Chapter 9
Basic Concepts on the Calculus of Variations

9.1 Introduction to the Calculus of Variations

We emphasize the main references for this chapter are [37, 38, 68].

Here we recall that a functional is a function whose co-domain is the real set.
We denote such functionals by F' : U — R, where U is a Banach space. In our work
format, we consider the special cases:

1. F(u) = [ f(x,u,Vu) dx, where Q C R" is an open, bounded, and connected set.
2. F(u) = [q f(x,u,Vu,D*u) dx, here

81/!,'
Du=Vu= {3)?1'}

d%u;
D*u= {D*u;} = ’
u { ul} {axkaxl}7
forie{l,...,N}and j,k,l € {l,...,n}.
Also, f: Q xRN x RV 5 R is denoted by f(x,s,&) and we assume
1.

and

2f(x,5,5)

ds

and

9f(x,5,6)

9§

are continuous V(x,s,&) € Q x RV x RV7,
Remark 9.1.1. We also recall that the notation Vi = Du may be used.

Now we define our general problem, namely problem &2 where
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226 9 Basic Concepts on the Calculus of Variations
Problem &7 : minimize F(u) on U,

that is, to find ug € U such that
= 1 .
F (uo) gg{}{l (u)}

At this point, we introduce some essential definitions.

Definition 9.1.2 (Space of Admissible Variations). Given F : U — R we define the
space of admissible variations for F, denoted by 7" as

¥V ={¢|ut+eeUVuecU}.

For example, for F': U — R given by
1
F(u) = 7/ Vu-Vudx—(u, f)u,
2Ja

where Q c R? and
U={ucW"?(Q)|u=1iondQ}

we have
¥V =W, (Q).

Observe that in this example U is a subset of a Banach space.

Definition 9.1.3 (Local Minimum). Given F : U — R, we say that ug € U is a local
minimum for F if there exists 6 > 0 such that

F(u) > F(up),Yu € U, such that ||u —up|ly < 8,
or equivalently
F(uo+ @) > F(up),Vo € ¥, such that ||¢|ly < 8.

Definition 9.1.4 (Gateaux Variation). Given F : U — R we define the Giteaux
variation of F at u € U on the direction @ € ¥, denoted by 6 F (u, @) as
F(utep)— F(w)

8F (1, p) = lim ? ,

if such a limit is well defined. Furthermore, if there exists u* € U™* such that
OF (u, @) = (@, u")u,Yp € U,

we say that F is Gateaux differentiable at u € U, and u* € U* is said to be the
Gateaux derivative of F at u. Finally we denote
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OF (u)
du

u* =08F(u) oru* =

9.2 Evaluating the Gateaux Variations

Consider F : U — R such that

u):/gf(x,u,Vu) dx

where the hypothesis indicated in the last section is assumed. Consider u €
C'(Q;RN) and ¢ € C! (Q;R") and let us evaluate 5F (u, ¢):
From Definition 9.1.4,

F(u+8(p)fF(u).

OF (u. ) = };lﬂ% £

Observe that

lim fx,u+e@,Vu+eVe)— f(x,u,Vu)

£—0 €

_ af(xéz;, Vu) o+ af(xébg Vu) Vo.
Define
G, 0.¢) = f(x,u+£(p,Vu+zV(p)ff(x,u,Vu)’
and ~ af(x,u,Vu) df(x,u,Vu)
G(x,u, @) = 3 SO+ JE ‘Vo.

Thus we have
hm G(x u,0,€) = G(x,u, ).

