), (6, 1, 100k,M),
(11, 1, 100k, L)].

Definition 3. KDLD Sequence. A degree sequence P is a KDLD(k-degree-l-
diversity) sequence if P satisfies the following constraints. P can be divided into a
group of subsequences [[P [1], ..., P [i1]], [P [i1+1], ..., P [i2]], ..., [P [im+1], ..., P [j]]]
such that for any subsequences Px = [P [ix], ..., P [ix+1]], Px satisfies three con-
straints:(1) All the elements in Px share the same degree (P [ix].d = P [ix+1].d =
... = P [ix+1].d); (2)Px has size at least k(ix+1 − ix + 1 ≥ k); (3)Px’s label set
{P [t].s|ix ≤ t ≤ ix+1} have at least l distinct values [3].

146 J. Jiao, P. Liu, and X. Li

Definition 4. KD Sequence. A degree sequence P is a KD(k-degree) sequence
if P satisfies the following constraints. P can be divided into a group of subse-
quences [[P [1], ..., P [i1]], [P [i1+1], ..., P [i2]], ..., [P [im+1], ..., P [j]]] such that for
any subsequences Py = [P [iy], , P [i(y+1)]],Py satisfies two constraints: (1) All the
elements in Py share the same degree (P [iy].d = P [iy+1].d = ... = P [i(y+1)].d);
(2)Py has size at least k(iy+1 − iy + 1 ≥ k).

Definition 5. PKDLD Sequence. A degree sequence P is a PKDLD(person-
alized k-degree-l-diversity)sequence if and only if for any node u, whose privacy
attribute is H, i.e. r(u) = H , then u belongs to the subsequence of KDLD se-
quence; for any node v, whose privacy attribute is M, i.e. r(v) = M , v belongs
to the subsequence of KDLD sequence or KD sequence.

E.g., the degree sequence P of the Fig.2b is a P3D3D(k = 3, l = 3) sequence.
HereP = [(4, 4, 60k, L), (5, 3, 60k,H), (0, 3, 60k,M), (2,3, 80k,H), (9,3, 100k,H),
(3, 2, 80k,H), (8, 2, 80k,H), (10, 2, 80k,H), (1, 2, 60k,M), (6,2, 100k,M), (7, 2,
60k, L), (11, 1, 100k, L), (12, 1, 80k, L)].

Definition 6. A PKDLD Graph. A graph is a PKDLD graph if and only if
its degree sequence is a PKDLD sequence.

A PKDLD graph preserves two aspects for the individuals who have the
privacy requirement H. (1) The probability that an attacker can correctly re-
identify the target individuals is at most 1/k ; (2) The sensitive label of the
target individuals can be related with l different values. And a PKDLD graph
preserves the individuals with the privacy preserving requirement M from re-
identifying correctly at most 1/k. Besides, a PKDLD graph also considers the
individuals privacy preserving requirement.

Based on the above definitions, well solve the following two sub-problems.
(1) PKDLD sequence generation.
Given the degree sequence P of the graph G and two integers k and l, com-

pute a PKDLD sequence which satisfies the following constraint. L(Pnew, P) =∑
∀u |Pnew

u .d − Pu.d| has the minimum value, where Pu.d is the node u’s degree
in the original graph, and Pnew

u .d is the node u’s target degree in the anonymous
graph. Clearly, smaller degree change needs fewer noise edges to implement the
change [3].

(2) Graph construction Given a graph G = (V,E, La, λ) and a degree sequence
Pnew ,construct a new graph G′ = (V ′, E′, La, λ′) with V ⊆ V ′,E ⊆ E′. The
degree sequence P ′ of G′ is a PKDLD sequence and P ′ has all the elements in
Pnew since G′ is constructed from G by adding some noise nodes. Meanwhile,
|APLG−APLG′| is minimized and APL is short for average shortest path length.

And here we note that we’ll remove the nodes’ privacy attribute for publishing
after the step (2), which is described in Fig.2c.

3 Personalized Anonymity

From the problem description, there are still two sub-problems to be solved
in order to achieve the personalized anonymity. In this section we’ll design and
implement the Algorithm 1(P-K-L-Based Algorithm) and Algorithm 2(PKLADP
Algorithm) for PKDLD sequence generation and graph construction respectively.

A Personalized Privacy Preserving Method 147

3.1 PKDLD Sequence Generation

Given the degree sequence P of the original graph G, in order to generate a
PKDLD sequence Pnew with the minimum L(Pnew, P) value, the 4-tuples in P
should be divided into groups. If the node’s highest privacy attribute is H in
the same group, the group should be adjusted to belong to the subsequence of
KDLD sequence. If the node’s highest privacy attribute is M in the same group,
the group should be adjusted to belong to the subsequence of KDLD sequence
or KD sequence.

Algorithm 1. P-K-L-Based Algorithm

Input: the degree sequence P of the original G, two integers k and l
Output: PKDLD sequence Pnew

1. while (|the ungrouped nodes’ distinct sensitive label values in P | ≥ l) and (|the
number of nodes in P | ≥ 2k) do

2. choose the first nodev whose privacy attribute is H or M to begin our anonymity;
3. from node v, choose the first k elements in P as a current group gcurrent;
4. if (there is a node whose privacy attribute is H in gcurrent) then
5. if (|the nodes’ distinct sensitive label values in gcurrent| < l) then
6. merging next element into gcurrent , until gcurrent satisfies the l-diversity

constraint;
7. end if
8. mergenum=0;
9. while (the next element’s privacy attribute is H or M) and (mergenum < k)

do
10. calculate the two costs: Cnew and Cmerge;
11. if (Cnew < Cmerge) then
12. merging next element into gcurrent ; mergenum++;
13. end if
14. end while
15. else
16. if (in gcurrent, there is a node whose privacy attribute is M) then
17. mergenum=0;
18. end if
19. while (the next element’s privacy attribute is H or M) and (mergenum < k)

do
20. repeat lines 10-13
21. end while
22. end if
23. end while

In P-K-L-Based Algorithm, we begin to anonymize the degree sequence P as
the following steps. We choose the first node v with the privacy attribute H or
M in P, if the ungrouped nodes’ distinct sensitive label values is at least l and
the number of nodes is at least 2k in P. Then we choose the first k elements
in P to be a current group, and check whether there is a node whose privacy
attribute is H in this group. If there is, we check the nodes’ distinct sensitive

148 J. Jiao, P. Liu, and X. Li

label value. If the value is smaller than l, we keep on merging next element into
the current group until the l-diversity constraint is satisfied. After the current
group satisfies k-degree and l-diversity constraints, we calculate two costs.

Cnew . The cost of creating a new group for the next k elements is the total
degree changes when make all the nodes in this group have the same degree.

Cmerge. It includes the cost of merging the next element into the current group
and creating a new group for the next k elements by skipping the next element.

When the next element’s privacy attribute is H or M, and Cmerge is smaller
than Cnew and mergenum is smaller than k, we keep on merging the next element
into the current group and continue this process.

If there is no node whose privacy attribute is H and there is a node whose
privacy attribute is M in current group. We just calculate Cnew and Cmerge two
costs. When the next element’s privacy attribute isM and Cmerge is smaller than
Cnew and mergenum is smaller than k, we keep on merging the next element
into the current group and continue this comparison process. After this step, we
update P by deleting the elements of current group from P. And we repeat the
above process when the ungrouped nodes’ distinct sensitive label values are at
least l and the number of nodes is at least 2k in P.

Since nodes are sorted by their descending degrees in P, constructing groups
using the above methods is helpful to group the nodes with similar degrees to-
gether. For example, if using the this algorithm to make P = [(4, 4, s1, L), (5, 3, s1,
H), (0, 3, s1,M), (2, 2, s2, H), (3, 2, s2, H), (8, 2, s2, H), (9, 2, s3, H), (10, 2, s2, H),
(1, 2, s1,M), (7, 2, s1, L), (6, 1, s3,M), (11, 1, s3, L)] satisfy P3D3D constraint
(k = 3, l = 3), we get Pnew = [(4, 4, s1, L), (5, 3, s1, H), (0, 3, s1,M), (2,3, s2, H),
(9,3, s3, H), (3, 2, s2, H), (8, 2, s2, H), (10, 2, s2, H), (1, 2, s1,M), (6,2, s3,M), (7,
2, s1, L), (11, 1, s3, L), (12, 1, s2, L)]. Algorithm 1 shows the pseudo code of the
P-K-L-Based Algorithm.

P-K-L-Based Algorithm runs in O(n) time. The process of generating the
PKDLD sequence needs only to scan the degree sequence P once, therefore the
run time is O(n). Hence the time complexity of the P-K-L-Based Algorithm’s is
O(n).

All the nodes in the same group will be adjusted to have the same degree in
the next graph construction process. We use the highest degree of a group as its
target degree, so the degree of nodes in the same group needs to be increased
to achieve its target degree. In view of this, we only consider adding edges and
noise nodes to increase nodes’ degree rather than deleting edges.

3.2 Graph Construction

When we get the new degree sequence Pnew from the PKDLD sequence gener-
ation, a new graph G′ can be constructed based on Pnew . The degree sequence
P ′ of G′ contains all the elements in Pnew since G′ is constructed from G by
adding some noise nodes.

A Personalized Privacy Preserving Method 149

The APL has the minimal change between graphs G and G′ in our graph con-
struction algorithm PKLADP (Personalized K-degree-L-diversity Against Degree
Attack Publication), The algorithm is described in Algorithm 2.

First, we select the nodes in Pnew whose degree is smaller than their target
degree, and store them into Vsdiff , which is described in Algorithm 2(line 1).
We need only scan the Pnew once to store the nodes into Vsdiff , whose degree
haven’t achieved their target degree, so it completes in O(n).

Then, if Vsdiff is not empty for each node u in Vsdiff , and if there is another
node v in Vsdiff and the distance between u and v is 2, i.e. d(u, v) = 2, we
link u and v to increase the degree of both u and v(See Fig.3a). The distance
between u,v is changed from 2 to 1. So only the lengths of shortest paths passing
though u and v change by 1. If u or v has been achieved its target degree, we
erase u or v from Vsdiff .And the described code in Algorithm 2 is in lines 2-14.
Here, the run time of the for loop is O(n), and the run time of the if judgment
statement of whether there is a node v satisfying constraint is also O(n), so the
time complexity of lines 2-14 is O(n2).

(a) Adding edge (b) Adding node

Fig. 3. Adding edge and node

Last, through the adding edges as Fig.3a, if there still exist nodes in Vsdiff

for each node x in Vsdiff , we add noise node n in which r(n) is L and s(n) is the
same with any one of x ’s neighbor’s. If x has been achieved its target degree,
we erase x from Vsdiff .We link y1 and n if y1 and x are direct neighbor and
also y1 is in Vsdiff (See Fig.3b). Or we link y2 and n if x and y2 are two hop
nodes and also y2 is in Vsdiff (See Fig.3b).The distance between x, y1 or x, y2
has no change. And the described code in Algorithm 2 is in lines 9-16. As the
same with lines 2-14, there are a for loop and an if judgment statement to judge
the satisfying node y1 or y2 under the for loop, so the time complexity of lines
15-29 is also O(n2).

In conclusion, the time complexity of PKLADP Algorithm is O(n2).

150 J. Jiao, P. Liu, and X. Li

Algorithm 2. PKLADP Algorithm

Input: the original graph G, the degree sequence P of G, the PKDLD sequence Pnew

Output: the PKDLD graph G′

1. Select the nodes in Pnew which for any u ∈ V , Pnew
u .d−Pu.d ! = 0,and store them

in Vdiff ;
2. if (Vsdiff is not empty) then
3. for all (node u in Vsdiff) do
4. if (in Vsdiff ,there is a node v, d(u, v)=2) then
5. link(u, v);Pu.d++;Pv.d++;
6. end if
7. if (Pnew

u .d − Pu.d = 0) then
8. erase u form Vsdiff ;
9. end if

10. if (Pnew
v .d − Pv.d = 0) then

11. erase v form Vsdiff ;
12. end if
13. end for
14. end if
15. if (Vsdiff is not empty) then
16. for all (node x in Vsdiff) do
17. add a node n which n.r=L and n.s is the same with any one of x ’s neighbor’s

for node x ;
18. Px.d++; n.d++;
19. if (Pnew

x .d − Px.d = 0) then
20. erase x form Vsdiff ;
21. end if
22. if (in Vsdiff ,there is a node y, d(x, y)=1 or d(x, y)=2) then
23. link(n, y);Py.d++;n.d++;
24. end if
25. if (Pnew

y .d − Py .d = 0) then
26. erase y form Vsdiff ;
27. end if
28. end for
29. end if

A Personalized Privacy Preserving Method 151

4 Experiments

In this section, we report a systematic empirical study to evaluate our anonymiz-
ing method using some real data sets. All the experiments were conducted on
a PC computer running the Windows 7 Ultimate operating system, with a 3.2
GHz Intel Core i3 CPU, 4.0 GB main memory, and a 500 GB hard disk. The
program was implemented in C++ and was compiled using Microsoft Visual
Studio .NET 2010.

4.1 Data Sets

We use two real data sets: Cora dataset and Citation dataset.
The Cora Dataset (http://www.cs.umd.edu/projects/linqs/projects/lbc/in-

dex.html) contains 2708 nodes and 5429 edges. This is similar to Yuan et al.[3]’s
assumption which used the node’s 7 classifications as the sensitive label.

The Citation Dataset(http://www.datatang.com/data/17310) is a dataset col-
lected by an academic researcher social network ArnetMiner of Tsinghua Uni-
versity and published in datatang. It consists of 2555 nodes and 6101 edges. We
use the nodes’17 publication years as the sensitive label.

4.2 Results and Analysis

To evaluate the effectiveness of our algorithm, we perform experiment on the
dataset used the algorithm in Yuan et al.[3]. The algorithm proposed in [3] with-
out considering individuals’ privacy requirement is called KLADP, and our algo-
rithm is called PKLADP. We test the PKD5D model (i.e. l=5) for Cora dataset
and Citation dataset. In KLADP we focus on a universal approach that exerts
the same amount of privacy preservation for all individuals. And in PKLADP
we consider the three types of individuals’ privacy protect requirement and set
the proportion of the H : M : L to be 3:3:4 arbitrarily.

Anonymous Cost. We compute two kinds of anonymous cost: L(Pnew, P) and
Cost(G,G′).

L(Pnew, P) is the sum of increased degree of all nodes from degree sequence P
of original G to PKDLD sequence Pnew by using PKLADP Algorithm or KDLD
sequence Pnew by using KLADP Algorithm respectively, that is

L(Pnew, P) =
∑
∀u

|Pnew
u .d − Pu.d| (1)

Cost(G,G′) is all the number of adding edges and nodes from original graph
G = (V,E, La, λ) to published graph G′ = (V ′, E′, La, λ′) with V ⊆ V ′,E ⊆ E′,
that is

Cost(G,G′) = (|E′| − |E|) + (|V ′| − |V |) (2)

152 J. Jiao, P. Liu, and X. Li

Fig.4 and Fig.5 represent L(Pnew, P) cost and Cost(G,G′) cost in terms of
changing k values using PKLADP Algorithm and KLADP Algorithm repec-
tively.The results show that for all the two data sets, our PKLADP Algorithm
performs better than the KLADP Algorithm.The former’s preserving extent is
weaker than that the latter’s while satisfying the privacy requirement, thus we
can add less edges or nodes to satisfy anonymity, i.e. the anonymous cost is
smaller. Especially when we anonymise some high degree nodes with the pri-
vacy attribute L, we can dramatically decrease the number of adding edges and
nodes,so the L(Pnew, P) cost and Cost(G,G′) cost of our algorithm is reduced.

(a) Cora (b) Citation

Fig. 4. Cora dataset and Citation dataset: L(Pnew , P) Cost for different k

(a) Cora (b) Citation

Fig. 5. Cora dataset and Citation dataset: Cost(G,G′) Cost for different k

Utility. To examine how well the published graph represents the original graph,
we use two measurements the APL (average shortest path length)[3, 4] and CC
(clustering coefficient)[3, 4, 6, 11].

APL is a concept in network topology that is defined as the average of dis-
tances between all pairs of nodes. A real-world data graph may be composed of

A Personalized Privacy Preserving Method 153

several connected components (C1, C2, ...Cl). We define a weighted APL for the
whole graph as

APL =
|VCi |
V

l∑
i=1

APLCi (3)

where V(Ci) is the node number of each connected component and APLci is the
APL of each connected component.

CC represents the characteristic of its neighborhood graph. In this paper, we
use the clustering coefficient for the whole graph as

CC′ =
1

n

n∑
i=1

CCi (4)

where CCi is the local clustering coefficient of a node, CC′ is the average of the
local clustering coefficients of all the nodes given by Watts et al.[11].

(a) Cora (b) Citation

Fig. 6. Cora dataset and Citation dataset: APL for different k

(a) Cora (b) Citation

Fig. 7. Cora dataset and Citation dataset: CC for different k

154 J. Jiao, P. Liu, and X. Li

In Fig.6, we report the values of APL using our algorithm and compared
algorithm for the two datasets. The APL of the original graph is also reported
in all plots. From the figures, we can see that using our algorithm’s APL has
lower differences to original graph’s APL than that compared algorithm’s.

We show the CC results of two datasets, respectively, with the changing k
values in Fig.7. From the graphs, we can observe that the values of CC by
using our PKLADP Algorithm and compared KLADP Algorithm, though dif-
ferent in varied k value, they never deviate too much from their original values.
But meanwhile, our algorithm has considered the individual’s privacy preserving
requirement and provides personalized preserving for the individuals.

(a) Citation (b) Citation

Fig. 8. Citation dataset: APL and CC for different l

(a) Cora (b) Citation

Fig. 9. Cora dataset and Citation dataset: Running time for different k

Since the number of sensitive labels of Cora dataset is not enough, in order to
see the effect of l, we test P15DLD model (i.e. k=15) of Citation dataset. Fig.8a
and Fig.8b show the APL and CC results with respect to different l values.
We can observe the similar results, which are shown in Figs.6, 7 changing the
k values, that our algorithm works better than the compared algorithm, and
allows personalized protections meanwhile.

A Personalized Privacy Preserving Method 155

Algorithm Efficiency. We present the running time of our PKLADP Al-
gorithm and compared KLADP Algorithm when k increases in two datasets
respectively in Figs.9a, 9b. From the figures, we can observe that both our al-
gorithm and the compared algorithm are very efficient, the largest running time
is less than 70s and 20s in our algorithm and the compared algorithm respec-
tively. The compared algorithm works much better, since when we generate the
PKDLD sequence, it takes time to compute the nodes’ highest privacy preserv-
ing requirement for each current group, this process doesn’t exist in compared
algorithm.

5 Related Work

The privacy preserving of microdata (tabular data) has been extensively studied
recently, that relates to the privacy preserving of social network data in previous
study. The k-anonymity was proposed by Samarati and Sweeney [12], Sweeney
[13] for the sake of sensitive information’s privacy preserving while publishing
microdata for public use. A dataset is said to be k-anonymous if each record
is indistinguishable from at least k -1 other records with respect to the quasi-
identifier attributes in the same dataset. The privacy preserving is better with
the larger k. From then on, a variety of privacy models and anonymous algorithm
had been proposed based on k-anonymity, such as l-diversity[14], t-closeness [15],
etc.

Lots of studies have been done for privacy preserving of social network data
publication. In literature [16], Hay et al. proposed naive anonymization, which
remove identifying attributes such as name or social security number and in-
troduce synthetic identifiers to replace, but by collecting information from ex-
ternal sources about an individuals relationships, an adversary may be able to
re-identify individuals in the graph. Based on this, Liu et al. [4] studied the
k-degree anonymity and a graph is said to be k-degree anonymity if and only
if for every node v, there exist at least k -1 other nodes in the graph with the
same degree as v. Zhou et al. [5] identified an essential type of privacy attacks:
neighborhood attacks by assuming that an adversary’s background knowledge
is some knowledge about the neighbors of a target victim and the relationship
among the neighbors. They proposed k-neighborhood anonymity model to tackle
the neighborhood attacks. Zou et al. [8] assumed that the adversary can know
any subgraph around a certain individual and propose a k-automorphism pro-
tection model: a graph is k -automorphism if and only if for every node there
exist at least k -1 other nodes do not have any structure difference with it. The
difference between literatures [16, 4, 5, 8] and this paper is that the former only
considered the nodes’ structural attributes, didn’t consider the nodes’ own data
attributes, especially the sensitive attributes.

In paper [6], Zhou et al. extended the k-neighborhood anonymity model [5] to
k-neighborhood-l-diversity model to protect the graph data with sensitive node
label. Yuan et al. [3] studied KDLD (k-degree-l-diversity) anonymity model in
view of the k-degree anonymity model [4] as mentioned in section 1. Campan

156 J. Jiao, P. Liu, and X. Li

et al. [17] considered using clustering approach to anonymize social networks
which used a super-node to represent some nodes in an equivalent class and a
super-edge to replace the edges between two equivalent class. Like in paper [3],
papers [6, 17] considered both the structural attributes and the data attributes
of nodes, but they didn’t take into account the individuals’ personalized privacy
preserving requirements.

Yuan et al.[7] allowed users to set personalized privacy assumptions based on
the attacker’s background knowledge. They defined three levels of attacks by
gradually increasing the strength of the attacker’s three levels of background
knowledge and putted forward approaches and algorithms with respect to the
three levels of attacks one by one. Paper [7] has proposed the personalized re-
quirement, however, they partitioned the entities by different attackers’ back-
ground knowledge, and all the nodes in the graph were anonymized with the
Anatomy [18] method according to different levels of privacy assumptions. It is
different from their work that we classify the entities according to the different
attribute value of nodes which will be allowed to access by others, and then our
algorithm can reduce the number of nodes that need to be anonymized, espe-
cially for the high degree nodes with lower privacy attribute value. Therefore,
our method can take full advantage of the power law distribution of large social
networks.

6 Conclusion

In this paper, we propose a PKDLD model, design and implement a graph
anonymization algorithm PKLADP for personalized privacy preserving social
network data publishing to prevent from the structural attack. By dividing nodes
with different privacy requirements, we reduce the cost of data distortion and
improve the utility of data for anonymizing the original data when the compu-
tation cost has little change. The algorithm is high efficient especially for the
scenario that high degree nodes have relative lower privacy requirement and the
network satisfies the power law distribution. By conducting experiment on real-
world datasets, we show that the algorithm performs well in terms of protection
it provides compared with the existing approaches.

Acknowledgments. The research is supported by the National Key Basic Re-
search Program of China (973 Program, No. 2012CB326403), National Science
Foundation of China (No. 61272535, No. 61165009), Guangxi ”Bagui Scholar”
Special Project Funds, and Postgraduate education innovation project of
Guangxi(No.YCSZ2013042).

References

1. Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for pri-
vacy preserving publishing of social network data. ACM SIGKDD Explorations
Newsletter 10(2), 12–22 (2008)

A Personalized Privacy Preserving Method 157

2. Wasserman, S.: Social network analysis: Methods and applications, vol. 8. Cam-
bridge University Press (1994)

3. Yuan, M., Chen, L., Yu, P., Yu, T.: Protecting sensitive labels in social network data
anonymization. ACM SIGKDD Explorations Newsletter 25(3), 633–647 (2013)

4. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, pp.
93–106. ACM (2008)

5. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-
tacks. In: IEEE 24th International Conference on Data Engineering, ICDE 2008,
pp. 506–515. IEEE (2008)

6. Zhou, B., Pei, J.: The k-anonymity and l-diversity approaches for privacy preserva-
tion in social networks against neighborhood attacks. Knowledge and Information
Systems 28(1), 47–77 (2011)

7. Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks.
Proceedings of the VLDB Endowment 4(2), 141–150 (2010)

8. Zou, L., Chen, L., Özsu, M.T.: K-automorphism: A general framework for
privacy preserving network publication. Proceedings of the VLDB Endow-
ment 2(1), 946–957 (2009)

9. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the in-
ternet topology. ACM SIGCOMM Computer Communication Review 29, 251–262
(1999)

10. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)

11. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Na-
ture 393(6684), 440–442 (1998)

12. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information. In: PODS 1998, p. 188 (1998)

13. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(05), 557–570 (2002)

14. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from
Data (TKDD) 1(1), 3 (2007)

15. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity
and l-diversity. In: IEEE 23rd International Conference on Data Engineering, ICDE
2007, pp. 106–115. IEEE (2007)

16. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social net-
works. Computer Science Department Faculty Publication Series, p. 180 (2007)

17. Campan, A., Truta, T.M.: Data and structural k-anonymity in social networks. In:
Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS, vol. 5456,
pp. 33–54. Springer, Heidelberg (2009)

18. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: Proceed-
ings of the 32nd International Conference on Very Large Data Bases, pp. 139–150,
VLDB Endowment (2006)

A Bit-Encoding Phase Selection Strategy

for Satisfiability Solvers

Jingchao Chen

School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P.R. China

chen-jc@dhu.edu.cn

Abstract. The phase (also called polarity) selection strategy is an im-
portant component of a SAT solver based on conflict-driven DPLL.
DPLL algorithm is due to Davis, Putnam, Logemann, Loveland. It is
a complete, backtracking-based search algorithm for deciding the sat-
isfiability of propositional logic formulae. This paper studies the phase
selection strategy and presents a new phase selection strategy, called bit-
encoding scheme. The basic idea of this new strategy is to let the phase
at each decision level correspond to a bit value of the binary represen-
tation of a counter. The counter increases in step with the increase of
the number of restarts. In general, only the first 6 decision levels use this
new scheme. The other levels use an existing scheme. Compared with the
existing strategies, the new strategy is simple, and its cost is low. Exper-
imental results show that the performance of the new phase strategy is
good, and the new solver Glue bit based on it can improve Glucose 2.1
which won a Gold Medal for application category at the SAT Challenge
2012. Furthermore, Glue bit solved a few application instances that were
not solved in the SAT Challenge 2012. From the results on the applica-
tion SAT+UNSAT category at the SAT Competition 2013, Glue bit was
the best improved version of Glucose, and outperformed glucose 2.3 that
is the latest improved version of glucose 2.1.

Keywords: SAT solver, conflict-driven DPLL, phase selection for SAT
solvers.

1 Introduction

Numerous state-of-the-art SAT solvers have been developed in order to solve
much more SAT problems such as computer aided design, data diagnosis, EDA,
logic reasoning, cryptanalysis, planning, equivalence checking, model checking,
test pattern generation etc. However, a large number of real-world SAT problems
remain unsolvable yet. In general, SAT solvers are classified into Conflict Driven
Clause Learning (CDCL), look-ahead and local search. Among three kinds of
solvers, CDCL solvers are more practical and prevail. It is a solver based on
conflict-driven DPLL. DPLL algorithm is due to Davis, Putnam, Logemann,
Loveland. It is a complete, backtracking-based search algorithm, which runs by

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 158–167, 2014.
c© Springer International Publishing Switzerland 2014

Bit-Encoding Phase Selection for SAT Solvers 159

choosing a literal, assigning a truth value to it, recursively checking if the for-
mula is satisfiable under the current assignment. If this is the case, a solution
is found. Otherwise, the same recursive check is done assuming the opposite
truth value. To enhance efficiency, the DPLL algorithm adds the unit propaga-
tion and pure literal elimination mechanism. This paper focuses on this type of
solvers for solving the SAT problem in conjunctive normal form. A CDCL solver
consists of ingredients such as variable selection, phase (also called polarity) se-
lection, restart, BCP (Boolean Constraint Propagation), conflict analysis, clause
learning and its database maintenance. The improvement of each ingredient is
significant. So far, various improvements on various ingredients have been pro-
posed. For example, for variable selection, the most salient improvement is the
discovery of VSIDS (Variable State Independent Decaying Sum) scheme [6]. To
accelerate BCP, two watched-literals scheme was proposed. With respect to con-
flict analysis, a large amount of optimizing work has been done. For example,
first UIP (unique implication points), conflict clause minimization, on-the-fly
self-subsuming resolution [7], learned clause minimization [8] etc. To maintain
effectively the clause learning database, in 2009, Audemard et al. introduced a
Glucose-style reduction strategy [9] to remove less important learned clauses. In
2011, they presented further a freezing and reactivating policy [10] to restore the
most promising learnt clauses rather than to re-compute them. To improve the
restart strategy, in 2012, they proposed a postponing strategy [12]. Due to these
improvements, Glucose 2.1 won a Gold Medal for application category at SAT
Challenge 2012.

In this paper, we study an important ingredient of CDCL solvers: phase selec-
tion. The simplest phase selection policy is that each decision variable is always
assigned to false, which is used as a default heuristic of MiniSAT. In addition
to this, there are two phase selection strategies that are widely used in CDCL
SAT solvers. One is the phase selection heuristic used in RSAT (RSAT heuristic
for short) [1]. The other is Jeroslow-Wang heuristic [2]. The basic idea of the
RSAT heuristic is to save the previous phase and assign the decision variable to
the same value when it is visited once again. The basic idea of Jeroslow-Wang
heuristic is to define variable polarity as the sign of a literal with the maximum
weight. The weight of a literal depends on the number of clauses containing
that literal and their sizes. PrecoSAT [3] used Jeroslow-Wang heuristic. Glucose
adopts a phase selection policy based on MiniSAT and RSAT heuristic: it always
assigns a decision variable to false if that variable was never visited, and the pre-
vious value otherwise. Such a phase selection policy is simple, but in some cases,
we found it is not so efficient. In 2012, we proposed a dynamic phase selection
policy [16], using the ACE (Approximation of the Combined lookahead Evalu-
ation) weight [4,5]. This dynamic policy is an improved version of MPhaseSAT
ACE phase policy [15]. It is aggressive so that the search depth is shortened. So
it seems to be beneficial to UNSAT instances, but not necessarily to beneficial
to SAT instances. Therefore, this policy can be applied to only a part of SAT
instances.

160 J. Chen

Whether we choose a static or dynamic phase selection policy, the existing
phase selection policies have a common characteristic: the phase differences be-
tween the two adjacent searches are almost zero at the first few decision levels.
In the other word, the existing phase selection policies are of uniformity but
short of diversity. In this paper, we want to replace uniformity of phase selection
with diversity of phase selection. To attain this goal, we introduce a new phase
selection policy called bit-encoding scheme. This new phase selection can ensure
that the phase differences between the two adjacent searches are one or more at
the first six decision levels. Its basic idea is to force the phase at each decision
level to correspond to a bit value of the binary representation of a counter. The
counter increases by one each time the search restarts. Clearly, such a phase
selection is simple and diverse, and its computation cost is low. We show in this
paper that the bit-encoding scheme is especially good for problems in hardware
verification such as 11pipe k and can enhance significantly the performance of
Glucose. Furthermore, the new phase selection solved a few unsolved instances
in SAT Challenge 2012. From the results on the application SAT+UNSAT cate-
gory at the SAT Competition 2013 [14], Glue bit was the best improved version
of Glucose, and outperformed glucose 2.3 that is the latest improved version of
glucose 2.1. We used the bit-encoding phase selection policy to develop a hack
version of MiniSAT, which is called minisat bit. In SAT competition 2013, min-
isat bit solved 118 SAT application instances, while Lingeling aqw which won a
Gold Medal for core sequential application SAT category solved 119 SAT appli-
cation instances [14]. There was only one instance difference. This shows that
the bit-encoding phase selection policy is effective and useful for some instances.

2 A Bit-Encoding Phase Selection

In modern CDCL SAT solvers, how to select the phase of a variable is an insep-
arable step that follows the decision variable selection, because we must assign
each decision variable to a value. If we can select always correctly a phase, all
satisfiable formulae will be solved in a linear number of decisions. In theory, no
such heuristic for selecting always correctly a phase on any SAT problem exists
unless P=NP. In practice, it is possible to develop a phase selection heuristic that
significantly reduces the number of conflicts in some cases. The phase selection
of Glucose are the hybrid of MiniSAT and RSAT heuristic. It always assigns a
decision variable to false for the first time. No evidence shows that such a policy
is always efficient. To improve the phase selection of Glucose, Here, we present
a new phase selection policy called bit-encoding scheme. The basic idea of this
new policy is to let the phase at each decision level correspond to a bit value of
the binary representation of a counter. Here, the role of the counter is to record
the current phase information of multiple decision variables. Let n denote the
value of a counter, and the binary representation of n be

n = bk2
k + bk−12

k−1 + · · ·+ b12 + b0.
Our new policy stipulates that during the m-th search period, the phase of a
variable at the k-th decision level is equal to bk. Every time a restart begins, the

Bit-Encoding Phase Selection for SAT Solvers 161

counter n increases by one. If the decision level on which this policy is applied is
not limited, we cannot use the previous phase information. By the experimental
result in [16], such a policy will not be a good one. On the other hand, it is
possible to ignore the relevance between adjacent search spaces. Therefore, we
apply bit-encoding scheme on only the first L levels. Furthermore, in order to
strengthen the relevance between adjacent search spaces, we use only the first
M bits of the counter n, where both L and M are a constant, and M ≤ L. And
let the phase of a variable at the k-th decision level correspond to the (k modulo
M)-th bit of n, where k < L. When k ≥ L, we use the phase selection policy of
Glucose. Here is the C code of our phase selection.

// assume current decision level is k

if(k < L) polarity[var]=(n >>(k %M))&1;

else polarity[var]=previous[var];

where previous[var] is used to save the previous phase and is initially set to false.
In order to get an optimal value of L and M , we used Glucose to conduct some
experiments with different values of L (search levels) and M . The instances
tested were some harder ones. In total, we selected 200 application instances
from SAT Challenge 2012. As shown in Table 1, the best values of L and M are
6 and 4, respectively. Therefore, in our solver Glue bit, when the nodes of the
search tree is less than or equal to 6, we use the formula polarity[var]=(n >>(k
%4))&1 to compute the phase of a variable. The last row of Table 1 presents
the result of assigning randomly to a phase of each decision variable at the first
L nodes of the search tree. As seen in Table 1, the performance of the random
heuristic was not the best. However, its performance changes are not big as L
increases.

Table 1. Number of solved instances with different values of L (search tree levels)
and M (bits of the counter). Tests were conducted on 200 application instances in SAT
Challenge 2012. The timeout was 1500s.

L
4 6 8 12

4 179 188 179 181
M

M = L 179 185 177 179
random 173 176 175 174

In theory, we can not guarantee that parameters L and M chosen here are
not overfit for this experimental benchmarks. Perhaps, there may exist potential
threats to generalizability. However, we believe that their variable range will be
not big, because Minisat bit based on this parameter choice performed well in
SAT competition 2013.

Here we use the parameter L (search tree levels) given above to define the
phase update period as 2L. In Glue bit, L is set to 6. That is, its phase update
period is 26 = 64. the value of L of a non-bit-encoding phase selection policy

162 J. Chen

can be regarded as 0. Therefore, the phase update period of the other existing
policies can be regarded as 20 = 1. The phase update period can be considered
as a metric to measure the diversity of a search procedure. If the phase update
period of a solver is two or more, we call it diverse. Otherwise, it is said to be
non-diverse or uniform. So far, all the known solvers are uniform, whereas our
new solver is diverse.

Not all the instances are suited for a diverse phase selection policy. Therefore,
we use a metric called AveMax D (the average of maximal depths) whether to
apply the bit-encoding scheme. Its definition is the following.

AveMax D =
1

8

9∑
i=2

max{conflict depths in i-th restart interval}

This is easy to compute. It can be done by using 8 out of the first 9 restarting
intervals. The reason why we ignore the first of the first 9 restarting intervals
is because on the same instance, changing the first decision variable results in
different maximum conflict depth in the first restarting interval. From the second
restarting interval, such a deviation becomes small. That is, different decision
variable selections and different solving strategies will yield different AveMax D.
For Glucose-style solvers, using the above formula is better. When (AveMax D >
2500) or (#clauses > 200000 and #conflicts < 300000) or (#variables < 500
and #conflicts > 300 × #restarts), we replace the bit-encoding policy with
Glucose phase policy. Except for this case, in general, we apply the bit-encoding
policy above. Based on our observation, for application category at the SAT
Challenge 2012, about 75% of the benchmark instances meet the conditions,
and are suited for the bit-encoding policy. Minisat bit, which is a hack version
of MiniSAT, applied fully the bit-encoding phase selection policy without the
above constraint conditions. In SAT competition 2013, minisat bit solved 118
SAT application instances, while Lingeling aqw, which won a Gold Medal for
core sequential application SAT category, solved 119 SAT application instances
[14]. This shows that the bit-encoding phase selection policy is effective and
useful.

3 Empirical Evaluation

Glucose 2.1 is the best solver of application category at SAT Challenge 2012. Lin-
geling aqw won a Gold Medal for core sequential application category in SAT
competition 2013 [14]. Glucose 2.1 and Lingeling aqw are two different types
of CDCL solvers. Lingeling aqw contains very complicated simplification proce-
dures, while Glucose does not at all. In this paper, we focuses on the Glucose-style
solver. So we do not compare with Lingeling aqw.

Glue bit is our variant of the Glucose SAT solver using the proposed bit-
encoding phase-selection algorithm. It is based on Glue DDD, whose detail will
be given more below. Glue bit used the bit-encoding phase selection policy, while
Glue DDD did not. Except for this, they are the same. To observe the random
feature of phase selection policy, we developed a random version of Glue bit,

Bit-Encoding Phase Selection for SAT Solvers 163

called Glue rand, which assigns randomly to a phase of each decision variable at
the first 6 nodes of the search tree. That is, its value of L is set to 6. The only
difference between Glue rand and Glue bit is that Glue rand assigns to a phase
of variable v with polarity[v]=rand()%2. All the solvers tested used SatElite as
a preprocessor.

Glue DDD is an improved version of Glucose 2.1. It improved the restart
policy of Glucose 2.1, using a new postponing strategy based on a decision-
depth-sensitive parameter [13]. Below we outline briefly Glue DDD.

In addition to the restart triggering condition of Glucose 2.1, Glue DDD em-
beds such additional conditions as the AveMax D test and the DDD (its defini-
tion is given below) blocking test. Here is the C++ code of the restart triggering
strategy of Glue DDD.

K=AveMax D < 250 && freeVars > 2500 ? 0.82 : 0.8;

assume learnt clause is to c;

sumLBD+= c.lbd(); conflicts++;

queueLBD.push(c.lbd());

if(queueLBD.isFull() && queueLBD.avg()*K > sumLBD/conflicts)

if(AveMax D < 250 || AveMax D > 1500 || !blocked || DDD > 1) {
queueLBD.clear();

restart();

}

Here, DDD is short for Decision Depth Decreasing, which is defined by a Longest
Decreasing Subsequence (LDS). Given a sequence S, LDS(S) is the longest de-
creasing subsequence with the following property: (1) it contains the first term of
S; (2) each term is strictly smaller than the one preceding it. In the Glue DDD
solver, S is seen as a sequence of conflict decision levels. The DDD of S is defined
as the number of terms in LDS(S), that is, DDD(S)=|LDS(S)|. For the restarts
that are not postponed by Glucose blocking strategy, Glue DDD does not apply
the DDD blocking strategy. For the restart postponed by Glucose, if DDD<2,
even if the restart triggering condition is true, Glue DDD continues to postpone
that restart. Here is C++ code for the postponing algorithm of Glue DDD.

R=AveMax D ≥ 250 && AveMax D ≤ 900 && conflicts < 1500000 ? 1.38 : 1.4;

if (AveMax D ≥ 250 && freeVars > 5000){
queueTrail.push(trail.size());

if(queueLBD.isFull() && queueTrail.isFull() &&

trail.size() > R*queueTrail.avg()) {
queueLBD.clear();

blocked=true;

}
}

To verify the effectiveness of the bit-encoding phase selection policy, we con-
ducted comparing experiments of four SAT solvers: Glucose 2.1, Glue DDD,
Glue bit and Glue rand under the following platform: Intel Core 2 Quad Q6600

164 J. Chen

CPU with speed of 2.40GHz and 2GB memory. It is a 32-bit machine, and slower
than the experimental platform used by SAT Challenge 2012. On some instances,
it is slower about 0.6 ∼ 0.7 times. Therefore, we decided to set the runtime limit
for each solver on each instance to 1500 seconds. All the instances used in the
experiments are from application category of SAT Challenge 2012.

Table 2. Runtime (in seconds) required by Glucose 2.1, Glue DDD, Glue bit and
Glue rand to solve 25 instances in SAT Challenge 2012.“>1500” shows that the instance
cannot be solved in 1500s. The answer of an instance is denoted by either “S” or “U”.
They stand for SAT and UNSAT, respectively.

Instance S/U #var #clause Glucose2.1 Glue DDD Glue bit Glue rand

rpoc xits 08 unsat U 1278 74789 >1500 >1500 1238.6 >1500
goldb-heqc-x1mul U 8760 55571 >1500 1217.3 778.9 445.06
aloul-chnl11-13 U 286 1742 >1500 >1500 183.6 1089.54
ACG-20-5p0 U 324716 1390931 >1500 1466.2 1476.2 1476.2
md5 47 1 S 65604 273512 >1540 100.5 188.8 38.3
12pipe q0 k U 136800 4216460 >1500 >1500 1220.6 1106.7
11pipe q0 k U 104244 3007883 >1500 >1500 740.4 617.739
10pipe q0 k U 77639 2082017 >1500 >1500 464.1 426.839
IBM 04 ba 30 s dat.k75 S 154604 642979 >1500 290.5 803.1 360.4
sha0 36 3 S 50073 210235 >1500 264.4 355.9 60.6
x1mul.miter.sat03-359 U 8756 55571 1486.45 >1500 804.8 596.7
c6288mul.miter.sat3-346 U 9540 61421 >1500 1224.7 600.9 381.0
bc57-sensor-1-k303-406 U 435701 1379987 >1500 >1500 1460.2 1445.42
schp3bc57-sensor-1-k303 U 435701 1379987 >1500 1362.2 1228.6 1208.4
aes 64 1 keyfind 2 S 596 2780 >1500 232.2 232.3 232.3
korf-17 U 6664 89966 >1500 >1500 682.1 700.18
slp-synthe-aes-bottom14 U 22886 76038 >1500 >1500 998.91 >1500
aaai10-ip5-TP-21-step11 U 99736 783991 >1500 1406.9 1486.6 1378.98
vmpc 33 S 1089 177375 >1500 >1500 843.8 1301.73
ndhf xits 19UNKNOWN S 4020 466486 903.4 >1500 >1500 >1500
smt-qfbv-aigs-vc149789 S 360364 1076507 816.9 >1500 >1500 >1500
simon3k2fix gr 2pvar w8 U 3771 270136 >1500 428.1 1169.7 >1500
simon3k2fix gr 2pvar w9 U 5028 307674 >1500 33.7 33.8 33.7
gldberg3:c6288mul.mter U 9540 61421 >1500 1286.5 643.5 508.45
rbcl xits 08 unsat U 1278 68055 >1500 >1500 1399.5 >1500

Except for 25 instances shown in Table 2, on the other instances, the three
solvers except for Glue rand have the same number of solved instances. In other
words, each of 25 instances cannot be solved by at least one solver among the
four solvers. As seen in Table 2, the performance of Glue bit is the best. The per-
formance of Glue rand is poorer than that of Glue bit. The number of instances
solved by Glue bit is more than that solved by Glucose 2.1 and Glue DDD.
Glue bit solved 23 out of 25 instances, and seems to be especially good for
UNSAT problems. The ability that Glue bit solves the pipe q0 k family from
hardware verification is also strong. It solved 3 pipe q0 k instances over other
two solvers. In SAT Challenge 2012, no solver solved rbcl xits 08 unsat. How-
ever, as shown in the last row of Table 2, Glue bit solved it in 1399.5 seconds.

Bit-Encoding Phase Selection for SAT Solvers 165

Table 3. Performance of solvers on 600 application instances in SAT Challenge 2012
(timeout is set to 1500s)

Solver Instances Solved Average time (in seconds)
per solved instance

Glucose 2.1 498 238.6
Glue DDD 507 231.8
Glue bit 518 222.8
Glue rand 506 208.5

0.1 1 10 100 1500
0.1

1

10

100

1500

Glue_DDD (seconds)

G
lu

e_
bi

t
(s

ec
on

ds
)

Fig. 1. Comparing the runtimes of Glue DDD and Glue bit on application instances
from SAT Challenge 2012

On this instance, we tested also the other solvers of SAT Challenge 2012. Yet no
solver solved rbcl xits 08 unsat within 1500 seconds. So indeed the bit-encoding
phase selection can enhance the performance of solvers such as Glucose.

Table 3 shows the number of solved instances and the average running time
per solved instance in seconds. Glucose 2.1, Glue DDD, Glue bit and Glue rand
solved 498, 507, 518 and 506 out of 600 application instances, respectively. In
terms of the average running time, Glue bit was a little faster than Glue DDD.
Although Glue rand was the fastest, the number of solved instances by it was less
than Glue DDD. That is, Glue rand did not improve Glue DDD, and weaken
the performance of Glue DDD. In a word, Glue bit was the best among the four
solvers. The random heuristic is not suited for the bit-encoding phase policy.
Among 518 instances solved by Glue bit, the number of instances where the new
phase selection policy was actually used by Glue bit is 397. This shows that in
most cases the bit-encoding phase selection policy is useful.

166 J. Chen

0 100 200 300 400 500 600
0

500

1000

1500

number of solved instance

tim
e(

s)

Time to solve an instance on SAT Challenge 2012 application

Glucose 2.1
Glue_DDD
Glue_bit

Fig. 2. The number of instances that Glucose 2.1, Glue DDD and Glue bit are able to
solve in a given amount of time. The x-axis denotes the number of solved instances,
while the y-axis denotes the running time in seconds.

Figure 1 shows a log-log scatter plot comparing the running times of Glue bit
and Glue DDD on application instances from SAT Challenge 2012. Each point
corresponds to a given instance. The climax (1500,1500) means that the in-
stances on that point were not solved by any of the two solvers. As shown in
Figure 1, some points are centralised at the nearby diagonal. This is because on
those instances, both solvers did not use the bit-encoding phase selection policy.
The points below the diagonal means that Glue bit solved faster the instances
denoted by them.

Figure 2 shows a cactus plot related to the performance comparison of the
three solvers. Clearly, our new solver Glue bit outperforms not only Glucose 2.1,
but also Glue DDD. In the cactus plot, the curve of Glue bit is always below the
curve of Glucose 2.1 and Glue DDD. It implies that in a given amount of time,
Glue bit solved always more instances than Glucose 2.1 and Glue DDD.

4 Conclusions and Future Work

In this paper, we introduced a new concept of ”diversity”. We used this new
concept to develop a new phase selection policy called bit-encoding scheme. All
the existing bit-encoding phase selections are uniform, while our bit-encoding
phase selection is diverse. But more than that, the bit-encoding phase selection
policy is simple, and its computation cost is very low. Furthermore, it is easily
embedded into modern CDCL SAT solvers. Empirical results demonstrate that
the bit-encoding phase selection policy can improve significantly the performance
of solvers such as Glucose.

Bit-Encoding Phase Selection for SAT Solvers 167

In our experiments, we found that different restart policies have different
impacts on the phase selection policy. For a given restart, how to determine a
good phase selection policy is a problem that is worth studying.

Although in theory it is impossible to select always correctly each phase every
time unless P=NP, an optimal and practical phase selection policy should exist.
As an open problem, how to search for such a phase selection policy is a very
valuable research topic in future.

References

1. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

2. Jeroslow, R., Wang, J.: Solving propositional satisfiability problems. Annals of
Mathematics and Artificial Intelligence 1, 167–187 (1990)

3. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010 (2010),
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_1+2+3+6.pdf

4. Heule, M.: March: towards a look-ahead SAT solver for general purposes, Master
thesis (2004)

5. Chen, J.: Building a Hybrid SAT Solver via Conflict-driven, Look-ahead and XOR
Reasoning Techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp.
298–311. Springer, Heidelberg (2009)

6. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L.T., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Design Automation Conference, DAC (2001)

7. Han, H., Somenzi, F.: On-the-fly clause improvement. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 209–222. Springer, Heidelberg (2009)

8. Sörensson, N., Biere, A.: Minimizing Learned Clauses. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)

9. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, pp. 399–404 (2009)

10. Audemard, G., Lagniez, J.-M., Mazure, B., Säıs, L.: On Freezing and Reactivating
Learnt Clauses. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 188–200. Springer, Heidelberg (2011)

11. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer,
Heidelberg (1997)

12. Audemard, G., Simon, L.: Refining Restarts Strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg
(2012)

13. Chen, J.C.: Solvers with a Bit-Encoding Phase Selection Policy and a Decision-
Depth-Sensitive Restart Policy. In: Proceedings of the SAT Competition 2013, pp.
44–45 (2013)

14. SAT 2013 competition web page, http://www.satcompetition.org/2013/
15. Chen, J.C.: Phase Selection Heuristics for Satisfiability Solvers (2011),

http://arxiv.org/abs/1106.1372

16. Chen, J.C.: A Dynamic Phase Selection Strategy for Satisfiability Solvers (2012),
http://arxiv.org/abs/1208.1613

http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_1+2+3+6.pdf
http://www.satcompetition.org/2013/
http://arxiv.org/abs/1106.1372
http://arxiv.org/abs/1208.1613

Generalized Finite Automata

over Real and Complex Numbers

Klaus Meer and Ameen Naif

Computer Science Institute, BTU Cottbus-Senftenberg
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany

meer@informatik.tu-cottbus.de, naif@tu-cottbus.de

Abstract. In a recent work, Gandhi, Khoussainov, and Liu [7] intro-
duced and studied a generalized model of finite automata able to work
over arbitrary structures. As one relevant area of research for this model
the authors identify studying such automata over partciular structures
such as real and algebraically closed fields.

In this paper we start investigations into this direction. We prove
several structural results about sets accepted by such automata, and
analyse decidability as well as complexity of several classical questions
about automata in the new framework. Our results show quite a diverse
picture when compared to the well known results for finite automata over
finite alphabets.

1 Introduction

Finite automata represent one of the fundamental elementarymodels of algorithms
in Computer Science. There is an elaborated theory about problems that can be
solvedbothwith and concerning finite automatawhich nowusually is taught in ba-
sic theory courses. When dealing with algorithmic questions about finite
automata like thewordproblem, the emptiness andfiniteness problems, the equiva-
lence problemorminimization of such automata, such questions are treatedby ana-
lyzing theTuringmodel of computation as underlying computationalmodel. Thus,
statements like ’the equivalence problem for non-deterministic finite automata is
NP-complete’ are to be understood using complexity theory in the Turing model.

In recent years theoretical computer science has seen an increasing interest
in alternative to the Turing machine models of computation. The reader might
think of quantum computers [13], neural networks [8], analogue computers [4],
several kinds of biologically inspired devices [14], and models for computations
over the real and complex numbers. Models for the latter split into approaches
based on the Turing machine like those followed in recursive analysis [15] and in
algebraically inspired notions of algorithms [3,5].1 One feature of such algorithm

1 For all mentioned areas the given references are not thought to be exhaustive but
should just serve as a starting point for readers being more interested in the corre-
sponding models.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 168–187, 2014.
c© Springer International Publishing Switzerland 2014

Generalized Finite Automata over Real and Complex Numbers 169

models is that they do not any longer exclusively work over finite alphabets as
underlying structures. For example, the Blum-Shub-Smale (shortly BSS) model
introduced in [3] can be and was used to define a computability notion for many
different structures including R and C. It is thus a reasonable question whether
also the concept of a (deterministic and non-deterministic) finite automaton can
be generalized to work over more general structures than just finite alphabets.

In recent work Gandhi, Khoussainov, and Liu [7] introduce such a general-
ized model of finite automata called (S, k)-automata. It is able to work over an
arbitrary structure S, and here in particular over infinite alphabets like the real
numbers. A structure is characterized by an alphabet (also called universe) to-
gether with a finite number of binary functions and relations over that alphabet.
Now, intuitively the model processes words over the underlying alphabet compo-
nentwise. Each single step is made of finitely many test operations relying on the
fixed relations as well as finitely many computational operations relying on the
fixed functions. For performing the latter an (S, k)-automaton can use a finite
number k of registers. As we shall see the latter ability adds significantly power
to the model in comparison to ’old-fashioned’ finite automata. An automaton
then moves between finitely many states and finally accepts or rejects an input.

The motivation to study such generalizations is manifold. In [7] the authors
discuss different previous approaches to design finite automata over infinite al-
phabets and their role in program verification and database theory. One goal is
to look for a generalized framework that is able to homogenize at least some of
these approaches. As the authors remark, many classical automata models like
pushdown automata, Petri nets, visible pushdown automata can be simulated
by the new model. Another major motivation results from work on algebraic
models of computation over structures like the real and complex numbers. Here,
the authors suggest their model as a finite automata variant of the Blum-Shub-
Smale BSS model. They then ask to analyze such automata over structures like
real or algebraically closed fields.

The latter will be the focus of the present work. We restrict our attention to
generalized finite automata over two special structures denoted by SR and SC

and defined precisely below. These are the suitable choices for relating (S, k)-
automata to the BSS model.

The paper is structured as follows. Section 2 recalls the generalized automata
model from [7] for the above two structures and gives some basic examples. It
collects as well the notions from BSS computability theory necessary to relate
the automata model to the latter. We shall then study a bunch of questions well
known from finite automata theory. Section 3 analyzes the word problem for
deterministic and non-deterministic (S, k)-automata in comparison to certain
complexity classes in the BSS model. A complexity class coming into play very
naturally here is the class DNP of problems that can be verified by so called dig-
ital nondeterminism. In particular, we shall get a somehow diverse picture con-
cerning the classes of languages accepted by (non)-deterministic (S, k)-automata.
For example, we shall see that there are easy problems in PC, the class of prob-
lems being polynomial time solvable in the complex number BSS model, that

170 K. Meer and A. Naif

cannot be accepted by any non-deterministic automaton, whereas the complex
Knapsack problem KSC (a problem likely not located in PC) can. This prob-
lem can as well be used to show that languages accepted by non-deterministic
complex (S, k)-automata are not closed under complementation. Towards ob-
taining this result we discuss certain structural properties of languages accepted
by complex (S, k)-automata. We discuss as well the real case, where (partially
by different arguments) the same results hold as well. A second structural result
for complex automata will give a kind of weak pumping lemma.

A number of undecidability results are shown for both structures in Section
4. Among them we find the emptiness problem, the equivalence problem, several
reachability questions as well as the problem to minimize an (S, k)-automaton.
For some restricted classes of automata we also give decidability results. The
paper closes with a discussion concerning open future questions.

2 Generalized Finite Automata over R and C

We suppose the reader to be familiar with the basics of the Blum-Shub-Smale
model of computation and complexity over R and C. Very roughly, algorithms
in this model work over finite strings of real or complex numbers, respectively.
The operations either can be computational, in which case addition, subtraction,
and multiplication is allowed; without much loss of generality we do not consider
divisions in this paper to avoid technical inconveniences. Or an algorithm can
branch depending on the result of a binary test operation. The latter either
will be an inequality test of form ’is x ≥ 0?’ over the reals or an equality test
’is x = 0?’ when working over the complex numbers. The size of a string is
the number of components it has, the cost of an algorithm is the number of
operations it performs until it halts. For more details see [2]. Notions being
central for this paper shall be explained in more detail below.

The generalized finite automata introduced in [7] work over structures. Here,
a structure S consists of a universe D as well as of finite sets of (binary) func-
tions and relations over the universe. A more precise definition concerning the
structures we are interested in follows below. An automaton informally works as
follows. It reads a word from the universe, i.e., a finite string of components from
D and processes each component once. Reading a component the automaton can
set up some tests using the relations in the structure. The tests might involve a
fixed set of constants from the universe D that the automaton can use. It can as
well perform in a limited way computations on the current component. Towards
this aim, there is a fixed number k of registers that can store elements from D.
Those registers can be changed using their current value, the current input and
the functions related to S. After having read the entire input word the automa-
ton accepts or rejects it depending on the state in which the computation stops.
These automata can both be deterministic and non-deterministic.

Since the approach allows structures to have arbitrary universes, the model
in particular easily can be adapted to define generalized finite automata over
structures like R and C. We shall in the rest of the paper focus on these uni-
verses. Our goal is to study questions for these automata in the framework of

Generalized Finite Automata over Real and Complex Numbers 171

the BSS model of computations over those structures. We thus define two struc-
tures SR and SC according to the operations used in the BSS model over R and
C, respectively. As in the original work [7] we equip all our structures as well
with the projection operators pr1, pr2 which give back the first and the second
component of a tuple, respectively.

Definition 1. Let SR := (R,+,−, •, pr1, pr2,≥,=) denote the structure of the
reals as ring with order. Similarly, the structure of the complex numbers as ring
with equality is given by SC := (C,+,−, •, pr1, pr2,=).

In order to avoid technicalities for operation − we allow both orders of the
involved arguments, i.e., applying − to two values x, v can mean x− v or v − x.
Similarly, the order test can be performed both as x ≤ v? and v ≤ x? As
mentioned above without loss of generality we do not include division as an
operation. This will not significantly change our results.

The following definition is from [7] but adapted for the special structures
exclusively considered here.

Definition 2. (Finite automata over SR and SC, [7]) Let k ∈ N be fixed.

a) A deterministic (SR, k)-automaton A consists of the following objects:

- a finite state space Q and an initial state q0 ∈ Q,
- a set F ⊆ Q of accepting states,
- a set of � registers which contain fixed given constants c1, . . . , c� ∈ R
- a set of k registers which can store real numbers denoted by v1, . . . , vk,
- a transition function δ : Q× R× Rk × {0, 1}k+� �→ Q × Rk.

The automaton processes elements of R∗, i.e., words of finite length with real
components. For such an (x1, . . . , xn) ∈ Rn it works as follows. The compu-
tation starts in q0 with an initial configuration for the values v1, . . . , vk ∈ R,
say all vi = 0. Then, A reads the input components step by step. Suppose a
value x is read in state q ∈ Q. Now the next state together with an update of
the values vi is computed as follows:

- A performs the k+ � comparisons xσ1v1?, xσ2v2?, . . . , xσkvk?, xσk+1c1?,
. . . , xσk+�c�?, where σi ∈ {≥,≤,=}. This gives a vector b ∈ {0, 1}k+�,
where a component 0 indicates that the comparison that was tested is
violated whereas 1 codes that it is valid;

- depending on state q and b the automaton moves to a state q′ ∈ Q (which
could again be q) and updates the vi applying one of the operations in the
structure: vi ← x ◦i vi. Here, ◦i ∈ {+,−, •, pr1, pr2}, 1 ≤ i ≤ k depends
on q and b only.

When the final component of an input is read A performs the tests for this
component and moves to its final state without any further computation. It
accepts the input if this final state belongs to F , otherwise A rejects.

b) Non-deterministic (SR, k)-automata are defined similarly with the only dif-
ference that δ becomes a relation in the following sense: If in state q the
tests result in b ∈ {0, 1}k+� the automaton can non-deterministically choose

172 K. Meer and A. Naif

for the next state and the update operations one among finitely many tuples
(q′, ◦1, . . . , ◦k) ∈ Q× {+,−, •, pr1, pr2}k.
As usual, a non-deterministic automaton accepts an input if there is at least
one accepting computation.

c) (Non-)Deterministic automata over SC are defined similarly, the only differ-
ence being that the tests all have to be equality tests.

d) For an automaton A the language of finite strings accepted by A is denoted
by L(A). Clearly, L(A) ⊆ R∗ or L(A) ⊆ C∗, depending on the structure
considered.

Remark 1. a) A few words concerning the intuitive abilities and some techni-
cal aspects of generalized automata are appropriate here. Given k registers an
automaton can perform calculations. Depending on the problem considered this
ability can be relatively strong. It is, for example, easy to see that in appropriate
structures like SR and SC one can count in certain situations. For example, a
language like {(−1)n1n|n ∈ N} easily is seen to be acceptable by such an au-
tomaton if 1 is available as constant. On the other hand input components still
can be read only once. If we want to use it several times it has to be stored in
one of the k registers in order to be used again. This of course might be a severe
restriction.

b) Another technical aspect refers to the initialization of a computation. In
the original definition in [7] one can start a computation with an arbitrary as-
signment for the registers vi. However, this might mean that additional constants
are introduced into calculations. Below we do not want to analyze which impact
the use of an initialization in general has with respect to the constants used.
For our results it seems not to change arguments significantly. Therefore, all our
computations start with initial values 0 for the vi. Nevertheless, the impact of
different initializations seems an interesting problem to be analyzed further.

c) The final component of an input somehow is treated differently than all the
others by the model. The reason is that after having read the final component
only a test but no computation is performed. So in a certain sense an automaton
is working only restrictedly with it. In some cases below we circumvent this effect
by choosing a kind of dummy final component which will be the same for all
inputs of a problem. That way the crucial parts of an input all are handled the
same way by an automaton.

Since below we want to treat some elementary questions about such automata
within the framework of real and complex BSS machines, we finish this section
with the definition of a special non-deterministic complexity class in the BSS
model that turns out to be interesting for analyzing non-deterministic general-
ized automata.

Definition 3. (Digital non-determinism)
a) In the BSS-model over R a problem L ⊆ R∗ belongs to the class DNPR

of problems verifiable in polynomial time using digital non-determinism if there
is a BSS algorithm M working as follows: M gets as its inputs tuples (x, y) ∈
R∗ × {0, 1}∗ and computes a result in {0, 1} interpreted as reject or accept,

Generalized Finite Automata over Real and Complex Numbers 173

respectively. For an x ∈ L there has to be a y ∈ {0, 1}∗ such that M(x, y) = 1,
for x �∈ L the result M(x, y) has to be 0, no matter which y is chosen.

The running time of M has to be polynomial in the (algebraic) size of x.
b) Similarly, the complex counterpart DNPC is defined.

Digital non-determinism is a kind of restricted non-determinism in the real
and complex BSS model. Here, usually the guess y is allowed to stem from R∗

or C∗ having polynomial length in the size of x. Most natural generalizations
of discrete NP-complete problems to the real framework lead to problems in
DNPR; the Knapsack problem treated below is a typical example. However,
there are important open questions related to this class. It is easy to see that
PR ⊆ DNPR ⊆ NPR, but it is currently only conjectured that both inclusions
are strict. As a consequence, problems in DNPR are conjectured not to be NPR-
complete in the BSS model. The same is conjectured to be true for the classes
PC ⊆ DNPC ⊆ NPC.

3 Basic Results, a Structural Theorem and a Weak
Pumping Lemma for Complex Automata

Given the above definition of digital non-determinism our first result is immedi-
ate. The word problem for a fixed (S, k)-automaton asks whether a given input
w ∈ D∗ is accepted by the automaton. The following is easily proved.

Lemma 1. The word problem belongs to class PR for deterministic (SR, k)-
automata and to class DNPR for non-deterministic such automata. This holds
as well if the automaton is considered part of the input. It is analogously true
for complex automata and the complex BSS model.

The previous result gives rise to several further questions which we shall treat
next dealing with complex automata. Are all problems in PC acceptable by
a non-deterministic (SC, k)-automaton, are there any DNPC problems which
potentially do not belong to PC but will be accepted by such an automaton, are
non-deterministic automata closed under complementation?

We shall see that the answers to the above questions show a somewhat skew
picture of the relation between acceptable languages in the generalized automata
model and complexity classes in the BSS model.

Let us start with defining an extension of the classical NP-complete Knapsack
problem.

Definition 4. The complex Knapsack problem KSC is defined as follows: Given
n ∈ N and n complex numbers x1, . . . , xn, is there a subset S ⊆ {1, . . . , n} such
that

∑
i∈S

xi = 1?

The real Knapsack problem KSR is defined similarly.

Remark 2. Dealing with this problem using (SC, k)-automata we consider inputs
of the form (x1, . . . , xn, 1) of length n + 1. This is done in order to guarantee
that the numbers x1, . . . , xn are treated equally, see Remark 1 c) above. This
could of course be done differently.

174 K. Meer and A. Naif

Note that the complexities of both KSC and KSR in the respective BSS model
are unknown. This is the case for many reasonable extensions of classically NP-
complete problems to the real or complex number model. On the one hand side
such problems usually fall into the classes DNPK defined above, where K ∈
{R,C}. It is not known whether DNPK contains NPK-complete problem for
one of the settings (and actually conjectured to be false [9]), so the respective
generalized Knapsack problems likely will neither be NPC- nor NPR-complete.
On the other side it is neither known whether problems being NP-complete in
the Turing model can be solved more efficiently in the BSS model.

Example 1. KSC can be accepted by a non-deterministic (SC, 1)-automaton.
The non-deterministic automaton uses 1 as its only constant and a single reg-
ister v1. When reading a new component xi of the input the automaton non-
deterministically chooses whether xi should participate in the final sum or not.
If it should, then xi is added to v1, otherwise v1 remains unchanged. When
(x1, . . . , xn) has been processed the automaton finally checks whether the last
input component xn+1 equals 1. If not A rejects, if yes (i.e., xn+1 = 1) it is also
compared with v1. The automaton accepts iff v1 = 1.

3.1 A Structure Theorem for Complex Automata

Our first major result will be a structural theorem concerning the languages
accepted by complex deterministic and non-deterministic automata. As an easy
consequence of this theorem it follows that the class of languages accepted by
non-deterministic complex automata is not closed under complementation. For
a particular restricted structure over the integers the corresponding result was
shown in [7]. We prove it using topological arguments. More precisely, the Knap-
sack problem turns out to be a counterexample here. Before doing so we recall
the definition of typical paths for a BSS algorithm [2], adapted accordingly to
(SC, k)-automata. Characteristic paths are important since the sets of inputs
that follow those paths have a useful topological structure.

Definition 5. a) Let A be a deterministic (SC, k)-automaton using � constants.
Let P be a path of this automaton, i.e., a finite sequence (q0, q1, . . . , qs) of states
of A together with a sequence (b(0), b(1), . . . , b(s−1)) of test results in {0, 1}k+�

such that the automaton moves from qi to qi+1 when b(i) represents the outcome
of the tests. Here, q0 denotes the start state of A.

i) The path set VP related to a path P of length s is the set of points in Cs

that are branched by A’s computation along P.
ii) The characteristic path of length s of A is the one obtained if all b(i) = 0,

i.e., all k+ � equality tests performed at each step of the computation give result
’false’.

b) If A is a non-deterministic automaton any path that corresponds to a
computation where all test results give b(i) = 0 is called a characteristic path.

Note that characteristic paths always are realizable by some computation, i.e.,
the corresponding path sets are non-empty. This is true because at each step of

Generalized Finite Automata over Real and Complex Numbers 175

a computation only a constant number of values are stored in the registers, so
there is always a next complex input component being different from all of them.

Characteristic path sets have a very special structure. This structure is made
more precise in the following definition.

Definition 6. For a set L ⊆ Cn, n ≥ 1 let P1(L) denote the projection of L
to the first component. Then L is called recursively co-finite, or rcf for short, if
the following two conditions hold:

i) P1(L) is co-finite;
ii) if n > 1 for any x∗ ∈ P1(L) the set

{(x2, . . . , xn) ∈ Cn−1|(x∗, x2, . . . , xn) ∈ L}

is recursively co-finite.

In particular, a set L ⊆ C is rcf if it is co-finite.
We say that L is recursively co-finite of cardinality s ∈ N if the cardinalities

of all the complements of projections involved in the above definition are less
than or equal to s.

Now the following structural theorem can be proven.

Theorem 1. Let A be a (SC, k)-automaton with � constant registers, L(A) ⊆ C∗

the language accepted by A. For each n ∈ N let Ln(A) := L(A)∩Cn and Ln(A)
its complement in Cn.

a) If A is deterministic, then for each n ∈ N exactly one of the two sets Ln(A)
and Ln(A) contains a rcf set of cardinality at most s := k+ �. In particular, for
all n the cardinalities of the respective complements are bounded by a constant
that is independent of n. Which of the two sets contains the rcf set can vary with
n.

b) If A is non-deterministic, then there is a constant M such that for each n ∈
N exactly one of the two sets Ln(A) and Ln(A) contains a rcf set of cardinality
at most O(Mn).

Moreover, for those n where the rcf set is contained in Ln(A) the cardinalities
of the respective complements can again be bounded by s = k + �.

Thus the difference between the statements for deterministic and non-deter-
ministic automata is the cardinality bound for the rcf sets in Ln(A). In the
non-deterministic case in general it cannot be bounded by a constant being
independent of n.

Proof. a) Suppose first that A is deterministic. Fix n and consider the char-
acteristic path γn of length n. Its path set Vγn is rcf with cardinality at most
s = k + �; in each computational step i of A along the characteristic path if xi

denotes the current input component all but at most s many choices for xi ∈ C
will be branched further along γn. Thus, Vγn is rcf of cardinality at most s. If

path γn accepts, then Ln(A) contains a rcf set, otherwise Ln(A) contains such
a set.

176 K. Meer and A. Naif

It remains to show that only one of the two sets contains a rcf set. To-
wards this aim let U ⊂ Cn denote a subset of an arbitrary union of path sets
of length n other than Vγn . We claim that U is not a rcf set. For any point
x ∈ U define t(x) ∈ {1, . . . , n} as index of the first component of x such that
A’s computation on x answers a test with = . Since by assumption x �∈ Vγn

such an index exists. Now choose x∗ ∈ U with maximal value t(x∗). For the
point (x∗

1, . . . , x
∗
t(x∗)−1) all tests so far have been answered by �=, for compo-

nent x∗
t(x∗) an equality test is satisfied. If U would be rcf the projection of

the set {(xt(x∗), . . . , xn)|(x∗
1, . . . , x

∗
t(x∗)−1, xt(x∗), . . . , xn) ∈ U} to its first com-

ponent has to be co-finite. Thus, there has to exist an xt ∈ C such that all
tests performed by A on input (x∗

1, . . . , x
∗
t(x∗)−1, xt) are answered negatively and

(x∗
1, . . . , x

∗
t(x∗)−1, xt) can be extended to a point x̂ in U . However, for such a

point t(x̂) would be larger than t(x∗) thus contradicting our choice of x∗. It
follows that U cannot be a rcf set.

b) Next, let A be non-deterministic. There are two cases two consider due
to the fact that now several characteristic paths of a given length can exist. Let
n ∈ N be fixed.

Case 1: All characteristic paths of length n reject. Then Ln has the same
structure as in the deterministic case, i.e., it is the finite union of paths which
are not characteristic. By the same argument as above Ln does not contain a rcf
set.

Concerning the structure of Ln in Case 1 let M ∈ N denote the maximal
number of non-deterministic choices automaton A can follow in one of its states.
If ϕ is a characteristic path of A note that not necessarily Vϕ ⊆ Ln since a point
x ∈ Vϕ could be branched as well along an accepting non-characteristic path.
Nevertheless, along a characteristic path in each step at most k + � values are
branched away from the path. There are at most Mn many characteristic paths
of length n, thus at most (k + �)Mn values for a fixed input component can be
branched away from all characteristic paths (note that there might be inputs
which can follow all characteristic paths of A). It follows that Ln contains a rcf
set of cardinality O(Mn).

Case 2: There are characteristic paths which accept. Let ϕ denote one of them.
Since the path accepts it follows Vϕ ⊆ Ln. Clearly, Vϕ is rcf of cardinality k+ �.
Finally, Ln does not contain a rcf set. Because if U ⊆ Ln would be rcf each
point in U has to be branched away from the accepting characteristic path ϕ.
The same argument as in the deterministic case gives a contradiction. �

We derive two further results from the theorem. Example 1 has shown that
the Knapsack problem, which is conjectured not to be efficiently solvable in
the BSS model, can be accepted by a non-deterministic automaton. However,
the next result shows that easier problems cannot. Thus, the class of languages
acceptable by non-deterministic (S, k)-automata is contained in DNPR or DNPC,
respectively, but lies kind of skew with respect to the class of languages decidable
in polynomial time in the BSS model.

Generalized Finite Automata over Real and Complex Numbers 177

Corollary 1. There are problems in complexity class PC which can not be ac-
cepted by any non-deterministic (SC, k)-automaton. Similarly for PR. As a con-
sequence, the class of languages accepted by non-deterministic real or complex
automata is strictly contained in DNPC and DNPR, respectively.

Proof. For the complex case define a language L as

L := {(a0, . . . , an, x) ∈ Cn+2|n ∈ N,

n∑
i=0

ai ·
(
xnn
)i

= 0}

By repeated squaring of x and subsequent evaluation of the univariate polyno-
mial given through the ai membership in L can be decided in the complex BSS
model in polynomial time in n, i.e., L ∈ PC. Now suppose a non-deterministic
(SC, k)-automaton A accepts L. As in the proof of Theorem 1 let M denote
an upper bound on the number of non-deterministic choices in any state. For

a canonical choice of (a0, . . . , an) ∈ Cn+1 the polynomial z �→
n∑

i=0

aiz
i has n

different complex roots and each of them has nn different nn-th roots. Thus,
there are n ·nn choices for x such that (a0, . . . , an, x) ∈ L. Now on the one hand
side L ∩ Cn+2 does not contain a rcf set since given (a0, . . . , an) �= 0 there are
always only finitely many choices for x yielding a point in L. On the other hand,
for large enough n we have n · nn > const · Mn which contradicts as well part
b) of Theorem 1. It follows that A cannot exist.

The proof for the real number is similar and postponed to the full paper. The
last claim now follows from Lemma 1 and the containment of PR in DNPR and
of PC in DNPC. �

The above proof for the real case uses a certain structural property of accepted
sets similar to rcf sets but seemingly weaker with respect to deriving interesting
structural results. Therefore, we did not formulate it separately.

The following corollary shows another application of Theorem 1. Note that
part a) follows from b), however we add the simple argument based on the
previous theorem.

Corollary 2. a) For all k ∈ N there is no deterministic (SC, k)-automaton
accepting KSC.

b) For all k ∈ N there is no non-deterministic (SC, k)-automaton accepting
the complement of KSC, i.e., the set

KSC = {(x1, . . . , xn, xn+1)|n ∈ N and either xn+1 �= 1 or
∀S ⊆ {1, . . . , n}

∑
i∈S

xi �= 1}.

c) The class of languages accepted by non-deterministic complex automata
is stritcly larger than the class of languages accepted by deterministic such au-
tomata.

Proof. a) Our definition of KSC requires as positive instances n+1-dimensional
vectors whose final component is 1. Thus no rcf set can be a subset of KSC.

178 K. Meer and A. Naif

According to the theorem the only characteristic path of a potential deterministic
automaton has to contain an rcf set. Consider an input (x1, . . . , xn−1) ∈ Cn−1

such that all 2n−1 possible sums of components give a different result and such
that the automaton follows the characteristic path when reading (x1, . . . , xn−1).
Clearly, such a sequence exists. Then there are 2n−1 many choices for xn such
that (x1, . . . , xn, 1) ∈ KSC, but for component xn the characteristic path can
only branch away a constant number s of values for xn. Thus, such an automaton
cannot exist.

b) Suppose a non-deterministic automaton A accepts KSC. The theorem
implies that precisely one of the sets KSC and KSC contains an rcf set. For
KSC this is not possible since the final component of an input in KSC is forced
to equal 1. For deriving as well a contradiction in the remaining case we need an
additional argument. As in a) choose n large enough and (x1, . . . , xn−1) ∈ Cn−1

such that all 2n−1 possible sums of components give a different result, this time
also different from 1. In addition we require that A follows for an infinite number
of choices for xn an accepting characteristic path when reading (x1, . . . , xn−1).
Note that fixing (x1, . . . , xn−1) as above there is an infinite number of xn such
that (x1, . . . , xn, 1) /∈ KSC and all such inputs must be accepted by A. Thus the
existence of such a path ϕ is guaranteed because there are only finitely many
paths of a given length. Consider the two final computational steps of A when
reading xn and xn+1 = 1. Since A accepts for infinitely many choices of xn

along ϕ, for the final tests with xn+1 = 1 only those register values vi have
an influence that depend on the choice of xn. Each of them, however, can only
branch a single value away from ϕ. Since there are 2n−1 > k choices for xn such
that (x1, . . . , xn, 1) ∈ KSC the automaton can still branch most of them along
ϕ and accept, thus leading to a contradiction.

Finally, claim c) directly follows since the class of languages accepted by a
deterministic automaton clearly is closed under complementation. Example 1
together with parts a), b) imply the statement. �

Though the notion of characteristic path(s) makes sense for real automata as
well it is not clear how to use it to obtain a meaningful structural result like
Theorem 1. This is discussed a bit further in the final section. With respect
to the real Knapsack problem, however, we can prove the same statement by
applying well known results from algebraic complexity theory [1,12]. Due to
space limitations a proof will be postponed to the full version.

Note that a much more general result for KSR in the realm of the real BSS
model has been shown in [6].

Proposition 1. For all k ∈ N there is no non-deterministic (SR, k)-automaton
accepting the complement of KSR. Thus, the class of languages accepted by non-
deterministic real automata is not closed under complementation. The real Knap-
sack problem is not accepted by a deterministic (SR, k)-automaton.

Generalized Finite Automata over Real and Complex Numbers 179

3.2 A Weak Pumping Lemma

One major structural tool for establishing a language not to be regular in the
classical finite automata framework is the pumping lemma. It is thus natural
to ask whether a similar property holds for our generalized automata. However,
a short consideration immediately implies that - if at all - such a statement
has to be more involved. Consider the language L := {(x1, 1, x2, 1, . . . , 1, xn) ∈
Cn|n ∈ N, x1 = 1, xi+1 = xi+1, 1 ≤ i ≤ n−1}, i.e., (x1, . . . , xn) represent initial
segments of N. L clearly is acceptable by a deterministic (SC, 1)-automaton.2

Now, if in a word w ∈ L we pump any of its substrings the structure of the
defining recursion formula for the components clearly is destroyed.

One major obstacle for obtaining a kind of pumping lemma is the ability to
perform computations. Even if an automaton runs through a loop with respect
to its state set it is by no means clear whether the loop is realizable even only
once more repeating the same subsequence of input components. The reason
is that in most cases the assignments of registers will change. And a different
assignment clearly can result in a different computation path when reading the
same part of an input repeatedly.

For complex automata and some loops it turns out that we can say a bit
more. Here, once again the characteristic path of a deterministic automaton is
helpful because many inputs follow it. We shall now show that a weak kind of
pumping is possible. As drawback two features of the classical pumping lemma
are lost. First, the pumping might not be possible for words in the language but
for rejected words; and secondly, it cannot be guaranteed to hold for all words
of a certain length. Nevertheless, we shall see that the statement can be used to
show certain problems not being acceptable by deterministic complex automata.

Theorem 2. Let L ⊆ C∗ be accepted by a deterministic (SC, k)-automaton A.
Then there is a word w := uz ∈ C∗ such that either all uzt, t ∈ N0 belong to L
or they all belong to C∗ \ L. Moreover, u and z have an algebraic length of at
most K and 2K, respectively, where K denotes the number of states of A.

Proof. Before going into detail we outline the main idea of the proof. We are
looking for inputs that follow the characteristic path of A when the input dimen-
sion becomes larger. As mentioned earlier this path is realizable. For example,
we could take a sequence of algebraically independent numbers. So there is a
loop that can be realized as many times as we want. Let q denote the starting
and final state of the first such loop; here, by first we mean first time the loop
is completed. We fix this loop as the one we are interested in for the rest of the
proof. Then there is a u of length at most K such that when reading u as its
first input components A follows the characteristic path and enters q for a first
time. The length of the loop is some s ≤ K.

The problem, however, is that the above easy argument implies realizability
of the characteristic path only when the input components can be changed all

2 The intermediate 1’s are used to avoid including the operation +1 in the structure;
they could be removed if the operation is available.

180 K. Meer and A. Naif

the time. Ad hoc there is no guarantee that we can follow the loop any given
number of runs always taking the same complex vector z ∈ Cs. The main task
in the proof is to establish the existence of such a z. This will be done as follows:
First, we show the existence of an open set X ⊆ Cs such that for each x ∈ X
automaton A on input ux follows the loop once. For this purpose we can use a
sequence ux with the set of components being algebraically independent. In that
case, no equality test will be answered positively, so ux follows the characteristic
path. Since the test functions are continuous in the input components there is
an open set X containing x such that for all y ∈ X the input uy follows the
characteristic path as well.

The main part of the proof now shows that for each additional run through the
loop only a reasonably small set of points from X have to be removed because
they might not be branched along the characteristic path when passing another
time the loop.

Now towards the details. In the proof we restrict ourselves to an automaton
A that uses no contants and a single register only. However, after it has been
given it should be obvious that this is no restriction at all. We add a comment
on this at the end.

Let u and X ⊆ Cs be as above. When A has read u it is in state q; let v∗

denote the value of the register at that moment. For all x ∈ X the computation
on ux follows the characteristic path. Fix u and x∗ := (x∗

1, . . . , x
∗
s) ∈ X such

that all components are algebraically independent. Our goal is to find a z ∈ X
such that uzt for all t ∈ N0 follows the characteristic path. To do so it must be
guaranteed that for each run of A through the loop the current input component
zj never equals the current value in the register, for all 1 ≤ j ≤ s. The latter of
course can change with each new run through the loop. We thus have to analyze
how the register value evolves.

Let us begin with some easy cases. First, if all computations performed during
the loop are the projection pr2 onto v, then v does not change. Since u and x∗

have independent components all tests x∗
j = v? are answered negatively and we

are done. Secondly, suppose there is an operation pr1(x
∗
j , v) performed and this

is the only one that changes v, i.e., all other operations are pr2. Then from this
step on v = x∗

j and in the next run through the loop the corresponding equality
test is positive, so the computation leaves the characteristic path. This can easily
be resolved replacing x∗ by x∗x̃∗ ∈ C2s with all components independent (and
thus different) and running twice through the loop. Now if v = x∗

j in the next
run v = x̃∗

j? will be tested with negative outcome; the projection pr1 changes
v’s value into x̃∗

j . We then consider two consecutive runs through the loop as a
new loop of double length. The only price to pay for this is the length of z in
the theorem’s statement which changes from at most K to at most 2K.

Thirdly, if all operations are projections but different from the first two cases
the statement trivially is correct. Finally, the case that projections occur but not
exclusively is covered by the arguments that follow below. We therefore without
loss of generality assume that during each step j, 1 ≤ j ≤ s along the loop an

Generalized Finite Automata over Real and Complex Numbers 181

arithmetic operation v ◦j xj is performed. For sake of notational simplicity we
only consider ◦j ∈ {+, ∗}; subtractions do not change the arguments.

The way how v’s value evolves during one sweep through the loop starting
from initial value vt, t ≥ 1 can be described as follows:

vt+1 = [((vt + a1) ∗ m1 + a2) ∗ m2 + . . .+ as−1] ∗ ms−1 ◦s xs

Here, we have ai = xi,mi = 1 in case ◦i = + and ai = 0,mi = xi if ◦i = ∗.
Moreover note that (1) includes s updates, one for each move along the states
constituting the loop. The structure of the register value at intermediate steps
can be easily extracted from the above formula, this will be used below.

Each additional run through the loop formally gives the same update starting
from the respective value vt. We now have to show that there is a point z ∈ X
such that all updates given by (1) are different from the respective components
of z, no matter how often the loop is passed.

For all intermediate updates leading from v1 = v∗ to v2 this is true for all
points in X . We now show for each t ≥ 1 the following

Claim: Suppose X(t) is the subset of points x ∈ X such that A for each
input uxj , 0 ≤ j ≤ t follows the characteristic path and thus ends in state q.
Then X(t+1) is obtained from X(t) by removing a set R(t) of points whose final
component xs belongs to a finite set.

The claim implies the theorem: Since X is open, if at each loop such a set
R(t) has to be removed, then X \

⋃
t≥1

R(t) has a non-empty projection onto the

s-th component. This is true since with respect to this component an at most
countable set is removed from an interval. It follows that X contains a point z
that follows the characteristic path for any given number of loops.

Proof of the claim: Suppose x∗ = (x∗
1, . . . , x

∗
s−1, x

∗
s) is chosen from the open

set X as explained before. Let us fix the first s− 1 components and analyze for
which values of xs the input u(x∗

1, . . . , x
∗
s−1, xs)

t is branched along the loop for
t = 1, 2, 3, . . . times. If t = 1 this is the case at least for xs belonging to the open
interval we obtain when projecting X to its final component.

Case 1: A’s operation when reading xs along the loop is an addition, i.e., ◦s =
+ and vt+1 = f(vt, x

∗
1, . . . , x

∗
s−1)+ xs with f the appropriate function extracted

from (1). In order to make sure that the computation follows the characteristic
path all intermediate results given implicitely by (1) must be different from the
respective component x∗

j and from xs at the final step. This restricts the possible
choices for xs. The first condition when entering the loop for the next sweep is
that v �= x∗

1. This implies that only one value for xs has to be avoided, namely
x∗
1−f(vt, x

∗
1, . . . , x

∗
s−1). By expanding the representation in (1) each intermediate

result for the register value can easily be seen to be a degree one polynomial
in xs as variable. The coefficient of xs is of the form mα1

1 mα2

2 . . .m
αs−1

s−1 with
some αi = t − 1 and the other αi = t, depending on where in the loop the
computation currently resides. Thus the coefficient always is a product of some x∗

i

with certain powers. The choice of the x∗
i as algebraically independent numbers

guarantees this product to be always non-zero and different from 1. This implies
that a comparison between the current value of v and the actual component

182 K. Meer and A. Naif

x∗
j , 1 ≤ j ≤ s − 1 always gives a negative result except for one assignment

of xs. This ’bad’ value is the unique complex solution of a linear equation in
xs. The same holds for the final step in the loop and the comparison with xs.
As consequence, the computation continues to stay for one more step on the
characteristic path.

Case 2: ◦s = ∗ and vt+1 = f(vt, x
∗
1, . . . , x

∗
s−1) ∗ xs. A similar reasoning as

before shows that if the computation runs for the t-th time through the loop
(t ≥ 1) the current register value is expressible as a polynomial of degree t−1 in
xs. More precisely, the highest coefficient, i.e., the coefficient of xt−1

s has the form
f(vt, x

∗
1, . . . , x

∗
s−1) ·mα1

1 mα2
2 . . .m

αs−1

s−1 . Here, again some αi = t−1 and the other
αi = t. Due to the choice of u and x∗ the value f(vt, x

∗
1, . . . , x

∗
s−1) �= 0 because

f is a polynomial and there is no algebraic relation between the components. It
follows that the comparison between the register value and one of the x∗

j or xs

only is positive for at most t − 1 many choices of xs. These choices have to be
excluded in order to stay on the charateristic path.

The above reasoning shows that for each run through the loop all but a finite
number of assignments to xs are suitable in order to guarantee that the point
ux∗

1 . . . x∗
s−1xs is branched along the characteristic path of A. Each such point

is a suitable choice for uz. The Claim and thus the theorem follow.
Two final remarks are appropriate: If the automaton has k registers and �

constants the arguments apply in precisely the same way. Once again, only a
finite number of values have to be forbidden for one of the variables xi with
respect to each register and each sweep through the loop. Moreover, for several
registers it might be the case that instead of xs another component has to be
taken into account, for example, when one register value does not depend on xs.
Once again, this does not harm the above proof. �

We end this section with an easy example showing how the weak pumping
lemma can be applied. We are confident that other interesting examples can be
treated that way as well.