Now we will show that

lim G(xu(ps dx—/Gxu(p

£—0

Suppose to obtain contradiction that we do not have

lim G(xuqos dx—/Gxu(p

£—0

Hence, there exists & > 0 such that for each n € N there exists 0 < &, < 1/n such
that

‘/ G(x,u,(p,en)dx—/ G(x,u, ) dx| > &. ©.1)
Q Q
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Define ;
Cn = Q%{‘G(L ”(x)v (P(x)7 8") - G(x7u(x)7 (p(x))|}

Since the function in question is continuous on the compact set Q, {x,} is well
defined. Also from the fact that £2 is compact, there exists a subsequence {x,; } and
xo €  such that

lim x,; = Xxo.
Jrtee

Thus
lim Cn; = €0

Joroo
= lim {|G(x;,u(x,), (), &) = Glxo, u(x0), 9 (x0))[} = 0.

Jrtee
Therefore there exists jo € N such that if j > jp, then
Cn; < 8()/|Q|.

Thus, if j > jo, we have

'/ G(x,u7(p,£nj)dx—/ G(x,u, ) dx
Q Q

§/_Q|G(x,u,(p,£nj)—G(x,u,(p)\dxgcn_/|!2|<£0, 9.2)

which contradicts (9.1). Hence, we may write

lim G(xuqoe dx—/Gxu(p

e—0

5F(u,</>)=/g{af(xéi’w) _(p_’_af(xélgVu) 'V(p} .

that is,

Theorem 9.2.1 (Fundamental Lemma of Calculus of Variations). Consider an
open set Q C R" and u € L}, () such that

/ up dx = 0,9 € C7(Q).
Q
Thenu =0, a.e. in L.

Remark 9.2.2. Of course a similar result is valid for the vectorial case. A proof of
such a result was given in Chap. 8.

Theorem 9.2.3 (Necessary Conditions for a Local Minimum). Suppose u € U is
a local minimum for a Gateaux differentiable F : U — R. Then



9.3 The Gateaux Variation: A More General Case 229
OF (u,0)=0,Yoec .

Proof. Fix ¢ € ¥ . Define ¢(€) = F(u+€@). Since by hypothesis ¢ is differentiable
and attains a minimum at € = 0, from the standard necessary condition ¢'(0) = 0,
we obtain ¢’(0) = 6F (u, ¢) = 0.

Theorem 9.2.4. Consider the hypotheses stated in Section 9.1 on F : U — R. Sup-
pose F attains a local minimum at u € C*(Q;RN) and additionally assume that
f € C*Q,RN, RN*"), Then the necessary conditions for a local minimum for F are
given by the Euler—Lagrange equations:

af (x,u, Vu) _ div (8f(x,u,Vu)

s 8:’;) =0, inQ.

Proof. From Theorem 9.2.3, the necessary condition stands for 8 F (u, @) = 0,V¢
€ 7. From the above this implies, after integration by parts

/Q (af (x’a”;’ V) iy <af (xéz’ Vu) )) Lpdx=0,

The result then follows from the fundamental lemma of calculus of variations.

Vo € C7(Q,RN).

9.3 The Gateaux Variation: A More General Case

Theorem 9.3.1. Consider the functional F : U — R, where
U={uecW"2(QR") |u=uyindQ}.
Suppose
Flw)= [ flv.u.Vu) dx,
Q

where f: Q xRN x RN*" is such that for each K > 0 there exists K| > 0 which does
not depend on x such that

|f(xasl7§1) _f(x7s27€2)| < K1(|S1 —SQ‘ + |51 _§2|)
Vsi,s0 € RN &1, & e RN*" such that |s1| < K, |s2| < K,
181 <K,|&| <K.

Also assume the hypotheses of Section 9.1 except for the continuity of derivatives
of f. Under such assumptions, for each u € C'(Q;RN) and ¢ € CZ(Q;RN), we

have
SF(u, @) = /Q {&f (x;;’ Vi) o1 2f (xég’ Vi) -V(p} dx.
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Proof. From Definition 9.1.4,

SF (1, 0) _E_%F(u#—e(g)—F(u)'