Example 2. Consider the following modification of the Subset Sum problem.
Define the language L ⊂ C∗ to consist of all points (x1, . . . , xn) ∈ Cn such
that there are two disjoint and non-empty sets S1, S2 ⊂ {1, . . . , n} satisfying∑
i∈S1

xi =
∑
i∈S2

xi. Then L cannot be accepted by a deterministic complex (SC, k)-

automaton. The proof of the weak pumping lemma implies that we can choose all
components of u, z algebraically independent. Consequently, the input uz must
be rejected since validity of the defining property for L implies an algebraic
relation between the input components. But uz2 clearly is an input in L since
we can choose S1 to cover the first occurence of z and S2 its second. This is not
possible since it would imply the starting state of the loop to be at the same
time accepting and rejecting. L thus cannot be accepted.

4 Undecidability Results

We now turn to a bunch of undecidability results for the generalized automata
model dealing with classical problems from finite automata theory. The basic of

Generalized Finite Automata over Real and Complex Numbers 183

all these results is the following well known fundamental undecidability result
for the BSS model, see [3].

Proposition 2. The set Q+ of positive rational numbers is neither decidable in
the real nor in the complex BSS model.3

The undecidability results below are obtained by embedding the decidability
question for the rationals into the problems under consideration. In all cases
this will be done using in one or the other way a fundamental automaton that
is described in the next result.

Proposition 3. There is a deterministic (SR, 3)-automaton A that accepts the
language L ⊆ R∗, defined as

L := {(r, x1, x2, . . . , xn, 0, t, s)|n, t, s ∈ N, xi ∈ {−1, 1},
s =

∑
i,xi=1

xi, t =
∑

i,xi=−1

|xi|, r = s
t }.

The automaton uses three constants −1, 0, 1.
L as well can be accepted by a deterministic (SC, 3)-automaton when consid-

ered as language in C∗.

Proof. Before describing A in more detail its way of functioning is outlined
briefly. A tuple accepted byA as its first component must have a positive rational
number r of form s

t . The correct values for s and t are determined by means of
the intermediate components xi which are used as counters: a value xi = 1 is
used by A to increase a counter for s by 1, xi = −1 similarly is used for t. Those
counters are realized in two of the registers of the automaton.

Now towards the details. From the following description it should be obvious
how the automaton formally can be devised, so we do not specify each possible
transition in detail. The automaton uses three registers v1, v2, v3 that are ini-
tialized with 0. It uses as its constants −1, 0, 1 (this is not intended to be the
minimal number possible to achieve the all-over goal). Any input that does not
respect the formal constraints given in the definition of L is branched into a
sink state. More precisely, the automaton checks all xi to belong to {−1, 1} by
comparing a current xi with the two constant registers storing −1, 1. Similarly,
A expects the sequence of xi’s to terminate reading a 0 component followed by
two additional non-zero components s and t.

Let us then assume that an input satisfies these formal requirements (which of
course can only be guaranteed after having read the entire input). A copies the
first component r into register v1. Now each time A reads a component xi = 1
it adds the value 1 to register v2, i.e., v2 ← v2 + xi. Registers v1 and v3 are
not changed in this case. Similarly, reading xi = −1 register v3 is increased by
1 using the operation v3 ← v3 − xi and v1, v2 remain unchanged. The first 0
read indicates that the automaton enters a new phase of its algorithm. Notice

3 We work with Q+ instead of Q for sake of simplicity below, not because of any
particular importance using positive rationals only.

184 K. Meer and A. Naif

that if already x1 = 0 the computation should end in a sink as well. In the next
phase the automaton checks whether the numbers constructed so far in registers
v2, v3 constitute a representation of r as fraction, thus yielding r to be a positive
rational number. First A checks by a corresponding test whether v2 = t. If not
it moves into a sink state; otherwise t is a potential candidate for the correct
denominator and the automaton performs the operation v1 ← v1 · t. Then, it
reads s and compares it to both v3 and the updated value of v1. Only if both
these equality tests are satisfied the automaton runs into its unique accepting
state, otherwise it moves again into a sink.

It is then obvious that A only accepts tuples of the corresponding form for
which r is a positive rational and s, t represent a valid fraction for r. Since the
automaton does not use inequality branches the algorithm works exactly the
same in the complex model. �

The proposition immediately implies several undecidability results. Since the
theorem deals with deterministic automata the corresponding problems are as
well undecidable for non-deterministic automata. The size of an automaton can
be taken as sum of its number of registers and number of states.

Theorem 3. The following problems on (SR, 3)-automata are undecidable in
the real number BSS model. The analogue statements hold for complex automata
and the complex BSS model; all A used below (except in part d) are deterministic
(SR, 3)-automata, q0 denotes their respective initial state.

a) Emptiness Problem: Given A, is L(A) = ∅?
b) Equivalence Problem: Given two automata, do they accept the same lan-

guage?
c) Reachability Problem I: Given A and a state p of A, is there a compu-

tation of A that starts in q0 and reaches p?
d) Reachability Problem II: There is an (SR, 4)-automaton A (not part of

the input) such that the following problem is undecidable: Given a state p of
A and an assignment v ∈ Rk of the 4 registers of A, is there a computation
of A starting in its initial state with initialization 0 ∈ R4 and leading to p
attaining register values v?

e) Minimization Problem: Given A, is it state minimal among all determin-
istic automata accepting L(A)?
As consequence, there is no BSS algorithm minimizing any given generalized
automaton.

Proof. All statements are implied by using suitable variants of the automaton
constructed in Proposition 3.

For the emptiness problem consider as input an automaton A that uses in
addition to constants −1, 0, 1 a constant c ∈ R. This constant thus is part of
the input and can be used to relate the emptiness problem with deciding the
positive rationals. This can be done by modifying the automaton in Proposition
3 in such a way that in its first step it compares the first input component r
with constant c. Only if r = c the automaton continues to work as described in

Generalized Finite Automata over Real and Complex Numbers 185

the proposition, otherwise it moves into a sink state. Now this A will accept a
word if and only if c is rational. Thus deciding whether a given real number is
a positive rational number can be reduced to deciding whether L(A) �= ∅. The
latter problem is undecidable.

Claim b) is a direct consequence since one easily can construct an automaton
that accepts no word from R∗. Taking this automaton together with the one
from a) as input the emptiness problem reduces to the equivalence problem.

Reachability problem I is easily seen to be undecidable as well using part
a) since the automaton reaches its only accepting state iff the constant c is a
positive rational.

Reachability problem II needs another modification of our standard automa-
ton. It is necessary because now the automaton should be fixed, so we cannot
code the rationals as decision problem by varying the automaton using different
constants. Instead we code the rationals in the final desired register assignment
as follows. First, recall that automaton A from Proposition 3 finishes an accept-
ing computation on a tuple (r, x1, . . . , xn, 0, t, s) in its unique accepting state,
say p, with register assignment (r · t, t, s). In that case r = s

t is rational. How-
ever, we do not know in advance how s, t look like and whether they exist, so
they cannot be used as the desired assignment for an instance of Reachability
Problem II. Therefore, A is modified as follows giving a new (SR, 4)-automaton
A′. This automaton uses one additional register in order to store twice the first
component r read. The second copy is stored in register v4 and this register
will not be changed any more during the rest of the computation of A′. If A
has reached its final state p, then A′ continues its computation requiring one
additional 0-component as remaining input and using the projection operation
to set registers v1 = v2 = v3 = 0. The only accepting state of A′ is a new state
p′ and it can only be reached from p in the above described way. If this is the
case, then the four registers of A′ have the assignment (0, 0, 0, r), where r is the
rational leading as first component of an input to the above final configuration.
Thus, for the fixed automaton A′ there is a computation leading from q0 to state
p′ and resulting in a register assignment (0, 0, 0, r) iff r ∈ Q+. It follows that the
second version of the reachability problem is undecidable as well.

Finally, the minimization problem clearly cannot be computable for determin-
istic generalized automata; if it were one could decide the emptiness problem
since a minimal automaton for the empty set has one state only. �

4.1 Conclusion and Open Questions

In this paper we have studied the generalized model of finite automata intro-
duced in [7] in the framework of BSS computability and complexity. The focus
has been on real and complex number computability. Our results show that a
lot of classical questions about finite automata in the generalized framework
have different answers. Among them we find both different complexity and com-
putability results. In addition, they lead to a lot of further open questions, a few
of which are outlined below.

186 K. Meer and A. Naif

Another kind of reachability problem than those of Theorem 3 was studied in
[7]. There, the question is whether given a (non-deterministic) automaton and a
computation path there is an input such that the automaton follows the given
path with its computation. One of the main results in [7] is that this problem
is decidable. Since the path is part of the instance there is a finite number of
steps to be performed, i.e., the dimension of a suitable input x ∈ R∗ for the au-
tomaton’s computation to realize the path is given. Then the problem translates
into an existential formula in first order logic over the reals. The formula just
asks for the existence of an input realizing the required computational steps.
Thus the problem is decidable by quantifier elimination. The same holds over C.
The difference with the above Reachability problem II is that we do not know
in advance (a bound for) the length of a potential accepting path. The problem
thus looks a bit similar to the real Halting Problem [3]. It would then be inter-
esting to analyze whether reachability problems can be of the same degree of
undecidability than the real Halting Problem. Note, however, that the rationals
are known to be of a weaker degree of undecidability [11]. This question seems
interesting also from the BSS side since not many problems are known that are
of the same difficulty of the Halting Problem, see [10] for one such.

Theorem 3 gives as well rise to investigate the limits of the respective undecid-
ability results, i.e., for which kind of restricted automata some of the problems
might turn out to be decidable. Here, restrictions for example can apply to the
number of registers and/or the number of constants used by the automaton. One
easy result into this direction is the following.

Lemma 2. For (SC, 1)-automata and (SR, 1)-automata that use no constants
the emptiness problem is decidable in polynomial time in the size of the automa-
ton over the corresponding structure.

Note that the above problem is purely discrete if the initial configuration contains
no complex data. This holds as well if the automaton has k registers but no
constants. Since all purely discrete problems are decidable in the BSS model [3]
(though not necessarily in polynomial time) restrictions of the problems treated
in Theorem 3 only become interesting if either constants are present or the initial
configuration is part of the input as well. This of course does not apply to the
second reachability problem since here the final register values are part of an
instance. In general, we could also wonder about the impact arbitrary initial
assignments to the registers have, for example, with respect to the interplay
with the set of constants used.

Other open questions relate to the weak pumping lemma and further struc-
tural properties of languages accepted. Is there a similar result for real automata?
One can easliy define characteristic paths in the real setting as well. Instead of
requiring all tests to give a negative answer one could demand that the tests
establish the current input component to be larger (or smaller) than all values it
is compared to. This conditions even could be mixed with changing states. How-
ever, it is not clear to us whether a meaningful statement about the evolvement
of register values could be deducted for computations along such real charac-
teristic paths. Another problem related of course would be a stronger pumping

Generalized Finite Automata over Real and Complex Numbers 187

lemma, i.e., one dealing with accepting computations. Once again, a main diffi-
culty here seems to be to control the register values. And even more ambitious:
What’s about a Myhill-Nerode like characterization of languages accepted by
(S, k)-automata? Though Theorem 3 indicates that such a result would likely
look very different from the classical one, since it might not result in computable
properties like state minimization, it would certainly be interesting to find such
characterizations.

References

1. Ben-Or, M.: Lower bounds for algebraic decision trees. In: Proc. 15th ACM STOC,
pp. 80–86 (1983)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer (1998)

3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. 21, 1–46 (1989)

4. Bournez, O., Campagnolo, M.L.: A Survey on Continuous Time Computations. In:
Cooper, B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, Changing
Conceptions of What is Computable, pp. 383–423. Springer, New York (2008)

5. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren, vol. 315. Springer (1997)

6. Cucker, F., Shub, M.: Generalized Knapsack problems and fixed degree separation.
Theoretical Computer Science 161, 301–306 (1996)

7. Gandhi, A., Khoussainov, B., Liu, J.: Finite Automata over Structures. In: Agrawal,
M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 373–384. Springer,
Heidelberg (2012)

8. Haykin, S.: Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice
Hall (1999)

9. Meer, K.: On the complexity of Quadratic Programming in real number models of
computation. Theoretical Computer Science 133(1), 85–94 (1994)

10. Meer, K., Ziegler, M.: Real Computational Universality: The word problem for a
class of groups with infinite presentation. Foundations of Computational Mathe-
matics 9(5), 599–609 (2009)

11. Meer, K., Ziegler, M.: An explicit solution to Post’s problem over the reals. Journal
of Complexity 24(1), 3–15 (2008)

12. Meyer auf der Heide, F.: Lower bounds for solving linear diophantine equations on
random access machines. Journal ACM 32(4), 929–937 (1985)

13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

14. Paun, G.: Membrane Computing: An Introduction. Springer (2002)
15. Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)

An Incremental Algorithm for Computing Prime

Implicates in Modal Logic

Manoj K. Raut

Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat

manoj_raut@daiict.ac.in

http://intranet.daiict.ac.in/~manoj_raut/

Abstract. The algorithm to compute prime implicates and prime im-
plicants in modal logic K has been suggested in [1]. In this paper we
suggest an incremental algorithm to compute the prime implicates of a
knowledge base KB and a new knowledge base F from Π(KB) ∧ F in
modal logic K, where Π(KB) is the set of prime implicates of KB and
we also prove the correctness of the algorithm.

Keywords: modal logic, prime implicates, knowledge compilation.

1 Introduction

Propositional entailment is a central issue in artificial intelligence due to its high
complexity. Determining the logical entailment of a given query from a knowledge
base is intractable [3] in general as all known algorithms run in time exponen-
tial in the size of the given knowledge base. To overcome such computational
intractability, the propositional entailment problem is split into two phases such
as off-line and on-line. In the off-line phase the original knowledge base KB is
transformed into another knowledge base KB

′
and the queries are answered in

the on-line phase from the new knowledge base in polynomial time in the size
of KB

′
. In such type of compilation most of the computational overhead shifted

into the off-line phase, is amortized over on-line query answering. The off-line
computation is known as knowledge compilation.

Several algorithms for knowledge compilation have been suggested so far, for
example, [4–17]. In these approaches of knowledge compilation, a knowledge base
KB is compiled off-line into another equivalent knowledge base Π(KB), i.e, the
set of prime implicates of KB, so that queries can be answered from Π(KB) in
polynomial time. Most of the work in knowledge compilation have been restricted
to propositional logic and first order logic in spite of increasing intrest in modal
logic. Due to lack of expressive power in propositional logic and the undecid-
ability of first order logic, modal logic is required as a knowledge representation
language in many problems. Modal logic gives a trade-off between expressivity
and complexity as they are more expressive than propositional logic and better
behaved computationally than first order logic. An algorithm to compute the set

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 188–202, 2014.
c© Springer International Publishing Switzerland 2014

http://intranet.daiict.ac.in/~manoj_raut/

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 189

of prime implicates of modal logic K and Kn has been proposed in [1] and [2]
respectively. Prime implicates have been proved useful to other areas of AI such
as belief revision [18] and non-monotonic reasoning [19].

As a knowledge base is not static, new clauses are added to the existing
knowledge base. It will be inefficient to compute the set of prime implicates
of the new knowledge base from the scratch. On the other hand properties of
Π(KB) can be utilized for computing the prime implicates of the new knowledge
base. Many incremental algorithm for computing prime implicates and prime
implicants in propositional logic and first order logic has been suggested so far
in the literature [8] [10] [11] [22] [23]. In this paper, we suggest an incremental
method to compute the set of prime implicates in modal logic K of the new
knowledge base from the prime implicates of the old knowledge base based on
the algorithm [1].

The paper is organised as follows. In section 2 we present the syntax and se-
mantics of modal logic briefly. In section 3 we present the incremental algorithm
to compute prime implicates in modal logic. Section 4 concludes the paper.

2 Preliminaries

We briefly introduce modal logic K from [20] [21]. Formulae in K are formed
using a set of propositional variables V , the standard logical connectives ¬,∧,
and ∨ and the modal operators � and ♦. We call a formula of the form �φ a
�-formula and a ♦φ a ♦-formula. The length of a formula φ, denoted by |φ|,
is the number of occurrences of propositional variables, logical connectives, and
modal operators in φ.

A formula is said to be in nagation normal form if the the nagation appears
just before the propositional variable in the formula. Every formula in K can be
transformed to a formula in NNF in linear time using the equivalences ¬(φ∧ψ) ≡
¬φ∨¬ψ, ¬(φ∨ψ) ≡ ¬φ∧¬ψ, ¬¬φ ≡ φ, ¬�φ ≡ ♦¬φ, ¬♦φ ≡ �¬φ. For example,
applying these equivalences to the formula ¬�(♦a ∧�b) results in the nagation
normal form ♦(�¬a∨♦¬b). As we apply equivalence preserving operations to φ
to obtain NNF (φ), so φ ≡ NNF (φ).

Definition 1. A relational structure for K (also called possible worlds model,
Kripke model, or a modal model) is a triple M = 〈W,R, v〉, where W is a
nonempty set (elements of W are called states), R is a binary relation on W (for-
mally, R ⊆ W ×W), and v is a valuation function assigning truth values v(p, w)
to atomic propositions p at state w (formally, v : V × W → { true , false }
where V is the set of propositional letters).

Definition 2. Truth of a modal formula φ at a world w in a relational structure
M = 〈W,R, v〉 denoted by M,w |= φ is defined inductively as follows:

– M,w |= p iff v(p, w) = true (where p ∈ V)
– M,w |= true and M,w �|= false
– M,w |= ¬φ iff M,w �|= φ

190 M.K. Raut

– M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
– M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ
– M,w |= �φ iff for all w

′ ∈ W with wRw
′
we have M,w

′ |= φ
– M,w |= ♦φ iff for some w

′ ∈ W with wRw
′
we have M,w

′ |= φ

A formula φ is satisfiable if there exists some model M and and some world w
such that M,w |= φ. A formula φ is said to be valid written as |= φ if M,w |= φ
for all M and w. A formula φ is said to be unsatisfiable if there exists no M
and w for which M,w |= φ. A formula ψ is a logical consequence of a formula φ
written as φ |= ψ if M,w |= φ implies M,w |= ψ for every model M and world
w ∈ W .

There are two types of logical consequences in modal logic which are:

1. a formula ψ is a global consequence of φ if whenever M,w |= φ for every
world w of a model M , then M,w |= ψ for every world w of M .

2. a formula ψ is a local consequence of φ if M,w |= φ implies M,w |= ψ for
every model M and world w.

The concept of local and global consequences is not there in propositional logic
as each model contains a single possible world. Eventhough both consequences
exist in first order logic, local consequence is only studied there. In this paper
we will only study local consequences and whenever φ |= ψ we mean ψ is a local
consequence of φ. We now present the following definition from [12].

Definition 3. Let Y be a set of clauses. The residue of subsumption of Y , de-
noted by Res(Y) is a subset of Y such that for every clause C ∈ Y , there is a
clause D ∈ Res(Y) where D |= C; and no clause in Res(Y) entails any other
clause in Res(Y).

With the above definition of Residue operation, the clauses which are entailed
by other clauses can be deleted from a set. The definition of prime implicates
and prime implicants are same as defined in propositional logic.

We now present some basic properties of logical consequences and equivalences
of K from [1] which will be used in proofs later.

Theorem 1. [Bienvenu] Let ψ1, . . . , ψm, χ, χ1, . . . , χn be formulae in K, and let
γ be a propositional formula. Then

1. ψ |= χ ⇔|= ¬ψ ∨ χ ⇔ ψ ∧ ¬χ |= ⊥
2. ψ |= χ ⇔ ♦ψ |= ♦χ ⇔ �ψ |= �χ
3. γ∧♦ψ1∧ . . .∧♦ψm∧�χ1∧ . . .∧�χn |= ⊥ ⇔ (γ |= ⊥ or ψi∧χ1∧ . . .∧χn |=

⊥ for some i)

The definitions of literals, clauses, terms and formulas in modal logic K known
as definition D4 in [1] are given below.

Definition 4. The literals L, clauses C, terms T, and formulas F are defined
as follows:

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 191

L ::= a | ¬a | �F | ♦F
C ::= L | C ∨ C
T ::= L | T ∧ T
F ::= a | ¬a | F ∧ F | F ∨ F | �F | ♦F

A formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of clauses and it is in disjunctive normal form (DNF) if it is a disjunction of
terms. Any formula can be converted to a formula in NNF in linear time but
the transformation to CNF or DNF is exponential in both time and space. Now
we give the definitions of prime implicates and prime implicants of a knowledge
base X .

Definition 5. A clause C is said to be an implicate of a formula X if X |= C.
A clause C is a prime implicate of X if C is an implicate of X and there is no
other implicate C

′
of X such that C

′ |= C. The set of prime implicates of X is
denoted by Π(X).

Definition 6. A term C is said to be an implicant of a formula X if C |= X.
A term C is said to be a prime implicant of X if C is an implicant of X and
and there is no other implicant C

′
of X such that C |= C

′
.

In the rest of the paper we compute the prime implicates of modal formulae
incrementally with respect to the above definition of literals, clauses, terms and
formulas.

3 Incremental Algorithm

We now consider the computational aspects of prime implicates incrementally.
Given a set of prime implicates Π(X) = {π1, . . . , πn} of a knowledge base X
and a new knowledge base F , (i.e, a formula F) we want to compute the prime
implicates of X ∧ F from Π(X) ∧ F . Note that we can compute the prime
implicates of X ∧ F from Π(X ∧ F) using Bienvenu’s algorithm [1] but the
following theorem says there is no need to compute from the scratch as we
can compute the same prime implicates from Π(X) ∧ F efficiently and avoid
unnecessary computation of large number of clauses.

Lemma 1. Π(X ∧ F) = Π(Π(X) ∧ F).

Proof. Let C1 ∈ Π(X ∧ F). This implies X ∧ F |= C1 and there does not exists
any implicate C2 of X ∧F such that C2 |= C1. As the notion of prime implicates
induced by definition 4 satisfy Equivalence(refer [1]), so Π(X) ≡ X . Hence
Π(X) ∧ F |= C1 and there does not exists any implicate C2 of Π(X) ∧ F such
that C2 |= C1. This imples C1 ∈ Π(Π(X)∧F). Hence Π(X∧F) ⊆ Π(Π(X)∧F).
Similarly the other part Π(Π(X) ∧ F) ⊆ Π(X ∧ F) can be proved. Hence the
result follows.

192 M.K. Raut

The following algorithm IN MODPI computes a set of conjunctions of liter-
als for a prime implicate πi of X and a given formula F , and MODPI computes
a set of sets of conjunctions of literals for the set of all prime implicates Π of X
and the formula F .

Algorithm MODPI(NNF(Π(X)),F)
Input: The set of prime implicates Π(X) = {π1, . . . , πn} and a formula F
Output: A set of sets of terms of Π(X) ∧ F
begin

for i= 1 to n{
Compute Ti = IN MODPI(πi, NNF(F)) for each πi ∈ NNF(Π(X))

}
T = ∪n

i=1Ti
end

Algorithm IN MODPI(πi, R)
Input: A prime implicate πi of X and a set R of formulas in NNF
Output: A set of terms
begin

If πi ∪ R = πi ∪ (φ ∧ ψ) ∪ R
′

do IN MODPI(πi, {φ} ∪ {ψ} ∪ R
′
)

elseif πi ∪R = πi ∪ (φ ∨ ψ) ∪ R
′

do IN MODPI(πi, φ ∪ R
′
) then do IN MODPI(πi, ψ ∪ R

′
)

elseif πi ∪R = (φ ∨ ψ) ∪R
do IN MODPI({φ}, R) then do IN MODPI({ψ}, R)

else output ∧σ∈πi∪Rσ
end

From the above algorithms we can assume that T = MODPI(Π(X), F). So
Ti = IN MODPI(πi, NNF (F)).

Example 1. Consider a formula X = a∧((♦(b∧c)∧♦b)∨(♦b∧♦(c∨d)∧�e∧�f)).
The set of prime implicates of X as computed in [1] is Π(X) = {a∨a,♦(b∧ c)∨
�(e ∧ f),♦(b ∧ c) ∨ ♦(b ∧ e ∧ f),♦(b ∧ c) ∨ ♦((c ∨ d) ∧ e ∧ f)} = {π1, π2, π3, π4}.
Let F = (♦b ∨ �e) ∧ ¬(�a ∨ ♦c) be a formula. We will see how to compute T ,
T1, T2, T3, T4.

1. To compute T1, first NNF (F) is computed which is equivalent to R1 =
(♦b ∨ �e) ∧ ♦¬a ∧ �¬c. Then we run IN MODPI on π1 = a ∨ a and on
the singleton set R1 = {(♦b∨�e)∧♦¬a∧�¬c}. Since π1 = a∨ a and R1 =
{(♦b∨�e)∧♦¬a∧�¬c}, then by the first else-if case of IN MODPI, we call
IN MODPI on π1 = a∨a and R2 = {(♦b∨�e),♦¬a∧�¬c}. As π1 = a∨a
and R2 = {(♦b∨�e),♦¬a∧�¬c}, again by first else-if case of IN MODPI,
we call IN MODPI on π1 = a ∨ a and R3 = {(♦b ∨ �e),♦¬a,�¬c}. As
R3 = {(♦b ∨ �e),♦¬a,�¬c}, we make two recursive calls by the second
else-if case.

(a) The first subcall will be on π1 = a∨a and on the set R4 = {♦b,♦¬a,�¬c}.
As π1 = a∨a ≡ a and there are no ∧ and ∨ operators outside the modal

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 193

operators in R4, so by the else case of IN MODPI, the output is the
conjunction of the elements which is a ∧ ♦b ∧ ♦¬a ∧�¬c.

(b) The second subcall will be on π1 = a ∨ a and on R5 = {�e,♦¬a,�¬c}.
As π1 = a∨a ≡ a and there are no ∧ and ∨ operators outside the modal
operators in R5, so by the else case of IN MODPI, the output is the
conjunction of the elements which is a ∧�e ∧ ♦¬a ∧ ¬c

So T1 = (a ∧ ♦b ∧ ♦¬a ∧�¬c) ∨ (a ∧�e ∧ ♦¬a ∧ ¬c)
2. To compute T2 we run IN MODPI on π2 = ♦(b ∧ c) ∨ �(e ∧ f) and on

the singleton set NNF (F) = R1 = {(♦b ∨ �e) ∧ ♦¬a ∧ �¬c}. Then by
the first else-if case we run IN MODPI on π2 = ♦(b ∧ c) ∨ �(e ∧ f) and
on the set R6 = {(♦b ∨ �e),♦¬a ∧ �¬c}. Then again by the first elfe-
if case we run IN MODPI on π2 = ♦(b ∧ c) ∨ �(e ∧ f) and on the set
R7 = {(♦b ∨�e),♦¬a,�¬c}. As R7 = {(♦b ∨�e),♦¬a,�¬c}, we make two
recursive calls by second else-if case of IN MODPI.

(a) The first subcall will be on π2 = ♦(b ∧ c) ∨ �(e ∧ f) and on R8 =
{♦b,♦¬a,�¬c}. As π2 = ♦(b ∧ c) ∨�(e ∧ f) there will be two recursive
subcalls by the second else-if case of IN MODPI.
i. The first subcall on ♦(b ∧ c) and on R8 = {♦b,♦¬a,�¬c}. As there

are no ∧ and ∨ symbols outside the modal operators, so by the else
case of IN MODPI we get the conjunction of elements as ♦(b∧c)∧
♦b ∧ ♦¬a ∧�¬c.

ii. The second subcall on �(e ∧ f) and on R8 = {♦b,♦¬a,�¬c}. As
there are no ∧ and ∨ symbols outside the modal operators, so by
the else case of IN MODPI we get the conjunction of elements as
�(e ∧ f) ∧ ♦b ∧ ♦¬a ∧�¬c.

(b) The second subcall will be on π2 = ♦(b ∧ c) ∨ �(e ∧ f) and on R9 =
{�e,♦¬a,�¬c}. As π2 = ♦(b ∧ c) ∨�(e ∧ f) there will be two recursive
subcalls by the second else-if case of IN MODPI.
i. The first subcall on ♦(b ∧ c) and on R9 = {�e,♦¬a,�¬c}. As there

are no ∧ and ∨ symbols outside the modal operators, so by the else
case of IN MODPI we get the conjunction of elements as ♦(b∧c)∧
�e ∧ ♦¬a ∧�¬c.

ii. The second subcall on �(e ∧ f) and on R9 = {�e,♦¬a,�¬c}. As
there are no ∧ and ∨ symbols outside the modal operators, so by
the else case of IN MODPI we get the conjunction of elements as
�(e ∧ f) ∧�e ∧ ♦¬a ∧�¬c.

So T2 = (♦(b∧ c)∧♦b∧♦¬a∧�¬c)∨ (�(e∧ f)∧♦b∧♦¬a∧�¬c)∨ (♦(b∧
c) ∧�e ∧ ♦¬a ∧�¬c) ∨ (�(e ∧ f) ∧�e ∧ ♦¬a ∧�¬c)
Similarly we can compute,

3. T3 = (♦(b∧ c)∧♦b∧♦¬a∧�¬c)∨ (♦(b∧ e∧ f)∧♦b∧♦¬a∧�¬c)∨ (♦(b∧
c) ∧�e ∧ ♦¬a ∧�¬c) ∨ (♦(b ∧ e ∧ f) ∧�e ∧ ♦¬a ∧�¬c)

4. T4 = (♦(b ∧ c) ∧ ♦b ∧ ♦¬a ∧�¬c) ∨ (♦((c ∨ d) ∧ e ∧ f) ∧ ♦b ∧ ♦¬a ∧�¬c) ∨
(♦(b ∧ c) ∧�e ∧ ♦¬a ∧�¬c) ∨ (♦((c ∨ d) ∧ e ∧ f) ∧�e ∧ ♦¬a ∧�¬c)

So T = T1 ∪T2 ∪T3 ∪T4 = [(a∧♦b∧♦¬a∧�¬c)∨ (a∧�e∧♦¬a∧¬c)]∧ [(♦(b∧
c) ∧ ♦b ∧ ♦¬a ∧ �¬c) ∨ (�(e ∧ f) ∧ ♦b ∧ ♦¬a ∧ �¬c) ∨ (♦(b ∧ c) ∧ �e ∧ ♦¬a ∧

194 M.K. Raut

�¬c) ∨ (�(e ∧ f) ∧ �e ∧ ♦¬a ∧ �¬c)] ∧ [(♦(b ∧ c) ∧ ♦b ∧ ♦¬a ∧ �¬c) ∨ (♦(b ∧
e ∧ f) ∧ ♦b ∧ ♦¬a ∧�¬c) ∨ (♦(b ∧ c) ∧ �e ∧ ♦¬a ∧�¬c) ∨ (♦(b ∧ e ∧ f) ∧�e ∧
♦¬a ∧ �¬c)] ∧ [(♦(b ∧ c) ∧ ♦b ∧ ♦¬a ∧ �¬c) ∨ (♦((c ∨ d) ∧ e ∧ f) ∧ ♦b ∧ ♦¬a ∧
�¬c) ∨ (♦(b ∧ c) ∧�e ∧ ♦¬a ∧�¬c) ∨ (♦((c ∨ d) ∧ e ∧ f) ∧�e ∧ ♦¬a ∧�¬c)].

Theorem 2. IN MODPI always terminates and every formula returned by
IN MODPI is a conjunctive formula. The disjunction of the formulae returned
by IN MODPI, i.e, Ti, is equivalent to πi ∪ R, i.e, equivalent to πi ∪ F . The
conjunction of the disjunction of the formulae returned by MODPI, i.e, T , is
equivalent to ∧n

i=1πi ∪ R(= Π ∧ F), that is, (∧i=1
n(∨T∈TiT)) ≡ Π ∧ F where

each T ∈ Ti is a term.

Proof. It is obvious that IN MODPI outputs only conjunctive formulae due to
its recursive structure and the recursion stops when the number of occurrences
of ∧ and ∨ outside the scope of modal operators reaches zero.

To prove the second part we will apply induction on the number of occurences
of ∧ and ∨ which are outside the scope of modal operators in the set of formulae
πi ∪ R. If the number of occurences of ∧ and ∨ which are outside the scope of
modal operators is zero then there is a single formula which is the conjunction of
elements in πi ∪R. Let the result holds for size n. Let the number of occurences
of ∧ and ∨ in πi∪R be n+1. If πi∪R contains a formula of the form πi∪(φ∧ψ),
then we call IN MODPI on πi and (R\{φ∧ψ})∪{φ}∪{ψ}. As the number of
occurrences of ∧ and ∨ is n in the resulting set, so the disjunction of the output
formula is equivalent to πi ∪ (R \ {φ ∧ ψ}) ∪ {φ} ∪ {ψ} and hence equivalent to
πi ∪ R. The next case when πi ∪ R contains a formula of the form πi ∪ (φ ∨ ψ)
then we call IN MODPI on πi and (R \ {φ ∨ ψ}) ∪ {φ} and also on πi and
(R \ {φ ∨ ψ}) ∪ {ψ}. As the number of occurrences of ∧ and ∨ in both these
formulae is n so the disjunction of the output formulae is equivalent to πi ∪ R.
The third case when πi ∪R contains a formula of the form (φ ∨ ψ) ∪R then we
call IN MODPI on (πi \ {φ∨ψ})∪{φ} and R and also on (πi \ {φ∨ψ})∪{ψ}
and R. As the number of occurrences of ∧ and ∨ in both these formulae is n
so the disjunction of the output formulae is equivalent to πi ∪ R. Note that as
R = NNF (F), so R ≡ F which implies that all the cases equivalent to πi ∪ F .

To prove the third part (∧i=1
n(∨T∈TiT)) ≡ ∧n

i=1πi ∪ R(= Π ∧ F), we use
mathematical induction on i. In fact, we have to prove ((∨T∈T1T)∧ (∨T∈T2T)∧
. . . ∧ (∨T∈TnT)) ≡ ∧n

i=1πi ∪ R, where each T ∈ Ti is a term. For i = 1, we have
to prove (∨T∈T1T) ≡ π1 ∪R, i.e, we have to prove (T1 ∨ T2 ∨ . . .∨ Tn) ≡ π1 ∪R.
This holds by the second part of the proof above. Assume the statement is true
for n. We have to prove ((∨T∈T1T)∧(∨T∈T2T)∧ . . .∧(∨T∈TnT)∧(∨T∈Tn+1T)) ≡
∧n+1
i=1 πi ∪R. By inductive hypothesis ((∨T∈T1T)∧ (∨T∈T2T)∧ . . . ∧ (∨T∈TnT)∧

(∨T∈Tn+1T)) ≡ (∧n
i=1πi∪R)∧(∨T∈Tn+1T). In turn this is equivalent to (∧n

i=1πi∪
R)∧ (πn+1 ∪R) by the basis step. Hence this is equivalent to ∧n+1

i=1 πi ∪R which
is equivalent to ∧n+1

i=1 πi ∧ F , which is nothing but Π ∧ F . Hence proved.

Theorem 3. The length of the formulas πi ∪NNF (F) and Π ∪NNF (F) does
not exceed |πi|+2|F | and |Π |+2|F | respectively, where πi ∈ Π for i = 1, 2, . . . , n.

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 195

Proof. While applying NNF to a formula F the number of binary operators, the
number of propositional variables and the number of modal operators do not
change. But the number of negation symbols may increase because of ¬(�φ1 ∧
♦φ2) ≡ ♦¬φ1 ∨ �¬φ2. As the number of negation symbols increase with the
number of propositional variables in NNF (F) so the total number of symbols
will not exceed 2|F |. As πi and Π are already in NNF so the total number of
symbols in πi ∪ NNF (F) and Π ∪ NNF (F) will not exceed |πi| + 2|F | and
|Π |+ 2|F | respectively.

Theorem 4. The number of formulas output by IN MODPI does not exceed
3|πi∪NNF (F)| on inputing πi ∪ NNF (F) for i = 1, 2, . . . , n. The number of for-
mulas output by MODPI does not exceed n3|Π∧F | on inputing Π ∧ F .

Proof. We know that for every call to IN MODPI the number of recursive
calls made is at most three. Let N be the number of occurrences of ∧ and ∨
which lie outside the scope of modal operators in the set πi ∪ NNF (F). So the
total number of recursive calls made is N on input πi ∪ NNF (F) as with each
call the value of N reduces by 1 and the recursion continues till N becomes 0.
This implies, during the execution of IN MODPI the number of terminating
subcalls will not exceed 3N . We know that each call can produce exactly one
formula. As N is bounded above by |πi∪NNF (F)|, so there will be 3|πi∪NNF (F)|

formulas output by IN MODPI.
As NNF (F) has same N value as F and |πi ∧ NNF (F)| is bounded above

by |Π ∧ F |, so 3|Π∧F | formulas will be output from MODPI in each iteration.
When MODPI takes Π ∧F as input, it runs IN MODPI on πi and NNF (F)
for n times, so the total number of formulas output by MODPI will not exceed
n3|Π∧F |.

Theorem 5. The length of each formula output by MODPI will not exceed
|Π |+ 2|F |.

Proof. When we make a call to IN MODPI on input πi and R(= NNF (F))
then IN MODPI makes a call to πi and R

′
where |R′ | < |R|. Then the length

of πi ∪ R
′
is always less than πi ∪ R. So the length of any formula output

by IN MODPI on input πi and R is always less than the length of πi ∪ R.
By Theorem 3, the length of πi ∪ NNF (F) does not exceed |πi|+ 2|F |. So the
length of the formula output by IN MODPI on input πi and F does not exceed
|πi|+ 2|F |. When we call MODPI on Π ∧ F then MODPI calls IN MODPI
on input πi and NNF (F). As |πi| is bounded by |Π | so the length of the formula
output by MODPI will not exceed |Π |+ 2|F |.

Let T = MODPI(Π(X), F). So Ti = IN MODPI(πi, NNF (F)). Now we
define Δ(T) according to [1]. For each T ∈ Ti, let AT be the set of propositional
literals in T and BT is the set of formulae ξ such that ♦ξ is in T . If there are no
literals of the form �ζ in T then Δ(T) = AT ∪{♦ξ | ξ ∈ BT }. Otherwise compute
Δ(T) = AT ∪ {�CT} ∪ {♦(ξ ∧ CT) | ξ ∈ BT } where CT is the conjunction of
formulae ζ such that �ζ is in T .

196 M.K. Raut

Now we present the main algorithm for computing prime implicates of Π ∧F
which is a modification of the algorithm given in [1].

Algorithm ITER MODPI(Π(X) ∧ F)

Input: A set prime implicates Π(X) = {π1, . . . , πn} and a formula F
Output: A set of clauses,i.e, a set of prime implicates of Π(X) ∧ F
begin

If Π(X) ∧ F is unsatisfiable then

return {♦(a ∧ ¬a)}
else

for i=1 to n{
Compute Ti
Compute Δ(T) for each T ∈ Ti
Compute CANDi = ∨T∈TiΔ(T)

}
Compute CANDID = ∪n

i CANDi

Compute CANDIDATES = Res(CANDID)
Return CANDIDATES

end

The correctness of the above algorithm is proved by the following theorems.

Theorem 6. Every prime implicate of a term T is equivalent to some element
in Δ(T).

Proof. The following proof is a modification of the proof given in [1] and as
the proof given in [1] has omitted almost all the steps so we give the full proof
here. Let T = α1 ∧ . . . ∧ αl ∧ ♦β1 ∧ . . . ∧ ♦βm ∧�γ1 ∧ . . . ∧�γn be a term. Let
π = ψ1 ∨ . . .∨ ψp ∨ ♦φ1 ∨ . . . ∨ ♦φq ∨�ξ1 ∨ . . . ∨�ξr be a prime implicate of T .
As π is an implicate of T so T |= π. This implies α1∧ . . .∧αl∧♦β1 ∧ . . .∧♦βm∧
�γ1 ∧ . . . ∧ �γn ∧ ¬ψ1 ∧ . . . ∧ ¬ψp ∧ �¬φ1 ∧ . . . ∧ �¬φq ∧ ♦¬ξ1 ∧ . . . ∧ ♦¬ξr is
unsatisfiable. Then by Theorem 1, one of the following must hold.

1. α1 ∧ . . . ∧ αl ∧ ¬ψ1 ∧ . . . ∧ ¬ψp |= ⊥
2. βk ∧ γ1 ∧ . . . ∧ γn ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some k.
3. ¬ξk ∧ γ1 ∧ . . . ∧ γn ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some k.

If (1) holds then there must be i and j such that αi = ψj . This implies αi |= π.
As αi is an implicate, so π must be equivalent to αi, i.e, π ≡ αi otherwise we
are getting a stronger implicate αi than π contradicting our assumption that π
is a prime implicate. Since αi ∈ Δ(T), the result holds, i.e, an element of Δ(T)
is equivalent to a prime implicate of T .

If (2) holds, then βk∧γ1∧ . . .∧γn |= φ1∨ . . .∨φq . Then ♦(βk∧γ1∧ . . .∧γn) |=
♦(φ1 ∨ . . . ∨ φq). Also |= ♦(φ1 ∨ . . . ∨ φq) ↔ (♦φ1 ∨ . . . ∨ ♦φq). This implies
♦(βk ∧ γ1 ∧ . . . ∧ γn) |= π. Now we have to prove ♦(βk ∧ γ1 ∧ . . . ∧ γn) is an
implicate of T , i.e, we have to prove T |= ♦(βk ∧ γ1 ∧ . . . ∧ γn), i.e, we have to
prove α1∧ . . .∧αl∧♦β1∧ . . .∧♦βm∧�γ1∧ . . .∧�γn |= ♦(βk∧γ1∧ . . .∧γn). This
is true iff α1∧ . . .∧αl∧♦β1 ∧ . . .∧♦βm ∧�γ1∧ . . .∧�γn∧�¬(βk ∧γ1∧ . . .∧γn)

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 197

is unsatisfiable. Then by Theorem 1, one of the following must hold. So either
α1∧ . . .∧αl |= ⊥ or βk ∧γ1∧ . . .∧γn ∧¬(βk ∧γ1∧ . . .∧γn) |= ⊥. As second part
is true so ♦(βk ∧ γ1 ∧ . . . ∧ γn) is an implicate of T . As π is a prime implicate
so ♦(βk ∧ γ1 ∧ . . . ∧ γn) must be equivalent to π, otherewise we get a stronger
implicate ♦(βk ∧γ1∧ . . .∧γn) than π. As ♦(βk ∧γ1∧ . . .∧γn) ∈ Δ(T), the result
holds.

If (3) holds, then (γ1 ∧ . . . ∧ γn) |= (ξk ∨ φ1 ∨ . . . ∨ φk). So �(γ1 ∧ . . .∧ γn) |=
�(ξk ∨ φ1 ∨ . . . ∨ φk). As �(p → q) |= ♦p → ♦q, so �(¬p ∨ q) |= ¬♦p ∨ ♦q. As
¬♦p ∨ ♦q ≡ �¬p ∨ ♦q so �(¬p ∨ q) |= �¬p ∨ ♦q. So taking ¬p = p1 we get
�(p1 ∨ q) |= �p1 ∨ ♦q. So, �(ξk ∨ φ1 ∨ . . . ∨ φk) |= �ξk ∨ ♦(φ1 ∨ . . . ∨ φk). As
|= ♦(φ1 ∨ . . . ∨ φk) ↔ (♦φ1 ∨ . . . ∨ ♦φk), so �(γ1 ∧ . . . ∧ γn) |= (�ξk ∨ ♦φ1 ∨
. . . ∨ ♦φk), so �(γ1 ∧ . . . ∧ γn) |= π. Now we have to prove �(γ1 ∧ . . . ∧ γn) is
an implicate of T , i.e, we have to prove T |= �(γ1 ∧ . . . ∧ γn), i.e, we have to
prove α1 ∧ . . .∧αl ∧♦β1 ∧ . . .∧ ♦βm ∧�γ1 ∧ . . .∧�γn |= �(γ1 ∧ . . .∧ γn). This
is true iff α1 ∧ . . . ∧ αl ∧ ♦β1 ∧ . . . ∧ ♦βm ∧�γ1 ∧ . . . ∧�γn ∧ ♦¬(γ1 ∧ . . . ∧ γn)
is unsatisfiable. Then by Theorem 1, one of the following must hold. So either
α1∧ . . .∧αl |= ⊥, or βk∧γ1∧ . . .∧γn |= ⊥ or ¬(γ1∧ . . .∧γn)∧γ1∧ . . .∧γn |= ⊥.
As the third part is true, so �(γ1 ∧ . . . ∧ γn) is an implicate of T . So π must
be equivalent to �(γ1 ∧ . . . ∧ γn) otherwise we get a stronger implicate than π.
Since �(γ1 ∧ . . . ∧ γn) is one of the elements of Δ(T), so we are done.

Theorem 7. Everyprime implicate ofTi is equivalent to someelement inCANDi.

Proof. Let Ti = (α11∧. . .∧α1u∧♦β11∧. . .∧♦β1v∧�γ11∧. . .∧�γ1w)∨(α21∧. . .∧
α2u∧♦β21∧. . .∧♦β2v∧�γ21∧. . .∧�γ2w)∨. . .∨(αn1∧. . .∧αnu∧♦βn1∧. . .∧♦βnv∧
�γn1 ∧ . . .∧�γnw). Let Let π = ψ1 ∨ . . .∨ψp ∨♦φ1 ∨ . . .∨♦φq ∨�ξ1 ∨ . . .∨�ξr
be a prime implicate of Ti. As π ia an implicate of Ti so Ti |= π. This implies
((α11∧ . . .∧α1u∧♦β11∧ . . .∧♦β1v ∧�γ11∧ . . .∧�γ1w)∨ (α21∧ . . .∧α2u∧♦β21∧
. . .∧♦β2v ∧�γ21∧ . . .∧�γ2w)∨ . . .∨ (αn1∧ . . .∧αnu∧♦βn1∧ . . .∧♦βnv ∧�γn1∧
. . .∧�γnw))∧¬ψ1∧ . . .∧¬ψp∧�¬φ1∧ . . .∧�¬φq ∧♦¬ξ1∧ . . .∧♦¬ξr is unsatis-
fiable. By distributive law (∧u

ji=11≤i≤n(∨n
k=1αkjk))∧ (∧v

ji=11≤i≤n(∨n
k=1♦βkjk))∧

(∧w
ji=11≤i≤n(∨n

k=1�γkjk)) ∧ (∧1≤j≤u1≤k≤v((∨n
i=1i
=sαij) ∨ (∨n

s=1i
=s♦βsk))) ∧
(∧1≤j≤u1≤k≤w((∨n

i=1i
=sαij)∨ (∨n
s=1i
=s�γsk)))∧ (∧1≤j≤v1≤k≤w((∨n

i=1i
=s♦βij)∨
(∨n

s=1i
=s�γsk))) ∧ (∧1≤t≤u1≤j≤v1≤k≤w((∨n
m=1m
=i
=sαmt) ∨ (∨n

i=1m
=i
=s♦βij) ∨
(∨n

s=1
m
=i
=s

�γsk))) ∧ ¬ψ1 ∧ . . . ∧ ¬ψp ∧ �¬φ1 ∧ . . . ∧ �¬φq ∧ ♦¬ξ1 ∧ . . . ∧ ♦¬ξr

is unsatisfiable.
Then by Theorem 1, one of the following will hold.

1. (∨n
k=1αkjk) ∧ ¬ψ1 ∧ . . . ∧ ¬ψp |= ⊥ for some jk such that 1 ≤ jk ≤ u

2. (∨n
k=1βkjk) ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some jk such that 1 ≤ jk ≤ v.

3. (∨n
k=1γkjk) ∧ ¬ξm ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some jk such that 1 ≤ jk ≤ w

and for some m.
4. ((∨n

i=1
i
=s

αij) ∨ (∨n
s=1
i
=s

βsk)) ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some j and k.

5. ((∨n
i=1
i
=s

αij) ∨ (∨n
s=1
i
=s

γsk)) ∧ ¬ξm ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some j, k and m.

6. ((∨n
i=1
i
=s

βij) ∨ (∨n
s=1
i
=s

γsk)) ∧ ¬φ1 ∧ . . . ∧ ¬φq |= ⊥ for some j and k.

198 M.K. Raut

7. ((∨n
m=1

m
=i
=s
αmt)∨ (∨n

i=1
m
=i
=s

βij)∨ (∨n
s=1

m
=i
=s
γsk))∧¬φ1 ∧ . . .∧¬φq |= ⊥ for some

t, j and k.

If (1) holds, then (∨n
k=1αkjk) |= ψ1 ∨ . . . ∨ ψp. This implies (∨n

k=1αkjk) |= π.
So π must be equivalent to (∨n

k=1αkjk), i.e, otherwise we are getting a stronger
implicate (∨n

k=1αkjk) than π contradicting our assumption that π is a prime
implicate. Since (∨n

k=1αkjk) ∈ CANDi, an element of CANDi is equivalent to
a prime implicate of Ti.

If (2) holds, then (∨n
k=1βkjk) |= φ1 ∨ . . . ∨ φq. This implies ♦(∨n

k=1βkjk) |=
♦(φ1∨. . .∨φq). As |= ♦(p∨q) ↔ ♦p∨♦q, so (∨n

k=1♦βkjk) |= ♦φ1∨. . .∨♦φq . Hence,
(∨n

k=1♦βkjk) |= π. So π must be equivalent to (∨n
k=1♦βkjk), otherwise we are

getting a stronger implicate (∨n
k=1♦βkjk) than π contradicting our assumption

that π is a prime implicate. Since (∨n
k=1♦βkjk) ∈ CANDi, an element of CANDi

is equivalent to a prime implicate of Ti.
If (3) holds, then (∨n

k=1γkjk) |= ξm∨φ1∨ . . .∨φq. This implies �(∨n
k=1γkjk) |=

�(ξm ∨ φ1 ∨ . . . ∨ φq). As �(p → q) |= ♦p → ♦q, so �(¬p ∨ q) |= ¬♦p ∨ ♦q.
As ¬♦p ∨ ♦q ≡ �¬p ∨ ♦q so �(¬p ∨ q) |= �¬p ∨ ♦q. So taking ¬p = p1 we
get �(p1 ∨ q) |= �p1 ∨ ♦q. So �(ξm ∨ φ1 ∨ . . . ∨ φq) |= �ξm ∨ ♦(φ1 ∨ . . . ∨
φq) |= �ξm ∨ ♦φ1 ∨ . . . ∨ ♦φq. Hence �(∨n

k=1γkjk) |= �ξm ∨ ♦φ1 ∨ . . . ∨ ♦φq .
So �(∨n

k=1γkjk) |= π. So π must be equivalent to �(∨n
k=1γkjk) otherwise we are

getting a stronger implicate �(∨n
k=1γkjk) than π contradicting our assumption

that π is a prime implicate. Since �(∨n
k=1γkjk) ∈ CANDi, an element of CANDi

is equivalent to a prime implicate of Ti.
If (4) holds, then ((∨n

i=1i
=sαij) ∨ (∨n
s=1i
=sβsk)) |= φ1 ∨ . . . ∨ φq. This implies

♦((∨n
i=1i
=sαij) ∨ (∨n

s=1i
=sβsk)) |= ♦(φ1 ∨ . . . ∨ φq). As |= ♦(p ∨ q) ↔ ♦p ∨ ♦q,
so ((∨n

i=1i
=s♦αij) ∨ (∨n
s=1i
=s♦βsk)) |= ♦φ1 ∨ . . . ∨ ♦φq . As |= p → ♦p, so

(∨n
i=1i
=sαij) |= (∨n

i=1i
=s♦αij). This implies ((∨n
i=1i
=sαij) ∨ (∨n

s=1i
=s♦βsk)) |=
((∨n

i=1i
=s♦αij)∨ (∨n
s=1i
=s♦βsk)) |= ♦φ1 ∨ . . .∨♦φq . So, we have ((∨n

i=1i
=sαij)∨
(∨n

s=1i
=s♦βsk)) |= π. So π must be equivalent to ((∨n
i=1i
=sαij)∨ (∨n

s=1i
=s♦βsk))
otherwise we are getting a stronger implicate ((∨n

i=1i
=sαij)∨(∨n
s=1i
=s♦βsk)) than

π contradicting our assumption that π is a prime implicate. Since ((∨n
i=1i
=sαij)∨

(∨n
s=1i
=s♦βsk)) ∈ CANDi, an element of CANDi is equivalent to a prime im-

plicate of Ti.
If (5) holds, then ((∨n

i=1i
=sαij)∨(∨n
s=1i
=sγsk)) |= ξm∨φ1∨. . .∨φq. This implies

�((∨n
i=1i
=sαij)∨(∨n

s=1i
=sγsk)) |= �(ξm∨φ1∨. . .∨φq). As |= (�p∨�q) → �(p∨q),
so ((∨n

i=1i
=s�αij) ∨ (∨n
s=1i
=s�γsk)) |= �((∨n

i=1i
=sαij) ∨ (∨n
s=1i
=sγsk)). Hence,

((∨n
i=1i
=s�αij)∨(∨n

s=1i
=s�γsk)) |= �(ξm∨φ1∨ . . .∨φq). In the proof of case (3)
we have shown that �(p1∨q) |= �p1∨♦q. So ((∨n

i=1i
=s�αij)∨(∨n
s=1i
=s�γsk)) |=

�ξm ∨ ♦(φ1 ∨ . . . ∨ φq) |= �ξm ∨ ♦φ1 ∨ . . . ∨ ♦φq . Hence ((∨n
i=1i
=s�αij) ∨

(∨n
s=1i
=s�γsk)) |= π. So π must be equivalent to ((∨n

i=1i
=s�αij)∨(∨n
s=1i
=s�γsk))

otherwise we are getting a stronger implicate ((∨n
i=1i
=s�αij)∨(∨n

s=1
i
=s

�γsk)) than

π contradicting our assumption that π is a prime implicate. Since ((∨n
i=1
i
=s

�αij)∨

(∨n
s=1
i
=s

�γsk)) ∈ CANDi, an element of CANDi is equivalent to a prime implicate

of Ti.

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 199

If (6) holds, then ((∨n
i=1i
=sβij) ∨ (∨n

s=1i
=sγsk)) |= φ1 ∨ . . . ∨ φq. This implies
♦((∨n

i=1i
=sβij) ∨ (∨n
s=1i
=sγsk)) |= ♦(φ1 ∨ . . . ∨ φq). As |= ♦(p ∨ q) ↔ ♦p ∨ ♦q,

So ((∨n
i=1i
=s♦βij) ∨ (∨n

s=1i
=s♦γsk)) |= ♦φ1 ∨ . . . ∨ ♦φq. As |= �p → ♦p. so
((∨n

i=1i
=s♦βij) ∨ (∨n
s=1i
=s�γsk)) |= ((∨n

i=1i
=s♦βij) ∨ (∨n
s=1i
=s♦γsk)) |= ♦φ1 ∨

. . .∨♦φq . Hence ((∨n
i=1i
=s♦βij)∨ (∨n

s=1i
=s�γsk)) |= π. So π must be equivalent
to ((∨n

i=1i
=s♦βij)∨(∨n
s=1i
=s�γsk)) otherwise we are getting a stronger implicate

((∨n
i=1i
=s♦βij) ∨ (∨n

s=1i
=s�γsk)) than π contradicting our assumption that π is
a prime implicate. Since ((∨n

i=1i
=s♦βij)∨ (∨n
s=1
i
=s

�γsk)) ∈ CANDi, an element of

CANDi is equivalent to a prime implicate of Ti.
If (7) holds, then ((∨n

m=1m
=i
=sαmt) ∨ (∨n
i=1m
=i
=sβij) ∨ (∨n

s=1m
=i
=sγsk)) |=
φ1∨. . .∨φq . So, ♦((∨n

m=1m
=i
=sαmt)∨(∨n
i=1m
=i
=sβij)∨(∨n

s=1m
=i
=sγsk)) |= ♦(φ1∨
. . .∨φq). As |= ♦(p∨ q) ↔ ♦p∨♦q, so ((∨n

m=1m
=i
=s♦αmt)∨ (∨n
i=1m
=i
=s♦βij)∨

(∨n
s=1m
=i
=s♦γsk)) |= ♦φ1 ∨ . . . ∨ ♦φq. As |= p → ♦p, |= ♦p → ♦p and

|= �p → ♦p, hence ((∨n
m=1m
=i
=sαmt)∨ (∨n

i=1m
=i
=s♦βij)∨ (∨n
s=1m
=i
=s�γsk)) |=

((∨n
m=1m
=i
=s♦αmt) ∨ (∨n

i=1m
=i
=s♦βij) ∨ (∨n
s=1m
=i
=s♦γsk)) |= ♦φ1 ∨ . . . ∨ ♦φq .

Hence ((∨n
m=1m
=i
=sαmt) ∨ (∨n

i=1m
=i
=s♦βij) ∨ (∨n
s=1m
=i
=s�γsk)) |= π. Hence π

must be equivalent to ((∨n
m=1m
=i
=sαmt)∨ (∨n

i=1m
=i
=s♦βij)∨ (∨n
s=1m
=i
=s�γsk))

else we are getting a stronger implicate ((∨n
m=1m
=i
=sαmt) ∨ (∨n

i=1m
=i
=s♦βij) ∨
(∨n

s=1m
=i
=s�γsk)) than π contradicting our assumption that π is a prime im-
plicate. Since ((∨n

m=1
m
=i
=s

αmt) ∨ (∨n
i=1

m
=i
=s
♦βij) ∨ (∨n

s=1
m
=i
=s

�γsk)) ∈ CANDi, an

element of CANDi is equivalent to a prime implicate of Ti. Hence it is proved.

From the above theorem we conclude that every prime implicate of Ti is equiv-
alent to some element of CANDi, so every prime implicate of T is equivalent
to some element of ∪n

i CANDi, i.e, equivalent to some element of CANDID.
Now by the help of following theorem 8, we delete the clauses entailed by other
clauses in CANDID using residue of subsumption operation to remain with the
set of prime implicates of T . As T = MODPI(Π(X), F) and by lemma 1 we
know Π(X ∧ F) = Π(Π(X) ∧ F) so we find the prime implicates of X ∧ F .

Theorem 8. Π(X ∧ F) = Res(CANDID) = CANDIDATES, i.e, the algo-
rithm ITER MODPI computes exactly the set of prime implicates.

Proof. Let C ∈ Π(X ∧ F). Since C is also an implicate of X ∧ F , there exists
D ∈ CANDID such that D |= C. If C �∈ CANDID then D an implicate of X∧F
entails C and D �= C. This contradicts that C is prime. Hence C ∈ CANDID.
This proves that π(X∧F) ⊆ CANDID. Let Ψ(X∧F) be the set of implicates of
X∧F . Since the Distribution property (refer [1]) is satisfied by definition 4 (refer
[1]), so CANDID ⊆ Ψ(X ∧F). If D ∈ Ψ(X ∧F)−CANDID then D is entailed
by some clause C ∈ CANDID. Therefore Res(CANDID) = Res(Ψ(X ∧ F)).
As Res(Ψ(X ∧ F)) = Π(X ∧ F), this implies Res(CANDID) = Π(X ∧ F).

Theorem 9. The algorithm ITER MODPI terminates all the time.

Proof. The algorithm MODPI outputs only a finite set of terms. This implies
the set Δ(T) contains only finite number of elements for each T . Thus CANDID

200 M.K. Raut

has also finite set of elements. In the final step, the algorithm takes residue of
subsumption on CANDID by comparing each pair of elements exactly once.
As the comparision always comes to an end because of finite number of pairs in
CANDID, so the algorithm ITER MODPI terminates all the time.

Theorem 10. The length of the smallest clausal representation of a prime im-
plicate of a formula Π∧F does not exceed (|Π |+2|F |)∗n3|Π∧F |+(n3|Π∧F |−1).

Proof. The number of prime implicates of Π ∧F generated by ITER MODPI
does not exceed n3|Π∧F | disjuncts as MODPI outputs n3|Π∧F | formulas on
input Π∧F by Theorem 4. The length of each disjunct does not exceed Π |+2|F |
by Theorem 3. So the total number of symbols is (Π | + 2|F |) × n3|Π∧F |. But
there exists n3|Π∧F | − 1 disjunction symbols which connect n3|Π∧F | disjuncts.
So the length of the smallest clausal representation of a prime implicate of a
formula Π ∧ F does not exceed (Π |+ 2|F |) ∗ n3|Π∧F | + (n3|Π∧F | − 1).

Theorem 11. The number of prime implicates, which are not equivalent, of a

formula Π ∧ F does not exceed |Π ∧ F |n3|Π∧F |
.

Proof. We know by Theorem 6 that every prime implicate of Π∧F is equivalent
to some clause output by ITER MODPI and those clauses are arranged in the
form ∨T∈MODPIΓT where ΓT ∈ Δ(T). By Theorem 4, we know that the number
of terms in MODPI does not exceed n3|Π∧F |. So these clauses cann’t exceed
n3|Π∧F | disjuncts. Since |Δ(T)| is bounded above by |Π ∧F |, so ΓT has |Π ∧F |
alternatives. This implies, the number of clauses output by ITER MODPI does

not exceed |Π ∧F |n3|Π∧F |
. Hence the number of prime implicates, which are not

equivalent, does not exceed |Π ∧ F |n3|Π∧F |
.

Example 2. Consider a formula X = a∧((♦(b∧c)∧♦b)∨(♦b∧♦(c∨d)∧�e∧�f)).
The set of prime implicates of X as computed in [1] is Π(X) = {a∨a,♦(b∧ c)∨
�(e ∧ f),♦(b ∧ c) ∨ ♦(b ∧ e ∧ f),♦(b ∧ c) ∨ ♦((c ∨ d) ∧ e ∧ f)}. As Example 1 is
very big we consider a new formula here. Let F = �(a ∧ c) be a new formula.
Now the prime implicates of X ∧F is computed from Π(X)∧F as given below.

Compute T1 = {T1, T2} where T1 = a ∧ �(a ∧ c) and also T2 = a ∧ �(a ∧ c).
Then AT1 = {a}, BT1 = ∅, CT1 = a ∧ c. Δ(T1) = {a,�(a ∧ c),♦(a ∧ c)} and also
Δ(T2) = {a,�(a ∧ c),♦(a ∧ c)}. Then CAND1 = Δ(T1) ∨ Δ(T2) = {a ∨ a, a ∨
�(a∧ c), a∨ ♦(a∧ c),�(a∧ c)∨ a,�(a∧ c)∨�(a∧ c),�(a∧ c)∨ ♦(a∧ c),♦(a∧
c) ∨ a,♦(a ∧ c) ∨ �(a ∧ c),♦(a ∧ c) ∨ ♦(a ∧ c)} = {a ∨ a, a ∨�(a ∧ c), a ∨ ♦(a ∧
c),�(a ∧ c),�(a ∧ c) ∨ ♦(a ∧ c),♦(a ∧ c)}.

Now compute T2 = {T3, T4}, where T3 = ♦(b∧c)∧�(a∧c) and T4 = �(e∧f)∧
�(a∧c). Then AT3 = ∅, BT3 = b∧c, CT3 = a∧c. Δ(T3) = {�(a∧c),♦(b∧c∧a∧c)}
and AT4 = ∅, BT4 = ∅, CT4 = e∧f∧a∧c. Δ(T4) = {�(e∧f∧a∧c),♦(e∧f∧a∧c)}.
Then CAND2 = Δ(T3)∨Δ(T4) = {�(a∧ c)∨�(e∧ f ∧ a ∧ c),�(a ∧ c) ∨ ♦(e∧
f ∧ a ∧ c),♦(b ∧ c ∧ a ∧ c) ∨�(e ∧ f ∧ a ∧ c),♦(b ∧ c ∧ a ∧ c) ∨ ♦(e ∧ f ∧ a ∧ c)}

Similarly, T3 = {T5, T6}, where T5 = ♦(b∧c)∧�(a∧c) and T6 = ♦(b∧e∧f)∧
�(a∧c). So AT5 = ∅, BT5 = b∧c, CT5 = a∧c. Δ(T5) = {�(a∧c),♦(b∧c∧a∧c)}

An Incremental Algorithm for Computing Prime Implicates in Modal Logic 201

and AT6 = ∅, BT6 = b∧e∧f, CT6 = a∧c. Δ(T6) = {�(a∧c),♦(b∧e∧f ∧a∧c)}.
CAND3 = Δ(T5) ∨ Δ(T6) = {�(a ∧ c) ∨ �(a ∧ c),�(a ∧ c) ∨ ♦(b ∧ e ∧ f ∧ a ∧
c),♦(b ∧ c ∧ a ∧ c) ∨�(a ∧ c),♦(b ∧ c ∧ a ∧ c) ∨ ♦(b ∧ e ∧ f ∧ a ∧ c)

Similarly, T4 = {T7, T8}, where T7 = ♦(b ∧ c) ∧ �(a ∧ c) and T8 = ♦((c ∨
d) ∧ e ∧ f) ∧ �(a ∧ c). Then AT7 = ∅, BT7 = b ∧ c, CT7 = a ∧ c. Δ(T7) =
{�(a ∧ c),♦(b ∧ c ∧ a ∧ c)} and AT8 = ∅, BT8 = (c ∨ d) ∧ e ∧ f, CT8 = a ∧ c.
Δ(T8) = {�(a ∧ c),♦((c ∨ d) ∧ e ∧ f ∧ a ∧ c)}. CAND4 = Δ(T7) ∨ Δ(T8) =
{�(a∧ c)∨�(a∧ c),�(a∧ c)∨♦((c ∨ d)∧ e∧ f ∧ a∧ c),♦(b ∧ c∧ a∧ c)∨�(a∧
c),♦(b ∧ c ∧ a ∧ c) ∨ ♦((c ∨ d) ∧ e ∧ f ∧ a ∧ c).

Now CANDID = CAND1 ∪ CAND2 ∪ CAND3 ∪ CAND4.

So the set of prime implicates is CANDIDATES = Res(CANDID) = {a∨
a,�(a ∧ c),♦(b ∧ c ∧ a ∧ c) ∨�(e ∧ f ∧ a ∧ c),♦(b ∧ c ∧ a ∧ c) ∨ ♦(b ∧ e ∧ f ∧ a ∧
c),♦(b ∧ c ∧ a ∧ c) ∨ ♦((c ∨ d) ∧ e ∧ f ∧ a ∧ c)}.

4 Conclusion

In this paper, we have suggested an incremental algorithm to compute the set of
prime implicates of a knowledge base KB and a new knowledge base (i.e, a for-
mula) F . We have also proved the correctness of the algorithm.When new clauses
or terms are added, computation of the prime implicates uses the primeness of
the already computed clauses or terms. If we compute the prime implicates of
KB ∧ F directly by using the algorithm from [1], we obtain the same prime
implicates, though it involves wasteful computations. Efficiency of the proposed
algorithm ITER MODPI results in exploiting the properties of Π(X) instead
of using X directly. By Implicant-Implicate duality (refer [1]) any algorithm for
computing prime implicates can be used to compute prime implicants. So our
algorithm can be used to compute prime implicants incrementally.

References

1. Bienvenu, M.: Prime implicates and prime implicants: From propositional to modal
logic. J. Artif. Intell. Res. (JAIR) 36, 71–128 (2009)

2. Bienvenu, M.: Consequence Finding in Modal Logic. PhD Thesis, Universit Paul
Sabatier (May 7, 2009)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd ACM
Symp. on the Theory of Computing, pp. 151–158. ACM Press (1971)

4. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Communications-
The European Journal for Articial Intelligence 10, 137–150 (1998)

5. Coudert, O., Madre, J.: Implicit and incremental computation of primes and essen-
tial primes of boolean functions. In: Proceedings of the 29th ACM/IEEE Design
Automation Conference, pp. 36–39. IEEE Computer Society Press (1991)

6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

7. Jackson, P., Pais, J.: Computing prime implicants. In: Stickel, M.E. (ed.) CADE
1990. LNCS, vol. 449, pp. 543–557. Springer, Heidelberg (1990)

202 M.K. Raut

8. Kean, A., Tsiknis, G.: An incremental method for generating prime impli-
cants/implicates. J. Symb. Comput. 9(2), 185–206 (1990)

9. de Kleer, J.: An assumption-based tms. In: Ginsberg, M.L. (ed.) Readings in Non-
monotonic Reasoning, pp. 280–297. Kaufmann, Los Altos (1987)

10. de Kleer, J.: An improved incremental algorithm for generating prime implicates.
In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI
1992, pp. 780–785. AAAI Press (1992)

11. Ngair, T.H.: A new algorithm for incremental prime implicate generation. In: Proc.
of the 13th IJCAI, Chambery, France, pp. 46–51 (1993)

12. Raut, M.K., Singh, A.: Prime implicates of first order formulas. IJCSA 1(1), 1–11
(2004)

13. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance sys-
tems. In: Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI 1987), pp. 183–188 (1987)

14. Shiny, A.K., Pujari, A.K.: Computation of prime implicants using matrix and
paths. J. Log. Comput. 8(2), 135–145 (1998)

15. Slagle, J.R., Chang, C.L., Lee, R.C.T.: A new algorithm for generating prime
implicants. IEEE Trans. on Comp. C-19(4), 304–310 (1970)

16. Strzemecki, T.: Polynomial-time algorithm for generation of prime implicants.
Journal of Complexity 8, 37–63 (1992)

17. Tison, P.: Generalized consensus theory and application to the minimisation of
boolean functions. IEEE Trans. on Elec. Comp. EC-16(4), 446–456 (1967)

18. Pagnucco, M.: Knowledge compilation for belief change. In: Sattar, A., Kang, B.-H.
(eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 90–99. Springer, Heidelberg (2006)

19. Przymusinski, T.C.: An algorithm to compute circumscription. Artif. Intell. 38(1),
49–73 (1989)

20. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2002)

21. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of modal logic. Elsevier,
Amsterdam (2007)

22. Jackson, P.: Computing prime implicants incrementally. In: Proceedings of the 11th
International Conference on Automated Deduction, vol. 607, pp. 253–267 (1992)

23. Raut, M.K.: An incremental knowledge compilation in first order logic. CoRR,
abs/1110.6738 (2011)

Approximation Algorithms

for the Weight-Reducible Knapsack Problem�

Marc Goerigk1, Yogish Sabharwal2, Anita Schöbel3, and Sandeep Sen4

1 University of Kaiserslautern, Germany
2 IBM Research Delhi, India

3 University of Göttingen, Germany
4 IIT Delhi, India

Abstract. We consider the weight-reducible knapsack problem, where
we are given a limited budget that can be used to decrease item weights,
and we would like to optimize the knapsack objective value using such
weight improvements.

We develop a pseudo-polynomial algorithm for the problem, as well
as a polynomial-time 3-approximation algorithm based on solving the
LP-relaxation.

Furthermore, we consider the special case of one degree of im-
provement with equal improvement costs for each item, and present a
linear-time 3-approximation algorithm based on solving a cardinality-
constrained and a classic knapsack problem, and show that the analysis
of the polynomial-time 3-approximation algorithm can be improved to
yield a 2-approximation.

Keywords: knapsack problem, approximation algorithms, improvable
optimization problems.

1 Introduction

We consider the notion of improvable optimization problems, in which there
are two kinds of problem data: Firstly, the ”nominal” or un-improved data,
and secondly, ”improved” data of several stages that would allow solutions with
better performance. We are allowed to use some of the improved data, but each
of the improvements has a cost, and a budget constraint on the improvements
have to be considered.

This kind of general problem extension can be considered for a wide range of ap-
plications: As examples, consider the shortest path problem,wherewe can improve
some of the arcs in the graph; the maximum flow problem, where we may increase
arc capacities; or the knapsack problem, where item weights can be reduced.

Typically, such a problem extension will increase the complexity of a given
polynomially solvable problem to being NP-hard. It can easily be shown that

� Partially supported by grants SCHO 1140/6-3 within the Indo-German DST-
DFG Programme and SCHO 1140/3-2 within the DFG programme Algorithm
Engineering.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 203–215, 2014.
c© Springer International Publishing Switzerland 2014

204 M. Goerigk et al.

this is the case, e.g., for shortest path, spanning tree, or max flow. In the fol-
lowing, we will consider the improvable knapsack problem in more detail as a
starting point of analysis; specifically, we will develop solution approaches for the
weight-reducible knapsack problem. Practical motivations for this kind of prob-
lem appear whenever it is possible to reduce the weight of an item by spending
money, e.g. a hiking group may buy lighter sleeping bags instead of taking the
heavier ones which are already there. The situation is similar to the time-cost
trade-off problem where the duration of an activity can be shortened by e.g. hir-
ing additional workers. Applications may include loading of train wagons, where
we have a limited amount of improved containers available with less weight than
the standard model, or an additional sponsor for reducing the costs of a given
number of projects competing for the same budget. Another line of application
is robust planning for uncertain weights: Here, the maximal weight has to be
taken into account. However, for a limited set of items, additional measurements
can be taken which reveal their true weights.

The knapsack problem itself is one of the classic problems in discrete opti-
mization and has been intensely studied in many variants; [1] gives an overview
on the topic. In its basic form, it can be written as an integer (Boolean) linear
program (IP) in the following way:

(KP) max

{
n∑

i=1

pixi :
n∑

i=1

wixi ≤ B, x ∈ Bn

}
,

where pi ∈ R and wi ∈ R denote the profit and the weight of item i, respectively,
and B ∈ R the available budget.

In the variant we consider here, we are able to decrease the weight of items,
but only for a limited number of items.

In particular, we assume that we are given multiple weights for every item i:
A weight wi,0 that corresponds to the “unimproved” case, and weights wi,j(i) ≤
. . . ≤ wi,1 ≤ wi,0 that specify “improved” weights of different levels. However,
each improvement has its cost, and we are given a budget on the total value of
improvement that we may make.

Contributions and Overview. We formally introduce weight-reducible knapsack
problems in Section 2. In Sections 3 and 4, we develop a pseudo-polynomial solu-
tion algorithm, and a polynomial-time 3-approximation algorithm, respectively.
We then consider the special case of a single possible improvement per item with
equal improvement costs in Section 5, and derive a linear-time 3-approximation
algorithm, based on solving a cardinality-constrained and a classic knapsack
problem. Furthermore, we show that the analysis of the 3-approximation algo-
rithm from Section 4 can be refined in this case, to yield a 2-approximation. This
work is concluded in Section 6, and pointers to future research are given.

2 Problem Definition and Notation

In the following description we assume that a set of n items [n] := {1, . . . , n} with
profits pi, i = 1, . . . , n and a budget B is given. Let KP(p, w) denote the classic

Approximation Algorithms for the Weight-Reducible Knapsack Problem 205

knapsack problem with weight vector w and KP∗(p, w) its optimal objective
value. As we will mostly be interested in problems for varying weights w, we
will write KP(w) and KP∗(w) for short, if the profits are clear from the context.
Furthermore, we shall write p(J) to denote the sum of profits of the items J ⊆ [n].

An instance of the weight-reducible knapsack problem is given by the same set
of items [n] with profits pi, i ∈ [n], a budget B, and original weights wi,0, i ∈ [n].
Additionally, we given given reduced weights wi,1 ≥ . . . ≥ wi,j(i) for all i ∈ [n],
along with increasing improvement costs qi,1 ≤ . . . ≤ qi,j(i) and an improvement
budget k.

The goal is to determine the degree of improvement �i ∈ {0, . . . , j(i)} for each
item i, such that

n∑
i=1

qi,�i ≤ k,

where qi,0 = 0, and then to solve the resulting knapsack problem with the
resulting weights wi,�i , i.e., to determine a set of items with maximal profit.
Note that any improvement on items that are not used in the knapsack problem
solution would be redundant.

We denote this problem as WRKP, and will also write WRKP∗ for its optimal
objective value.

Note that we may assume that wi,j(i) ≤ B for all i ∈ [n] (otherwise just delete
item i in a preprocessing step, since it can never be packed). It is easily seen
that WRKP is NP-complete, as it corresponds to a classic knapsack problem if
k = 0.

We now present an integer programming (IP) formulation for the problem. As
before, let a variable xi denote if item i ∈ [n] is packed or not. We additionally
introduce variables zi,�, � ∈ [j(i)], to model the degree of weight-improvement
for item i.

max
n∑

i=1

pixi (1)

s.t.

n∑
i=1

wi,0xi +

j(i)∑
�=1

(wi,� − wi,�−1)zi,� ≤ B (2)

n∑
i=1

j(i)∑
�=1

(qi,� − qi,�−1)zi,� ≤ k (3)

zi,1 ≤ xi ∀i = 1, . . . , n (4)

zi,�+1 ≤ zi,� ∀i = 1, . . . , n and ∀� = 1, . . . , j(i)− 1 (5)

xi, zi,� ∈ B ∀i = 1, . . . , n and ∀� = 1, . . . , j(i) (6)

Constraint (2) models the item weight budget; while the left term
∑n

i=1 wi,0xi

captures the item weight without improvements, the telescope sum
∑j(i)

�=1(wi,�−
wi,�−1)zi,� reduces this weight to the desired degree of improvement. To this end,
we demand that for a certain variable zi,� to be one, also the preceding variables

206 M. Goerigk et al.

in zi,�−1, . . . , zi,1, xi have to be one using Constraints (4) and (5). Finally, we
model the improvement budget using Constraint (3).

Note that we may consider this problem as a special case of a multi-dimensional
knapsack problem with conflict constraints (for the one-dimensional case, we re-
fer to [2,3]). For a constant number of knapsack constraints, as is the case here,
one can apply the randomized rounding methods proposed in [4] to obtain a
randomized e/(e− 1)-approximation algorithm1. However, as this rounding ap-
proach can be applied to a broad class of problems, it is also significantly more
complex than the easily implementable and deterministic methods we propose
here. It may be noted that, no explicit analysis is presented in [4] except for a
claim that the method takes polynomial time.

3 A Pseudo-Polynomial Algorithm

We begin with an algorithm for integral profits, and subsequently using scaling
techniques to obtain a more efficient variation at the expense of 1 + ε approxi-
mation in the objective value. The basic idea of updating a table with relevant
problem information can be found in, e.g., [5] for the knapsack problem.

3.1 Dynamic Programming for Integral Profits

Let W (i, q, r) denote the minimum weight of objects among {x1 . . . xi} that
can attain profit r using at most q weight-improvement budget. The following
observations are immediate.

1. W (i, 0, r) is the standard version of the knapsack problem where the optimal
solution is argmaxr{W (n, 0, r) ≤ B} where the weights are wi,0 and r ≤ P =∑

i pi.
2. W (i, q + 1, r) ≤ W (i, q, r), viz., more weight reductions cannot decrease the

the value of the solution.

We can now write the following recurrence for 1 ≤ n, 1 ≤ q ≤ k, 1 ≤ r ≤ P : For
an item i, there are weight reductions with increasing costs qi,1 ≤ . . . ≤ qi,j(i)
that yields (decreasing) weights wi,1 ≥ . . . ≥ wi,j(i). We can now write the
following dynamic programming recurrence

W (i, q, r) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i − 1, q, r), do not use i

W (i − 1, q, r − pi) + wi,0, i is not reduced

W (i − 1, q − qi,1, r − pi) + wi,1, it costs qi,1 for wi,1

W (i − 1, q − qi,2, r − pi) + wi,2, it costs qi,2 for wi,2

. . . , it costs qi,� for wi,�

W (i − 1, q − qi,j(i), r − pi) + wi,j(i) it costs qi,j(i) for wi,j(i)

(7)

1 We thank the anonymous reviewer for pointing out this reference.

Approximation Algorithms for the Weight-Reducible Knapsack Problem 207

It may be noted that reducing the weight of the i-th item and not choosing it
is worse than the first term, and hence need not be considered. Let W (i, x, r) =
−∞ for x < 0 so that we do not consider terms in the dynamic programming
where the query cost exceeds the current query budget. Use the base case as
W (1, 0, r) = w1,0 for r = p1 and 0 otherwise. We assume that qi,j for all i, j are
integral and each entry of the table can be computed in maxi j(i) ≤ Q steps.

Algorithm 1. Pseudo-polynomial Algorithm for WRKP

Require: A problem instance of WRKP with integer weights.
1: Initialize the table W = n× k × P to −∞. Set W (1, 0, r) = w1,0 for r = p1, and 0

otherwise.
2: for q = 0 to C do
3: for i = 1 to n do
4: for r = 1 to P do
5: W (i, q, r) = according to Equation 7
6: end for
7: end for
8: end for
9: return argmaxr{W (n, k, r) ≤ B}.

Lemma 1. Algorithm 1 takes time O(nkQP) where k is the budget for weight
improvement queries.

Proof. Each entry can be computed in Q steps where the order of computation
proceeds from q = 0 to C and for a fixed q, we compute the entries in increasing
order of i and r (for a fixed i, in increasing order of r).

3.2 Faster Approximation Algorithms Using Profit Scaling

Using profit scaling, we now convert the previous algorithm into a more efficient
version by compromising with an approximation factor in the objective function.
Suppose we want to compute a solution with an objective value of at least
(1−ε)WRKP∗. We use the scaling method, namely for any object xi, we consider
its new profit p′i = �pi

K � where K = ε·pmax

n and2 use this to run the dynamic
programming equation.

Using p′max = O(n/ε), the running time of the algorithm is O(nkQ · n · n
ε).

which is similar to the classic FPTAS for Knapsack [6].

Theorem 1. The dynamic programming algorithm for multiple weight reduction

returns a solution with objective value at least (1− ε)WRKP∗ in O(n
3·Qk
ε) time.

Remark. If the total improvement budget k is bounded by a polynomial in n
this is an FPTAS.

2 K ≤ ε ·WRKP∗/n suffices.

208 M. Goerigk et al.

Algorithm 2. FPTAS for WRKP

Require: A problem instance of WRKP, and ε > 0.
1: Set K = εpmax

n
. Let p′i = � pi

K
�

2: Solve the instance WRKP(p′, k,W,Q) using Algorithm 1. Let (x, z) be the resulting
solution.

3: return (x, z)

4 A Polynomial-Time 3-Approximation Algorithm

We now present a polynomial time approximation algorithm for the weight-
reducible knapsack problem. This is achieved at a cost of relaxing the approxi-
mation to factor 3.

To see this, we consider the LP relaxation obtained by relaxing constraints
(6) to

xi ≤ 1 ∀i = 1, . . . , n (8)

zi,j(i) ≥ 0 ∀i = 1, . . . , n (9)

Thus, there are j(i) + 2 constraints associated with every item – obtained from
constraints (8), (9) above combined with constraints (4) and (5) recalled below:

zi,1 ≤ xi ∀i = 1, . . . , n (4)

zi,�+1 ≤ zi,� ∀i = 1, . . . , n & ∀� = 1, . . . , j(i)− 1 (5)

In addition, we have the knapsack and k-constraints. Therefore, the total number
of constraints is

2 +

n∑
i=1

(j(i) + 2) .

As there are j(i) + 1 variables associated with every item, the total number of
variables is

n∑
i=1

(j(i) + 1).

Moreover the LP is bounded. Therefore the number of tight constraints in an
optimal basic feasible solution must be

n∑
i=1

(j(i) + 1).

This implies that at most n + 2 constraints can be non-tight in a basic fea-
sible solution. Let us see how the items contribute non-tight constraints. The
important observation is that for any item i, all j(i) + 2 constraints cannot be
simultaneously tight as this would imply that

0 = zi,j(i) = . . . zi,�+1 = zi,� = . . . = xi = 1

Approximation Algorithms for the Weight-Reducible Knapsack Problem 209

which is not possible. Thus every item must contribute at least 1 non-tight
constraint. Since the total number of non-tight constraints can be at most n +
2, at most 2 items can contribute more than 1 non-tight constraint; all the
remaining items must contribute only 1 non-tight constraint.

Now consider an item that contributes exactly 1 non-tight constraints. Then
one of the cases holds depending on which constraint is non-tight:

– If zi,j(i) > 0, then
zi,j(i) = . . . = zi,1 = xi = 1.

– If zi,k+1 < zi,k for some 1 ≤ k ≤ j(i)− 1, then

0 = zi,j(i) = . . . = zi,k+1 and zi,k = . . . = zi,1 = xi = 1.

– If zi,1 < xi, then

0 = zi,j(i) = . . . = zi,1 and xi = 1.

– If xi < 1, then
0 = zi,j(i) = . . . = zi,1 = xi.

Thus, if an item contributes exactly 1 non-tight constraint, then all the variables
associated with this item must be integral. We call such items to be integral.

Now, since at most 2 items can contribute more than 1 non-tight constraint,
it implies that there can be at most two items that are not integral. We create 3
integral solutions from the LP solution: One consisting of all the integral items
in the LP solution and one each corresponding to the two items that are not
integral. Clearly the one with the best profit is a 3-approximate solution. We
summarize this approach as Algorithm 3.

Algorithm 3

Require: A problem instance of WRKP.
1: Compute an optimal basic solution of the LP relaxation of WRKP. Let J be the

indices of integral items that are packed, and let Z denote the accompanying vec-
tor of integral improvements. Let xf1 and xf2 denote the fractional items of the
solution, if they exist.

2: return argmax{p(J, Z), p(xf1), p(xf2)}

5 The Special Case of One Improvement per Item

We now assume consider the weight-reducible knapsack problem with the special
case that j(i) = 1, and qi,1 = 1 for all i ∈ [n]; i.e., each item can be improved
at most once, and the number of such improvements is bounded by k. For the
ease of presentation, we will write wi := wi,0 for the unimproved weights, and
ŵi := wi,1 for the improved weights.

210 M. Goerigk et al.

We discuss two ways to formulate this special case as an integer program.
Both IP formulations are used later on. In the first formulation we use Boolean
variables x̄i and x̂i which are equal to one if item i is chosen with its original,
or its reduced weight, respectively.

max

n∑
i=1

pi(x̄i + x̂i) (10)

s.t.

n∑
i=1

wix̄i +

n∑
i=1

ŵix̂i ≤ B

n∑
i=1

x̂i ≤ k

x̄i + x̂i ≤ 1 ∀i = 1, . . . , n

x̄, x̂ ∈ Bn

The second formulation uses Boolean variables xi, indicating if item i has been
chosen, and Boolean variables zi to specify if the reduced weight of item i is
taken.

max

n∑
i=1

pixi (11)

s.t.

n∑
i=1

wixi ≤ B +

n∑
i=1

(wi − ŵi)zi

n∑
i=1

zi ≤ k

zi ≤ xi ∀i = 1, . . . , n

z, x ∈ Bn

Note that this special case of weight-reducible knapsack problem is related to
the cardinality-constrained knapsack problem (k-CKP), where we are allowed
to pack at most k items. To model it as an integer program, we simply add a
constraint limiting the number of items to (KP):

(CKP) max

{
n∑

i=1

pixi :

n∑
i=1

wixi ≤ B,

n∑
i=1

xi ≤ k, x ∈ Bn

}
.

[7] and [8] present algorithms for this kind of problem. However, note that a
feasible solution for the weight-reducible knapsack problem may contain more
than k items. The k-CKP is important for some of our results. We will denote the
knapsack problem with cardinality constraint as CKP(k, w) or simply k-CKP,
and its optimal objective value as CKP∗.

Approximation Algorithms for the Weight-Reducible Knapsack Problem 211

5.1 A Linear-Time 3-Approximation Algorithm

We first note that a linear-time 4-approximation algorithm can be easiliy
achieved: Following [7], there is a 2-approximation algorithm for CKP, with
linear runtime due to [9]. Using that

WRKP∗ ≤ 2max
{
CKP∗(k, ŵ),KP∗(w)

}
,

we can immediately construct a 4-approximative solution by solving the car-
dinality constrained knapsack problem with improved weights, and the classic
knapsack problem with unimproved weights using 2-approximations. As the lin-
ear runtime result from [9] assumes a constant number of constraints, it does
not apply to the algorithm presented in Section 4.

We now consider an approach that is based on creating a cardinality-constrained
knapsack problem again. In particular, given a WRKP instance with weights w
and ŵ, we create a CKP instance by doubling all items; i.e., we create an instance
consisting of 2n items, where the first n items have weightw, and the next n items
have weight ŵ. As a slight modification of the original CKP definition, we assume
that the cardinality constraint only applies to the itemswithweight ŵ.Theproblem
we consider is denoted as CKP’:

max
n∑

i=1

pi(x̄i + x̂i) (12)

s.t.

n∑
i=1

wix̄i +

n∑
i=1

ŵix̂i ≤ B

n∑
i=1

x̂i ≤ k

x̄, x̂ ∈ Bn.

CKP’ is a relaxation of (10), hence CKP’∗ ≥ WRKP∗. Solving the LP-relaxation
of CKP’ results in a basic solution with a set of integer variables JI = J̄I ∪ ĴI

and a set of fractional variables JF . Note that, as before, |JF | ≤ 2.

Lemma 2. Let (x̄, x̂) be a basic solution of the LP relaxation of CKP’. If there
are two fractional variables, then these are x̂i and x̂j with x̂i + x̂j = 1 for some
i, j.

Proof. Let there be two fractional variables. We consider the following cases:

1. If x̄i and x̄j are fractional, we can improve the solution by increasing the
variable with better profit to weight ratio, and decreasing the other, until
one of them is either 0 or 1.

2. If x̄i and x̂j are fractional, the cardinality constraint cannot be tight. We
hence can improve the solution by increasing the variable with better profit
to weight ratio as in 1. until either one of the variables reaches 0 or 1.

212 M. Goerigk et al.

3. If x̂i and x̂j are fractional, and the cardinality constraint is not tight, we may
proceed as in 2., until one of the variables reaches 0 or 1, or the cardinality
constraint becomes tight.

4. If x̂i and x̂j are fractional, and the cardinality constraint is tight, we have
x̂i + x̂j = 1.

We use these properties to construct the following feasible solutions for WRKP:

1. If JF = ∅, we construct the two solutions (J̄I , ∅) and (∅, ĴI).
2. If JF = {i}, we use the three solutions (∅, {i}), (J̄I , ∅), and (∅, ĴI).
3. Finally, if JF = {i, j}, where w.l.o.g. ŵi ≥ ŵj , we use (∅, {i}), (J̄I , ∅), and

(∅, ĴI ∪ {j}).

Note that these solutions are feasible for WRKP, and the sum of their objec-
tive values is larger than WRKP∗. Thus, choosing the solution with the maximal
objective value yields a 3-approximation. We recapitulate this approach in Al-
gorithm 4.

Algorithm 4

Require: A problem instance of WRKP.
1: Solve the LP relaxation of CKP’. Let JI = J̄I ∪ ĴI and JF denote the item indices

with integer values packed with original or reduced weights, and the item indices
with fractional values in a basic solution.

2: if JF = ∅ then
3: return argmax{p(J̄I , ∅), p(∅, ĴI)}.
4: else if JF = {i} for some i ∈ [n] then
5: return argmax{p(∅, {i}), p(J̄I , ∅), p(∅, ĴI)}
6: else if JF = {i, j} for some i, j ∈ [n] with ŵi ≥ ŵj then
7: return argmax{p(∅, {i}), p(J̄I , ∅), p(∅, ĴI ∪ {j})}
8: end if

Note that the LP relaxation of CKP’ can be solved in linear time [9]. Thus
we can state the following theorem.

Theorem 2. Algorithm 4 has an approximation ratio of at most 3 for WRKP,
and runs in linear time.

5.2 A Polynomial-Time 2-Approximation Algorithm

We now show that a factor 2 approximation can be achieved by running in poly-
nomial time. Recall that for the generalized case, we are able to achieve a factor
3-approximation algorithm by considering the LP relaxation of the problem and
characterizing the basic feasible solutions of the relaxed LP. We show that for
the special case of one improvement per item with unit costs, we can better
characterize the basic feasible solutions of the relaxed LP yielding an improved
factor 2 approximation. For this, we consider the the LP relaxation of (11). Note

Approximation Algorithms for the Weight-Reducible Knapsack Problem 213

that the linear-time result of [9] does not apply here due to the non-constant
number of constraints. The LP relaxation can be written as:

max
n∑

i=1

cixi (13)

s.t.

n∑
i=1

wixi ≤ B +

n∑
i=1

(wi − ŵi)zi (14)

n∑
i=1

zi ≤ k (15)

zi ≤ xi ∀i = 1, . . . , n (16)

xi ≤ 1 ∀i = 1, . . . , n (17)

zi ≥ 0 ∀i = 1, . . . , n (18)

The LP has 2n variables and 3n+ 2 constraints comprising of the knapsack-
constraint (14), the k-constraint (15) and three constraints for each item, (16),
(17) and (18). Observe that the item constraints imply that the feasible region is
bounded. For any basic feasible solution there must be 2n linearly independent
constraints that are tight. We categorize the items based on the number of tight
constraints among (16),(17), and (18) it can contribute, see Table 1.

Table 1. Item categorization

Case Type Num of Tight Tight Constraints Num of non-integral
Constraints variables

i T1 0 None 2
ii T2 1 xi = zi 2
iii T3 1 zi = 1 1
iv T3 1 xi = 1 1
v T4 2 xi = 1, zi = 0 0
vi T4 2 zi = 0, xi = zi 0
vii T4 2 xi = 1, xi = zi 0
viii T5 3 zi = 0, xi = zi, xi = 1 Not Possible

We observe that an item cannot contribute more than 2 tight constraints, i.e.,
constraints (16), (17) and (18) cannot simultaneously be all tight for the same
item (case viii).

We consider two scenarios: either the k-constraint (15) is tight or not.
In case it is not tight, thendiscounting the knapsack constraint,we see that 2n−1

of the tight constraintsmust be constraints of type (16), (17) and (18). This implies
that at least n − 1 items must be of type T4. Therefore n items can contribute at
least 2n− 1 tight constraints only under one of the following scenarios:

A. n items of type T4
B. (n − 1) items of type T4 and 1 item of type T1, T2 or T3.

214 M. Goerigk et al.

In case, the k-constraint is tight, then discounting the k-constraint and the
knapsack constraint, we see that 2n− 2 of the tight constraints must come from
constraints of type (16), (17) and (18). This implies that at least n−2 items must
be of type T4. Therefore, n items can contribute at least 2n−2 tight constraints
only under one of the following scenarios:

C. n items of type T4
D. (n − 1) items of type T4 and 1 item of type T1, T2 or T3.
E. (n − 2) items of type T4 and 2 items of type T2 or T3

In Cases A and C, all the variables are integral and therefore the solution is
integral yielding the exact optimal.

In Cases B and D, we form 2 solutions – one consisting of all the type T4
items (which are already integral) and the other consisting of the remaining
item that is either of type T1, T2 or T3 in the weight-reduced form. The first
solution is clearly integral feasible, as it is a subset of the fractional optimal.
The second solution is integral as every item under consideration is feasible in
its weight-reduced form. We simply pick the better of the two solutions yielding
a 2-approximate solution.

In case E, let i and j be the two items of type T1/T2/T3. We note that the
k-constraint must be tight. Thus, we have that zi + zj = 1. Without loss of
generality, let ŵi ≤ ŵj . We therefore form two solutions – one consisting of all
the type T4 items along with i in weight-reduced form and the other consisting
of j in weight-reduced form. We again pick the best of the two solutions to yield
a 2-approximation.

Thus we obtain a 2-approximation algorithm. Note that unlike the
3-approximation algorithm for the generalized case, the relaxation to unit costs
allows us to utilize the tightness of the k-constraint in a meaningful way to
obtain a better approximation.

Algorithm 5

Require: A problem instance of WRKP.
1: Compute an optimal basic solution of the LP relaxation of WRKP. Let (Jw

i , J ŵ
i),

i = 1, 2, 3, 4, denote the unimproved and improved item indices of type Ti, respec-
tively.

2: if |T4| = n then
3: return the (optimal) WRKP solution (Jw

4 , J ŵ
4).

4: else if |T4| = n− 1 and |T1 ∪ T2 ∪ T3| = {i} then
5: return argmax{p(Jw

4 , J ŵ
4), p(∅, {i})}.

6: else if |T4| = n− 2 and |T2 ∪ T3| = {i, j} then
7: W.L.O.G., let ŵi ≤ ŵj .
8: return argmax{p(Jw

4 , J ŵ
4 ∪ {i}), p(∅, {j})}.

9: end if

Theorem 3. Algorithm 5 has an approximation ratio of at most 2 for WRKP,
and runs in polynomial time; more specifically, in time required to solve an LP.

Approximation Algorithms for the Weight-Reducible Knapsack Problem 215

6 Conclusion and Further Research

In this work, we introduced the concept of improvable problems, where one can
use limited improvement resources to modify the original problem data. Using
the knapsack problem as a starting point for the analysis, we developed a pseudo-
polynomial solution algorithm, as well as a polynomial-time 3-approximation
that is based on solving the corresponding LP relaxation.

Considering the special case of only one improvement per item and constant
improvement costs, we further presented a linear-time 3-approximation based on
the algorithm of [7] for the related k-CKP, and strengthened the analysis of the
previous 3-approximation for the general problem, to be a 2-approximation for
the special case.

Further research with regard to knapsack problems includes the application
of these results on the uncertain weight-reducible knapsack problem, where the
value ŵ is not exactly known [10], and a bicriteria problem, in which we si-
multaneously minimize the costs for reducing item weights, and maximize the
knapsack value.

Furthermore, the generality of the proposed concept of improvable problems
allows the analysis of many other possible applications, including classic com-
binatorial problems as spanning tree or shortest paths, as well as real-world
problems where improvements are possible. It remains to analyze which of the
algorithms presented for the knapsack case in this paper can be generalized to
other such problems.

References

1. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2004)
2. Yamada, T., Kataoka, S.: Heuristic and exact algorithms for the disjunctively con-

strained knapsack problem. Information Processing Society of Japan Journal 43(9),
2864–2870 (2002)

3. Pferschiy, U., Schauer, J.: The knapsack problem with conflict graphs. Journal of
Graph Algorithms and Applications 13(2), 233–249 (2009)

4. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via ex-
change properties of combinatorial structures. In: 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 575–584 (2010)

5. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

6. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
7. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for

knapsack problems with cardinality constraints. European Journal of Operational
Research 123(2), 333–345 (2000)

8. Mastrolilli, M., Hutter, M.: Hybrid rounding techniques for knapsack problems.
Discrete Applied Mathematics 154(4), 640–649 (2006)

9. Megiddo, N., Tamir, A.: Linear time algorithms for some separable quadratic pro-
gramming problems. Operations Research Letters 13, 203–211 (1993)

10. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The uncertain knapsack prob-
lem with queries. Technical Report 2013-02, Institute for Numerical and Applied
Mathematics, University of Göttingen (2013)

Polynomial-Time Algorithms

for Subgraph Isomorphism

in Small Graph Classes of Perfect Graphs�

Matsuo Konagaya, Yota Otachi, and Ryuhei Uehara

School of Information Science, Japan Advanced Institute of Science and Technology,
Ishikawa, 923-1292, Japan

{matsu.cona,otachi,uehara}@jaist.ac.jp

Abstract. Given two graphs, Subgraph Isomorphism is the problem
of deciding whether the first graph (the base graph) contains a subgraph
isomorphic to the second graph (the pattern graph). This problem is
NP-complete for very restricted graph classes such as connected proper
interval graphs. Only a few cases are known to be polynomial-time solv-
able even if we restrict the graphs to be perfect. For example, if both
graphs are co-chain graphs, then the problem can be solved in linear
time.

In this paper, we present a polynomial-time algorithm for the case
where the base graphs are chordal graphs and the pattern graphs are
co-chain graphs. We also present a linear-time algorithm for the case
where the base graphs are trivially perfect graphs and the pattern graphs
are threshold graphs. These results answer some of the open questions
of Kijima et al. [Discrete Math. 312, pp. 3164–3173, 2012]. To present
a complexity contrast, we then show that even if the base graphs are
somewhat restricted perfect graphs, the problem of finding a pattern
graph that is a chain graph, a co-chain graph, or a threshold graph is
NP-complete.

Keywords: Subgraph isomorphism, Graph class, Polynomial-time al-
gorithm, NP-completeness.

1 Introduction

The problem Subgraph Isomorphism is a very general and extremely hard
problem which asks, given two graphs, whether one graph (the base graph)
contains a subgraph isomorphic to the other graph (the pattern graph). The prob-
lem generalizes many other problems such as Graph Isomorphism, Hamilto-

nian Path, Clique, and Bandwidth. Clearly, Subgraph Isomorphism is
NP-complete in general. Furthermore, by slightly modifying known proofs [8,5],
it can be shown that Subgraph Isomorphism is NP-complete when G and H

� Partially supported by JSPS KAKENHI Grant Numbers 23500013, 25730003, and
by MEXT KAKENHI Grant Number 24106004.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 216–228, 2014.
c© Springer International Publishing Switzerland 2014

Polynomial-Time Algorithms for Subgraph Isomorphism 217

Table 1. NP-complete cases of Spanning Subgraph Isomorphism

Base Pattern Complexity Reference

Bipartite Permutation NP-complete [16]
Proper Interval NP-complete [16]
Trivially Perfect NP-complete [16]

Chain Convex NP-complete [16]
Co-chain Co-bipartite NP-complete [16]
Threshold Split NP-complete [16]
Bipartite Chain NP-complete This paper
Co-convex Co-chain NP-complete This paper

Split Threshold NP-complete This paper

are disjoint unions of paths or of complete graphs. Therefore, it is NP-complete
even for small graph classes of perfect graphs such as proper interval graphs,
bipartite permutation graphs, and trivially perfect graphs, while Graph Iso-

morphism can be solved in polynomial time for them [4,18]. For these graph
classes, Kijima et al. [16] showed that even if both input graphs are connected
and have the same number of vertices, the problem remains NP-complete. They
call the problem with such restrictions Spanning Subgraph Isomorphism.

Kijima et al. [16] also found polynomial-time solvable cases of Subgraph

Isomorphism in which both graphs are chain, co-chain, or threshold graphs.
Since these classes are proper subclasses of the aforementioned hard classes, those
results together give sharp contrasts of computational complexity of Subgraph
Isomorphism. However, the complexity of more subtle cases, like the one where
the base graphs are proper interval graphs and the pattern graphs are co-chain
graphs, remained open.

1.1 Our Results

In this paper, we study the open cases of Kijima et al. [16], and present polynomial-
time algorithms for the following cases:

– the base graphs are chordal graphs and the pattern graphs are co-chain
graphs,

– the base graphs are trivially perfect graphs and the pattern graphs are
threshold graphs.

We also show that even if the pattern graphs are chain, co-chain, or threshold
graphs and the base graphs are somewhat restricted perfect graphs, the problem
remains NP-complete. The problem of finding a chain subgraph in a bipartite
permutation graph, which is an open case of Kijima et al. [16], remains unsettled.
See Tables 1 and 2 for the summary of our results.

1.2 Related Results

Subgraph Isomorphism for trees can be solved in polynomial time [22], while
it is NP-complete for connected outerplanar graphs [26]. Therefore, the problem

218 M. Konagaya, Y. Otachi, and R. Uehara

Table 2. Polynomial-time solvable cases of Subgraph Isomorphism

Base Pattern Complexity Reference

Chain O(m+ n) [16]
Co-chain O(m+ n) [16]
Threshold O(m+ n) [16]

Bipartite permutation Chain Open
Chordal Co-chain O(mn2 + n3) This paper

Trivially perfect Threshold O(m+ n) This paper

is NP-complete even for connected graphs of bounded treewidth. On the other
hand, it can be solved in polynomial time for 2-connected outerplanar graphs
[17]. More generally, it is known that Subgraph Isomorphism for k-connected
partial k-trees can be solved in polynomial time [21,11]. Eppstein [7] gave a
kO(k)n-time algorithm for Subgraph Isomorphism on planar graphs, where k
and n are the numbers of the vertices in the pattern graph and the base graph,
respectively. Recently, Dorn [6] has improved the running time to 2O(k)n. For
other general frameworks, especially for the parameterized ones, see the recent
paper by Marx and Pilipczuk [19] and the references therein.

Another related problem is Induced Subgraph Isomorphism which asks
whether the base graph has an induced subgraph isomorphic to the pattern graph.
Damaschke [5] showed that Induced Subgraph Isomorphism on cographs is
NP-complete. He also showed that Induced Subgraph Isomorphism is
NP-complete for the disjoint unions of paths, and thus for proper interval graphs
and bipartite permutation graphs. Marx and Schlotter [20] showed that Induced
Subgraph Isomorphism on interval graphs isW[1]-hard when parameterized by
the number of vertices in the pattern graph, but fixed-parameter tractable when
parameterized by the numbers of vertices to be removed from the base graph. Heg-
gernes et al. [14] showed that Induced Subgraph Isomorphism on proper inter-
val graphs is NP-complete even if the base graph is connected. Heggernes et al. [15]
have recently shown that Induced Subgraph Isomorphism on proper interval
graphs and bipartite permutation graphs can be solved in polynomial time if the
pattern graph is connected. Belmonte et al. [1] showed that Induced Subgraph

Isomorphism on connected trivially perfect graphs is NP-complete. This result
strengthens known results since every trivially perfect graph is an interval cograph.
They also showed that the problem can be solved in polynomial time if the base
graphs are trivially perfect graphs and the pattern graphs are threshold graphs.

2 Preliminaries

All graphs in this paper are finite, undirected, and simple. Let G[U] denote the
subgraph of G = (V,E) induced by U ⊆ V . For a vertex v ∈ V , we denote by
G − v the graph obtained by removing v from G; that is, G − v = G[V \ {v}].
The neighborhood of a vertex v is the set N(v) = {u ∈ V | {u, v} ∈ E}. A
vertex v ∈ V is universal in G if N(v) = V \ {v}. A vertex v ∈ V is isolated

Polynomial-Time Algorithms for Subgraph Isomorphism 219

in G if N(v) = ∅. A set I ⊆ V in G = (V,E) is an independent set if for all
u, v ∈ I, (u, v) /∈ E. A set S ⊆ V in G = (V,E) is a clique if for all u, v ∈ S,
(u, v) ∈ E. A pair (X,Y) of sets of vertices of a bipartite graph H = (U, V ;E)
is a biclique if for all x ∈ X and y ∈ Y , (x, y) ∈ E. A component of a graph G
is an inclusion maximal connected subgraph of G. A component is non-trivial
if it contains at least two vertices. The complement of a graph G = (V,E) is
the graph Ḡ = (V, Ē) such that {u, v} ∈ Ē if and only if {u, v} /∈ E. The
disjoint union of two graphs G = (VG, EG) and H = (VH , EH) is the graph
(VG ∪ VH , EG ∪EH), where VG ∩ VH = ∅. For a map η : V → V ′ and S ⊆ V , let
η(S) denote the set {η(s) | s ∈ S}.

2.1 Definitions of the Problems

A graph H = (VH , EH) is subgraph-isomorphic to a graph G = (VG, EG) if
there exists an injective map η from VH to VG such that {η(u), η(v)} ∈ EG

holds for each {u, v} ∈ EH . We call such a map η a subgraph-isomorphism
from H to G. Graphs G and H are called the base graph and the pattern graph,
respectively. The problems Subgraph Isomorphism and Spanning Subgraph

Isomorphism are defined as follows:

Problem 2.1. Subgraph Isomorphism

Instance: A pair of graphs G = (VG, EG) and H = (VH , EH).
Question: Is H subgraph-isomorphic to G?

Problem 2.2. Spanning Subgraph Isomorphism

Instance: A pair of connected graphs G = (VG, EG) and H = (VH , EH), where
|VG| = |VH |.
Question: Is H subgraph-isomorphic to G?

2.2 Graph Classes

Here we introduce the graph classes we deal with in this paper. For their inclusion
relations, see the standard textbooks in this field [3,9,25]. See Fig. 1 for the class
hierarchy.

A bipartite graph B = (X,Y ;E) is a chain graph if the vertices of X can
be ordered as x1, x2, . . . , x|X| such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(x|X|). A
graph G = (V,E) with V = {1, 2, . . . , n} is a permutation graph if there is a
permutation π over V such that {i, j} ∈ E if and only if (i−j)(π(i)−π(j)) < 0. A
bipartite permutation graph is a permutation graph that is bipartite. A bipartite
graph H = (X,Y ;E) is a convex graph if one of X and Y can be ordered such
that the neighborhood of each vertex in the other side is consecutive in the
ordering. It is known that a chain graph is a bipartite permutation graph, and
that a bipartite permutation graph is a convex graph.

A graph is a co-chain graph if it is the complement of a chain graph. An
interval graph is the intersection graph of a family of closed intervals of the
real line. A proper interval graph is the intersection graph of a family of closed

220 M. Konagaya, Y. Otachi, and R. Uehara

Chain Threshold Cochain

Bipartite
permutation

Trivially
perfect

Proper
interval

Cograph Interval

Chordal CobipartitePermutation

Convex

Perfect

Bipartite

Split

Fig. 1. Graph classes

intervals of the real line where no interval is properly contained in another. A
graph is co-bipartite if its complement is bipartite. In other words, co-bipartite
graphs are exactly the graphs whose vertex sets can be partitioned into two
cliques. From the definition, every co-chain graph is co-bipartite. It is known
that every co-chain graph is a proper interval graph.

A graph is a threshold graph if there is a positive integer T (the threshold)
and for every vertex v there is a positive integer w(v) such that {u, v} is an edge
if and only if w(u) + w(v) ≥ T . A graph is trivially perfect if the size of the
maximum independent set is equal to the number of maximal cliques for every
induced subgraph. It is known that a threshold graph is a trivially perfect graph,
and that a trivially perfect graph is an interval graph.

A split graph is a graph whose vertex set can be partitioned into a clique
and an independent set. A graph is chordal if every induced cycle is of length 3.
Clearly, every threshold graph is a split graph, and every split graph is a chordal
graph. It is known that every interval graph is a chordal graph. It is easy to see
that any split graph (and thus any threshold graph) has at most one non-trivial
component.

A graph is perfect if for any induced subgraph the chromatic number is equal
to the size of a maximum clique. Graphs in all classes introduced in this section
are known to be perfect.

3 Polynomial-Time Algorithms

In this section, we denote the number of the vertices and the edges in a base
graph by n and m, respectively. For the input graphs G and H , we assume that
|VG| ≥ |VH | and |EG| ≥ |EH |, which can be checked in time O(m + n).

Polynomial-Time Algorithms for Subgraph Isomorphism 221

3.1 Finding Co-chain Subgraphs in Chordal Graphs

It is known that co-chain graphs are precisely {I3, C4, C5}-free graphs [13]; that
is, graphs having no vertex subset that induces I3, C4, or C5, where I3 is the
empty graph with three vertices and Ck is the cycle of k vertices. Using this
characterization, we can show the following simple lemma.

Lemma 3.1. A graph is a co-chain graph if and only if it is a co-bipartite
chordal graph.

Proof. To prove the if-part, let G be a co-bipartite chordal graph. Since G is co-
bipartite, it cannot have I3 as its induced subgraph. Since G is chordal, it does
not have C4 or C5 as its induced subgraph. Therefore, G is {I3, C4, C5}-free.

To prove the only-if-part, let G be a co-chain graph, and thus it is a co-
bipartite graph. Suppose that G has an induced cycle C of length k ≥ 4. Then k
cannot be 4 or 5 since it does not have C4 or C5. If k ≥ 6, then the first, third,
and fifth vertices in the cycle form I3.

Now we can solve the problem as follows.

Theorem 3.2. Subgraph Isomorphism is solvable in O(mn2 + n3) time if
the base graphs are chordal graphs and the pattern graphs are co-chain graphs.

Proof. Let G = (VG, EG) be the base chordal graph and H = (VH , EH) be the
pattern co-chain graph. We assume that G is not complete, since otherwise the
problem is trivial.

Algorithm. We enumerate all the maximal cliques C1, . . . , Ck of G. For each
pair (Ci, Cj), we check whether H is subgraph-isomorphic to G[Ci ∪ Cj]. If H
is subgraph-isomorphic to G[Ci ∪ Cj] for some i and j, then we output “yes.”
Otherwise, we output “no.”

Correctness. It suffices to show that H is subgraph-isomorphic to G if and
only if there are two maximal cliques Ci and Cj of G such that H is subgraph-
isomorphic to G[Ci∪Cj]. The if-part is obviously true. To prove the only-if-part,
assume that there is a subgraph-isomorphism η from H to G. Observe that for
any clique C of H , there is a maximal clique C′ of G such that η(C) ⊆ C′.
Thus, since H is co-bipartite, there are two maximal cliques Ci and Cj such
that η(VH) ⊆ Ci ∪ Cj . That is, H is subgraph-isomorphic to G[Ci ∪ Cj].

Running time. It is known that a chordal graph of n vertices with m edges has
at most n maximal cliques, and all the maximal cliques can be found in O(m+n)
time [2,12]. Since G[Ci ∪Cj] is a co-chain graph by Lemma 3.1, testing whether
H is subgraph-isomorphic to G[Ci ∪ Cj] can be done in O(m + n) time [16].
Since the number of pairs of maximal cliques is O(n2), the total running time is
O(mn2 + n3).

222 M. Konagaya, Y. Otachi, and R. Uehara

3.2 Finding Threshold Subgraphs in Trivially Perfect Graphs

Here we present a linear-time algorithm for finding a threshold subgraph in a
trivially perfect graph. To this end, we need the following lemmas.

Lemma 3.3. If a graph G has a universal vertex uG, and a graph H has a
universal vertex uH , then H is subgraph-isomorphic to G if and only if H − uH

is subgraph-isomorphic to G − uG.

Proof. To prove the if-part, let η′ be a subgraph-isomorphism from H − uH to
G − uG. Now we define η : VH → VG as follows:

η(w) =

{
uG if w = uH ,

η′(w) otherwise.

Let {x, y} ∈ EH . If uH /∈ {x, y}, then {η(x), η(y)} = {η′(x), η′(y)} ∈ EG.
Otherwise, we may assume that x = uH without loss of generality. Since uG is
universal in G, it follows that {η(x), η(y)} = {η(uH), η(y)} = {uG, η′(y)} ∈ EG.

To prove the only-if-part, assume that η′ is a subgraph-isomorphism from H to
G. If there is no vertex v ∈ VH such that η′(v) = uG, then we are done. Assume
that η′(v) = uG for some vertex v ∈ VH . Now we define η : VH\{uH} → VG\{uG}
as follows:

η(w) =

{
η′(uH) if w = v,

η′(w) otherwise.

Let {x, y} ∈ EH . If v /∈ {x, y}, then {η(x), η(y)} = {η′(x), η′(y)} ∈ EG. Other-
wise, we may assume without loss of generality that v = x. Since uH is universal
in H , it follows that {η(x), η(y)} = {η′(uH), η′(y)} ∈ EG.

A component of a graph is maximum if it contains the maximum number
of vertices among all the components of the graph. If a split graph has a non-
trivial component, then the component is the unique maximum component of
the graph.

Lemma 3.4. A split graph H with a maximum component CH is subgraph-
isomorphic to a graph G if and only if |VH | ≤ |VG| and there is a component CG

of G such that CH is subgraph-isomorphic to CG.

Proof. First we prove the only-if-part. Let η be a subgraph-isomorphism from H
to G. We need |VH | ≤ |VG| to have an injective map from VH to VG. Since CH

is connected, G[η(V (CH))] must be connected. Thus there is a component CG

such that η(V (CH)) ⊆ V (CG). Then η|V (CH), the map η restricted to V (CH),
is a subgraph isomorphism from CH to CG.

To prove the if-part, let η′ be a subgraph-isomorphism from CH to CG. Let
RH = VH \V (CH) = {u1, . . . , ur}, and let RG = VG\η′(V (CH)) = {w1, . . . , ws}.
Since |VH | ≤ |VG| and |V (CH)| = |η′(V (CH))|, it holds that r ≤ s. Now we define
η : VH → VG as follows:

η(v) =

{
wi if v = ui ∈ RH ,

η′(v) otherwise.

Polynomial-Time Algorithms for Subgraph Isomorphism 223

Since H is a split graph, any component of H other than CH cannot have two
or more vertices. Thus the vertices in RH are isolated in H . Therefore, the map
η is a subgraph-isomorphism from H to G.

The two lemmas above already allows us to have a polynomial-time algorithm.
However, to achieve a linear running time, we need the following characterization
of trivially perfect graphs.

A rooted tree is a directed tree with a unique in-degree 0 vertex, called the
root. Intuitively, every edge is directed from the root to leaves in a directed tree.
A rooted forest is the disjoint union of rooted trees. The comparability graph of
a rooted forest is the graph that has the same vertex set as the rooted forest,
and two vertices are adjacent in the graph if and only if one of the two is a
descendant of the other in the forest. Yan et al. [28] showed that a graph is a
trivially perfect graph if and only if it is the comparability graph of a rooted
forest, and that such a rooted forest can be computed in linear time. We call such
a rooted forest a generating forest of the trivially perfect graph. If a generating
forest is actually a rooted tree, then we call it a generating tree.

Theorem 3.5. Subgraph Isomorphism is solvable in O(m + n) time if the
base graphs are trivially perfect graphs and the pattern graphs are threshold
graphs.

Proof. Let G = (VG, EG) be the base trivially perfect graph and H = (VH , EH)
be the pattern threshold graph.

Algorithm The pseudocode of our algorithm can be found in Algorithm 1. We
use the procedure SGI which takes a trivially perfect graph as the base graph
and a threshold graph as the pattern graph, and conditionally answers whether
the pattern graph is subgraph-isomorphic to the base graph. The procedure SGI

requires that

– both the graphs are connected, and
– the base graph has at least as many vertices as the pattern graph.

To use this procedure, we first attach a universal vertex to both G and H . This
guarantees that both graphs are connected. We call the new graphs G′ and H ′,
respectively. By Lemma 3.3, (G′, H ′) is a yes-instance if and only if so is (G,H).
After checking that |VG′ | ≥ |VH′ |, we use the procedure SGI.

In SGI(G,H), let uG and uH be universal vertices of G and H , respectively.
There are such vertices since G and H are connected trivially perfect graphs [27].
Let CH be a maximum component of H−uH . For each connected component CG

of G − uG, we check whether CH is subgraph-isomorphic to CG, by recursively
calling the procedure SGI itself. If at least one of the recursive calls returns
“yes,” then we return “yes.” Otherwise we return “no.”

Correctness. It suffices to prove the correctness of the procedure SGI. If |VH | =
1, then H is subgraph-isomorphic to G since |VG| ≥ |VH | in SGI. By Lemmas 3.3
and 3.4, H is subgraph-isomorphic to G if and only if there is a component CG of

224 M. Konagaya, Y. Otachi, and R. Uehara

Algorithm 1. Finding a threshold subgraph H in a trivially perfect graph G

1: G′ := G with a universal vertex
2: H ′ := H with a universal vertex
3: if |VG′ | ≥ |VH′ | then
4: return SGI(G′,H ′)
5: else
6: return no

Require: G and H are connected, and |VG| ≥ |VH |
7: procedure SGI(G, H)
8: if |VH | = 1 then
9: return yes

10: uG := a universal vertex of G
11: uH := a universal vertex of H
12: CH := a maximum component of H − uH

13: for all components CG of G− uG do
14: if |V (CG)| ≥ |V (H − uH)| then
15: if SGI(CG, CH) = yes then
16: return yes

17: return no

G− uG such that CH is subgraph-isomorphic to CG. (Recall that any threshold
graph is a split graph.) The procedure just checks these conditions. Also, when
SGI recursively calls itself, the parameters CG and CH satisfy its requirements;
that is, CG and CH are connected, and |V (CG)| ≥ |V (CG)|.

Running time For each call of SGI(G,H), we need the following:

– universal vertices uG and uH of G and H , respectively,
– a maximum component CH of H − uH ,
– the components CG of G − uG, and
– the numbers of the vertices of CG and H − uH .

We show that they can be computed efficiently by using generating forests.
Basically we apply the algorithm to generating forests instead of graphs.

Before the very first call of SGI(G,H), we compute generating trees of G and
H in linear time. Additionally, for each node in the generating trees, we store the
number of its descendants. This can be done also in linear time in a bottom-up
fashion.

At some call of SGI(G,H), assume that we have generating trees of G and
H . It is easy to see that the root of the generating trees are universal vertices.
Hence we can compute uG and uH in constant time. By removing these root
nodes from the generating trees, we obtain generating forests of G − uG and
H − uH . Each component of the generating forests corresponds to a component
of the corresponding graphs. Thus we can compute the components of G − uG

and a maximum component of H − uH , with their generating trees, in time
proportional to the number of the children of uG and uH . The numbers of the

Polynomial-Time Algorithms for Subgraph Isomorphism 225

vertices of CG and H −uH can be computed easily in constant time, because we
know the number of the descendants of each node in generating trees.

The recursive calls of SGI take only O(n) time in total since it is proportional
to the number of edges in the generating trees. Therefore, the total running time
is O(m + n).

4 NP-completeness

It is known that for perfect graphs,Clique can be solved in polynomial time [10].
Since co-chain graphs and threshold graphs are very close to complete graphs,
one may ask whether the problem of finding co-chain graphs or threshold graphs
can be solved in polynomial time for perfect graphs. In this section, we show that
this is not the case. More precisely, we show that even the specialized problem
Spanning Subgraph Isomorphism is NP-complete for the case where the base
graphs are somewhat restricted perfect graphs and the pattern graphs are co-
chain or threshold graphs.

It is known that Maximum Edge Biclique, the problem of finding a biclique
with the maximum number of edges, is NP-complete for bipartite graphs [24].
This implies that Subgraph Isomorphism is NP-complete if the base graphs
are connected bipartite graphs and the pattern graphs are connected chain
graphs, because complete bipartite graphs are chain graphs. We sharpen this
hardness result by showing that the problem is still NP-complete if we further
restrict the pattern chain graphs to have the same number of vertices as the
base graph. That is, we show that Spanning Subgraph Isomorphism is NP-
complete when the base graphs are bipartite graphs and the pattern graphs are
chain graphs.

Since the problem Spanning Subgraph Isomorphism is clearly in NP for
any graph class, we only show its NP-hardness here. All the results in this section
are based on the following theorem and lemma taken from Kijima et al. [16].

Theorem 4.1 (Kijima et al. [16]). Spanning Subgraph Isomorphism is
NP-complete if

1. the base graphs are chain graphs and the pattern graphs are convex graphs,
2. the base graphs are co-chain graphs and the pattern graphs are co-bipartite

graphs, or
3. the base graphs are threshold graphs and the pattern graphs are split graphs.

Lemma 4.2 (Kijima et al. [16]). If |VH | = |VG|, thenH is subgraph-isomorphic
to G if and only if Ḡ is subgraph-isomorphic to H̄.

For a graph class C, let co-C denote the graph class {Ḡ | G ∈ C}. The next
lemma basically shows that if C satisfies some property, then the hardness of
Spanning Subgraph Isomorphism for C implies the hardness for co-C.
Lemma 4.3. Let C and D be graph classes such that co-C and co-D are closed
under universal vertex additions. If Spanning Subgraph Isomorphism is NP-
complete when the base graphs belong to C and the pattern graphs belong to D,

226 M. Konagaya, Y. Otachi, and R. Uehara

then the problem is NP-complete also when the base graphs belong to co-D and
the pattern graphs belong to co-C.

Proof. Given two connected graphs G ∈ C and H ∈ D with |VG| = |VH |, it is
NP-complete to decide whether H is subgraph-isomorphic to G. By Lemma 4.2,
H is subgraph-isomorphic to G if and only if Ḡ is subgraph-isomorphic to H̄ .
By Lemma 3.3, Ḡ is subgraph-isomorphic to H̄ if and only if Ḡ′ is subgraph-
isomorphic to H̄ ′, where Ḡ′ and H̄ ′ are obtained from Ḡ and H̄, respectively, by
adding a universal vertex. Therefore, H is subgraph-isomorphic to G if and only
if Ḡ′ is subgraph-isomorphic to H̄ ′. Clearly, Ḡ′ ∈ co-C and H̄ ′ ∈ co-D, they are
connected, and they have the same number of vertices. Thus the lemma holds.

A graph is a co-convex graph if its complement is a convex graph. Clearly
co-convex graphs are closed under additions of universal vertices.

Corollary 4.4. Spanning Subgraph Isomorphism is NP-complete if

1. the base graphs are co-convex graphs and the pattern graphs are co-chain
graphs,

2. the base graphs are bipartite graphs and the pattern graphs are chain graphs,
or

3. the base graphs are split graphs and the pattern graphs are threshold graphs.

Proof. The NP-completeness of the case (1) is a corollary to Theorem 4.1 (1) and
Lemma 4.3. To prove (3), we need Theorem 4.1 (3), Lemma 4.3, and the well-
known facts that threshold graphs and split graphs are self-complementary [9].
That is, the complement of a threshold graph is a threshold graph, and the
complement of a split graph is a split graph.

For (2), we cannot directly apply the combination of Theorem 4.1 (2) and
Lemma 4.3 since bipartite graphs and chain graphs are not closed under universal
vertex additions. Fortunately, we can easily modify the proof of Theorem 4.1 (2)
in Kijima et al. [16] so that the complements of the base graphs and the pattern
graphs are also connected. Then, Lemma 4.2 implies the statement. Since it will
be a repeat of a known proof with a tiny difference, we omit the detail.

5 Conclusion

We have studied (Spanning) Subgraph Isomorphism for classes of perfect
graphs, and have shown sharp contrasts of its computational complexity. An in-
teresting problem left unsettled is the complexity of Subgraph Isomorphism

where the base graphs are bipartite permutation graphs and the pattern graphs
are chain graphs. It is known that although the maximum edge biclique problem
is NP-complete for general bipartite graphs [24], it can be solved in polynomial
time for some super classes of bipartite permutation graphs (see [23]). There-
fore, it might be possible to have a polynomial-time algorithm for Subgraph

Isomorphism when the pattern graphs are chain graphs and the base graphs
belong to an even larger class like convex graphs.

Polynomial-Time Algorithms for Subgraph Isomorphism 227

References

1. Belmonte, R., Heggernes, P., van ’t Hof, P.: Edge contractions in subclasses of
chordal graphs. Discrete Appl. Math. 160, 999–1010 (2012)

2. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix
Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp.
1–29. Springer (1993)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
4. Colbourn, C.J.: On testing isomorphism of permutation graphs. Networks 11, 13–

21 (1981)
5. Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In:

Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 72–78. Springer, Heidelberg
(1991)

6. Dorn, F.: Planar subgraph isomorphism revisited. In: STACS 2010. LIPIcs, vol. 5,
pp. 263–274 (2010)

7. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3, 1–27 (1999)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals
of Discrete Mathematics, vol. 57. North Holland (2004)

10. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

11. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of
partial k-trees. Theoret. Comput. Sci. 164, 287–298 (1996)

12. Heggernes, P.: Treewidth, partial k-trees, and chordal graphs. Partial curriculum
in INF334 - Advanced algorithmical techniques, Department of Informatics, Uni-
versity of Bergen, Norway (2005)

13. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

14. Heggernes, P., Meister, D., Villanger, Y.: Induced subgraph isomorphism on in-
terval and proper interval graphs. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 399–409. Springer, Heidelberg (2010)

15. Heggernes, P., van ’t Hof, P., Meister, D., Villanger, Y.: Induced subgraph isomor-
phism on proper interval and bipartite permutation graphs. Submitted manuscript

16. Kijima, S., Otachi, Y., Saitoh, T., Uno, T.: Subgraph isomorphism in graph classes.
Discrete Math. 312, 3164–3173 (2012)

17. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoret. Comput. Sci. 63, 295–302 (1989)

18. Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph
isomorphism. J. ACM 26, 183–195 (1979)

19. Marx, D., Pilipczuk, M.: Everything you always wanted to know about the pa-
rameterized complexity of subgraph isomorphism (but were afraid to ask). CoRR,
abs/1307.2187 (2013)

20. Marx, D., Schlotter, I.: Cleaning interval graphs. Algorithmica 65, 275–316 (2013)
21. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms

for partial k-trees. Discrete Math. 108, 343–364 (1992)
22. Matula, D.W.: Subtree isomorphism in O(n5/2). In: Alspach, B., Hell, P., Miller,

D. (eds.) Algorithmic Aspects of Combinatorics. Annals of Discrete Mathematics,
vol. 2, pp. 91–106. Elsevier (1978)

228 M. Konagaya, Y. Otachi, and R. Uehara

23. Nussbaum, D., Pu, S., Sack, J.-R., Uno, T., Zarrabi-Zadeh, H.: Finding maximum
edge bicliques in convex bipartite graphs. Algorithmica 64(2), 311–325 (2012)

24. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl.
Math. 131, 651–654 (2003)

25. Spinrad, J.P.: Efficient Graph Representations. Fields Institute monographs,
vol. 19. American Mathematical Society (2003)

26. Sys�lo, M.M.: The subgraph isomorphism problem for outerplanar graphs. Theoret.
Comput. Sci. 17, 91–97 (1982)

27. Wolk, E.S.: A note on “The comparability graph of a tree”. Proc. Amer. Math.
Soc. 16, 17–20 (1965)

28. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl.
Math. 69(3), 247–255 (1996)

A Pseudo-Random Bit Generator

Based on Three Chaotic Logistic Maps
and IEEE 754-2008 Floating-Point Arithmetic

Michael François1, David Defour2, and Pascal Berthomé1

1 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Bourges, France
{michael.francois,pascal.berthome}@insa-cvl.fr

2 Univ. Perpignan Via Domitia, DALI F-66860, LIRMM UMR 5506 F-34095,
Perpignan, France

david.defour@univ-perp.fr

Abstract. A novel pseudo-random bit generator (PRBG), combining
three chaotic logistic maps is proposed. The IEEE 754-2008 standard for
floating-point arithmetic is adopted and the binary64 double precision
format is used. A more efficient processing is applied to better extract
the bits, from outputs of the logistic maps. The algorithm enables to
generate at each iteration, a block of 32 random bits by starting from
three chosen seed values. The performance of the generator is evaluated
through various statistical analyzes. The results show that the output
sequences possess high randomness statistical properties for a good se-
curity level. The proposed generator lets appear significant cryptographic
qualities.

Keywords: PRBG, Pseudo-random, Logistic map, Chaotic map, IEEE
754-2008.

1 Introduction

The generation of pseudo-random bits (or numbers) plays a crucial role in a large
number of applications such as statistical mechanics, numerical simulation, gam-
ing industry, communication or cryptography [1]. The term “pseudo-random” is
used to indicate that, the bits (or numbers) appear to be random and are gen-
erated from an algorithmic process so-called generator. From a single initial
parameter (or seed), the generator will always produce the same pseudo-random
sequence. The main advantages of such generators are the rapidity and the re-
peatability of the sequences and require less memory for algorithm storage. Some
fundamental methods are typically used to implement pseudo-random number
generators, such as: non-linear congruences [2], linear feedback shift registers
(LFSR) [3], discrete logarithm problem [4], quadratic residuosity problem [5],
cellular automata [6], etc. In general, the security of a cryptographic pseudo-
random number generator (PRNG), is based on the difficulty to solve the re-
lated mathematical problem. That usually makes the algorithm much slower,
due to heavy computational instructions. For example, the Blum Blum Shub

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 229–247, 2014.
c© Springer International Publishing Switzerland 2014

230 M. François, D. Defour, and P. Berthomé

algorithm [5] has a security proof, assuming the intractability of the quadratic
residuosity problem. The algorithm is also proven to be secure, under the as-
sumption that the integer factorization problem is difficult. However, the algo-
rithm is very inefficient and impractical unless extreme security is needed. The
Blum-Micali algorithm [4] has also an unconditional security proof based on the
difficulty of the discrete logarithm problem, but is also inefficient.
Another interesting way to design such generators is connected to chaos the-
ory [7]. That theory focuses primarily on the description of these systems that
are often very simple to define, but whose dynamics appears to be very confused.
Indeed, chaotic systems are characterized by their high sensitivity to initial con-
ditions and some properties like ergodicity, pseudo-random behavior and high
complexity [7]. The extreme sensitivity to the initial conditions (i.e. a small
deviation in the input can cause a large variation in the output) makes chaotic
system very attractive for implementing pseudo-random number generators. Ob-
viously, chaos-based generators do not enjoy universal mathematical proofs com-
pared with cryptographic ones, but represent a serious alternative that needs to
be exploited. Moreover, during the last decade, several pseudo-random number
generators have been proposed [8–14]. However, a rigorous analysis is necessary
to evaluate the randomness level and the global security of the generator.

In this paper, a new PRBG using a standard chaotic logistic map is presented.
It combines three logistic maps involving binary64 floating-point arithmetic and
generates a block of 32 random bits at each iteration. The novelty of the paper
is mainly based on the extraction mechanism of bits from the outputs of chaotic
logistic maps. The produced pseudo-random sequences have successfully passed
the various statistical tests. The assets of the generator are: high sensitivity to
initial seed values, high level of randomness and good throughput. The paper is
structured as follows, a brief introduction on floating-point arithmetic and the
used chaotic logistic map is given in Sect. 2. Section 3 presents a detailed descrip-
tion of the algorithm. The statistical analysis applied on two groups of generated
pseudo-random sequences is given in Sect. 4. The global security analysis of the
PRBG is achieved in Sect. 5, before concluding.

2 Background

2.1 IEEE 754-2008 Standard

Digital computers represent numbers in sets of binary digits. For real num-
bers, two formats of representation can be distinguished: fixed-point format and
floating-point format. The fixed-point format is designed to represent and manip-
ulate integers or real numbers with a fixed precision. In the case of real numbers
with variable precision, the representation is made through the floating-point for-
mat. There exists a standard that defines the arithmetic formats, the rounding
rules, the operations and the exception handling for floating-point arithmetic.

The IEEE 754-2008 [15] is the current version of the technical standard, used
by hardware manufacturer to implement floating-point arithmetic. Among them,
binary32 (single precision) and binary64 (double precision) are the two most

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 231

widely used and implemented formats. As the generator described herein relies
exclusively on binary64, we will only consider this format in the rest of the
article.

Binary64 comprises two infinities, two kinds of NaN (Not a Number) and
the set of finite numbers. Each finite number is uniquely described by three
integers: s a sign represented on 1 bit, e a biased exponent represented on 11
bits and m a mantissa represented on 52 bits, where the leading bit of the
significand is implicitly encoded in the biased exponent (see Fig. 1). To make
the encoding unique, the value of the significand m is maximized by decreasing
e until either e = emin or m ≥ 1. After this process is done, if e = emin and
0 < m < 1, the floating-point number is subnormal. Subnormal numbers (and
zero) are encoded with a reserved biased exponent value. Interested readers will
find a good introduction to floating point arithmetic and issues that arise while
using it in [16].

sign exponent mantissa

63 62 52 51 03132

 mantissa0 mantissa1

Fig. 1. Floating-point representation in double precision format (64 bits)

2.2 The Chaotic Logistic Map

The generator uses a chaotic logistic map given by:

F (X) = λX(1− X) , (1)

with λ between 3.57 and 4.0 [17]. This function has been widely studied [18]
and several pseudo-random number generators have already used such logistic
map [12, 17, 19–22]. To avoid non-chaotic behavior (island of stability, oscilla-
tions, ...), the value of λ is fixed to 3.9999 that corresponds to a highly chaotic
case [23]. The logistic map can be used under the iterative form:

Xn+1 = 3.9999Xn(1− Xn), ∀n ≥ 0 , (2)

where the initial seed X0 is a real number belonging to the interval]0, 1[. All the
output elements Xn are also real numbers in]0, 1[.

3 The Proposed Generator

The main idea of the PRBG is to combine several chaotic logistic maps and
carefully arrange them in the same algorithm in order to increase the security
level. A block of 32 random bits per iteration is produced using the following
three logistic maps:

232 M. François, D. Defour, and P. Berthomé

X

Xn+1

sign exponent mantissa0

exponent mantissa0

Yn+1

Y

Zn+1

Zn+1
sign exponent mantissa0

32 bits

32 bits11 bits

n+1

20 bits

20 bits

20 bits

11 bits

11 bits

32 bits

sign

λ

n

nnn+1

n

n+1

X30x ... x

Y

Z30z ... z

0

n+1

290

0

y ... y n+1

nZ = Z (1 − Z)n

X = X (1 − X)

λY = Y (1 − Y)

29

29

λ

 20−bit integer

 20−bit integer

 20−bit integer

Loop of size 32

the bit of XOR

the bit of XOR

30

unused
elements

mantissa1

mantissa1

mantissa1

32−bit block
1 0 1 0 1 0 1 0 0 1 . . .

used to select

used to select

Fig. 2. Graphical description of the PRBG. In each mantissa1, the used bit (in xor) is
moved at the end of chain and such process is not explicit on the scheme.

Xn+1 = 3.9999Xn(1− Xn), ∀n ≥ 0 , (3)

Yn+1 = 3.9999Yn(1− Yn), ∀n ≥ 0 , (4)

Zn+1 = 3.9999Zn(1− Zn), ∀n ≥ 0 . (5)

For the three chaotic maps, the same value of λ is chosen to maintain its surjec-
tivity in the same interval. The graphical description of the generator is shown
in Fig. 2. The technical details of the implementation in C, using definitions
from the file ieee754.h are given in Algorithm 1. The algorithmic principle of the
PRBG consists in three steps:

1. Line 2: three different seed values X0, Y0 and Z0 are chosen to initiate the
generation process (see Sect. 3.1).

2. Line 3–8: the results of the 30 first iterations are discarded to decorrelate
the beginning of the output sequences (see Sect. 3.2).

3. Line 9–50: a loop of size N is started, with N being the length of the output
sequence in block of 32 bits, then:
(a) line 10–12: iterate the three logistic maps,
(b) line 13–21: in each case, the bits of mantissa0 and mantissa1 are saved

in two variables,
(c) line 23–48: start another loop of size 32, and one bit is selected at a

time from each mantissa1, according to the value of mantissa0. For more
security, the value of the mantissa0 of Zn is used to index the bits of the
mantissa1 of Xn, the value of the mantissa0 of Xn to index the bits of
mantissa1 of Yn, and the value of mantissa0 of Yn to index those of the
mantissa1 in Zn. Indeed, the bits of mantissa0 form a 20-bit integer, and
by making a regressive modulo from 32, that allows to fix the position
of the bit to be used. Thus, the three selected bits are combined by a

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 233

Algorithm 1. The PRBG algorithm
Require: X0;Y0;Z0;N ;
Ensure: A sequence of N blocks of 32 bits
1: Declaration: union ieee754 double ∗F1, ∗F2, ∗F3;
2: Initialization: i = 1; j = 1;X = X0;Y = Y0;Z = Z0;
3: while i ≤ 30 do
4: X ← 3.9999 ×X × (1−X)
5: Y ← 3.9999 × Y × (1 − Y)
6: Z ← 3.9999 × Z × (1 − Z)
7: i ← i+ 1
8: end while
9: while j ≤ N do
10: X ← 3.9999 ×X × (1−X)
11: Y ← 3.9999× Y × (1− Y)
12: Z ← 3.9999× Z × (1− Z)
13: F1 ← (union ieee754 double ∗) & X
14: F2 ← (union ieee754 double ∗) & Y
15: F3 ← (union ieee754 double ∗) & Z
16: M0X ← F1− > ieee.mantissa0
17: M1X ← F1− > ieee.mantissa1
18: M0Y ← F2− > ieee.mantissa0
19: M1Y ← F2− > ieee.mantissa1
20: M0Z ← F3− > ieee.mantissa0
21: M1Z ← F3− > ieee.mantissa1
22: k ← 32
23: while k > 0 do
24: l ← k − 1
25: PX ← M0Z mod k
26: PY ← M0X mod k
27: PZ ← M0Y mod k
28: Bx ← (M1X >> (PX) & 1)
29: By ← (M1Y >> (PY) & 1)
30: Bz ← (M1Z >> (PZ) & 1)
31: B ← (Bx +By +Bz) mod 2 {output bit}
32: bx ← (M1X >> (l) & 1)
33: by ← (M1Y >> (l) & 1)

34: bz ← (M1Z >> (l) & 1)
35: if bx �= Bx then
36: M1X ← M1X ˆ(1 << (l))
37: M1X ← M1X ˆ(1 << (PX))
38: end if
39: if by �= By then
40: M1Y ← M1Y ˆ(1 << (l))
41: M1Y ← M1Y ˆ(1 << (PY))
42: end if
43: if bz �= Bz then
44: M1Z ← M1Z ˆ(1 << (l))
45: M1Z ← M1Z ˆ(1 << (PZ))
46: end if
47: k ← k − 1
48: end while
49: j ← j + 1
50: end while

234 M. François, D. Defour, and P. Berthomé

xor to give the output bit (line 31). From each mantissa1, the selected
bit is then permuted with the bit at the end of chain to not be used
again (line 35–46). At the end of this loop, a block of 32 random bits is
produced. Such mechanism is definitely costly for the algorithm, but it
allows to better decorrelate the outputs of the PRBG, especially in case
of a possible collision.

3.1 Seed Selection

The input and output values of the logistic map belong to]0, 1[. To increase the
robustness of the generator, three identical logistic maps are then combined. To
preserve such robustness, one must avoid constructing identical chaotic trajecto-
ries, that may occur when using inappropriate initial seeds. To understand such
mechanism, it is important to know how a difference δ between two computed
values Xn and Yn at a given iteration n will propagate to the next iteration.
Without loss of generality, we can assume that Yn = Xn(1 + δ). From (2) we
know that:

Xn+1 = λXn(1 − Xn) and Yn+1 = λYn(1− Yn) ,

which is equivalent to:

Yn+1 = Xn+1

(
1 +

δ − 2δXn − δ2Xn

(1 − Xn)

)
.

Therefore, the difference between Yn+1 and Xn+1 is:

Yn+1 − Xn+1 = λδXn(1 − 2Xn − δXn) .

We can deduce that, the smallest difference between Yn+1 and Xn+1 is reached
when δ = (1 − 2Xn)/Xn. Finally, as Xn approaches 2−1 we obtain:

lim
Xn→2−1

(Yn+1 − Xn+1) = −λδ2

4
.

To avoid identical representations, this difference must be representable in bi-
nary64, that means λδ2/4 must be greater than 2−53. By hypothesis, we set
λ = 3.9999, then δ > 2−26.5. In this case, such value of δ allows to start with
different chaotic trajectories, but it does not prevent a possible collision of ele-
ments at a certain rank n, which is a rare phenomenon but not impossible. In
binary64 floating-point arithmetic, the computed value (1 − x) is equal to 1.0
for any x ∈]0, 2−53[. This means that, for an initial seed selected in the interval
]0, 2−53[the computed value of (2) is equivalent to λXn. To avoid such problem,
initial seeds have to be chosen in the interval]2−53, 2−1[.

Overall, the first seed X0 is a random floating-point number representable
in binary64 in the interval]2−53, 2−1[. The two other seeds Y0 and Z0 are con-
structed by randomly choosing two binary64 floating-point numbers. However,
the minimum gap between each pair of seeds must be greater than 2−53 to avoid
identical representations.

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 235

3.2 Initial Chaotic Behavior

The trajectory of the logistic map, from a small starting value (here 10−15 ≈
2−49.82) is plotted in Fig. 3. This value can also be considered as the minimum
gap between two initial seeds. The aim is to analyze the evolution of this gap,
through the iterative process. One can remark that, for the first iterations the
trajectory is not chaotic. Indeed, a small initial difference between two seeds,
spreads slowly toward the leading bits of mantissa. This problem does not occur,
when the initial seeds are very different. However, to decorrelate the beginning of
the output sequences in both cases, it is necessary to discard the first iterations
before starting the generation. Thus, to decorrelate the outputs and increase the
security level of the PRBG, we choose that the generation will start from the
31st iteration.

n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

E
vo

lu
tio

n
of

 p
os

iti
on

s
X

Iteration n

Fig. 3. Trajectory of the chaotic logistic map given in (2), for X0 = 10−15 and n = 200

4 Statistical Analysis

The output sequences of a PRBG must have a high level of randomness and be
completely uncorrelated from each other. Therefore, a statistical analysis based
on the randomness level and correlation should be carefully conducted to prove
the quality of the sequences.

236 M. François, D. Defour, and P. Berthomé

4.1 Randomness Evaluation

The analysis consists in evaluating the randomness quality of the sequences pro-
duced by the generator. Therefore, the sequences are evaluated through statisti-
cal tests suite NIST (National Institute of Standards and Technology of the U.S.
Government). Such suite consists in a statistical package of fifteen tests devel-
oped to quantify and to evaluate the randomness of binary sequences produced
by cryptographic random or pseudo-random number generators [24]. For each
statistical test, a set of pvalue is produced and compared to a fixed significance
level α = 0.01. A pvalue of zero indicates that, the tested sequence appears to be
not random. A pvalue larger than α means that, the tested sequence is consid-
ered to be random with a confidence level of 99%. Therefore, a sequence passes a
statistical test for pvalue ≥ α and fails otherwise. If at the same time more than
one sequence is tested, each statistical test defines a proportion η as the ratio of
sequences passing successfully the test relatively to the total number of tested
sequences T (i.e. η = n[pvalue ≥ 0.01]/T). The proportion η is compared to an
acceptable proportion ηaccept which corresponds to the ratio of sequences that
should pass the test. The range of acceptable proportions, excepted for the tests
Random Excursion-(Variant) is determined by using the confidence interval de-
fined as (1− 0.01)± 3

√
0.01(1− 0.01)/T [24]. To analyze various aspects of the

sequences, the NIST tests are applied on: individual sequences, the concatenated
sequence and resulting sequences.

1. Individual sequences: all the produced sequences are individually tested and
the results are given as ratio of success relatively to the threshold ηaccept.
Such test indicates the global randomness level of generated sequences.

2. Concatenated sequence: a new sequence of binary size 32 × N × T is con-
structed by concatenating all the individual sequences. The randomness level
of the constructed sequence is also analyzed with the NIST tests. In the case
of truly uncorrelated random sequences, the concatenated sequence should
also be random.

3. Resulting sequences: are the sequences obtained from the columns, if the
produced sequences are superimposed on each other. Thus, N resulting se-
quences of binary size 32×T are constructed, by collecting for each position
1 ≤ j ≤ N , the 32-bit bloc of each sequence. The NIST tests are used to
analyze such resulting sequences. This approach is interesting especially for
sequences generated with successive seed values and can show whether there
is some hidden linear structures between the original sequences.

4.2 Correlation Evaluation

The correlation evaluation is achieved in two different ways. Firstly, the corre-
lation between the generated sequences is analyzed globally by computing the
Pearson’s correlation coefficient of each pair of sequences [25]. Consider a pair
of sequences given by: S1 = [x0, . . . , xN−1] and S2 = [y0, . . . , yN−1]. Therefore,
the corresponding correlation coefficient is:

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 237

CS1,S2 =

N−1∑
i=0

(xi − x) · (yi − y)[
N−1∑
i=0

(xi − x)2
]1/2

·
[
N−1∑
i=0

(yi − y)2
]1/2 , (6)

where xi and yi are 32-bit integers, x =
N−1∑
i=0

xi/N and y =
N−1∑
i=0

yi/N the mean

values of S1 and S2, respectively. For two uncorrelated sequences, CS1,S2 = 0. A
strong correlation occurs for CS1,S2 , ±1. The coefficients CS1,S2 are computed
for each pair of produced sequences and the distribution of the values is presented
by a histogram.

In the second approach, a correlation based directly on the bits of sequences
is analyzed. The Hamming distance between two binary sequences (of the same
length M) is the number of places where they differ, i.e., the number of positions
where one has a 0 and the other a 1. Thus, for two binary sequences Sb

1 and Sb
2,

the corresponding Hamming distance is:

d(Sb
1, S

b
2) =

M−1∑
j=0

(xj ⊕ yj) , (7)

where xj (resp. yj) are the elements of Sb
1 (resp. Sb

2). In the case of truly random
binary sequences, such distance is typically around M/2, which gives a propor-
tion (i.e. d(Sb

1, S
b
2)/M) of about 0.50. For each pair of produced sequences, this

proportion is determined and all values are represented through a histogram. The
interest of both approaches is to check the correlation for generated sequences
mainly from nearby or successive seed values.

4.3 Analysis of Pseudo-Random Sequences

In the case of very distant seed values, the chaotic trajectories are very different,
which usually allows to obtain good pseudo-random sequences. That is why the
analysis is achieved on sequences produced from nearby or successive seed values.
Here, two groups of pseudo-random sequences are considered. The binary length
of each sequence is 32×N with N = 1024 and the total number of sequences per
group is T = 15000. The first group (GRP1) is generated from the seed values
X0 = 1 × 10−15, Y0 = 2 × 10−15 and Z0 = 3 × 10−15 where each new sequence
is obtained with the same values of X0, Y0 and by incrementing of 10−15 the
last seed value Z0. For the second group (GRP2), the same strategy is applied
to the starting seeds X ′

0 = 0.325873724698325, Y ′
0 = 0.325873724698326 and

Z ′
0 = 0.325873724698327. A simple loop on the latest seed values Z0 and Z ′

0

allows to generate the two groups of sequences GRP1 and GRP2. The aim is to
show whatever the structure of the initial seeds, the PRBG produces sequences
of high quality.

238 M. François, D. Defour, and P. Berthomé

Results of Randomness Evaluation. The results of NIST tests obtained
on the two groups of 15000 sequences are presented in Table 1 and Table 2,
respectively. For individual sequences (resp. resulting sequences), the acceptable
proportion should lie above ηaccept = 98.75% (resp. η′accept = 98.04%). For
the tests Non-Overlapping and Random Excursions-(Variant), only the smallest
percentage of all under tests is presented. In the case of individual sequences,
the Universal test is not applicable due to the size of sequences. Table 1 and
Table 2 show that, all the tested sequences pass successfully the NIST tests.

Table 1. Results of the NIST tests on the 15000 generated sequences of GRP1. The
ratio η (resp. η′) of pvalue passing the tests are given for individual (resp. resulting)
sequences and the pvalue is given for the concatenated sequence.

Test Name Indiv. Seq. Concat. Seq. Result. Seq.
η Result pvalue Result η′ Result

Frequency 99.06 Success 0.338497 Success 99.31 Success
Block-Frequency 99.11 Success 0.673515 Success 98.92 Success
Cumulative Sums (1) 99.08 Success 0.589087 Success 99.21 Success
Cumulative Sums (2) 99.00 Success 0.408891 Success 99.21 Success
Runs 98.93 Success 0.343876 Success 99.02 Success
Longest Run 98.99 Success 0.417880 Success 99.02 Success
Rank 98.86 Success 0.788352 Success 98.63 Success
FFT 98.90 Success 0.609162 Success 98.24 Success
Non-Overlapping 99.26 Success 0.012083 Success 98.04 Success
Overlapping 99.00 Success 0.175000 Success 98.92 Success
Universal - - 0.366163 Success 98.43 Success
Approximate Entropy 98.93 Success 0.138980 Success 98.14 Success
Random Excursions 98.75 Success 0.100729 Success 98.12 Success
Random Ex-Variant 98.75 Success 0.043821 Success 97.71 Success
Serial (1) 98.91 Success 0.158943 Success 99.12 Success
Serial (2) 99.06 Success 0.367717 Success 98.92 Success
Linear Complexity 98.98 Success 0.975515 Success 98.73 Success

Results of Correlation Evaluation. Concerning the correlation analysis, the
Pearson’s correlation coefficient between each pair of the 15000 produced se-
quences is computed. For each group, the corresponding histogram is presented
in Fig. 4. One can see that, the two histograms have the same shape and show
that the computed coefficients are very close to 0. For the group GRP1 (resp.
GRP2), around 99.02% (resp. 99.00%) of the coefficients have an absolute value
smaller than 0.08. The histograms show that, the correlation between the pro-
duced sequences is very small. About the correlation analysis using the Hamming
distance, the histograms are presented in Fig. 5. The distributions show that,
all the proportions are around 50%. For the group GRP1 (resp. GRP2), around
98.45% (resp. 99.98%) of the coefficients belong to]0.488, 0.512[. The values for
GRP2 are better, due to the entropy of seed values.

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 239

Table 2. Results of the NIST tests on the 15000 produced sequences of GRP2. The
ratio η (resp. η′) of pvalue passing the tests are given for individual (resp. resulting)
sequences and the pvalue for the concatenated sequence is also given.

Test Name Indiv. Seq. Concat. Seq. Result. Seq.
η Result pvalue Result η′ Result

Frequency 99.09 Success 0.408718 Success 98.73 Success
Block-Frequency 99.14 Success 0.458897 Success 98.63 Success
Cumulative Sums (1) 99.16 Success 0.239274 Success 98.63 Success
Cumulative Sums (2) 99.00 Success 0.494016 Success 99.02 Success
Runs 98.99 Success 0.025894 Success 98.82 Success
Longest Run 98.92 Success 0.281249 Success 99.12 Success
Rank 99.01 Success 0.806842 Success 99.12 Success
FFT 98.75 Success 0.673608 Success 98.73 Success
Non-Overlapping 99.27 Success 0.012472 Success 98.04 Success
Overlapping 99.02 Success 0.711625 Success 99.12 Success
Universal - - 0.149652 Success 98.53 Success
Approximate Entropy 99.02 Success 0.532585 Success 98.33 Success
Random Excursions 96.29 Success 0.060350 Success 98.52 Success
Random Ex-Variant 97.53 Success 0.134550 Success 98.73 Success
Serial (1) 98.92 Success 0.291906 Success 99.60 Success
Serial (2) 99.04 Success 0.196383 Success 99.51 Success
Linear Complexity 98.99 Success 0.215418 Success 99.60 Success

5 Security Analysis

The global security analysis of the generator is carefully conducted. The analysis
is based on all the critical points allowing to detect weaknesses in the generator.
The investigated points are: the size of key space, key sensitivity, quality of out-
puts, weak or degenerate keys, speed performance and period length of the logistic
map. Even if all the existing attacks can not be tested, the PRBG must resist to
some basic-known attacks. In the present case, the resistance to three basic attacks
(brute-force attack, differential and guess-and-determine attacks) is discussed.

5.1 Key Space

It is generally accepted that, today a key space of size smaller than 2128 is not
secure enough. A good PRBG should have a large key space, to have a high
diversity of choices for the generation. The proposed generator combines three
chaotic logistic maps. A key is then a combination of three initial seeds, used
to generate a pseudo-random bit sequence. We have set the conditions for seed
selection in Sect. 3.1. The seed X0 is a binary64 floating-point number selected
from the interval]2−53, 2−1[. That corresponds to 252 different combinations
of mantissa times 51 different values for the exponent, which gives 51 × 252

different seeds. The seeds Y0 and Z0 are selected such that there is a minimum

240 M. François, D. Defour, and P. Berthomé

GRP2

GRP1

 0

 2

 4

 6

 8

 10

 12
Fr

eq
ue

nc
y

(i
n

%
)

 0.05 0−0.05−0.1 0.1

Correlation coefficient value

Fig. 4. Histogram of Pearson’s correlation coefficient values on interval [−0.1, 0.1] for
the group GRP1 (resp. GRP2)

GRP2

GRP1

 0.485 0.49 0.505 0.51 0.515
 0

 2

 4

 6

 8

 10

 12

 14

 0.5

Fr
eq

ue
nc

y
(i

n
%

)

 0.495

Hamming distance

Fig. 5. Histogram of Hamming distance on interval [0.485, 0.515] for the group GRP1
(resp. GRP2)

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 241

gap of 2−49.82 among each seeds. This means that Y0 is selected in a space of
51 × 252 − 249.82 possible seeds and Z0 in a space of 51 × 252 − 250.82 different
numbers. The total space of seeds is approximately 2173.

5.2 Key Sensitivity

The sensitivity related to the key (i.e. the seeds) is an essential aspect for chaos-
based PRBG. Indeed, a small deviation in the starting seeds should cause a
large change in the pseudo-random sequences. Actually in the test of correla-
tion (Sect. 4.3), the seed sensitivity was already tested due to the successive
seed values. To bring an additional analysis, large pseudo-random sequences
of size N = 5000000 (i.e. 160000000 random bits) are considered. A sequence
S1 is produced by using the seed values X0 = 1 × 10−15, Y0 = 2 × 10−15

and Z0 = 4 × 10−15. Two others sequences S2 and S3 are produced with
X ′

0 = X0, Y
′
0 = Y0, Z

′
0 = 3 × 10−15 and X

′′
0 = X0, Y

′′
0 = Y0, Z

′′
0 = 5 × 10−15,

respectively. The set of the three produced sequences is denoted KS1. The same
approach is achieved from another set of sequences denoted KS2. The first se-
quence is generated with X0 = 0.328964524728163, Y0 = 0.423936234268352
and Z0 = 0.267367904037358. The two supplementary sequences are obtained
by decrementing and incrementing of 10−15 the last seed. In both cases, the
analysis is done using the linear correlation coefficient of Pearson, the correla-
tion coefficient of Kendall [26] and the Hamming distance. The same analysis is
conducted on the sets KS1 and KS2 by using the algorithm proposed by Patidar
et al. [2009], with the parameter λ = 3.9999. As the algorithm uses only two
chaotic logistic maps, for each set of sequences only the last two seed values are
considered. The results are given in Table 3 and show that, for the proposed
algorithm the correlation coefficient values are close to 0 and the proportion of
elements that differ in sequences are around 50%. The results show also that,
the sequences are highly correlated for the Patidar’s algorithm.

Another test of correlation using the randomness of the sequences is achieved.
The test is to concatenate the three generated sequences and evaluate the ob-
tained sequence through the NIST tests. The results are presented in Table 4. In
each case, all the pvalue are larger than 0.01 for the current PRBG. Therefore,
the concatenated sequence can be viewed as a random sequence, which prove
that the sequences S1, S2 and S3 are completely uncorrelated. The results of the
Patidar et al. algorithm are added to show that, it is not enough just to combine
multiple chaotic logistic maps to build a secure generator.

5.3 Quality of Pseudo-Random Sequences

The strength of any generator is undeniably related to the quality of its outputs.
Indeed, whichever way the algorithm is designed, the produced sequences must
be strong (i.e. random, uncorrelated and sensitive). In the literature, various
statistical tests are available to analyze the randomness of sequences. In fact,
the NIST proposes a battery of tests, that must be applied on the binary se-
quences [24]. One can also find other batteries of tests, such as TestU01 [27] or

242 M. François, D. Defour, and P. Berthomé

Table 3. Pearson’s and Kendall’s correlation coefficients and Hamming distance (in
term of proportion) between large output sequences S1, S2, S3 produced from slightly
different initial seeds

PRBG Set Test S1/S2 S1/S3 S2/S3

Proposed
algorithm

Pearson Corr. −0.000422 −0.000201 0.000127
KS1 Kendall Corr. −0.000150 −0.000437 −0.000141

Ham. Dist. 0.499985 0.500064 0.500033

Pearson Corr. −0.000423 0.000235 0.000583
KS2 Kendall Corr. −0.000116 −0.000025 0.000199

Ham. Dist. 0.500002 0.500055 0.499931

Patidar et al.
algorithm

Pearson Corr. 0.329043 0.329214 0.329024
KS1 Kendall Corr. 0.233170 0.231704 0.231653

Ham. Dist. 0.333416 0.333362 0.333366

Pearson Corr. 0.329542 0.329417 0.330055
KS2 Kendall Corr. 0.231709 0.232413 0.231693

Ham. Dist. 0.333284 0.333324 0.333354

the DieHARD suites [28]. Here, the NIST tests are adopted and all the produced
sequences passed successfully the tests. The correlation between the outputs is
evaluated and the results showed that, only a very small (or negligible) corre-
lation exists between sequences. The proposed PRBG is also very sensitive to
starting seeds, even when using slightly different seed values. That shows the
quality of the pseudo-random sequences produced by the proposed generator.

5.4 Weak or Degenerate Keys

A crucial element for any PRBG is to ensure that, the output sequences are
always produced from strong keys. Here, a careful study of the chaotic regions
from the seed space, is necessary for avoiding weak keys. However, the first task
is to choose a parameter λ of the logistic map, that contributes to have an ex-
cellent chaotic behavior. To avoid similar chaotic trajectories, the seed values
must be chosen in]2−53, 2−1[, with a representable difference in binary64. The
various statistical tests clearly showed the quality of tested sequences, from suc-
cessive seed values. Thus, these regions are considered as homogeneously chaotic,
allowing to choose independently the seed values in]2−53, 2−1[. Therefore, the
proposed PRBG should not present weak or degenerate keys.

5.5 Speed Analysis

Beyond the randomness aspect, it is also necessary to have a fast generator.
Indeed, in real-time applications, the temporal constraint in the execution of a

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 243

Table 4. Results of the NIST tests on the concatenated sequence obtained from the
sequences of the set KS1 (resp. KS2) for the proposed and Patidar et al. algorithm

Test Name Proposed algo. Patidar et al. algo.
KS1 KS2 KS1 KS2
pvalue pvalue pvalue pvalue

Frequency 0.888272 0.189097 0.218594 0.933359
Block-Frequency 0.013966 0.409511 1.000000 1.000000
Cumulative Sums (1) 0.851269 0.250461 0.343496 0.679001
Cumulative Sums (2) 0.723802 0.375858 0.284913 0.757413
Runs 0.239428 0.196619 0.000000 0.000000
Longest Run 0.341867 0.124501 0.000000 0.000000
Rank 0.690933 0.468857 0.611764 0.788756
FFT 0.704824 0.837336 0.000000 0.000000
Non-Overlapping 0.014372 0.017263 0.000000 0.000000
Overlapping 0.544746 0.513071 0.000000 0.000000
Universal 0.693543 0.467674 0.000000 0.000000
Approximate Entropy 0.534042 0.087565 0.000000 0.000000
Random Excursions 0.016321 0.014831 0.013588 0.000622
Random Ex-Variant 0.014383 0.013285 0.125754 0.038526
Serial (1) 0.532881 0.383964 0.000000 0.000000
Serial (2) 0.508815 0.828262 0.000000 0.000000
Linear Complexity 0.956706 0.189871 0.817657 0.400909

process is as important as the result of the process. Thus, for a fast generator,
the domain of its applications can be extended. The speed performance analysis
is achieved on a work computer with processor: Intel(R) Xeon(R) CPU E5410
@ 2.33 GHz × 4. The source code is compiled using GCC 4.6.3 on Ubuntu
(64 bits). The proposed generator enables to produce around 7 Gbits/s. This is
an advantage for applications requiring a good security level and a fast execution
time.

5.6 Period Length of the Logistic Map

Here, the period length of the logistic map is discussed. A PRBG should have
a reasonably long period before its output sequence repeats itself. The idea is
to build the trajectories formed by the different seed values and then compute
the lengths of cycles. In a period-p cycle, Xk = F p(Xk) for some Xk, where F p

is the pth iterate of F . To analyze the evolution of cycles of the logistic map,
the mantissa bits are modified by using the GNU MPFR library [29]. Figure 6
shows the curve representing the length of longest (resp. smallest) cycles, when
the mantissa bits are varied between 10 and 25. One can see that, the logistic map
has very small cycle lengths. For example under binary32 format, the computed
longest (resp. smallest) cycle length is equal to 3055 (resp. 1). Such format is
not appropriate for generating pseudo-random numbers. To obtain long periods,

244 M. François, D. Defour, and P. Berthomé

it is necessary to consider more bits in the mantissa, in other words increase
the precision. Thus, by using the binary64 format, the cycle lengths should be
much longer. Indeed, the length of the longest cycle is 40037583 (≈ 225.25),
while for the smallest cycle is 2169558 (≈ 221.04). In this case, only a given set
of randomly chosen seeds is tested due to the large size of the binary format.
Approximately we found the same cycle lengths than those given in [30]. For
the proposed PRBG, three logistic maps are used during the generation process.
In this way, the length of the global resulting cycle is given by the LCM of
the three cycle lengths. As one can see, the best way to use this PRBG and
then avoid the problem of short period, is to produce sequences of small sizes.
However, if needed, long sequences can be obtained by concatenating several
ones. In the case of maximum security, it might be better to limit the length of
output sequences to the smallest cycle length.

MaxCMaxC
MinC

 1

 1000

 2000

 3000

 4000

 5000

 10 12 14 16 18 20 22 24 26

Mantissa (in bits)

L
en

gt
h

of
 c

yc
le

s

Fig. 6. The curve “MaxC” (resp. “MinC”) representing the length of longest (resp.
smallest) cycles, when the mantissa bits vary between 10 and 25

5.7 Basic Attacks

Here, the resistance of the generator against three basic attacks, such as brute-
force attack, differential and guess-and-determine attacks is discussed.

Brute-force Attack. A brute-force attack [7] is a standard attack that can
be used against any PRNG. The strategy consists in checking systematically all
possible keys, until the correct key is found. In the worst case, all the combina-
tions are tested, that necessitates to try all the key space. On average, just half

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 245

of the key space needs to be tested to find the original key. Such an attack might
be utilized when it is not possible to detect any weakness in the algorithm, that
would make the task easier. To resist this kind of attack, the size of the key
space must be large. It is generally accepted that, a key space of size larger than
2128 is computationally secure against such attack. In this case, the size of the
key space is around 2173, which clearly allows to resist the brute force-attack.

Differential Attack. Such technique of cryptanalysis was introduced by Bi-
ham and Shamir [31]. As a chosen-plaintext attack, its principle is to analyze
and exploit the effect of a small difference in input pairs on the difference of
corresponding output pairs. This strategy allows to find the most probable key
that was used to produce the pseudo-random sequence. Given two inputs I and
I ′ (e.g. X0, Y0, Z0 and X ′

0, Y
′
0 , Z

′
0) and the corresponding outputs O and O′, the

most commonly used differences are:

1. Subtraction modulus: the differences related to both inputs and outputs are
defined by Δin = |I − I ′| and Δout = |O−O′|, respectively. Here, for inputs
the difference can be computed between (X0, X

′
0), (Y0, Y

′
0) and (Z0, Z

′
0) and

for outputs, between the bits of pseudo-random sequences.
2. Xor difference: defined by Δin = I ⊕ I ′ and Δout = O ⊕ O′.

The diffusion aspect on the initial conditions is then measured by a differential
probability. However, in the design of the algorithm, the decorrelation of out-
puts was taken into account by choosing the seed values in]2−53, 2−1[, and by
making 30 iterations before starting the generation. Moreover, even with slightly
different seeds, the produced sequences are almost independent from each other.
Therefore, the proposed PRBG should resist to the differential attack.

Guess-and-determine Attack. Such kind of attack is proven to be effective
against word-oriented stream ciphers [32]. As it comes from the name, in guess-
and-determine attack, the strategy is to guess firstly the value of few unknown
variables of the cipher and then, the remaining unknown variables are deduced by
iterating the system a few times and by comparing the output sequence with the
original sequence. If these two sequences are the same, then the guessed values
are correct and the generator is broken, otherwise the attack should be repeated
with new guessed values. It seems that the attack discussed in reference [32]
can not be directly applied on the proposed algorithm, which is not of the same
family of involved stream ciphers. Indeed, the internal structure of the cipher
algorithm is completely different from a Linear Feedback Shift Register (LFSR).
Here the algorithm starts with three seed values and generates a 32-bit bloc after
each iteration. An alternative way to apply such attack would be to guess and
fix the two seed values X0 and Y0, then iterate the algorithm to find the seed Z0.
Knowing that the algorithm is very sensitive to starting seeds, one should try
in the worst case 257.67 different values. Once all the comparisons made without
success, the two initial seeds (X0 and Y0) are guessed again and the process is
repeated in the same way until success. However, this approach has almost the
same complexity than a classic brute-force attack.

246 M. François, D. Defour, and P. Berthomé

6 Conclusions

A novel pseudo-random bit generator based on the combination of three chaotic
logistic maps was presented. The generator uses the IEEE 754-2008 standard for
floating-point arithmetic and especially the binary64 double precision format.
For three given initial seeds, the algorithm produces a pseudo-random sequence
formed of 32-bit blocks. The main strength of the generator is based on a special
mechanism allowing to effectively extract the random bits. Such a generator has
shown its ability to produce a very large number of pseudo-random sequences.
The advantages of this PRBG are: a high sensitivity related to the initial seed
values, a high randomness level of output sequences and the rapidity of the
algorithm. The proposed scheme can be considered to be a serious alternative
for generating pseudo-random bit sequences.

References

1. Sun, F., Liu, S.: Cryptographic pseudo-random sequence from the spatial chaotic
map. Chaos Solit. Fract. 41(5), 2216–2219 (2009)

2. Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number gener-
ator. Statistische Hefte 27(1), 315–326 (1986)

3. Rose, G.: A stream cipher based on linear feedback over GF (28). In: Boyd, C.,
Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 135–146. Springer, Heidelberg
(1998)

4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

6. Tomassini, M., Sipper, M., Zolla, M., Perrenoud, M.: Generating high-quality ran-
dom numbers in parallel by cellular automata. Future Gener. Comput. Syst. 16(2),
291–305 (1999)

7. Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryp-
tosystems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)

8. Guyeux, C., Wang, Q., Bahi, J.M.: A pseudo random numbers generator based on
chaotic iterations: Application to watermarking. In: Wang, F.L., Gong, Z., Luo, X.,
Lei, J. (eds.) Web Information Systems and Mining. LNCS, vol. 6318, pp. 202–211.
Springer, Heidelberg (2010)

9. Zheng, F., Tian, X., Song, J., Li, X.: Pseudo-random sequence generator based
on the generalized Henon map. J. China Univ. Posts Telecommun. 15(3), 64–68
(2008)

10. Pareschi, F., Setti, G., Rovatti, R.: A fast chaos-based true random number gener-
ator for cryptographic applications. In: Proceedings of the 32nd European Solid-
State Circuits Conference, ESSCIRC 2006, pp. 130–133. IEEE (2006)

11. Pareek, N., Patidar, V., Sud, K.: A random bit generator using chaotic maps. Int.
J. Netw. Secur. 10(1), 32–38 (2010)

12. Patidar, V., Sud, K., Pareek, N.: A pseudo random bit generator based on chaotic
logistic map and its statistical testing. Informatica (Slovenia) 33(4), 441–452 (2009)

A PRBG Based on Three Chaotic Logistic Maps and IEEE 754-2008 Std 247

13. López, A.B.O., Marañon, G.Á., Estévez, A.G., Dégano, G.P., Garćıa, M.R., Vitini,
F.M.: Trident, a new pseudo random number generator based on coupled chaotic
maps. In: Herrero, Á., Corchado, E., Redondo, C., Alonso, Á. (eds.) Computational
Intelligence in Security for Information Systems 2010. AISC, vol. 85, pp. 183–190.
Springer, Heidelberg (2010)

14. François, M., Grosges, T., Barchiesi, D., Erra, R.: A new pseudo-random number
generator based on two chaotic maps. Informatica 24(2), 181–197 (2013)

15. 754-2008 IEEE standard for floating-point arithmetic. IEEE Computer Society Std
(August 2008)

16. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

17. Bose, R., Banerjee, A.: Implementing symmetric cryptography using chaos func-
tions. In: Proc. 7th Int. Conf. Advanced Computing and Communications, pp.
318–321. Citeseer (1999)

18. Weisstein, E.: Logistic map (2013),
http://mathworld.wolfram.com/LogisticMap.html

19. Baptista, M.: Cryptography with chaos. Phys. Lett. A 240(1), 50–54 (1998)
20. Cecen, S., Demirer, R., Bayrak, C.: A new hybrid nonlinear congruential num-

ber generator based on higher functional power of logistic maps. Chaos Solit.
Fract. 42(2), 847–853 (2009)

21. Xuan, L., Zhang, G., Liao, Y.: Chaos-based true random number generator using
image. In: 2011 International Conference on Computer Science and Service System
(CSSS), pp. 2145–2147. IEEE (2011)

22. François, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number gen-
erator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer.
Simul. 19(4), 887–895 (2014)

23. Pareek, N., Patidar, V., Sud, K.: Image encryption using chaotic logistic map.
Image Vis. Comput. 24(9), 926–934 (2006)

24. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, NIST Special Publication Revision 1a (2010)

25. Patidar, V., Pareek, N., Purohit, G., Sud, K.: A robust and secure chaotic standard
map based pseudorandom permutation-substitution scheme for image encryption.
Opt. Commun. 284(19), 4331–4339 (2011)

26. Kendall, M.: Rank correlation methods, 4th edn. Griffin, London (1970)
27. L’ecuyer, P., Simard, R.: Testu01: A C library for empirical testing of random

number generators. ACM Trans. Math. Softw. 33(4), 22–es (2007)
28. Marsaglia, G.: Diehard: a battery of tests of randomness (1996),

http://stat.fsu.edu/geo/diehard.html

29. The GNU MPFR library, http://www.mpfr.org
30. Keller, J., Wiese, H.: Period lengths of chaotic pseudo-random number generators.