Observe that

fu+eo,Vu+eVe) — f(x,u,Vu)

lim
e—0 €
_ Of(xu,Vu) 9 f(x,u,Vu) .
- Os ¢+ JE Vo, aein Q.
Define . o o
G(x7u7(p’£):f(x,u+£(l), u—l—;c‘ ©) — f(x,u, u)’
" df(x,u, Vu) O f (x,u, Vi)
~ X, U, Vi x,u,Vu
Cloug)=——F—— 9+ — V¢

Thus we have
hmG(x u,0,€) = G(x,u,p), a.ein Q.

e—0

Now we will show that

lim G(xugos dx—/Gxu(p

£—0

It suffices to show that (we do not provide details here)

lim G(xu 0,1/n) dxf/ G(x,u,p)d

n—soo
Observe that for an appropriate K > 0, we have
1G(x,,0,1/m)| < K(lg|+ Vo)), ac.in Q. 9.3)

By the Lebesgue dominated convergence theorem, we obtain

lim G(x u,0,1/(n) dx:/ G(x,u, ) dx
Q

n—r—+oo

that is,

8F (u, @) = /Q { of (x’ab;’ vu) o+ of (xé”g Vu) .V<p} dx.
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9.4 Fréchet Differentiability

In this section we introduce a very important definition, namely, Fréchet
differentiability.

Definition 9.4.1. Let U,Y be Banach spaces and consider a transformation 7 :
U—Y. We say that T is Fréchet differentiable at u € U if there exists a bounded
linear transformation 7’ (u) : U—Y such that

i L7 00) @ =T @Oy
v—6 [Iv|lu

In such a case T’ (u) is called the Fréchet derivative of T atu € U.

9.5 Elementary Convexity

In this section we develop some proprieties concerning elementary convexity.

Definition 9.5.1. A function f: R” — R is said to be convex if
fAx+(1=24)y) SAf(xX)+(1—2)f(y),Yx,y € R", A € [0,1].
Proposition 9.5.2. If f : R" — R is convex and differentiable, then
FO)=f(x) = (f(x),y = x)pr, Vx,y ER".
Proof. Pick x,y € R". By hypothesis
F(A=A)x+2Ay) < (1=A)f(x) +Af(),YA € [0,1].

Thus

et AN < fiy) - pio) v e (0.1]

Letting A — 0" we obtain

FO)=f(x) 2 (f'(x),y = x)pr.
Since x,y € R”" are arbitrary, the proof is complete.

Proposition 9.5.3. Let f : R" — R be a differentiable function. If

f(y) _f(x) 2 <f/(x)7y_x>R"»VX7y € Rna

then f is convex.
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Proof. Define f*(x*) by

f() = sup {(x, ") rn — f ()}

xeR?

Such a function f* is called the Fenchel conjugate of f. Observe that by hypothesis,

FH(f' () = sup {{y, f'(x))re = F(9)} = (6, f () — f (). 9.4)

yeRn

On the other hand

) > (e, x g — f(x),Vx,x" € RY,
that is,

F(x) > (e, x")ge — £ (x"),Va,x* € R™.
Observe that from (9.4)

F&) =, 1 @))re — (' (x))

and thus

fx) = sup {(x")re — F(x")}, Vx € R".
x*e n

Pick x,y € R" and A € [0, 1]. Thus, we may write
fAx+(1-21)y) = sup {Ax+ (1= 2A)y,x")pn — f7(x")}
x*e n

= sup {A(6, ") ko + (1= A) (332 — A7 ()

x*Rn
—(1=A)f*(x*)}
<A{ sup {(x,x")gn — fF(x")}}

x*eRn?
+(1=2){ flelpn{@, e — ()}
=Af(x)+ (1 =2)f (). 9.5

Since x,y € R" and A € [0, 1] are arbitrary, we have that f is convex.
Corollary 9.5.4. Let f : R" — R be twice differentiable and

{2001,

positive definite, for all x € R". Then f is convex.