In: Proceedings of the Fourth IASTED International Conference on Communica-
tion, Network and Information Security, CNIS 2007, pp. 7–11 (2007)

31. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, New York (1993)

32. Ahmadi, H., Eghlidos, T.: Heuristic guess-and-determine attacks on stream ciphers.
Inf. Secur. IET 3(2), 66–73 (2009)

http://mathworld.wolfram.com/LogisticMap.html
http://stat.fsu.edu/geo/diehard.html
http://www.mpfr.org

Set Cover, Set Packing and Hitting Set

for Tree Convex and Tree-Like Set Systems�

Min Lu1, Tian Liu1,��, Weitian Tong2, Guohui Lin2,��, and Ke Xu3,��

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
{lummy,lt}@pku.edu.cn

2 Department of Computing Science, University of Alberta Edmonton,
Alberta T6G 2E8, Canada

{weitian,guohui}@ualberta.ca
3 National Lab of Software Development Environment,

Beihang University, Beijing 100191, China
kexu@nlsde.buaa.edu.cn

Abstract. A set system is a collection of subsets of a given finite uni-
verse. A tree convex set system has a tree defined on the universe, such
that each subset in the system induces a subtree. A circular convex set
system has a circular ordering defined on the universe, such that each
subset in the system induces a circular arc. A tree-like set system has a
tree defined on the system, such that for each element in the universe,
all subsets in the system containing this element induce a subtree. A
circular-like set system has a circular ordering defined on the system,
such that for each element in the universe, all subsets in the system
containing this element induce a circular arc. In this paper, we restrict
the trees to be stars, combs, triads, respectively, and restrict the set sys-
tem to be unweighted. We show tractability of Triad Convex Set Cover,
Circular-like Set Packing, and Triad-like Hitting Set, intractability of
Comb Convex Set Cover and Comb-like Hitting Set. Our results not
only complement the known results in literatures, but also rise interest-
ing questions such as which other kind of trees will lead to tractability or
intractability results of Set Cover, Set Packing and Hitting Set for tree
convex and tree-like set systems.

Keywords: Tree convex set systems, tree-like set systems, set cover, set
packing, hitting set, polynomial time, NP-complete.

1 Introduction

Set Cover (SC), Set Packing (SP) and Hitting Set (HS) are three closely related
computational problems.Theynaturally arise inmanyareas suchas combinatorics,

� Partially supported by National 973 Program of China (Grant No. 2010CB328103),
Natural Science Foundation of China (Grant Nos. 61370052 and 61370156) and
NSERC.

�� Corresponding authors.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 248–258, 2014.
c© Springer International Publishing Switzerland 2014

SC, SP and HS for Tree Convex and Tree-Like Set Systems 249

bioinformatics, and optimization. A set system is a collection of subsets of a given
finite universe. Given a finite universe U and a set system S of subsets of U , SC
asks for a minimum cardinality subsystem C of S such that each element in U is
contained in at least one of the subsets in C. As a dual problem to SC, SP asks for a
maximum cardinality subsystem C of S such that any two subsets in C are disjoint.
As an equivalent problem to SC, HS asks for a minimum cardinality subset W of
U such that each subset in S contains at least one element of W . The equivalence
between SC and HS roots at the symmetry between the roles ofU and S [11,5]. We
consider the unweighted version of all these three problems.

On their computational complexity, the decision versions of SC, SP and HS
are among Karp’s twenty-one classical NP-complete problems [11]. These three
problems are also hard to approximate [4] and parameterized intractable [3]. In
the literature, most works were done to find ways to solve them efficiently for
certain restricted set systems.

Definition 1. A set system S is called tree convex, if there is a tree TU on U ,
such that each subset Y in S induces a subtree. When the tree TU is restricted
to be a path, a star, a comb, and a triad (see Figure 1) respectively, S is called
convex, star convex, comb convex, and triad convex respectively. A set system
S is called circular convex, if there is a circular ordering TU on U , such that
each subset Y in S induces a circular arc of TU .

Fig. 1. An illustration of a star, a comb and a triad

Definition 2. A set system S is called tree-like, if there is a tree TS on S,
such that for each elements x in U , all subsets in S containing x induce a
subtree of TS . When the tree TS is restricted to be a path, a star, a comb, and
a triad respectively, S is called convex-like, star-like, comb-like, and triad-like
respectively. A set system S is called circular-like, if there is a circular ordering
TS on S, such that for each elements x in U , all subsets in S containing x induce
a circular arc of TS .

A set system (U,S), where U = {x1, x2, . . . , x|U|} and S = {Y1, Y2, . . . , Y|S|},
can be represented by a matrix M|U|×|S| with entry mi,j = 1 if and only if
xi ∈ Yj . In this representation, circular convex or convex set systems are also
said having circular ones property for column (Circ1P for column) or consecutive
ones property for column (C1P for column), and circular-like or convex-like set
systems are also said having circular ones property for row (Circ1P for row) or

250 M. Lu et al.

consecutive ones property for row (C1P for row). One may refer to [2] for more
details on C1P and Circ1P.

Due to the duality between SC and HS and the duality between tree convex
and tree-like, SC on tree convex or tree-like set systems can be cast equivalently
as HS on the corresponding tree-like or tree convex set systems; this applies
the same to circular convex and circular-like, again due to their duality. On the
above introduced restricted set systems, known tractability and intractability
results of SC, SP and HS are summarized in Table 1.

Table 1. Complexity results for SC, SP and HS on various restricted set systems, here
‘P’ refers to polynomial time solvable and ‘NPC’ refers to NP-complete. The ‘↓’ and
‘↑’ indicate the same complexity results since a path, a star, a comb, and a triad are
all special trees. Entries marked with ∗ are obtained in this paper.

Set Systems SP SC HS

Tree convex P [16] ↑ P [6]

Star convex ↓ NPC [16] ↓
Comb convex ↓ NPC∗ ↓
Triad convex ↓ P∗ ↓

Convex ↓ P[1] ↓
(Column-convex, Column C1P)

Circular convex
P [1] P [1] P [2]

(Column-circular,Column Circ1P)

Tree-like P [7]
Star-like ↓
Comb-like ↓
Triad-like ↓
Convex-like ↓

(Row-convex, Row C1P)
Circular-like

P*
(Row-circular, Row Circ1P)

Chronically, Trick (1988) showed that SP is tractable on tree convex set sys-
tems and SC is intractable on star convex set systems [16], where tree convex set
systems are called induced subtrees of a tree. Then, Boctor and Renaud (2000)
showed that SP and SC are tractable on circular convex set systems under some
condition [1], where circular convex set systems are called column-circular, and
the condition is that the optimal solution is such that there is at least two con-
secutive elements which are not simultaneously covered by any of the selected
subsets. Later, Guo and Niedermeier (2006) proved that SC is tractable on tree-
like set systems [6] (equivalently, HS is tractable on tree convex set systems),
and Dom (2009) proved that SC is tractable on circular-like set systems [2]
(equivalently, HS is tractable on circular convex set systems), where circular-like
is called Circ1P for row. Most recently, SP is shown tractable on tree-like set
systems by Gulek and Toroslu (2010) [7].

SC, SP and HS for Tree Convex and Tree-Like Set Systems 251

In this paper, we complete the above summary table by filling in the last three
entries with two tractability and one intractability results. We first prove that
SC is tractable on triad convex set systems. Note that this result is incomparable
with the result that SC is tractable on circular convex set systems in [1,2], since
triad convex set systems and circular convex set systems are not comparable.
Secondly, we show that SP is tractable on circular-like set systems. We again
remark that this result is incomparable with the result that SP is shown tractable
on tree-like set systems in [7], since circular-like set systems and tree-like set
systems are incomparable. Lastly, we prove that SC is NP-complete for comb
convex set systems. This negative result claims no hope of SC tractability on tree
convex set systems even when the tree has a maximum degree as small as three,
though SC is tractable on triad convex set systems. A borderline separating
tractable and intractable SC and HS, as well as inclusion relationship for various
restricted set systems, is shown in Figure 2.

Fig. 2. Various restricted set systems and borderlines separating tractable and in-
tractable SC, and tractable and intractable HS

The main contribution of this paper is to further restrict the trees to be
stars, combs and triads respectively and show tractability results for triad and
intractability results for stars and combs respectively. These results rise interest-
ing questions such as which kind of trees will lead to tractability or intractability
results. In the literature, there are several similar tractability and intractabil-
ity results for other graph problems, including feedback vertex Set, variants of
domination, hamiltonian circuit, hamiltonian path and treewidth, for tree convex
bipartite graphs and circular convex bipartite graphs [8,10,15,18,9,13,12,14,17].

This paper is structured as follows. In Section 2, we recall some necessary
definitions and notations mainly for graphs and sets. In Sections 3 and 4, we
give an explicit polynomial algorithm for SC on triad convex set systems, and an
explicit polynomial algorithm for SP on circular-like set systems, respectively,
and prove its correctness. In Section 5, we first present a reduction from the
general Set Cover problem to SC on star convex set systems, and then a slightly
modified reduction from the general Set Cover problem to SC on comb convex set
systems, which shows the NP-completeness of SC on comb convex set systems.
Finally are Conclusions.

2 Preliminaries

In this section, we will review some relevant concepts and notations for graphs
and sets which will be used later.

252 M. Lu et al.

A graph G is a tuple (V,E) where V and E are sets of vertices (or nodes) and
edges respectively, and each edge is incident with two vertices which are called
adjacent to each other. For each vertex v, its neighborhood is defined as

N(v) = {u|u is adjacent to v},

and its closed neighborhood is N [v] = N(v) ∪ {v}. For a subset V ′ of vertices,
N(V ′) =

⋃
v∈V ′ N(v). A tree, a cycle and a (simple) path are defined as usual.

For a subset V ′ of vertices, the induced subgraph G[V ′] = (V ′, E′), where E′ =
{e ∈ E|e ⊆ V ′}. A graph (V1, E1) is a subgraph of (V,E) if V1 ⊆ V and E1 ⊆ E.
Given a tree, a subtree is defined as a connected subgraph of the tree. A graph
on a set S is a graph whose vertex set is exactly S.

The cardinality of a set S, i.e. the number of elements in S, is denoted by |S|.
The difference of two sets X and Y is denoted by X\Y = {x|x ∈ X and x /∈ Y }.
The empty set is denoted by ∅. When there is an ordering on a set, it is denoted
by ≺.

A set system (U,S) with U = {x1, x2, . . . , xn}, S = {Y1, Y2,
. . . , Ym} can also be represented by a bipartite graph G = (U,S, E) such that
(xi, Yj) ∈ E if and only if xi ∈ Yj . We mostly use this representation in the
sequel.

3 Triad Convex Set Cover

In this section, we show that SC on triad convex set systems is polynomial
time solvable, by reducing it to SC on convex set systems, which is linear time
solvable using a greedy method. The greedy method always select the next subset
which contains as many as possible uncovered elements and also contains the first
uncovered elements under the linear ordering. The reduction is a Cook reduction,
that is, a polynomial time Turing reduction.

We give some definitions first. Recall that a triad consists of three paths with
a common end. Given an instance I = (V,S) of SC on triad convex set system
with a triad on the universe V , we divide V into four parts: V1, V2, V3, and {v0},
such that Vi ∪ {v0} induces a path of the triad for each i. We assume without
loss of generality that

Vi = {vi,1, vi,2, . . . , vi,ni},

where
∑3

i=1 ni = |V | − 1 and

v0vi,1vi,2 . . . vi,ni

is a path of the triad with the common end v0. For ease of presentation, we also
use vi,0 to denote v0.

We classify the elements in S into 4 disjoint sets S0,S1,S2,S3 (see Figure 3),
where

S0 = {s|s ∈ S and v0 ∈ s},
Si = {s|s ∈ S and s ⊆ Vi}, for i = 1, 2, 3.

SC, SP and HS for Tree Convex and Tree-Like Set Systems 253

Fig. 3. An instance of SC on triad convex set systems

For each vertex vi,ji ∈ Vi with 1 ≤ ji ≤ ni, we define Ivi,ji as follows (see
Figure 4):

Ivi,ji = (Vvi,ji
, Svi,ji

), where

Vvi,ji
= {vi,ji+1, vi,ji+2, . . . , vi,ni} and

Svi,ji
= {s ∩ Vvi,ji

|s ∈ Si, s ∩ Vvi,ji
�= ∅}.

Fig. 4. Decomposition of instance I of SC on triad convex set systems

Lemma 1. Ivi,ji = (Vvi,ji
, Svi,ji

) is a convex set system.

Proof. Since instance I is a triad convex set system, for each s ∈ Si, the non-
empty s∩Vvi,ji

is a path on Vvi,ji
. Thus, we can define a linear ordering denoted

as ≺i on Vvi,ji
as vi,ji+1 ≺i vi,ji+2 ≺i . . . ≺i vi,ni . In this ordering, each element

of Svi,ji
maps to an interval. �

254 M. Lu et al.

For every triple (j1, j2, j3), we define a set

Vv1,j1 ,v2,j2 ,v3,j3
= V \

(
∪3
i=1Vvi,ji

)
.

Lemma 2. Let C be the minimum set cover of instance I. We have |C ∩S0| ≤ 3.

Proof. Let C0 = C ∩ S0 and U ′ = ∪s∈C0s. The induced subgraph of the triad
on set V by set U ′ is also a triad. Assume the three paths of this sub-triad end
at v1,j1 , v2,j2 , v3,j3 , respectively, other than the common end v0. Then there
are at most three sets s1, s2, s3 in C0, such that v1,j1 ∈ s1, v2,j2 ∈ s2, v3,j3 ∈ s3,
respectively, and thus U ′ ⊆ ∪3

i=1si. Since C be the minimum set cover of instance
I, we conclude that |C0| ≤ 3. �

Theorem 1. SC on triad convex set systems is solvable in O(|V ||S|3) time.

Proof. The algorithm for finding the minimum set cover on a triad convex set
system I = (V,S) consists of the following four steps. The first step is to pre-
process I to partition S into S0,S1,S2 and S3 as defined above. In the second
step, a subset C0 of S0 is selected, which contains at most three elements of
S0; the ends of the (at most) three paths of the sub-triad associated with C0
are determined, and assume they are v1,j1 , v2,j2 , v3,j3 . In the third step, three
convex set systems are generated: Iv1,j1 , Iv2,j2 , Iv3,j3 ; and on each the minimum
set cover is computed by a greedy method, denoted as C1, C2, C3, respectively.
Lastly, C = ∪3

i=0Ci is a candidate set cover on I; and the algorithm loops through
all possible C0’s and return the set cover C of the minimum size.

Lemma 2 tells that it is sufficient to enumerate all subsets of S0 of size at
most three, and Lemma 1 guarantees the minimum set cover on each sub set
systems generated. The overall minimum is due to the disjointness of the three
subproblems on convex set systems.

The first step of preprocessing takes linear time O(|V | + |S|) time. Upon C0
is selected, generating the three subproblems on convex set systems and solving
them take only O(|V |) time. It follows that looping through to generate all
candidate set covers can be done in O(|V ||S|3) time. �

Corollary 1. HS on triad-like set systems is solvable in O(|V |3|S|) time.

4 Circular-Like Set Packing

In this section, we show that SP on circular-like set systems is polynomial time
solvable, by reducing it to SP on convex-like set systems. Given an instance
I = (V,S) of SP on circular-like set systems with a circle on S = {s1, s2, . . . ,
sm} clockwise, we can define a linear ordering ≺ on S: s1 ≺ s2 ≺ . . . ≺ sm. We
next classify the elements of V into two disjoint sets Vc, Vnc (see Figure 5), where
the elements in Vc are intervals under this linear ordering ≺, and Vnc contains
all the other elements. Since I is a circular-like set system, all elements in Vnc

have the form of {s1, . . . , si, sj , . . . , sm} for some i < j − 1.

SC, SP and HS for Tree Convex and Tree-Like Set Systems 255

Fig. 5. An instance I of SP on circular-like set systems

For each pair of vertices si and sj with i < j−1 in S, we define some notations
as follows (see Figure 5):

Ssi = {s1, s2, . . . , si},
Ssj = {sj , sj+1, . . . , sm}, and

Isi,sj = (Vsi,sj ,Ssi,sj) where

Ssi,sj = {sk|sk ∩ (si ∪ sj) = ∅, i < k < j},
Vsi,sj = ∪sk∈Ssi,sj

sk.

Fig. 6. Decomposition of instance I of SP on circular-like set systems

Lemma 3. For each pair of vertices si and sj with i < j − 1 and si ∩ sj = ∅,
Isi,sj is a convex-like set system.

Proof. Since s1, s2, . . . , sm is a circle on S, for each pair of vertices si and sj
with i < j−1, every element v of Vsi,sj is contained in some subset in Ssi,sj . We
define a linear ordering ≺ on Ssi,sj as si+1 ≺ . . . ≺ sj−1. This way, all subsets
in Ssi,sj containing v induce a path under this linear ordering ≺. �

256 M. Lu et al.

Theorem 2. SP on circular-like set systems is solvable in O(|S|3) time.

Proof. Our algorithm for finding the maximum set packing on a circular-like set
system I consists of the following steps. Firstly, we find a pair of vertices si and
sj such that i < j − 1, si ∩ sj = ∅, and indices i and j cannot be decreased and
increased respectively. Such a pair (si, sj) is called nearest to pair (s1, sm). Note
that there are at most O(|S|) nearest pairs and all of them can be determined
in O(|S|2) time. Secondly, for each such pair, construct the sub-instance Isi,sj
as above. Then we compute the maximum set packing C∗ for sub-instance Isi,sj
using the dynamic programming algorithm for SP on convex-like set systems in
[7]. C∗∪{si, sj} is a candidate maximum set packing for instance I, conditioning
on (si, sj) being a nearest pair. Lastly, let C denote the maximum cardinality
set packing among all the candidates, and return it as the final solution.

Since the dynamic programming algorithm for finding the maximum set pack-
ing for a convex-like set system runs in linear time. The overall running time of
our algorithm is O(|S|3). �

5 Comb Convex Set Cover

The general Set Cover problem is NP-complete. The following lemma says that
it remains NP-complete on star convex set systems [16].

Lemma 4. SC on star convex set systems is NP-complete.

Proof. We reduce the general SC to SC on star convex set systems. Given an
instance I = (V,S) of the general SC, where V = {v1, v2, . . . , vn} and S =
{s1, s2, . . . , sm}, we construct an instance I ′ by adding a dummy element v0 to
every set sj ∈ S and regarding v0 as the center of the star. Clearly, the resultant
set system is star convex and I has a set cover of cardinality k if and only if I ′

has a set cover of cardinality k. Our reduction is done in O(|S|)-time. �

Corollary 2. HS on star-like set systems is NP-complete.

With a slight modification, we can transform the star constructed above into
a new tree whose maximum degree is at most three. We first split the single
center vertex v0 into n vertices labeled as w1, w2, . . . , wn, respectively. Then we
link w1, w2, . . . , wn to form a path and add an edge between vi and wi for all
i = 1, 2, . . . , n (see Figure 7). For each subset sj ∈ S, add all wi(i = 1, . . . , n) to
sj .

Theorem 3. SC on comb convex set systems is NP-complete.

Proof. Given an instance I = (V,S) of the general SC, where V = {v1, v2, . . . , vn}
and S = {s1, s2, . . . , sm}, we continue on the above modification that constructs
a comb convex set system I ′. This reduction is done in O(|V ||S|) time. Again,
one clearly see that I has a set cover of cardinality k if and only if I ′ has a set
cover of cardinality k. �

SC, SP and HS for Tree Convex and Tree-Like Set Systems 257

Fig. 7. A tree where the maximum degree is at most three

Corollary 3. SC on tree convex set systems is NP-complete, even when the
tree has a maximum degree of three.

Corollary 4. HS on comb-like set systems is NP-complete; HS on tree-like set
systems is NP-complete, even when the tree has a maximum degree of three.

6 Conclusions

In this paper, we have restricted the trees to be stars, combs, triads, respec-
tively, and restricted the set system to be unweighted, and shown tractability
of Triad Convex Set Cover, Circular-like Set Packing, and Triad-like Hitting
Set, intractability of Comb Convex Set Cover and Comb-like Hitting Set. These
results not only complement the known results in literatures, but also rise in-
teresting questions such as which other kind of trees will lead to tractability or
intractability results of Set Cover, Set Packing and Hitting Set for tree convex
and tree-like set systems.

Also recently in the literature, there are several similar tractability and in-
tractability results for other graph problems, including feedback vertex Set, vari-
ants of domination, hamiltonian circuit, hamiltonian path and treewidth, for tree
convex bipartite graphs and circular convex bipartite graphs
[8,10,15,18,9,13,12,14,17]. The same questions as above on complexity classifica-
tion of these graph problems for tree convex bipartite graphs based on different
kind of restrictions on the trees are also largely open.

Acknowledgments. Min Lu and Tian Liu thank Prof Kaile Su for encourage-
ment and supports. We thank Prof Francis Y.L. Chin for bringing our attention
to the notion of circular convex during FAW-AAIM 2011. This work was partially
done during a workshop co-organized by Prof Binhai Zhu following COCOON
2013, and we thank the participants and the discussions.

258 M. Lu et al.

References

1. Boctor, F.F., Renaud, J.: The column-circular, subsets-selection problem: complex-
ity and solutions. Computers & OR 27, 383–398 (2000)

2. Dom, M.: Algorithmic aspects of the consecutive-ones property. Bulletin of the
EATCS 98, 27–59 (2009)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer (1999)

4. Du, D., Ko, K., Hu, X.: Design and Analysis of Approximation Algorithms.
Springer (2012)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

6. Guo, J., Niedermeier, R.: Exact algorithms and applications for tree-like weighted
set cover. J. Discrete Algorithms 4, 608–622 (2006)

7. Gulek, M., Toroslu, I.H.: A dynamic programming algorithm for tree-like weighted
set packing problem. Information Sciences 180, 3974–3979 (2010)

8. Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex
sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681,
pp. 233–243. Springer, Heidelberg (2011)

9. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite
graphs. Theor. Comput. Sci. 507, 41–51 (2013)

10. Jiang, W., Liu, T., Xu, K.: Tractable feedback vertex sets in restricted bipartite
graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 424–434. Springer, Heidelberg (2011)

11. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, pp. 85–103. Plenum Press, New York (1972)

12. Lu, M., Liu, T., Xu, K.: Independent Domination: Reductions from Circular- and
Triad-Convex Bipartite Graphs to Convex Bipartite Graphs. In: Fellows, M., Tan,
X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 142–152. Springer,
Heidelberg (2013)

13. Lu, Z., Liu, T., Xu, K.: Tractable Connected Domination for Restricted Bipartite
Graphs (Extended Abstract). In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013.
LNCS, vol. 7936, pp. 721–728. Springer, Heidelberg (2013)

14. Lu, Z., Lu, M., Liu, T., Xu, K.: Circular convex bipartite graphs: Feedback vertex
set. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287,
pp. 272–283. Springer, Heidelberg (2013)

15. Song, Y., Liu, T., Xu, K.: Independent domination on tree convex bipartite graphs.
In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285,
pp. 129–138. Springer, Heidelberg (2012)

16. Trick, M.A.: Induced subtrees of a tree and the set packing problem. IMA Preprint
Series, 377 (1988)

17. Wang, C., Chen, H., Lei, Z., Tang, Z., Liu, T., Xu, K.: NP-Completeness of Dom-
ination, Hamiltonicity and Treewidth for Restricted Bipartite Graphs (submitted,
2014)

18. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite
graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer,
Heidelberg (2012)

Efficient Algorithms for the Label Cut Problems

Peng Zhang�

School of Computer Science and Technology,
Shandong University, Jinan 250101, China

algzhang@sdu.edu.cn

Abstract. Given a graph with labels defined on edges and a source-
sink pair (s, t), the Label s-t Cut problem asks a minimum number of
labels such that the removal of edges with these labels disconnects s and
t. Similarly, the Global Label Cut problem asks a minimum number of
labels such that its removal disconnects G itself. For these two problems
we give some efficient algorithms that are useful in practice. In particular,
we give a combinatorial lmax-approximation algorithm for the Label s-t
Cut problem, where lmax is the maximum s-t length. We show the Global
Label Cut problem is polynomial-time solvable in several special cases,
including graphs with bounded treewidth, planar graphs, and instances
with bounded label frequency.

1 Introduction

The Label s-t Cut problem is an edge-classification minimum s-t cut problem
and attracts a good deal of attention from researchers recently (c.f. [1–7]). As
introduced in [7], this problem comes from system security, in particular from
intrusion detection and from the generation and analysis of attack graphs [4, 5].
In this application, an attack graph describes the attack of an intruder on a
system, in which vertices representing various states of the intruder, with a pair
of special vertices s and t representing the initial state and the success state
of the intruder. A directed edge (u, v) with label � means the intruder’s state
changes from u to v by carrying out an “atomic attack” named �. Once the
intruder arrives at state t, it means the intruder has successfully intruded into the
system. To disable an atomic attack incurs some cost. The computational task
here is to find a subset of atomic attacks of minimum cardinality (or minimum
total cost), such that the removal of all edges labeled by these atomic attacks
disconnects s and t. This gives the Label s-t Cut problem.

Definition 1 (The Label s-t Cut problem). In the problem we are given a
(directed or undirected) graph G = (V,E), a source-sink pair (s, t), and a label
set L = {�1, �2, · · · , �q}. Each edge e ∈ E has a label �(e) ∈ L; many edges may

� Supported by the State Scholarship Fund of China, Natural Science Foundation of
Shandong Province (ZR2012Z002 and ZR2011FM021), and the Independent Inno-
vation Foundation of Shandong University (2012TS072). The work was done when
the author was visiting University of California at Riverside, USA.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 259–270, 2014.
c© Springer International Publishing Switzerland 2014

260 P. Zhang

have the same label. A label s-t cut L′ ⊆ L is a subset of labels such that the
removal of all edges with these labels from G disconnects s and t. The goal of
the problem is to find a label s-t cut of the minimum size.

The Label s-t Cut problem is sufficiently natural that it can appear in many
contexts. It is easy to see that the Label s-t Cut problem is a generalization of
the well-known Min s-t Cut problem, since each edge in the latter problem can
be viewed as having a distinct label. By a simple reduction from the Set Cover
problem, it is easy to prove that the Label s-t Cut problem is NP-hard even in
very restricted graphs [4]. Hence people usually seek approximation algorithms
[1, 6, 7] and parameterized algorithms for this problem.

Just like that the Global Min Cut problem is the global version of the Min
s-t Cut problem, it is natural to define the Global Label Cut problem.

Definition 2 (The Global Label Cut problem). In the problem we are given
a (directed or undirected) graph G = (V,E) and a label set L = {�1, �2, · · · , �q}.
Each edge e ∈ E has a label �(e) ∈ L. A global label cut L′ ⊆ L is a subset of
labels such that G is disconnected after removing all edges with labels in L′. The
goal of the problem is to find a global label cut of the minimum size.

Notations. Given an instance I of an optimization problem such as Label s-t
cut and Global Label Cut, we use OPT (I) (or simply OPT when I is clearly
known from the context) to denote the optimal value of the instance. For the
Label s-t Cut problem, its instance is denoted by (G,L, �, s, t); for the Global
Label Cut problem, its instance is denoted by (G,L, �). Given an edge subset
E′ ⊆ E(G), we use L(E′) to denote the set {�(e) | e ∈ E′} of labels of all edges
in E′. We note here that we abuse slightly the letter �: When we say a label
� ∈ L, � is a variable; when we say an edge e has label �(e), � is a function
mapping edges to labels. We do not introduce more symbols to distinguish these
two cases.

1.1 Our Results

In this paper, we identify some parameters of the Label s-t Cut problem and
the Global Label Cut problem, and show how they affect the complexity of the
problems. In several cases, we get combinatorial approximation algorithms and
polynomial time exact algorithms.

First consider the s-t length as a parameter. Let lmax be the maximum s-t
length in the Label s-t Cut instance. We give an lmax-approximation algorithm
for the Label s-t Cut problem (Theorem 2). The algorithm is purely combina-
torial, and has a primal-dual explanation. This algorithm is simpler and faster
than the lmax-approximation algorithm for Label s-t Cut in [6], which first solves
a linear program for the problem and then rounds the fractional solution to an
integer solution.

We show that when lmax is bounded and the Label s-t Cut problem is param-
eterized by k, the number of labels in a solution, the problem is fixed parameter

Efficient Algorithms for the Label Cut Problems 261

tractable in time O∗(lmax
k) (Theorem 5). Note that the Label s-t Cut problem

is already NP-hard even when lmax = 2 (Theorem 1).
Next consider as a parameter the label frequency, that is, the number of

appearances of a label in the input graph. Let fmax be the maximum label fre-
quency. We show Label s-t Cut can be approximated within a factor of fmax

(Theorem 3). When fmax is bounded, Global Label Cut is polynomial time solv-
able (Theorem 4). In contrast, Label s-t Cut is already NP-hard when fmax = 2
(Theorem 1).

The last considered parameter is treewidth of the input graph. We showGlobal
Label Cut is polynomial time solvable with bounded treewidth (Theorem 4). This
is contrasted with the NP-hardness of Label s-t Cut even when treewidth is two
(Theorem 1).

1.2 Related Work

It is well known that Minimum Set Cover has a greedy polynomial time (1+lnn)-
approximation algorithm, where n is the size of the underlying set. The same
algorithm can be translated to Hitting Set by duality. In [4], Jha et al. express the
Label s-t Cut problem as an implicit Minimum Hitting Set problem as follows:
Let U = {S | S is the set of labels appearing on an s-t path}; these are the sets
to hit. A set of labels is a label cut if and only if it intersects (hits) every
S ∈ U . The authors [4] then translate the greedy algorithm for Set Cover to get
an approximation algorithm for Label s-t Cut with approximation guarantee of
1 + ln |U |. The issue here is that in general U may be of exponential size.

In [7], Zhang et al. present the first (polynomial-time) approximation algo-

rithm for the Label s-t Cut problem. The approximation ratio is O(m
1
2), where

m is the number of edges in the input graph. The authors also show that it is

NP-hard to approximate Label s-t Cut within a factor of 2(log |I|)1−(log log |I|)−c

for any constant c < 1/2, where |I| is the input length of the problem. The
essentially same approximation hardness result appears independently in [1].

In [6], Tang et al. give the first approximation algorithm for the Label s-t Cut
problem whose approximation factor is in terms of n, the number of vertices in
the input graph. The approximation factor of the algorithm [6] is O(n

2
3 /OPT

1
3).

The authors also present an O((m/OPT)
1
2)-approximation algorithm for the

Label s-t Cut problem, improving the O(m
1
2) result in [7]. Moreover, they show

that the linear program relaxation for Label s-t Cut, on which they obtain
the approximation results, has integrality gap Ω((m/OPT)

1
2−ε) for any small

constant ε > 0.
Fellows et al. [2] consider the Label s-t Cut problem in the view of parameter-

ized complexity. They prove that when parameterized by the number of used labels
(that is, |L′| for a label s-t cut L′ ⊆ L), the Label s-t Cut problem is W[2]-hard in
graphs with pathwidth at most 3, and when parameterized by the number of used
edges (that is, |E′| for a label s-t cutL(E′)), the Label s-tCut problem isW[1]-hard
in graphs with pathwidth at most 4. The above results mean that Label s-t Cut in
the corresponding graphs is unlikely fixed parameter tractable.

262 P. Zhang

Given a subset E′ ⊆ E of edges, define g(E′) to be the number of labels
appeared in E′. It is easy to see that g is a submodular function, that is, g
satisfies ∀X,Y ⊆ E, g(X) + g(Y) ≥ g(X ∪ Y) + g(X ∩ Y). Jegelka et al. [3]
study a more general cut problem called Cooperative s-t Cut, in which the
objective function defined on 2E can be an arbitrary submodular function. The
Cooperative s-t Cut problem finds an s-t cut such that the objective function is
minimized. Similarly, the (global) Cooperative Cut problem finds a global cut
such that the objective function is minimized. Obviously, Label s-t Cut (Global
Label Cut, resp.) is a special case of Cooperative s-t Cut (Cooperative Cut,
resp.). Jegelka et al. [3] prove the NP-hardness of the Cooperative Cut problem,
and an approximation hardness factor of Ω(n1/3−ε) for the Cooperative s-t Cut
problem, where n is the number of vertices in the input graph. Note that these
two results do not extend to the corresponding label cut problems.

2 Preliminaries

In the following we give the definitions of three parameters we will consider in
the paper, i.e., the maximum label frequency fmax, the maximum s-t length lmax,
and the treewidth of an undirected graph.

Definition 3 (Label frequency and fmax). Given a Label s-t Cut instance
(G,L, �, s, t) or a Global Label Cut instance (G,L, �), the label frequency f(�) of
label � ∈ L is the number of edges in G whose label is �. The maximum label
frequency fmax of the instance is defined as max{f(�) | � ∈ L}.

Definition 4 (lmax). Given a graph G = (V,E) with source s ∈ V and sink
t ∈ V , the maximum s-t length lmax is defined as the length of a longest simple
s-t path in terms of the number of edges.

Treewidth is a useful measure of graph and many intractable problems become
tractable in bounded treewidth graphs. Some examples of bounded treewidth
graphs includes cactus graphs, series-parallel graphs, and outer-planar graphs.
Before giving the definition of treewidth, first we give the definition of tree
decomposition.

Definition 5 (Tree decomposition). A tree decomposition of an undirected
graph G is a pair (T, {Vx : x ∈ V (T)}) in which each vertex x of T corresponds
to a vertex subset Vx of G called piece, satisfying the following three properties.

1. Every vertex of G belongs to at least one piece.
2. Every edge of G has at least one piece containing both its two ends.
3. Let x1, x2, and x3 be three vertices of T such that x2 lies on the path from

x1 to x3. Then, any vertex belonging to both Vx1 and Vx3 must also belong
to Vx2 .

Definition 6 (Treewidth). The width of a tree decomposition (T, {Vx : x ∈
V (T)}) is defined as maxx{|Vx|} − 1. The treewidth tw(G) of a graph G is
defined as the minimum width of its any tree decomposition.

Efficient Algorithms for the Label Cut Problems 263

3 Hardness Results

In this section, we show some hardness results of the Label s-t Cut problem in
terms of the parameters fmax, lmax and treewidth.

Given a graph G = (V,E), the Vertex Cover problem asks for a vertex subset
V ′ ⊆ V of minimum cardinality such that V ′ touches at least one endpoint
of every edge. Denote by VC(d) the Vertex Cover problem in graphs whose
maximum vertex degree is d. It is known that VC(3) is already NP-hard [8].

Theorem 1. The Label s-t Cut problem is NP-hard if either

(i) lmax = 2 in both undirected and directed graphs, or
(ii) fmax = 2 in both undirected and directed graphs, or
(iii) the treewidth of the input (undirected) graph is 2.

Proof. (i) First we reduce Vertex Cover on undirected graph G to Label s-t Cut
on graph G′.

Initially G′ contains two vertices s and t. Then, for each edge e = (vi, vj) ∈
E(G), add an s-t path Pij of length 2 to G′. The two edges on path Pij are labeled
with vi and vj , respectively. See Figure 1 for an illustration. The label set L is
just V (G). Then a minimum vertex cover for G corresponds to a minimum label
s-t cut for G′, and vice versa. Obviously for graph G′ we have lmax = 2.

s t

1e

2e

me

1i
v

2i
v

mi
v

1j
v

2j
v

mj
v

Fig. 1. Reduce Vertex Cover to Label s-t Cut

(ii) Next we reduce MAX SAT to Label s-t Cut to prove the latter problem
is NP-hard even if fmax = 2. While the reduction is modified from the one in [1]
from MAX E3SAT (MAX SAT in which each clause has exactly three literals)
to the Label Path problem, the notion of fmax is not mentioned therein.

Let φ be a conjunctive normal formula containing n variables x1, x2, · · · , xn

and m clauses C1, C2, · · · , Cm, with each clause having exactly three literals.
For each variable xi we construct a variable gadget as shown in Figure 2(a).
Suppose xi appears in ni clauses Cj1 , Cj2 , · · · , Cjni

(including both positive
and negative appearances). In the variable gadget we have four groups of labels
{Tijk}, {T ′

ijk
}, {Fijk}, and {F ′

ijk
}, where Tij (Fij , resp.) means xi is assigned

true (false, resp.) in Cj . For each clause Cj , we construct a clause gadget as
shown in Figure 2(b). The gadget contains kj labels that reflect the appearances

264 P. Zhang

s t

1ijT
1ijT

2ijT

inijT

2ijT

inijT

1ijF

2ijF

inijFinijF

1ijF

2ijF

gadgetVariable(a)

gadgetClause(b)
s t

jiji FT
11

/ jiji FT
22

/ jiji jkjk
FT /

Fig. 2. Reduce MAX SAT to Label s-t Cut

of literals in the clause; for example, if Cj = (xi1 ∨ xi2 ∨ ¬xi3), then the three
labels should be Ti1j , Ti2j and Fi3j , Finally, we merge all vertices s in the gadgets
into a single source s, and all vertices t a single sink t, finishing the construction
of the graph G′ in Label s-t Cut. It is easy to verify that in the resulting instance
we have fmax = 2.

Let m∗ be the optimum of the MAX SAT instance, and q∗ the optimum of
the Label s-t Cut instance. We claim that for any integer m′ ≥ 0, m∗ ≥ m′ ⇐⇒
q∗ ≤

∑n
i=1 ni + m− m′.

(=⇒) Suppose φ has a truth assignment τ satisfying ≥ m′ clauses. For each
xi, if xi is true, then pick all labels of type Ti·; otherwise pick all labels of type
Fi·. In this way we pick in total

∑
ni labels and disconnect all the variable

gadgets. Since τ satisfies ≥ m′ clauses, by the above picked labels ≥ m′ clause
gadgets have already been disconnected. For each of the remaining connected
clause gadgets, pick any label in it to disconnect the gadget. Thus we get a label
s-t cut with ≤

∑
ni + m − m′ labels.

(⇐=) Suppose G′ has a label s-t cut L′ of size ≤
∑

ni+m−m′. Note that all
labels in L′ appear in the variable gadgets. By replacing all labels of type T ′

ij with
the corresponding labels Tij , and all labels of type F ′

ij with the corresponding
labels Fij , we can assume that L′ does not contain labels of type T ′

ij or F ′
ij .

By the construction of variable gadget, a variable gadget is disconnected if
and only if all its Tij labels, or all its Fij labels, are picked in L′. Let L◦ be the
set of such labels. If for some variable gadget, both of its all Tij labels and its
all Fij labels are picked in L′, then we arbitrarily pick a type, to say, all its Tij

labels into L◦.
Since all variables appear

∑
ni times in φ, we know |L◦| =

∑
ni and hence

|L′ − L◦| ≤ m − m′. So, L′ − L◦ can only disconnect at most m − m′ clause
gadgets, and therefore, at least m′ clause gadgets are disconnected by L◦. This
implies that a truth assignment indicated by L◦ satisfies ≥ m′ clauses in φ.

(iii) In the reductions of (i) and (ii), the resulting graphs are both series-
parallel graphs, having treewidth exactly 2. �

Efficient Algorithms for the Label Cut Problems 265

Remarks. (a) In the proof of Theorem 1(i), if we use a reduction from VC(3),
then we know that Label s-t Cut is NP-hard even in graphs G with lmax = 2,
fmax = 3, tw(G) = 2. In the proof of Theorem 1(ii), if we use a reduction from
MAX E3SAT [9, Problem 9.5.5], then we know that Label s-t Cut is NP-hard
even in graphs G with lmax = 4, fmax = 2, tw(G) = 2. In addition, since Label
s-t Cut is NP-hard with bounded lmax, fmax or treewidth, there is no hope to
seek parameterized algorithms by these parameters (assuming P �= NP).

(b) When fmax = 1, Label s-t Cut degenerates to the well-known Min s-t Cut
problem, which can be solved in polynomial time by several methods. When
fmax ≥ 2, Label s-t Cut is NP-hard by Theorem 1(ii). So fmax = 2 just acts as
a threshold of the computational complexity of Label s-t Cut.

Corollary 1. Label s-t Cut is APX-hard even restricted in graphs G with lmax =
2, fmax = 4, and tw(G) = 2.

Proof. A series of L-reductions from the MAX 3SAT problem to the VC(4)
problem is given in [9]. Since MAX 3SAT is APX-hard [10], this means VC(4)
is APX-hard. It is easy to verify the reduction from Vertex Cover to Label s-t
Cut in the proof of Theorem 1 is an L-reduction. Using this reduction, VC(4)
L-reduces to Label s-t Cut in graphs G with lmax = 2, fmax = 4, and tw(G) = 2.

�

The APX-hardness means Label s-t Cut does not admit PTAS even in graphs
G with lmax = 2, fmax = 4, and tw(G) = 2, if P �= NP. On the other hand,
starting from the UG-hardness of Vertex Cover [11], Theorem 1 already means
Label s-t Cut with lmax = 2 cannot be approximated within 2−ε for any constant
ε > 0, if the Unique Games Conjecture is true.

4 Approximation Algorithms

In this section, we first develop a polynomial time lmax-approximation algorithm
for the Label s-t Cut problem, where lmax is the length of the longest s-t path. In
[6], it is shown that Label s-t Cut can be approximated within a factor of lmax via
LP-rounding. In contrast, our algorithm is purely combinatorial (does not need
to solve linear program) and is faster and simpler than the lmax-approximation
algorithm in [6].

The approximation algorithm for Label s-t Cut is shown as Algorithm A.

Algorithm A. Find any s-t path P from the current graph. Pick all the labels in
L(P) and remove all edges whose labels are in L(P). Repeat the above procedure
until s and t are disconnected.

We give two analyses for Algorithm A, with one being purely combinatorial
and the other being based primal-dual. Here is the first one.

266 P. Zhang

Theorem 2. Algorithm A is an lmax-approximation algorithm for the Label s-t
Cut problem in both directed and undirected graphs.

Proof. An s-t path can be easily found in a directed or undirected graph by
breadth-first search. So Algorithm A runs in polynomial time.

Let P1, P2, · · · , Ph be the paths found in the algorithm. The number of labels
picked by the algorithm is thus ≤ lmaxh. A crucial observation is that all the
L(Pi)’s (1 ≤ i ≤ h) are disjoint. So the optimal solution must pick at least one
label from each L(Pi), implying OPT ≥ h. Therefore, the approximation ratio
is lmax. The theorem follows. �

The second analysis is a linear programming explanation for Algorithm A.
While the algorithm has nothing to do with linear programming in its form, its
analysis can be primal-dual. The linear program relaxation for Label s-t Cut
and its dual are given below.

min
∑
�∈L

x� (LP)

s.t.
∑

�∈L(P)

x� ≥ 1, ∀P ∈ Pst (1)

x� ≥ 0, ∀� ∈ L

max
∑

P∈Pst

yP (DP)

s.t.
∑

P∈Pst : �∈L(P)

yP ≤ 1, ∀� ∈ L

yP ≥ 0, ∀P ∈ Pst

In (LP), for each label � we have a decision variable x� to indicate whether �
is included in the solution. The notation Pst denotes the set of all (simple) s-t
paths. Constraint (1) says that for every s-t path P , there is at least one label
in L(P) picked in the solution. This implies a feasible solution x to the integer
version of (LP) is really a label s-t cut of the input graph. (DP) is just the dual
program of (LP).

Proof (the second proof of Theorem 2). Let x, y be the solutions to (LP) and
(DP), respectively. Initially, ∀�, x� = 0 and ∀P, yP = 0. So x is infeasible and y
is feasible. When we pick a path P and all its labels in the algorithm, we set
yP = 1 and x� = 1 for all � ∈ L(P). When the algorithm terminates, there is no
s-t path in the current graph. So, x becomes a feasible solution to (LP). Since
we pick all labels in L(P) when we find an s-t path, for each label � ∈ L there is
only at most one s-t path P whose yP is one, implying that y remains feasible
to (DP) when the algorithm terminates.

Efficient Algorithms for the Label Cut Problems 267

Let L′ be the set of labels we pick in the algorithm. Recalling that lmax is the
length of a longest s-t path, it is easy to get

|L′| =
∑
�∈L′

x� ≤
∑

P : yP=1

|P | =
∑
P

|P |yP ≤ lmax

∑
P

yP ≤ lmaxOPT.

�

We end this section with a simple approximation algorithm for Label s-t Cut.

Theorem 3. Label s-t Cut can be approximated in polynomial time within a
factor of fmax in both undirected and directed graphs.

Proof. We just compute a minimum s-t cut E′ and use L(E′) as the label s-t cut.
It is well-known that the undirected minimum s-t cut and directed minimum s-t
cut can be computed in polynomial time. Note that a directed s-t cut (A,B)
only contains the edges from the s-side (say A) to the t-side (that is, B).

Let L∗ be an optimal label s-t cut and E∗ be the corresponding edge cut. E∗

is obviously a feasible s-t cut and contains at most fmax|L∗| edges. So we have

|L(E′)| ≤ |E′| ≤ |E∗| ≤ fmaxOPT.

�

5 Algorithms for Tractable Cases

5.1 Polynomial Algorithms

We identify some tractable cases for the Global Label Cut problem. Let n be
the number of vertices and m the number of edges in a given graph.

Theorem 4. Global Label Cut is polynomial-time solvable when

(i) the input graph has bounded treewidth, or
(ii) the input graph is planar, or
(iii) the problem has bounded fmax.

Proof. (i) Suppose the input graph G has treewidth w. We will show below that
there is a global label cut with labels at most w2. If so, an optimal global label
cut can be found by enumerating and testing all

(
q
w2

)
possible optimal solutions.

The time complexity of the above procedure is O(qw
2

(m+ n)), where O(m+ n)
is the time complexity to test graph connectivity by a graph search algorithm,
to say, breadth-first search.

Let T (rooted at any vertex) be a decomposition tree of G whose maximum
piece size is w + 1. Let x be any leaf vertex of T , whose parent is y. Then
removing edge (x, y) breaks T into two connected components X = {x} and
Y = V (T) − X . By [12, Theorem (10.14)], deleting Vx ∩ Vy disconnects V (G)
into two parts VX−(Vx∩Vy) and VY −(Vx∩Vy), so that there is neither common

268 P. Zhang

vertex belonging to these two parts, nor edge running between them. That is,
Vx∩Vy is a separator of G. Note that by the property (3) of decomposition tree,
Vx ∩ Vy cannot be empty.

Thus, by defining A = VX − (Vx ∩ Vy) = Vx − Vy and B = V (G) − A, we
get a cut (A,B) of G whose cut edges are just the ones connecting Vx − Vy and
Vx ∩ Vy. Since |Vx| ≤ w + 1, we get that |(A,B)| ≤ w2. This means that an
optimal global label cut of G contains at most w2 labels.

(ii) In general, planar graphs do not have bounded treewidth. However, planar
graphs possess a good property which says that in each planar graph there is a
vertex of degree at most 5. This immediately suggests that the optimum is at
most 5 and hence Global Label Cut is polynomial-time solvable in planar graphs.

(iii) Let E∗ and L∗ be respectively the edge set and the label set in an optimal
solution. Since each label associates with at most fmax edges, we have |E∗| ≤
fmax|L∗|. Let c∗ be the capacity (number of edges) of a minimum cut C∗ of
the input graph G. Since C∗ is a feasible global label cut of G, we have |L∗| ≤
|L(C∗)| ≤ c∗. Together by these two inequalities, we have |E∗| ≤ fmaxc

∗. This
means a minimum global label cut is an fmax-approximate cut, where by α-
approximate cut we mean a cut whose capacity is at most α times the capacity
of a minimum cut.

By [13], there are only O(n2α) α-approximate cuts in an undirected graph. By
[14], all these α-approximate cuts can be found in O(m2n+mn2α) time. In our
setting, α = fmax is upper bounded, implying that all fmax-approximate cuts
can be found in polynomial time. Among these cuts, the one with the minimum
labels must be an optimal global label cut. The time complexity of the above
algorithm is O(mn2fmax). �
Remarks. Theorem 4 says that Global Label Cut is tractable either in graphs
with bounded treewidth, or in planar graphs, or in instance with bounded fmax.
In contrast, by Theorem 1, Label s-t Cut is NP-hard in each of these cases.

5.2 FPT Algorithms

When parameterized on the number of labels in the solution, Label s-t Cut is
W[2]-hard [2]. In this section, we show that the problem is FPT if it is with
bounded lmax.

Theorem 5. When parameterized on the number of labels in the solution, Label
s-t Cut with bounded lmax is fixed-parameter tractable in both undirected and
directed graphs.

Proof. Let k be the parameter, that is, the number of labels that can be used
in a solution. Then Label s-t Cut with bounded lmax can be solved using the
standard bounded search tree strategy. We pick any s-t path P from the graph;
it has at most lmax edges and hence |L(P)| ≤ lmax. We branch at each label
� ∈ L(P) by removing all edges whose label is �. The depth of the search tree
is at most k, and the number of children of each internal node in the tree is at
most lmax. This shows that Label s-t Cut parameterized on k can be solved in
O∗(lmax

k) time. �

Efficient Algorithms for the Label Cut Problems 269

6 Discussions

While some polynomial time tractable cases for Global Label Cut are presented
in the paper, the exact computational complexity of the problem is still un-
known. Unlike the situation of the Global Min Cut problem and the Min s-t
Cut problem—they are both polynomial time solvable, the Global Label Cut
problem seems very different from the Label s-t Cut problem.

Recalling from Section 1.2, the objective function g in Global Label Cut is
a submodular function on the power set 2E. On the other hand, if we define a
function h on 2V that counts the number of labels in a cut resulted from a vertex
subset A, that is, h(A) = g(δ(A)) where δ(A) = (A, V − A), then we can easily
verify that h is not submodular. So it is still unclear whether and how to make
use of submodularity in solving Global Label Cut, leaving this as an interesting
open problem.

Acknowledgements. We thank an anonymous reviewer for showing us the
combinatorial proof of Theorem 2.

References

1. Coudert, D., Datta, P., Perennes, S., Rivano, H., Voge, M.E.: Shared risk resource
group: complexity and approximability issues. Parallel Processing Letters 17, 169–
184 (2007)

2. Fellows, M., Guo, J., Kanj, I.: The parameterized complexity of some minimum
label problems. Journal of Computer and System Sciences 76(8), 727–740 (2010)

3. Jegelka, S., Bilmes, J.: Cooperative cuts: graph cuts with submodular edge weights.
Technical Report TR-189 (2010)

4. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW),
pp. 49–63. IEEE Computer Society (2002)

5. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation
and analysis of attack graphs. In: Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, pp. 273–284 (2002)

6. Tang, L., Zhang, P.: Approximating minimum label s-t cut via linear programming.
In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 655–666. Springer,
Heidelberg (2012)

7. Zhang, P., Cai, J.Y., Tang, L., Zhao, W.: Approximation and hardness results
for label cut and related problems. Journal of Combinatorial Optimization 21(2),
192–208 (2011)

8. Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press,
New York (1972)

9. Papadimitriou, C.: Computational Complexity. Addison-Wesley Publishing Com-
pany, Inc. (1994)

270 P. Zhang

10. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences 43, 425–440 (1991)

11. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

12. Kleinberg, J., Tardos, E.: Algorithm design. Addison-Wesley (2006)
13. Karger, D., Stein, C.: A new approach to the minimum cut problem. Journal of

the ACM 43(4), 601–640 (1996)
14. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in an undi-

rected network. SIAM Journal on Discrete Mathematics 10(3), 469–481 (1997)

A Dynamic Approach

to Frequent Flyer Program

Rajiv Veeraraghavan, Rakesh Kashyap, Archita Chopde,
and Swapan Bhattacharya

Department of Computer Science
National Institute of Technology Karnataka, Surathkal

{r1rajiv92,rakeshkashyap123,architachopde}@gmail.com,
bswapan2000@yahoo.co.in

Abstract. The frequent flyer algorithms adopted are static in nature,
that is the points awarded to a frequent flyer is proportional only to the
miles traveled. In static approach, there is neither an incentive for the
frequent flyer to travel more (increase profitability) nor does it ensure
customer satisfaction. In this paper, we propose a dynamic approach that
considers time varying factors such as competition from rival airliners,
number of travels made so far, load factor etc and prove that it can
not only improve profitability but at the same time ensure customer
satisfaction.

Keywords: frequent flyer, dynamic approach, customer satisfaction,
profitability, static algorithm, peak seasons, load factor, rival airlines.

1 Introduction

Innovation and strategies play a crucial role in sustaining a profitable company.
There is a huge difference between actually lowering the prices and seeming to
lower the price. Most retailers play on the psychology of the customer. A per-
fect example is pricing a commodity at $9.99 instead of $10. According to a
1997 study published in the Marketing Bulletin, approximately 60% of prices
in advertising material ended in the digit 9![1] These days, concept of giving a
bonanza is not only used to attract customers to their company and but also
increase their loyalty to that particular brand.

The Airlines industry is one of the pioneers in adopting such strategies[2]. Al-
most all airlines these days have their own frequent flyer programs. Passengers
have to register themselves as a frequent flyer(FF) with a particular airliner.
With every flight they take, the airliner awards them some points (also called as
miles), which they can redeem for tickets on any of their subsequent travels. The
idea is to not only increase the loyalty of the customer to that particular airliner,
but also make them travel more. The airliners again play on the psychology of
the passenger by appearing to give them more points but on the other hand,
they have the luxury of slightly increasing the actual ticket price without the
fear of customers changing their loyalties.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 271–279, 2014.
c© Springer International Publishing Switzerland 2014

272 R. Veeraraghavan et al.

The algorithm adopted by these airliners to award points is usually static and
the concept of dynamism has rarely been explored. At this stage, we would like
to cite an example from the Miles and More Program of the Lufthansa airlines[3].
It has about 20 million passengers registered for this program as of Feb 2011.
They have normally two types of members, the first are normal members, whose
points expire after every 36 months. And the second are higher class members,
whose points never expire but the higher class members need to pay a certain
amount to register.

Lufthansa and its partner airlines offer points using a static frequent flyer al-
gorithm , ie- 50% * miles flown on economy and 300% * miles flown on business
class for intercontinental flights and a fixed 125 and 1500 points for inter-Europe
flights. They offer double miles for customers traveling on new routes as promo-
tional offer. To redeem the miles, they have a chart which shows the number of
miles required to travel between any 2 airports.

So, as we see it from the outset, they have adopted a program which is neither
dependent on the demand-supply nor the time component. In order to enhance
profit and at the same time satisfy the customer, it is important to change prices
at real time[6]. The price that you pay now also depends on the demand-supply
ratio, competition from other brands, time of purchase and a lot of other factors
specific to the commodity. The price that X pays for a certain object can be
manifold times the price paid by Y for an identical object under different cir-
cumstances. The concept of dynamic pricing is typical to the airliner industry.
Travellers have come to terms with the fact that the person seated next to him
may have paid much lesser for the ticket but still enjoys the same facilities that
the airlines has to offer [4]. But most airliners have not embraced dynamism
while awarding Frequent Flyer points.

In the airline industry, loyalty or customer satisfaction is defined as the likeli-
hood of a customer becoming a repeat customer and that customer’s willingness
to behave as a partner to the airline[5]. It is with this intention of building loyalty
and attracting new customers, Frequent Flyer Programs were introduced in the
1980s. Since then, FFPs have evolved through time. Morrison and Winston’s [7]
model of joint airline and route choice using a sample of origin and destination
data of individual trips showed that FFPs had a significant effect upon airline
and route choice.

Customer satisfaction without compromising on profitability is the most im-
portant aspect to be considered while designing a FFP algorithm . Customer
satisfaction in the case of FFP can be achieved if the customer perceives to be
receiving higher points with each travel. Profitability can be defined in terms of
total number of frequent flyer points awarded to the customer. If the customer
is awarded less FF points, profitability is more. So in order to improve the prof-
itability, the total frequent flyer points awarded should be less than the static
FF algorithm and at the same the time catering to customer satisfaction (giving
more points with each travel)

There is another important distinction we need to look at before we propose
our approach to the frequent flyer program. This is with regard to the Business

A Dynamic Approach to Frequent Flyer Program 273

travelers and Leisure travelers. According to Basso et al [8], the number of leisure
travelers signed up for FFPs is negligible compared to business travelers as leisure
travelers pay of their pockets and will certainly opt for the cheapest ticket available
whereas for a businessman, it is a third party which is sponsoring the ticker and
hence they dont mind paying a little more if they can accumulate more frequent
flyer points. So, in our approach we consider only business travelers.

So, in this paper, we try and develop our own FFP which is dynamic in nature.
We compare this with the static approach and prove that despite the passengers
perceiving to receive more points, the airliners profit more in this case. In section
2, we formally define our problem statement. In subsequent sections 3 and 4, we
elucidate our approach and discuss the results we obtain respectively. In section
5, we conclude the paper.

2 Problem Statement

A Dynamic Frequent flyer algorithm is developed which depends on demand-
supply and the time factor. Our aim, as stated above, is to maximize the profit of
the airliners but at the same time, the passenger should perceive to be receiving
more points with each travel. Most frequent flyer algorithms fix a stipulated
period of time within which the passenger has to apply for redemption. For the
Lufthansas Miles and More Program, the period is 36 months. This is necessary
as it will prevent a frequent flyer from accumulating points or miles infinitely
and prompts the frequent flyer to redeem the points he has earned as early
as possible. This facilitates more travel by the frequent flyer which is always
beneficial to the airliner.

Depending on the trips made by the customer, the algorithm awards points to
the customer. A database maintaining history of the frequent flyer, information
pertaining to every source destination pair and the flight characteristics is used
as input to the algorithm. For every source destination pair, parameters such
as distance, number of flights in a day and number of flights operating by rival
airlines in a day are defined. For every frequent flyer, information about his
previous travels date on which he traveled, class of travel (economy, business or
first), number of passengers on that flight, flight characteristics (total strength
of flight, flight id, class of travels available).

The unique feature of our approach is that we consider the seasonal congestion
between a pair of cities. Preceding years data is analyzed to identify the peak
seasons where the congestion between a pair of cities is expected to be high i.e
most of flights during that period run on full capacity. In such cases, a slightly
modified algorithm is adopted to ensure that the airliners profit is maximized.
But our algorithm does not take into account unexpected outburst of traffic due
to reasons such as natural calamities, sporting events, national conventions etc.

The primary aim of the algorithm is to ensure customer satisfaction. We
define a customer to be satisfied solely based on the points he is awarded as the
satisfiability due to other benefits such as a separate queue for frequent flyers,
allow more baggage weight, give them first preference for choice of seats, discount

274 R. Veeraraghavan et al.

on other products of the airliner, etc.[3] is not quantifiable. A customer is satisfied
if he receives more points with each travel he makes. We also do not emphasis on
the other services offered by the airliner like hotels, restaurants, shopping malls,
etc. We leave out this part as we want to generalize the algorithm to suit any
airliner.

The output of the algorithm will just be the number of points awarded to
a frequent flyer after travel. We deliberately mention after travel because we
calculate the points after the completion of the journey and not after booking
the tickets.At the time of booking, the passengers will be provided with an
approximate estimation of the FF points that they will receive. In the course of
this paper, we prove that our algorithm is more profitable to the airliners than
the static frequent flyer algorithm without compromising customer satisfiability.

3 Dynamic Approach

The static frequent flyer algorithm as in the Lufthansa Mile and More Program
depends only on the class of travel and miles traveled by the frequent flyer. The
number of frequent flyer points awarded is defined a follows

FFP = class(Cl) ∗ distance(D) (1)

where distance is the miles traveled and

class =

⎧⎪⎨⎪⎩
1 for economy class

2 for business class

3 for first class

A good frequent flyer program should not only attract passengers but also
refrain the passengers from travelling by rival airliners. Keeping in mind the
above Miles and More program of the lufthansa Airlines (Most of the other
airlines also follow a similar program), we develop an algorithm incorporating
the following dynamic factors to improve profitability. The relationship between
FFP and the 2 parameters :{class,distance} has already been established [3] and
we incorporate the same.

3.1 Competition from Rival Airlines (C)

We define competition to be the total number of flights from rival airliners
operating between a source and destination pair on an average day. We use the
term average day to eliminate discrepancies in the number of flights operating
between a pair of cities due to inclement weather conditions or occurrence of a
special event at the destination. The FFP points awarded is going to be directly
proportional to the competition. This is because most of the frequent flyers are
registered in more than one frequent flyer program [9] and they always have the
option of opting for rival airlines. So, if the number of rival airlines increase,
it is wise for the airliner to award more frequent flyer points to attract the

A Dynamic Approach to Frequent Flyer Program 275

customers. An assumption we need to make is that this number is constant for a
given source-destination pair and for the stipulated period under consideration.

We define Cmax, as the maximum number of rival flights that operate between
any pair of source and destination. Hence,

C = (Number of rival flights operating between source and dest)
Cmax

.

So, C will always be value between 0 and 1.

FFP ∝ C ∗ Cl ∗ D, (2)

where Cl and D are same parameters as the static algorithm

3.2 Frequency (F)

Frequency which is defined as the number of travels made by the frequent flyer so
far is going to play a vital role in deciding the FF points. We say that a customer
is satisfied if he receives more points compared to his previous travel between
a particular source and destination provided he is travelling in the same class.
So, the FFP function should be monotonically increasing with frequency and we
want the total FF points awarded within the 36 months period to be less than
the points awarded by the static algorithm to ensure profitability. In contrast,
the FF points awarded after some point in time (preferably after certain number
of travels-avg/2) should be more than the points given by the static algorithm in
order to satisfy the customer. A monotonically increasing function whose area
under the curve is minimum guaranteeing the above condition is a sigmoidal
function.

FFP ∝ 1

(1 + e−f+avg
2)

∗ C ∗ Cl ∗ D, (3)

where avg is the average number of travels made by a frequent flyer. If the
number of travels made by the frequent flyer is more than avg/2, he will be
awarded more points compared to the static algorithm.

forf > avg/2,
1

(1 + e−f+ avg
2)

> 0.5 (4)

3.3 Load Factor (LF)

It is the ratio of the number of seats that are filled up to the total capacity of
the flight. We assume that a flight usually operates only when the number of
travelers is least 40% of its capacity. Otherwise, the passengers are combined
with another flight. We suggest the frequent flyer points awarded to be inversely
proportional to the Load factor at the time of travel. To describe in simple
words, there is no need for the airliner to give out sops for a flight for which
there is already so much of demand. On the other hand, the airliner will not

276 R. Veeraraghavan et al.

Fig. 1. Relationship between frequent flyer points and frequency

mind giving away more points if it can fill up a flight which usually has lesser
demand (Presumably under loss). We determine the value of n later on.

FFP ∝ C ∗ Cl ∗ D ∗ (1

(1 + e−f+avg
2)

+
1

LFn
), (5)

3.4 Determining the Value of n

The FFP function has to satisfy the condition that if frequency increases for a
particular source destination pair, the FFP awarded should increase irrespective
of the load factor. Here, we consider a boundary situation where the frequency
increase from 1 to 2 (the increase in sigmiodal function is minimum when fre-
quency changes from 1 to 2) and load factor changes from 0.4 to 1. Even for the
smallest increase in sigmoidal function and for the largest decrease in load fac-
tor, the FF points awarded should increase. This is done by solving the following
equation.

C ∗Cl∗D∗ [(1

(1 + e−(f+1)+avg
2 + 1/(1)n)

− (
1

(1 + e−f+avg/2)
+

1

(0.4)n
)] > 0 (6)

Solving the above equation we get n to be 0.1

3.5 Peak Seasons

In case of peak seasons, for a particular source-destination route where the con-
gestion is maximum, a slightly modified approach is followed to enhance the
profitability. These peak seasons are identified for every source-destination pair
using history data where we plot a graph of load factor versus time . The plateaus
(elevated high part of the graph) obtained in this graph are termed as peak sea-
sons. For every source-destination pair, there must ideally exist a peak of season
of about 2 weeks in a year.

FFP

{
∝ C ∗ Cl ∗ D ∗ (1

1+e−f+
avg
2

+ 1
LFn), iff < avg/2

∝ Cl ∗ D, iff > avg/2

A Dynamic Approach to Frequent Flyer Program 277

If frequency is greater than avg/2, we are awarding more points compared
to static algorithm. In case of peak season, there is no necessity to award more
points to attract customers as there is a high demand for ticket and instead we
could award the same points as the static algorithm.

Fig. 2. Modified relationship between frequent flyer points and frequency

3.6 Estimating FFP at Time of Booking

According to our algorithm, the points awarded can be notified to the customer
only after the flight takes off. This is because the actual load factor of the flight
can be determined only at the time of take-off. Hence, at the time of booking, we
can estimate the approximate number of points that the customer can expect
to obtain. This should be done in order to ensure that the customer is not
left in the dark about the number of points that he shall receive. A parameter
called average load factor defined for every source destination pair can be used
to determine the number of points that the customer can expect to receive. An
approximate estimation of frequent flyer points to be awarded is given as:

FFP ∝ C ∗ Cl ∗ D ∗ (1

(1 + e−f+avg/2)
+

1

LFn
avg

), (7)

We have incorporated the same static redemption algorithms as Lufthansa Miles
and more where redeeming points is based on a chart i.e for every source desti-
nation pair, fixed number of points is required to fully redeem the ticket. These
points as given in the chart are predetermined using the parameters namely
class and distance. Since the Dynamic approach awards lesser points in total
when compared to the static algorithm, adopting this approach will enhance the
profitability to the airliner as the frequent flyer can only redeem fewer travels.

3.7 Algorithm

Input

– For every source destination pair:
1. Source destination id
2. Distance(D)

278 R. Veeraraghavan et al.

3. Average Load factor(LḞavg)
4. Maximum number of flights operating by rival airlines on a day (Cmax)

– For every flight:
1. Flight id
2. Maximum strength (max strn)
3. Classes available

– For a frequent flyer, details pertaining to travels are stored in a file
1. Source Destination id
2. Flight id
3. Number of passengers travelling (num pass)
4. Class of travel (Cl)
5. Number of flights operating by rival airlines on that day (f comp)

Points Awarded

Load Factor(L.F) = num pass
max strn FFP = C ∗ Cl ∗ D ∗ (1

1+e−f+
avg
2

+ 1
LFn)

At the time of booking, approximate frequent flyer points to be awarded

FFP = C ∗ Cl ∗ D ∗ (1

1+e−f+
avg
2

+ 1
LFn

avg
)

4 Experiment

We generated a database of cities, flights and travels made by a frequent flyer.
For our experiment, we have considered 25 cities that results in 300 source-
destination pairs, 50 flights operating under the airliner and a normal distribu-
tion function to determine the number of travels made by each frequent flyer.
For each travel made by a frequent flyer, source, destination, num of passengers
in the flight and class of travel are generated using a randomize function.

The static algorithm as well as our approach has been applied on the data
for 50 different frequent flyers. It is evident from the results that the points
awarded to the frequent flyer increases monotonically thus guaranteeing cus-
tomer satisfaction. Compared to the static algorithm, the total points awarded
to the frequent flyer using our approach is less. This ensures an enhancement

Fig. 3. Part of data pertaining to a frequent flyer detailing his travel history

A Dynamic Approach to Frequent Flyer Program 279

in the profit as the points available to the frequent flyer to redeem is less and
therefore the number of tickets that can be redeemed using the points is going
to be less.

For the above generated data the total frequent flyer points awarded by the
static approach was 8732, whereas our algorithm awards a total of 7402 showing
an improvement in profitability without compromising customer satisfaction.

5 Conclusion

In our study, we have implemented a dynamic algorithm to award frequent flyer
points. We have proved using several test cases that our algorithm awards lesser
points than the static algorithm, despite ensuring customer satisfiability. Further
research would be to consider nonquantifiable benefits offered by the airliners
and to check the feasibility of a dynamic redemption algorithm (would it enhance
the profitability even more).

References

1. Harris, C., Bray, J.: Price endings and consumer segmentation. Journal of Product
and Brand Management 16(3), 200–205 (2007)

2. Luo, L., Peng, J.H.: Dynamic pricing model for airline revenue management under
competition. Systems Engineering-Theory and Practice 27(11), 15–25 (2007)

3. Lufthansa Frequent flyer Program: Miles and more (2011)
4. Escobari, D.: Asymmetric Price Adjustments in Airlines. Managerial and Decision

Economics (2012)
5. Kivetz, R., Simonson, I.: The idiosyncratic fit heuristic: Effort advantage as a deter-

minant of consumer response to loyalty programs. Journal of Marketing Research,
454–467 (2003)

6. Elmaghraby, W., Keskinocak, P.: Dynamic pricing in the presence of inventory con-
siderations: Research overview, current practices, and future directions. Manage-
ment Science 49(10), 1287–1309 (2003)

7. Morrison, S., Winston, C.M.: The evolution of the airline industry. Brookings Insti-
tution Press (1995)

8. Basso, L.J., Clements, M.T., Ross, T.W.: Moral hazard and customer loyalty pro-
grams. American Economic Journal: Microeconomics 1(1), 101–123 (2009)

9. Burgos, A.: Perceived Value: How changes to frequent flyer rules and benefits can
influence customer preferences (2011)

A Categorical Treatment of Malicious

Behavioral Obfuscation

Romain Péchoux1 and Thanh Dinh Ta1,2

1 Université de Lorraine - Inria Project Team CARTE, Loria
2 INRIA Nancy - Grand Est

Abstract. This paper studies malicious behavioral obfuscation through
the use of a new abstract model for process and kernel interactions based
on monoidal categories. In this model, program observations are consid-
ered to be finite lists of system call invocations. In a first step, we show
how malicious behaviors can be obfuscated by simulating the observa-
tions of benign programs. In a second step, we show how to generate
such malicious behaviors through a technique called path replaying and
we extend the class of captured malwares by using some algorithmic
transformations on morphisms graphical representation. In a last step,
we show that all the obfuscated versions we obtained can be used to
detect well-known malwares in practice.

Keywords: Behavioral obfuscation, malware detection, monoidal
category.

1 Introduction

A traditional technique used by malware writers to bypass malware detectors
is program transformation. Basically, the attacker applies some transformations
(e.g. useless code injection, change of function call order, code encryption, ...)
on a given malware in order to build a new version having the same malicious
behavior, i.e. semantically equivalent relatively to a particular formal semantics.
This version may bypass a malware detector succeeding in detecting the original
malware if the transformation is cleverly chosen. This risk is emphasized in [20]
“an important requirement of a robust malware detection is to handle obfuscation
transformation”.

Currently, the works on Code obfuscation have been one of the leading research
topic in the field of software protection [8]. By using code obfuscation, malwares
can bypass code pattern-based detectors so that the detector’s database has to
be regularly updated in order to recognize obfuscated variants. As a consequence
of Rice’s theorem, verifying whether two programs are semantically equivalent
is undecidable in general, which annihilates all hopes to write an ideal detector.
Consequently, efficient detectors will have to handle code obfuscation in a con-
venient way while ensuring a good tractability. Most of recent researches have
focused on semantics-based detection [6,20], where programs are described by
abstractions independent from code transformations. Since the semantics of the

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 280–299, 2014.

c© Springer International Publishing Switzerland 2014

A Categorical Treatment of Malicious Behavioral Obfuscation 281

abstracted variants remains unchanged, the detection becomes more resilient to
obfuscation.

In this paper, we will focus on behavior-based techniques [11,15] where pro-
grams are abstracted in terms of observable behaviors, that is interactions with
the environment. Beside the works on detection (see [19] for an up-to-date
overview), detection bypassing is also discussed academically in [16,23,21,10] and
actively (but hardly accessible) in the underground. To our knowledge, there are
only a few theoretical works on behavioral obfuscation. The lack of formalism
and of general methods leads to some risks from the protection point of view:
first, malwares deploying new attacks, that is attacks that were not practically
handled before, might be omitted by current detectors. Second, the strength of
behavior-based techniques might be overestimated, in particular if they have not
a good resilience to code obfuscation.

As a illustrating example, consider the following sample, a variant of the
trojan Dropper.Win32.Dorgam [3] whose malicious behavior consists in three
consecutive stages:

– First, as illustrated in the listing of Figure 1, it unpacks two PE files whose
paths are added into the registry value AppInit_DLLs so that they will be
automatically loaded by the malicious codes downloaded later.

– Second, it creates the key SOFTWARE\AD and adds some entries as initialized
values as illustrated by Figure 2.

– Third, it calls the function URLDownloadToFile of Internet Explorer (MSIE)
to downloads other malicious codes from some addresses in the stored values.

NtCreateFile (FileHdl =>0x00000734 ,RootHdl <=0x00000000 ,File <=\??\C:\WIND
OWS\system32 \sys.sys)
NtWriteFile (FileHdl <=0x00000734 ,BuffAddr <=0x0043DA2C ,ByteNum <=11264)
NtFlushBuffersFile (FileHdl <=0x00000734)
NtClose (Hdl <=0x00000734)
NtCreateFile (FileHdl =>0x00000734 ,RootHdl <=0x00000000 ,File <=\??\C:\ WINDO
WS\system32 \intel.dll)
NtWriteFile (FileHdl <=0x00000734 ,BuffAddr <=0x0041A22C ,ByteNum <=145408)
NtFlushBuffersFile (FileHdl <=0x00000734)
NtClose (Hdl <=0x00000734)

Fig. 1. File unpacking

Since the file unpacking at the first stage is general and the behaviors at the
third stage are the same as those of the benign program MSIE, the only way
for a behavior-based detector to detect the trojan is by examining its behaviors
during the second stage in term of the syscall list1:

NtOpenKey, NtSetValueKey, NtClose, NtOpenKey, . . .

corresponding to the consecutive syscalls of Figure 2 in order to detect this tro-
jan. However, the NtOpenKey syscall associated to each NtSetValueKey syscall

1 For readability, we omit the arguments in the syscall lists.

282 R. Péchoux and T.D. Ta

NtOpenKey (KeyHdl =>0x00000730 ,RootHdl <=0x00000784 ,Key <=SOFTWARE \AD\)
NtSetValueKey (KeyHdl <=0x00000730 ,ValName <=ID,ValType <=REG_SZ ,ValEntry <=2062)
NtClose (Hdl <=0x00000730)
NtOpenKey (KeyHdl =>0x00000730 ,RootHdl <=0x00000784 ,Key <=SOFTWARE \AD\)
NtSetValueKey (KeyHdl <=0x00000730 ,ValName <=URL,ValType <=REG_SZ ,ValEntry <=
http://ad.***. com:82)
NtClose (Hdl <=0x00000730)
NtOpenKey (KeyHdl =>0x00000730 ,RootHdl <=0x00000784 ,Key <=SOFTWARE \AD\)
NtSetValueKey (KeyHdl <=0x00000730 ,ValName <=UPDATA,ValType <=REG_SZ ,ValEntry <=
http://t.***. com:82/***)
NtClose (Hdl <=0x00000730)
NtOpenKey (KeyHdl =>0x00000730 ,RootHdl <=0x00000784 ,Key <=SOFTWARE \AD\)
NtSetValueKey (KeyHdl <=0x00000730 ,ValName <=LOCK ,ValType <=REG_SZ ,ValEntry <=
http://t.***. com?2062)
NtClose (Hdl <=0x00000730)
......

Fig. 2. Registry initializing

is verbose and can be replaced by a single syscall. Moreover, the key handler
can be obtained by duplicating a key handler located in another process, so the
call NtOpenKey is not mandatory. Consequently, the following syscall lists are
equivalent behaviors that the trojan could arbitrarily select in order to perform
its malicious task:

NtOpenKey, NtSetValueKey, NtSetValueKey, . . .

NtDuplicateObject, NtSetValueKey, NtSetValueKey, . . .

The remainder of the paper will be devoted to modestly explain how such lists
can be both generated and detected for restricted but challenging behaviors.
For that purpose, our main contribution is to construct a formal framework
explaining how semantics-preserving behavioral transformations may evolve. The
underlying mathematical abstraction is the notion of monoidal category that we
use to model syscall interactions and internal computations of a given process
with respect to the kernel. In a first step, it allows us to formally define the
behaviors in term of syscall observations. In a second step, it allows us to define
a non-trivial subclass of behaviorally obfuscated programs on which detection
becomes decidable. In a last step, we show that, apart from purely theoretical
results, our model also leads to some encouraging experimental results since
the aforementioned decidability result allows us to recognize distinct versions of
malwares from the real-world quite efficiently.

This work was inspired by ideas of R. Milner in [18] where the importance
of effects that influence each participant in interactions is emphasized. In fact,
the kernel and process interaction semantics may be thought of as effects that
an execution path has on the process and the kernel, respectively. The current
work is an application of such ideas to a more specific context.

Outline In Section 2, we introduce a new abstract and simple model based on
monoidal categories, that only requires some basic behavioral properties, and
introduce the corresponding notions of observable behaviors. We provide several
practical examples to illustrate that, though theoretically oriented, this model

A Categorical Treatment of Malicious Behavioral Obfuscation 283

is very close to practical considerations. In Section 3, we present the main prin-
ciples of behavioral obfuscation and some semantics-preserving transformations
with respect to the introduced model. In Section 4, we introduce a practical im-
plementation of our model and conclude by discussing related works and further
developments.

2 Behavior Modeling

We assume the reader to be familiar with category theory (see [4], for an intro-
duction) and, in particular, with the concept of monoidal categories [17] intro-
ducing a tensor product operator ⊗ to represent concurrent computations. As
usual, m,n, . . . will denote objects and s, r, . . . will denote morphisms mapping
a source object, noted source(s), to a target object, noted target(s) = n, and

will be represented by either m
s−→ n or s : m −→ n. Let also 1m denote the

identity morphism, for each object m, and let ◦ be the associative composition.
Morphism (resp. object) terms are terms built from basic morphisms (resp.

objects) as variables, composition and tensor product. E.g. (s1 ◦ s2) ⊗ s3 is a
morphism term and m1 ⊗ (m2 ⊗ m3) is an object term.

2.1 Syscall Interaction Modeling

From a practical viewpoint, the computations and interactions between processes
and the kernel can be divided in two main sorts, the system calls interactions
and the process or kernel internal computations.

System calls are implemented by the trap mechanism where there is a manda-
tory control passing from the process (caller) to the kernel (callee). A syscall
affects to and is affected by both process and kernel data in their respective
memory spaces. Throughout the paper, we will distinguish syscall names (e.g.
NtCreateFile) from syscall invocations (e.g. NtCreateFile(h,...)). The for-
mer are just names while the later compute functions and will be the main
concern of our study.

Internal computations are operations inside the process or kernel memory
spaces. There is no control passing and they only affect to and are affected by
data of the caller memory.

We will abstract this practical viewpoint by a categorical model where com-
putations and interactions (i.e. both syscalls and internal computations) will be
represented by morphisms on the appropriate objects. For that purpose, objects
will consist in formal representations of physical memories.

Definition 1 (Memory space). Let Addr be a fixed set of memory adresses.
A memory state (or value) s is a mapping from a subset of memory addresses
B ⊆ Addr to memory bits in {0, 1}. The domain of s is defined by dom(s) = B.
A memory space m is the set of all memory states corresponding to some fixed
domain B ⊆ Addr, i.e. m = {s | dom(s) = B}. The domain of m is defined by
dom(m) = B and the codomain codom(m) is the set of all binary words of length

284 R. Péchoux and T.D. Ta

#B. Given two memory spaces m and n, we write m ⊆ n if dom(m) ⊆ dom(n)
. In what follows, we will use the notation mi, i ∈ {k, p}, to denote that m is
either a kernel or a process memory space. Given two memory spaces m and n
of disjoint domains, m ∪ n denotes their disjoint union.

We now introduce the notion of interaction category in order to abstract
syscall invocations and internal computations.

Definition 2 (Interaction category). Let mp,mk be memory spaces satis-
fying mp ∩ mk = ∅. The interaction category C〈mp,mk〉 is a category defined
by:

– The set of objects is freely generated from process and kernel memory spaces
ni such that ni ⊆ mi, i ∈ {k, p}, and cartesian products np × nk, The
terminal unit object e consists in the empty set.

– The set of morphisms is freely generated from cartesian projections: πi, i ∈
{k, p}, process and kernel internal computations: si : ni → oi, i ∈ {k, p}, and
syscall interactions: sp-k : np × nk → op × ok.

– The tensor product is partially defined on objects and morphisms by2:
• if ni ∩ oi = ∅ then ni ⊗ oi = ni ∪ oi,
• if np ⊗ op and nk ⊗ ok are defined then:

(np × nk)⊗ (op × ok) = (np ⊗ op)× (nk ⊗ ok),

• if np ⊗ op or nk ⊗ ok are defined then:

(np × nk)⊗ op = (np ⊗ op)× nk or

(np × nk)⊗ ok = np × (nk ⊗ ok).

• given s1 : m1 → n1 and s2 : m2 → n2, then s1 ⊗ s2 : m1 ⊗m2 → n1 ⊗ n2

is defined by s1 ⊗ s2(v1 ⊗ v2) = s1(v1) ⊗ s2(v2) whenever the following
diagram commutes: (i.e. the tensor is defined on objects):

m1 ⊗ m2 n1 ⊗ m2

m1 ⊗ n2 n1 ⊗ n2

s1⊗1m2

1m1⊗s2 1n1⊗s2

s1⊗1n2

Remark 1. The set notation v ∈ m and the categorical notation v : e → m will
be interchangeably used depending on the context in order to denote a value
(memory state) v of a memory space m. So do the composition notation s ◦ v
and the application notation s (v) that denote the result of applying morphism
s to value v.

2 The tensor represents the concurrent accesses and modifications performed by both
internal computations and syscall interactions on memory spaces. A necessary con-
dition for these operations to be well-defined is that they do not interfere, that is
they have to operate on disjoint domains.

A Categorical Treatment of Malicious Behavioral Obfuscation 285

We show that interaction categories enjoy the mathematical abstractions and
properties of monoidal categories:

Proposition 1. Each interaction category is a monoidal category (with a par-
tially defined tensor product operator).

A consequence is that all the abstract properties and graphical representations
of monoidal categories can be used in the proofs and remainder of this paper.

Graphical representation Morphism and object terms can be given a stan-
dard graphical representation using string diagrams [22,14] defined as follows:

– nodes are morphisms (except for identity morphisms) and edges are objects:

m
s

n
> >

1m
>

m
>

– composition sj ◦ si:

mi
si

ni = mj

sj
nj

> > >

– tensor product si ⊗ sj :

mi
si

ni
> >

mj

sj
nj

> >

In (planar) monoidal categories, diagrams are progressive [22], namely edges are
always oriented from left to right. Let 	 be (by abuse of notation) the reflexive
and transitive closure of the relation defined by si 	 sj holds if there is an edge
from si to sj .

Listing 1.1. Internal computation

char *src = 0x00150500 ;

char *dst = 0x00150770 ;

strncpy(dst ,src ,10);

Listing 1.2. Syscall invocation

char *buf = 0 x0015C898 ;

HANDLE hdl = 0x00000730 ;

NtWriteFile (hdl ,...,buf ,1024);

Example 1. Listing 1.1 is an example of (process) internal computation. The
function strncpy can be represented by the (process internal computation) mor-
phism:

strncpyp : [src]⊗ [dst] −→ [src] ⊗ [dst],

where [src] and [dst] are 10 bytes memory spaces beginning at the addresses
0x150500 and 0x150770, respectively.

Listing 1.2 is an example of syscall invocation. The invocation of the syscall
name NtWriteFile is represented by a (syscall interaction) morphism:

NtWriteF ilep-k : [buf]× [hdl] −→ [buf]× [hdl],

where [buf] is a 1024 bytes memory space beginning at the address 0x15C898,
and [hdl] is a memory state identified by the handler 0x730.

286 R. Péchoux and T.D. Ta

In the interaction category C〈mp,mk〉, each internal computation sp can be
considered as a morphism sp : mp −→ mp since internal computations are mem-
ory modifiers operating on some previously allocated memory space. In the same
spirit, each syscall interaction sp-k can be seen as a morphism sp-k : mp×nk −→
mp × ok such that we have either dom(nk) = dom(ok) (memory modifier), or
dom(nk) � dom(ok) (memory constructor) or dom(ok) � dom(nk) (memory
destructor).

Example 2. The syscall NtWriteFile(hdl,...) of Example 1 is a memory mod-
ifier while NtOpenKey(ph,...) is a memory constructor, allocating a new mem-
ory space identified by *ph, and NtClose(h) is a memory destructor freeing the
memory space identified by h.

2.2 Process Behaviors as Path Semantics

We now provide definitions of process behaviors in term of paths, namely lists of
consecutive morphisms that processes realize during an execution. By assuming
that processes can only be examined in finite time, the studied paths are finite.

Definition 3 (Execution path). An execution path X ∈ X is a finite list of
morphisms of the shape X = [sj11 , sj22 , . . .], with ji ∈ {p, p-k}, ∀i, satisfying the

following condition: for each sp-ki ∈ X of the shape sp-ki : mp × nk
i −→ mp × oki :

– there is no memory duplication: if sp-ki is a memory constructor then its

constructed memory T k
i = oki \ nk

i is not duplicated, that is ∀sp-kj ∈ X, if

j > i then T k
i ∩ T k

j = ∅ else T k
i ∩ nk

j = T k
i ∩ okj = ∅.

– there is no memory reuse: if sp-ki is a memory destructor then its destructed

memory Uk
i = nk

i \oki is not reused, that is ∀sp-kj ∈ X, if j > i then Uk
i ∩nk

j =

Uk
i ∩ okj = ∅.

Note that execution paths correspond to paths that are semantically meaningful:
The first condition prevents the system from reallocating a memory address and
from accessing to an unallocated one, while the second condition prevents it from
accessing to a previously freed memory space.

Definition 4 (Observable path).Given an execution path X, its observable
path O ∈ O consists in the list of all syscall interactions in X. The function
obs : X → O returns the observable path of an execution path given as input, e.g.
obs([sp-k1 , sp2, s

p
3, s

p-k
4]) = [sp-k1 , sp-k4].

Execution paths will be used to study all the possible computations (internal
computations and syscall interactions) at the process level while observable paths
only consist in behaviors that can be grasped by an external observer, that is
some sequence of syscall invocations, and will be the main concern of our study.

Example 3. Consider the following listings:

A Categorical Treatment of Malicious Behavioral Obfuscation 287

Listing 1.3. X1

strncpy(dst ,src1 ,10);

strncpy(dst+10, src1 +10 ,30);

NtOpenKey (h,...{... dst ...});

memcpy(src2 ,src1 ,1024);

Listing 1.4. X2

memcpy(src2 ,src1 ,1024);

strncpy(dst+2,src2 ,15);

strncpy(dst+17, src1 +15 ,25);

NtOpenKey (h,...{... dst +2...});

The corresponding execution paths X1, X2 are defined by:

X1 = [strncpyp1 , strncpyp2 , NtOpenKeyp-k3 ,memcpyp4]

X2 = [memcpyp1 , strncpyp2 , strncpyp3 , NtOpenKeyp-k4]

and their respective observable paths are defined by:

obs(X1) = [NtOpenKeyp-k3]

obs(X2) = [NtOpenKeyp-k4]

The data modifications caused by an execution path X of a given interaction
category can be represented by a morphism term built from the morphisms of X
together with identity morphisms. In what follows, the morphism corresponding
to these data modifications will be called the path semantics of X , denoted
s(X).

Proposition 2. Given an execution path X ∈ X of the interaction category
C〈mp,mk〉, the data modifications caused by X on data at memory adresses
dom(mp) and dom(mk) is a morphism s(X) of the shape:

s(X) : mp × nk −→ mp × ok, with ni, oi ⊆ mi.

that can be represented by a morphism term obtained by using the morphisms of
X together with identity morphisms.

3 Behavioral Obfuscation

In this section, we show a theorem stating that if a benign path has the same
effects on the kernel data as another (malicious) path, then there exist (mali-
cious) paths having the same path semantics as the initial malicious one, and
the same observations as the benign one. Though not surprising, this result has
two main advantages. First, it gives a first formal treatment of camouflage tech-
niques. Second, the proof of this theorem is constructive. It means that it does
not only show the existence of such malicious paths but also allows us to build
them in an automated way. This is a very first step towards an automated way
of detecting such malicious paths.

3.1 Obfuscation

First, we need to give a clear definition of obfuscation: One of the main obfus-
cation techniques consists in camouflaging behaviors of malwares with those of

288 R. Péchoux and T.D. Ta

a benign programs. Such a technique was partly illustrated by the trojan of our
motivating example that was hiding some of its behaviors through the use of
Internet Explorer functionalities.

Formally, given two execution paths X1 and X2 starting at some value vp0 ×vk0
and ending at the same value vp1 × vk1 = s (X2)

(
vp0 × vk0

)
= s (X1)

(
vp0 × vk0

)
, X2

obfuscates X1 (or obs (X2) behaviorally obfuscates obs (X1)), denoted by
obs (X2) ≈ obs (X1), if obs(X1) �= obs(X2).

Example 4. Consider the paths X ′
1, X

′
2 respectively consisting of the 3 last mor-

phisms of X1, X2 in Listings 1.3 and 1.4, namely:

X ′
1 = [strncpyp2 , NtOpenKeyp-k3 ,memcpyp4]

X ′
2 = [strncpyp2 , strncpyp3 , NtOpenKeyp-k4]

In general, s(X ′
1) �= s(X ′

2) but the equality holds if both execution paths start
at values so that the data on [src1] ∪ [src2]3 are the same. For these particular
values, we have:

obs(X ′
1) = [NtOpenKeyp-k4] ≈ [NtOpenKeyp-k3] = obs(X ′

2)

Notice that the two syscall invocations have the same name but actually consist
in two different morphisms.

3.2 Camouflage Theorem

In order to state the theorem, we need to introduce the notions of process and
kernel (partial) semantics to distinguish the effects caused by a path on a kernel
memory space from the ones caused on a process memory space.

Definition 5. Given an execution path X ∈ X and its path semantics s(X) :
mp × nk −→ mp × ok wrt the interaction category C〈mp,mk〉, the:

– kernel semantics, noted k (X), and kernel partial semantics at value vp, noted
k (X) [vp],

– process semantics, noted p (X), and process partial semantics at value vk,
noted p (X) [vk],

are defined to be the morphisms making the following diagram commute:

e

mp mp × nk nk

mp mp × ok ok

vp×vkv
p v k

1mp×vk

p(X)[vk] s(X)
p(X

) k(X)

vp×1
nk

k(X)[vp]

πp πk

3 [src1] and [src2] denote memory spaces as explained in Example 1.

A Categorical Treatment of Malicious Behavioral Obfuscation 289

Example 5. The semantics of the path X1 in Listing 1.3 is a morphism4:

s (X1) : ([src1] ∪ [src2] ∪ [dst])× e → ([src1] ∪ [src2] ∪ [dst])× [h]

and its process and kernel semantics are morphisms:

p (X1) : ([src1] ∪ [src2] ∪ [dst])× e −→ [src1] ∪ [src2] ∪ [dst]

k (X1) : ([src1] ∪ [src2] ∪ [dst])× e −→ [h]

The following theorem shows that if we first find an intermediate path X1-2

having just the same kernel semantics as X1 (i.e. the same effects on the kernel
memory space), then we can later modify X1-2 (while keeping its observable
behaviors) to obtain X2 having the same paths semantics as X1.

Theorem 1 (Camouflage). Let X1 ∈ X and vp × vk ∈ source (s (X1)), for
each X1-2 ∈ X such that p(X1-2)[v

k] is monic (i.e. injective) and:

k (X1-2)
(
vp × vk

)
= k (X1)

(
vp × vk

)
,

there exists X2 ∈ X satisfying obs (X2) = obs (X1-2) and:

s (X2)
(
vp × vk

)
= s (X1)

(
vp × vk

)
.

In other words, if X1 is a malicious path and X1-2 (possibly benign) has
the same kernel semantics, then we can build X2 so that s (X2)

(
vp × vk

)
=

s (X1)
(
vp × vk

)
, namely X2 is also malicious; but obs (X2) = obs (X1-2), namely

it looks like a benign path.

Example 6. The paths X1 and X1-2 in Listings 1.3 and 1.5 have the same partial
kernel semantics at the particular values "\SYSTEM\CurrentControlSet\..."∪
. . .∪ . . . of [src1]∪ [src2]∪ [dst] but the process partial semantics are not (values
on [src1] ∪ [src2] ∪ [dst] are set to 0 in X1-2). Consequently, it satisfies the
hypothesis of Theorem 1 and we can generate a path having the same semantics
as the one in Listing 1.3 and the same observations as the one in Listing 1.5.

Listing 1.5. X1-2

NtOpenKey(h ,..."\ SYSTEM\CurrentControlSet \..."...);

memset(dst ,0 ,1024);

memset(src1 ,0 ,1024);

memset(src2 ,0 ,1024);

3.3 Obfuscated Path Generation

As previously mentioned, the proof of Theorem 1 will allow us to generate paths
with camouflaged behaviors through a procedure called path replaying. The in-
tuition behind such a procedure is to transform a path X1 by specializing some
invoked values inside the process memory space mp. For that purpose, the pro-
jection morphisms allowing us to extract the partial values of a given total value
are introduced:
4 [src1], [src2], [dst] and [h] still denote memory spaces.

290 R. Péchoux and T.D. Ta

Definition 6 (Projection morphisms). Let v ∈ m1 ⊗ m2, the partial values
v1 ∈ m1 and v2 ∈ m2 are respectively defined by the morphisms πm1 and πm2

making the following diagram commute:

e

m1 m1 ⊗ m2 m2

v1⊗v2v1 v2

πm1 πm2

Given an execution path X = [sj11 , sj22 , . . . , sjnn] and a value vp × vk ∈ source
(s (X)); for 1 ≤ i ≤ n, define Xl to be the path containing the first l morphisms

of X , i.e. Xl = [sj11 , sj22 , . . . , sjll]. Consider a morphism sp-kl ∈ obs(X), the source

value vpl ∈ mp invoked by sp-kl during the execution corresponding to path X
can be computed by:

vpl =

{
p (Xl−1)

(
πsource(s(Xl−1))

(
vp × vk

))
if l > 1

vp otherwise

Definition 7 (Replay path). Given an execution path X = [sj11 , sj22 , . . . , sjnn]
and a value vp × vk ∈ source (s (X)), the replay path rep(X) = [r1, r2, . . . , rn]
of X at vp × vk is defined by:

ri =

{
1mp × k(sjii)[v

p
i] if sjii ∈ obs(X)

sjii otherwise

Example 7. The path in Listing 1.6 is the replay of the path in Listing 1.4 at
value "\SYSTEM\CurrentControlSet\..." of [dst].

Listing 1.6. Replay rep(X2) of X2

memcpy(src2 ,src1 ,1024);

strncpy(dst+2,src2 ,15);

strncpy(dst+17,src1 +15,25);

NtOpenKey(h ,..."\ SYSTEM\CurrentControlSet \..."...);

Now we can state the following result:

Proposition 3. Given an execution path X1 ∈ X , let rep (X1) be the replay of
X1 at values vp × vk ∈ source (s (X1)). For each X1-2 ∈ X satisfying s (X1-2) =
s (obs (rep (X1))), p (X1-2) [v

k] is monic and the following properties hold:

– k(X1-2)
(
vp × vk

)
= k(X1)

(
vp × vk

)
,

– if X2 = X1-2@[p(X1)[v
k]], where @ is the usual concatenation operator on

lists, then:

s (X2)
(
vp × vk

)
= s (X1)

(
vp × vk

)
.

A Categorical Treatment of Malicious Behavioral Obfuscation 291

The former shows that X1-2 satisfies the assumptions of Theorem 1 while
the later explicitly builds an execution path X2 such that obs (X2) behaviorally
obfuscates obs (X1). Indeed, since rep (X1) is constructed out of X1 by replacing

each sp-ki ∈ obs (X1) by 1mp × k(sp-ki)[vpi], the observable paths obs (rep (X1))
and obs (X1) have the shapes:

obs (X1) = [sp-ki , . . . , sp-kl]

obs (rep (X1)) = [1mp × k(sp-ki)[vpi], . . . , 1mp × k(sp-kl)[vpl]]

Proposition 3 provides a straightforward way of generating an obfuscated path
X2 of X1 by setting:

X2 = X1-2@[p(X1)[v
k]]

for some X1-2 such that X1-2 = obs (rep (X1)). The obtained path X2 complies
with obs (X2) = obs (rep (X1)) and obs (X2) �= obs (X1).

3.4 Graph-Based Path Transformation

Though having distinct syscall invocations, the replay paths obtained in pre-
vious section are “not that different” in the sense that involved syscall names
are still identical (see Example 7). The general objective of this subsection is to
show how to generate paths that are semantically equivalent to obs (rep (X1))
but with distinct observations. For that purpose, the string diagram formalism
induced by the considered monoidal categories and introduced at the end of
Subsection 2.1 will be used throughout the remainder of this section in order
to consider semantics-preserving transformations on the syscall invocations in
obs (rep (X1)).
By Proposition 2, the path semantics s (obs (rep (X1))) is represented by a mor-

phism term constructed from the morphisms 1mp×k(sp-ki)[vpi]. Hence, by Propo-
sition 1, it has a graphical representation as a string diagram, moreover we can
safely omit the identity morphism 1mp in considering these morphisms.

Among string diagrams, we will only consider path diagrams, namely the
diagrams such that the projection of nodes on an horizontal axis is an injective
function, so the projection allows us to define a total order on nodes. The rea-
son for restricting our graphical representation to path diagrams is that they
represent their corresponding paths in an unambiguous way.

Example 8. Consider the three following string diagrams: The string diagrams
(b) and (c) are path diagrams representing the paths [s1, s2, s3] and [s1, s3, s2],
respectively, but the string diagram (a) is not a path diagram.

The following theorem on coherence of progressive plane diagrams, when ap-
plied to the corresponding string (or path) diagrams, gives us a sound property
on semantics-preserving transformations from one path to another.

Theorem 2 ([14,22]). In monoidal categories, morphism terms equivalence
can be deduced from axioms iff their corresponding string diagrams are planar
isotopic.

292 R. Péchoux and T.D. Ta

s1

s2

s3

>
>

>

>

>

(a) (s2 ⊗ s3) ◦ s1

s1

s2

s3

>
>

>

>

>

(b) (1⊗ s3) ◦ (s2 ⊗ 1) ◦ s1

s1

s2

s3

>
>

>

>

>

(c) (s2 ⊗ 1) ◦ (1⊗ s3) ◦ s1

Fig. 3. String diagrams

Following [22], we accept an informal definition of planar isotopy between string
diagrams as “...one can be transformed to the other by continuously moving
around nodes...” (but keep the diagram always progressive), the formal treatment
can be referenced in [14], e.g. The three string diagrams of Example 8 are planar
isotopic.

Between path diagrams, planar isotopy can be though of as moving the nodes
but keeping the total oder compatible with the partial order 	 (see Section 2.1).
Hence, a linear extension Y of obs (rep (X1)), namely a permutation where the
total order remains to be compatible with 	, will preserves the semantics of
obs (rep (X1)). This leads to the following Algorithm:

Input: an observable path obs (rep (X1))

Output: a permutation Y satisfying s (Y) = s (obs (rep (X1)))

begin
M1 ← a morphism term of s (obs (rep (X1)));
G1 ← a string diagram of M1;
(obs (rep (X1)) ,) ← a poset with order induced from G1;
(Y,≤) ← a linear extension of (obs (rep (X1)) ,);

end

Algorithm 1. Obfuscation by diagram deformation

Example 9. Consider the below listings corresponding to execution paths X3

and X4. They can be respectively represented by path diagrams (b) and (c).
Consequently, given X3, Algorithm 1 can generate X4 (or the converse).

Listing 1.7. X3

NtCreateKey(h ,...{..."\SOFTWARE\AD \"...}...); /*s1*/
NtSetValueKey(h ,...{..."DOWNLOAD"...}... ," abc"); /*s2*/
NtSetValueKey(h ,...{..."URL"...}... ," xyz"); /*s3*/

Listing 1.8. X4

NtCreateKey(h ,...{..."\SOFTWARE\AD \"...}...); /*s1*/
NtSetValueKey(h ,...{..."URL"...}... ," xyz"); /*s3*/
NtSetValueKey(h ,...{..."DOWNLOAD"...}... ," abc"); /*s2*/

A Categorical Treatment of Malicious Behavioral Obfuscation 293

A variable in a morphism term (resp. a node in the string diagram) is also
a placeholder [22] that can be substituted by another term (resp. another dia-
gram) having the same semantics, so the below Algorithm can be derived from
Algorithm 1:

Input: an observable path obs (rep (X1))

Output: a new path Y satisfying s (Y) = s (obs (rep (X1)))

begin
M1 ← a morphism term of obs (rep (X1));
s ← a morphism of M1;
X ← an execution path satisfying s(X) = s;
M ← a morphism term of X;
M2 ← the morphism term M1{M/s};
G2 ← a string diagram of M2;
((obs (rep (X1)) \ s) ∪X,) ← poset with order induced from G2;
(Y,≤) ← a linear extension of ((obs (rep (X1)) \ s) ∪X,)

end

Algorithm 2. Obfuscation by node replacement

Example 10. Consider the replacement of s2 in Listing 1.7 by X = [s′2, s2] where:

s′2 = NtSetValueKey(h, . . .{. . . ”DOWNLOAD” . . .} . . . , ”a′b′c′”)

Using this replacement, given the execution path X3 in Listing 1.7, Algorithm
2 can generate the execution path X5 corresponding to the following listing:

Listing 1.9. X5

NtCreateKey(h ,...{..."\SOFTWARE\AD \"...}...); /*s1*/
NtSetValueKey(h ,...{..."DOWNLOAD"}... ,"a’b’c ’");/*s′2*/
NtSetValueKey(h ,...{..."URL"...}... ," xyz"); /*s3*/
NtSetValueKey(h ,...{..."DOWNLOAD"}... ,"abc"); /*s2*/

Proposition 4 (Soundness). Given an execution path X1, Algorithms 1 and 2
generate an observable path Y as output that behaviorally obfuscates obs(rep(X1))
(provided that considered the linear extension is not the identity).

4 Experiments and Detection

4.1 Experimental Implementation

Algorithms 1 and 2 have been applied to several sub-paths extracted from the
malwares Dropper.Win32.Dorgam [3] and Gen:Variant.Barys.159 [1]. The pro-
grams (written in C++ and Haskell) use Pin [13] for path tracing and FGL [9]
for path transforming. The implemented pieces of code are available at the
repository [2].

294 R. Péchoux and T.D. Ta

In the following experiments, the string diagrams of paths are illustrated as
follows: The numbers appearing as node labels represent the total order in the
original path. In each diagram, the fictitious nodes Input and Output are added
as the minimum and the maximum in such a way that the path can be consid-
ered as a lattice. On a fixed line, the number appearing as edge labels represent
the handlers which identify the corresponding memory space inside kernel. On
different lines, the same numbers may identify different memory spaces. The ob-
fuscated paths generated by Algorithm 1 are linear extensions which are compat-
ible with the order defined in the lattice. Note that their corresponding diagrams
are always path diagrams (but they are not illustrated here).

Experiment 1. The trojan Dropper.Win32.Dorgam has an execution path X
corresponding to the trace in Figure 2 that consists in 24 morphims. Let [hi], i ∈
{1, 4, 7, 10, 13, 16, 19, 22} denote the memory spaces identified by the handlers
of the accessed registry keys (i being the listing line number), the replay path is
formulated by morphisms:

NtOpenKeyp-ki : e → [hi]

NtSetV alueKeyp-ki+1 : [hi] → [hi]

NtClosep-ki+2 : [hi] → e

Its string diagram is represented in Figure 4.

Fig. 4. Registry initializing string diagram

A Categorical Treatment of Malicious Behavioral Obfuscation 295

The number e(X) of possible linear extensions of X is computed by:

e(X) =

(
24

3

)(
21

3

)(
18

3

)(
15

3

)(
12

3

)(
9

3

)(
6

3

)(
3

3

)
=

24!

68

namely more than 369 quadrillion extensions (and paths) can be generated by
Algorithm 1.

Experiment 2. The trojan also uses the trace in Listing 1.10 to create a copy
of iexplore.exe, its replay path has the string diagram provided in Figure 5(a).

Listing 1.10. File copying

NtCreateFile (FileHdl =>0x00000730 ,File <=\??\C:\ Program Files\
Internet Explorer \IEXPLORE .EXE)
NtCreateFile (FileHdl =>0x0000072C ,File <=\??\C:\ Program
Files\iexplore .exe)
NtReadFile (FileHdl <=0x00000730 ,BuffAddr <=0x0015C898 , ByteNum <=65536)
NtWriteFile (FileHdl <=0x0000072C , BuffAddr <=0x0015C898 , ByteNum <=65536)
......
NtReadFile (FileHdl <=0x00000730 ,BuffAddr <=0x0015C898 , ByteNum <=65536)
NtWriteFile (FileHdl <=0x0000072C , BuffAddr <=0x0015C898 , ByteNum <=48992)
NtReadFile (FileHdl <=0x00000730 , BuffAddr <=0x0015C898 , ByteNum <=65536)
NtClose (Hdl <=0x00000730)
NtClose (Hdl <=0x0000072C)

This path can be considered as an obfuscated version (generated by Algo-
rithm 2) of the path whose string diagram is in Figure 5(b), by considering the
equivalences:

NtReadF ilep-k3(orig) = [NtReadF ilep-k3 , NtReadF ilep-k5 , . . .]

NtWriteF ilep-k4(orig) = [NtWriteF ilep-k4 , NtWriteF ilep-k6 , . . .]

It also means that a behavior matching detector can detect an obfuscated path,
assuming the prior knowledge of both the original path and the semantics equiv-
alences described above.

Experiment 3 We consider the ransomware Gen:Variant.Barys.159 [1]. The
extracted path in Listing 1.11 explains how the malware conceals itself by in-
jecting code into file explorer process explorer.exe.

Listing 1.11. Code injecting

NtOpenProcess (ProcHdl =>0 x00000780 ,DesiredAccess <=1080, ProcId <=0 x00000240)

NtCreateSection (SecHdl=>0 x00000778 ,AllocAttrs <= SEC_COMMIT ,FileHdl <=0 x00000000)

NtMapViewOfSection (SecHdl <=0 x00000778 ,ProcHdl <=0 xFFFFFFFF ,BaseAddr <=0 x02660000)

NtReadVirtualMemory (ProcHdl <=0 x00000780 ,BaseAddr <=0 x7C900000 ,BuffAddr <=0 x026

60000, ByteNum <=729088)

NtMapViewOfSection (SecHdl <=0 x00000778 ,ProcHdl <=0 x00000780 ,BaseAddr <=0 x7C900000)

The malware first obtains the handler 0x780 from the running instance (whose
process id is 0x240) of explorer.exe and then creates a section object identified
by the handler 0x778. It maps this section to the malware memory, it copies some
data of the instance into the mapped memory, it performs data modification on

296 R. Péchoux and T.D. Ta

this memory and, finally, it maps the section (now contains modified data) back
to the instance.

Let [h1], [h2] denote the memories identified by handlers of the opened process
and of the created section, the replay path is formulated by morphisms:

NtOpenProcessp-k1 : e → [h1]

NtCreateSectionp-k
2 : e → [h2]

NtMapV iewOfSectionp-k
3 : [h2] → [h2]

NtReadV irtualMemoryp-k4 : [h1] → [h1]

NtMapV iewOfSectionp-k
5 : [h1] ∪ [h2] → [h1] ∪ [h2]

and the corresponding string diagram is provided in Figure 5(c).

If the morphism NtReadV irtualMemoryp-k4 is replaced by a path [sp-k4-1 , s
p-k
4-2]

corresponding to the syscall invocations in Listing 1.12 then this replacement
leads to the string diagram in Figure 5(d).

Listing 1.12. NtReadVirtualMemory

NtReadVirtualMemory(ProcHdl <=0x00000780 ,BaseAddr <=0x7C900000 ,BuffAddr <=0x026
60000,ByteNum <=9088)
NtReadVirtualMemory(ProcHdl <=0x00000780 ,BaseAddr <=0x7C909088 ,BuffAddr <=0x026
69088,ByteNum <=72000)

The numbers of linear extensions for the original string diagram and the
obfuscated one are respectively:

e1(X) =

(
4

2

)(
2

2

)
= 6 e2(X) =

(
5

3

)(
2

2

)
= 10

4.2 Obfuscated Path Detection

We will now discuss the detection by using practical detectors introduced in
previous existing works on behavior matching [7,15,12].

Basically, a behavior matching detector first represents an observable path by
a directed acyclic graph (DAG) using the causal dependency between morphisms,
a morphism sj (directly or indirectly) depends on si if the sources values of sj are
(directly or indirectly) deduced from the target values of si. Then the detector
decides a path is malicious or not by verifying whether there exists a malicious
pattern occurring as a subgraph of the original DAG. Here the malicious pattern
is a (sub-)DAG and it can be obfuscated to another semantics equivalent DAG.

Whereas Algorithm 1 can generate a large amount of paths, the verification
of whether an obfuscated path is semantically equivalent to the original path
is simple: it is an instance of the DAG automorphism problem where every
vertex is mapped to itself. The instance can be decided in P -time by repeatedly
verifying whether two paths have the same set of minimal elements, if they do
then remove the set of minimal elements from both paths and repeat; if they do
not then decide No; if the sets are both empty then decide Yes and stop.

A Categorical Treatment of Malicious Behavioral Obfuscation 297

(a
)
F
il
e
co
p
y
in
g
st
ri
n
g
d
ia
g
ra
m

(b
)
F
il
e
co
p
y
in
g
o
ri
g
in
a
l
st
ri
n
g
d
ia
g
ra
m

(c
)
C
o
d
e
in
je
ct
in
g
st
ri
n
g
d
ia
g
ra
m

(d
)
C
o
d
e
in
je
ct
in
g
o
b
fu
sc
a
te
d
st
ri
n
g
d
ia
g
ra
m

F
ig
.
5
.
E
x
p
er
im

en
ts

st
ri
n
g
d
ia
g
ra
m
s

298 R. Péchoux and T.D. Ta

The detection of obfuscated paths generated by Algorithm 2 is more chal-
lenging. When applied naively, the behavior matching does not work since the
algorithm can generate paths of morphisms corresponding to syscall names and
invocations distinct from those of the original path. More generally, it may be
nonsense to compare an obfuscator and a detector which use different sets of be-
havioral transformations. In other words, as discussed in [19], a detector which
abstracts behaviors by using the transformation set T , will be bypassed by an
obfuscator which generates behaviors by using a set T ′ so that T ∩ T ′ �= ∅.

The original behavior matching techniques can be strengthened by generating
(e.g. by using Algorithm 2) in prior a set of patterns that are semantically equiv-
alent to the original one (see also the discussion in Experiment 2). Conversely,
that means simplifying obfuscated paths to their original unique form, several
simplifying techniques has been studied in some existing works on semantics
rewriting (e.g. [5]). So we might suggest that a combination of behavior match-
ing and semantics rewriting will improve the presented analysis. We reserve such
an improvement as a future work.

References

1. Gen: Variant.Barys.159 (2013), http://goo.gl/YDC1o

2. Trace Transformation Tool (2013), http://goo.gl/rqCSQ
3. Trojan-Dropper.Win32.Dorgam.un (2013), http://goo.gl/3e1AR

4. Awodey, S.: Category Theory (Oxford Logic Guides), vol. 49. Oxford University
Press, USA (2006)

5. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Behavior Abstraction in Malware Anal-
ysis. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 168–182.
Springer, Heidelberg (2010)

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-
aware malware detection. In: Symposium on Security and Privacy, pp. 32–46. IEEE
Computer Society (2005)

7. Christodorescu, M., Kruegel, C., Jha, S.: Mining Specifications of Malicious Be-
havior. In: ISEC, pp. 5–14. ACM (2008)

8. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional (2009)

9. Erwig, M.: FGL/Haskell - A Functional Graph Library for Haskell (2008),
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/

10. Filiol, E.: Formalisation and implementation aspects of k -ary (malicious) codes.
Journal in Computer Virology 3(2), 75–86 (2007)

11. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: Symposium on Security and Privacy, pp. 120–128. IEEE (1996)

12. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing Near-
Optimal Malware Specifications from Suspicious Behaviors. In: Symposium on Se-
curity and Privacy, pp. 45–60. IEEE (2010)

13. Intel. Pin - A Dynamic Binary Instrumentation Tool (2013),
http://software.intel.com/en-us/articles/pintool

14. Joyal, A., Street, R.: The Geometry of Tensor Calculus, I. Advances in Mathemat-
ics 88, 55–112 (1991)

http://goo.gl/YDC1o
http://goo.gl/rqCSQ
http://goo.gl/3e1AR
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/
http://software.intel.com/en-us/articles/pintool

A Categorical Treatment of Malicious Behavioral Obfuscation 299

15. Kolbitsch, C., Milani Comparetti, P., Kruegel, C., Kirda, E., Zhou, X., Wang, X.:
Effective and Efficient Malware Detection at the End Host. In: USENIX Security,
pp. 351–366 (2009)

16. Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.-C.: Shadow attacks: automatically
evading system-call-behavior based malware detection. Journal in Computer Vi-
rology 8(1-2), 1–13 (2012)

17. Meseguer, J., Montanari, U.: Petri Nets are Monoids. Information and Computa-
tion 88(2), 105–155 (1990)

18. Milner, R.: Action Structures. Technical report (1992),
http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-249/

19. Dalla Preda, M.: The grand challenge in metamorphic analysis. In: Dua, S., Gan-
gopadhyay, A., Thulasiraman, P., Straccia, U., Shepherd, M., Stein, B. (eds.)
ICISTM 2012. CCIS, vol. 285, pp. 439–444. Springer, Heidelberg (2012)

20. Dalla Preda, M., Christodorescu, M., Jha, S., Debray, S.K.: A semantics-based
approach to malware detection. In: POPL, pp. 377–388. ACM (2007)

21. Ramilli, M., Bishop, M.: Multi-Stage Delivery of Malware. In: MALWARE, pp.
91–97 (2010)

22. Selinger, P.: A survey of graphical languages for monoidal categories. In: New
Structures for Physics, pp. 289–355. Springer (2011)

23. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Conference on Computer and Communications Security, pp. 255–264. ACM
(2002)

http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-249/

Space Complexity of Optimization Problems

in Planar Graphs

Samir Datta1 and Raghav Kulkarni2

1 Chennai Mathematical Institute, India
2 Center for Quantum Technologies, Singapore

Abstract. We initiate the study of space complexity of certain opti-
mization problems restricted to planar graphs. We provide upper bounds
and hardness results in space complexity for some of these well-studied
problems in the context of planar graphs. In particular we show the
following:

1. Max-Cut in planar graphs has a (UL∩co− UL)-approximation scheme;
2. Sparsest-Cut in planar graphs is in NL;
3. Max-Cut in planar graphs is NL-hard;
4. ⊕Directed-Spanning-Trees in planar graphs is ⊕L-complete.

For (1) we analyze the space complexity of the well known Baker’s
algorithm [1] using a recent result of Elberfeld, Jakoby, and Tantau [13]
that gives a Log-space analogue of Courcelle’s Theorem for MSO defin-
able properties of bounded tree-width graphs.

For (2) we analyze the space complexity of the algorithm of Patel [21]
that builds on a useful weighting scheme for planar graphs. Interestingly,
the same weighting scheme has been crucially used in the totally different
context of isolation in planar graphs [4,7].

For (3) we use a recent result of Kulkarni [17], which shows that Min-
wt-PM in planar graphs is NL-hard.

For (4) we use the result by Datta, Kulkarni, Limaye, and Mahajan
[8] that gives a reduction from the permanent in general graphs to planar
graphs.

1 Introduction

1.1 Space Complexity

Perhaps the two most natural (and important) measures of complexity of com-
putational problems are running time and amount of space used. The notion of
efficiency for time complexity is captured by the complexity class P whereas the
class L or Log-space (problems that can be solved on deterministic Turing ma-
chine using logarithmic amount of space) captures the notion of efficiency in the
world of space complexity. In the algorithmic setting, especially for the optimiza-
tion problems, time complexity has been the main focus so far; although there
are examples of non-trivial space efficient algorithms such as the Log-space al-
gorithm for undirected graph connectivity [22]. Recently Elberfeld, Jakoby, and

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 300–311, 2014.
c© Springer International Publishing Switzerland 2014

Space Complexity of Optimization Problems in Planar Graphs 301

Tantau [13] obtained an analogue of the famous Courcelle’s Theorem giving Log-
space algorithms for several problems on bounded tree width graphs. Another
interesting example is a recent result of [11] that shows Planar Graph Isomor-
phism is in Log-space. The focus of this paper is the space complexity of certain
optimization problems whose time complexity has been well studied. This in-
vestigation is partly inspired by the paper [23] where Log-space optimization
and Log-space approximation schemes were studied and by the paper [13] where
a Log-space analogue of the Courcelle’s Theorem was presented. We provide
an application of the result of [13] in this paper. Besides Log-space, we consider
another natural class NL (Non-deterministic Log-space) and its subclass UL (Un-
ambiguous Log-space). NL is believed to be strictly larger than Log-space. Hence
an NL algorithm is not as efficient as Log-space algorithm but the famous Sav-
itch’s Theorem tells us that NL is contained in O(log2(n)) space. The class UL is
contained in NL and (as of today) may be considered more space efficient than

NL; although whether or not UL
?
= NL remains an outstanding open question

and it might well be the case that the two classes are in fact equal! Nevertheless
we will use the class UL in order to point out more precise space bounds rather
than NL whenever possible.

1.2 Planar Restrictions of Some Optimization Problems

Often imposing the natural restriction of planarity helps us to obtain more space
efficient algorithms. For example: before Reingold’s breakthrough result [22] that
undirected graph reachability is in Log-space, a simple and elegant Log-space
algorithm was known for planar graphs [3]. Recently Bourke, Tewari, and Vin-
odchandran [4] proved that Directed Planar Reachability is in UL as opposed
to being NL-complete in general graphs. After this, space efficient algorithms
were obtained for Matching in bipartite planar graphs and higher genus graphs
[9,10,7]. Overall the structure of planarity seems to be ideal to exploit in the
study of space complexity of many natural problems, see for instance [11,5,18].
In this paper we initiate the study of space complexity of some well studied op-
timization problems such as Max-Cut and Sparsest-Cut when restricted to planar
graphs. Both problems are known to be in P (cf. [15,21]) as opposed to being
NP-complete in general graphs. The goal is to identify such problems admitting
highly space efficient (say Log-space) approximation algorithms or even approxi-
mation schemes when restricted to planar graphs and to exhibit hardness results
towards obtaining better space efficient approximation. Although our progress
towards this goal in the current paper is modest, we do provide some interesting
examples of space efficient approximation as well as hardness. Our hope is that
many more such algorithms and hardness results will be discovered later.

1.3 Our Main Results and Techniques

First we observe that certain optimization problems restricted to planar graphs
admit space efficient approximation schemes. In particular:

302 S. Datta and R. Kulkarni

Theorem 1. Max-Cut in planar graphs has a (UL ∩ co− UL)-approximation
scheme.

We analyze the space complexity of the well known algorithm of Baker [1].
Baker’s approach is broadly to decompose the planar graphs into bounded tree
width graphs where the problem becomes easier to solve and then combine the
solutions to obtain a good approximation. There are mainly two computational
bottlenecks in Baker’s approach: (1) distance computation in planar graphs is
used for obtaining the decomposition into bounded tree width graphs, and (2) the
optimization problem on bounded tree width graphs must have efficient exact
solution. We observe that (1) can be performed in UL for planar graphs. For
(2) we use a recent result of [13] that proves Log-space analogue of Courcelle’s
Theorem for MSO definable optimization problems: Max-Cut turns out to be one
such. Our result in fact holds for a larger class of problems mentioned in [1] for
which Baker’s approach works. Moreover our result generalizes to the class of
bounded local tree width graphs [14] (which include graphs embeddable on a fixed
surface) where one can obtain a slightly weaker NL approximation schemes.

Next we exhibit a hardness result for Max-Cut in planar graphs.
In the spirit of identifying other optimization problems in planar graphs with

space efficient algorithms we observe the following:

Theorem 2. Sparsest-Cut in planar graphs is in NL.

We analyze the algorithm of Patel [21] for this. Interestingly the algorithm
makes use of a weighting scheme ([4], [7]) that has been recently used in an
entirely different context namely isolation in planar graphs. The authors of [7]
observe that the weighting scheme can be obtained in Log-space. Other than
this the only non-trivial computational part in the algorithm of [21] is distance
computation in graphs which can be performed in NL. Combining this gives an
NL algorithm. It would be interesting to see if Sparsest-Cut in planar graphs is
NL-hard, this would yield a natural NL-complete problem in planar graphs.

Theorem 3. Max-Cut in planar graphs is NL-hard.

We use a recent result of Kulkarni [17] that proves NL-hardness for minimum
weight perfect matching in planar graphs. In the process we prove equivalence
of Max-Cut and Min-wt-PM in planar graphs. This equivalence is interesting to
note because constructing a perfect matching in planar graphs in NC is a long-
standing open question [19,20] and our reduction indicates that it may be tied
with constructing a maximum cut in planar graphs. Since Savitch’s Theorem:
NL ⊆ O(log2(n))-deterministic space, is believed to be optimal, our NL-hardness
for Max-Cut in planar graphs means one would not expect a more efficient so-
lution for Max-Cut in planar graphs than O(log2(n)) space. The possibility of a
Log-space approximation scheme for the same remains an intriguing open ques-
tion.

While for arbitrary graphs, Max-Cut has constant factor approximation and
Sparsest-Cut is known to have only

√
logn factor approximation, the situation

seems to reverse curiously for planar graphs in the context of space complexity.

Space Complexity of Optimization Problems in Planar Graphs 303

We have NL hardness for Max-Cut whereas we are only able to show an NL upper
bound for Sparsest-Cut in planar graphs.

Finally, in the spirit of noting hardness results for planar graphs, we conclude
with another such result. Let ⊕Spanning-Trees denote the problem of deciding
whether or not a graph has an even number of spanning trees and let ⊕Directed-
Spanning-Trees denote the same problem in directed graphs: deciding whether or
not there are even number of directed spanning trees rooted at (say) vertex 1.
The edges of tree are directed away from the root vertex. Braverman, Kulkarni,
and Roy [5] show the following somewhat surprising theorem.

Theorem. (Braverman-Kulkarni-Roy [5]) ⊕Spanning-Trees in planar graphs is
computable in Log-space.

It may be worthwhile to remind the reader that the authors of [9] use the above
to obtain a Log-space algorithm for Unique-Perfect-Matching problem in outer-
planar graphs.

In contrast to the above theorem, we show the following:

Theorem 4. ⊕Directed-Spanning-Trees in planar graphs is ⊕L-complete.

Although the above hardness result is not directly related to optimization
problems in planar graphs, we found it worth noting in the context of space
complexity of counting problems in planar graphs.

The organization of the paper is as follows: Section 2 contains preliminar-
ies. Section 3 contains the proof of Theorem 1. Section 4 contains the proof of
Theorem 2. Section 5 contains the proof of Theorem 3. Section 6 proves the
equivalence between Max-Cut and Min-wt-PM in planar graphs. Section 7 con-
tains the proof of Theorem 4. Section 8 contains open ends.

2 Preliminaries

2.1 Space Complexity Classes

Definition 1 (Log-space). Log-space is the class of problems that can be solved
by a deterministic Turing machine using O(log n) space, where n is the number
of input bits.

Definition 2 (NL). Non-deterministic Log-space (NL) is the class of problems
that can be solved by a non-deterministic Turing machine using O(logn) space,
where n is the number of input bits.

Definition 3 (UL). Unambiguous Log-space (UL) is the class of problems that
can be solved by an unambiguous non-deterministic Turing machine (non-
deterministic Turing machine having at most one accepting path on every in-
put) in O(log n) space where n is the number of input bits.

Definition 4 (⊕L). The parity L is the class of problems that can be reduced
in Log-space to deciding whether or not the determinant of an integer matrix is
even or odd.

304 S. Datta and R. Kulkarni

Technically the complexity classes above consists of decision problems, i.e., where
the output is only one bit. We abuse the notion of space complexity classes for
the problems that are not decision problems, i.e., when the number of output bits
is more than one. For example, when we say Sparsest-Cut is in NL; it means that
one can compute each output bit in NL. The optimization problems considered in
this paper are restricted to have only polynomially bounded (≤ nO(1)) weights.

2.2 Optimization Problems in Planar Graphs

In this paper we consider the following optimization problems restricted to planar
graphs. We distinguish weighted and unweighted versions. For example: Max-Cut
denotes unweighted version of the maximum cut problem whereas Max-wt-Cut
denotes the weighted version of the same. The weights are always polynomi-
ally bounded. The problems below are optimization versions, i.e., find an opti-
mum value. The construction version, i.e., outputting an optimum solution, will
be indicated when necessary. For example: the construction version of max cut
problem is denoted by Max-Cut (Construction).

Definition 5 (PM). Perfect-Matching is the problem of deciding if a graph has
a perfect matching or not.

Min-wt-PM is the problem of computing the weight of the minimum weight
perfect matching in a graph.

Definition 6 (Max-Cut). Max-Cut is the problem of computing a partition of
vertices (S, V − S)such that the number of edges between S and V − S, i.e.,
|E(S, V − S)| is maximum.

Max-wt-Cut is the problem of finding the weight of a maximum weight cut.
Min-Bisection is the problem of computing the minimum number of edges to

remove from the graph so that the graph becomes bipartite.

Definition 7 (Min-Odd-Vertex-Pairing). Min-OVP is the problem of find-
ing a collection of paths of minimum total length that pair the odd degree vertices
in the graph.

Definition 8 (Sparsest-Cut). Sparsest-Cut is the problem of finding a cut
(S, V −S) such that |E(S, V −S)|/min{|S|, |V −S|} is minimum (S, V −S �= ∅).

We will also be using the notions of tree-width and local tree-width. Please
consult [12,14] for details.

3 Max-Cut in Planar Graphs has (UL ∩ co − UL)
Approximation Scheme

In this section, we will prove the following theorem:

Theorem 5. Let ε ∈ (0, 1] be any fraction, and let G be a planar graph (graph
of bounded local tree-width), then we can compute a (1− ε) approximate solution
to Max-Cut in UL∩ co− UL ⊆ NL (respectively, NL) (The space used is O(1/ε×
logn)).

Space Complexity of Optimization Problems in Planar Graphs 305

3.1 Proof Idea

We use Baker’s algorithm [1] to give the desired upper bound. The novelty is in
observing its space complexity.

Baker’s algorithm works as follows: first we omit some edges from the graph so
that the remaining edges can be partitioned into disjoint subgraphs of bounded
diameter. This requires performing BFS on the graph and then omitting the
edges in every tth BFS layer (t is roughly 1/ε) starting from an offset. This step
works for general graphs within NL. For planar graphs, in fact, BFS can in fact
be performed in UL ∩ co− UL [24]. By choosing the right offset, we can make
sure that the number of edges removed affects the optimum solution at most by
a fraction ε.

Next: Baker’s algorithm requires obtaining an exact solution to the restriction
of the problem on each of the pieces of bounded diameter. Planar graphs are
bounded local tree width graphs, which means that the pieces of bounded diameter
obtained from BFS layers are in fact graphs of bounded tree width. At this point
we invoke the MSO-expressibility of Max-Cut. We can solve Max-Cut exactly
(Section 3.2) on each piece obtained from the previous step, using the Log-space
analogue [13] of Courcelle’s Theorem [6].

Thus: modulo solving the problem on bounded tree width graphs, Baker’s
method amounts to performing multiple distance computations in an undirected
planar graph and so can be done in UL ∩ co− UL by [4,24]. In addition, using
[13], MSO-computation on bounded tree-width graphs can be done in L. Hence
the overall space complexity is UL ∩ co− UL.

The same proof works for graphs of bounded local tree-width albeit with a
slightly weaker bound of NL because the distance computation in such graphs
requires NL. Because of bounded local tree-width property, the tree-width of the
pieces is also bounded, which means one can appeal to the Log-space algorithm
of [13].

3.2 Max-Cut in Bounded Tree-width Graphs is in L

Consider the following versions of Max-Cut:

Definition 9

Count-Cut Given a graph G and a positive integer c (in unary) output the
number (in binary) of cuts of cardinality exactly c.
Cut(C) Given a graph G does there exist a set of vertices S such that the cut
G[S, V \ S] consists of exactly the edges in C?

The histogram of Cut is exactly the Count-Cut problem. Since histograms of
MSO-problems on structures of bounded tree-width can be computed in L [13]
we need the following to be able to compute Count-Cut on bounded tree-width
graphs efficiently in bounded space:

Lemma 1. The problem Cut(C) is expressible in MSO-logic.

306 S. Datta and R. Kulkarni

Proof. We just need to guess a set of vertices S and verify that that the set of
edges with exactly one endpoint in S constitute exactly the set C. i.e.

∃S ⊆ V ∀e ∈ E(e ∈ C ↔ (∃u ∈ V ∃v ∈ V (u
= v ∧ inc(u, e) ∧ inc(v, e) ∧ u ∈ S ∧ v
∈ S))).

Here, inc(u, e) is a built-in predicate that indicates that vertex u is incident on
edge e.

The following is immediate, by finding the maximum cardinality cut with a
non-zero count:

Proposition 1. Max-Cut reduces to Count-Cut via a Log-space reduction.

We have:

Theorem 6. [13] (Log-space Cardinality Version of Courcelle’s Theorem). For
every k ≥ 1 and every MSO-formula φ(X1, . . . , Xd), there is a logspace DTM that
on input of any logical structure A of tree width at most k outputs histogram(A, φ)

Notice that the histogram of [13] is nothing but a table of counts parameterized
on the sizes of the free monadic second order variables. Thus, using Definition 9,
Lemma 1, Proposition 1 and Theorem 6 we get that:

Lemma 2. Max-Cut in bounded tree-width graphs is in L.

4 Sparsest-Cut in Planar Graphs Is in NL

In this section we note an interesting consequence of the weighting scheme in [4]
(more specifically [7]).

Theorem 7. Sparsest-Cut in planar graphs is in NL.

The following lemma is crucial.

Lemma 3 (cf. [21,4,10]). One can assign skew-symmetric polynomially
bounded weights (w(i, j) = −w(j, i)) to the edges of a planar graph in Log-space
such that sum of the weights along any anti-clockwise simple cycle is equal to
the number of faces in the interior.

Interestingly the above lemma has found applications in a totally different
context: isolation in planar graphs. Bourke et. al. used the above lemma to prove
that Reachability in directed planar graphs is in UL (Unambiguous Log-space)
as opposed to being NL-complete in general graphs.

Recently [21] used the above to show that Sparsest-Cut in planar graphs can
be found in polynomial time. We analyze their algorithm and observe that it is
in fact in NL. Patel constructs an auxiliary graph based on Lemma 3 such that
the sparsest cut in the original graph can be computed by computing shortest
distance between two points in the auxiliary graph. The auxiliary graph is con-
structed as follows: the vertices of the graph are denoted by (u, k) where u is
a vertex of the original planar graph on n vertices and k ∈ [−n2, n2]. There is
an edge between (u, k) and (v, k′) if and only if k′ = k + w(u, v) where w is the
weight from Lemma 3.

In [7] it is observed that weighting scheme in Lemma 3 can be computed in
Log-space. Shortest distance in a graph with polynomially bounded weights can
be computed in NL. Hence the algorithm in [21] works in NL.

Space Complexity of Optimization Problems in Planar Graphs 307

5 Max-Cut in Planar Graphs is NL-Hard

In this section, we show that the Max-Cut problem restricted to planar graphs
is NL-hard under Log-space reductions. Our proof has three crucial ingredients.
The first ingredient is a reduction from Max-Cut in primal graph to Min-OVP in
dual graph. This reduction was first observed by Hadlock [15] and since then has
been used several times for obtaining efficient algorithms for Max-Cut in planar
graphs. We use the same reduction for obtaining a hardness result instead. The
second ingredient, the source of hardness, is the result by Kulkarni [17], which
states that Min-wt-PM in planar graphs is NL-hard - even when weights are 0
or 1. The final ingredient to make our approach work is another reduction (due
to Bampis et al. [2]) from Min-wt-PM in planar graphs to the same in 3-regular
planar graphs. Below we put these ingredients together to obtain NL-hardness
for Max-Cut.

Theorem 8. Max-Cut in planar graphs is NL-hard.

Proof: The theorem below [17] allows us to start with the following NL-hard
instance: (0-1) Min-wt-PM in planar graphs.

Theorem 9 (Kulkarni [17]). Min-wt-PM in planar graphs with edge weights
0 or 1 is NL-hard.

We transform this NL-hard instance into an instance of Max-Cut in planar
graphs. The transformation takes places in three steps.

Step 1: (Min-wt-PM) planar to 3-regular planar

Theorem 10 (Bampis et. al. [2]). Given a weighted planar graph G one
can obtain in Log-space another weighted planar graph G′ such that: (a) G′

is 3-regular; (b) the perfect matchings in G′ are in bijection with the perfect
matchings in G; (c) the bijection is weight preserving - in particular: minimum
weight perfect matchings in G are mapped to those in G′.

Part (a) and (b) of the above theorem are exactly as claimed in [2]. A glance at
their proof in fact verifies Part (c) as well.

Step 2: (3-regular planar) Min-wt-PM to Min-wt-OVP

After Step 1 we have a 3-regular planar graph G′ with 0-1 weights on edges.
We obtain G′′ from G′ as follows: the vertex and edge sets of G′′ are the same
as that of G′. For an edge e′ ∈ E(G′) let e′′ denote the corresponding edge in
E(G′′). We set w(e′′) := w(e′) + N, where N = |V (G′)|2. The weight of every
perfect matching increases exactly by N · |V (G′)|/2. Thus: minimum weight
perfect matchings in G′ are mapped to those in G′′ and vice versa.

In G′′ note that every vertex has degree 3, which is odd. Moreoever: any odd-
vertex-pairing in G′′ must have weight at least N ·|V |/2. Hence, minimum weight
odd-vertex-pairing in G′′ corresponds to minimum weight perfect matching in
G′′, which in turn corresponds to minimum weight perfect matching in G′.

308 S. Datta and R. Kulkarni

Step 3: (planar graphs) Min-wt-OVP to Max-wt-Cut

Lemma 4 (Hadlock [15]). Minimum weight odd-vertex-pairing in a planar
graph corresponds to maximum weight cut in the dual.

This gives the desired hardness result for Max-wt-Cut. To reduce Max-wt-
Cut (with polynomially bounded weights) to unweighted Max-Cut, we use the
following simple gadget: replace every edge (u, v) of weight w by w paths, each
of length three: ux1x

′
1v, . . . , uxwxw′v.

To see that the above gadget works, consider the problem Min-Bisection: min-
imum number of edges to remove so that the graph becomes bipartite. It is easy
to check that the above gadget reduces Min-wt-Bisection to Min-Bisection in pla-
nar graphs. Since Min-Bisection is complimentary to Max-Cut (Min-Bisection +
Max-Cut = Total Weight), we also get a reduction from Max-wt-Cut to Max-Cut
in planar graphs. This completes the proof of Theorem 8.

6 Max-wt-Cut to Min-wt-PM in Planar Graphs

In this section we note that the reduction in previous section works in reverse
direction as well. Thus the problemsMax-wt-Cut andMin-wt-PM in planar graphs
are equivalent up to Log-space reductions.

We transform an instance of Max-wt-Cut in planar graphs to an instance of
Min-wt-PM in planar graphs. Our transformation works in three steps.

Step 1: (planar graphs) Triangulation

Add spurious edges to the planar graph so that every face is of length three. Set
the weights of newly added edges to zero. This does not change the weight of
maximum cut. Let G be the resulting graph.

Step 2: (planar graphs) Max-wt-Cut to Min-wt-OVP

Let G′ be the dual of G.

Lemma 5 (Hadlock [15]). Max-wt-Cut in planar graph reduces to Min-wt-OVP
in its dual.

Since G was triangulated, G′ is 3-regular.

Step 3: (3-regular) Min-wt-OVP to Min-wt-PM

Replace each edge vertex of G′ by a triangle (cycle of length 3) to obtain G′′.
Set high (say N = |V |2) weight on the edges of these triangles. It is easy to see
that minimum weight perfect matching in G′′ corresponds to minimum weight
odd-vertex-pairing in G′.

Space Complexity of Optimization Problems in Planar Graphs 309

7 Hardness for ⊕Directed-Spanning-Trees

Proof of Theorem 4: The Kirchoff Matrix-Tree Theorem [16] for directed span-
ning trees (rooted at a vertex) immediately implies the ⊕L upper bound. It is
known that ⊕Directed-Spanning-Trees in arbitrary directed graphs is ⊕L-hard
[5]. Let G be a directed graph. Consider a straight line layout of G on the plane
such that no three lines intersect at a point. A Log-space procedure for con-
structing such a layout is described in the Appendix. Now replace each crossing
in G with the following gadget to obtain a directed planar graph H : Suppose
the crossing consists of directed edges (a, b) and (c, d). We delete these two di-
rected edges, add two new vertices x and y, add the edges (a, x), (x, y), (y, b) and
(c, y), (y, x), (x, d). We claim that the number of directed spanning trees (rooted
at vertex 1) is preserved modulo 2 under this transformation.

Let AG denote the adjacency matrix of G.

Lemma 6. [Datta, Kulkarni, Limaye, and Mahajan [8], Section 4.5]

perm(AG) = perm(AH).

Let LG = DG−AG denote the Laplacian matrix of G where DG is the diagonal

matrix of out-degrees of the vertices of G. Let L
(1)
G denote the matrix obtained

from LG by deleting the first row and the first column.
From the Matrix-Tree Theorem, we have:

#Directed-Spanning-Trees (rooted at 1) = det(L
(1)
G).

Note that det(L
(1)
G) = perm(L

(1)
G) (mod 2). We view L

(1)
G (mod 2) as the

adjacency matrix AG′ of a graph G′. Since each internal vertex in the gadget
described above has out-degree 2 (which is an even number), we have:

perm(L
(1)
G) = det(AG′)

Lemma 6
= det(AH′) = perm(L

(1)
H) (mod 2).

Therefore,

det(L
(1)
G) = det(L

(1)
H) (mod 2).

�

8 Conclusion and Open Ends

We believe that our main contribution is to point out some natural examples of
optimization problems in planar graphs which have space efficient algorithms.
Our results suggest that studying the space complexity (both upper bound and
hardness) for other natural problems in planar graphs might be fruitful. Below
we list some potential questions to investigate.

Can our upper bound results be extended to handle bidimensional-problems?

310 S. Datta and R. Kulkarni

Is Max-Cut (Construction) in planar graphs in NC? A positive answer would
imply Perfect Matching Construction in planar graphs is in NC - a longstanding
open question.

Does Max-Cut in planar graphs have Log-space approximation scheme?
Is Sparsest-Cut in planar graphs NL-hard?

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

2. Bampis, E., Giannakos, A., Karzonov, A., Manoussakis, Y., Milis, I.: Perfect match-
ing in general vs. cubic graphs: A note on the planar and bipartite cases. Theoretical
Computer Science and Applications 34(2), 87–97 (2000)

3. Blum, M., Kozen, D.: On the power of the compass (or why mazes are easier to
search than graphs). In: FOCS, pp. 132–142 (1978)

4. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in
unambiguous log-space. TOCT 1(1) (2009)

5. Braverman, M., Kulkarni, R., Roy, S.: Space-efficient counting in graphs on sur-
faces. Computational Complexity 18(4), 601–649 (2009)

6. Courcelle, B.: The monadic second-order logic of graphs. I Recognizable Sets of
Finite Graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Datta, S., Gopalan, A., Kulkarni, R., Tewari, R.: Improved bounds for bipartite
matching on surfaces. In: STACS, pp. 254–265 (2012)

8. Datta, S., Kulkarni, R., Limaye, N., Mahajan, M.: Planarity, determinants, per-
manents, and (unique) matchings. TOCT 1(3) (2010)

9. Datta, S., Kulkarni, R., Roy, S.: Deterministically isolating a perfect matching in
bipartite planar graphs. Theory Comput. Syst. 47(3), 737–757 (2010)

10. Datta, S., Kulkarni, R., Tewari, R., Vinodchandran, N.V.: Space complexity of
perfect matching in bounded genus bipartite graphs. J. Comput. Syst. Sci. 78(3),
765–779 (2012)

11. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: IEEE Conference on Computational Complexity,
pp. 203–214 (2009)

12. Diestel, R.: Graph Theory (Graduate Texts in Mathematics). Springer (August
2005)

13. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bod-
laender and courcelle. In: FOCS, pp. 143–152 (2010)

14. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorith-
mica 27(3), 275–291 (2000)

15. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

16. Harris, J.M., Hirst, J.L., Mossinghoff, M.J.: Graph Theory (Undergraduate Texts
in Mathematics). Springer (September 19, 2008)

17. Kulkarni, R.: On the power of isolation in planar graphs. TOCT 3(1), 2 (2011)
18. Limaye, N., Mahajan, M., Sarma, J.M.N.: Upper bounds for monotone planar

circuit value and variants. Computational Complexity 18(3), 377–412 (2009)
19. Mahajan, M., Varadarajan, K.R.: A new NC-algorithm for finding a perfect match-

ing in bipartite planar and small genus graphs. In: STOC, pp. 351–357 (2000)

Space Complexity of Optimization Problems in Planar Graphs 311

20. Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. SIAM
J. Comput. 24(5), 1002–1017 (1995)

21. Patel, V.: Determining edge expansion and other connectivity measures of graphs
of bounded genus. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 561–572. Springer, Heidelberg (2010)

22. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)
23. Tantau, T.: Logspace optimization problems and their approximability properties.

Theory Comput. Syst. 41(2), 327–350 (2007)
24. Thierauf, T., Wagner, F.: The isomorphism problem for planar 3-connected graphs

is in unambiguous logspace. Theory Comput. Syst. 47(3), 655–673 (2010)

9 Appendix

9.1 Constructing a Non-degenerate Straight-Line Layout of Kn

We identify the vertices of Kn with n points with co-ordinates vi = (i, t · i2)(1 ≤
i ≤ n) that lie on a parabola y = t · x2 where t will be chosen later. Given
any three lines �1 = (vi1 , vj1), �2 = (vi2 , vj2), and �3 = (vi3 , vj3), one can check
whether they are collinear or not by computing a 3 × 3 determinant, which
will be a polynomial of degree 3 in t, and testing if this determinant is zero or
not. Let p(t) denote the polynomial obtained by taking the product of all such
polynomials over all possible triplets of the lines. Note that p(t) is a polynomial
of degree O(n6), having at most O(n6) roots. Hence there exists a value of t = t0
in the range (say) {1, 2, ..., n} such that p(t0) �= 0. Choosing this value of t gives
us a straight-line layout of Kn such that no three lines intersect at a point. Since
we have to try only polynomially many values of t, it is easy to check that the
entire procedure works in Log-space, in fact the procedure works in a subclass
of Log-space, namely TC0.

Fine-Tuning Decomposition Theorem

for Maximum Weight Bipartite Matching

Shibsankar Das and Kalpesh Kapoor

Department of Mathematics
Indian Institute of Technology Guwahati

Guwahati - 781039, India
{shibsankar,kalpesh}@iitg.ernet.in

Abstract. Let G be an undirected bipartite graph with non-negative
integer weights on the edges. We refine the existing decomposition theo-
rem originally proposed by Kao et al. in the context of maximum weight
bipartite matching. We apply it to design an efficient version of the de-
composition algorithm to compute the weight of a maximum weight
bipartite matching of G in O(

√
nW ′/k(n,W ′/m′))-time by employing

an algorithm designed by Feder and Motwani as a subroutine, where
n,m,m′(≤ m) denote number of nodes, number of edges and number
of distinct edge weights of G, respectively. The parameter W ′ is smaller
than the total edge weight W, essentially when the largest edge weight
differs by more than one from the second largest edge weight in the cur-
rent working graph in decomposition step of the algorithm. In best case
W ′ = O(m) and in worst case W ′ = W, i.e., m ≤ W ′ ≤ W.

Keywords: Graph algorithm, maximum weight bipartite matching,
graph decomposition, minimum weight vertex cover.

1 Introduction

Let G = (V,E,w) be an undirected and weighted graph with V and E as the set
of vertices and edges, respectively, and has non-negative integer weights on the
edges which are given by the weight function w : E → N0, where N0 is the set
of non-negative integers. We also assume that graph does not have any isolated
vertex. For uniformity, we treat an unweighted graph as a weighted graph having
unit weight for all edges.

A subset M ⊆ E of edges is a matching if no two edges of M share a common
vertex. A vertex v ∈ V is said to be covered or matched by the matching M if
it is incident with an edge of M ; otherwise v is unmatched [2,3].

A matching M is called a maximum (cardinality) matching if there does not
exist any matching with greater cardinality. We denote such a matching by
mm(G). The weight of a matching M is defined as w(M) =

∑
e∈M w(e). A

matching M is a maximum weight matching, denoted as mwm(G), if w(M) ≥
w(M ′) for every other matching M ′ of graph G.

Observe that, if G is an unweighted graph then mwm(G) = mm(G) and its
weight is given by w(mwm(G)) = |mm(G)|. Similarly, if G is an undirected and

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 312–322, 2014.
c© Springer International Publishing Switzerland 2014

Fine-Tuning Decomposition Theorem for MWBM 313

weighted graph with w(e) = c for all edges e in G and c is a constant then also
mwm(G) = mm(G) with weight of the matching as w(mwm(G)) = c∗|mm(G)|.

In this paper, we focus on computation of maximum weight matching in a
bipartite graph using an exact algorithm. Let G = (V = V1 ∪ V2, E, w) be an
undirected, weighted bipartite graph and without isolated nodes and having V1

and V2 as partition of vertex set V . Throughout the paper, we use the symbols
N , W , n and m (= Ω(n)) to denote the largest weight of any edge, total edge
weight i.e.

∑
e∈E w(e), number of nodes and number of edges of G, respectively.

Our contribution in this paper is a revised version of the existing decomposi-
tion theorem, as described in [13,14] and use it efficiently to design an improved
version of the decomposition algorithm to estimate the weight of Maximum
Weight Bipartite Matching (MWBM) of G in time O(

√
nW ′/k(n,W ′/m′)) by

taking algorithm designed by Feder and Motwani [7] as base algorithm, where
k(x, y) = log x/ log(x2/y), m′ (≤ m) is the number of distinct edge weights of
G. The parameter W ′ is smaller than the total edge weight W, when the largest
edge weight differs by more than one from the second largest edge weight in the
current working graph during decomposition in each iteration of the algorithm.
In best case, computation of maximum weight matching takes O(

√
nm/k(n,m))-

time whereas in worst case it takes O(
√

nW/k(n,W/m′)), i.e., m ≤ W ′ ≤ W .
However, it is very difficult and challenging to get rid of W or N from the
complexity.

The modified algorithm works well for general W, but is the best known for
W ′ = o(m log(nN)). We also design a revised algorithm to construct minimum
weight cover of a bipartite graph in time O(

√
nW ′/k(n,W ′/m′)) to identify the

edges involved in maximum weight bipartite matching. It is also possible to use
other algorithms as a subroutine, for example, algorithms given by Hopcroft and
Karp [11] and Alt et al. [1] in which case the running times of our algorithm will
be O(

√
nW ′) and O((n/ log n)1/2W ′), respectively.

The rest of the paper is organized as follows. In Section 2, we give a detailed
summary of existing maximum matching algorithms and their complexities for
unweighted and weighted bipartite graphs. Section 3 describes modified decom-
position theorem and an algorithm to compute the weight of MWBM. The com-
plexity analysis of the algorithm is discussed in Section 4. The algorithm to
compute minimum weight cover of a bipartite graph is given in Section 5 which
is used to find the edges of a MWBM. We summarize the results in Section 6.

2 Related Work

The problem of computing maximum matching in a given graph is one of the
fundamental algorithmic problem that has played an important role in the de-
velopment of combinatorial optimization and algorithmics. A survey of some of
the well known existing maximum (cardinality) matching and maximum weight
matching algorithms for bipartite graph are summarized in Table 1 and Table 2,
respectively. The algorithms with best asymptotic bound are indicated by “∗”
in the tables. A more detailed and technical discussion of the algorithms can be
found in textbooks [15,19].

314 S. Das and K. Kapoor

Table 1. Complexity survey of maximum (unweighted) bipartite matching algorithms

Year Author(s) Complexity

1973 ∗ Hopcroft and Karp [11] O(m
√
n)

1991 Alt, Blum, Mehlhorn and Paul [1] O(n1.5
√

m/ log n)

1995 ∗ Feder and Motwani [7] O(m
√
n/k(n,m))

For unweighted bipartite graphs, Hopcroft-Karp [11] algorithm, which is based
on augmenting path technique, offers the best known performance for finding
maximum matching in time O(m

√
n). In case of dense unweighted bipartite

graphs, that is with m = Θ(n2), slightly better algorithms exist. An algorithm
by Alt et al. [1] obtains a maximum matching in O(n1.5

√
m/ logn)-time. In

case of m = Θ(n2), this becomes O(m
√

n/ logn) and is also
√
logn-factor

faster than Hopcroft-Karp algorithm. This speed-up is obtained by an appli-
cation of the fast adjacency matrix scanning technique of Cheriyan, Hagerup
and Mehlhorn [4]. The algorithm given by Feder-Motwani [7] has the time com-
plexity O(m

√
n/k(n,m)), where k(x, y) = log x/ log(x2/y).

Table 2. Complexity survey of maximum weight bipartite matching algorithms

Year(s) Author(s) Complexity

1955, Kuhn [16], O(n4)
1957 Munkres [17] (Hungarian method)

1960 Iri [12,19] O(n2m)

1969 Dinic and Kronrod [5,19] O(n3)

1984, 1987 ∗ Fredman and Tarjan [8] O(n(m+ n log n))

1985 Gabow [10] O(n3/4m logN)

1989 ∗ Gabow and Tarjan [9] O(
√
nm log(nN))

1999 Kao, Lam, Sung and Ting [13] O(
√
nW)

2001 ∗ Kao, Lam, Sung and Ting [14] O(
√
nW/k(n,W/N))

This work ∗ O(
√
nW ′)

O((n/ log n)1/2W ′)
O(

√
nW ′/k(n,W ′/m′))

Several algorithms have also been proposed for computing maximumweight bi-
partite matching, improving both theoretical and practical running times. The
well known Hungarian method, the first polynomial time algorithm, was intro-
duced by Kuhn [16] andMunkres [17]. Fredman and Tarjan [8] improved this with
running time O(n(m + n logn)) for sparse graph by using Fibonacci heaps. An
O(n3/4m logN)-time scaling algorithmwas proposed by Gabow [10] under the as-
sumption that edge weights are integers. A different and faster scaling algorithm
was given by Gabow and Tarjan [9] with running time O(

√
nm log(nN)). Kao et

al. [14] proposed a O(
√

nW/k(n,W/N))-time decomposition technique under the
assumptions that weights on the edges are positive and W = o(m log(nN)).

Fine-Tuning Decomposition Theorem for MWBM 315

In addition to the above exact algorithms, several randomized and approxi-
mate algorithms are also proposed, see for example [6,18].

3 Refined Decomposition Technique to Compute Weight
of MWBM

We now propose a modified decomposition theorem which is generalized than
the existing decomposition theorem originally proposed by Kao et al. [14] and
use it to develop a revised version of the decomposition algorithm to decrease the
number of iterations and speed-up the computation of the weight of MWBM. Let
G = (V = V1∪V2, E, w) be an undirected, weighted bipartite graph and without
isolated nodes and having V1 and V2 as partition of vertex set V . Further, let
E = {e1, e2, . . . , em} be set of edges with weights w(ei) = wi for 1 ≤ i ≤ m,
where wis are not necessarily distinct. As defined earlier, let N be the maximum
edge weight, i.e., for all i ∈ {1, 2, . . . ,m}, 0 ≤ wi ≤ N , and W =

∑
1≤i≤m wi be

the sum of weights of all edges.
Our algorithm considers several intermediate graphs with lighter weight on

edges. During this process it is possible that weights of some of the edges may
be zero. An edge e ∈ E is said to be active if its weight w(e) > 0, otherwise it
is said to be inactive i.e. when w(e) = 0. Let there be m′ (≤ m) distinct edge
weights in current working graph where w1 < w2 < · · · < wm′−1 < wm′ . We
denote the first two distinct maximum edge weights in current working graph
by H1 and H2 (< H1), respectively. Assign H2 = 0 in case m′ = 1.

We first build two new graphs referred to as Gh and GΔ
h from a given weighted

bipartite graph G. For any integer h ∈ [1, N], we decompose the weighted bipar-
tite graph G into two lighter weighted bipartite graph Gh and GΔ

h as proposed
by Kao et al. [13,14]. Before we describe their construction, we describe mini-
mum weight cover which is a dual of maximum weight matching [14]. A cover
of G is a function C : V1 ∪ V2 → N0 such that C(v1) + C(v2) ≥ w(v1, v2) ∀ v1 ∈
V1 and v2 ∈ V2. Let w(C) =

∑
x∈V1∪V2

C(x). C is minimum weight cover if
w(C) is minimum.

Formation of Gh from G: The graph Gh is formed by including those edges
{u, v} of G whose weights w(u, v) lie in the range [N − h+1, N]. Each edge
{u, v} in graph Gh is assigned weight w(u, v)− (N − h). For illustration, G1

is constructed by the maximum weight edges of G and assigned unit weight
to each edge.

Formation of GΔ
h from G: Let Ch be the minimum weight cover of Gh. The

graphGΔ
h is formed by including every edge {u, v} of G whose weight satisfies

the condition w(u, v) − Ch(u)− Ch(v) > 0. The weight assigned to such an
edge is w(u, v)− Ch(u)− Ch(v).

316 S. Das and K. Kapoor

Theorem 1 (The Decomposition Theorem [14]). Let G be an undirected,
weighted bipartite graph and without isolated nodes. Then

a. for any integer h ∈ [1, N], w(mwm(G)) = w(mwm(Gh)) + w(mwm(GΔ
h)),

b. in particular (trivial), for h = 1, w(mwm(G)) = w(mm(G1))+w(mwm(GΔ
1)).

Note that the Theorem 1(b) is derived from Theorem 1(a), since for h = 1,
we have mwm(G1) = mm(G1) and w(mwm(G1)) = w(mm(G1)) = |mm(G1)|.
The Theorem 1(b) is used recursively in the algorithm, originally proposed by
Kao et al. in [14], to compute weight of mwm(G).

Remark 1. G may not have all distinct edge weights. Consider the set of distinct
edge weights of G. The algorithm works efficiently only when the largest edge
weight differs by exactly one from the second largest edge weight of the current
graph during an invocation of Theorem 1(b) in each iteration.

Remark 2. Observe that for arbitrary h ∈ [1, N], mwm(Gh) need not be equal
to mm(Gh), that is, we cannot always conclude that mwm(Gh) = mm(Gh).

One of our objective is to investigate those values of h for which mwm(Gh)
is equal to mm(Gh) apart from the trivial value of h as 1 in each iteration of
algorithm to generate Gh having all its edge weights as 1.

In order to get the speed-up by decreasing the number of iterations, we revise
the Theorem 1(b) and propose Theorem 2 which gives a domain of h ∈ [1, N]
where mwm(Gh) = mm(Gh) and as a consequence of that w(mwm(Gh)) =
w(mm(Gh)) = h ∗ |mm(Gh)|. It works for h = 1 and performs well especially
when the the largest edge weight differs by more than one from the second largest
edge weight in the current graph in decomposition step during each iteration.

Theorem 2 (The Modified Decomposition Theorem). The following
equalities hold for any integer h ∈ [1, H1 − H2] where H1 and H2 (< H1) are
the first two distinct maximum edge weights of graph G, respectively. We assign
H2 = 0 in case all edge weights are equal.

a. mwm(Gh) = mm(Gh),
b. w(mwm(G)) = h ∗ w(mm(Gh)) + w(mwm(GΔ

h)).

Proof. The proof of the above statements are based on the construction of new
graphs Gh and GΔ

h from G and Theorem 1(a).

a. To prove that for any integer h, 1 ≤ h ≤ H1 − H2, mwm(Gh) = mm(Gh)
holds true, it is enough to prove the same for the maximum value1 of h, i.e.,
for h = H1 − H2. As specified earlier, the construction of Gh is done by

1 For illustration, consider h = c where 1 ≤ c ≤ H1 −H2. Then as per the formation
of Gh from G, Gc is built by choosing those edges of G that have weight w(u, v) ∈
[N − (c− 1), N]. Since, c− 1 ≥ 0 and N ∈ [N − (c− 1), N] for any c ∈ [1, H1 −H2],
Gc has only the heaviest edges of G. For optimization, choose h = H1 − H2, the
maximum possible value of h.

Fine-Tuning Decomposition Theorem for MWBM 317

choosing those edges {u, v} of G that have weight w(u, v) ∈ [N − h+1, N] =
[H1 − (H1 − H2) + 1, H1] = [H2 + 1, H1]. Since H1 ∈ [H2 + 1, H1], Gh has
only the heaviest edges of G and each such edge is assigned the same weight.
Thus, mwm(Gh) = mm(Gh) for h = H1 − H2.

b. Observe that h ∈ [1, H1−H2] and [1, H1−H2] ⊆ [1, N]. So, by using Theorem
1(a) we have, ∀h ∈ [1, H1 − H2],

w(mwm(G)) = w(mwm(Gh)) + w(mwm(GΔ
h)).

Also by using the Theorem 2 (a), mwm(Gh) = mm(Gh) for all h ∈ [1, H1 −
H2]. Weight of each such edges2 of G in Gh is exactly w(u, v) − (N − h) =
H1 − (H1 − h) = h. Therefore,

w(mwm(Gh)) = h ∗ w(mm(Gh)) = h ∗ |mm(Gh)|.

Hence for any integer h ∈ [1, H1 − H2],
w(mwm(G)) = w(mwm(Gh)) + w(mwm(GΔ

h))
= h ∗ w(mm(Gh)) + w(mwm(GΔ

h)).
�

Remark 3. The equality mwm(Gh) = mm(Gh) in Theorem 2(a) is not true for
h > H1 − H2 and h ≤ N .

To show that for any h in interval [H1−H2+1, N] the equation mwm(Gh) =
mm(Gh) is not true, it is enough to show the same essentially for h = H1−H2+1.
Observe that h = H1−H2+1 ≥ 2, since H1 > H2. According to the construction
of Gh, it is formed by edges {u, v} of G whose weights w(u, v) ∈ [N−h+1, N] =
[H1−(H1−H2+1)+1, H1] = [H2, H1], i.e., Gh is built with the maximum weight
edges and second maximum weight edges of G, because {H1, H2} ∈ [H2, H1].
Weight of each of the heaviest edge of G in Gh is exactly w(u, v) − (N − h) =
H1−(H1−h) = h ≥ 2 and that of the second heaviest edge of G in Gh is exactly
w(u, v) − (N − h) = H2 − (H1 − h) = (H2 − H1) + h = (1 − h) + h = 1. Hence
mwm(Gh) �= mm(Gh) for such a value of h.

Example 1. Consider the graph shown in the Figure 1(a). Let h = H1 −H2 +1.
So, h = H1−H2+1 = 9−4+1 = 6. As shown in the Figure 1(b), Gh is formed by
the edges {u, v} whose weight w(u, v) ∈ [N−h+1, N] = [9−6+1, 9] = [4, 9] and
their respective calculated weights are 6 and 1. Hence mwm(Gh) �= mm(Gh).

We use the modified decomposition Theorem 2 to design a recursive Algorithm
3.1 to compute the weight of mwm(G).

2 Only maximum weight edges of G are participating in Gh.

318 S. Das and K. Kapoor

Fig. 1. (a) An undirected bipartite graph G with non-negative integer weights on the
edges. (b) Considering h = H1 − H2 + 1 = 6, Gh is extracted, but mwm(Gh)
=
mm(Gh).

Algorithm 3.1. Compute weight of the maximum weight matching of G

Input: A weighted, undirected, complete bipartite graph G with non-negative integer
weights on the edges and without isolated nodes.

Output: Weight of the maximum weight matching of G, i.e. w(mwm(G)).

WT-MWBM(G)
1. Assume that initially w(mwm(G)) = 0.
2. Find h = H1 −H2 using current working graph G.
3. Construct Gh from G.
4. Compute mm(Gh).
5. Find minimum-weight-cover Ch of Gh.
6. Construct GΔ

h from G and Ch.
7. if GΔ

h is empty (i.e. GΔ
h has no active edge)

then return h ∗ |mm(Gh)|
else return h ∗ |mm(Gh)| + WT-MWBM(GΔ

h).

Example 2. Consider the graph shown in Figure 2(a). The Algorithm 3.1 finds
the weight of the MWBM in just two iterations, as the algorithm is designed for
best h in every invocation of WT-MWBM(), whereas algorithm by Kao et al.
[14] requires 500 iterations because it considers h = 1 in every invocation.

Correctness of the algorithm follows from the construction of Gh and GΔ
h and

the modified decomposition Theorem 2.

4 Complexity of the Algorithm

Let G = (V = V1 ∪ V2, E, w) be the initial input graph. Let N be the maximum
edge weight, that is, for all i ∈ {1, 2, . . . ,m}, 0 ≤ wi ≤ N and W =

∑
1≤i≤m wi

Fine-Tuning Decomposition Theorem for MWBM 319

Fig. 2. (a) An undirected, weighted bipartite graph G with non-negative integer
weights on the edges. Current h = 495. (b) Gh is extracted. (c) Ch is the weighted
cover of Gh. (d) GΔ

h is formed from Gh and Ch.

be the sum of weights of all edges. Further, let w1, . . . , wm′ be the set of distinct
edge weights, where m′ ≤ m.

Based on the construction of Gh, G
Δ
h , the modified decomposition Theorem 2

and the Algorithm 3.1, we can easily observe that maximum number of iterations
of WT-MWBM() is the same as the number of distinct edge weights of the initial
graph G which is nothing but m′(≤ m) in our case. In worst case when all the
edge weights of the initial graph G are distinct then that leads to m iterations
in the above algorithm. In the best case, all the edge weights are the same, so
the algorithm will terminate in the first iteration itself.

As the complexity analysis of the Algorithm 3.1 is almost similar to that
presented elsewhere [14], we skip it. The algorithm takes O(

√
nW ′/k(n,W ′/m′))

time to compute the weight of mwm(G) by using the algorithm by Feder and
Motwani [7], as a subroutine.

Let Li consist of edges of remaining G whose weights reduce in GΔ
h in i-th

iteration. Also let there be p iterations, li = |Li| for i = 1, 2, . . . , p ≤ m′ ≤ N
and hi = H1 − H2 in the i-th iteration. From the detailed complexity analysis
we have, l1h1 + l2h2 + · · ·+ lphp = O(W). Let l1 + l2 + · · ·+ lp = W ′. Observe
that if hi = 1 for all i ∈ [1, p], then W ′ =

∑p
i=1 li = W. However, the parameter

W ′ is smaller than the total edge weight W, essentially when the largest edge
weight differs by more than one from the second largest edge weight in the current
working graph in decomposition step during an iteration of the algorithm. In best
case3, it requires O(

√
nm/k(n,m))-time to compute maximum weight matching

and in worst case O(
√

nW/k(n,W/m′)), i.e., m ≤ W ′ ≤ W . However, it is
very difficult and challenging to get rid of W or N from the complexity. This
modified algorithm works well for general W, but is the best known for W ′ =
o(m log(nN)).

Remark 4. In special case, the Algorithm 3.1 is independent of the total weight
W of G. Even we increase all the weight of edges of G by some additional factor,
say α, it is not going to affect the complexity of the Algorithm 3.1; whereas for

3 In best case, all the edge weights of G are the same. So, the algorithm terminates in
just one iteration and hence W ′ = O(m).

320 S. Das and K. Kapoor

complexity of algorithm of Kao et al. [14] will increase by an additional factor
of O(nαm/k(n, αm/N)). Similar argument holds in case of increment in weight
of each edge of G by some multiplicative factor. The Algorithm 3.1 depends
on difference h between the largest edge weight and the second largest edge
weight of the current working graph during an invocation of WT-MWBM() in
each iteration. During the increment of all edge weights, the difference h in each
invocation is going to remain constant.

Below we also analyze the complexity of the Algorithm 3.1 by considering
the Hopcroft-Karp algorithm [11] and Alt-Blum-Mehlhorn-Paul algorithm [1] as
base algorithms.

With respect to Hopcroft-Karp algorithm: Hopcroft-Karp algorithm [11]
presents the best known worst-case performance for getting a maximum
matching in a bipartite graph with runtime of O(

√
nm). Hence the recurrence

relation for running time of the algorithm with respect to Hopcroft-Karp
algorithm is

T (n,W ′,m′) = O(
√

nl1) + T (n,W ′′,m′′)
and T (n, 0, 0) = 0

∴ T (n,W ′,m′) = O(
√

nl1) + O(
√

nl2) + · · ·+ O(
√

nlp)

= O

(√
n

p∑
i=1

li

)
= O(

√
nW ′).

With respect to Alt-Blum-Mehlhorn-Paul algorithm: A bit better algo-
rithm for dense bipartite graph is Alt-Blum-Mehlhorn-Paul Algorithm [1]
which is (logn)1/2-factor faster4 than Hopcroft-Karp algorithm for maxi-
mum bipartite matching. Hence the time complexity, with respect to Alt-
Blum-Mehlhorn-Paul algorithm as a base algorithm, is O((n/ log n)1/2W ′).
Hence it is (log n)1/2-factor faster than the above case.

5 Finding a Maximum Weight Matching

The Algorithm 3.1 computes only the weight of the mwm(G) of a given graph G.
To find the edges of mwm(G), we first give a revised algorithm for constructing
a Minimum Weight Cover (MWC) of G which is a dual of maximum weight
matching. As mentioned before, a cover of G is a function C : V1 ∪ V2 →
N0 such that C(v1) + C(v2) ≥ w(v1, v2) ∀ v1 ∈ V1 and v2 ∈ V2. Let w(C) =∑

x∈V1∪V2
C(x). We say C is minimum weight cover if w(C) is minimum. Let C

be a MWC of a graph G.

4 For dense graphs (m = O(n2)) this improves on the O(m
√
n) = O(n2.5) time al-

gorithm of Hopcroft and Karp. The speed-up of this algorithm is obtained by an
application of the fast adjacency matrix scanning technique of Cheriyan, Hagerup
and Mehlhorn. It has time-complexity O(n1.5

√
m/ log n) = O(n(n/ log n)1/2m1/2)

= O((n/ log n)1/2m) and hence is (log n)1/2 factor faster than Hopcroft-Karp
algorithm.

Fine-Tuning Decomposition Theorem for MWBM 321

Lemma 1 ([14]). Let CΔ
h be any minimum weight cover of GΔ

h . If C is a func-
tion on V (G) such that for every u ∈ V (G), C(u) = Ch(u) + CΔ

h (u), then C is
minimum weight cover of G.

Using this lemma we design an O(
√

nW ′/k(n,W ′/m′))-time revised algorithm
to compute a MWC of G. The correctness of this algorithm is clear form the
Lemma 1 and the time complexity analysis is similar to that given in previous
section.

Algorithm 5.1. Calculate a MWC C of G

Input: A weighted, undirected, complete bipartite graph G with non-negative integer
weights on the edges and without isolated nodes.

Output: A minimum weight cover C of G.

MWC(G)
1. Assume that initially w(mwm(G)) = 0.
2. h ← H1 −H2 using current working graph G.
3. Construct Gh from G.
4. Compute mm(Gh).
5. Find minimum-weight-cover Ch of Gh.
6. Construct GΔ

h from G and Ch.

7. if GΔ
h is empty (i.e. GΔ

h has no active edge)
then return Ch

else

CΔ
h ← MWC(GΔ

h)
return C, where C(u) = Ch(u) + CΔ

h (u) for all nodes u in G.

Now as deduced by Kao et al. in [14], finding a maximum weight matching by
using the given vertex cover takes O(

√
nm/k(n,m))-time. Since m ≤ W ′ ≤ W,

so altogether O(
√

nW ′/k(n,W ′/m′)) time requires to find a MWBM of G.

6 Conclusions

We have fine-tuned the existing decomposition theorem originally proposed by
Kao et al. in [14], in the context of maximum weight bipartite matching and ap-
plied it to design a revised version of the decomposition algorithm to compute the
weight of a maximum weight bipartite matching in O(

√
nW ′/k(n,W ′/m′))-time

by employing an algorithm designed by Feder and Motwani [7], as base algo-
rithm. We have also analyzed the algorithm by using Hopcroft-Karp algorithm
[11] and Alt-Blum-Mehlhorn-Paul algorithm [1] as base algorithms, respectively.

The algorithm performs well especially when the the largest edge weight differs
by more than one from the second largest edge weight in the current working
graph during an invocation of WT-MWBM() in each iteration. In best case
W ′ = O(m) and in worst case W ′ = W, i.e., m ≤ W ′ ≤ W . The algorithm works
well for general W, but is the best known for W ′ = o(m log(nN)).

322 S. Das and K. Kapoor

References

1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality
matching in a bipartite graph in time O(n1.5

√
m/ log n). Information Processing

Letters 37(4), 237–240 (1991)
2. Bondy, J.A., Murty, U.S.R.: Graph theory with applications, Matchings, ch. 5, 5th

edn., p. 70. North-Holland, NY (1982)
3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Matchings, 1st edn., vol. 244, ch. 16 ,

p. 419. Springer (2008)
4. Cheriyan, J., Hagerup, T., Mehlhorn, K.: Can a maximum flow be computed in

o(nm) time? In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 235–248.
Springer, Heidelberg (1990)

5. Dinic, E., Kronrod, M.: An algorithm for the solution of the assignment problem.
Soviet Mathematics Doklady 10, 1324–1326 (1969)

6. Duan, R., Pettie, S.: Approximating maximum weight matching in near-linear time.
In: Annual Symposium on Foundations of Computer Science, pp. 673–682. IEEE
Computer Society, Washington, DC (2010)

7. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up
algorithms. Journal of Computer and System Sciences 51(2), 261–272 (1995)

8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

9. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM
Journal on Computing 18(5), 1013–1036 (1989)

10. Gabow, H.N.: Scaling algorithms for network problems. Journal of Computer and
System Sciences 31(2), 148–168 (1985)

11. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

12. Iri, M.: A new method for solving transportation-network problems. Journal of the
Operations Research Society of Japan 3, 27–87 (1960)

13. Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: A decomposition theorem for
maximum weight bipartite matchings with applications to evolutionary trees. In:
Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 438–449. Springer, Heidelberg
(1999)

14. Kao, M.Y., Lam, T.W., Sung, W.K., Ting, H.F.: A decomposition theorem for
maximum weight bipartite matchings. SIAM Journal on Computing 31(1), 18–26
(2001)

15. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th
edn. Springer (2007)

16. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

17. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

18. Sankowski, P.: Maximum weight bipartite matching in matrix multiplication time.
Theoretical Computer Science 410(44), 4480–4488 (2009)

19. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency, vol. 24 A.
Springer (2003)

Intersection Dimension of Bipartite Graphs

Steven Chaplick1,�, Pavol Hell2,��, Yota Otachi3,� � �,
Toshiki Saitoh4,†, and Ryuhei Uehara3,‡

1 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

chaplick@kam.mff.cuni.cz
2 School of Computing Science, Simon Fraser University,

Burnaby, B.C., Canada V5A 1S6
pavol@sfu.ca

3 School of Information Science, Japan Advanced Institute of Science
and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

{otachi,uehara}@jaist.ac.jp
4 Graduate School of Engineering, Kobe University,

Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
saitoh@eedept.kobe-u.ac.jp

Abstract. We introduce a concept of intersection dimension of a graph
with respect to a graph class. This generalizes Ferrers dimension, boxic-
ity, and poset dimension, and leads to interesting new problems. We focus
in particular on bipartite graph classes defined as intersection graphs of
two kinds of geometric objects. We relate well-known graph classes such
as interval bigraphs, two-directional orthogonal ray graphs, chain graphs,
and (unit) grid intersection graphs with respect to these dimensions. As
an application of these graph-theoretic results, we show that the recog-
nition problems for certain graph classes are NP-complete.

Keywords: Ferrers dimension, Boxicity, Unit grid intersection graph,
Segment-ray graphs, Orthogonal ray graph, NP-hardness.

1 Introduction

Given a family F of sets, the intersection graph of F is the graph in which each set
in F is a vertex, and two vertices are adjacent if and only if the corresponding sets
intersect. A typical example, when F is a family of intervals on a line, yields the

� Supported by the ESF GraDR EUROGIGA grant as project GACR
GIG/11/E023.

�� Partially supported by NSERC (Canada) and ERCCZ LL 1201 Cores (Czech
Republic).

� � � Partially supported by JSPS KAKENHI Grant Number 25730003 and MEXT
KAKENHI Grant Number 24106004.

† Partially supported by JSPS KAKENHI Grant Number 24700130.
‡ Partially supported by JSPS KAKENHI Grant Number 23500013 and MEXT
KAKENHI Grant Number 24106004.

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 323–340, 2014.
c© Springer International Publishing Switzerland 2014

324 S. Chaplick et al.

well-known class of interval graphs. Interval graphs have linear time recognition
algorithms [3,11], and nice forbidden structure characterizations. (For instance,
the theorem of Lekkerkerker and Boland [24] characterizes interval graphs by the
absence of induced cycles of length four and five, and the absence of asteroidal
triples.)

It is natural to study a bipartite version of intersection graphs: given two
families F and F ′ of sets, the intersection bigraph of F ,F ′ is the bipartite graph
in which each set in F is a red vertex, each set in F ′ is a blue vertex, and
a red vertex is adjacent to a blue vertex if and only if the corresponding sets
intersect. When both F and F ′ are families of intervals on a line, we obtain
interval bigraphs studied in [25,30]. We denote the class of interval bigraphs by
IBG. While the recognition of interval bigraphs is polynomial (in time O(n16)
[25]), there is no efficient algorithm known, and no characterization in terms of
forbidden substructures. It turns out that there are better bipartite analogues
of interval graphs. A two-directional orthogonal ray graph, or 2DOR graph, is
an intersection bigraph of a family F of upward rays, and a family F ′ of right-
ward rays, in the plane [32]. These graphs were introduced in connection with
defect tolerance schemes for nano-programmable logic arrays [28,36]. There are
several reasons these 2DOR graphs might be considered better bipartite ana-
logues of interval graphs, including an ordering characterization [32,21], and a
Lekkerkerker-Boland type characterization [12], both analogous to the charac-
terizations for interval graphs. Moreover, it follows from [12] that the class 2DOR
plays the same role for bigraphs as the class of interval graphs play for graphs, as
far as polynomial solvability of certain constraint satisfaction problems is con-
cerned. Other equivalent definitions, and forbidden structure characterizations
of the class 2DOR can be found in [19,20,12].