Proof. Pick x,y € R". Using Taylor’s expansion we obtain

% f(%)
axlaxj l_xi>(yj_xj)7

F0) = FO+ (@D + 3 S

i=1j=1
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for ¥ = Ax+ (1 — A)y (for some A € [0,1]). From the hypothesis we obtain

FO) = f @) = {f/(x),y —x)rn 2 0.
Since x,y € R”" are arbitrary, the proof is complete.

Similarly we may obtain the following result.

Corollary 9.5.5. Let U be a Banach space. Consider F : U — R Gdteaux differen-
tiable. Then F is convex if and only if

F(v)—F(u) > (F'(u),v—u)y,Yu,v € U.
Definition 9.5.6 (The Second Variation). Let U be a Banach space. Suppose F :

U — Ris a Gateaux differentiable functional. Given ¢, n € ¥/, we define the second
variation of F at u, relating the directions @, 7, denoted by

8°F(u,9,m),

by
. OF(u+en,p)—0F(u,
SZF(M7 ]7,.’) ll ] ( 8) ( )

If such a limit exists V@, n € ¥, we say that F is twice Gateaux differentiable at u.
Finally, if n = @, we denote 8°F (u,,n) = 8%F (u, ¢).

Corollary 9.5.7. Let U be a Banach space. Suppose F : U — R is a twice Gdteaux
differentiable functional and that

8%F(u,0) >0YueclU,pc V.

Then, F is convex.

Proof. Pick u,v € U. Define ¢(g) = F(u+ €(v—u)). By hypothesis, ¢ is twice
differentiable, so that

9(1)=0(0)+9¢'(0)+¢"(8)/2,
where || < 1. Thus
F(v) = F(u)+ 8F (u,v — u) + 8*F (u+&(v —u),v —u) /2.
Therefore, by hypothesis,
F(v) > F(u)+ 0F (u,v—u).
Since F is Gateaux differentiable, we obtain
F(v) > Fu)+(F'(u),v—u)y.

Being u,v € U arbitrary, the proof is complete.
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Corollary 9.5.8. Let U be a Banach space. Let F : U — R be a convex Gdteaux
differentiable functional. If F'(u) = 0, then

F(v) > F(u),YveU,
that is, u € U is a global minimizer for F.
Proof. Just observe that
F(v) > F(u)+ (F'(u),v—u)y,Yu,v € U.
Therefore, from F’ (u) = 6, we obtain
F(v) > F(u),YveU.

Theorem 9.5.9 (Sufficient Condition for a Local Minimum). Let U be a Banach
space. Suppose F : U — R is a twice Gateaux differentiable functional at a neigh-
borhood of uy, so that

OF (up) =6

and
8%F (u, ) > 0,Yu € B.(up), o € ¥,

for some r > 0. Under such hypotheses, we have
F(up) < F(ug+€9),V €, ¢ such that |¢| < min{r, 1}, |@|lv < 1.
Proof. Fix ¢ € ¥ such that ||@|ly < 1. Define
¢(e) = F(uo+£9).
Observe that for |e| < min{r, 1}, for some & such that || < |&|, we have
9(e) = 9(0) +9¢'(0)e +¢"(8)€*/2

= F(uo) +&(@,8F (uo))y + (€7 /2)87F (ug+ £, )
= F(up) + (€2/2)8%F (ug + £, ) > F (o).

Hence,
F(up) < F(up+e€¢),V e, @suchthat [e| <r, |o]lv < 1.

The proof is complete.

9.6 The Legendre-Hadamard Condition

Theorem 9.6.1. If u € C' (Q;RY) is such that

82F (u,0) > 0,Y¢p € C7(Q,RY),
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then
fé,ﬂ,él’; (x,u(x),Vu(x))pipknanﬁ >0,VxeQ,p cRY neR"

Such a condition is known as the Legendre-Hadamard condition.

Proof. Suppose
8%F (u,9) > 0,9 € C7(Q:RY).

We denote 82F (u, @) by

§F(1,9) = [ alx)Dg(x)-Dp(x) d

+ / b(x)p(x) - De(x) dx + / 000 o) dx,  (9.6)
where
a(x) = fee (x,u(x),Du(x)),
b(x) = 2fs¢ (x,u(x), Du(x)),
and

c(x) = fis(x,u(x), Du(x)).

Now consider v € C°(B1(0),RY). Thus given xy € Q for A sufficiently small we
pa

have that @(x) = lv( -*0) is an admissible direction. Now we introduce the new
coordinates y = (y',...,y") by setting y = A~! (x — x9) and multiply (9.6) by A " to
obtain

a0+ 23)Dr() D) + 200+ A)v(y) D)
1
+2A%c(x0 +Ay)v(y) - v(y)} dy >0,
where a = {af]‘-ﬁ b= {bfk} and ¢ = {cj}. Since a, b and ¢ are continuous, we have

a(xo +Ay)Dv(y) - Dv(y) — a(xo)Dv(y) - Dv(y),

Ab(xo+Ay)v(y) - Dv(y) — 0,

and

A2c(xo+Ay)v(y) - v(y) = 0,

uniformly on © as A — 0. Thus this limit gives us

o Pl Doy Dk dx > 0,9 € €7 (B1 (0):RY), 9.7)
JB((0

where

T = a5 (v0) = fi (w0, u(x0), Vu(x0)).



236 9 Basic Concepts on the Calculus of Variations
Now define v = (v!,... V), where
v/ = pleos((n-y)1)¢(y)

p=(p',....p") eRY
and

n=mM,...,Mn) ER"
and § € C(B1(0)). From (9.7) we obtain

0< 70l { [ | (atCsin(n- 3¢+ cos((n-y)0ud)

- (mpt(—sin((n-y)0)¢ +cos((n-y))DsL) dy} ©.8)

By analogy for , .
v/ = p’sin((n-y)t)E(y)
we obtain

0< 700 { [ (atteos((n-s)E +sin((n 5)0Da)

(npt(cos((n-y)0)E +sin((n-)1)Dy ) dy} ©.9)

Summing up these last two equations, dividing the result by %, and letting r — +oco
we obtain

0< foPpipk / 2 dy,
<Jfi PP Nanp B@)C y
for all { € C(B1(0)), which implies
0< 7P pip namg.
The proof is complete.

9.7 The Weierstrass Condition for n = 1

Here we present the Weierstrass condition for the special case N > 1 and n = 1.
We start with a definition.

Definition 9.7.1. We say that u € C'([a,b];RY) if u : [a,b] — RY is continuous in
[a,b] and Du is continuous except on a finite set of points in [a, b].

Theorem 9.7.2 (Weierstrass). Ler Q = (a,b) and f: Q x RV x RV — R be such
that fi(x,s,&) and fz(x,s,&) are continuous on  x RN x RN,
Define F : U — R by

Fu) = /  Fu(x) i (x)) dx,
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where
U={ucC'"([a,b];R") | u(a) = a, u(b) = B}.

Suppose u € U minimizes locally F on U, that is, suppose that there exists & > 0
such that
F(u) <F(),¥YveU, such that ||u—v|. < €.

Under such hypotheses, we have

E(x,u(x),u (x+),w) > 0,Yx € [a,b], w e RV,

and
E(x,u(x),u' (x—),w) > 0,Yx € [a,b], w e RV,

where

! = lim u'(x+h),

u'(x+) h_1>1(1)1+u(x+ )

'(x—) = lim u/'(x+h),

u'(x—) hl)r(r)liu(x—&— )
and

E(x7s,§,w) = f(x7s7w) —f(x,s@) _f§ (x,s,'g')(w— é)
Remark 9.7.3. The function E is known as the Weierstrass excess function.