Several other graph classes can be defined as intersection bigraphs of two
families F ,F ′. When both F and F ′ are inclusion-free families of intervals on
a line, we obtain the class of proper interval bigraphs which turns out to be
the same as the better known class BPG of bipartite permutation graphs [20],
see below. When F is a family of points, and F ′ a family of rightward rays,
in a line, we obtain the class CHAIN of chain graphs (cf. below). When F is a
family of vertical segments, and F ′ a family of horizontal segments, in the plane,
we obtain the class GIG of grid intersection graphs. Several other examples are
included in the paper.

We note that the following inclusions are well known or easy to derive

CHAIN ⊆ BPG ⊆ IBG ⊆ 2DOR ⊆ GIG.

We now introduce our concept of intersection dimension. Let G = (V,E)
and G′ = (V ′, E′) be two graphs. The intersection G ∩ G′ of G and G′ is the
graph (V ∩ V ′, E ∩ E′). For two graph classes C and C′, we define the pairwise
intersection of C and C′ as C ×∩ C′ = {G ∩ G′ : G ∈ C, G′ ∈ C′}. We also write
Ck = {G1 ∩ G2 ∩ · · · ∩ Gk : Gi ∈ C for 1 ≤ i ≤ k}. If both C and C′ are closed
under taking induced subgraphs, it is easy to check that C ×∩ C′ = {G ∩ G′ :
G ∈ C, G′ ∈ C′, V (G) = V (G′)}. Since every graph class in this paper is closed

Intersection Dimension of Bipartite Graphs 325

under taking induced subgraphs, we shall from now on use the latter equality,
and assume that the vertex sets of the two graphs are the same, when defining
the pairwise intersection of graph classes.

The dimension of a graph G with respect to the graph class C is the minimum
k such that G ∈ Ck. In the discussion below we shall point out how this definition
generalizes Ferrers dimension, boxicity, cubicity, and poset dimension. We are
particularly interested in expressing one graph class as a (subset of a) power of
another graph class.

It turns out that there are several natural statements of this kind. Among
other results we will show that 2DOR = CHAIN2,GIG ⊆ CHAIN4, and UGIG =
BPG2. We will also show that several of these inclusions are proper. See Fig. 1
for the summary of our results.

3DOR

2DOR = CHAIN2

OR

UGIG = BPG2

Biconvex2

GIG = Boxicity 2 ∩ Bipartite

IBG2

Convex2

CHAIN3

2DOR2 = CHAIN4

SRBiconvex

2DOR

3DOR

OR

UGIG

GIG

CHAIN

BPG

Convex

IBG

CBG

proper inclusion

inclusion

incomparable

Fig. 1. (Left) Known hierarchy. (Right) New hierarchy based on intersection dimen-
sions.

2 Preliminaries

A graph G = (V,E) is a bipartite graph (or a bigraph for short) with bipartition
(X,Y) if V is partitioned into X and Y in such a way that each edge of G has
one endpoint in X and the other in Y . We denote such a bigraph by (X,Y ;E).
A biadjacency matrix MB of a bigraph B = (X,Y ;E) is a 0-1 matrix with the
rows indexed by the vertices of X and the columns indexed by the vertices of Y
such that {x, y} ∈ E if and only if the corresponding entry of MB is 1. For m×n
0-1 matrices M ′ and M ′′, their intersection M = M ′∩M ′′ is the 0-1 matrix such
that Mi,j = 1 if and only if M ′

i,j = 1 and M ′′
i,j = 1. The neighborhood of a vertex

v in a graph G, denoted NG(v), is the vertices adjacent to v in G.

326 S. Chaplick et al.

2.1 Graph Classes

Here we define the graph classes we deal with in this paper. We also intro-
duce some important properties of them. For their inclusion relations and other
known results for them, the readers can refer to the standard textbooks in this
field [4,15,35].

For a graph class C, the recognition problem of C is the problem deciding
whether a given graph belongs to C.

Chain Graphs and Ferrers Diagrams. A bipartite graph B = (X,Y ;E) is
a chain graph if there is an ordering (x1, x2, . . . , xp) on X such that NB(x1) ⊇
NB(x2) ⊇ · · · ⊇ NB(xp). It is easy to see that if there exists such an ordering
on X , then there exists an ordering (y1, y2, . . . , yq) on Y such that NB(y1) ⊇
NB(y2) ⊇ · · · ⊇ NB(yq). Chain graphs are also known as difference graphs and
Ferrers bigraphs. It is known that chain graphs are exactly 2K2-free bigraphs [16].
The class of chain graphs is denoted by CHAIN.

A 0-1 matrix has the Ferrers property if its rows and columns can be reordered
so that 1’s in each row and column appear consecutively with the rows left-
justified and the columns top-justified. The reorderd matrix is called a Ferrers
diagram. It is easy to see that a matrix has the Ferrers property if and only if it
has none of the following 2× 2 matrices as a submatrix:(

0 1
1 0

)
,

(
1 0
0 1

)
. (1)

Since chain graphs are exactly the 2K2-free bigraphs, it is easy to see that chain
graphs are exactly the bigraphs whose biadjacency matrices have the Ferrers
property.

Bipartite Permutation Graphs, Convex Graphs, Biconvex Graphs, In-
terval Bigraphs, and Chordal Bipartite Graphs. A graph G = (V,E) with
V = {1, 2, . . . , n} is a permutation graph if there is a permutation π over V such
that {i, j} ∈ E(G) if and only if (i − j)(π(i) − π(j)) < 0. A graph is a bipartite
permutation graph if it is bipartite and a permutation graph. The class of bipar-
tite permutation graphs is denoted by BPG. Several equivalent definitions of the
class BPG are collected in [20].

An ordering < of X in a bipartite graph B = (X,Y ;E) has the adjacency
property if for every vertex y in Y , N(y) consists of vertices that are consecutive
in the ordering < of X . A bipartite graph (X,Y ;E) is convex if there is an order-
ing of X or Y that fulfills the adjacency property. A bipartite graph (X,Y ;E)
is biconvex if there are orderings of X and Y that fulfill the adjacency property.
We denote the classes of convex bipartite graphs and biconvex bipartite graphs
by Convex and Biconvex, respectively.

A bi-interval representation of a bigraph B = (U, V ;E) is a pair (IU , IV) of
sets of closed intervals such that IU = {Iu = [�u, ru] : u ∈ U} and IV = {Iv =
[�v, rv] : v ∈ V }, and {u, v} ∈ E for u ∈ U and v ∈ V if and only if Iu ∩ Iv �= ∅.

Intersection Dimension of Bipartite Graphs 327

A bi-interval representation (IU , IV) is unit if for each interval [�, r] ∈ IU ∪ IV ,
r − � = 1.

A bigraph is a chordal bipartite graph if every induced cycle is of length four.
The class of chordal bipartite graphs is denoted by CBG.

Orthogonal Ray Graphs. A bipartite graph B = (X,Y ;E) is an orthogonal
ray graph if there is a pair (RX ,RY) of families of rays (or half-lines) such that
RX = {Rx : x ∈ X} is a family of pairwise non-intersecting horizontal rays,
RY = {Ry : y ∈ Y } is a family of pairwise non-intersecting vertical rays, and
{x, y} ∈ E if and only if Rx and Ry intersect. We call such a pair (RX ,RY)
an orthogonal ray representation of B. We denote the class of orthogonal ray
graphs by OR.

Note that in a representation of an orthogonal ray graph horizontal rays can
go rightward and leftward and vertical rays can go upward and downward. If
we restrict horizontal rays to be only rightwards, then we have 3-directional
orthogonal ray graphs. Furthermore, if we restrict horizontal rays to be only
rightwards and vertical rays to be only upwards, then we have 2-directional
orthogonal ray graphs. We denote the classes of 3-directional orthogonal ray
graphs and 2-directional orthogonal ray graphs by 3DOR and 2DOR, respectively.

For the class 2DOR, several nice characterizations are known (see, for example,
[21,12,29,30,31,19,32]). Among those characterizations, the followings are useful
for our purpose. In this language they appear in [31,32], in an equivalent graph
theoretic form they are given in [21,19].

Theorem 2.1. For a bigraph B, the following conditions are equivalent:

1. B is a 2-directional orthogonal ray graph;
2. B is γ-freeable; that is, the rows and columns of a biadjacency matrix of B

can be independently permuted so that no 0 has a 1 both below it and to its
right;

3. B is of Ferrers dimension at most 2. (The Ferrers dimension of a bigraph is
defined in Section 2.1.)

There are other equivalent characterizations of the class 2DOR, as suggested
in the introduction. In particular, 2DOR is precisely the class of bigraphs whose
complements are circular arc graphs [32]; because of the characterizations of the
latter class in [12,19,20], one obtains several other forbidden structure character-
izations of 2DOR, in terms of the absence of induced cycles and bipartite versions
of asteroids, in terms of the so-called invertible pairs, and in other terms.

It is known that the recognition of 2DOR can be done in polynomial time
[12,32], while it is open for 3DOR and OR. Recently, Felsner, Mertzios, and
Mustaţǎ [14] have shown that if the direction (right, left, up, or down) for each
vertex is given, then it can be decided in polynomial time whether a given graph
has an orthogonal ray representation in which each vertex has the given direction.

Grid Intersection Graphs. A bipartite graph B = (X,Y ;E) is a grid in-
tersection graph if there is a pair (SX ,SY) of families of segments such that

328 S. Chaplick et al.

SX = {Sx : x ∈ X} is a family of pairwise non-intersecting horizontal segments,
SY = {Sy : y ∈ Y } is a family of pairwise non-intersecting vertical segments,
and {x, y} ∈ E if and only if Sx and Sy intersect. We call such a pair (SX ,SY)
a grid intersection representation of B. A bipartite graph is a unit grid inter-
section graph if it has a grid intersection representation in which each segment
if of length 1. We denote the classes of grid intersection graphs and unit grid
intersection graphs by GIG and UGIG, respectively.

Segment-Ray Graphs. A bipartite graph B = (X,Y ;E) is a segment-ray
graph if there is a pair (SX ,RY) of families of segments and rays such that
SX = {Sx : x ∈ X} is a family of pairwise non-intersecting horizontal segments,
RY = {Ry : y ∈ Y } is a family of pairwise non-intersecting vertical upward rays,
and {x, y} ∈ E if and only if Sx and Ry intersect. We call such a pair (SX ,RY)
a segment-ray representation of B. We denote the class of segment-ray graphs
by SR.

Recognition Problems and Inclusion Relations. For the graph classes
introduced above, the following relations are known [4,27,32]: CHAIN � BPG �
Biconvex � Convex � IBG � 2DOR � 3DOR � OR � UGIG � GIG. Also it is
known that 2DOR � CBG [32], and that CBG is incomparable to 3DOR and
GIG [27].

It is known that the recognition problems of CHAIN [18], BPG [33], Biconvex
[35], Convex [35], IBG [25], 2DOR [32], and CBG [34] can be solved in polynomial
time. On the other hand, it is known that the recognition problems of GIG [23]
and UGIG [26,37] are NP-complete. The complexity of the recognition problems
of 3DOR, OR, and SR is not known.

Note that even if three graph classes A, B, and C satisfy A ⊆ B ⊆ C and the
recognition problems of A and C are both polynomial-time solvable (NP-hard),
it does not mean the recognition problem of B is polynomial-time solvable (NP-
hard, resp.).

Other Graphs. The d-dimensional hypercube Hd is the graph with 2d vertices
in which the vertices corresponds to the subsets of {1, . . . , d} and two vertices
are adjacent if and only if the symmetric difference of the corresponding sets is
of size 1.

Let Ka,b denote the complete bipartite graph having a vertices in one side
and b vertices in the other side. We denote by Kn,n − nK2 the graph obtained
by removing a perfect matching from the complete bipartite graph Kn,n.

Boxicity and Cubicity. An interval graph is the intersection graph of closed
intervals on the real line. A unit interval graph is the intersection graph of closed
unit intervals on the real line. We denote the classes of interval graphs and unit
interval graphs by INT and UINT, respectively.

The boxicity of a graph G is the minimum integer k such that G ∈ INTk, and
the cubicity of G is the minimum integer k such that G ∈ UINTk. It is known

Intersection Dimension of Bipartite Graphs 329

that given a graph, deciding whether its boxicity (or cubicity) is at most 2 is
NP-complete [23,5].

Bigraph Intersection Dimension. For bipartite graph classes, if one of them
is additionally closed under disjoint union, we may assume that the bipartitions
of G and G′ are the same when taking their intersection. More precisely, we have
the following lemma.

Lemma 2.2. Let B and B′ be bipartite graph classes. If at least one of them
is closed under disjoint union and taking induced subgraphs, then B ×∩ B′ =
{(X,Y ;E) ∩ (X,Y ;E′) : (X,Y ;E) ∈ B, (X,Y ;E′) ∈ B′}.

Proof. Let C = {(X,Y ;E)∩(X,Y ;E′) : (X,Y ;E) ∈ B, (X,Y ;E′) ∈ B′}. Clearly,
C ⊆ B ×∩ B′. In the following, we show that B ×∩ B′ ⊆ C. By symmetry, we may
assume that B′ is closed under disjoint union and taking induced subgraphs.

Let H = (X,Y ;E) ∈ B and H ′ = (X ′, Y ′;E′) ∈ B′. Now let H ′′ = (X,Y ;E′∩
{{x, y} : x ∈ X, y ∈ Y }). It is easy to see that H ∩ H ′ = H ∩ H ′′. Observe that
H ′′ is the disjoint union of two induced subgraphs of H ′, where one is induced
by (X ∩X ′, Y ∩ Y ′) and the other by (X ∩ Y ′, X ∩ Y ′). Since B′ is closed under
disjoint union and taking induced subgraphs, it follows that H ′′ ∈ B′. Since
H ∩ H ′ = H ∩ H ′′, we have H ∩ H ′ ∈ C. �

Unfortunately, CHAIN is not closed under disjoint union. For example, K2 is a
chain graph but 2K2 is not. It is the only exception in this paper. Fortunately,
we have the following lemma for chain graphs.

Lemma 2.3. CHAIN2 = {(X,Y ;E)∩(X,Y ;E′) : (X,Y ;E), (X,Y ;E′) ∈ CHAIN}.

Proof. Let C = {(X,Y ;E)∩(X,Y ;E′) : (X,Y ;E), (X,Y ;E′) ∈ CHAIN}. Clearly,
C ⊆ CHAIN2. In the following, we show that CHAIN2 ⊆ C.

Let H1 = (X1, Y1;E1) ∈ CHAIN and H2 = (X2, Y2;E2) ∈ CHAIN. Now let
H ′

1 = (X1, Y1;E
′
1) and H ′

2 = (X1, Y1;E
′
2), where

E′
1 = E1 ∪ {{x, y} : x ∈ X1 ∩X2, y ∈ Y1 ∩X2} \ {{x, y} : x ∈ X1 ∩ Y2, y ∈ Y1 ∩ Y2},

E′
2 = E2 ∪ {{x, y} : x ∈ X1 ∩ Y2, y ∈ Y1 ∩ Y2}, \{{x, y} : x ∈ X1 ∩X2, y ∈ Y1 ∩X2}.

See Fig. 2. It is not difficult to see that H1 ∩H2 = H ′
1 ∩ H ′

2. Observe that both
H ′

1 and H ′
2 are chain graphs. Therefore, H1 ∩ H2 = H ′

1 ∩ H ′
2 ∈ C. �

By Lemmas 2.2 and 2.3, we can assume that the bipartitions of two graphs
are the same when we are defining the pairwise intersection of two graph classes,
since, in this paper, either one of them is closed under disjoint union or both of
them are the class of chain graphs.

Ferrers Dimension. The Ferrers dimension fd(B) of a bigraph B is the small-
est number of Ferrers bigraphs whose intersection is B. That is, fd(B) is the
minimum integer k such that B ∈ CHAINk. If B = (X,Y ;E) and fd(B) = k,
then there are Ferrers bigraphs Bi = (X,Y ;Ei) for 1 ≤ i ≤ k such that

330 S. Chaplick et al.

X1 ∩ X2

H′1 H′2

Y1 ∩ Y2

X1 ∩ Y2

Y1 ∩ X2

X1 ∩ X2

Y1 ∩ Y2

X1 ∩ Y2

Y1 ∩ X2

Fig. 2. Intersection of two chain graphs

B =
⋂

1≤i≤k Bi. That is, we can assume all the graphs B and Bi, 1 ≤ i ≤ k have
the same bipartition.

A Ferrers digraph D = (V,A) is a digraph whose adjacency matrix has the
Ferrers property. The Ferrers dimension fd(D) of a digraph D is the smallest
number of Ferrers digraphs whose intersection is D.

Poset Dimension. The poset dimension pd(P) of a poset P is the minimum
integer k such that there exist k linear extensions of P such that for any two
elements x, y of P , x < y in P if and only if x < y in all the linear extensions.
The Ferrers dimension fd(P) of a poset P is the Ferrers dimension of the digraph
defined in such way that the vertices are the elements of P and there is an arc
(u, v) if and only if u < v. Cogis [10] showed that for any poset P , fd(P) = pd(P).

A poset is of height 2 if every element is either a minimal element or a maximal
element. The underlying graph of a height-2 poset is the bigraph B = (X,Y ;E)
such that X is the set of minimal elements, Y is the set of maximal elements,
and {x, y} ∈ E if and only if x < y. It is easy to see that any bigraph is the
underlying graph of some poset of height 2.

3 (P,Q;D)-Bigraphs

We introduce the notion of (P,Q;D)-bigraphs, where a bigraph B = (U, V,E) is
said to be an (P,Q;D)-bigraph if and only if for some domain D (e.g., the real
number line R) each vertex in u ∈ U can be represented as a type P subset Pu

of D and each vertex v ∈ V can be represented as a type Q subset Qv of D such
that for every u ∈ U, v ∈ V, uv ∈ E if and only if Pu ∩ Qv �= ∅. For example,
in this setting, interval bigraphs are (interval, interval, R)-bigraphs. We will use
(P,Q;D) to denote the class of (P,Q;D)-bigraphs.

Our discussion will focus on the cases when P,Q are the following subsets of R:
points, rays, unit-intervals, and intervals; and the following axis-aligned subsets
of R2: points, rays, unit-segments, segments, squares, and rectangles. Note: for
rays, we will use →, ↓,←, and ↑ to denote the rightward, downward, leftward,
and upward rays respectively. Moreover, when we refer to a ray r (rather than
using a specific arrow), r can be any axis-aligned ray from the domain.

Intersection Dimension of Bipartite Graphs 331

3.1 (P,Q;R)-Bigraphs

We begin with some easy observations characterizing CHAIN,Convex, and
Biconvex bigraphs as (P,Q;D)-bigraphs (see Proposition 3.1). This is followed
by a couple essential lemmas that we will use to relate (P,Q,R)-bigraphs to
(P ′, Q′,R2)-bigraphs.

Proposition 3.1. For a bigraph B = (X,Y,E):

1. B is CHAIN if and only if B is (point, →; R).
2. B is Convex if and only if B is (point, interval; R).
3. B is Biconvex if and only if B is both (point, interval; R) and (interval,

point; R).

Proof. These follow easily by definition. �

It is also known that a bigraph is a bipartite permutation graph (BPG) if and
only if it is a unit-interval bigraph [20]; i.e., BPG = (unit-interval, unit-interval;
R). Interestingly, we observe that (unit-interval, unit-interval; R)-bigraphs actu-
ally have a simpler representation. Specifically, (unit-interval, unit-interval; R) =
(point, unit-interval; R) and we prove this via the following more general lemma.

Lemma 3.2. For a bigraph B = (U, V ;E) and any Q ∈ {→, ray, unit-interval,
interval}, B ∈ (unit-interval, Q; R) if and only if B ∈ (point, Q; R).

Proof. Notice that for any choice of Q each element of V is represented as an
interval. Let (IU , IV) be a (unit-interval, Q;R) representation of B. Let Iu =
[�u, �u + 1] ∈ IU and Iv = [�v, rv] ∈ IV be intervals corresponding to u ∈ U and
v ∈ V , respectively. It is easy to see that Iu and Iv intersect if and only if either
�u ∈ Iv or �v − �u ∈ [0, 1].

We define the following (point, Q;R) representation (I ′
U , I ′

V) as:

I ′
U = {{�u} : [�u, �u + 1] ∈ IU},

I ′
V = {[�v − 1, rv] : [�v, rv] ∈ IV}.

Obviously (I ′
U , I ′

V) represents B, since �u ∈ [�v − 1, rv] if and only if either
�u ∈ Iv or �v − �u ∈ [0, 1]. It is easy to see that we now have a (point,Q;R)
representation of B. �

Lemma 3.2 allows us to equate several (P,Q;R) classes. These are given in
the following two corollaries.

Corollary 3.3. For each Q ∈{→, ray, unit-interval, interval}, the following
classes of bigraphs are the same: (point, Q; R), (→, Q; R), (ray, Q; R), (unit-
interval, Q; R).

Corollary 3.4. For each P,Q ∈{point, →, ←, unit-interval}, a bigraph B is
(P , Q; R) if and only if B is (Q, P ; R).

332 S. Chaplick et al.

Notice that the statement of Corollary 3.4 does not allow either of P or Q to
be ray-type sets. This is because Lemma 3.2 cannot be used to give us the desired
biconvexity-like when rays are allowed for a given set. However, by Lemma 3.2,
we can transform any (ray, ray;R) representation into a (point, ray;R) represen-
tation. Thus, (ray,ray;R) is a subset of the bigraphs which are both (point,ray;R)
and (ray,point;R). One open question would be whether these are the same.

Moreover, the graph (P7) given in Figure 3 is (point, ray; R) but not both
(point, ray; R) and (ray, point; R). This is easy to see since no three vertices
in the same partition (say, X) can have pairwise incomparable neighborhoods;
i.e., two of the three must be represented by rays in the same direction and thus
must have nested neighborhoods. Moreover, the graph in Figure 3 has a, b, c ∈ X
such that their neighborhoods are pairwise incomparable. This is formalized in
the following proposition.

Proposition 3.5. If a bigraph B = (X,Y ;E) is (ray,point;R) where each x ∈ X
is a ray then for every {x, x′, x′′} ⊆ X and every y ∈ Y , there exists x∗ ∈
{x, x′, x′′} and x∗∗ ∈ {x, x′, x′′} \ {x∗} such that N(x∗) ⊆ N(x∗∗) or N(x) ⊆
N(x′′).

a b c

1 2 3 4
3

2
1

4
a b c

Fig. 3. The path on seven vertices (P7) and a (point, ray;R) representation of it. Note:
P7 is not both (point, ray;R) and (ray, point;R) since the neighborhoods of a, b, and c
are pairwise incomparable.

3.2 (P,Q;R2)-Bigraphs

In this subsection we consider the domain R2 and describe several classes of bi-
graphs as the intersection of one dimensional bigraph classes (i.e., as (P,Q;R) ×∩
(P ′, Q′;R)). Notice that, for P,Q ∈ {point, unit-interval, interval} (P,Q;R) is
hereditary and closed under disjoint union. Thus, by Lemma 2.2, for P,Q ∈
{point, unit-interval, interval} and any choices of P ′ and Q′, B = (X,Y ;E) is
(P,Q;R) ×∩ (P ′, Q′;R) if and only if B = (X,Y ;E∩E′) for (X,Y ;E) ∈ (P,Q;R)
and (X,Y ;E′′) ∈ (P ′, Q′;R).

Theorem 3.6. UGIG = BPG2 =(point, unit-interval;R)2.

Proof. First we show that UGIG ⊆ BPG2. Let G = (U, V ;E) ∈ UGIG and R =
(U ,V) be a unit grid representation of G, where the horizontal segments U
represent the vertices in U and the vertical segments V represent the vertices in
V . That is, U = {{yu} × [xu, xu + 1] : u ∈ U}, V = {[yv, yv +1]× {xv} : v ∈ V },
and E = {{u, v} : u ∈ U, v ∈ V, yu ∈ [yv, yv + 1], xv ∈ [xu, xu + 1]}. From U , we
construct two point-unit bi-interval representations R′ and R′′ as follows:

R′ = ({yu : u ∈ U}, {[yv, yv + 1] : v ∈ V }),
R′′ = ({xv : v ∈ V }, {[xu, xu + 1] : u ∈ U}).

Intersection Dimension of Bipartite Graphs 333

By Lemma 3.2, R′ and R′′ represent the bipartite permutation graphs G′ =
(U, V ;E′) and G′′ = (U, V ;E′′), respectively, where

E′ = {{u, v} : u ∈ U, v ∈ V, yu ∈ [yv, yv + 1]}, and

E′′ = {{u, v} : u ∈ U, v ∈ V, xv ∈ [xu, xu + 1]}.
Since {u, v} ∈ E′ ∩ E′′ for u ∈ U and v ∈ V if and only if yu ∈ [yv, yv + 1] and
xv ∈ [xu, xu + 1], we have E = E′ ∩ E′′. Therefore, G = G′ ∩ G′′.

Next we show that BPG2 ⊇ UGIG. Let G′ = (U, V ;E′) and G′′ = (U, V ;E′′)
be bipartite permutation graphs. Let R′ and R′′ be point-unit bi-interval repre-
sentations of G′ and G′′, respectively, such that U is the point set of R′ and the
unit interval set of R′′. Such representations exist by Corollary 3.3. Let u ∈ U ,
and let pu and [�u, �u + 1] be the point in R′ and the unit interval in R′′ repre-
senting the vertex u. We assign the unit horizontal segment {pu} × [�u, �u + 1]
to u. Similarly, for a vertex v ∈ V with the unit interval [�v, �v + 1] in R′ and
the point pv in R′′, we assign the unit vertical segment [�v, �v + 1]× {pv}. The
obtained unit grid representation represents G = G′∩G′′, since {pu}× [�u, �u+1]
and [�v, �v+1]×{pv} intersect if and only if pu ∈ [�v, �v+1] and pv ∈ [�u, �u+1].

�

R G

G′

G′′R′′

R′

Fig. 4. UGIG = BPG2

Using Theorem 3.6 and Corollary 3.4 the following is immediate.

Corollary 3.7. (unit-square, unit-square;R2)=(point,unit-interval;R)2 =UGIG.

The corollary above implies that a bipartite graph of cubicity-2 is UGIG. It is
easy to see that the star K1,5 is UGIG, but its cubicity is more than 2. There-
fore, we have the following corollary, which is a nice complement to the fact
Boxicity-2 ∩ Bipartite = GIG [2].

334 S. Chaplick et al.

Corollary 3.8. Cubicity-2 ∩ Bipartite � UGIG.

The proof of the following theorem is an easy modification of the proof of
Theorem 3.6. The relation GIG �= Convex2 is shown by Fig. 5.

Theorem 3.9. Biconvex2 ⊆ (Biconvex ×∩ Convex) ⊆ GIG � Convex2.

Since Convex ⊂ 2DOR, it holds that GIG ⊆ 2DOR2 = CHAIN4. Therefore,
every grid intersection graph has Ferrers dimension at most 4.

Corollary 3.10. The recognition problems of BPG2, Biconvex2, and Biconvex ×∩
Convex are NP-complete.

Proof. The problems are in NP since the recognition problems of BPG and
Biconvex are polynomial-time solvable and the intersection of two graphs can
be computed in polynomial time.

Mustaţǎ and Pergel [26] showed that the recognition problem is NP-hard for
any graph class C satisfying UGIG ⊆ C ⊆ GIG. By Theorems 3.6 and 3.9 and
the fact that BPG ⊂ Biconvex, it follows that UGIG = BPG2 ⊆ Biconvex2 ⊆ GIG.
Therefore, the recognition problems are NP-hard for BPG2 and Biconvex2. �

Fig. 5. A (point, interval)2 representation of the full subdivision H of K3,3; i.e., H ∈
Convex2. On the other hand, H /∈ GIG, since it is the full subdivision of a non-planar
graph, and thus not a string graph.

4 Segment-Ray Graphs

Let F be a matrix with entries 0, 1, ∗, where ∗ means “don’t care.” A matrix M
is F-free if M does not have F as a submatrix ignoring ∗-entries. A bipartite
graph is F-freeable if it has a F-free biadjacency matrix.

It is known that a bipartite graph is a chordal bipartite graph if and only if
it is Γ -freeable (see [22]), a 2-directional orthogonal ray graph if and only if it is

Intersection Dimension of Bipartite Graphs 335

γ-freeable [32], and a grid intersection graph if and only if it is cross-freeable [17],
where the forbidden matrices are defined as follows:

Γ =

(
1 0
1 1

)
, γ =

(
1 0
∗ 1

)
, cross =

⎛⎝∗ 1 ∗
1 0 1
∗ 1 ∗

⎞⎠ .

In this section, using the following matrix V, we characterize segment-ray
graphs:

V =

(
1 0 1
∗ 1 ∗

)
.

Obviously, a matrix is cross-free if it is V-free, and V-free if it is γ-free.
The proof of the following proof is similar to the proofs of the cross-free

characterization of GIG [17] and the γ-free characterization of 2DOR [32].

Theorem 4.1. A bipartite graph is a segment-ray graph if and only if it is V-
freeable.

Proof. For the only-if part, let B = (U, V ;E) be a segment-ray graph and R
be its segment-ray representation such that each vertex in U corresponds to a
horizontal segment in R, and each vertex in V corresponds to a vertical upward
ray in R. Let M be the bipartite adjacency matrix of B with the rows indexed
by U and the columns indexed by V . Let Su be the segment corresponding to
u ∈ U with y-coordinate b, and Rv be the ray corresponding to v ∈ V with x-
coordinate a. If Su intersects with rays on both sides of x = a and Rv intersects
with a segment below y = b, then Su and Rv must intersect at (a, b). Thus we
can make M V-free by permuting the columns in nondecreasing order of the
x-coordinates of the corresponding rays and the rows in nonincreasing order of
the y-coordinates of the corresponding segments.

For the if part, let B = (U, V ;E) be a bipartite graph and M be its V-free
bipartite adjacency matrix with the rows indexed by U and the columns indexed
by V . For each u ∈ U , we put the horizontal segment with end points (i, j1) and
(i, j2), where i is the row index of u and j1, j2 are the smallest and largest indices
such that Mi,j = 1. For each v ∈ V , we put the vertical upward ray from the
starting point (i, j), where j is the column index of v and i is the largest index
such that Mi,j = 1. For any two vertices u ∈ U and v ∈ V , it is clear that the
corresponding segment and ray intersect if the vertices are adjacent. Conversely,
if u and v are not adjacent, then the corresponding segment and ray cannot
intersect since M is V-free. �

Now we show that every segment-ray graph has Ferrers dimension at most 3.
To this end, we need the following simple fact.

Lemma 4.2. An m × n 0-1 matrix M is V-free if and only if for each entry
(i, j) with Mi,j = 0 at least one of the following holds:

1. Mi,k = 0 for all 1 ≤ k ≤ j;
2. Mi,k = 0 for all j ≤ k ≤ n;

336 S. Chaplick et al.

3. Mk,j = 0 for all i ≤ k ≤ m.

Theorem 4.3. Every segment-ray graph has Ferrers dimension at most 3.

Proof. Let B be a segment-ray graph and M be its V-free bipartite adjacency
matrix. Let M (1), M (2), M (3) be the following 0-1 matrices of the same size with
M :

– M
(1)
i,j = 0 if and only if Mi,k = 0 for all 1 ≤ k ≤ j;

– M
(2)
i,j = 0 if and only if Mi,k = 0 for all j ≤ k ≤ n;

– M
(3)
i,j = 0 if and only if Mk,j = 0 for all i ≤ k ≤ m.

It is easy to see that M (1), M (2), M (3) have the Ferrers property. By Lemma 4.2,
it holds that M (1) ∩ M (2) ∩ M (3) = M . This completes the proof. �

Note that the upper bounds of the Ferrers dimension for GIG (≤ 4) and 2DOR
(≤ 2) can be shown in similar ways by using the forbidden submatrix character-
izations.

Corollary 4.4. OR is incomparable to both CHAIN3 and SR.

Proof. By Theorem 4.3, it holds that SR ⊆ CHAIN3. Hence it suffices to show
that OR �⊆ CHAIN3 and SR �⊆ OR. Fig. 6a shows that H3 ∈ OR. From the
definitions, it holds that H3 = K4,4 − 4K2. It is known that fd(Kn,n − nK2) =
n [38,39], and thus fd(H3) = 4. Thus OR �⊆ CHAIN3. It is known that C2n /∈ OR
if n > 6 [32]. On the other hand, it is easy to see that C2n ∈ SR for any n (see
Fig. 6b). Thus SR �⊆ OR. �

Corollary 4.5. SR is a proper subset of GIG.

Proof. From the definition, SR is a subset of GIG. Since H3 ∈ OR ⊂ GIG and
H3 /∈ CHAIN3 ⊇ SR, it holds that SR �= GIG. �

(a) H3 ∈ OR.

(b) C2n ∈ SR.

Fig. 6. Examples showing incomparabilities

Intersection Dimension of Bipartite Graphs 337

5 Boxicity and Ferrers Dimension

Chatterjee and Ghosh [9] presented some relations between the boxicity of undi-
rected graphs and the Ferrers dimension of the directed graphs obtained some-
how from the undirected graphs. Here we present a similar but more direct
relation between the boxicity and the Ferrers dimension of bigraphs.

If fd(B) = 1, then box(B) ≤ 2. This is because, fd(B) = 1 implies that B is
a chain graph, and thus B is a grid intersection graph [27]. This bound is tight
since fd(Kn,n) = 1 and box(Kn,n) = 2 for every n ≥ 2.

Theorem 5.1. Let B be a bigraph with fd(B) ≥ 2. It holds that

box(B) ≤ fd(B) ≤ 2box(B).

Proof. Adiga, Bhowmick, and Chandran [1] showed that for a poset Q of height
2 and its underlying graph H it holds that box(H) ≤ pd(Q) ≤ 2box(H) if
pd(Q) ≥ 2. (Recently Felsner [13] has shown a more general result.) Since
fd(Q) = pd(Q) [10], it holds that box(H) ≤ fd(Q) ≤ 2box(H) if fd(Q) ≥ 2.

Let P be a poset that has B as the underlying graph. From the argument
above, it follows that box(B) ≤ fd(P) ≤ 2box(B) if fd(P) ≥ 2. Hence it suffices
to show that fd(P) = fd(B).

Let MB is a bipartite adjacency matrix of B. Then, an adjacency matrix MP

of the digraph corresponding to P can be represented by the following form:

MP =

(
MB 0
0 0

)
.

Thus it is easy to see that fd(P) ≥ fd(B) as MB is a submatrix of MP .
On the other hand, let B1, . . . , Bfd(B) be Ferrers bigraphs that satisfy B =⋂

1≤i≤fd(B) Bi. Let MBi is the bipartite adjacency matrix of Bi in which the
rows and columns are ordered as in MB. Now we define MPi as follows:

MPi =

(
MBi 0
0 0

)
.

Clearly MP =
⋂

1≤i≤fd(B) MPi , and each MPi has the Ferrers property.. This

implies that fd(P) ≤ fd(B). �

The upper bound in Theorem 5.1 is tight. It is known that box(Kn,n − nK2) =
�n/2	 [6] and fd(Kn,n − nK2) = n [38,39].

Bellatoni, Hartman, Przytycka, and Whitesides [2] showed that the grid in-
tersection graphs are exactly the bigraphs of boxicity at most 2. This implies
that the Ferrers dimension of a grid intersection graph is at most 4. We show
that the converse is not true.

338 S. Chaplick et al.

Theorem 5.2. GIG � CHAIN4.

Proof. We show that H4 ∈ CHAIN4 \ GIG. Chang and West [8] showed that H4

cannot be represented as the intersection graph of axis-parallel rectangles in the
plane. This implies that H4 /∈ GIG. Let M and M ′ be the following matrices:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 1 1 1 1 a a a
1 b 1 1 b 1 b b
1 1 c 1 c c 1 c
1 1 1 d d d d 1

1 b c d d 1 1 1
a 1 c d 1 c 1 1
a b 1 d 1 1 b 1
a b c 1 1 1 1 a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix M is a biadjacency matrix of H4, and M ′ has the same 1-entries as
M but has one of a, b, c, and d for each 0-entry of M . For x ∈ {a, b, c, d}, let Mx

be the 0-1 matrix obtained from M ′ by replacing all x with 0 and replacing all
other non-numeric entries with 1. It is easy to see that Mx, for all x ∈ {a, b, c, d},
has none of the forbidden 2× 2 matrices in (1) as a submatrix, and thus has the
Ferrers property. Since M = Ma∩Mb∩Mc∩Md, it holds that H4 ∈ CHAIN4. �

Chandran, Francis, and Mathew [7] showed that boxicity is unbounded for
chordal bipartite graphs. Thus we have the following.

Corollary 5.3. Ferrers dimension is unbounded for chordal bipartite graphs.

References

1. Adiga, A., Bhowmick, D., Chandran, L.S.: Boxicity and poset dimension. SIAM J.
Discrete Math. 25, 1687–1698 (2011)

2. Bellatoni, S., Hartman, I.B.-A., Przytycka, T., Whitesides, S.: Grid intersection
graphs and boxicity. Discrete Math. 114(1-3), 41–49 (1993)

3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs
and graph planarity using PQ-tree algorithms. Journal of Computer System Sci-
ences 13, 335–379 (1976)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
5. Breu, H.: Algorithmic aspects of constrained unit disk graphs. PhD thesis, The

University of British Columbia, AAINN09049 (1996)
6. Chandran, L.S., Das, A., Shah, C.D.: Cubicity, boxicity, and vertex cover. Discrete

Math. 309, 2488–2496 (2009)
7. Chandran, L.S., Francis, M., Mathew, R.: Chordal bipartite graphs with high box-

icity. Graphs Combin. 27, 353–362 (2011)
8. Chang, Y.-W., West, D.B.: Rectangle number for hypercubes and complete multi-

partite graphs. In: 29th SE Conf. Comb., Graph Th. and Comp. Congr. Numer.,
vol. 132, pp. 19–28 (1998)

9. Chatterjee, S., Ghosh, S.: Ferrers dimension and boxicity. Discrete Math. 310,
2443–2447 (2010)

Intersection Dimension of Bipartite Graphs 339

10. Cogis, O.: On the Ferrers dimension of a digraph. Discrete Math. 38, 47–52 (1982)
11. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of

interval graphs. SIAM Journal on Discrete Mathematics 23, 1905–1953 (2009)
12. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-

binatorica 19, 487–505 (1999)
13. Felsner, S.: The order dimension of planar maps revisited. In: JCDCGG 2013, pp.

18–19 (2013)
14. Felsner, S., Mertzios, G.B., Mustaţǎ, I.: On the recognition of four-directional

orthogonal ray graphs. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS,
vol. 8087, pp. 373–384. Springer, Heidelberg (2013)

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals
of Discrete Mathematics, vol. 57. North Holland (2004)

16. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Appl. Math. 28,
35–44 (1990)

17. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete
Math. 87(1), 41–52 (1991)

18. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

19. Hell, P., Huang, J.: Two remarks on circular arc graphs. Graphs Combin. 13, 65–72
(1997)

20. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,
313–327 (2004)

21. Hell, P., Mastrolilli, M., Nevisi, M.M., Rafiey, A.: Approximation of minimum cost
homomorphisms. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 587–598. Springer, Heidelberg (2012)

22. Klinz, B., Rudolf, R., Woeginger, G.J.: Permuting matrices to avoid forbidden
submatrices. Discrete Appl. Math. 60, 223–248 (1995)

23. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)

24. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fund. Math. 51, 45–64 (1962)

25. Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial
time. Discrete Appl. Math. 78(1-3), 189–205 (1997), Erratum is available at
http:http://www.comp.leeds.ac.uk/hm/pub/node1.html

26. Mustaţǎ, I., Pergel, M.: Unit grid intersection graphs: Recognition and properties.
CoRR, abs/1306.1855 (2013)

27. Otachi, Y., Okamoto, Y., Yamazaki, K.: Relationships between the class of unit grid
intersection graphs and other classes of bipartite graphs. Discrete Appl. Math. 155,
2383–2390 (2007)

28. Rao, W., Orailoglu, A., Karri, R.: Logic mapping in crossbar-based nanoarchitec-
tures. IEEE Des. Test 26, 68–77 (2009)

29. Saha, P.K., Basu, A., Sen, M.K., West, D.B.: Permutation bigraphs: An analogue
of permutation graphs, http://www.math.uiuc.edu/~west/pubs/permbig.pdf

30. Sen, M., Das, S., Roy, A.B., West, D.B.: Interval digraphs: An analogue of interval
graphs. J. Graph Theory 13, 189–202 (1989)

31. Sen, M.K., Sanyal, B.K., West, D.B.: Representing digraphs using intervals or
circular arcs. Discrete Math. 147, 235–245 (1995)

32. Shrestha, A.M.S., Tayu, S., Ueno, S.: On orthogonal ray graphs. Discrete Appl.
Math. 158, 1650–1659 (2010)

33. Spinrad, J.P., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math. 18(3), 279–292 (1987)

http://www.comp.leeds.ac.uk/hm/pub/node1.html
http://www.math.uiuc.edu/~west/pubs/permbig.pdf

340 S. Chaplick et al.

34. Spinrad, J.P.: Doubly lexical ordering of dense 0-1 matrices. Inform. Process.
Lett. 45, 229–235 (1993)

35. Spinrad, J.P.: Efficient Graph Representations. Fields Institute monographs,
vol. 19. American Mathematical Society (2003)

36. Tahoori, M.B.: A mapping algorithm for defect-tolerance of reconfigurable nano-
architectures. In: IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 668–672 (2005)

37. Takaoka, A., Tayu, S., Ueno, S.: On unit grid intersection graphs. In: JCDCGG
2013, pp. 120–121 (2013)

38. Trotter, W.T.: Dimension of the crown Sk
n. Discrete Math. 8, 85–103 (1974)

39. Trotter, W.T.: Partially ordered sets. In: Graham, R., Grötschel, M., Lovász, L.
(eds.) Handbook of Combinatorics, pp. 433–480. Elsevier Science B. V. (1995)

On the Parameterized Complexity

for Token Jumping on Graphs�

Takehiro Ito1, Marcin Kamiński2, Hirotaka Ono3,
Akira Suzuki1, Ryuhei Uehara4, and Katsuhisa Yamanaka5

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan
{takehiro,a.suzuki}@ecei.tohoku.ac.jp

2 Dept. of Mathematics, Computer Science and Mechanics, University of Warsaw,
Banacha 2, 02-097, Warsaw, Poland

mjk@mimuw.edu.pl
3 Faculty of Economics, Kyushu University,

Hakozaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan
hirotaka@en.kyushu-u.ac.jp

4 School of Information Science, JAIST,
Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan

uehara@jaist.ac.jp
5 Dept. of Electrical Engineering and Computer Science, Iwate University,

Ueda 4-3-5, Morioka, Iwate 020-8551, Japan
yamanaka@cis.iwate-u.ac.jp

Abstract. Suppose that we are given two independent sets I0 and Ir
of a graph such that |I0| = |Ir|, and imagine that a token is placed on
each vertex in I0. Then, the token jumping problem is to determine
whether there exists a sequence of independent sets which transforms
I0 into Ir so that each independent set in the sequence results from the
previous one by moving exactly one token to another vertex. Therefore,
all independent sets in the sequence must be of the same cardinality. This
problem is PSPACE-complete even for planar graphs with maximum
degree three. In this paper, we first show that the problem is W[1]-hard
when parameterized only by the number of tokens. We then give an FPT
algorithm for general graphs when parameterized by both the number of
tokens and the maximum degree. Our FPT algorithm can be modified
so that it finds an actual sequence of independent sets between I0 and
Ir with the minimum number of token movements.

1 Introduction

The token jumping problem was introduced by Kamiński et al. [13], which can
be seen as a “dynamic” version of independent sets in a graph. Recall that an

� This work is partially supported by JSPS KAKENHI Grant Numbers 25106504 (Ito),
25104521 (Ono), 24106004 (Ono and Uehara), 24.3660 (Suzuki) and 25106502
(Yamanaka).

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 341–351, 2014.
c© Springer International Publishing Switzerland 2014

342 T. Ito et al.

(a) I0 (b) I1 (c) I2

(d) I3

u

(e) I4 (f) I5 = Ir

Fig. 1. A sequence 〈I0, I1, . . . , I5〉 of independent sets of the same graph, where the
vertices in independent sets are depicted by large black circles (tokens)

independent set of a graph G is a vertex-subset of G in which no two vertices
are adjacent. (See Fig. 1 which depicts six different independent sets of the same
graph.) Suppose that we are given two independent sets I0 and Ir of a graph
G = (V,E) such that |I0| = |Ir|, and imagine that a token (coin) is placed on
each vertex in I0. Then, the token jumping problem is to determine whether
there exists a sequence 〈I0, I1, . . . , I�〉 of independent sets of G such that
(a) I� = Ir, and |Ii| = |I0| = |Ir| for all i, 1 ≤ i ≤ �; and
(b) for each index i, 1 ≤ i ≤ �, Ii can be obtained from Ii−1 by moving exactly

one token on a vertex u ∈ Ii−1 to another vertex v ∈ V \ Ii−1, and hence
Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}.

Figure 1 illustrates a sequence 〈I0, I1, . . . , I5〉 of independent sets which trans-
forms I0 into Ir = I5.

Recently, this type of problems have been studied extensively in the framework
of reconfiguration problems [8], which arise when we wish to find a step-by-
step transformation between two feasible solutions of a problem such that all
intermediate solutions are also feasible and each step abides by a prescribed
reconfiguration rule (i.e., an adjacency relation defined on feasible solutions of
the original problem). For example, the token jumping problem can be seen
as a reconfiguration problem for the (ordinary) independent set problem:
feasible solutions are defined to be all independent sets of the same cardinality
in a graph; and the reconfiguration rule is defined to be the condition (b) above.
This reconfiguration framework has been applied to several well-known problems,
including independent set [5,6,8,13,15], satisfiability [4,14], set cover,
clique, matching [8], vertex-coloring [1,2,3], list edge-coloring [9,11],
list L(2, 1)-labeling [10], subset sum [7], shortest path [12], etc.

1.1 Reconfiguration Rules and Related Results

The original reconfiguration problem for independent set was introduced by
Hearn and Demaine [5], which employs another reconfiguration rule. Indeed,

On the Parameterized Complexity for Token Jumping on Graphs 343

there are three reconfiguration problems for independent set (ISReconf, for
short) under different reconfiguration rules, as follows.

• Token Sliding (TS) [2,5,6,13]: We can slide a single token only along
an edge of a graph. In other words, each token can be moved only to its
adjacent vertex. This rule corresponds to the original one introduced by
Hearn and Demaine [5].

• Token Jumping (TJ) [13]: This rule corresponds to token jumping,
that is, we can move a single token to any vertex.

• Token Addition and Removal (TAR) [8,13,15]: We can either add
or remove a single token at a time if it results in an independent set of
cardinality at least a given threshold. Therefore, independent sets in the
sequence do not have the same cardinality.

We remark that the existence of a desired sequence depends deeply on the re-
configuration rules. For example, Fig. 1 is an yes-instance for token jumping,
but it is a no-instance for ISReconf under the TS rule.

We here explain only the results which are strongly related to token jump-

ing; see the references above for the other results.
Hearn and Demaine [5], [6, Sec. 9.5] proved that ISReconf under the TS rule

is PSPACE-complete for planar graphs of maximum degree three. Then, Bonsma
and Cereceda [2] showed that this problem remains PSPACE-complete even for
very restricted instances. Indeed, their result implies that token jumping is
PSPACE-complete for planar graphs with maximum degree three. (Details will
be given in Section 2.3.)

Kamiński et al. [13] proved that ISReconf is PSPACE-complete for perfect
graphs under any of the three reconfiguration rules. As the positive results for
token jumping, they gave a linear-time algorithm for even-hole-free graphs.
Furthermore, their algorithm can find an actual sequence of independent sets
with the minimum number of token movements.

1.2 Our Contributions

In this paper, we investigate the parameterized complexity of the token jump-

ing problem.
We first show that the problem is W[1]-hard when parameterized only by

the number t of tokens. Therefore, the problem admits no FPT algorithm when
parameterized only by t unless FPT = W[1].

We thus consider the problem with two parameters, and give an FPT algo-
rithm for general graphs when parameterized by both the number of tokens and
the maximum degree. Recall that the problem remains PSPACE-complete even
if the maximum degree is three. (See Section 2.3.) Therefore, it is very unlikely
that the problem can be solved in polynomial time even for graphs with bounded
maximum degree.

Finally, we show that our FPT algorithm for general graphs can be modified
so that it finds an actual sequence of independent sets between I0 and Ir with

344 T. Ito et al.

the minimum number of token movements. We remark that the sequence of
independent sets in Fig. 1 has the minimum length. It is interesting that the
token on the vertex u in Fig. 1(a) must be moved twice even though u ∈ I0 ∩ Ir .

2 Preliminaries

In this section, we first introduce some basic terms and notations which will be
used throughout the paper. We then formally show the PSPACE-completeness
of token jumping in Section 2.3.

2.1 Graph Notations

In token jumping, we may assume without loss of generality that graphs are
simple. For a graph G, we sometimes denote by V (G) and E(G) the vertex set
and the edge set of G, respectively. Let n(G) = |V (G)| and m(G) = |E(G)|. We
denote by Δ(G) the maximum degree of G.

For a vertex v of a graph G, we denote by N(G; v) the set of all neighbors of
v in G (which does not include v itself), that is, N(G; v) = {w ∈ V (G) | (v, w) ∈
E(G)}. Let N [G; v] = N(G; v) ∪ {v}, and let N [G;V ′] =

⋃
v∈V ′ N [G; v] for a

vertex-subset V ′ ⊆ V (G).

2.2 Definitions for token jumping

Let Ii and Ij be two independent sets of the same cardinality in a graph G =
(V,E). We say that Ii and Ij are adjacent if there exists exactly one pair of
vertices u and v such that Ii \ Ij = {u} and Ij \ Ii = {v}, that is Ij can be
obtained from Ii by moving the token on a vertex u ∈ Ii to another vertex
v ∈ V \ Ii. We remark that the tokens are unlabeled, while the vertices in a
graph are labeled.

A reconfiguration sequence between two independent sets I and I ′ of G is a
sequence 〈I1, I2, . . . , I�〉 of independent sets of G such that I1 = I, I� = I ′, and
Ii−1 and Ii are adjacent for i = 2, 3, . . . , �. We say that two independent sets
I and I ′ are reconfigurable each other if there exists a reconfiguration sequence
between I and I ′. Clearly, any two adjacent independent sets are reconfigurable
each other. The length of a reconfiguration sequence S is defined as the number of
independent sets contained in S. For example, the length of the reconfiguration
sequence in Fig. 1 is 6.

The token jumping problem is to determine whether two given independent
sets I0 and Ir of a graphG are reconfigurable each other. We may assume without
loss of generality that |I0| = |Ir|; otherwise the answer is clearly “no.” Note that
token jumping is a decision problem asking the existence of a reconfiguration
sequence between I0 and Ir, and hence it does not ask an actual reconfiguration
sequence. We always denote by I0 and Ir the initial and target independent sets
of G, respectively, as an instance of token jumping.

On the Parameterized Complexity for Token Jumping on Graphs 345

Fig. 2. Graph consisting of token triangles and token edges, where link edges are de-
picted by thin dotted lines and the vertices in a standard independent set (namely,
with tokens) are surrounded by circles

2.3 PSPACE-Completeness

As we have mentioned in Introduction, Bonsma and Cereceda [2] showed that
ISReconf under the TS rule is PSPACE-complete, and their result indeed im-
plies the PSPACE-completeness of token jumping. We here formally explain
this fact, as in the following theorem.

Theorem 1. The token jumping problem is PSPACE-complete for planar
graphs with maximum degree three.

Proof. The problem is clearly in PSPACE, and hence we show that token

jumping is PSPACE-hard for planar graphs with maximum degree three.
Bonsma andCereceda [2] showed that ISReconfunder the TS rule is PSPACE-

complete even for very restricted instances, defined as follows. Every vertex of a
graph G is a part of exactly one of token triangles (i.e., copies of K3) and token
edges (i.e., copies of K2), as illustrated in Fig. 2. Token triangles and token edges
are all mutually disjoint, and joined together by edges called link edges. Moreover,
Δ(G) = 3 and G has a planar embedding such that every token triangle forms a
face. We say that an independent set I of G is standard if each of token triangles
and token edges contains exactly one token (vertex) in I. The ISReconf problem
under the TS rule remains PSPACE-complete even if G is such a restricted graph
and both I0 and Ir are standard independent sets [2].

Note that a standard independent set of G is a maximal independent set.
Then, even under the TJ rule (i.e., in token jumping), each token can jump
only to its adjacent vertex. Therefore, I0 and Ir are reconfigurable each other
under the TS rule if and only if they are reconfigurable each other under the TJ
rule. Thus, the result follows. �

3 W[1]-Hardness

In this section, we give the hardness result as in the following theorem.

Theorem 2. The token jumping problem is W[1]-hard when parameterized
by the number of tokens.

346 T. Ito et al.

(a) I0

G

U W

(b) Ir

U W

’ G’

Fig. 3. Image of our reduction, where the vertices in independent sets are depicted by
large black circles (tokens)

Proof. We give an FPT-reduction from independent set parameterized by the
solution size to token jumping parameterized by the number of tokens. Given
a graph G′ and a parameter t′, the independent set problem parameterized
by the solution size is to determine whether there is an independent set I of G′

such that |I| ≥ t′. This problem is known to be W[1]-hard [16, p. 213].
We now construct the corresponding instance of token jumping. (See also

Fig. 3.) Let G be the graph which consists of G′ and a complete bipartite graph
Kt′+1,t′+1. Therefore, G consists of two connected components. Let {U,W} be
the bipartition of V (Kt′+1,t′+1). Let I0 = U and Ir = W , then |I0| = |Ir | = |U | =
|W | = t′ + 1. Therefore, the parameter (i.e., the number of tokens) for token

jumping is t = t′ +1. Clearly, the corresponding instance can be constructed in
time O

(
n(G′) + t′2

)
.

To complete the FPT-reduction, we now show that G′ has an independent set
I with |I| ≥ t′ if and only if I0 and Ir are reconfigurable each other.

Suppose that G′ has an independent set I with |I| ≥ t′. Then, there is a
reconfiguration sequence between I0 and Ir, as follows: first move t′ (= t − 1)
tokens from U to the vertices in I one by one; then move the last token on the
vertex in U to any vertex in W ; and move t′ tokens from I to W one by one.
Therefore, I0 and Ir are reconfigurable each other.

Conversely, suppose that I0 and Ir are reconfigurable each other, and hence
there is a reconfiguration sequence S between I0 and Ir. Since Kt′+1,t′+1 is a
complete bipartite graph, G has no independent set I ′ such that both I ′∩U �= ∅
and I ′ ∩ W �= ∅ hold. Therefore, since we can move only one token at a time,
S must contain an independent set Iq of G such that both Iq ∩ U = {u} and
Iq∩W = ∅ hold. Then, all vertices in Iq \{u} are contained in the component G′

of G, and they must form an independent set of G′. Since |Iq \ {u}| = t− 1 = t′,
there exists an independent set I = Iq \ {u} of G′ such that |I| = t′. �

4 FPT Algorithms

Theorem 2 implies that token jumping admits no FPT algorithm when param-
eterized only by the number of tokens unless FPT = W[1]. Therefore, in this sec-
tion, we give an FPT algorithm for general graphswhen parameterized by both the
number of tokens and the maximum degree. Recall that token jumping remains
PSPACE-complete even for planar graphs with bounded maximum degree.

On the Parameterized Complexity for Token Jumping on Graphs 347

In Section 4.1, we first give an FPT algorithm which simply solves token

jumping for general graphs. We then show in Section 4.2 that our FPT algorithm
can be modified so that it finds an actual reconfiguration sequence with the
minimum length.

4.1 Token jumping

The main result of this subsection is the following theorem.

Theorem 3. Let G be a graph whose maximum degree is bounded by a fixed
constant d. Let I0 and Ir be two independent sets of G such that |I0| = |Ir| ≤ t for
a fixed constant t. Then, one can determine whether I0 and Ir are reconfigurable
each other in time O

(
(3td)2t

)
.

In this subsection, we give such an algorithm as a proof of Theorem 3. We
first show in Lemma 1 that, if a graph G has at least 3t(d+ 1) vertices, then I0
and Ir are always reconfigurable each other. Therefore, one can know that the
answer is always “yes” if n(G) ≥ 3t(d + 1), and hence it suffices to deal with
a graph having less than 3t(d + 1) vertices. For such a graph, we then show in
Lemma 2 that there is an O

(
(3td)2t

)
-time algorithm that determines whether

I0 and Ir are reconfigurable each other.

We first show that any two independent sets are reconfigurable each other if
the graph has a sufficiently large number of vertices, as in the following lemma.

Lemma 1. Let G be a graph with Δ(G) ≤ d, and let Ii and Ij be an arbitrary
pair of independent sets of G such that |Ii| = |Ij | ≤ t. Then, Ii and Ij are
reconfigurable each other if n(G) ≥ 3t(d+ 1).

Proof. Suppose that n(G) ≥ 3t(d+1). To prove the lemma, we show that there
exists a reconfiguration sequence between Ii and Ij .

Let G− be the graph obtained from G by deleting all vertices in N [G; Ii] ∪
N [G; Ij]. Since all neighbors of the vertices in Ii ∪ Ij have been deleted from
G, no vertex in G− is adjacent with any vertex in Ii ∪ Ij . Therefore, if G− has
an independent set Ik with |Ik| ≥ t, then there is a reconfiguration sequence
between Ii and Ij , as follows: move all tokens on the vertices in Ii to the vertices
in Ik one by one; and move all tokens on the vertices in Ik to the vertices in Ij
one by one.

To complete the proof, we thus show that G− has an independent set Ik with
|Ik| ≥ t if n(G) ≥ 3t(d + 1). Since Δ(G) ≤ d, we clearly have

∣∣N [G; v]
∣∣ ≤ d + 1

for every vertex v in G. Since |Ii| ≤ t, we thus have∣∣N [G; Ii]
∣∣ ≤ ∑

v∈Ii

∣∣N [G; v]
∣∣ ≤ t(d+ 1).

Similarly, we have
∣∣N [G; Ij]

∣∣ ≤ t(d + 1). Therefore,

n(G−) ≥ n(G)−
∣∣N [G; Ii]

∣∣− ∣∣N [G; Ij]
∣∣ ≥ t(d + 1). (1)

348 T. Ito et al.

We now suppose for a contradiction that |Imax| < t holds for a maximum
independent set Imax of G−. Then, we have∣∣N [G−; Imax]

∣∣ ≤ ∑
v∈Imax

∣∣N [G; v]
∣∣ < t(d + 1),

and hence by Eq. (1)

n(G−)−
∣∣N [G−; Imax]

∣∣ ≥ 1.

Therefore, the graph obtained from G− by deleting all vertices in N [G−; Imax] is
non-empty, and hence we can add at least one vertex to Imax. This contradicts
the assumption that Imax is a maximum independent set of G−. Therefore,
|Imax| ≥ t, and hence G− has an independent set Ik with |Ik| ≥ t. �

We then give an FPT algorithm for the case where a given graph G has only
a constant number of vertices, as in the following lemma.

Lemma 2. Suppose that n(G) < 3t(d + 1). Then, there is an O
(
(3td)2t

)
-time

algorithm which determines whether I0 and Ir are reconfigurable each other.

Proof. We give such an algorithm. For a graph G and a constant t′ = |I0| = |Ir |
(≤ t), we construct a configuration graph C = (V , E), as follows:

(i) each node in C corresponds to an independent set of G with cardinality
exactly t′; and

(ii) two nodes in C are joined by an edge if and only if the corresponding two
independent sets are adjacent.

For an independent set I of G with |I| = t′, we always denote by wI the node of
C corresponding to I. Clearly, two independent sets I0 and Ir are reconfigurable
each other if and only if there is a path in C between wI0 and wIr .

Notice that G has at most the number
(
n(G)
t′
)
of distinct independent sets

with cardinality exactly t′. Since t′ ≤ t, we thus have

|V| ≤
(
n(G)

t′

)
<

(
3t(d + 1)

t′

)
= O

(
(3td)t

)
.

The configuration graph C above can be constructed in time O(|V|2). Further-
more, by the breadth-first search on C starting from the node wI0 , one can
determine whether C has a path from wI0 to wIr in time O(|V|+ |E|) = O(|V|2).
In this way, our algorithm runs in time O(|V|2) = O

(
(3td)2t

)
in total. �

Lemmas 1 and 2 complete the proof of Theorem 3. �

4.2 Shortest Reconfiguration Sequence

We now give an FPT algorithm which finds an actual reconfiguration sequence
with the minimum length.

On the Parameterized Complexity for Token Jumping on Graphs 349

Theorem 4. Let G be a graph whose maximum degree is bounded by a fixed
constant d. Let I0 and Ir be two independent sets of G such that |I0| = |Ir | ≤ t
for a fixed constant t. Then, one can find a shortest reconfiguration sequence
between I0 and Ir in time O

(
(4td)2t + n(G) + m(G)

)
if there exists.

We give such an algorithm as a proof of Theorem 4. Let t′ = |I0| = |Ir | ≤ t.
Although our algorithm is based on the proofs in Section 4.1, the number of
vertices for the graph classification is slightly changed from 3t(d+1) to 4t(d+1);
this yields that the base of the running time becomes 4 in Theorem 4.

We first consider the case where n(G) < 4t(d + 1).

Lemma 3. Suppose that n(G) < 4t(d+1). Then, one can find a shortest recon-
figuration sequence between I0 and Ir in time O

(
(4td)2t

)
if there exists.

Proof. As in the proof of Lemma 2, we construct the configuration graph C =
(V , E) for G and t′ in time

O(|V|2) = O

((
4t(d + 1)

t′

)2
)

= O
(
(4td)2t

)
.

Recall that the node set of C corresponds to all independent sets in G of car-
dinality exactly t′. Therefore, a shortest reconfiguration sequence between two
independent sets I0 and Ir corresponds to a shortest path in C between the two
nodes wI0 and wIr . By the breadth-first search on C starting from wI0 , one can
find a shortest path in C in time O(|V| + |E|) = O(|V|2) if there exists. There-
fore, if n(G) < 4t(d+1), one can find a shortest reconfiguration sequence in time
O(|V|2) = O

(
(4td)2t

)
. �

We then consider the case where n(G) ≥ 4t(d+1). Notice that, since n(G) is
not bounded by a fixed constant, we cannot directly construct the configuration
graph C for G and t′ in this case. However, we will prove that only a subgraph of C
having a constant number of nodes is sufficient to find a shortest reconfiguration
sequence.

Lemma 1 ensures that there always exists a reconfiguration sequence between
I0 and Ir in this case. Furthermore, in the proof of Lemma 1, we proposed a
reconfiguration sequence S ′ between I0 and Ir such that every token is moved
exactly twice. Although this is not always a shortest reconfiguration sequence,
the minimum length of a reconfiguration sequence between I0 and Ir can be
bounded by the length of S ′, that is, 2t′.

Let G− be the graph obtained from G by deleting all vertices in N [G; I0] ∪
N [G; Ir]. Then, by the counterpart of Eq. (1) we have n(G−) ≥ 2t(d + 1), and
hence G− has an independent set I ′k such that |I ′k| = 2t′ (≤ 2t). We now give
the following lemma.

Lemma 4. There exists a shortest reconfiguration sequence S between I0 and
Ir such that I ⊆ I0 ∪ I ′k ∪ Ir for all independent sets I in S.

350 T. Ito et al.

Proof. Let S∗ = 〈I∗0 , I∗1 , . . . , I∗� 〉 be an arbitrary shortest reconfiguration se-
quence between I0 = I∗0 and Ir = I∗� . Then, the proof of Lemma 1 implies
that � ≤ 2t′, as we have mentioned above. Note that some independent sets in
S∗ may contain vertices in V (G) \

(
I0 ∪ I ′k ∪ Ir

)
. Let

V (I0, Ir;S∗) =
⋃

1≤i≤�−1

(
I∗i \

(
I0 ∪ Ir

))
,

that is, V (I0, Ir;S∗) is the set of all vertices that are not in I0 ∪ Ir but appear
in the reconfiguration sequence S∗. Since � ≤ 2t′ and |I∗i+1 \ I∗i | = 1 for all i,
0 ≤ i ≤ � − 1, we have |V (I0, Ir;S∗)| < � ≤ 2t′.

Therefore, since |I ′k| = 2t′, one can replace all vertices in V (I0, Ir ;S∗) with
distinct vertices in I ′k; let S be the resulting sequence. Recall that I ′k is an
independent set of G−, and hence no vertex in I ′k is adjacent with any vertex in
I0 ∪ Ir. Therefore, S is a reconfiguration sequence between I0 and Ir. Note that
any independent set I in S satisfies I ⊆ I0 ∪ I ′k ∪ Ir. Furthermore, the length of
S is equal to that of S∗, and hence S is a shortest reconfiguration sequence. �

We now give the following lemma, which completes the proof of Theorem 4.

Lemma 5. Suppose that n(G) ≥ 4t(d+1). Then, one can find a shortest recon-
figuration sequence between I0 and Ir in time O

(
(4t)2t + n(G) + m(G)

)
.

Proof. We first remark that an independent set I ′k of G− with |I ′k| = 2t′ (≤ 2t)
can be found in time O

(
n(G)+m(G)

)
by the following simple greedy algorithm:

initially, let I ′k = ∅; choose an arbitrary vertex v in G−, and add v to I ′k; delete
all vertices in N [G−; v] from G−, and repeat. Recall that n(G−) ≥ 2t(d+1) and∣∣N [G−; v]

∣∣ ≤ d + 1 for every vertex v in G−. Therefore, this greedy algorithm
always finds an independent set I ′k with |I ′k| = 2t′.

Let G0kr be the subgraph of G induced by the vertex-subset I0∪I ′k∪Ir . Notice
that n(G0kr) = |I0 ∪ I ′k ∪ Ir | ≤ 4t′. Let C0kr be the configuration graph for G0kr

and the constant t′. Since G0kr is an induced subgraph of G, any independent
set I of G0kr is an independent set of G. Then, Lemma 4 ensures that there
exists a shortest reconfiguration sequence S between I0 and Ir such that every
independent set I in S is an independent set of G0kr . Therefore, such a shortest
reconfiguration sequence S between I0 and Ir can be found as a shortest path
in C0kr between the two nodes wI0 and wIr . This can be done in time O

(
(4t)2t

)
,

because the number of nodes in C0kr can be bounded by
(
n(G0kr)

t′
)
= O

(
(4t)t

)
.

In this way, if n(G) ≥ 4t(d + 1), one can find a shortest reconfiguration
sequence between I0 and Ir in time O

(
(4t)2t + n(G) + m(G)

)
in total. �

5 Concluding Remarks

In this paper, we mainly gave three results for the parameterized complexity of
token jumping. We remark that the running time of each of our FPT algo-
rithms is just a single exponential with respect to the number of tokens; further-
more, the parameter d of maximum degree does not appear in the exponent.

On the Parameterized Complexity for Token Jumping on Graphs 351

We also remark that the problem parameterized only by the number of tokens
is in the class XP, that is, the problem can be solved in polynomial time if
the number t of tokens is a fixed constant. To see this, consider the following
algorithm: construct the configuration graph C for a given graph G and the fixed
constant t; and find a (shortest) path in C. Since the number of nodes in C can
be bounded by

(
n
t

)
, the problem can be solved in time O(n2t), where n = n(G).

Therefore, the problem for a fixed number of tokens can be solved in polynomial
time, while the problem remains PSPACE-complete for a fixed maximum degree.

References

1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the diameter of
reconfiguration graphs for vertex colourings. Electronic Notes in Discrete Mathe-
matics 38, 161–166 (2011)

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science 410,
5215–5226 (2009)

3. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings.
J. Graph Theory 67, 69–82 (2011)

4. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity
of Boolean satisfiability: computational and structural dichotomies. SIAM J. Com-
puting 38, 2330–2355 (2009)

5. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343, 72–96 (2005)

6. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters (2009)
7. Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem.

To appear in J. Combinatorial Optimization, doi:10.1007/s10878-012-9562-z
8. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,

R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412, 1054–1065 (2011)

9. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Applied Mathematics 160, 2199–2207 (2012)

10. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2,1)-labelings
in a graph. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 34–43. Springer, Heidelberg (2012)

11. Ito, T., Kawamura, K., Zhou, X.: An improved sufficient condition for reconfigu-
ration of list edge-colorings in a tree. IEICE Trans. on Information and Systems
E95-D, 737–745 (2012)

12. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theoretical Computer Science 412, 5205–5210 (2011)

13. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfig-
urability problems. Theoretical Computer Science 439, 9–15 (2012)

14. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean con-
nectivity problem for k-CNF. Theoretical Computer Science 412, 4613–4618 (2011)

15. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the param-
eterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

Universality of Spiking Neural

P Systems with Anti-spikes

Venkata Padmavati Metta and Alica Kelemenová

Institute of Computer Science and Research Institute of the IT4Innovations
Centre of Excellence, Silesian University in Opava, Czech Republic

Abstract. Spiking neural P systems with anti-spikes (in short, SN PA
systems) are membrane systems that communicate using two types of
objects called spikes and anti-spikes, inspired by neurons communicat-
ing through excitatory and inhibitory impulses. This paper shows that
computational completeness in an SN PA systems can be achieved with
neurons having only two pure spiking rules of the form a → a and a → a
without any forgetting rules. We also construct a small universal SN PA
system with 91 simple neurons i.e., neurons having only one rule of the
form a → a or a → a.

1 Introduction

Spiking neural P system [5] is a neural-inspired computational model based on the
concept of spiking neurons. It consists of a set of neurons placed in the nodes of a
directed graph (arcs representing synapses) and neurons communicate with each
other using only one kind of objects called spikes, identical electrical impulses. The
objects evolve bymeans of standard spiking rules, which are of the formE/ac → a,
where E is a regular expression over {a} and c ≥ 1. The meaning is that a neuron
containing k spikes such that ak ∈ L(E), k ≥ c, can consume c spikes and produce
one spike. This spike is sent to all neurons connected by an outgoing synapse from
the neuron where the rule was applied. There are also forgetting rules, of the form
as → λ with the meaning that s ≥ 1 spikes are removed, provided that the neu-
ron contains exactly s spikes. One neuron is distinguished as the output neuron
and its spikes also exit into the environment, thus producing a binary sequence
called spike train (moments of time when a spike is emitted by the output neuron
are marked with 1, the other moments are marked with 0). The distance between
consecutive spikes is the main way to encode information.

Spiking neural P system with anti-spikes [4] works in the same way as standard
SN P system but deals with two types of objects called spikes (a) and anti-spikes
(a). The spiking rules are of the form E/bc → b′, where b, b′ ∈ {a, a}. If L(E) =
{bc} then the rules are written as bc → b′ and are called pure. The system has four
categories of spiking rules identified by (a, a), (a, a) (anti-spikes are produced from
usual spikes by means of usual spiking rules), (a, a) and (a, a) (rules consuming
anti-spikes can produce spikes or anti-spikes). The latter two rules are generally
avoided as they are quite unnatural. Each neuron in the system has an implicit

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 352–365, 2014.
c© Springer International Publishing Switzerland 2014

Universality of Spiking Neural P Systems with Anti-spikes 353

annihilation rule of the form aa → λ (if an anti-spike meets a spike in a given
neuron, then they annihilate each other (the disappearance of one a and one a
takes no time), and this happens instantaneously in a maximal way.

The problem which “ingredients” are needed to achieve computational com-
pleteness or universality has been a challenging question for these kind of systems
also. Several answers have been given, for instance in [4], it was proved that SN
PA systems with pure spiking rules of categories (a, a), (a, a), and (a, a) with for-
getting rules are universal as number generators. Recently, Song et al. [7] proved
that pure spiking rules of categories (a, a) and (a, a) without forgetting rules , or
spiking rules of categories (a, a) and (a, a) without forgetting rules (the neurons
change spikes to anti-spikes or change anti-spikes to spikes) are sufficient for
universality as number generators. Zeng et al. [9] proved that homogeneous SN
PA systems, i.e., SN PA systems where the rules in every neuron are identical,
are universal.

All these systems consider spikes to represent the number and the number
of spikes present in the neuron corresponding to a register as a function of
the number stored in the register. In this paper, we make use of anti-spikes to
represent the number stored in the register and number of anti-spikes in the
neuron is equal to the number stored in the corresponding register. This avoids
the use of rules of the form a → a in the neuron to check its contents for zero.
Since all neurons corresponding to registers are having the same rule a → a,
and no initial spikes/anti-spikes are present in any neurons corresponding to the
registers, the output registers can be the subject of SUB instructions also.

This paper proves that only two rules of the form a → a and a → a without
any forgetting rules are sufficient for the universality of SN PA systems. It is
also a natural and well investigated topic in computer science to look for small
universal computing devices of various types. This topic was also considered for
SN PA systems. In [8], a universal SN PA system with 75 neurons is constructed
as a device of computing functions in which 125 rules, 6 types of neurons and
8 types of rules are used. In this work, the problem of constructing universal
SN PA systems with a small number of rules is also investigated. Specifically, a
universal SN P system with 91 simple neurons (“simple” in the sense that each
neuron has only one rule, so a total of 91 rules) having the rules of the form
a → a or a → a is constructed for computing functions.

This paper is organized as follows. We start with Section 2 by giving a brief
introduction about the SN P system with anti-spikes. In Section 3, we prove the
computational completeness of SN PA systems with neurons having only two
rules of the form a → a and a → a. Universal SN PA system is constructed in
Section 4.

2 Prerequisites

We assume the reader to be familiar with formal languages and automata theory
and spiking neural P systems. The reader can find details about them in [2], [1]
etc.

354 V.P. Metta and A. Kelemenová

For an alphabet V , V ∗ is the free monoid generated by V with respect to
the concatenation operation and the identity λ (the empty string); the set of all
non-empty strings over V , that is, V ∗ − {λ}, is denoted by V +. The family of
Turing computable sets of natural numbers is denoted by NRE (it is the family
of length sets of recursively enumerable languages) and the family of Turing
computable sets of vectors of natural numbers is denoted by PsRE.

We directly introduce the type of SN PA systems we investigate in this paper.
(SN P system with anti-spikes) A spiking neural P system with anti-spikes, of
degree m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3 , . . ., σm , syn , out), where

1. O = {a, a} is a binary alphabet. a is called spike and a is called an anti-spike.
2. σ1, σ2, σ3 ,. . ., σm are neurons, of the form

σi=(ni, Ri) , 1 ≤ i ≤ m, where

(a) ni ∈ {0, 1, 2, . . .} is the initial number of spikes in the neuron σi;
(b) Ri is a finite set of rules of the following two forms:

(i) E/br → b′ where b, b′ ∈ {a, a}, r ≥ 1 and E is either a regular
expression over a or a;
(ii) bs → λ for some s ≥ 1, with the restriction that bs /∈ L(E) for any
rule E/br → b′ of type (i) from Ri;

There are four categories of spiking rules identified by (b, b′) ∈ {(a, a), (a, a),
(a, a), (a, a)}. Here, we allow rules of category (b, b′) ∈ {(a, a), (a, a)} but
not the other two types.

3. syn ⊆ { 1, 2, 3, . . ., m} × { 1, 2, 3, . . ., m} with (i, i) /∈ syn for 1 ≤ i ≤ m
(synapses among cells);

4. out ∈ {1, 2, 3, . . . ,m} indicates the output neuron.

A rule E/br → b′ is applied as follows. If the neuron σi contains c spikes/anti-
spikes, and bc ∈ L(E), c ≥ r, then the rule can fire, and upon application, r
spikes/anti-spikes are consumed (thus only c− r remain in σi) and a spike/anti-
spike is released, which will immediately exit the neuron. The spike/anti-spike
emitted by neuron σi will pass immediately to all neurons σj such that (i, j) ∈
syn. That means transmission of spike/anti-spike takes no waiting time (since the
rules do not specify a time delay), the spike/anti-spike will be available in neuron
σj in the next step. There is an additional restriction that a and a cannot stay
together, they annihilate each other. If a neuron has either objects a or objects
a, and further objects of either type (maybe both) arrive from other neurons,
such that we end with aq and as inside, then immediately an annihilation rule
aa → λ (which is implicit in each neuron), is applied in a maximal manner, so
that either aq−s or (a)s−q remain for the next step, provided that q ≥ s or s ≥ q,
respectively. This mutual annihilation of spikes and anti-spikes takes no waiting
time and the annihilation rule has priority over spiking and forgetting rules, so
each neuron always contains either only spikes or anti-spikes. If we have a rule
E/br → b′ with L(E) = {br}, then we write it in the simplified form as br → b′

Universality of Spiking Neural P Systems with Anti-spikes 355

and called pure. The rules of the form bs → λ, are forgetting rules. If neuron
contains exactly s spikes/anti-spikes, then forgetting rule bs → λ can be applied
removing s spikes/anti-spikes from the neuron immediately.

The configuration of the system is described by C = 〈β1, β2, . . . , βm〉, where βi

is the number of spikes/anti-spikes present in neuron σi. At any moment, if βi >
0, it means that there are βi spikes in neuron σi; if βi < 0, it indicates that neuron
σi contains βi anti-spikes. The initial configuration is C0 = 〈n1, n2, . . . , nm〉.

A global clock is assumed and in each time unit, each neuron which can use
a rule should do it (the system is synchronized), but the work of the system is
sequential locally: only (at most) one rule is used in each neuron. For example, if a
neuron σi has two firing rules, E1/b

r → b′ and E2/b
c → b′ with L(E1)∩L(E2) �=

∅, then it is possible that each of the two rules can be applied, and in that case
only one of them is chosen non-deterministically. Thus, the rules are used in the
sequential manner in each neuron, but neurons function in parallel with each
other. In each step, all neurons which can use a rule of any type, spiking or
forgetting, have to evolve, using a rule.

Using the rules in this way, we pass from one configuration of the system to
another configuration; such a step is called a transition. For two configurations
C and C′ of Π we denote by C =⇒ C′, if there is a direct transition from C to C′

in Π .
A computation of Π is a finite or infinite sequence of transitions starting from

the initial configuration, and every configuration appearing in such a sequence
is called reachable. A computation halts if it reaches a configuration where no
rule can be used. SN PA systems can be used as computing devices in various
ways. Here we will use them as generators of numbers. When using an SN PA
system in the generative mode, we start from the initial configuration and we
define the result of a computation as the number of steps between the first two
spikes sent out by the output neuron. The output generated is 0 if no spikes exit
the output neuron and the computation halts. The computations and the result
of computations are defined in the same way as for usual SN P systems - but we
consider the restriction that the output neuron produces only spikes, not also
anti-spikes. We denote by N2(Π) the set of numbers computed by Π in this way.

We generalize the SN PA by allowing it to produce k outputs. A k-output
SN PA Π has k output neurons, O1, . . . , Ok. We say that Π generates a k-tuple
(l1, . . . , lk) ∈ Nk if, starting from the initial configuration, there is a sequence of
steps such that each output neuron Oi generates exactly two spikes a a (the times
the pair a a are generated may be different for different output neurons) and the
time interval between the first a and the second a is li. Moreover, after all the
output neurons have generated their pair of spikes, the system eventually halts,
in the following sense: Π halts if it reaches a configuration where no neurons
are fireable. The set of all k-tuples generated is denoted by Ps2(Π). We denote
by N2SaNP (catey, prulek, consq) [Ps2SaNP (catey, prulek, consq)], the families
of all sets N2(Π) [Ps2(Π), resp.] generated by SN PA systems with at most
y categories of spiking rules, at most k ≥ 1 pure rules (only spiking) in each
neuron, with all spiking rules br → b′ having r ≤ q.

356 V.P. Metta and A. Kelemenová

In order to compute a function f : Nk → N , k natural numbers n1, . . . , nk

are introduced into the system by “reading” from the environment a binary
sequence z = 10n1−110n2−1 . . . 10nk−11. This means that the input neuron of Π
receives a spike at each step corresponding to a digit 1 from string z and no spike
otherwise. Note that k+1 spikes are exactly inputted; that is, it is assumed that
no further spike is coming to the input neuron after the last spike. The result
of the computation is encoded in the time distance between the first two spikes
emitted by the system with the restriction that the system outputs exactly two
spikes and halts (immediately after the second spike), hence it produces a spike
train of the form 0b10r−11, for some b ≥ 0 and with r = f(n1, . . . , nk).

3 Computational Completeness of SN PA Systems

We pass now to prove that SN PA systems with neurons having two rules of the
form a → a and a → a are universal as number generators.

In the following proof we use the characterization of NRE by means of register
machines [6]. Such a device - in the non-deterministic version - is a construct M =
(m,H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labeling an ADD instruction), lh is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from
H labels only one instruction from I, thus precisely identifying it. When it is
useful, a label can be seen as a state of the machine, l0 being the initial state,
lh the final/accepting state.

The labeled instructions are of the following forms:

1. li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj ,lk non-deterministically chosen),

2. li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

3. lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers). If we reach the halt
instruction, then the number n present in register 0 (we assume that the registers
are always numbered from 0 to m−1) at that time is said to be generated by M .
It is known (see, [6]) that register machines generate all sets of numbers which
are Turing computable.

It is also possible to consider register machines producing sets of vectors of
natural numbers. In this case a distinguished set of k-registers (for some k ≥ 1)
is designated as the output registers. A k-tuple (l1, l2, . . . , lk) ∈ Nk is generated
if M eventually halts and the contents of the output registers are l1, l2, . . . , lk
respectively. Without loss of generality we may assume that in the halting
configuration all the registers, except the output ones, are empty.

Universality of Spiking Neural P Systems with Anti-spikes 357

We will refer to a register machine with k-output registers (the other registers
are auxiliary registers) as a k-output register machine. It is well known that a
set S of k-tuples of numbers is generated by a k-output register machine if and
only if S is recursively enumerable. Therefore they characterize PsRE.

Theorem 1. Generating spiking neural P systems with anti-spikes with only
two types of rules of the form a → a and a → a are computationally complete,
i.e., N2SaNP (cate2, prule2, cons1) = NRE.

Proof. Let M = (m,H, l0, lh, I) be a register machine, having the properties
specified above; the result of a computation is the number from register 0 and
this register can be decremented during the computation.

What we want to do is to have SN PA Π constructed in such a way (1) to
simulate the register machine M , and (2) to have its output neuron spiking only
twice, at an interval of time which corresponds to a number computed by M .

Instead of specifying all technical details of the construction, we present the
three main types of modules of the system Π , with the neurons, their rules, and
their synapses represented graphically. In turn, simulating M means to simulate
the ADD instructions and the SUB instructions. Thus, we will have a type of
modules associated with ADD instructions, one associated with SUB instruc-
tions, and one dealing with the spiking of the output neuron (a FIN module).
The modules of the three types are given in Figs. 1, 2 and 3 respectively.

For each register r of M , we consider a neuron σr in Π whose contents cor-
respond to the contents of the register. Specifically, if the register r holds the
number n > 0, then the neuron σr will contain n anti-spikes.

With each label li of an instruction in M , we also associate a neuron σli

and some auxiliary neurons σliq , q = 1, 2, 3, . . ., thus precisely identified by
label li. Initially, all these neurons are empty, with the exception of the neuron
σl0 associated with the start label of M , which contains a single spike. This
means that this neuron is activated. During the computation, the neuron σl

which receives a spike will become active. Thus, simulating an instruction li :
(OP (r), lj , lk) of M means starting with neuron σli activated, operating the
register r as requested by OP , then introducing a spike in one of the neurons
σlj , σlk which becomes in this way active. When activating the neuron σlh ,
associated with the halting label of M , the computation in M is completely
simulated in Π ; we will then send to the environment two spikes with time gap
between them equal to the number stored in the first register of M .
Simulating li : (ADD(r), lj , lk) (module ADD in Fig. 1).
The initial instruction, that labeled with l0, is an ADD instruction. As-

sume that we are in a step t when we have to simulate an instruction li :
(ADD(r), lj , lk), with a spike present in neuron σli (like σl0 in the initial config-
uration) and even if some spikes are present in the auxiliary neurons and labels
of the previous instruction executed, they will be cleared in the first step when
σli fires, so simulating the ADD instruction correctly. Having a spike inside,
neuron σli fires producing a spike. This spike will simultaneously go to neurons
σli1

, σli2
, σli3

and σli4
. These four neurons fire at the step t + 1 with neuron

σli3
non-deterministically choosing any of its rules a → a or a → a. These rules

358 V.P. Metta and A. Kelemenová

r

lj

li

lk

a

aa

a

aa
aa

a

a a

a a

a a

a a

aa

a

li1

li6
li5

li4

li3
li2

li8

li9

li7

a

a

aa

aa

Fig. 1. ADD module: simulation of li : (ADD(r), lj , lk)

determine the non-deterministic choice of the neurons σlj or σlk to activate. If
a → a is used in σli3

, then σli5
receives three spikes, σli6

receives a spike and
σli4

sends an anti-spike to σr (thus simulating the increase of the value of reg-
ister r with 1), σli6

uses its rule a → a and sends a spike to σli7
, σli8

, σli9
and

σlk . At the step t + 3, neurons σli7
, σli8

and σli9
fire using their rules a → a

and send three anti-spikes to σli5
(here three spikes and three anti-spikes get

annihilated). At the same step σlk also becomes active, starting the simulation
of the instruction lk.

If σli3
uses the rule a → a at t + 1, then the anti-spike from σli3

and spike
from σli2

gets annihilated in both σli5
and σli6

. Thus at step t+ 2, σli5
has one

spike and σli6
has one anti-spike. Neuron σli5

fires using its rule a → a sending
a spike to σli6

and σlj . In σli6
, the spike gets annihilated with the anti-spike.

At time t + 3, neuron σlj becomes active, thus starting the simulation of the
instruction lj .

Therefore, from the firing of neuron σli , the system adds one anti-spike to neu-
ron σr and non-deterministically fires one of neurons σlj and σlk . Consequently,
the simulation of the ADD instruction is possible in Π .
Simulating li : (SUB(r), lj , lk) (module SUB in Fig. 2).
Assume that we are in a step t when we have to simulate an instruction li :
(SUB(r), lj , lk), with a spike present in neuron σli . Even though some spikes are
present in the auxiliary neurons and labels of the previous instruction executed,
they will be cleared in the first step when σli fires, so simulating the SUB in-
struction correctly. Let us examine now Fig. 2, starting from the situation of
having a spike in neuron li and neuron σr, which holds a number of anti-spikes
(this number is the value of the corresponding register r). The spike of neuron
li goes immediately to two neurons, σli1

and σr. If σr contains any anti-spikes
(this corresponds to the case when register r is non-empty), then the spike gets
annihilated with one anti-spike in σr, which means the contents of register r is

Universality of Spiking Neural P Systems with Anti-spikes 359

r

lj

li

lk

a a

a a

a a

a a

li1

li2
a a

a a

li3

a a

Fig. 2. SUB module: simulation of li : (SUB(r), lj , lk)

decremented by one. In step t + 1 no spike will come out of σr while σli1
fires

and sends a spike to σlj and thus activates the neuron σlj . In step t+ 2, neuron
σlj fires, as requested by simulating the SUB instruction.

If in neuron σr there is no anti-spike (this corresponds to the case when register
r is empty), then the rule a → a is used in σr at step t+1, hence the neuron σlj

receives two spikes and at the same time neurons σli2
and σli3

receive a spike.
In the step t + 2, neurons σli2

and σli3
fire and send two anti-spikes to σlj and

they get annihilated with the two spikes already present in the neuron σlj . In
the same step σlk fires, This means that the simulation of the SUB instruction
is correct, we started from li and we ended in lj if the register was non-empty
and decreased by one, and in lk if the register was empty.
Simulating lh : (HALT) (module FIN in Fig. 3).
Assume now that the computation in M halts, which means that the halting
instruction is reached. For Π this means that the neuron lh gets a spike and
fires. Let t be the moment when neuron lh fires. At that moment, neuron σ0

contains n anti-spikes, for n being the contents of register 0 of M . The spike of
neuron lh reaches immediately to neurons σ0, σlh1

, σlh2
and σlh3

. It is important
to remember that this neuron can be involved in a SUB instruction because we
have the same rule a → a in each neuron that corresponds to any register in M .

If σ0 has no anti-spikes (when the value in register 0 is 0), at moment t+1, four
neurons σlh1

, σlh2
, σlh3

and σ0 fire and all of them spike immediately. Neuron
σlh1

sends a spike to σlh6
, neuron σlh2

sends a spike to σ0, neuron σ0 sends its
spike to σlh4

and σlh5
, while σlh2

and σlh3
exchange their spikes. At the step t+2,

neurons σlh4
, σlh5

, σlh6
and σ0 fire whereas neurons σlh2

and σlh3
will not fire since

they have two spikes in each. The spike from neuron σ0 and the anti-spike from
neuron σlh4

are annihilated in σlh5
. Neurons σout and σlh4

receive two spikes each,
so cannot fire in the next step and the system halts without sending any spikes to
the environment, denoting that the number 0 is generated by the system.

360 V.P. Metta and A. Kelemenová

a

aaaa a

a

out

0

a

a a

a

aa a

lh2
lh3

lh4

lh1

lh

a a

a a

lh5

lh6

Fig. 3. FIN module: simulation of li : HALT

If σ0 has n > 0 anti-spikes (when the value of register 0 is n > 0), we can
observe from the Fig. 3 that at the time t + 1, only three neurons σlh1

,σlh2
,

σlh3
(neuron σ0 will not fire as the incoming spike is annihilated with one of

its anti-spikes). Neuron σlh1
sends a spike to σlh6

, neuron σlh2
sends a spike to

σ0, while σlh2
and σlh3

exchange their spikes. At the step t + 2, neurons σlh2
,

σlh3
, σlh5

and σlh6
fire. The spike from neuron σlh6

is sent to neuron σout. So
the neuron σout first fires in step t + 3 and sends its spike to the environment.
The number of steps from this spike to the next one is the number computed
by the system. In each step from t+ 1 onwards neurons σlh2

and σlh3
exchange

their spikes and σlh2
sends one spike to σ0. The neuron σ0 does not fire until it

has any anti-spikes. This means that the process of removing anti-spikes from
neuron σ0 continues, iteratively having neuron σlh2

sending spikes until σ0 has
no anti-spikes. Thus the neuron σ0 fires at the step t + n + 1 for the first time
(for n being the initial number of anti-spikes of neuron σ0 at time t). Neuron σ0

sends a spike to σlh2
, σlh4

and σlh5
. The remaining steps work in the same way

as in the previous case. At the step t+n+3 neurons σout spikes and the system
halts.

The interval between the two spikes of neuron σout is (t+n+3)− (t+3) = n,
exactly the value of register 0 of M in the moment when its computation halts.
Consequently, N2(Π) = N(M) and this completes the proof. �

This result can have a nice interpretation: it is sufficient for a “brain” (in the form
of an SN P system with anti-spikes) to have neurons sending either excitatory
or inhibitory impulses which behaves non-deterministically in order to achieve
“complete (Turing) creativity”.

Universality of Spiking Neural P Systems with Anti-spikes 361

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),

l3 : (SUB(5), l2, l4),

l2 : (ADD(6), l3),

l4 : (SUB(6), l5, l3),

l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),

l5 : (ADD(5), l6),

l14 : (SUB(5), l16, l17),

l11 : (SUB(5), l12, l13),

l8 : (SUB(6), l9, l0),

l10 : (SUB(4), l0, l11),l9 : (ADD(6), l10),

l12 : (SUB(5), l14, l15),

l17 : (ADD(2), l21),

l13 : (SUB(2), l18, l19),

l15 : (SUB(3), l18, l20), l16 : (ADD(4), l11),

l18 : (SUB(4), l0, lh), l20 : (ADD(0), l0),l19 : (SUB(0), l0, l18),

lh : HALTl21 : (ADD(4), l18),

Fig. 4. A universal register machine Mu from Korec [3]

Theorem 1 can be easily extended by allowing more output neurons and then
simulating a k-output register machine, producing in this way sets of vectors of
natural numbers.

Theorem 2. Ps2SaNP (cate2, prule2, cons1) = PsRE.

4 A Small Universal SN P System with Anti-spikes

A register machine specified above can also compute any Turing computable
function: we introduce the arguments n1, n2, . . . , nk in specified registers r1,
r2, . . . , rk (without loss of the generality, we may assume that we use the first k
registers), we start with the instruction with label l0, and if we stop (with the
instruction with label lh), then the value of the function is placed in another
specified register, rt, with all registers different from rt being empty. The partial
function computed in this way is denoted by M(n1, n2, . . . , nk). In the computing
form, the register machines can be considered deterministic, without losing the
Turing completeness: all ADD instructions li : (ADD(r), lj , lk) have lj = lk (and
the instruction is written in the form li : (ADD(r), lj)).

In [3], the register machines are used for computing functions, with the uni-
versality defined as follows. Let (φ0, φ1, . . .) be a fixed admissible enumeration
of the unary partial recursive functions. A register machine Mu is said to be
universal if there is a recursive function g such that for all natural numbers
x, y we have φx(y) = Mu(g(x), y). In [3], several universal register machines are
constructed, with the input (the couple of numbers g(x) and y) introduced in
registers 1 and 2, and the result obtained in register 0.

We give now in the notation introduced above the specific universal register
machine from [3], which will be used in this section: we haveMu = (8, H, l0, lh, I),
with the instructions (their labels constitute the set H) presented in Fig. 4 (The

362 V.P. Metta and A. Kelemenová

rli

a a

lj li1a a

a a

Fig. 5. Deterministic ADD module li : (ADD(r), lj)

machine from [3] contains a separate check for zero of register 6, of the form l8
: if register(6) = 0, then go to l0, else go to l10; this instruction was replaced
in our set up by l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10)). Therefore, there are 8
registers (numbered from 0 to 7) and 23 instructions (hence 23 labels), the last
instruction being the halting one. The input numbers (the “code” of the partial
recursive function to simulate and the argument for this function) are introduced
in registers 1 and 2, and the result is obtained in register 0.

In the systems constructed in this work, the neurons are quite “simple” in the
sense that each neuron has only one rule.

We proceed now to constructing the universal SN PA system Πu using pure
rules of category (a, a) and (a, a) without forgetting rules, for computing func-
tions. To this aim, we follow a similar way used in previous section but to simulate
a deterministic register machine by an SN PA system. Neurons are associated
with each register and with each label of an instruction of the machine. If a
register contains a number n, then the associated neuron will contain n anti-
spikes. Modules as in Fig. 5 and Fig. 2 are associated with the ADD and the
SUB instructions (each of these modules contains auxiliary neurons which do
not correspond to registers or to labels of instructions).

The work of the system is triggered by introducing a spike in the neuron σl0

(associated with the starting instruction of the register machine). In general, the
simulation of an ADD or SUB instruction starts by introducing a spike in the
neuron with the instruction label (we say that this neuron is activated).

Starting with neurons σ1 and σ2 already loaded with g(x) and y spikes, re-
spectively, and introducing a spike in neuron σl0 , we can compute in our system
Πu in the same way as the universal register machine Mu from Fig. 4; if the
computation halts, then neuron σ0 will contain the φx(y) number of anti-spikes.

There are two additional tasks to solve: to introduce the mentioned anti-
spikes in the neurons σ1, σ2, and to output the computed number. The first task
is covered by module INPUT presented in Fig. 6. The neuron σc5 converts the
spikes it receives from the input neuron into anti-spikes. The neuron σc8 fires
only after receiving the third anti-spike from σc5 , and then it sends a spike to
neuron σl0 , thus starting the simulation of Mu. At that moment, neurons σ1 and
σ2 are already loaded: neuron σc3 sends to neuron σ1 as many anti-spikes as the
number of steps between the first two input spikes, and after that it gets “over
flooded” by the second input spike and is blocked (neurons σc1 and σc2 supply
spikes to σc3 till they receive second spike through σin); in turn, neuron σc5

Universality of Spiking Neural P Systems with Anti-spikes 363

l0

1

a

aa a
a3

a

a aa a

c1

in

aa a

a
a3

a

a a

2

a
a4

a
c8

c7

c6

c5
c4c3c2

a a

Fig. 6. INPUT module

in

l0

10g(x)-110y-11

ay

Module INPUT

Module OUTPUT

Register machine simulator

ag(x)

aφx(y)

out

1 2

0

10φx(y)-11

Fig. 7. The general design of the universal SN PA system

sends anti-spikes to neurons σc6 , σc7 and they start working only after collecting
two anti-spikes. Neurons σc6 and σc7 supply one spike in each step to neuron
σc4 , which loads σ2 with as many anti-spikes as the number of steps between

364 V.P. Metta and A. Kelemenová

2

l17

a a

a aa a

l18

l171

3

Fig. 8. A module simulating two consecutive ADD instructions

7

l7

l5

l8

a a

l51

a aa a

l52

5

a a

a a

a a

l52
a a

l53

a a

Fig. 9. A module simulating ADD − SUB instructions

the last two input spikes and all three neurons stop working after receiving the
third anti-spike from σc5 .

In this construction, we do not need to modify the universal register machine
as in [8] for not allowing subtraction operations on the neuron where we place the
result. So the result will be in the neuron σ0 which corresponds to the register
0 of Mu.

Having the result of the computation in register 0, we can output the result
by means of the module OUTPUT which is same as FIN module in Fig. 3 (the
working of this module is explained in the previous section). The overall design
of the system is given in Fig. 7.

We can check that each neuron in the system Πu has only one rule; that is,
the system Πu is simple. The system Πu has 8 neurons for the 8 registers, 23
neurons for the 23 labels, 9 neurons for the 9 ADD instructions, 39 neurons for
13 SUB instructions, 9 neurons in the INPUT module and 6 neurons in the
OUTPUT module which comes to a total of 94 neurons. This number can be
slightly decreased, by some “code optimization”, exploiting some particularities
of the register machine Mu.

Universality of Spiking Neural P Systems with Anti-spikes 365

First, let us observe that the sequence of two consecutive ADD instructions:
l17 : (ADD(2), l21), l21 : (ADD(3), l18), without any other instruction addressing
the label l21, can be simulated by the module from Fig. 8, and in this way we
save a neuron associated with l21.

The module from Fig. 9 can simulate the consecutive ADD − SUB instruc-
tions l5 : (ADD(5), l6), l6 : (SUB(7), l7, l8). A similar module can be con-
structed to simulate the consecutive ADD-SUB instructions l9 : (ADD(6), l10),
l10 : (SUB(4), l0, l11). So two neurons (associated with the labels l6 and l10)
are saved. We save a total of 3 neurons and get the improvement from 94 to
91 neurons. We state this result in the form of a theorem in order to stress its
importance:

Theorem 3. There exists a universal simple SN PA system with 91 neurons for
computing functions.

5 Conclusion

By using the characterization of types of rules, we were able to show that for
obtaining computational completeness of spiking neural P system with anti-
spikes only two rules of the form a → a, a → a are needed. In this work, the
problem of constructing universal SN PA systems with a small number of rules
is also investigated. The systems constructed in this work has 91 rules of the
form a → a or a → a. It is possible to use less neurons to construct universal
SN PA systems provided that neurons have more types of spiking rules.

References

1. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.
Oxford University Press (2010)

2. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.
Springer, Berlin (1998)

3. Korec, I.: Small universal Turing machines. Theoretical Computer Science 168, 267–
301 (1996)

4. Pan, L., Păun, G.: Spiking Neural P Systems with Anti-Spikes. International Journal
of Computers, Communications and Control 4(3), 273–282 (2009)

5. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta In-
formaticae 71, 279–308 (2006)

6. Minsky, M.: Computation finite and infinite machines. Prentice Hall, Englewood
Cliffs (1967)

7. Song, T., Pan, L., Wang, J., Venkat, I., Subramanian, K.G., Abdullah, R.: Nor-
mal Forms of Spiking Neural P systems with anti-spikes. IEEE Transactions on
Nanobioscience 11(4), 352–359 (2012)

8. Song, T., Jiang, Y., Shi, X., Zeng, X.: Small Universal Spiking Neural P Systems
with Anti-Spikes. Journal of Computational and Theoretical Nanoscience 10(4),
999–1006 (2013)

9. Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neural P systems. Fundamenta
Informaticae 97(12), 1–20 (2009)

Self-stabilizing Minimal Global Offensive

Alliance Algorithm with Safe Convergence
in an Arbitrary Graph

Yihua Ding, James Z. Wang, and Pradip K. Srimani

School of Computing
Clemson University

Clemson, SC 29634, USA
{yihuad,jzwang,srimani}@clemson.edu

Abstract. In a graph or a network G = (V,E), a set S ⊆ V is a global
offensive alliance if each node i ∈ {V −S} has |N [i] ∩ S| ≥ |N [i]−S|. A
global offensive alliance S is called minimal when there does not exist a
node i ∈ S such that the set S −{i} is a global offensive alliance. In this
paper, we propose a new self-stabilizing algorithm for minimal global
offensive alliance. It has safe convergence property under synchronous
daemon in the sense that starting from an arbitrary state, it quickly
converges to a global offensive alliance (a safe state) in two rounds, and
then stabilizes in a minimal global offensive alliance (the legitimate state)
in O(n) rounds without breaking safety during the convergence interval,
where n is the number of nodes. Space requirement at each node is
O(log n) bits.

Keywords: Self-stabilization, Minimal Global Offensive Alliance, Safe
Convergence, Synchronous Daemon.

1 Introduction

Self-stabilization is an optimistic paradigm to provide autonomous adaptability
against an unlimited number of transient faults (transient fault is an event of
corrupting the data but not the program code) in the distributed systems. An
algorithm is self-stabilizing iff it reaches some legitimate state starting from an
arbitrary state [1]. In a self-stabilizing algorithm, each node maintains a set of
local variables, which is defined as local state. The product of the local states
of all nodes in the system is defined as global state. A self-stabilizing algorithm
is usually written as a set of rules at each node. Each rule at a node consists
of a condition and an action. A condition is a boolean predicate involving the
states of the node and its neighbors. If one or more conditions on a node are
satisfied, i.e., some boolean predicates are true, we say the node is privileged.
If a privileged node is selected by the daemon (run time scheduler), it makes
a move by changing its local variables. A detailed exposition of self-stabilizing
algorithm can be found in [2].

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 366–377, 2014.
c© Springer International Publishing Switzerland 2014

Self-stabilizing Minimal Global Offensive Alliance Algorithm 367

Recently, a new concept of safe convergence has been introduced in [3]. In
a traditional self-stabilizing algorithm, the desired global property (hence, the
relevant service in the system) is not guaranteed during the convergence inter-
val; the concept of safe convergence was introduced to limit this inconvenience
to a minimum possible. A self-stabilizing algorithm has the safe convergence
property iff it first converges to a safe state quickly (O(1) time is expected),
and then converges to a legitimate state without breaking safety in the process.
Safe convergence property is especially attractive since it provides a measure of
safety during the convergence interval of the self-stabilizing algorithm. Various
self-stabilizing algorithms with safe convergence have been proposed in the lit-
erature, such as minimal independent dominating set, connected dominating set
and so on [3–6]. Note that all self-stabilizing algorithms with safe convergence
have assumed synchronous daemon; it is not possible to reach a safe state in
constant time using either central or distributed daemon.

In this paper, we are interested in the global offensive alliance of a network
graph. Intuitively, a node is said to be a defender of an adjacent node, if both
the nodes are in the alliance, or both the nodes are not in the alliance. A node
is considered a defender of itself. A node is said to be a attacker of an adjacent
node, if one of them is in the alliance but the other one is not. A node is
called defended if the number of its defenders is not less than the number of its
attackers; and attacked if the number of its attackers is not less than the number
of its defenders. An alliance is called global offensive alliance if all nodes outside
the alliance are attacked [7, 8].

To the best of our knowledge, only [8] presents a self-stabilizing algorithm
for constructing minimal global offensive alliance in an arbitrary network graph;
the algorithm assumes a central daemon (only one privileged node is selected to
move at each step), and uses 1 bit of space at each node. The stabilization time
O(n2), where n is the number of nodes in the network. It does not enjoy the safe
convergence property.

In this paper, we assume a synchronous daemon and nodes with unique IDs
and propose the first self-stabilizing algorithm with safe convergence to compute
the minimal global offensive alliance of an arbitrary network graph; starting from
an arbitrary state, the proposed algorithm first converges to a global offensive
alliance (a safe state, not necessarily the legitimate state) in two rounds, and
then stabilizes to a minimal one (the legitimate state) in O(n) rounds without
breaking safety rule during the convergence interval, where n is the number of
nodes in the network.

2 Model and Terminology

A network or a distributed system is modeled by an undirected graphG = (V,E),
where V is the set of nodes, and E is the set of edges. For a node i, N(i), its
open neighborhood, denotes the set of nodes adjacent to node i; N [i] = N(i) ∪ i
denotes its closed neighborhood. For a node i, N2(i) = ∪j∈N [i]N(j) − {i}, its
2-hop open neighborhood, denotes the set of nodes that are at most distance of

368 Y. Ding, J.Z. Wang, and P.K. Srimani

2 from node i. Each node j ∈ N(i) is called a neighbor of node i and each node
j ∈ N2(i) is called a 2-neighbor of node i.

Consider any graph G = (V,E), where |V | = n and |E| = m. A set S ⊆ V is
a global offensive alliance if each node i ∈ {V −S} is attacked, i.e., |N [i]∩S| ≥
|N [i]−S|. A global offensive alliance S is called minimal iff there does not exist
a node i ∈ S such that S − {i} is a global offensive alliance [9]. We assume that
each node has a unique identifier 1 through n. For example, consider the graph
shown in Figure 1, where the values inside the nodes give the identifiers. n = 6,
m = 8. N(1) = {2, 4}, N [1] = {1, 2, 4}. In this graph, {2, 4, 6}, {1, 2, 3, 5, 6},
and {1, 2, 4, 5, 6} all are global offensive alliances, but only {2, 4, 6} is minimal
among these three global offensive alliances.

1 2 3

4 5 6

Fig. 1. A Graph with 6 Nodes

Execution Model: Execution of the protocol at each node is managed by a
synchronous scheduler (daemon), that selects all privileged nodes in a system
state to move synchronously and atomically in each step, called a round. A node
is privileged in a given system state iff it is enabled to move by at least one
rule of the protocol. If a privileged node is selected by the daemon, it executes
the entire code. The protocol terminates in a system state when no node is
privileged. The protocol assumes a shared-memory model and each node knows
only its own state and the local states of its immediate neighbors as is customary
in self-stabilizing algorithms. The proposed algorithm does not need to know the
size of the network graph.

3 Minimal Global Offensive Alliance with Safe
Convergence

In our proposed self-stabilizing minimal global offensive alliance algorithm with
safe convergence (we call it algorithm MGOASC), each node i, 1 ≤ i ≤ n, maintains
the following variables:

– A boolean flag si; at any time (system state) S is the current set of nodes
with si = 1.

– An integer variable di denotes the difference between the number of nodes
in the closed neighborhood of node i in S and those outside of S, i.e., di =
|N [i] ∩ S| − |N [i]− S|, at any given system state.

Self-stabilizing Minimal Global Offensive Alliance Algorithm 369

– A pointer pi (which may be null) that points to a node j ∈ N [i], indicated
by pi = j. If pi = i for a node i, we say node i has a self-pointer.

– A boolean flag mutexi; node i sets this flag to obtain mutually exclusive
(with respect to its neighbors) right for some activity.

Definition 1. A global system state is the union of the local states of all nodes.
A system state is safe if S = {i ∈ V : si = 1} denotes a global offensive alliance,
i.e., each node j ∈ {V −S} is attacked (dj ≥ 0). A system state is legitimate if
S denotes a minimal global offensive alliance. We denote a global system state by
Σi, i = 0, 1, 2, · · · , where Σ0 denotes the initial arbitrary state and Σr denotes
the system state after the r-th round of the protocol, r = 1, 2, · · · ; r-th round
operates on Σr−1 to generate Σr.

Definition 2. In any system state, minNi of a node i, 1 ≤ i ≤ n, is defined as
the smallest ID node in the closed neighborhood of node i that points to itself,
i.e.,

minNi = min{j|j ∈ N [i] ∧ pj = j},where min{} = null

The value of the logical variable minNi is locally computable at node i in any
system state.

Definition 3. For a node i, a Boolean predicate enteri is defined as:

enteri
def≡ (si = 0) ∧ (di < 0)

Definition 4. For a node i, a Boolean predicate leavei is defined as:

leavei
def≡ (si = 1) ∧ (di ≥ 2) ∧ (∀j ∈ N(i)− S : dj ≥ 2)

Definition 5. A node i is called favored node iff the Boolean predicate
favoredi = 1, where

favoredi
def≡ ∀j ∈ N [i] : pj = i

Definition 6. A node i is called ready iff the Boolean predicate readyi = 1,
where

readyi
def≡ leavei ∧ favoredi ∧ (� ∃j ∈ N(i) : mutexj = 1)

Remark 1. In any system state,

1. For a node i, enteri = 1, iff i �∈ S and i has less attackers than defenders
(i.e., node i is not attacked).

2. For a node i, leavei = 1, iff i ∈ S has at least two more defenders than
attackers, and each neighbor j ∈ N(i) − S has at least two more attackers
than defenders (it is possible that dj ’s are erroneous in some system states).

3. A node i is favored (favoredi is true), iff all nodes in the closed neighborhood
of node i point to node i. Thus, if a node i is favored in a system state, no
node in N2(i) is favored in the same state.

370 Y. Ding, J.Z. Wang, and P.K. Srimani

4. A node i is ready (readyi is true), iff 3 conditions are simultaneously true:
(i) i is a favored node, (ii) leavei is true, and (iii) there does not exist a
neighbor j ∈ N(i) with mutexj = true. Thus, if a node i is ready in a system
state, no node in N2(i) is ready in the same state.

The objective of algorithm MGOASC is to quickly converge to a safe state and
thereafter to transition through safe states to reach the legitimate state to obtain
the minimal global offensive alliance. We assume a synchronous daemon where at
any round all privileged nodes make their moves simultaneously. The underlying
approach is as follows. If a node i is out of S and not attacked, it enters S.
A node i ∈ S leaves S iff it can ensure each neighbor j ∈ N(i) − S at the
beginning of the current round is still attacked after the current round. The
complete pseudo code of algorithm MGOASC is shown in Figure 2. We highlight a
few simple characteristics of the algorithm in the following remark.

RA: if di
= |N [i] ∩ S| − |N [i]− S|
then di ← |N [i] ∩ S| − |N [i] − S|; Update Difference

RB: if (pi
= minNi) ∧ (mutexi = 1)
then {pi ← minNi;mutexi ← 0;} Update Pointer

RC: if leavei ∧ (∀j ∈ N [i] : pj = null)
then pi ← i; Get Self-pointer

RD: if (mutexi = 0) ∧
(
(pi
= minNi) ∨ (leavei ∧ favoredi)

)

then mutexi ← 1; Get mutex
RE: if (mutexi = 1) ∧ readyi

then {si ← 0; pi ← null;mutexi ← 0; } Leave S
RF: if enteri

then si ← 1; Enter S
RG: if ¬leavei ∧ (pi = i)

then pi ← null; Release Self-pointer
RH: if (mutexi = 1) ∧ (pi = minNi) ∧ ¬readyi

then mutexi ← 0; Release mutex

Fig. 2. The Algorithm MGOASC at Node i, 1 ≤ i ≤ n

Definition 7. In a given round a node i is called privileged if it is enabled by
any of the rules of the algorithm. Execution of the algorithm terminates when
in a system state no node is privileged.

Remark 2. In a given round r, r ≥ 1, of execution,

1. Each node i updates its variable di; in system state Σr, each di denotes
correct difference as of Σr−1.

2. A node i enters S by executing rule RF iff enteri is true.
3. If leavei is true, node i cannot immediately leave S. A node i can leave S

(by executing rule RE) iff it is ready (Definition 6) and mutexi = 1.

Self-stabilizing Minimal Global Offensive Alliance Algorithm 371

4. A node cannot acquire a self-pointer by executing rule RB (Update Pointer).
A node i can acquire a self-pointer (pi = i) only by executing rule RC; a
node i can execute rule RC only when all its neighbors have null pointers.

5. A node i must have mutexi = 1 in order to execute either rule RB (Up-
date Pointer) or rule RE (Leave S).

6. If mutexi = 0 and node i is eligible either to update its pointer and/or to
leave S, node i will execute rule RD (Get mutex).

7. If mutexi = 1, then node i will either leave S or update its pointer, iff it
is eligible to do so; in any case it will release the mutex (rule RB, or RE or
RH).

8. If a node i executes rule RE (Leave S) in a round, no node j ∈ N2(i) can
concurrently execute rule RE (Leave S) in the same round since both cannot
be simultaneously ready (Remark 1.4).

9. Consider two adjacent node i and j: if node i leaves S by executing rule RE,
node j cannot update its pointer by executing rule RB in the same round
(since readyi and mutexj cannot be simultaneously be true by Remark 1.4)
and vice versa. Note that two adjacent nodes can update their pointers in
the same round.

4 Correctness

In this section, we first prove that S is a minimal global offensive alliance when
algorithm MGOASC terminates, and then we show the algorithm has safe con-
vergence property in the sense that starting from an arbitrary state, it first
converges to a safe state (in which a global offensive alliance is computed) in
two rounds, and then stabilizes to a legitimate state (in which a minimal global
offensive alliance is computed) in O(n) rounds without breaking safety, where n
is the number of nodes.

Lemma 1. If algorithm MGOASC terminates, then for each node i ∈ V :

(a) di is correct, i.e., di = |N [i] ∩ S| − |N [i]− S|.
(b) mutexi = 0.
(c) pi = null.
(d) enteri = 0 and leavei = 0.

Proof. (a) This is obvious since no node is privileged by the rule RA.
(b) Assume, by contradiction, there exists at least one node j such that

mutexj = 1. We must have pj = minNj (node j is not privileged by rule
RB) and readyj = 0 (node j is not privileged by rule RE); thus, node j must
be privileged by rule RH, a contradiction.

(c) Assume, by contradiction, there exist some nodes, each pointing to itself
and consider, among those nodes, the node j with minimum ID. For each k ∈
N(j), we must have pk = j; if not, for such a node k, pk �= minNk = j (since j
is the minimum ID node pointing to itself) and node k would be privileged by
rule RD. Thus, node j is a favored node; also since it is not privileged by rule

372 Y. Ding, J.Z. Wang, and P.K. Srimani

RG, we must have leavej true. Thus, we get node j is privileged by rule RD
since mutexj = 0 (by part (b)), a contradiction.

(d) No node i is privileged by rule RC or rule RF; the claim follows from part
(a) and (c).

Theorem 1. Starting from an arbitrary system state, if algorithm MGOASC ter-
minates using synchronous daemon, then S is a minimal global offensive alliance.

Proof. First, we show S is a global offensive alliance. Assume, by contradiction,
S is not a global offensive alliance, i.e., there is at least one node i ∈ {V − S}
(si = 0) such that di < 0. Then, enteri = 1 and node i is privileged by the rule
RF (Enter S), a contradiction. Thus S is a global offensive alliance.

Next, we claim S is minimal. Assume otherwise, i.e., there exists a node i ∈ S
such that S − {i} is a global offensive alliance. Since i ∈ S (i.e., si = 1), and
leavei = 0 (Lemma 1(d)), either (1) node i has di < 2, or (2) there exists at
least one neighbor j ∈ N(i)−S with dj < 2. Thus, the removal of i from S (i.e.,
si becomes 0) would make either di < 0 (thus enteri = 1) or dj < 0 for some
neighbor(s) j ∈ N(i)−S (thus enterj = 1). Thus either node i or j is privileged
by the rule RF (Enter S), a contradiction.

Lemma 2. In any system state, if either (a) pi = j for some j ∈ N(i) and node
j is not enabled to execute rule RE (Leave S), or (b) node i is enabled by rule
RB to update its pointer pi, then di ≤ |N [i] ∩ S| − |N [i] − S| after (at the end
of) the current round.

Proof. (a) Since pi = j, no node k ∈ N(i) − {j} is favored (favoredk is false)
in the current state and can leave S; coupled with the fact that node j is not
enabled to leave S, it follows that di ≤ |N [i] ∩ S| − |N [i]− S| at the end of the
current round. (b) the argument is similar along with Remark 2.9. Note: When
node i updates its pointer, it is possible that some neighbor of node i enters S
(hence the inequality).

Lemma 3. Beginning with round 2 of execution, whenever a node i leaves S (by
executing rule RE) in any round, each neighbor j ∈ N(i) − S remains attacked
(|N [j] ∩ S| − |N [j]− S| ≥ 0) at the end of the round.

Proof. When a node i leaves S in round 1, it is possible that dj ≤ |N [j] ∩
S| − |N [j] − S| is false for some neighbor(s) j of node i since initial values of
d-variables are arbitrary in the initial arbitrary illegitimate state.

Assume node i is privileged to execute RE to leave S in round r ≥ 2; favoredi
is true, i.e., pj = i for all j ∈ N [i]. For any such j, consider the round when
pj = i was set for the last time: node i has not executed rule RE from that point
until now; thus, dj ≤ |N [j] ∩ S| − |N [j] − S| (Lemma 2) from that point until
now, since no neighbor of node j can make a Leave move when pj = i. Thus,
dj ≤ |N [j] ∩ S| − |N [j] − S| for all neighbors j ∈ N(i). When node i leaves S,
all its neighbors j ∈ N(i)− S still has N [j] ∩ S| − |N [j]− S| ≥ 0 since no other
neighbors of node j can leave S in the same round (Remark 2.8).

Self-stabilizing Minimal Global Offensive Alliance Algorithm 373

Theorem 2. Starting from any initial illegitimate state, algorithm MGOASC con-
verges to a safe state (S denotes a global offensive alliance, i.e., each node
i ∈ {V − S} is attacked) after 2 rounds.

Proof. We show that each node i ∈ {V −S} is attacked (i.e., N [i]∩S|− |N [i]−
S| ≥ 0) after 2 rounds of execution; we consider two cases:

(a) Consider a node i with si = 0 before and after round 2. Since si remains 0
after the second round, enteri is false (i.e., node i is attacked) at the beginning
of the round. If any S neighbor of node i leaves S in the second round, by
Lemma 3 node i remains attacked at the end of round 2.

(b) Consider a node i that changes si from 1 to 0 by executing rule RE in
round 2. At the beginning of round 2, leavei is true and thus has di ≥ 2; since
node i leaves S in the current round, no neighbor of i can leave S in the same
round (Remark 2.8); thus, node i will have N [i]∩ S| − |N [i]−S| ≥ 0 (i.e., node
i is attacked) after round 2.

Theorem 3. After round 2, algorithm MGOASC maintains safety in all subse-
quent rounds before converging to a legitimate state.

Proof. It suffices to show that starting from a safe state, the system transitions
to another safe state in each round until reaching the legitimate state. The proof
is similar to the one for Theorem 2, we here omit the details.

Lemma 4. Starting from a safe state, no node will ever execute rule RF (Enter
S) in subsequent rounds.

Proof. In a safe state, each node in V −S is attacked, i.e., enteri (Definition 3)
is false for each node i; thus, no node i can execute rule RF (Enter S) in the
current round. The algorithm MGOASC always in the safe state after the second
round (Theorem 3), thus each node in V − S always remains attacked after the
second round. The lemma holds.

Lemma 5. In any system state, two adjacent nodes i and j have self-pointers
(i.e., pi = i and pj = j), then the larger ID node will lose the self-pointer (i.e.,
if say i < j, pj �= j) in at most 2 rounds.

Proof. In the worst case, neither node i nor j has the mutex lock; in the next
round node j will acquire mutex lock by executing rule RD, since pj �= minNj

and in next round node j gets pj �= j by executing rule RB.

Lemma 6. In a safe system state (i.e., Σr, r ≥ 2),

(a) if pi = null, then di ≤ |N [i] ∩ S| − |N [i]− S|.
(b) If two adjacent nodes i and j have self-pointers (i.e. pi = i and pj = j), then

nodes i and j must have concurrently acquired the self-pointers in a previous
round r′, r′ ≤ r.

Proof. (a) If pi = null in Σr, then either (i) pi = null in Σr and node i did not
change pi in round r; or (ii) node i executed either rule RB, RE, or RG in round

374 Y. Ding, J.Z. Wang, and P.K. Srimani

r. In either case, no node j ∈ N(i) can leave S in round r (Remark 2.9). The
claim follows (Remark 2.1). [Note: It is possible that some neighbor of node i
enters S in round r (possible only in rounds 1 and 2), hence the inequality.]

(b) If pi = i but pj �= j, then node j cannot execute rule RC to get the
self-pointer in the next state (Remark 2.4).

Lemma 7. In a safe state Σr, r ≥ 2, for two adjacent nodes i and j, if leavej =
1 ∧ pj = j and pi = i, then leavei = 1.

Proof. Assume otherwise, i.e., leavei = 0. It follows from Lemmas 5 and 6(b)
that nodes i and j had concurrently executed rule RC to get self-pointers either
in round r − 1 or r. There are 2 possible scenarios:

Case 1 [Nodes i and j executed rule RC in the round r− 1]: In Σr−2,
leavei = 1, leavej = 1, pi = pj = null, and for each k ∈ N(i)∪N(j), pk = null
(nodes i and j are enabled for rule RC; Definition 4). We argue that:

(a) Node i can not leave S (execute rule RE) in either round r − 1 or round r
since favoredi = 0 in Σr−2 (pi = null) and in Σr−1 (pj = j).

(b) Any node k ∈ N(i) cannot leave S (execute rule RE) in either round r − 1
or round r since favoredk = 0 in Σr−2 (pk = null) and in Σr−1 (pi = i).

(c) Any neighbor k′ of k ∈ N(i) cannot leave S (execute rule RE) in either
round r − 1 or round r since favoredk′ = 0 in Σr−2 (pk = null) and
readyk′∧mutexk′ = 0 in Σr−1 [there are two probabilities: (i) favoredk′ = 0
in Σr−1: readyk′ = 0 in Σr−1 by Remark 1.4; (ii) favoredk′ = 1 in Σr−1:
pk′ = minNk′ = k′ must be true in Σr−2 and the neighbors of k′ executed
rule RB to change their pointers to k′ in round r − 1 such that favoredk′

becomes 1 in Σr−1. Coupled with the fact that favoredk′ = 0 in Σr−2,
mutexk′ lock cannot be acquired in round r− 1; if node k′ had mutexk′ lock
in Σr−2, it must have reset it in round r − 1 by executing rule RH].

Thus, leavei remains 1 in Σr−1 and Σr (by similar reasoning, leavej remains
1 in Σr−1 and Σr); we arrive at a contradiction.

Case (2) (Nodes i and j executed rule RC in the round r): In Σr−1,
leavei = 1, leavej = 1, pi = pj = null, and for each k ∈ N(i)∪N(j), pk = null
(nodes i and j are enabled for rule RC; Definition 4). Again, it can be shown
that both leavei and leavej remains 1 in Σr after round r (by similar reasoning
as in round r − 1 of the previous case 1), a contradiction.

Definition 8. In any system state,

(a) We define an island I to be a maximal set of nodes {i ∈ V |leavei = 1∧pi =
i} such that the subgraph of G induced by the set I is connected.

(b) We use α to denote the number of islands and β to denote the number of
nodes i with leavei = 1.

Remark 3. In any system state:

1. An island may consist of a single or multiple nodes; a node i with leavei = 1
and pi �= i is not a member of any island.

Self-stabilizing Minimal Global Offensive Alliance Algorithm 375

2. For a node i in an island of size ≥ 2, favoredi = 0 since it has a neighbor j
with pj = j �= i (Definition 5).

3. α ≤ β; α < n; β ≤ n;
4. After round 2, β is non increasing in subsequent rounds (Definition 4 and

Lemma 4); β cannot decrease in a round unless at least one node executes
rule RE in the round.

5. When algorithm MGOASC terminates, α = β = 0.

Lemma 8. If a node i leaves S (by executing rule RE) in a round, node i con-
stitutes a single node island at the beginning of the round.

Proof. Node i leaves S; thus leavei = 1 and readyi = 1 (rule RE) and hence
favoredi = 1. Since pi = i, node i belongs to an island (Definition 8); node i
does not belong to an island of size ≥ 2 (Remark 3.2).

Lemma 9. In any round r, r ≥ 3 (starting from a safe state Σr−1), (a) α can
not decrease if β remains constant; (b) α decreases at least by 1 and at most by
�, if β decreases by � (1 ≤ � ≤ β).

Proof. (a) If β remains constant, no node i changes leavei from 1 to 0. (1) Any
island I cannot disappear since the smallest ID node in I, say node i, cannot
change its pointer in round r (pi = i = minNi in Σr−1 [no neighbor j of i
with leavej = 0 has a self-pointer by Lemma 7 and node i does not have any
island node neighbor with a smaller ID]). (2) Two islands cannot merge into one:
consider any 2 islands I1 and I2; since I1 ∪I2 = ∅, for the two islands to merge,
there must be a node j ∈ N(I1 ∪ I2) such that leavej = 1 in Σr−1 and node j
acquires self-pointer in Σr (j becomes an island node in Σr) by executing rule
RC in round r; this is impossible since j has neighbor(s) with non null pointers
in Σr−1 (see rule RC).

(b) Starting in a safe state Σr−1, if β decreases by � in Σr, � nodes have
changed their leave bits from 1 to 0. Consider any node i whose leavei is
changed from 1 to 0. At least one of the three must occur in round r: (1) node i
leaves S by executing rule RE; (2) some neighbor j ∈ N(i) leaves S by executing
rule RE such that di < 2; or (3) at least one neighbor of node j ∈ N(i)−S leaves
S by executing rule RE such that dj < 2 in (Definition 4). If all � nodes change
their leave from 1 to 0 because of (1), then α is decreased by � by Lemma 8;
If some node(s) i changes leavei from 1 to 0 because of (2) or (3), then it is
possible that node i does not belong to any island. although the change of leavei
on node i causes β to decrease in Σr, it does not cause α to decrease (if node i
is not an island node in Σr−1); but, for the possibilities (2) or (3), at least some
other node must leave S (change s bit to 0) by executing rule RE in the round,
thereby causing α to decrease (Lemma 8). Thus, α decreases by at most � and
at least by 1 in Σr.

Lemma 10. Starting from a safe state with β �= 0,

(a) either α increases in at most 4 next rounds, if β remains constant;
(b) or β decreases in at most 5 next rounds.

376 Y. Ding, J.Z. Wang, and P.K. Srimani

Proof. Starting from a safe state Σr, r ≥ 2, any node i with leavei = 0 and
pi = i must execute rule RG in round r + 1 to make pi = null in Σr+1. Then,
Σr+1 does not have a node j with leavej = 0 ∧ pj = j (otherwise, node j had
leavej = 1 in Σr and hence β has decreased by at least 1 in one round). There
are two possibilities:

(1) There is no island node: In Σr+1, each node i has minNi = null
(no node with self-pointer and Definition 2). Also, since β �= 0, there must be
a node k with leavek = 1; node k, in the worst case, must execute rules RD
(Get mutex), RB (Update Pointer) and RC (Get Self-pointer) in that sequence
to get pk = k. Thus, there is a new island {k}, i.e., α has increased in at most 4
rounds starting in Σr.

(2) There is at least one island node: If there are multiple such island
nodes, let i be the node with minimum ID among those. In the worst case, each
node j ∈ N(i) executes rule RD in round r + 2 to get mutex in Σr+2 and rule
RB in round r + 3 to update their pointers to i; node i becomes favored, i.e.,
favoredi = 1 [Definition 5], in Σr+3. Now, there are two possibilities:

(i) At least one j ∈ N(i) has minNj = k in Σr+3 where k ∈ N(j) (Definition 2),
pk = k, and k < i. Node k must have acquired its self-pointer by executing
rule RC in round r + 3 and so, leavek = 1 ∧ (∀k′ ∈ N(k) : pk′ = null) in
Σr+2, i.e., node k is not connected to any island nodes. Thus, {k} is a newly
formed single node island in Σr+3, i.e., α increases in at most 3 rounds.

(ii) Each j ∈ N(i) has minNj = i in Σr+3; in round r + 4, node i executes rule
RD to get mutex (no neighbor of node i can get mutex); thus, node i is ready
in Σr+4. Node i executes rule RE to leave S in round r + 5; so leavei = 0
in Σr+5, i.e., β decreases in at most 5 rounds.

Lemma 11. After round 2, algorithm MGOASC reaches a safe state with α = β =
0 in at most O(n) rounds under the synchronous daemon.

Proof. In a safe state where α = β, if β decreases by 1, α must decrease by 1
(Lemma 9); β ≤ n and β is non-increasing (Remarks 3.3 and 3.4). Recall that β
decreases by at least 1 in at most 5 rounds (Lemma 10(b)). Thus, from any safe
system state with α = β, the system will be in a safe state with α = β = 0 in
at most 5n rounds. Also, if β remains constant, α must increase by 1 in at most
4 rounds (Lemma 10(a)); in at most 4n rounds, α will be equal to β. Thus, the
system will be in a safe state with α = β = 0 in at most 5n+ 4n = 9n rounds.

Theorem 4. Starting in an arbitrary state, the algorithm MGOASC terminates in
O(n) rounds under the synchronous daemon, where n is the number of nodes in
the graph.

Proof. The system reaches a safe state with α = β = 0 in 9n + 2 rounds in the
worst case (Theorem 2 and Lemma 11). In the next at most 2 rounds all node
pointers will be null and all mutex variables will be 0.

Theorem 5. The algorithm MGOASC is a self-stabilizing algorithm with safe con-
vergence.

Proof. This readily follows from Theorems 2, 3, and 4.

Self-stabilizing Minimal Global Offensive Alliance Algorithm 377

5 Conclusion

We have proposed the first self-stabilizing minimal global offensive alliance al-
gorithm with safe convergence. It is assumed to face a synchronous daemon.
Starting in an arbitrary initial state, the algorithm quickly converges to a safe
state (a state which denotes a global offensive alliance, not necessarily a minimal
one) in two rounds, and then stabilizes to a legitimate state (denoting a mini-
mal global offensive alliance) in O(n) rounds (n is the number of nodes in the
network) without breaking safety during the intermediate state transitions. The
behavior of the nodes is managed by a synchronous scheduler (daemon) where
all nodes enabled by the protocol execute actions simultaneously in a round.

Acknowledgement. The research was partly supported by NSF awards #
CCF-0832582, # DBI-0960586, and # DBI-0960443.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communica-
tions of the ACM 17(11), 643–644 (1974)

2. Dolev, S.: Self stabilization. MIT Press (2000)
3. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm

with safe convergence. In: 20th IEEE International Parallel and Distributed Pro-
cessing Symposium, pp. 25–29 (2006)

4. Cobb, J., Gouda, M.: Stabilization of general loop-free routing. Journal Parallel
Distributed Computing 62(5), 922–944 (2002)

5. Kamei, S., Kakugawa, H.: A self-stabilizing approximation for the minimum con-
nected dominating set with safe convergence. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 496–511. Springer, Heidelberg (2008)

6. Kamei, S., Kakugawa, H.: A self-stabilizing 6-approximation for the minimum con-
nected dominating set with safe convergence in unit disk graphs. Theoretical Com-
puter Science 428, 80–90 (2012)

7. Hedetniemi, S.M., Hedetniemi, S.T., Kristiansen, P.: Alliance in graphs. Journal of
Combinatorial Mathematics and Combinatorial Computing 48, 157–177 (2005)

8. Srimani, P., Xu, Z.: Distributed protocols for defensive and offensive alliances in
network graphs using self-stabilization. In: International Conference on Computing:
Theory and Applications, Kolkata, pp. 27–31 (March 2007)

9. Rodŕıguez, J., Sigarreta, J.: Global offensive alliances in graphs. Electronic Notes
in Discrete Mathematics 25, 157–164 (2006)

A Local-Global Approach

to Solving Ideal Lattice Problems�

Yuan Tian, Rongxin Sun, and Xueyong Zhu

Software School, Dalian University of Technology, P.R. China
{tianyuan ca,zhuxueyong}@sina.com,

sunrongxin7666@163.com

Abstract. We construct an innovative SVP(CVP) solver for ideal lat-
tices in case of any relative extension of number fields L/K of degree n
where L is totally real(i.e., all L’s conjugations are contained in R). The
solver reduces solving SVP(CVP) of the input ideal A in field L to solving
a set of (at most n) SVP(CVP) of the ideals Ai in field Li with relative
degree 1 ≤ ni < n and

∑
i ni = n. Both the solver’s space-complexity and

its time-complexity’s explicit dependence on the dimension (relative ex-
tension degree n) are polynomial. Precisely, our solver’s time-complexity
is poly(n,|S|,NPG,NPT ,Nd,Nl) where |S| is bit-size of the input data and
NPG, NPT , Nd, Nl are the time-complexities to implement some oracles
for significantly simpler problems. If such oracles can be implemented
by efficient algorithms, which is indeed possible in some situations, our
solver will operate in this case only with polynomial time-complexity.

1 Introduction

Lattice problems take important roles in combinatorial optimization, public-key
cryptography and many other fields in computer science[1–5]. In the shortest
lattice vector problem (SVP), a non-zero lattice vector x in BZn is to be found
to minimize |x | on input the lattice basis matrix B with respect to some specific
norm || in Rn. In the closest lattice vector problem (CVP), a lattice vector x is
to be found to minimize |u −x | on input the basis matrix B and a target vector
u in Rn. In recent years, lots of innovative cryptographic schemes and protocols
have been devised with proofs of security under the assumption that there is
not (probabilistic and sometimes quantum) polynomial-time algorithm to solve
arbitrary instances of variants of SVP and CVP.

From a computational hardness perspective, SVP, CVP and other related
variants are NP-hard under deterministic (e. g.,CVP) or randomized (e. g.,SVP)
reductions[4]. Even some approximation variants of these problems are proven to
be NP-hard if the approximation factor is within some specific range. Despite of
these facts, finding new algorithms to solve lattice problems exactly are still in-
teresting and meaningful both because many applications (e. g., in mathematics
and communication theory) involve lattices in relatively small dimensions, and

� This work is supported by China NSF(61370144).

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 378–400, 2014.
c© Springer International Publishing Switzerland 2014

Local-Global Approach to Ideal Lattice Problems 379

because approximation algorithms for high dimensional lattices for which the ex-
act solution is infeasible typically involve the exact solution of low dimensional
sub-problems.

Recently a sub-category of lattices, the ideal lattice, is discovered to have in-
dispensable values in innovative cryptography applications, e. g., the wonderful
fully homomorphic encryption scheme for secure cloud computing[2], stimulat-
ing lots of works in cryptography theory and practices. On the one hand, such
schemes are based-on some computational hardness hypothesis on some prob-
lems in ideal lattices, e. g., SVP or CVP’s hardness, on the other hand, few deep
knowledge is known on these points. Since the ideal lattice has rich intrinsic al-
gebraic properties the general lattice doesn’t have, it’s reasonable to ask whether
its related problems, e. g., SVP and CVP, are really as hard as those of general
lattices, or “how easy” are they in comparison with their counterparts in general
lattices? No matter what the answer (positive or negative) to this question would
be, it will have fundamental significance to ideal lattice theory and applications.

In this paper we work on this question in case of SVP and CVP problems in
an algorithmic approach.

2 Related Works

To find the exact solution to lattice problems, so far three main families of
SVP and CVP solvers exist [3, 6–12]. With our knowledge, there’re no generic
algorithms for ideal lattice problems, except some ones modified from the solvers
for non-ideal lattices which doesn’t essentially exploit the ideal lattice’s algebraic
properties.

Among the solvers in [3, 6–12], MV and Kannan algorithms are deterministic
while AKS algorithms are randomized. All algorithms work in �2-norm (AKS
algorithm can work in other norms, e. g., �∞). The core of MV algorithm[6] is to
compute the Voronoi cell of the lattice[1], whose knowledge facilitates the tasks
to solve SVP and CVP. Kannan algorithm[8] relies on a deterministic procedure
to enumerate all lattice vectors below a prescribed norm or within a prescribed
distance to the target vector. This procedure uses the Grahm-Schmidt orthogo-
nalization of the input lattice basis to recursively bound the integer coordinates
of the candidate solutions.The AKS algorithm[9] is the first single-exponential
time (random) algorithm for SVP.Recently this algorithm has been significantly
improved and the currently best time complexity is 22.465n+o(n)[3]. However,
the AKS variant solver for CVP only finds the (1+ε)-approximate solution for
arbitrary ε > 0 in time complexity bounded by (2 + 1/ε)O(n)[7, 11].

It’s already known that when the lattice dimension n is fixed, there are poly-
nomial time-complicated solvers for lattice problems, e. g.,SVP/CVP. i. e., lattice
problem’s computational hardness only depends on dimension n([3, 6–12]).

Some related works show that there are important differences in computa-
tional complexity between the lattice problems of general and ideal lattices. For
example, some decisional problems of the ideal lattice family with constant root
discriminant is in P while the counterparts of general lattice are NP-hard[13].

380 Y. Tian, R. Sun, and X. Zhu

However, (with our knowledge) there is not search or optimization SVP/CVP
(see the concepts in Sect.3.1) solver exploiting the ideal lattice algebraic fea-
tures and performing significantly better than the best known solvers for general
lattices.

Overview on Innovations of our Approach: Construction and Perfor-
mance
Our algorithms constructed in this paper are to find the exact solutions to SVP
and CVP in ideal lattices. In this paper we only deal with the case of totally
real number field, i. e., all conjugations of the number field to which the input
ideal belongs are contained in R.

Our solver works on the input (L/K,A) where L/K is a totally-real and finite-
degree extension of number field with degree n, A is an (fractional) ideal in L,
K is fixed (and contained in R) and (L,A) is arbitrarily given. In other words,
our solver can work for any finite-degree relative extension, not only the special
case of L/Q (where Q is the rational number field). Furthermore, with some
improvements (in full-version paper) this solver can also work on any Abelian
extension L/K of arbitrary real ground field K (i.e., the Galois group GL/K is
commutative and K is contained in R) while L may not be totally real.

In construction aspects, our solver, by exploiting the relationships between
the so-called local and global number fields, reduces solving SVP(CVP) of the
input ideal A in field L to solving a set of (at most n) SVP(CVP) of the ideals
Ai in field Li with relative degree 1 ≤ ni < n and

∑
i ni = n. Roughly speak-

ing, by tensor-producting L with a local field KP where P is an appropriately
selected (not unique) prime ideal in the ground field K, the tensor product (as a
n-dimensional vector space over the local field KP) can be always decomposed
into a set of sub-spaces of dimension ni < n which are orthogonal each other and∑

i ni = n. Furthermore, this orthogonal decomposition is metric-preserving and
by constructing appropriate injective homomorphisms all operations in interme-
diate local fields can be replaced by those in some intermediate global fields(i. e.,
ordinary number fields), so that the solution to the original problem can be effi-
ciently reconstructed from the solutions to the sub-problems. This procedure can
proceed recursively down to a set of (at most n) sub-problems of ideal lattices
with dimensions as low as possible. In particular, in case of Galois extension
L/K, each recursion can decrease the problem’s dimension by at least half.

In performance aspects, our SVP(CVP) solver’s space-complexity is polyno-
mial. Its time-complexity’s explicit dependence on the dimension (relative ex-
tension degree n of the number fields) is also polynomial. More precisely, our
solver’s time-complexity is

poly(n, |S|, NPG, NPT , Nd, Nl)

where |S| is bit-size of the input data and NPG, NPT , Nd, Nl are the time
complexities to implement oracles for some relatively simpler problems (some of
them are decisional, e. g., ideal’s primality testing in the extended field L). This
feature implies that if such oracles can be implemented by efficient algorithms
(with time-complexity polynomial in n and |S|), which is really possible in some

Local-Global Approach to Ideal Lattice Problems 381

situations, our solver will perform in this case with polynomial time-complexity.
Even if in general there are no efficient implementations for these oracles, this
solver’s time-complexity may still be significantly lower than those for gen-
eral lattices ([3, 6–12]), because the oracles implementations may be only sub-
exponential in time-complexity or even not hard against the quantum computer
(more details in Appendix B).

3 Preliminaries

In this section we present all basic notions and facts fundamental to our work
in this paper. For more details we refer readers to [4](for general theory on lat-
tices), [14–17](for algebraic number theory) and [18] (for abstract algebra, e. g.,
the general notions and facts on (DedeKind) rings, ideals, unique factorization
domains, fields and Galois theory).

3.1 Lattices, SVP and CVP

The set of rational integers is denoted by Z and rational numbers by Q. A
lattice is a finitely generated discrete subset in Euclidean space. More explicitly,
in the Euclidean space Rn with a positive non-singular bilinear form <.,.>, a
n-dimensional rational lattice, denoted Λ(B) where B is a matrix of rank n with
column vectors (b1, . . . , bn), is the set of vectors {x1b1+. . .+xnbn : x1, . . . , xn ∈
Z} where the values < bi, bj > are all rational numbers. The lattice with basis
b1, . . . , bn is denoted Zb1 + . . . + Zbn. A lattice is called integral if < bi, bj >
are all integers.

For any vector u = (u1, . . . , un) in Rn, its norm < u ,u >1/2 is denoted |u |.
It’s easy to verify that the squared norm of any lattice vector in an integral
lattice is always an integer.

Lattice Problems. Given a lattice Λ(B) = Zb1 + . . .+ Zbn, let

λ1(Λ) ≡ min{|x | : x in Λ and non-zero} (1)

be the minimal value of the norms of non-zero lattice vectors in Λ(B). The
optimization shortest vector problem with respect to the norm || is to find λ1(Λ).
The search shortest vector problem is to find a lattice vector x in Λ such that
|x| = λ1(Λ). Given a lattice Λ(B) and a rational target vector u in Qn, let

dist(Λ;u) ≡ min{|x− u| : x in Λ} (2)

be the minimum distance between u and all lattice vectors in Λ. The optimization
closest vector problem with respect to the norm || is to find dist(Λ;u). The search
closest vector problem is to find a lattice vector x in Λ such that |x − u| =
dist(Λ;u).

There are many other lattice-related problems[19, 20]. For example, the cov-
ering radius of a lattice, μ(Λ), is defined as the maximal distance between any
vector and the lattice. The covering radius problem is to find

μ(Λ) ≡ max{dist(Λ;u) : u in Qn} (3)

382 Y. Tian, R. Sun, and X. Zhu

In this paper we focus on the algorithms to solve SVP and CVP. It has been
known that these problems are computationally hard[4, 20].We focus on con-
structing the algorithms for SVP and CVP (both in optimization and search
version) for ideal lattices, a sub-category of the general lattices with rich alge-
braic structures originating from number theory.

3.2 Number Field: Relative Extension and Prime Ideal
Decomposition

Let K be a number field with its integral ring OK(or more generally, a fractional
field of a Dedekind domain OK [17, 18]), L = K(α) is an extension of K by adding
a root α of a polynomial f(x) ∈ OK [x]. f(x) is called α’s minimal polynomial if
it has the minimal degree among the polynomials in OK [x] with α as a root. Such
a polynomial is unique up to a constant factor in OK and is prime (irreducible)
in OK [x]. The minimal polynomial f(x)’s degree is called the degree of field
extension L/Kand denoted by [L : K].

L/K is called relative extension from the ground field K. An equivalent (iso-
morphic) picture about the arithmetic in L is to regard it as the quotient set
of OK [x]/(f(x)) with the operations as polynomial addition, subtraction and
multiplication modulo f(x).

Regarding L as a vector space on K with dimension n = [L : K], we can
introduce the relative trace and norm for any element z in L and denote these
as TrL/K(z) and NL/K(z) respectively[15–17].

Given z ’s minimal polynomial g(t) = (−1)mg0 + g1z + . . . + gm−1t
m−1 +

tm in K[t](hence m|n), z ’s trace and norm can be computed by

TrL/K(z) = −(n/m)gm−1, NL/K(z) = g
n/m
0 (4)

For relative extension L/K, there is an important subset, called OK ’s integral
closure in L, defined as:

OL ≡ {z in L : there exist a0, . . . , an−1 in OK

such that a0 + a1z + . . .+ an−1z
n−1 + zn = 0} (5)

OL is a ring with the following important properties[13, 15–17]:
(1)L is OL’s fractional field.
(2)For any relative extension L/K of degree n, there are exactly n field (rela-

tive) embeddings (injective homomorphisms) mapping L into C which are fixed
in K element-wise, among which ρ1, . . . , ρr1 embed L into R and the other 2r2
ones τ1, . . . , τ2r2 (where each τj is complex conjugate to τj+r2) embed L into C.

With these n K -embeddings σ1, . . . , σn, the trace and norm of an element can
be computed by

TrL/K(z) = σ1(z) + . . .+ σn(z), NL/K(z) = σ1(z) . . . σn(z) (6)

As long as K is a number field, L is also a number field with degree [L : Q] =
[L : K][K : Q] and OL defined in (5) is exactly the set of {z in L: there exist

Local-Global Approach to Ideal Lattice Problems 383

a0, . . . , am−1 in Z such that a0 + a1z + . . . + am−1z
m−1 + zm = 0} where m =

[L : Q]. Therefore any ideal A in OL can be regarded, by the number field L’s
embeddings into C, as a lattice of dimension [L : Q] in R[L:Q] with the positive-
definite and non-degenerate bilinear form

< x, y >≡ σ1(x)σ̄1(y) . . .+ σn(x)σ̄n(y) (7)

where z̄ denotes z’s complex conjugation. When L is totally real, i.e., r2=0 then
< x, y >=TrL/K(xy).

Because L is a number field, as a result, every prime ideal M in OL is maximal
and OL/M is a (finite) field. The important property of the unique factorization
on prime ideals is true for any ideal in OL.

(3)Let P be a prime ideal in OL , generally the ideal POL may be no longer
prime in OL . As an ideal in OL , there is the following law about POL’s de-
composition:

For any prime ideal P in OK , there exist a finite set of prime idealsM1, . . . ,Mr

in OL such that M1 ∩ OK = . . . = Mr ∩ OK = P and POL decomposes into
prime ideals multiplication on and only on these M1, . . . ,Mr:

POL = M e1
1 . . .M er

r (8)

Furthermore, e1f1 + . . . + erfr = [L : K] where fi = [OL/Mi : OK/P]=the
degree of the extension from the finite field OK/P to OL/Mi. Integers e1, . . . , er
are called ramification indices for P on M1, . . . ,Mr (or M1, . . . ,Mr on P).

Remarks on Galois Extension: When L/K is a Galois extension, the decom-
position law (8) can be further refined. In this case we always have e1 = . . . =
er ≡ e and f1 = . . . = fr ≡ f . Furthermore, Galois group GL/K is transitive on
M1, . . . ,Mr, i. e., for any Mi, Mj there exists g in GL/K such that Mi = g(Mj).

3.3 Valuations, p-adic Completions and Local-Global Relations

Section 3.2 presented number theory on the so-called global field. Now we turn
to number theory on the so-called local field.

General Notions and Facts. LetK be a field, R+ be the set of all non-negative
real numbers, a (multiplicative) valuation on K is a mapping |.|: K → R+ with
the following properties:

|xy| = |x||y|; |x| = 0 iff x = 0; |x + y| ≤ |x|+ |y| for any x and y in K

When |n| ≤ 1 for all n = 0,±1,±2,±3, . . ., |.| is called non-Archimedean valu-
ation, otherwise called Archimedean. For non-Archimedean valuation, the third
property in the above is equivalent to the inequality

|x + y| ≤ max(|x|, |y|) for any x and y in K, Or equivalently

|x + y| = max(|x|, |y|) for any x and y in K and |x| �= |y| (9)

384 Y. Tian, R. Sun, and X. Zhu

An equivalent non-Archimedean valuation model is the index valuation, i. e., a
mapping w : |.|:K → R satisfying w(xy) = w(x) + w(y);w(x) = +∞ iff x =
0;w(x + y) ≥ min(w(x), w(y)) for any x and y in K. Obviously, for any a >
1 w(x) = − loga |x| gives the correspondance between these two models.
Note: Hereafter we freely interchange the use of these two valuation models at
convenience.

Two (multiplicative) valuations |.|1 and |.|2 on filed K is called equivalent if
there exists a positive real number a > 0 such that |x|1 = |x|a2 for all x in K. For
two non-Archimedean valuations |.|1 and |.|2, this definition equals the statement
that |x|1 ≤ 1 iff |x|2 ≤ 1 for any x in K.

A valuation |.| is called discrete if the image of |.| is discrete in R.
Given a non-Archimedean valuation |.|(or its equivalent index valuation w)

on field K, the subset

JK ≡ {x in K : |x| ≤ 1} = {x in K : w(x) ≥ 0} (10a)

is a ring with the unique maximal ideal[14, 17]:

MK ≡ {x in K : |x| < 1} = {x in K : w(x) > 0} (10b)

The field JK/MK is called the valuation’s residue class field.
For number field K/Q with degree n = [K : Q] we have the following impor-

tant general facts about valuations on it[14]:
(1)Each (real or complex) Q -embedding σj : K → C derives an Archimedean

(multiplicative) valuation on K by |x|j ≡ |σj(x)| where the latter |.| is the
ordinary complex valuation |z| = ((Rez)2+(Imz)2)1/2. Furthermore, two derived
Archimedean valuations |.|j and |.|i are equivalent iff σj(.) and σi(.) are complex
conjugate each other.

(2)Each prime ideal P in OK derives a discrete non-Archimedean (index)
valuation on K by

wP (x) ≡ e where P e|(x) and P e+1 � (x)

This is called the P -adic valuation. Furthermore, different prime ideals Pi, Pj

derive distinct (inequivalent) P -adic valuations wPi , wPj .
(3)The valuations presented in (1) and (2) enumerates all valuations on the

number fieldK. As a result, there are finite (exactly r1+r2) number ofArchimedean
valuations and infinite distinct non-Archimedean valuations, each corresponding
to a prime ideal.

Completeness and Local Field. Let K be a field with a (Archimedean or non-
Archimedean) valuation |.|. Since |.| derives a metric on K by d(x, y) ≡ |x − y|,
the standard metric-completion procedure derives a |.|-completion on K, denoted
K||, which is also a field with K as a dense subfield in it.

Let K be a number field. The completion by anyone of its Archimedean val-
uations is R or C, depending on whether K is a subfield in R or not. Let P be
a prime ideal in OK , the P -adic completion of K, denoted KP and called K ’s
localization on P (local field), has the following properties[14, 17]:

Local-Global Approach to Ideal Lattice Problems 385

(1)KP is a complete and discrete valued field. Further more, KP /Qp is a
finite-degree extension where p is a prime number such that (p) ≡ pZ = P ∩ Z
and Qp is the p-adic completion of the field of rational numbers Q.

(2)For KP ’s valuation ring (r.f., (10a)) we have

JK,P ≡{x in KP : |x|P ≤ 1} ≡ {x in KP : wP (x) ≥ 0}
={x in KP : ∃ a0, . . . , an−1 in Qp such that wp(ai) ≥ 0

for all and a0 + a1x + . . .+ an−1x
n−1 + xn = 0}

(11a)

Furthermore JK,P is a principal ideal domain with the unique maximal ideal:

MK,P = {x in KP : |x|P < 1} = {x in KP : wP (x) > 0} (11b)

Hence there exists a element π, called KP ’s prime element, such that MK,P =
(π). Actually π can be any element in MK,P with the greatest |.|P -value.

(3)Given an ideal B in JK,P , there exists a unique integer m ≥ 0 such that
B = Mm

K,P . In consequence, all integral ideals in JK,P constitute a chain . . . ⊂
M4

K,P ⊂ M3
K,P ⊂ M2

K,P ⊂ MK,P .
(4)The residue class field of KP , i. e., JK,P /MK,P , is a finite field with char-

acteristic p (the p specified in (1)) and isomorphic to OK/P .
(5)There is a homomorphism Ω mapping the ideals in OK to ideals in JK,P ,

defined as:

Ω(A) = M e
K,P , if P e|A but P e+1 � A; Ω(A) = JK,P if P and A are co-prime

(12)
It’s easy to verify that Ω(AB) = Ω(A)Ω(B) and Ω can be easily prolonged
onto the multiplicative group of fractional ideals on K. Ω “localizes” an ideal
A in global field K to a (principal) ideal Ω(A) in KP and this localization is
non-trivial iff P is a prime factor of A.

Local-Global Relations.Now back to Sect.3.2(3), let both L andK be number
fields and L/K a field extension of degree n = [L : K], P a prime ideal in
OK . There exist a finite set of prime ideals M1, . . . ,Mr in OL and integers
e1, . . . , er ≥ 1 such that :

M1 ∩ OK = . . . = Mr ∩ OK = P

POL = M e1
1 . . .M er

r

e1f1 + . . .+ erfr = n

(13)

where fi = [OL/Mi : OK/P]=the degree of the extension from the finite field
OK/P to OL/Mi.

Let LMj be the Mj-adic completion of L with its valuation ring denoted
by JMj , prime element ηj(i. e.,JMj = (ηj)), j = 1, . . . , r, KP be the P -adic
completion of K with its valuation ring denoted by JK,P and prime element π,
now we can state more important and deep details about this decomposition
law[14]:

386 Y. Tian, R. Sun, and X. Zhu

(1)Each LMj is an extension of KP and [LMj : KP] = ejfj , j = 1, . . . , r. In
particular, each LMj is a vector space on local field KP in dimension ejfj .

(2)For each j, the residue class field of LMj is an extension of the residue class
field of KP with degree fj , i. e., [JMj/(ηj) : JK,P /(π)] = fj .

(3)For each j, the ground field prime element π is decomposed in the extended
local field with ramification index ej , i. e., (π) = (ηj)

ej in JMj .
(4)For each j, there is a prolongation from the P -adic valuation on KP to LMj

specified by

|y|Mj = |NLMj/KP
(y)|1/ejfjP for any y in LMj . (14)

where |.|P denotes the P -adic multiplicative valuation on KP . It’s easy to see
that |y|Mj = |y|P when y is in KP . Furthermore, |y|Mj in (14) is the only
prolongation of |.|P onto LMj .

(5)For each j, LMj ’s valuation ring JMj is exactly the integral closure of KP ’s
valuation ring JK,P , i. e.,

JMj ≡{y in LMj : |y|Mj ≤ 1} ≡ {y in LMj : wMj (y) ≥ 0}
={y in LMj : ∃ a0, . . . , am−1 such that wP (ai) ≥ 0

for all i and a0 + a1x + + am−1y
m−1 + ym = 0}

(15)

(6)Let L = Kω1 + . . . + Kωn and w.l.o.g., all ωi’s are in OK . Denote the
vector space KPω1 + . . . + KPωn on field KP by KP ⊗K L (tensor product on
K) and denote the direct summation between vector spaces by ⊕, there is a
KP -linear isomorphism ψ between KP ⊗L and LM1 ⊕ . . .⊕LMr where each LMi

is a (distinct) vector space on KP in dimension ejfj :

ψ : KP ⊗K L ∼= LM1 ⊕ . . . ⊕ LMr (16)

Furthermore, denote the element corresponding in (16) as y ∼= (y1, . . . , yr)
then for any y in L we have

TrL/K(y) = TrLM1/KP
(y1) + . . .+ TrLMr/KP

(yr) (17a)

NL/K(y) = NLM1/KP
(y1) . . .NLMr/KP

(yr) (17b)

Let y(1) ∼= (y
(1)
1 , . . . , y

(1)
r) and y(2) ∼= (y

(2)
1 , . . . , y

(2)
r), at element level the

isomorphism has:

y(1) ± y(2) ∼= (y
(1)
1 ± y

(2)
1 , . . . , y(1)r ± y(2)r) (18a)

y(1)y(2) ∼= (y
(1)
1 y

(2)
1 , . . . , y(1)r y(2)r) (18b)

Combined with (17a) and (18a) we have

TrL/K(xy) = TrLM1/KP
(x1y1) + . . .+ TrLMr/KP

(xryr) (19)

for L’s any element x ∼= (x1, . . . , xr) and y ∼= (y1, . . . , yr). In other words, (16)
presents an orthogonal decomposition of the KP -vector space KP ⊗K L.

Local-Global Approach to Ideal Lattice Problems 387

(7)Let A be any (integral or fractional) ideal in L, then A is a finitely generated
module on the Dedekind domain. There exist L’s K -basis ω1, . . . , ωn and a set
of K ’s ideals I1, . . . , In such that[18, 21]

A = I1ω1 + . . .+ Inωn (20)

Such ω1, . . . , ωn are called A’s pseudo-basis and in general they are not in A.
Different pseudo-basis share the same cardinality n and it is known how to
transform from one pseudo-basis to another[21].

Let A has a pseudo-basis representation in (20), define JK,P ⊗K A ≡ I
(1)
P ω1+

. . .+ I
(n)
P ωn where I

(i)
P = Ii’s image under the localization mapping Ω in (12) in

K. Let Ωj be the localization mapping in (12) in LMj , i. e., mapping the ideals
in L to ideals in LMj , then we have the following fact.

Theorem 1 [22] If A’s pseudo-basis ω1, . . . , ωn are in OL, then the KP -linear
isomorphism ψ in (16) deduces:

ψ : JK,P ⊗K A ∼= Ω1(A) ⊕ . . .⊕ Ωr(A) (21)

4 Local-Global Algorithm to Solve SVP and CVP in
Ideal Lattices: High Level Descriptions

In this section we construct our algorithms to solve SVP and CVP in ideal
lattices. Only the search version is considered because the optimization version
can be solved in exactly the same way. Furthermore, we only focus on SVP
because the same approach can be easily applied to CVP.

4.1 Problem

The search shortest vector problem in ideal lattice is presented in the following.
Instead of only dealing with the case K/Q, our algorithm works for any finite-
degree relative extension L/K where K is fixed and L is arbitrary, both are
number fields.

Parameter: A number field K.
Input: K ’s extended field L = K(α) with the generator α’s minimal
polynomial f(t) = tn + a1t

n−1 + . . .+ an−1t+ a0 in OK [t], and an ideal
A in L.
Note: In this paper we only deal with the case of totally real number
field, i. e., K is contained in R and all the roots of f (t) are real.

For the ideal A on input, we always assume a given pseudo-basis
representation, i. e., a set of L’s K -basis ω1, . . . , ωn in OL and a set of
K ’s ideals I1, . . . , In such that A = I1ω1 + . . .+ Inωn.
Output: An element y∗ in A such that

TrL/K(y∗2) = min{TrL/K(y2) : all non-zero y’s in A}

Problem SVP(A,L/K)

388 Y. Tian, R. Sun, and X. Zhu

(1)Given L and A on input, find a prime ideal P in OK such that:

POL is not prime in OL; (22a)

P is unramified in OL, i. e., (22b)

all its ramification indices e1 = . . . = er = 1;

P � (OL/OK [α]). (22c)

(2)Given L and P obtained from last step, find the local fields
LM1 , . . . , LMr associated with P ’s all decomposition prime ideals
M1, . . . ,Mr in OL, integers f1, . . . , fr ≥ 1 s.t. :

POL = M1 . . .Mr

fi = [OL/Mi : OK/P]=[LMi ’s residue class field :KP ’s residue class field]

Secondly, find KP -linear isomorphism ψ and its component map-
pings ψ1, . . . , ψr in (16)-(18) where each ψi : L → LMi , i. e., y ∼=
(y1, . . . , yr) means ψ(y) = (ψ1(y), . . . , ψr(y)). (3)Given L, P and
LM1 , . . . , LMr , integers f1, . . . , fr ≥ 1 obtained from last step, find
K ’s extended fields L1, . . . , Lr and field embeddings ϕ1, . . . , ϕr with
ϕi : ψi(L) → Li, s.t.: Each Li is a global field with extension degree

[Li : K] = fi; (23a)

For each i and y in L:

TrLi/K(ϕiψi(y)) = TrLMi/KP
(ψi(y)); (23b)

(4)Given all the results obtained, for each i set λi ≡ ϕiψi : L → Li

and Ai ≡ λi(A) which is an ideal in Li. Do: For each i = 1, . . . , r find a
non-zero x∗

i in Ai s.t.

TrLi/K(x∗2
i) = min{TrLi/K(x2) : all non-zero x ’ s in Ai} (24)

ie, solve the SVP for ideal lattice Ai in field Li in a strictly lower dimen-
sion fi(< n);

Find a x∗
m among x∗

1, . . . , x
∗
r s.t.

TrLm/K(x∗2
m) = min{TrLi/K(x∗2

i) : i = 1, . . . , r};
Find y∗ in A such that

λm(y∗) = x∗
m and λi(y

∗) = 0 for all i �= m; (25)

Output(y*).

Algorithm for SVP(A,L/K): High-Level(1)

4.2 High Level Algorithm

Before going to the technically involved solver construction, we briefly present the
motivation. The idea comes from a simple fact that, although lattice problems
(e. g., SVP, CVP, CRP, etc) are computationally hard in general cases, a subset
of them, in particular the problems of the orthogonal lattice family, can be always
solved with polynomial-complexity algorithms. Of course for a general lattice in

Local-Global Approach to Ideal Lattice Problems 389

Rn neither it is always orthogonal nor it can be even decomposed to a set of
sub-lattices orthogonal each other, however, for ideal lattices originating from
number field, (16)-(21) shows that there exists some “orthogonal decomposition”
structure exploitable to develop a solver more efficient than those of general
lattice problems. Doing such exploitations as far as possible is exactly what will
proceed in this paper.

Now we present the whole algorithm’s logic at a high level, then working out
all technical details in sequel. In the following, all notations are inherited from
Sect.3 and “s.t.” means “such that”. By “global field” we mean any number field
and “local field” means the completion of a number field under some of its prime
ideal induced valuation.

Such obtained y∗ is indeed the solution because (note that all the intermediate
global fields Li’s are totally real, r.f., remark in B.2):

min{TrL/K(y2) : all non-zero y’s in A}
=min{TrLM1/KP

(y21) + . . . + TrLMr/KP
(y2r) : any yi in ψi(A)

and yi = 0 doesn’t hold simultaneously} by(17), (18)and(21)

=min{TrL1/K(x2
1) + . . .+ TrLr/K(x2

r) : any xi in Ai

and xi = 0 doesn’t hold simultaneously} by(23)

= min
1≤i≤r

min{TrLi/K(x2
i) : any xi in Ai and non-zero}

= min
1≤i≤r

TrLi/K(x∗2
i)

Note that in step 2 we don’t need P ’s decomposition prime ideals per se,
but just some information about their local fields LM1 , . . . , LMr where each
LMi = KP [t]/(fi(t)) with some irreducible polynomial fi(t) in KP [t]. In the
low-level constructions it can be seen that even fi(t) is not needed but just the
polynomial hi(t) = fi(t) mod P in K[t] instead

In conclusion, this algorithm reduces an ideal lattice SVP instance of dimen-
sion n to a set of r(≤ n) ideal lattice SVP instances of strictly lower dimensions.
It’s already known that lattice problem’s computational hardness is only domi-
nated by its dimension n (in other words, there are known algorithms in polyno-
mial time and space complexity to solve lattice problems like SVP and CVP for
any fixed dimension[3–5, 7–9, 23]), this feature of our algorithm is significantly
helpful to raise the solver’s efficiency in solving ideal lattice SVP.

For all those derived sub-instances the ground field are all K, the same as
that in the original SVP instance, so (24) in step 4 can be recursively solved
by this algorithm down to some appropriately lower dimensions, calling some
existed solver at these levels or continue the recursion down to 1-dimensional
SVP sub-instances. More details are discussed in Appendices.

390 Y. Tian, R. Sun, and X. Zhu

4.3 Complexity

To construct the complete algorithm, we introduce the following oracles:

Oracle-PGK where K is a number field: Generates a prime ideal at random in
OK . The input is void and each output is probabilistically independent of any
others.
Oracle-PTL(M) where L is a number field: on input any ideal M in OL, tests
whether M is prime or not.
Oracle-dK(L): On input any L where L/K is a number field extension of finite
degree, outputs the relative discriminant dL/K , an integral ideal in OK which
is the greatest common divisor of det(TrL/K(aiaj)) of all K-linear independent
integers a1, . . . , an in OL.
Oracle-lK(L, α): On input any L = K(α) where L/K is a number field extension
with finite degree n, outputs (OL/OK [α]), the cardinality of the finite quotient
set OL/OK [α].

How to use these oracles is presented in the Appendix B.
Let |S| denote the input size of the ideal lattice Problem SV P (A,L/K),

NPG, NPT , Nd and Nl denote the time-complexities to implement Oracle-PGK ,
Oracle-PTL, Oracle-dK and Oracle-lK in the algorithm. From the constructions
in Sect.4 and Sect.B, it’s easy to see that all the subroutines and operations
in the algorithm are only those with time and space complexity polynomial
in the input size, except the above four oracles which intrinsic computational
complexity may be non-polynomial. Furthermore the recursion depth of the (high
level) algorithm, hence the number of calls to all those oracles, is only O(n) where
n = [L : K]=the dimension of the input ideal lattice A. In summary, we can
have the following conclusions (details in the appendix B).

Theorem 2 (1)Given any number field K contained in R, there exists the algo-
rithm to solve (exactly) SVP on input any totally real extended field L and ideal
A in OL with time complexity

poly(n, |S|, NPG, NPT , Nd, Nl) (26)

and space complexity poly(n, |S|) where n = [L : K]. (2)For CVP of ideal lattices,
we have exactly the same conclusion.

For the case of L/Q where Q is the rational number field, some of the oracles are
known to have efficient implementations or can be efficiently reduced to others
(r.f. B.4-B.5), so we have:

Corollary 3 (1)There exists the algorithm to solve (exactly) SVP on input any
totally real number field L and ideal A in OL with time complexity

poly(n, |S|, NPT , Nd)

and space complexity poly(n, |S|) where n = [L : Q]. (2)For CVP of ideal lattices,
we have exactly the same conclusion.

Local-Global Approach to Ideal Lattice Problems 391

Notice that in this case only the oracle to do ideal’s primality testing in the
extended field and the oracle to compute the extended field’s discriminant are
needed, the former’s hardness is reasonably expected significantly lower than
SVP/CVP and the latter’s hardness is known at most as hard as rational integer
factorization.

5 Conclusion and Future Works

We construct an innovative SVP(CVP) solver for ideal lattices in case of any
relative extension of number fields L/K of degree n where L = K(α) is totally
real. By this construction, solving SVP/CVP of ideal lattices is efficiently re-
duced to solving SVP/CVP of strictly lower dimensional ideal lattices and the
problems of generating prime ideals in the ground field K, testing the ideal’s
primality in the extended field L, calculating the relative discriminant dL/K and
the cardinality of OL/OK [α]. The solver’s space-complexity is polynomial and
its time-complexity’s explicit dependence on the dimension n is also polynomial.

As a result, the first open problems are to construct the algorithms to im-
plement the above oracles, which also have independent values in theory and
applications. The second and more interesting open problem is that, for some
of the oracles computationally hard to implement, whether its hardness can be
still preserved against the quantum computing model. An answer to this problem
will imply whether the ideal lattice problems’ hardness is solid for post-quantum
cryptography, although the answer is believed to be Yes for the general lattice
problems’ hardness.

References

[1] Sloane, N.J., Conway, J., et al.: Sphere packings, lattices and groups, 3rd edn.
Springer (1998)

[2] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. 41st ACM
STOC, pp. 169–178 (2009)

[3] Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159–190. Springer, Heidelberg
(2011)

[4] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic
perspective. Kluwer Academic Publishers, Boston (2002)

[5] Nguyen, P.Q., Valle, B.: The LLL algorithm: survey and applications. Springer
(2009)

[6] Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on voronoii cell computations. SIAM J. Comput.
(2012) (Special Issue on STOC 2010)

[7] Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest
lattice vector problem. In: IEEE Conference on Computational Complexity, pp.
53–57 (2002)

[8] Kannan, R.: Minkowski’s convex body theorem and integer programming. Math-
ematics of Operations Research 12(3), 415–440 (1987)

392 Y. Tian, R. Sun, and X. Zhu

[9] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the Thirty-third Annual ACM Symposium on
Theory of Computing, pp. 601–610. ACM (2001)

[10] Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathematics, 781–
793 (2004)

[11] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology 2(2), 181–207 (2008)

[12] Kannan, R.: Lattice translates of a polytope and the frobenius problem. Combi-
natorica 12(2), 161–177 (1992)

[13] Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Proc. STOC, pp. 478–487 (2007)

[14] Hasse, H.: Number theory, 3rd edn. Springer (1969)
[15] Hecke, E.: Lectures on the theory of algebraic numbers. Springer (1981)
[16] Ireland, K., Rosen, M.I.: A classical introduction to modern number theory.

Springer (1990)
[17] Lang, S.: Algebraic number theory, 2nd edn. Springer (1994)
[18] Rotman, J.J.: Advanced modern algebra. Prentice-Hall Inc. (2002)
[19] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with

errors over rings. Springer (2010)
[20] Micciancio, D.: Efficient reductions among lattice problems. In: Proc. SODA 2008,

pp. 84–93 (2008)
[21] Cohen, H.: Advanced topics in computational number theory. Springer (2000)
[22] Li, W.C.W.: Number theory with applications. World Scientific, Singapore (1996)
[23] Haviv, I., Regev, O.: Hardness of the covering radius problem on lattices. In: IEEE

CCC 2006, pp. 145–158 (2006)
[24] Pohst, M., Zassenhaus, H.: Algorithmic algebraic number theory. Cambridge Uni-

versity Press (1989)
[25] Roblot, X.F.: Polynomial factorization algorithms over number fields. Journal of

Symbolic Computation 2002(11), 1–14 (2002)
[26] Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composi-

tion. SIAM Journal on Computing 40(6), 1767–1802 (2011)
[27] Cohen, H.: A course in computational algebraic number theory. Springer (1993)
[28] Schoof, R.: Four primality testing algorithms. In: Algorithmic Number Theory:

Lattices, Number Fields, Curves and Cryptography, pp. 101–126. Cambridge Uni-
versity Press (2008)

Appendix

A Remarks on the High-Level Algorithm

(1)For CVP of ideal lattices, i. e., on input the totally real extended field L =
K(α), ideal A in L and an element z in L, to find y∗ in A s.t.

TrL/K((z − y∗)2) = min{TrL/K((z − y)2) : all y′s in A}

Local-Global Approach to Ideal Lattice Problems 393

Because:

min{TrL/K((z − y)2) : all non-zero y’s in A}
=min{TrLM1/KP

((z − y1)
2) + . . .+ TrLMr/KP

((z − yr)
2) :

any yi in ψi(A)} by(17), (18), (21)

=min{TrL1/K((λ1(z)− x1)
2) + . . . + TrLr/K((λr(z)− xr)

2) :

any xi in Ai} by(23)

= min
1≤i≤r

min{TrLi/K((λi(z)− xi)
2) : any xi in Ai}

= min
1≤i≤r

TrLi/K((λi(z)− x∗
i)

2)

solving the CVP of ideal lattices can be done by a similar algorithm following
the logics of that for SVP. For this reason, we will only focus on solving SVP
hereafter.
(2)In the first step, if such a prime ideal P is found that completely splits in the
extended field L, i. e., POL = M1 . . .Mn, then solving the SVP instance in this
case is reduced to solving n 1-dimensional SVP instances of some ideals in K.
(3)In case of Galois extension L/K, the decomposition law (22) will have e1 =
. . . = er ≡ e = 1 and f1 = . . . = fr ≡ f . Since ref = n and r ≥ 2, we always
have f = n/r ≤ n/2, i. e., each reduction can decrease the instance’s dimension
by at least half and at most O(log n) recursions are needed.

For example, supposing that each recursion reduces the dimensions (the in-
termediate fields’ extension degrees on K) by half, then after m recursions the
original n-dimensional SVP instance will be decomposed to 2m number of n/2m-
dimensional SVP instances. As a result, the time complexity would be at most
2m2O(n/2m) by calling some single-exponential time-complexity generic solvers
on these n/2m-dimensional SVP instances(e. g., the elegant solver in [6]), sub-
stantially more efficient than the time-complexity of 2O(n) if the n-dimensional
original instance is directly solved.
(4)In the case of Galois extension L/K, the fact that Galois group GL/K is tran-
sitive on M1, . . . ,Mr in (22), i. e., for any Mi, Mj there exists g in GL/K such
that Mi = g(Mj), can significantly simplify lots of details in our algorithm’s
construction.
(5)It can be proven that (i)If the input number field L is a Galois extension of
the ground field K then all the intermediate global fields Li’s in the algorithm
can be constructed as K’s Galois extension. (ii)For such input complex number
field L that L/K is Galois and σ(ȳ)=σ̄(y) for all the σ’s in the Galois group
GL/K and all y’s in L, all the intermediate global fields Li’s in the algorithm
can be constructed with the same above properties as L. In the above situation,
the Euclidean metric on the ideal lattice A is TrL/K(yȳ) and as a result our
solver can apply to such input (L/K,A), particularly when L/K is the Abelian
extension and K is real (contained in R).

All the above details are further elaborated in the full-version paper.

394 Y. Tian, R. Sun, and X. Zhu

B Low Level Details in the Algorithm

Now we turn from the high-level descriptions to low-level technical details, each
step discussed in a subsection. We begin with the relatively easy step 2, 3 and
 4 and finally end with step 1.

B.1 Solving Subproblems in Step�2

In this step we solve such problems: GivenL = K(α) with α’s minimal monic poly-
nomial f(t) ∈ K[t] and unramified prime ideal P in OK where P � (OL/OK [α]),
firstly, find irreducible polynomialsh1(t), . . . , hr(t) ∈ K[t] s.t.hi(t)=fi(t) mod P
where LMi = KP [t]/(fi(t))’s are local fields associated with P ’s all decomposition
prime ideals M1, . . . ,Mr ⊂ OL. Note that in this situation naturally (i. e.,due to
P ’s unramification) each deghi(t) = degfi(t) = [OL/Mi : OK/P]=[LMi’s residue
class field : KP ’s residue class field]. Secondly, find KP -linear isomorphism ψ and
its component mappings ψ1, . . . , ψr in (16)-(18) where each ψi : L → LMi , i. e.,
y ∼= (y1, . . . , yr) means ψ(y) = (ψ1(y), . . . , ψr(y)).

Decompose f(t) mod P by calling any appropriate polynomial fac-
torization algorithm modulo the prime ideal(e. g., those in [21, 24, 25]),
i. e., to compute distinct monic irreducible polynomials h1(t), . . . , hr(t) ∈
(OK/P)[t](hence irreducible in K[t]) s.t.

f(t) = h1(t), . . . , hr(t) mod P (27)

Solution to the 1st sub-problem:

Proof of the solution’s correctness : Suppose in KP [t] there is the factorization of
f(t):

f(t) = f1(t) . . . fs(t) (28)

where f1(t), . . . , fs(t) ∈ KP [t] are distinct monic irreducible polynomials. By the
famous Hensel’s lemma [14](and OK/P is the residue class field of KP) it follows
that r = s and hi(t) = fi(t) mod P for i = 1, . . . , r and since hi(t)’s and fi(t)’s
are all monic, we have degfi(t) = deghi(t).

In addition, under the condition P � (OL/OK [α]) we have [24, 25]:

POL = M1 . . .Mr

where each prime ideal factor Mi = (P, hi(α)) in OL. In particular, each Mi-adic
local field LMi = KP [t]/(fi(t)) and [LMi : KP] = degfi(t) = deghi(t).

Remark on the Polynomial Factorization Algorithm for (27)
(27) can be solved via lots of algorithms, for example, the algorithm in [25]
is a good solver which time-complexity is polynomial in the degree n and the
number of basic arithmetic operations in the (finite) field OK/P . It’s also an
elegant random algorithm which success probability is at least 4/9. The most
recently available factorization algorithm is [26], e.g.,in case of K=Q (here P is
a prime integer) its time-complexity is only O(n1.5logP + n(logP)2).

Local-Global Approach to Ideal Lattice Problems 395

For any y(t) ∈ KP [t]/(f(t)) = KP ⊗K L, set ψ(y) =
(ψ1(y), . . . , ψr(y)) where

ψi(y(t)) ≡ y(t) mod fi(t) (29)

Solution to the 2nd sub-problem:

Proof of the solution’s correctness : By KP ⊗K L = KP ⊗K K[t]/
(f(t)) = KP [t]/(f(t)) and (28), it follows from the Chinese Remainder The-
orem that there is isomorphism

KP ⊗K L ∼= KP [t]/(f1(t)) ⊕ . . .⊕ KP [t]/(fr(t)) = LM1 ⊕ . . .⊕ LMr

where the KP -linear isomorphism ψ’s components ψi(y(t)) ≡ y(t) mod fi(t),
i = 1, . . . , r and obviously ψi(y ± z) ≡ ψi(y) ± ψi(z), ψi(yz) ≡ ψi(y)ψi(z)
in LMi for any y = y(t), z = z(t) in LMi and i. Furthermore, T (y)z ≡ yz =
y1z1⊕. . .⊕yrzr = T (y1)z1⊕. . .⊕T (yr)zr, i. e., there is always the diagonalization
T (y) = T (y1)⊕ . . .⊕T (yr) so (17) holds (but (17b) is not needed). In particular,
each ψi’s restriction on L can be computed by:

ψi(y(t)) ≡ y(t) mod hi(t), for any y(t) ∈ K[t]/(f(t)) = L (30)

and ψi(L) = Li.

B.2 Solving Subproblems in Step�3

Given L, unramified prime ideal P in OK and local fields associated with POL’s
all prime factors M1, . . . ,Mr in OL, ı.e., LM1 , . . . , LMr each with an irreducible
polynomial hi(t) in K[t] s.t. hi(t) = fi(t) mod P and LMi = KP [t]/(fi(t)),
integers f1, . . . , fr ≥ 1, we need to find K’s extended fields L1, . . . , Lr and field
embeddings ϕ1, . . . , ϕr satisfying (23). We solve this for each i = 1, . . . , r(r ≤ n)
so the sub-problem is re-specified as:

Given L, unramified prime ideal P in OK and a local field associated with one
of POL’s prime factor M in OL, i. e., LM with an irreducible polynomial hM (t)
in K[t] s.t. hM (t) = fM (t) mod P and LM = KP [t]/(fM (t)) of extension degree
f ≥ 1, find K ’s extended (global) field L∗of degree [L∗ : K] = [LM : KP] and
a field embedding ϕM : ψM (L) → LM where ψM denotes the ψ’s component-
mapping on LM s.t. TrL∗/K(ϕMψM (y)) = TrLM/KP

(ψM (y)) for any y in L∗.

Set L∗ ≡ K[t]/(hM (t)) and ϕM = id. (31)

Solution:

Proof of the solution’s correctness : Obviously L∗ is global because hM (t) ∈ K[t].
Now prove L∗ is dense in LM and [L∗ : K] = [LM : KP]. Since LM =
KP [t]/(fM (t)) is a unramified (local field) extension with extension degree
f = degfM (t) and fM (t) is irreducible in KP [t] with leading coefficient 1,

396 Y. Tian, R. Sun, and X. Zhu

hM (t) = fM (t) mod P so by Hensel lemma hM (t) is irreducible in (OK/P)[t]
with the same degree f and leading coefficient 1. In consequence[13, Chapter 14;
16, Chapter2], this unramified extension LM/KP induces a finite field extension
OL/M = (OK/P)[t]/(hM (t)) of the same degree f and vice versa, a one-to-one
correspondence up to isomorphism.

As a result, we have KP [t]/(fM (t)) = KP [t]/(hM (t)) and in particular hM (t)
is irreducible in K[t] so [L∗ : K] = f = [LM : KP]. By definition L∗ =
K[t]/(hM (t)) we have that L∗ is densely contained in the field KP [t]/(hM (t)) =
KP [t]/(fM (t)) = LM . Furthermore, KP ⊗K L∗ = KP [t]/(hM (t))
= KP [t]/(fM (t)) = LM so TrL∗/K(y) = TrLM/KP

(y) for any y in L∗ by (16).
Finally, ψM (L) = L∗ so ϕM = id.

Remark: If L is totally real, so is L∗. In fact, every image of L under the
conjugate embedding σ is real so for L’s any prime ideal M,

√
−1 is not in the

σ(M)-adic completeness of σ(L), i. e.,
√
−1 is not in σ(LM). As a result,

√
−1 is

not in σ(L∗) which is dense in σ(LM), i. e., L∗ is real.

B.3 Solving Subproblems in Step�4

In step 4 we need to solve two sub-problems. Firstly, given an ideal A (with its
pseudo-basis) in L and a surjective homomorphism ψm : L → Lm, compute the
ideal ψm(A) in Lm. Secondly the sub-problem (25), i. e., given x∗(t) in Lm =
K[t]/(hm(t)) find y∗(t) in L s.t.

y∗(t) = x∗(t) mod hm(t), y∗(t) = 0 mod hj(t) for all j �= m (32)

(Ideal’s homomorphism image).On input an ideal A with the pseudo-
basis representation,i. e., a set of L’ s K -basis ω1, . . . , ωn in OL and a
set of K ’s ideals I1, . . . , In such that A = I1ω1 + . . . + Inωn, do:

Compute bi = ψm(ωi), i = 1, . . . , n.

Find the maximal subset of K -linear independent members, w.l.o.g.,
denoted b1, . . . , bdm where dm = [Lm : K], and the integers β, λij in OK

s.t.
βbi =

∑
1≤j≤dm

λijbj i = dm + 1, . . . , n

(e. g., this step can be accomplished by Gauss elimination algorithm
regarding the bi’s as vectors in the dm-dimensional K -linear space Lm);

Compute the ideal Jj = βIj +
∑

1+dm≤i≤n λijIi for each
j = 1, . . . , dm;

Compute and output the ideal

ψm(A) =
∑

1≤j≤dm

Jjbj/β.

Solution to the 1st sub-problem

Local-Global Approach to Ideal Lattice Problems 397

Proof of the solution’s correctness : Since A = I1ω1 + . . . + Inωn and ψm is a
K -homomorphism, we have ψm(A) = I1b1 + . . . + Inbn so

βψm(A) =βI1b1 + . . .+ βIdmbdm + Idm+1βbdm+1 + . . .+ Inβbn

=βI1b1 + . . .+ βIdmbdm

+ Idm+1

∑
1≤j≤dm

λdm+1,jbj + . . .+ In
∑

1≤j≤dm

λn,jbj

=
∑

1≤j≤dm

(βIj +
∑

1+dm≤i≤n

λijIi) =
∑

1≤j≤dm

Jjbj.

and note that bi’s are all in OLm since ωi’s are all in OL.

Find g∗(t) in K[t] s.t.

g∗(t) = x∗(t) mod hm(t), g∗(t) = 0 mod hj(t) for all j �= m

by the standard algorithm derived from Chinese Remainder Theorem.
Then set y∗(t) ≡ g∗(t) mod f(t)

Solution to the 2nd sub-problem:

The solution’s correctness can be verified by direct calculations.

B.4 Solving Subproblems in Step�1

Now we turn to this problem: given L and A on input, find a prime ideal P in
OK such that:

POL is not prime in OL; (33a)

P is unramified in OL, i. e., all its (33b)

ramification indices e1 = . . . = er = 1;

P � (OL/OK [α]). (33c)

Before constructing the solver, we specify the following oracles at first.
Oracle-PGK where K is a number field: Generates a prime ideal at random

in OK . The input is void and each output is probabilistically independent of any
others.

Orcale-PTL(M) where L is a number field: on input any ideal M in OL, tests
whether M is prime or not.

Oracle-dK(L): On input any L where L/K is a number field extension of finite
degree, outputs the relative discriminant dL/K , an integral ideal in OK which
is the greatest common divisor of det(TrL/K(aiaj)) of all K-linear independent
integers a1, . . . , an in OL.

Oracle-lK(L, α): On input any L = K(α) where L/K is a number field
extension with finite degree n, outputs (OL/OK [α]), the cardinality of the finite
quotient set OL/OK [α].

398 Y. Tian, R. Sun, and X. Zhu

(I) Compute the relative discriminant dL/K= Oracle-dK(L);
Compute l=Oracle-lK(L, α):

(II) Do{
P=Oracle-PGK ; /*generate prime ideal P in OK*/

}while (P |dL/K or P |l); /*equivalently, dL/K is a subset of P or
l ∈ P .*/

(III) If Orcale-PTL(POL) is true /*i. e., P is prime in OL */
Then goto II;
output(P);

Solution

Proof of the solution’s correctness By general algebraic number theory, a prime
ideal P in OK is ramified in the integral closure OL of the field extension L/K
iff it divides the relative discriminant dL/K [14, 15, 17]. As a result, the output
prime ideal P is unramified in OL and obviously satisfies all other requirements
in (33).

Remarks on Implementation of the Oracles: In general, how to implement
all the above oracles is not completely clear with our best knowledge. However,
in the important case that L = Q(α) ∼= Q[t]/(f(t)) where the polynomial f(t)
is monic and irreducible in Z[t], K = Q (hence OK = Z), we can have further
arguments about their implementations.
(1)Oracle-lQ(L, α) can be completely implemented by Oracle-dQ(L). If fact,
in this case there is the formula

 (OL/Z[α]) = |NL/Q(f
′(α))/dL/Q|1/2 (34)

where |.| is the ordinary absolute value.

Proof. When L = Q(α) ∼= Q[t]/(f(t)), (due to the fact that OK = Z is a
principal ideal domain) there exist a set of integral basis ξ1, . . . , ξn s.t. OL =
Zξ1 + . . . + Zξn and the determinant dL/Q = det(TrL/Q(ξiξj)), i. e., |dL/Q| is
the squared volume of the lattice OL’s fundamental domain. Note that Z[α] =
Z + Zα + Zα2 + . . . + Zαn−1 (α ∈ OL) is a sub-lattice in OL so its squared
fundamental domain’s volume

|det(TrL/Q(α
i−1αj−1))| = (OL/Z[α])2|dL/Q|

On the other hand, |det(TrL/Q(α
i−1αj−1))| = |det(α(i)j−1)|2 = the square

of the Vandermond determinant of α’s conjugates α(1), α(2), . . . , α(n−1) =
|
∏

1≤i<j≤n(α
(i) − α(j))|2 = |f ′(α(1)) . . . f ′(α(n))| = |NL/Q(f

′(α))|, which proves
(34).

(2) Oracle-dQ(L): In this case there exist the algorithms to compute OL’s in-
tegral basis ξ1, . . . , ξn and the discriminant dL/Q, e. g., the algorithm 6.1.8 in
[27]. It’s worthwhile to note that the performance-dominating step in this al-
gorithm is to factorize the rational integer[27] which bit-size in our algorithm’s

Local-Global Approach to Ideal Lattice Problems 399

context is O(nlogn), as a result, this oracle’s intrinsic complexity may be only as
hard as integer factorization which has implementation of sub-exponential time
complexity and even not hard against the quantum computer.

For relative extension L/K where K �= Q, it’s worthwhile to mention the
special case dL/K = OK (which can never happen if K is Q) and hence dLj/K =
OK for all the intermediate fields Lj during the algorithm’s recursion, e. g., K ’s
Hilbert class field L = K(μ1/q) where q divides K ’s class number h(K). In this
situation the oracle-dK(.) is trivial and the decision P |dL/K (always false) can
be simply omitted from the algorithm. As a result, the algorithm’s complexity
can be significantly reduced (r.f., Appendix.B.5).
(3) Oracle-PTL(M): On input any ideal M in OL, decide whether M is prime
or not. For this oracle’s counterpart in rational number field Q, i. e., rational
integer’s primality testing, there are not only practically efficient but also de-
terministic polynomial time-complexity algorithms [10, 28]. Although so far it’s
unknown how to efficiently implement Orcale-PTL(.) in arbitrary number field
L, it’s reasonable to expect that it’s complexity would be lower than SVP/CVP.
(4)Oracle-PGQ: Generates a prime number at random in Z, a problem with
known efficient solvers.

B.5 Computational Complexity

Let |S| denote the input size of the ideal lattice Problem SV P (A,L/K), NPG,
NPT , Nd and Nl denote the time-complexities to implement Oracle-PGK, Oracle-
PTL, Oracle-dK and Oracle-lK in the algorithm. From the constructions in Sect.4
and Sect.B, it’s easy to see that all the subroutines and operations in the algo-
rithm are only those with time and space complexity polynomial in the input
size, except the above four oracles which intrinsic computational complexity
may be non-polynomial. Furthermore the recursion depth of the (high level) al-
gorithm, hence the number of callings to all those oracles, is only O(n) where
n = [L : K]=the dimension of the input ideal lattice A. In summary, we can
have the following conclusions(details in the full-version paper).

Theorem 4 (1)Given any number field K contained in R, there exists the algo-
rithm to solve (exactly) SVP on input any totally real extended field L and ideal
A in OL with time complexity

poly(n, |S|, NPG, NPT , Nd, Nl) (35)

and space complexity poly(n, |S|) where n = [L : K]. (2)For CVP of ideal lattices,
we have exactly the same conclusion.

Corollary 5 (1)Given any number field K contained in R, there exists the
algorithm to solve (exactly) SVP on input any totally real extended field Lμ

and ideal Aμ in OLμ from the family {(Lμ, Aμ) : dLμ/K = OK} with time
complexity poly(nμ, |S|, NPG, NPT , Nl) and space complexity poly(nμ, |S|) where
nμ = [Lμ : K]. (2)For CVP of ideal lattices, we have exactly the same conclusion.

400 Y. Tian, R. Sun, and X. Zhu

Remark: It is known that there exists the infinite family (e. g.the Hilbert class
field extension tower) {(Lμ, Aμ) : dLμ/K = OK} which extension degree nμ is
upper-boundless. For such input family, the algorithm constructed in this paper
would be efficient (polynomial in time) as long as the Oracle-PGK , Orcale-PTL

and Oracle-lK can be implemented efficiently, which possibility seems positive.
Now back to the case of L/Q, because there exist efficient algorithms to im-

plement Oracle-PGQ, i. e., to efficiently generate prime integers, we have:

Corollary 6 (1)There exists the algorithm to solve (exactly) SVP on input any
totally real number field L and ideal A in OL with time complexity

poly(n, |S|, NPT , Nd)

and space complexity poly(n, |S|) where n = [L : Q]. (2)For CVP of ideal lattices,
we have exactly the same conclusion.

Modular Form Approach

to Solving Lattice Problems�

Yuan Tian, Xueyong Zhu, and Rongxin Sun

Software School, Dalian University of Technology, P.R. China
{tianyuan ca,zhuxueyong}@sina.com,

sunrongxin7666@163.com

Abstract. We construct new randomized algorithms to find the exact
solutions to the shortest and closest vector problems (SVP and CVP) in
�2-norm for integral lattices. Not only the minimal norm of non-zero lat-
tice vectors in SVP and the minimal distance in CVP, but also how many
lattice vectors reach those minimums can be simultaneously computed.
Our approach is based on special properties of the generating function of
lattice vectors’ �2-norms, the lattice-associated theta function. In compu-
tational complexity perspective and take our SVP solver as an example,
for the integral lattice family {Λn} of dimension dimΛn = n and level
hn = l(Λn) (the minimal positive integer such that the dual lattice Λ∗

n

scaled by h
1/2
n is integral), this algorithm can find the minimal �2-norm

of non-zero lattice vectors and the number of such shortest vectors in Λn

with success probability 1-ε in the space-complexity of polynomial in n
and time-complexity of (log log n2hn)

O(n) log(1/ε).

1 Introduction

Lattice problems take important roles in public-key cryptography, combinatorial
optimization and many other fields in computer science[1–8]. In the shortest
lattice vector problem (SVP), a non-zero lattice vector x in BZn is to be found
to minimize |x | on input the lattice basis matrix B with respect to some specific
norm || in Rn. In the closest lattice vector problem (CVP), a lattice vector x
is to be found to minimize |u − x | on input the basis matrix B and a target
vector u in Rn. In recent years, lots of cryptographic schemes and protocols
have been devised with proofs of security under the assumption that there is
no (probabilistic and sometimes quantum) polynomial-time algorithm to solve
arbitrary instances of variants of SVP and CVP.

From a computational hardness perspective, SVP, CVP and other related
variants are NP-hard under deterministic (e.g., CVP) or randomized (e.g., SVP)
reductions[4, 7, 9, 10]. Even some approximation variants of these problems
are proven to be NP-hard if the approximation factor is within some specific
range. Despite of these facts, finding new algorithms to solve lattice problems
exactly are still interesting and meaningful both because many applications (e.g.,

� This work is supported by China NSF(61370144).

T V Gopal et al. (Eds.): TAMC 2014, LNCS 8402, pp. 401–421, 2014.
c© Springer International Publishing Switzerland 2014

402 Y. Tian, X. Zhu, and R. Sun

in mathematics and communication theory) involve lattices in relatively small
dimensions, and because approximation algorithms for high dimensional lattices
for which the exact solution is infeasible typically involve the exact solution of
low dimensional sub-problems. In this paper we develop randomized algorithms
to find the exact solutions to SVP and CVP.

1.1 Basic Results

We develop new randomized algorithms to find the exact solutions to SVP and
CVP in Euclidean norm (�2) for any integral lattice. Not only the minimal �2-
norm of non-zero lattice vectors in SVP and the �2-minimal distance in CVP, but
also how many lattice vectors reach those minimums(e.g., the kissing number in
SVP) can be simultaneously computed by the algorithms. More concretely and
take SVP as an example, for the integral lattice family {Λn} with dimension
dimΛn = n and level hn = l(Λn) (the minimal positive integer such that the

dual lattice Λn
∗ scaled by h

1/2
n is integral), this algorithm can find the minimal

�2-norm of non-zero lattice vectors and the number of such shortest vectors in
Λn with success probability 1− ε in the asymptotic space-complexity of polyno-
mial in n and asymptotic time-complexity of (log logn2hn)

O(n) log(1/ε). Inter-
estingly, the only contribution to the algorithm’s exponential time complexity
(log logn2hn)

O(n) log(1/ε) comes from independently repeating a randomized
lattice vector sampler (log logn2hn)

O(n) log(1/ε) times. All the rest of opera-
tions contribute to the time-complexity with only an additive polynomial in n.
Similar situations occur when solving the exact CVP by our algorithm. As a
result, our solvers can be (very easily) parallelized to be polynomial in time-
complexity. Due to the same feature, a variant of our CVP solver can solve the
closest lattice vector problem with preprocessing (CVPP) in polynomial time
and (log logn2hn)

O(n) log(1/ε) space complexity.

1.2 A Sketch on Our Approach

Our approach is based on some special properties of the generating function
of lattice vectors’ �2-norms. This function is a measure used in previous works
mainly for hardness analysis on lattice and related problems[9, 11, 12] but rarely
for computational purposes. For SVP, such function is defined as:

ϑ(τ ;Λ) ≡
∑
x∈Λ

exp(2πiτ |x|2)

where |x| denotes the vector x’s �2-norm and τ = σ + it is a complex variable
on the upper-half complex plane(i.e., t > 0). If Λ is integral, i.e., all |x|2’s are
integers for any x in Λ (an assumption without any loss in generality when we
only deal with rational lattices), this function can be equivalently represented
as a Fourier expansion (with complex variable τ)

ϑ(τ ;Λ) =
∑
m≥0

a(m) exp(2πiτm)

Modular Form Approach to Lattice Problems 403

where a(0) = 1 and a(m) is the number of lattice vectors in Λ which squared
�2-norms equal m. From this viewpoint, solving SVP on Λ reduces to finding its
theta function’s first non-zero Fourier coefficient a(m) among its non-constant
items.

The technical support to the above idea comes from the fact that, as a function
of complex variable τ (Imτ > 0), ϑ(τ ;Λ) is a so-called modular form of weight
n/2 (details in section 2.2) and therefore has a series of special properties. As a
result, the theta function can be expanded on a polynomial (in the lattice’s level
h and dimension n) number of base functions and then its Fourier coefficients
a(m) can be efficiently computed from the linear combination of a set of the
basis’ Fourier coefficients.

For CVP, when restricting the target vector u to be the integral vector (with-
out any loss in generality when we only work in the rational number field), the
same idea applies to the non-homogenous theta function

ϑ(τ ;Λ,u) ≡
∑
x∈Λ

exp(2πiτ |x− u|2) =
∑
m≥1

b(m)exp(2πiτm)

which is also a modular form, where b(0) = 0 (except for the trivial case that
u ∈ Λ) and b(m) is the number of lattice vectors in Λ which squared �2-distance
to u is m. From this viewpoint, solving CVP on input Λ and u reduces to finding
the non-homogenous theta function’s first non-zero Fourier coefficient b(m).

1.3 Related Works

To find the exact solutions to lattice problems, so far three main families of SVP
and CVP solvers exist which are listed in Table1 together with our algorithms
developed in this paper in comparison.

Among these solvers, MV and Kannan algorithms are deterministic while AKS
(and our) algorithms are randomized. All algorithms work in �2-norm (only AKS
algorithm can work in other norms, e.g., �∞). The core of MV algorithm[13] is
to compute the Voronoi cell of the lattice[1], whose knowledge facilitates the
tasks to solve SVP and CVP. Kannan algorithm[5, 6] relies on a deterministic
procedure to enumerate all lattice vectors below a prescribed norm, or within
a prescribed distance to the target vector. This procedure uses the Grahm-
Schmidt orthogonalization of the input lattice basis to recursively bound the
integer coordinates of the candidate solutions.

The AKS algorithm[14] was the first single-exponential time algorithm for
SVP which can be described as follows: Let γ < 1 be a constant and S be a
set of N lattice vectors sampled in the �2-ball of radius R = 2O(n)λ1(Λ) where
λ1(Λ) is the minimal norm of non-zero lattice vectors in Λ. For sufficiently large
N , there exists a pair of lattice vectors u , v such that |u − v | < γR, so u − v
is shorter in Λ. The core of the algorithm is to chose a subset C in S such
that |C| is not too large and for any u in S\C there exists v in C such that
|u−v | < γR. This is used to produce a set of lattice vectors S1 in the ball γRBn

2

with |S1| = |S| − |C|. This procedure can be applied a polynomial number of

404 Y. Tian, X. Zhu, and R. Sun

times to obtain lattice vectors of norms less than aλ1(Λ) for some constant a.
Recently this algorithm has been significantly improved and the currently best
time complexity is 22.465n+o(n)[3]. However, the AKS variant solver for CVP only
finds the (1 + ε)-approximate solution for arbitrary ε > 0 in time complexity
bounded by (2 + 1/ε)O(n)[15, 16].

As a randomized algorithm, our solver outperforms the sieve algorithms in the
aspects that it has space complexity only polynomial in n and can solve both
SVP and CVP precisely. In time-complexity, our solver is only slightly inferior
to AKS and MV solvers for a wide range of SVP/CVP instances. For example,
up to hn = 2O(n) our solver can operate with time-complexity of (logn)O(n)

where the O-constant is 1 + δ(δ > 0), only suffering a slight loss in comparison
to, e.g., AKS solver’s time-complexity of 2O(n). Another characteristic of our
algorithm is its ability to be parallelized to be polynomial in time complexity.
As noticed in Appendix A, when sampling the lattice by calling N independent
Gaussian samplers in concurrency rather than in sequence, the whole algorithm
to solve SVP or CVP becomes polynomial in time complexity (but exponential
in parallelism). Another variant of our CVP solver can solve CVPP in polyno-
mial time and nO(n)log(1/ε) space complexity with success probability 1-ε. Such
characteristics will be valuable in practices, e.g., in solving lattice problems of
moderately high dimensions. So far with our understanding no other solvers can
be parallelized to be polynomial in time complexity. For example, the critical
component in the elegant MV algorithm[13] is an iterative subroutine to operate
at most 2n times, which is hard to be parallelized due to its iterative nature.
The core of AKS algorithm and its variants[14–16], the sieve subroutine which
dominates the algorithm’s time complexity, is also hard to be parallelized to be
polynomial. Similar situations occur for Kannan algorithm. The last (but not
the least) important feature of our approach is its potential to apply to SVP and
CVP for the ideal lattices in algebraic number fields where the associated theta
functions have more special properties to exploit.

1.4 Roadmap

In section 2 we give necessary backgrounds in lattice geometry and modular
forms. In section 3, we give a sketch on our approach which technical details are
elaborated in Appendices. The complete algorithms to solve SVP and CVP are
presented in Appendix A-C and the complexity analysis is given in Appendix D.

2 Preliminaries

2.1 Lattices

General: The set of integers is denoted by Z and rational numbers by Q. In the
Euclidean space Rn, a n-dimensional rational lattice, denoted Λ(B) where B is a
matrix with column vectors (b1, . . . , bn), is the set of vectors {x1b1+. . .+xnbn :
x1, . . . , xn ∈ Z} where the scalar products < bi, bj > are all rational numbers.

Modular Form Approach to Lattice Problems 405

Table 1. Comparing the existed families of SVP and CVP solvers and our algorithms

Solvers
Time complexity Space complexity

Remarks
upper bound upper bound

Kannan nO(n) poly(n) deterministic;
[3, 5, 6] the O-constant is

improved as small as 1/2e

MV[3, 13] 22n+o(n) 2O(n) deterministic

AKS SVP: 22.465n+o(n) SVP: 21.325n+o(n) randomized;

[3, 14–16] CVP: (2 + 1/ε)O(n) CVP: (1 + 1/ε)O(n) solves (1 + ε)-CVP only

Our algorithm (log log n2h)O(n) poly(n)

h is the lattice’s level.
The O-constant is 1 + δ, δ > 0.
Easy to be parallelized to be
polynomial-time to solve SVP,
CVP and CVPP.

The lattice with basis b1, . . . , bn is also denoted Zb1+ . . .+Zbn. Without loss of
generality in computer science, in this work we only consider the integral lattice
in which < bi, bj > are all integers.

For any lattice Λ = Zb1 + . . .+Zbn, the lattice Λ∗ ≡ Zb∗1 + . . .+Zb∗n where
< b∗

i , bj >= δij for all i, j = 1, . . ., n is called Λ’s dual lattice. Equivalently, Λ∗

is a discrete set of vectors y such that < x , y >∈ Z for all x ’s in Λ. The dual Λ∗

of a rational lattice Λ is always rational, but Λ∗ may not be integral even when
Λ is integral. When Λ has a base matrix B = (b1, . . . , bn), its dual lattice Λ∗

will have a base matrix Λ∗ = (b∗
1, . . . , b

∗
n) = B−T so both Λ and Λ∗ are integral

iff det(B) = det(B∗) = ±1. Another important property is that Λ∗∗ = Λ.
For any vector u = (u1, . . . , un) in Rn, its �2-norm < u ,u >1/2= (u2

1 + . . .+
u2
n)

1/2 is denoted |u |. The squared �2-norm of any lattice vector in an integral
lattice is always an integer.

Lattice Problems: Given a lattice Λ(B) = Zb1 + . . . + Zbn, let

λ1(Λ) ≡ min{|x | : x in Λ and non-zero} (1)

be the minimal value of �2-norms of non-zero lattice vectors in Λ(B). The op-
timization (�2-) shortest vector problem, SVP(Λ) in brief, is to find λ1(Λ). The
search (�2-) shortest vector problem, s-SVP(Λ) in brief, is to find a lattice vector
x in Λ such that |x | = λ1(Λ).

Given a lattice Λ(B) and a rational target vector u in Qn, let

dist(Λ;u) ≡ min{|x − u | : x in Λ} (2)

be the minimum �2-distance between u and all lattice vectors in Λ. The opti-
mization (�2-)closest vector problem, CVP(Λ,u) in brief, is to find dist(Λ;u).
The search (�2-)closest vector problem, s-CVP(Λ,u) in brief, is to find a lattice
vector x in Λ such that |x − u | = dist(Λ;u).

406 Y. Tian, X. Zhu, and R. Sun

The covering radius of a lattice,μ(Λ), is defined as the maximal distance be-
tween any vector and the lattice. The covering radius problem, CRP(Λ) in brief,
is to find

μ(Λ) ≡ max{dist(Λ;u) : u in Qn} (3)

In this paper we focus on the algorithm to solve SVP and CVP problems. It
has been known that these problems are computationally hard[4, 7, 9, 10, 17].
However, there is:

Theorem 1 [7, 10, 17] (1)s-SVP can be solved in polynomial time given the
oracle to solve s-CVP. (2)s-CVP can be solved in polynomial time given the
oracle to solve (optimization) CVP.

In consequence, the algorithm for optimization CVP can be used as the cor-
nerstone to solve both search problems. In this paper we focus on constructing
the randomized algorithms for optimization SVP and CVP with similar ideas
and techniques.

General Bounds: For any n-dimensional lattice Λ, one of the most important
general fact is the Minkowski’s inequality[1, 10]:

V ol(Bn
2)λ1(Λ)

n ≤ 2n|det(Λ)|

where V ol(Bn
2) is the n-dimensional volume of the unit Euclidean ball Bn

2 ,
e.g., πn/2/(n/2)!, and |det(Λ)| is the determinant of the lattice’s base matrix B,
numerically equal to the lattice’s elementary parallelotope’s volume. It follows
that

λ1(Λ) ≤ cn1/2|det(Λ)|1/n (4)

where c(≤ 1) is some absolute constant.
Another important general property is the transference theorem[10, 12]

λ1(Λ
∗)μ(Λ) ≤ dn (5)

where d(≤ 1/2) is some absolute constant. In particular, let h be some positive
integer such that the lattice h1/2Λ∗ is integral, then due to λ1(h

1/2Λ∗) ≥ 1 we
have

μ(Λ) ≤ dn/λ1(Λ
∗) ≤ dnh1/2/λ1(h

1/2Λ∗) ≤ dnh1/2 (6)

Lattice Level: Let Λ be an integral lattice. In this case the dual lattice Λ∗ is
rational so there exists a positive integer h such that h1/2Λ∗ is integral.

Definition 2 Given an integral lattice Λ, the level of this lattice, denoted l(Λ),
is defined as the minimal positive integer h such that h1/2Λ∗ is integral.

It’s easy to see that l(Λ) is an invariant of Λ, i.e., independent of Λ’s basis
choice.

Let B and B∗ be Λ’s and Λ∗’s base matrix respectively (so B∗ = B−T), so the
dual lattice Λ∗’s Grahm matrix A∗ = B∗TB∗ = B−1B−T = A−1, the inverse of

Modular Form Approach to Lattice Problems 407

the lattice Λ’s Grahm matrix. Notice that h1/2Λ∗ is integral means that hA∗ is
an integral matrix, and since (detA)A∗ = Aadj is always integral (because the
adjoint matrix Aadj ’s entries are all integers), it follows that h|det(A). On the
other hand, the fact that M = hA∗ is an integral matrix deduces that hI = MA
and then we have detA|hn. In summary, the level h satisfies h|(detΛ)2|hn.

Moreover, the level h can be computed by h = det(A)/g where g = gcd(Aadj)=
the greatest common divisor of all the entries in A’s adjoint matrix Aadj.

2.2 Modular Forms

In this section we present a very brief description about the concepts and facts
of one-variable modular forms needed in our work.

General: Let

SL2(Z) ≡ {γ =

[
a b
c d

]
: a, b, c, d ∈ Z and ad− bc = 1}

be the group of 2× 2 integer matrices with determinant 1. For any γ in SL2(Z)
there is an related action on the upper-half complex plane H ≡ {σ + it : t > 0}
defined as:

γ(τ) ≡ (aτ + b)/(cτ + d) : H → H

Notice that ±γ induces the same action γ(τ). SL2(Z) is a finitely generated
group with two generators[18]

γ1 =

[
1 1
0 1

]
, γ2 =

[
0 −1
1 0

]
i.e., any action γ(z) can be composed by the actions γ1(τ) = τ + 1 and γ2(τ) =
−1/τ .

Instead of SL2(Z), in our work we consider its congruence subgroup of a given
positive integer N :

Γ (N) ≡ {γ ∈ SL2(Z) : γ =

[
1 0
0 1

]
mod N}, (7)

Γ1(N) ≡ {γ ∈ SL2(Z) : γ =

[
1 b
0 1

]
mod N} (8)

Both Γ (N) and Γ1(N) are finite-index subgroups in SL2(Z) [18, 19].

Definition 3 [18, 20] Let k be some positive integer or half-integer, Γ be a
subgroup in SL2(Z) and Γ (N) ⊆ Γ , f(τ) : H → C be a complex function
holomorphic on the upper-half plane H. Let f [γ]k ≡ (cτ + d)−kf(γ(τ)) for γ in
SL2(Z), f is defined as a modular form of weight k with respect to Γ , if both
the following properties hold:

(1) f [γ]kis bounded at the infinity point, i.e., lim
t→∞

|f [γ]k(σ+ it)| exists for any
γ in Γ and real number σ;

(2) f [γ]k = f , i.e., f(γ(τ)) = (cτ + d)kf(τ) for any γ in Γ and τ in H

408 Y. Tian, X. Zhu, and R. Sun

The set of such functions is a linear space and is denoted Mk(Γ).

Example: Consider the case Γ = SL2(Z), then f(τ) is in Mk(SL2(Z)) iff it
satisfies the above conditions (1) and (2) for all γ’s in SL2(Z). Because SL2(Z)
is generated by two generators γ1(τ) = τ + 1 and γ2(τ) = −1/τ , the modular-
ity condition (2) is equivalent to the transformation law f(τ + 1) = f(τ) and
f(−1/τ)) = (1/τ)kf(τ).

Finiteness of Modular Form Space’s Dimension: The transformation law
under the congruence group’s action imposed on the modular forms is a very
strong restriction, so strong as to imply lots of special properties of the modular
forms. One of the most important consequences followed is that the function
space Mk(Γ) is finite dimensional.

Theorem 4 [18, 20, 21] For any positive integer N , positive integer or half-
integer k, Mk(Γ) is a finite-dimensional linear space on the complex field with

dimCMk(Γ) ≤ dimCMk(Γ (N)) = O(kN3)

.
2.3 Lattice-Associated Theta Function and Its Modularity

One of the relations between (integral) lattices and modular forms is through
the theta function, defined as

ϑ(τ ;Λ) ≡
∑
x∈Λ

exp(2πiτ |x|2) (9)

where || denotes the �2 norm and τ = σ + it is a complex variable on the upper-
half complex plane. Since Λ is integral, its Fourier expansion is

ϑ(τ ;Λ) =
∑
m≥0

a(m)qm, where q = exp(2πiτ)

where a(0) = 1 and a(m) is the number of lattice vectors in Λ which squared �2-
norms equalm. From this viewpoint, solving SVP onΛ reduces to finding its theta
function’s first non-zero Fourier coefficient a(m) among non-constant items.

It’s easy to prove that such theta function absolutely and uniformly converges
in any compact subset of the upper half-plane H and is bounded at +i∞, as a
result, holomorphic on H. Another obvious property is

ϑ(τ + 1;Λ) = ϑ(τ ;Λ) due to Λ′s integrality (10)

Let n = dimΛ and Λ∗ be the dual lattice of Λ. By Poisson formula, we have

ϑ(τ ;Λ) = (i/2τ)n/2detΛ∗ϑ(−1/4τ ;Λ∗) (11a)

or equivalently

ϑ(τ ;Λ∗) = (i/2τ)n/2detΛϑ(−1/4τ ;Λ) (11b)

Modular Form Approach to Lattice Problems 409

Let h be any positive integer such that h1/2Λ∗ is also an integral lattice. Since
h|y|2 is an integer for any y in Λ∗, for any η in H we have

ϑ(η + h;Λ∗) =
∑
y∈Λ∗

exp(2πi(η + h)|y|2) =
∑
y∈Λ∗

exp(2πiη|y|2) = ϑ(η;Λ∗)

let ξ ≡ −(h+ 1/4τ),then by (11a) and the above h-periodicity

ϑ(τ/(4hτ + 1);Λ) = ϑ(−1/4ξ;Λ)

=(2ξ/i)n/2detΛ∗ϑ(ξ;Λ∗) = (2ξ/i)n/2detΛ∗ϑ(−1/4τ ;Λ∗)

=(2ξ/i)n/2detΛ∗(2τ/i)n/2detΛϑ(τ ;Λ) = (−4ξτ)n/2ϑ(τ ;Λ)

=(4hτ + 1)n/2ϑ(τ ;Λ)

A more general relation between (integral) lattices and modular forms is
through the following parameterized theta function, defined as Let ϑ(τ ;Λ,u) ≡∑
x∈Λ

exp(2πiτ |x− u|2) ,the same calculation derives that

ϑ(τ/(4hτ + 1);Λ,u) = (4hτ + 1)n/2ϑ(τ ;Λ,−u) = (4hτ + 1)n/2ϑ(τ ;Λ,u) (12)

In summary, we have proven:

Lemma 5 For any n-dimensional integral lattice Λ, the integer h such that that
h1/2Λ∗ is integral and an integral vector u in Zn, ϑ(τ ;Λ,u) is a modular form
of weight n/2 with respect to the congruence subgroup generated by[

1 1
0 1

]
and

[
1 0
4h 1

]
Remarks: Let such generated congruence subgroup be denoted J(h). The lemma
states that

ϑ(τ ;Λ,u) ∈ Mn/2(J(h))

Since Γ (4h) ⊂ J(h) ⊂ Γ1(4h), it follows that Mn/2(Γ1(4h)) ⊂ Mn/2(J(h)) ⊂
Mn/2(Γ (4h)) and by the dimension formulas (theorem 4) when n is even we have

dimCMn/2(J(h)) ≤ dimCMn/2(Γ (4h)) ≤ O(nh3)

When n is odd we have the same upper-bound by the dimension formulas of the
space of modular forms with weight half-integer n/2[20].

In practice, h can be selected as the lattice level l(Λ), a lattice invariant
efficiently computable (section 2.1).

3 The Modular Form Approach to Solving SVP and CVP

In this section we present our approach in a heuristic way, leaving technical
details in the Appendices. To make the idea clear and easy to understand, we
present this approach at first to solve two basic problems in section 3.1 and
section 3.2 then apply the subroutines to solve the optimization SVP and CVP
in section 3.

410 Y. Tian, X. Zhu, and R. Sun

3.1 Basic Problems

Definition 6 Given an integral lattice Λ(B) = Zb1 + . . . + Zbn in Qn and a
positive integer m, the �2-vector counting problem, V CP (Λ,m) in brief, is to
find the number of lattice vectors in Λ(B) which squared �2-norms equal m, i.e.,
to find a(m) = |{x in Λ : |x|2 = m}|.

Definition 7 Given an integral lattice Λ(B) = Zb1+ . . .+Zbnin Qn, a vector u
in Zn such that 2Bu also in Zn, a positive integer m, the �2- non-homogenous
vector counting problem, n-V CP (Λ,m,u) in brief, is to find the number of
lattice vectors in Λ(B) which squared �2-distances to u equal m, i.e., to find
b(m) = |{x in Λ : |x− u|2 = m}|.

Remark: As long as both the lattice matrix B and the target vector u have
only rational entries, it’s easy to satisfy all the above requirements by scaling
the original lattice Λ(B) and u simultaneously with some appropriately large
integer. In this case,i.e., for an integral lattice Λ(B) = Zb1 + . . . + Zbn in Qn

and a vector u in Zn such that 2Bu also in Zn, the squared distance |x−u|2 =
|Bz − u|2 = zTBTBz− 2zTBu+ uTu (z in Zn) is always an integer.

3.2 Solving the Basic Problems

Given an integral lattice Λ(B) = Zb1 + . . .+ Zbn of dimension n and a positive
integer m, consider how to solve V CP (Λ,m) at first. Assume the level of Λ is h.
By lemma 5 the lattice-associated theta function ϑ(τ ;Λ) (9) is in Mn/2(J(h)),
it follows that

ϑ(τ ;Λ) =
M∑
α=1

hα(Λ)ϕα(τ) (13)

where M = dimMn/2(J(h)) and ϕα(τ) ’s are basis of the space Mn/2(J(h)). Let

ϕα(τ) =

∞∑
m=0

aα(m)qm, where q = exp(2πiτ) (14)

The basis {ϕα(τ) : α = 1, . . . ,M} and therefore their Fourier coefficients
aα(m) only depend on the congruence subgroup J(h), which can be determined
even in preprocessing when h is fixed. Then the m-th Fourier coefficient a(m),
i.e., the solution to the problem V CP (Λ,m), can be computed by the formula

a(m) =

M∑
α=1

hα(Λ)aα(m) (15)

In this viewpoint, as long as the linear combination coefficients hα(Λ) are known,
the solution a(m) is obtained.

Then arises the second question: how to compute {hα(Λ)}α=1,...,M ? Suppose
we know M(= dimMn/2(J(h))) points τ1, . . . , τM on the upper-half plane H and

Modular Form Approach to Lattice Problems 411

the values of the theta function at these points, ϑ(τ1;Λ), . . . , ϑ(τM;Λ). As long
as det(ϕα(τβ)) �= 0, by solving the linear system of equations

ϑ(τα;Λ) =

M∑
β=1

hβ(Λ)ϕβ(τα) α = 1, . . . ,M (16)

all of hα(Λ), α = 1, . . . ,M can be efficiently obtained.
Now the third question: for a given lattice Λ and any given point τ on the

upper-half plane H , how to determine the value of ϑ(τ ;Λ)? By definition ϑ(τ ;Λ)
depends on the norms of all lattice vectors in Λ including those to be found in
question, how to determine such an object prior to determining some of its
unknown constituents? It is to solve this (and only this) sub-problem that the
randomness in our algorithm is introduced.

The idea is to estimate ϑ(τ ;Λ) by appropriate random sampling over the
lattice Λ. Note that when t > 0:

1/ϑ(it;Λ) = 1/
∑
x∈Λ

exp(−2π|x|2t) = E[δ(x)]
x←DΛ,1/t

where δ(x) is the delta-function on Λ, vanishing at all non-zero lattice vectors
and having the value 1 at x = 0:

δ(x) = 1 if x = 0; δ(x) = 0 if x �= 0 (17)

and DΛ,1/t(x) is the discrete Gaussian probabilistic distribution over lattice Λ:

DΛ,1/t(x) ≡
exp(−2π|x|2t)∑

x′∈Λ exp(−2π|x′|2t) for x in Λ

As a result, 1/ϑ(it;Λ) might be estimated by statistical averaging over a set of
δ(x j)’s where each x j is a lattice vector independently sampled from Λ with dis-
tribution DΛ,1/t. However, the existed Gaussian samplers[22, 23] requires that
t in this case be sufficiently small, potentially incompatible with some other re-
quirements and practical considerations in our algorithm construction. Instead,
we consider another way to estimate ϑ(it;Λ). The starting point is Poisson for-
mula (11a):

ϑ(it;Λ) = (1/2t)n/2detΛ∗ϑ(i/4t;Λ∗)

1/ϑ(i/4t;Λ∗) = 1/
∑
y∈Λ∗

exp(−2π|y|2/4t) = E[δ(y)]
y←DΛ∗,4t

(18)

where δ(y) is the delta-function on the dual lattice Λ∗ and DΛ∗,4t(y) is the
discrete Gaussian distribution over the dual lattice Λ∗:

DΛ∗,4t(x) ≡
exp(−2π|y|2/4t)∑

y′∈Λ∗ exp(−2π|y′|2/4t) for y in Λ∗ (19)

412 Y. Tian, X. Zhu, and R. Sun

Borrowing the techniques developed in [22, 23], 1/ϑ(i/4t;Λ∗) hence 1/ϑ(it;Λ)
can be estimated by efficient random sampling algorithms as long as t is appro-
priately large. In this case ϑ(it;Λ) = O(1), i.e. 1/ϑ(it;Λ) is not too small hence
ϑ(i/4t;Λ∗) can be estimated by 1/ϑ(i/4t;Λ∗)−1 with sufficiently small errors.
Once ϑ(i/4t;Λ∗) can be estimated with given t > 0, by the following equation
(derived in Appendix A)

θ(σ + it;Λ) = (
i

2(σ + it)
)
n
2 det(Λ∗)θ(

it

4(σ2 + t2)
;Λ∗) · E

y←D
Λ∗,

4(σ2+t2)
t

[exp(
−2πiσ|y|2
4(σ2 + t2)

)]

(20)

ϑ(τ ;Λ) can be estimated at τ = σ+ it(t > 0) where in the expectation (replaced
by statistical average when doing estimation) lattice vectors are distributed with
the probability DΛ∗,4(σ2+t2)/t(y) over Λ∗(with appropriately large t). Up to this
point, the basic problem V CP (Λ,m) is completely solved.

Similar steps are taken to solve the non-homogenous vector counting prob-
lem n − V CP (Λ;m,u) by using Fourier expansions in space Mn/2(J(h)) and

estimating the theta function ϑ(τ ;Λ,u) =
∑
x∈Λ

exp(2πiτ |x − u |2) in a similar

randomized method.

Remark: As long as ϑ(τ ;Λ) can be estimated at sufficiently many points τj =
σj + itj , it seems that its Fourier coefficient a(m) can be computed directly by
approximating the integral.

a(m) = exp(2πmt)

∫ 1

0

dσϑ̂(σ + it;Λ) exp(−2πimσ)

other than by (15), where ϑ̂(σ+it;Λ) is the estimation for ϑ(σ+it;Λ) and t > 0.
However, a complete analysis (details see Appendix D) concludes that this direct
method has the time complexity at least exp(2πn2), inferior to the approach we
take in (17)-(20) which is at most nO(n) = exp(nlogn) in time complexity.

3.3 Solving SVP and CVP

For a given (integral) lattice Λ(B) in Qn, let m∗ = λ1(Λ)
2 and by ϑ(τ ;Λ) ’s

Fourier expansion

ϑ(τ ;Λ) =

∞∑
m=0

a(m)exp(2πimτ) = 1 + a(m∗)exp(2πim∗τ) + . . .

solving SV P (Λ) reduces to computing the first non-zero a(m) which can be
achieved by repeatedly calling the subroutine V CP (Λ,m) described in last sec-
tion from m=1,2,. . . up to some appropriate upper-bound, e.g., the upper-bound
cn|det(Λ)|2/n = O(nl(Λ))derived from Mincowski’s theorem (section 2.1).

Similarly, let d∗ = dist(Λ;u)2, u be an integral vector such that 2Bu in Zn

and u /∈ Λ, by ϑ(τ ;Λ,u)’s Fourier expansion

ϑ(τ ;Λ,u) =

∞∑
m=1

b(m)exp(2πimτ) = b(d∗)exp(2πid∗τ) + . . .

Modular Form Approach to Lattice Problems 413

solving CV P (Λ;u) reduces to computing the first non-zero b(m) which can be
achieved by repeatedly calling the subroutine n-V CP (Λ,m, u) described in last
section from m=1,2,. . . up to some appropriate upper-bound, e.g., the upper-
bound O(n2l(Λ)) derived from the transference theorem ((5)-(6)).

In summary, our algorithms to solve SV P (Λ) and CV P (Λ,u) in n dimension
can be sketched in the following steps.

(1)Call the Gaussian sampler N times independently to get dual lattice vectors
y1, . . . , yN in Λ∗. N needs to be large enough to make the error sufficiently small
(Appendix D).
(2)Estimate the lattice-associated theta function ϑ(τ ;Λ) (in case of solving SVP)
or ϑ(τ ;Λ,u) (CVP and CVPP) by y1, . . . , yN and u at sufficiently many points
τj = σj + itj with all tj > 0. This step is only poly(n) in time and space
complexity.
(3)Compute the linear combination coefficients of the theta function on appro-
priately selected basis in the modular form space. This step is also poly(n) in
time and space complexity.
(4) Search the first non-zero Fourier coefficient in the theta function’s Fourier
expansions.

We note that step (1) can be completely parallelized, i.e., all N Gaussian
samplers can work completely in concurrency (each sampler only performs in
polynomial time and space complexity[22, 23]). For solving CV PP (Λ,u), this
step can be even performed totally in preprocessing. Since each Fourier coefficient
can be computed independently, step (4) can also operate in concurrency of
O(nl(Λ))(for SVP) and O(n2l(Λ))(for CVP and CVPP) where l(Λ) is the level
of lattice Λ. As a result, the whole algorithm can be easily parallelized to be
polynomial in time complexity.

4 Conclusions

So far the framework to solve (integral) lattice optimization problems SVP and
CVP has been established. The complete algorithms and computational com-
plexity analysis are elaborated in the appendices. The main results are presented
at below with detailed proofs in Appendix D.

Theorem 8 There exists a randomized algorithm to solve the optimization SVP
with correctness probability at least 1-ε for any integral lattice instance Λ(b1, . . . ,
bn) of dimension n and level l(Λ), in time complexity of

n16(log log n2l(Λ))n · poly(n, S) log(1/ε) + poly(n, S, l(Λ))

and space complexity of poly(n, S) where S = max1≤i≤nbit-size of each entry in
bi.

For solving the optimization CVP, the same result holds.

414 Y. Tian, X. Zhu, and R. Sun

References

[1] Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups, 3rd edn.
Springer (1998)

[2] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. 41st ACM
STOC, pp. 169–178 (2009)

[3] Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159–190. Springer, Heidelberg
(2011)

[4] Haviv, I., Regev, O.: Hardness of the covering radius problem on lattices. In: IEEE
CCC 2006, pp. 145–158 (2006)

[5] Kannan, R.: Mincowski ’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

[6] Kannan, R.: Improved algorithms for integer programming and related lattice
problems. In: Proc. STOC 1983, pp. 193–206 (1983)

[7] Micianccio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic
perspective. Kluwer Academic Publishers, Boston (2002)

[8] Nguyen, P.Q., Vallee, B. (eds.): The LLL Algorithm: Survey and Applications.
Springer (2009)

[9] Aharonov, D., Regev, O.: Lattice problems in NP∩coNP. J. ACM 52(5), 749–765
(2005)

[10] Regev, O.: Lecture notes of lattices in computer science (2004),
http://www.cs.tau.il/~odedr

[11] Micianccio, D., Regev, O.: Worst-case to average-case reductions based-on gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[12] Banaszczk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(4), 625m–635m (1993)

[13] Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on voronoii cell computations. SIAM J. Comput.
(2012) (Special Issue on STOC 2010)

[14] Ajati, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: STOC 2001, pp. 601–610 (2001)

[15] Ajati, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest
lattice vector problem. In: IEEE Conference on Computational Complexity, pp.
53–57 (2002)

[16] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology 2, 181–207 (2008)

[17] Macciancio, D.: Efficient reductions amomg lattice problems. In: Proc. SODA
2008, pp. 84–93 (2008)

[18] Diamond, F., Shurman, J.: A first course in modular forms. Springer, Berlin (2005)
[19] Koblitz, N.: Introduction to elliptic curves and modular forms. Springer (1993)
[20] Wang, X., Pei, D.: Modular forms with integral and half-integral weights (in En-

glish). Science Press, Beijing (2011)
[21] Li, W.Q.: Number theory with applications. World Science Publication (1996)
[22] Gentry, C., Peikert, C., Vaikuntananthan, V.: How to use a short basis: trapdoors

for hard lattices and new cryptographic constructions. In: Proc. 40th ACM STOC,
pp. 197–206 (2008)

[23] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

http://www.cs.tau.il/~odedr

Modular Form Approach to Lattice Problems 415

Appendix

A Randomized Algorithms for Estimating the Values
of Lattice-Associated Theta Functions ϑ(τ ;Λ) and
ϑ(τ ;Λ, u)

Recall the algorithm framework developed in section 3.2, the goal of estimat-
ing theta function’s values is to compute the linear coefficients hα(Λ), α =
1, . . . ,M via solving the linear system of equations (16). Therefore, it’s ade-
quate to do the estimation at a finite number of points τα, α = 1, . . . ,M where
M = dimMn/2(J(h)). In particular, these points in H can be selected according
to computational efficiency considerations. Our approach to do the estimation is
based upon the techniques developed in [22, 23] which basic result is presented
in theorem 9. For all technical details, see section 4 in [22] and [23].

Theorem 9 [22]:There is a probabilistic polynomial-time algorithm that, given
the basis B = (b1, . . . ,bn) of n -dimensional lattice Λ, a parameter s > ω(log(n))
maxj |b̃j |2 where b̃1, . . . , b̃n is the Gram-Schmidt orthogonalization of b1, . . . ,bn,
and a vector u in Rn, outputs a sample from the distribution which is statistically
close to the discrete Gaussian distribution

DΛ,s,u(x) ≡
exp(−2π|x− u|2/s)∑

x′∈Λ exp(−2π|x′ − u|2/s) for x in Λ

When u = 0, DΛ,s,u(x) is simply denoted DΛ,s(x). Hereafter the sampler
in theorem 9 is denoted SampD(Λ(B), s,u). The original sampler[22]’s effi-
ciency is significantly improved in [23] at a mild price of a larger t. In this
paper we neglect such efficiency differences and call SampD as a black-box.
In the following we almost always apply SampD to sample on the dual lattice
Λ∗(b∗

1, . . . , b
∗
n) of the input lattice Λ(b1, . . . , bn), in this case the original con-

dition s > ω(logn)maxj |b̃j |2 becomes s > ω(logn)maxj |b̃j|−2 because of the

relationship between the Gram-Schmidt orthogonalization b̃1, . . . , b̃n of the basis
b1, . . . , bn and dn, . . . ,d1, that of the dual basis (b∗

1, . . . , b
∗
n):dj = b̃j/|b̃j|2. In

particular |d j | = |b̃j |−1 for j = 1, . . . , n.
Our algorithms to do the estimation are presented in the full version paper.

B Computing Linear Combination Coefficients hα(Λ)
and hα(Λ; u)

In solving SVP, let {ϕα(τ) : α = 1, . . . ,M} be the basis of space Mn/2(J(h)),

M = dimMn/2(J(h)), ϑ̂(τi;Λ)be theta-function value estimations at points τ1,
. . . τM on the upper-half plane H . As long as det(ϕα(τβ))1≤α,β≤M �= 0, by solving
the system of linear equations

ϑ̂(τα;Λ) =

M∑
β=1

ĥβ(Λ)ϕβ(τα) α = 1, . . . ,M (21)

416 Y. Tian, X. Zhu, and R. Sun

all hα(Λ)’s estimations ĥα(Λ) can be obtained.
In solving CVP the situation is similar with the only difference that we need

to solve the linear system of equations

ϑ̂(τα;Λ, u) =

M∑
β=1

ĥβ(Λ, u)ϕβ(τα) α = 1, . . . ,M. (22)

For simplicity hereafter we only use the notation hα instead of hα(Λ) and
hα(Λ;u).

In essence, what is really needed in our algorithms is not any specific basis
of space Mn/2(J(h)), but just a set of points τ1 . . . τM such that det(ϕα(τβ))

1≤α,β≤M �= 0, a set of function values {ϕα(τβ))}1≤α,β≤M and a set of Fourier
coefficients of these basis (see Appendix C). Moreover, notice the fact that
Mk(J(h)) is a subspace in Mk(Γ (4h)), in practice we can even use the basis
of the much better understood space Mk(Γ (4h)) with only moderate prices in
time and space complexity. Given any positive integer N, the space Mk(Γ (N))
has an orthogonal decomposition (with respect to the Petersson inner product)
[18–20]where Sk(Γ (N)) is the so called cusp form subspace:

Mk(Γ (N)) = Sk(Γ (N))⊕ Ek(Γ (N))

For instance, the basis of subspace Ek(Γ (N)) can be selected to be the Eisenstein
functions

G
(u,v)
k (τ) =

∑
1/(cτ + d)k

(c,d):(c,d)=(u,v)mod N

=
∑
m≥0

g
(u,v)
k (m)exp(2πimτ/N)

for all integer-pairs (u, v) of order N in ZN × ZN . It’s well known that these
basis have Fourier coefficients[18, 20]

g
(u,v)
k (m) = ((−2πi)k/(k − 1)!)

∑
sgn(j)jk−1exp(2πivj/N)

j=−m,...,+m,j|m, m/j=u mod N, j
=0

m ≥ 1

where sgn(j)=1 when j > 0, -1 when j < 0(we neglect g
(u,v)
k (0) which is not

needed in our algorithm). It’s clear from the formulas that the m-th Fourier
coefficient can be computed in at most poly(m, logk) time complexity. In the
proceeding applications to solve lattice problems, both m and k are O(n) where
n is the lattice’s dimension. Similar situation holds for Sk(Γ (N)).

Since this paper is only concentrated on the algorithm’s logic and complexity
analysis, we defer to discuss all numerical computation related details in a sepa-
rate paper, only pointing out that for integer or half-integer k there exit efficient
algorithms (polynomial in logk and m) to output the m-th Fourier coefficient of
the basis in space Mk(Γ (N)).

To complete the computation, we need to confirm that the condition

det(ϕα(τβ))1≤α,β≤M �= 0

can be really satisfied. The following lemma guarantees the existence of such
points τ1, . . . , τM on the upper-half plane H.

Modular Form Approach to Lattice Problems 417

Lemma 10 Let m be a positive integer, D be a domain in the upper-half plane
H, ϕ1(τ), . . . , ϕm(τ) be complex-valued functions holomorphic in D. If ϕ1(τ), . . . ,
ϕm(τ) are linearly independent over the complex field, then there exist m points
τ1, . . . , τm in D such that det(ϕα(τβ))1≤α,β≤m �= 0.

Proof. (by induction on m) For m = 1 the result is trivial. Now suppose the
lemma is true for m. For m + 1 complex linearly independent functions ϕ0(τ),
ϕ1(τ),. . .,ϕm(τ) holomorphic in D, by induction there exist points τ1, . . . , τm in
D such that det(ϕα(τβ))1≤α,β≤m �= 0. Because ϕ0(τ) is holomorphic and not
identically zero in D, we can always assume (by slightly changing some τβ ’s if
needed) that at least one of the ϕ0(τβ)’s is non-zero. As a result, there exist
(obtained by solving the following linear system of equations) complex values
a1, . . . , am such that

ϕ0(τβ) = a1ϕ1(τβ) + . . .+ amϕm(τβ) for all β = 1, . . . ,m (23)

and at least one of the aβ’s is non-zero. By complex linear independency among
the functions ϕ0, ϕ1, . . . , ϕm, ϕ0 �= a1ϕ1 + . . . + amϕm so there exists a point
τ0 in D such that

ϕ0(τ0) �= a1ϕ1(τ0) + . . .+ amϕm(τ0) (24)

in consequence, det(ϕα(τβ))0≤α,β≤m �= 0 (otherwise the following matrix⎡⎢⎢⎣
ϕ0(τ0) ϕ1(τ0) . . . ϕm(τ0)
ϕ0τ1) ϕ1(τ1) . . . ϕm(τ1)
. .
ϕ0(τm) ϕ1(τm) . . . ϕm(τm)

⎤⎥⎥⎦
is singular so there exist a1, . . . , am such that

ϕ0(τβ) = a1ϕ1(τβ) + . . .+ amϕm(τβ) for all β = 0, 1, . . . ,m

But due to det(ϕα(τβ))1≤α,β≤m �= 0, these a1, . . . , am’s are exactly those in (23),
a contradiction to (24)

Remark: It’s easy to derive an efficient algorithm from the lemma’s proof to
output a sequence of points τ1, . . . , τm in D such that det(ϕα(τβ))1≤α,β≤m �= 0,
given the functions ϕ1, . . . , ϕm and domain D satisfying the conditions specified
in this lemma.

C The Complete Algorithms

Now we integrate all the components to construct the complete algorithms to
solve the optimization lattice problems. As indicated before, these algorithms
find not only the classical solutions to the optimization SVP and CVP but also
the number of lattice vectors which reach the minimums.

418 Y. Tian, X. Zhu, and R. Sun

To make the algorithm’s structure clear, we introduce an oracle to help collect
necessary information.
Oracle-M(h, k,m∗, t0)
Input: A positive integer h, a positive integer or half-integer k and two positive
real numbers m∗, t0.
Output:
(1)A collection of Fourier coefficients {aα(m) : α = 1, . . . ,M,m = 1, . . . ,m∗}
where M = dimCMk(J(h)) with respect to some basis {ϕα(τ) : α = 1, . . . ,M}
of the space Mk(J(h)). aα(m) denotes the m-th Fourier coefficient of ϕα(τ).
(2)A collection of points τ1, . . . , τM on the upper-half complex plane H such that

Imτα > t0 for each 1 ≤ α ≤ M

det(ϕα(τβ))1≤α,β≤M �= 0

(3)A collection of values {Φαβ : 1 ≤ α, β ≤ M, the matrix (Φαβ) = (ϕα(τβ))
−1}

Remark: The oracle-M can be implemented based on and only on the knowledge
about the congruence subgroup J(h) or, as explained in Appendix A.2, the
group Γ (4h). As explained in Appendix B, any basis of space Mk(J(h)) or even
Mk(Γ (4h)) is sufficient for our algorithmic goals so we can always select the most
appropriate and efficient basis in practice. In summary, each Fourier coefficient
aα(m) can be computed with time complexity polynomial in k and m, and the
points τ1, . . . , τM can be also determined efficiently.

Now we present our algorithms to solve the optimization lattice problem SVP
and CVP.

Algorithm to Solve Optimization SVP
Input: an integral lattice Λ(B) = Zb1 + . . .+ Zbn in Qn.
Parameters: Positive absolute constants c ≤ 1 and c0 > (2π)−1/2.
Output: λ1(Λ) ≡ min{|x | : x in Λ and non-zero} and a∗(Λ) = |{x in Λ :
|x | = λ1(Λ)}|.
Operations:
(1)Compute h = l(Λ), the level of lattice Λ, as stated in the paragraph following
definition 2.
(2)Set m∗ = cn|det(Λ)|2/n and t0 > max(c20n, ω(logn)maxj|b̃j |−2). Call Oracle-
M (h, n/2, m∗, t0) to obtain:

A collection of Fourier coefficients {aα(m) : α = 1, . . . ,M, m = 1, . . . ,m∗}
whereM = dimCMn/2(J(h)) with respect to some basis {ϕα(τ) : α = 1, . . . ,M}
of space Mn/2(J(h)) and aα(m) denotes the m-th Fourier coefficient of ϕα(τ);

A collection of points {τβ = σβ + itβ : β = 1, . . . ,M} such that tβ > t0 for
each 1 ≤ β ≤ M and det(ϕα(τβ))1≤α,β≤M �= 0;

A collection of values {Φαβ : 1 ≤ α, β ≤ M, the matrix (Φαβ) = (ϕα(τβ))
−1}.

(3)For each β = 1, . . . ,M call EstimTheta version#2 with input (τβ , Λ(B)) and

parameter N to obtain ϑ̂(τβ ;Λ)(N depends on n = dimΛ(B) and its value will
be determined according to complexity analysis in Appendix D).

(4)compute ĥβ =

M∑
α=1

Φαβ ϑ̂(τα;Λ) for each β = 1, . . . ,M .

Modular Form Approach to Lattice Problems 419

(5)For each m = 1, 2, . . . ,m∗ do: Compute â(m) =

M∑
β=1

ĥβaβ(m); if â(m) > 1/2

then break;
(6)Output (m1/2, [â(m)]) where [x] denotes the integer nearest to x.

Algorithm to Solve Optimization CVP
Input: an integral lattice Λ(B) = Zb1+. . .+Zbn in Qn, a vector u in Zn\Λ(B)
such that 2Bu in Zn.
Parameters: Positive absolute constants d ≤ 1/2 and c0 > (2π)−1/2.
Output: dist(Λ;u) ≡ min{|x − u| : x ∈ Λ} and b∗(Λ) = |{x ∈ Λ : |x − u| =
dist(Λ;u)}|
Operations:
(1) and (2): The same as steps (1) and (2) in the algorithm to solve the opti-
mization SVP, except that m∗ = dn2|det(Λ)|2/n. All notations are inherited.
(3)For each β = 1, . . . ,M call EstimTheta version#4 with input (τβ , Λ(B),u)

and parameter N to obtain ϑ̂(τβ ;Λ, u) (N depends on n = dimΛ(B) and its
value will be determined according to complexity analysis).

(4)Compute ĥβ =

M∑
α=1

Φαβ ϑ̂(τα;Λ, u) for each β = 1, . . . ,M .

(5)For each m = 1, 2, . . . ,m∗do :Compute b̂(m) =

M∑
β=1

ĥβaβ(m); if b̂(m) > 1/2

then break;
(6)Output (m1/2, [b̂(m)]) where [x] denotes the integer nearest to x.

D Complexity Analysis

Before delve into the algorithm’s complexity, we need a fact about the modular
form’s Fourier coefficient’s asymptotic increasing degree.

Lemma 11 [20] Let Γ (r) be the congruence subgroup in SL2(Z) and ϕ(τ) be the
Eisenstein basis for the space Mk(Γ (r)) with Fourier coefficients a(m), m ≥ 1,
then

|a(m)| ≤ A(log | log(m2/r)|)k for any m ≥ 1.

where A is a constant irrelevant with k. For the basis ϕ(τ) of the space Sk(Γ (r))
with Fourier coefficients a(m), m ≥ 1, the inequality is

|a(m)| ≤ A(log | log(m2/r)|)k/2 for any m ≥ 1.

420 Y. Tian, X. Zhu, and R. Sun

Let h = l(Λ), the level of lattice Λ. Now consider the algorithm for SVP.
According to step (5), for any 1 ≤ m ≤ m∗ we have

|the error of â(m)| ≤ M max
1≤β≤M

|ĥβ | max
1≤β≤M

|aβ(m)|

≤M2 max
1≤α≤M

êα max
1≤α,β≤M

|Φαβ
|A(log log(m2/4h))n/2

≤C ·M2(log log(m2/4h))n/2 max
1≤α≤M

êα

≤C · n2h6(log log(n2h))n/2 max
1≤α≤M

êα

where C is a constant and êα = |the estimation error of ϑ̂(τα;Λ)|. The second
inequality is derived by step(4) and the upper-bound for |aβ(m)|. The fourth
inequality is from m ≤ m∗ = O(n|det(Λ)|2/n) and det(Λ)2|hn).

Notice that the exact value of each a(m), the Fourier coefficient of the theta
function ϑ(τ ;Λ), is a non-negative integer so it is sufficient to get the correct
solution as long as |the error of â(m)| < 1/2. As a result, we need |the estimation

error of ϑ̂(τα;Λ)|=O(n−2h−6(log log(n2h))−n/2) for all τα’s in step(3).
Direct calculation shows (details in the full version paper) that this requires the

number of (dual) lattice vector samples N , i.e., the times for the Gaussian sam-
pler to be independently called, should be N = O(n16(log log(n2h))n log(1/ε2))

to make P [|ϑ̂N (σ + it;Λ) − ϑ(σ + it;Λ)| < ε1] > 1 − ε2, equivalently, to make
P [|â(m)− a(m)| < 1/2] > 1− ε2. In summary, we have proven:

Theorem 12 For the algorithm in Appendix C to solve the optimization SVP
for integral lattice Λ, n = dim(Λ), h = l(Λ) and 1 > ε > 0, it holds that the prob-
ability of the algorithm terminating with the correct solution (λ1(Λ), a

∗(Λ)) is at
least 1−ε, if the number of lattice vector samples N=O(n16(log log(n2h))n log 1

ε).
For the algorithm to solve the optimization CVP, the result is the same.

Now we can estimate the algorithm’s time and space complexity. Let T (i) and
S(i) denote the time and space complexity in step i respectively, n = dim(Λ),
h = l(Λ), S = max1≤i≤nthe bit size of each entry in bi, poly denote some (mul-
tivariate) polynomial. It’s easy to verify that:both T (1) and S(1) are poly(n, S)
according to the analysis after definition 2.

T (2) =
∑

1≤m≤m∗ poly(m,S) = poly(n, S, h) according to m∗=O(n|det(Λ)| 2
n)

and det(Λ)2|hn, the analysis in Appendix B and remarks on oracle-M . S(2)=the
space to store the outputs from the oracle-M = O(m∗M + M2)poly(S) =
O(n2h6)poly(S) = poly(n, S, h) according to remarks on lemma 5, i.e., M =
O(nh3).

T (3) = Npoly(n, S) where N = O(n16(log log(n2h))nlog(1/ε)) as stated in
theorem 13 and S(3) = poly(n, S).

T (4) = Mpoly(S) = poly(n, S, h) and S(4) = poly(n, S).
T (5) = Mm∗poly(S) = poly(n, S, h) and S(5) = poly(nS).
In summary we obtain the central result in this paper:

Modular Form Approach to Lattice Problems 421

Theorem 13 There exists a randomized algorithm to solve the optimization
SVP with correctness probability at least 1− ε for integral lattice instance Λ(b1,
. . .,bn) of dimension n and level l(Λ), in time complexity of

n16(log log(n2l(Λ)))n · poly(n, S)log(1/ε) + poly(n, S, l(Λ))

and space complexity of poly(n, S, l(Λ)) where S = max1≤i≤nbit-size of each
entry in bi. For solving the optimization CVP, the same result holds.

Remarks: It is not really necessary for the algorithms in Appendix C to store
all the outputs from the oracle in a batch. Instead they can get these outputs
in sequence when needed. As a result, the space complexity for both algorithms
can be actually reduced to only poly(n, S), independent of the level l(Λ), while
the time complexity’s asymptotic bounds are unchanged.

Before ending the section we make a brief analysis on why the Fourier coeffi-
cient a(m) is not computed directly by approximating the following integral

a(m) = exp(2πmt)

∫ 1

0

dσϑ̂(σ + it;Λ)exp(−2πimσ) m = 1, 2, . . . ,m∗

where ϑ̂(σ + it;Λ) is the estimation for ϑ(σ + it;Λ) and t > 0. The reason is
that, for the error of all such computed a(m)’s to be within 1/2, the estimation

error of ϑ̂(σ + it;Λ) needs to be within O(exp(−2πm∗t) = O(exp(−2πl(Λ)n2))
implying that the number of lattice vector samples in step (3), N , needs to be
N = O(exp(4πl(Λ)n2)log(1/ε)) to make the correctness probability at least 1−ε,
significantly inferior to the performance concluded in theorem 13.

Author Index

Agrawal, Manindra 1
Ailon, Nir 7
Auger, David 67

Berthomé, Pascal 229
Bhattacharya, Anup 7
Bhattacharya, Swapan 271

Calude, Cristian S. 50
Cattanéo, David 86
Chaplick, Steven 323
Chen, Jingchao 158
Chopde, Archita 271
Cooper, S. Barry 1
Coucheney, Pierre 67

Das, Shibsankar 312
Das, Sukanta 39
Datta, Samir 300
Defour, David 229
Ding, Yihua 366

Fatès, Nazim 39
François, Michael 229

Goerigk, Marc 203
Gopal, TV 1

Hell, Pavol 323

Innes, Duncan 23
Ito, Takehiro 341
Ivanov, Ievgen 104

Jaiswal, Ragesh 7
Jiao, Jia 141

Kamiński, Marcin 341
Kapoor, Kalpesh 312
Kashyap, Rakesh 271
Kelemenová, Alica 352
Konagaya, Matsuo 216
Kulkarni, Raghav 300

Li, Angsheng 1
Li, Xianxian 141
Lin, Guohui 248

Liu, Peng 141
Liu, Tian 248
Lu, Min 248

Marion, Jean-Yves 124
Meer, Klaus 168
Metta, Venkata Padmavati 352

Naif, Ameen 168

Ono, Hirotaka 341
Otachi, Yota 216, 323

Péchoux, Romain 124, 280
Perdrix, Simon 86

Raut, Manoj K. 188
Ravikumar, Bala 23

Sabharwal, Yogish 203
Saitoh, Toshiki 323
Schöbel, Anita 203
Sen, Sandeep 203
Sethi, Biswanath 39
Srimani, Pradip K. 366
Staiger, Ludwig 50
Stephan, Frank 50
Strozecki, Yann 67
Sun, Rongxin 378, 401
Suzuki, Akira 341

Ta, Thanh Dinh 280
Tian, Yuan 378, 401
Tong, Weitian 248

Uehara, Ryuhei 216, 323, 341

Veeraraghavan, Rajiv 271

Wang, James Z. 366

Xu, Ke 248

Yamanaka, Katsuhisa 341

Zhang, Peng 259
Zhu, Xueyong 378, 401

	Preface
	Organization
	Table of Contents
	A Roadmap for TAMC
	References

	Contributed Papers
	A Tight Lower Bound Instancefor k-means++ in Constant Dimension
	1 Introduction
	1.1 Related Work
	1.2 Main Results
	1.3 Our Techniques

	2 The Bad Instance
	2.1 Optimal Solution for Our Instance
	2.2 Potential of the Optimal Solution

	3 Analysis of k-means++ for Our Instance
	3.1 Definitions and Inequalities
	3.2 Analysis of Markov Chain

	References

	An Improved Upper-Boundfor Rivest et al.’s Half-Lie Problem
	1 Introduction
	2 Background
	3 The Algorithm
	4 Opening-game Analysis
	5 End-game Analysis
	6 Lower-bound for the Case of n = 106
	7 Connection to Two-Player Search Game
	8 Conclusions
	References

	Reversibility of Elementary Cellular Automataunder Fully Asynchronous Update
	1 Introduction
	2 Definitions
	3 (Ir) Reversibility of ACA
	4 Identifying the Strongly Irreversible Rules
	5 Identification of the Recurrent Rules
	6 Conclusion
	References

	Finite State Incompressible Infinite Sequences
	1 Introduction
	2 Admissible Transducers and Their Enumerations
	3 Complexity and Randomness
	4 Complexity Based on Transducers
	5 Complexity of Infinite Sequences
	6 Finite State Incompressibility and Normality
	7 How Large Is the Set of Incompressible Sequences?
	8 Conclusion and Open Questions
	References

	Finding Optimal Strategies of Almost AcyclicSimple Stochastic Games
	Introduction
	1 Definitions and Standard Results
	2 MAX-acyclic SSGs
	3 SSG with Few Fork Vertices
	3.1 Almost Acyclic SSGs
	3.2 Fixed Number of Non Acyclic Average Vertices

	4 Feedback Vertex Set
	4.1 The Dichotomy Method
	4.2 Feedback Vertex Set of Fixed Size

	References

	The Parameterized Complexityof Domination-Type Problemsand Application to Linear Codes
	1 Introduction
	2 Blind Multi-tape Non-deterministic Turing Machine
	3 Parameterized Complexity of (σ, ρ)-Domination
	4 Other Domination Problems
	5 Problems from Coding Theory
	6 Conclusion and Perspectives
	References

	On Representations of Abstract Systemswith Partial Inputs and Outputs
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Multi-valued Functions
	2.3 Named Sets
	2.4 Blocks
	2.5 Nondeterministic Complete Markovian Systems (NCMS)
	2.6 NCMS Representation of a Strongly Nonanticipative Block
	2.7 Existence of Total I/O Pairs of Strongly Nonanticipative Blocks
	2.8 Existence of Global Trajectories of NCMS
	2.9 Potential Applications

	3 MainResult
	References

	Complexity Information Flowin a Multi-threaded Imperative Language
	1 Introduction
	2 A Complexity Flow Type System
	2.1 A Multi-threaded Programming Language
	2.2 Semantics, Termination and Time Usage
	2.3 The Type System

	3 Safe Multi-threaded Programs
	3.1 Neutral and Positive Operators
	3.2 Safe Environments and Safe Multi-threaded Programs

	4 Examples
	5 Sequential and Concurrent Non-interferences
	6 Sequential and Concurrent Temporal Non-interferences
	7 Analysis of Multi-threaded Program Running Time
	8 A Characterization of Polynomial Time Functions
	9 On Deterministic Scheduling
	References

	A Personalized Privacy Preserving Methodfor Publishing Social Network Data
	1 Introduction
	2 Problem Description
	3 Personalized Anonymity
	3.1 PKDLD Sequence Generation
	3.2 Graph Construction

	4 Experiments
	4.1 Data Sets
	4.2 Results and Analysis

	5 Related Work
	6 Conclusion
	References

	A Bit-Encoding Phase Selection Strategyfor Satisfiability Solvers
	1 Introduction
	2 A Bit-Encoding Phase Selection
	3 Empirical Evaluation
	4 Conclusions and Future Work
	References

	Generalized Finite Automataover Real and Complex Numbers
	1 Introduction
	2 Generalized Finite Automata over
	3 Basic Results, a Structural Theorem and a Weak Pumping Lemma for Complex Automata
	3.1 A Structure Theorem for Complex Automata
	3.2 A Weak Pumping Lemma

	4 Undecidability Results
	4.1 Conclusion and Open Questions

	References

	An Incremental Algorithm for Computing PrimeImplicates in Modal Logic
	1 Introduction
	2 Preliminaries
	3 Incremental Algorithm
	4 Conclusion
	References

	Approximation Algorithmsfor the Weight-Reducible Knapsack Problem
	1 Introduction
	2 Problem Definition and Notation
	3 A Pseudo-Polynomial Algorithm
	3.1 Dynamic Programming for Integral Profits
	3.2 Faster Approximation Algorithms Using Profit Scaling

	4 A Polynomial-Time 3-Approximation Algorithm
	5 The Special Case of One Improvement per Item
	5.1 A Linear-Time 3-Approximation Algorithm
	5.2 A Polynomial-Time 2-Approximation Algorithm

	6 Conclusion and Further Research
	References

	Polynomial-Time Algorithmsfor Subgraph Isomorphismin Small Graph Classes of Perfect Graphs
	1 Introduction
	1.1 Our Results
	1.2 Related Results

	2 Preliminaries
	2.1 Definitions of the Problems
	2.2 Graph Classes

	3 Polynomial-Time Algorithms
	3.1 Finding Co-chain Subgraphs in Chordal Graphs
	3.2 Finding Threshold Subgraphs in Trivially Perfect Graphs

	4 NP-completeness
	5 Conclusion
	References

	A Pseudo-Random Bit GeneratorBased on Three Chaotic Logistic Mapsand IEEE 754-2008 Floating-Point Arithmetic
	1 Introduction
	2 Background
	2.1 IEEE 754-2008 Standard
	2.2 The Chaotic Logistic Map

	3 The Proposed Generator
	3.1 Seed Selection
	3.2 Initial Chaotic Behavior

	4 Statistical Analysis
	4.1 Randomness Evaluation
	4.2 Correlation Evaluation
	4.3 Analysis of Pseudo-Random Sequences

	5 Security Analysis
	5.1 Key Space
	5.2 Key Sensitivity
	5.3 Quality of Pseudo-Random Sequences
	5.4 Weak or Degenerate Keys
	5.5 Speed Analysis
	5.6 Period Length of the Logistic Map
	5.7 Basic Attacks

	6 Conclusions
	References

	Set Cover, Set Packing and Hitting Setfor Tree Convex and Tree-Like Set Systems
	1 Introduction
	2 Preliminaries
	3 Triad Convex Set Cover
	4 Circular-Like Set Packing
	5 Comb Convex Set Cover
	6 Conclusions
	References

	Efficient Algorithms for the Label Cut Problems
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Hardness Results
	4 Approximation Algorithms
	5 Algorithms for Tractable Cases
	5.1 Polynomial Algorithms
	5.2 FPT Algorithms

	6 Discussions
	References

	A Dynamic Approachto Frequent Flyer Program
	1 Introduction
	2 Problem Statement
	3 Dynamic Approach
	3.1 Competition from Rival Airlines (C)
	3.2 Frequency (F)
	3.3 Load Factor (LF)
	3.4 Determining the Value of n
	3.5 Peak Seasons
	3.6 Estimating FFP at Time of Booking
	3.7 Algorithm

	4 Experiment
	5 Conclusion
	References

	A Categorical Treatment of MaliciousBehavioral Obfuscation
	1 Introduction
	2 Behavior Modeling
	2.1 Syscall Interaction Modeling
	2.2 Process Behaviors as Path Semantics

	3 Behavioral Obfuscation
	3.1 Obfuscation
	3.2 Camouflage Theorem
	3.3 Obfuscated Path Generation
	3.4 Graph-Based Path Transformation

	4 Experiments and Detection
	4.1 Experimental Implementation
	4.2 Obfuscated Path Detection

	References

	Space Complexity of Optimization Problemsin Planar Graphs
	1 Introduction
	1.1 Space Complexity
	1.2 Planar Restrictions of Some Optimization Problems
	1.3 Our Main Results and Techniques

	2 Preliminaries
	2.1 Space Complexity Classes
	2.2 Optimization Problems in Planar Graphs

	3 Max-Cut in Planar Graphs has (UL ∩ co − UL)Approximation Scheme
	3.1 Proof Idea
	3.2 Max-Cut in Bounded Tree-width Graphs is in L

	4 Sparsest-Cut in Planar Graphs Is in NL
	5 Max-Cut in Planar Graphs is NL-Hard
	6 Max-wt-Cut to Min-wt-PM in Planar Graphs
	7 Hardness for ⊕Directed-Spanning-Trees
	8 Conclusion and Open Ends
	References
	9 Appendix
	9.1 Constructing a Non-degenerate Straight-Line Layout of Kn

	Fine-Tuning Decomposition Theoremfor Maximum Weight Bipartite Matching
	1 Introduction
	2 Related Work
	3 Refined Decomposition Technique to Compute Weight of MWBM
	4 Complexity of the Algorithm
	5 Finding a Maximum Weight Matching
	6 Conclusions
	References

	Intersection Dimension of Bipartite Graphs
	1 Introduction
	2 Preliminaries
	2.1 Graph Classes
	Chain Graphs and Ferrers Diagrams.
	Bipartite Permutation Graphs, Convex Graphs, Biconvex Graphs, In-terval
	Bigraphs, and Chordal Bipartite Graphs.
	Orthogonal Ray Graphs.
	Theorem 2.1.
	Grid Intersection Graphs.
	Segment-Ray Graphs.
	Recognition Problems and Inclusion Relations.
	Other Graphs.
	Boxicity and Cubicity.
	Bigraph Intersection Dimension.
	Lemma 2.2.
	Lemma 2.3.
	Ferrers Dimension.
	Poset Dimension.

	3 (P,Q;D)-Bigraphs
	3.1 (P,Q; R)-Bigraphs
	3.2 (P,Q; R2)-Bigraphs

	4 Segment-Ray Graphs
	5 Boxicity and Ferrers Dimension
	References

	On the Parameterized Complexityfor Token Jumping on Graphs
	1 Introduction
	1.1 Reconfiguration Rules and Related Results
	1.2 Our Contributions

	2 Preliminaries
	2.1 Graph Notations
	2.2 Definitions for token jumping
	2.3 PSPACE-Completeness

	3 W[1]-Hardness
	4 FPT Algorithms
	4.1 Token jumping
	4.2 Shortest Reconfiguration Sequence

	5 Concluding Remarks
	References

	Universality of Spiking NeuralP Systems with Anti-spikes
	1 Introduction
	2 Prerequisites
	3 Computational Completeness of SN PA Systems
	4 A Small Universal SN P System with Anti-spikes
	5 Conclusion
	References

	Self-stabilizing Minimal Global OffensiveAlliance Algorithm with Safe Convergencein an Arbitrary Graph
	1 Introduction
	2 Model and Terminology
	3 Minimal Global Offensive Alliance with Safe Convergence
	4 Correctness
	5 Conclusion
	References

	A Local-Global Approachto Solving Ideal Lattice Problems
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Lattices, SVP and CVP
	3.2 Number Field: Relative Extension and Prime Ideal Decomposition
	3.3 Valuations, p-adic Completions and Local-Global Relations

	4 Local-Global Algorithm to Solve SVP and CVP in Ideal Lattices: High Level Descriptions
	4.1 Problem
	4.2 High Level Algorithm
	4.3 Complexity

	5 Conclusion and Future Works
	References

	Modular Form Approachto Solving Lattice Problems
	1 Introduction
	1.1 Basic Results
	1.2 A Sketch on Our Approach
	1.3 Related Works
	1.4 Roadmap

	2 Preliminaries
	2.1 Lattices
	2.2 Modular Forms
	2.3 Lattice-Associated Theta Function and Its Modularity

	3 The Modular Form Approach to Solving SVP and CVP
	3.1 Basic Problems
	3.2 Solving the Basic Problems
	3.3 Solving SVP and CVP

	4 Conclusions
	References

	Author Index