Proof. Fix xo € (a,b) and w € RY. Choose 0 < € < 1 and h > 0 such that u+v € U
and

V] < €0
where v(x) is given by
(x —x0)w, if0<x—xy<eh,
v(x) =< E(h—x+x0)w, ifeh<x—xo<h,
0, otherwise,
where
- £
T l—¢
From
F(u+v)—F(u) >0
we obtain
x0+h
/ Fleu(x) +v(x),u (x) +V/(x)) dx
X0
xo+h
_/ f(x,u(x),u (x)) dx > 0. (9.10)
X0
Define
~ X —X0
X =
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so that

From (9.10) we obtain
1
h/ f(x0 +Fh, u(xo +Fh) +v(xo +%h), u (xo +Fh) +V'(x0 + Fh) d¥
0
1
—h/ f(x0 -+ %h,u(xo + Xh),u’ (xo + Xh)) d¥ > 0. 9.11)
0

where the derivatives are related to x.
Therefore

/08 £ (xo + Xh,u(xo +%h) + v(xo + xh), u' (xo + Fh) +w) di
- /:f(xo+)€h,u(x0+ih),u’(xo+ih)) dx
+ /gl f(x0 + Xh,u(xo + Xh) +v(xo +%h),u' (xo + £h) — Ew) d
- / o+ Th (0 + ). (v + ) d
>0, 9.12)
Letting & — O we obtain

&(f (x0, u(xo),u’ (xo+) +w) — f(x0,u(x0), ' (x0+))
+(1 —&)(f (x0,u(x0),u (xo+) — &w) — f(x0,u(x0),u’ (x0+))) > 0.

Hence, by the mean value theorem, we get

&(f (xo,u(xo),u’ (xo+) +w) — f(x0,u(x0),u (x0+))
—(1—&)&(fz (x0,u(x0),u' (xo+) + p(E)w)) -w > 0. (9.13)

Dividing by € and letting € — 0, so that € — 0 and p (&) — 0, we finally obtain

f(xo,u(xo),u' (xo+) +w) — f(xo0,u(xo),u’ (xo+))
— e (x0, u(x0), u' (x0+)) - w > 0.

Similarly we may get

f(XOa”(XO),M/(XO—) +w) —f(x(),u(x()),u/(xo—))
— fe(x0,u(x0),u' (xo—)) - w > 0.

Since xg € [a,b] and w € R are arbitrary, the proof is complete.
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9.8 The Weierstrass Condition: The General Case

In this section we present a proof for the Weierstrass necessary condition for
N > 1,n > 1. Such a result may be found in similar form in [37].

Theorem 9.1. Assume u € C'(Q;RN) is a point of strong minimum for a Fréchet
differentiable functional F : U — R that is, in particular, there exists € > 0 such that

Fut@) = F(u),
for all ¢ € CZ(Q2;R") such that
ol <e.

Here
F(u) :/Qf(x,u,Du) dx,

where we recall to have denoted

Du:Vu:{aui}.
ax]'

Under such hypotheses, for all x €  and each rank-one matrix 1 = {p;f*} =
{p ® B}, we have that

E(x,u(x), Du(x), Du(x) + p B) > 0,
where

E(x,u(x),Du(x),Du(x) +p @)
= f(x,u(x), Du(x) +p ® B) = f(x,u(x), Du(x))
—P'Ba S, (x,u(x), Du(x)). 9.14)

Proof. Since u is a point of local minimum for F', we have that
SF(u;0) = 0,Yp € C7(Q;RY),

that is,
| (@ (. Du() +Dg - 5 3, u(x). Du(x)) dx =0,

and hence,
|| ), Du() + D)) = f (.10, Du()

- /Q(<P(X) fs(x,u(x), Du(x)) = Do (x) - f (x,u(x), Du(x)) dx
>0, (9.15)
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Yo € ¥, where
¥ ={p eCT(2:RY) : ||o|. < €}.

Choose a unit vector ¢ € R” and write
x=(x-e)e+x,
where
x-e=0.

Denote D,v=Dv-eand let p = (py,....,pn) € RV,
Also, let xo be any point of £2. Without loss of generality assume xg = 0.
Choose A9 € (0,1) such that C;, ) C Q, where

Ch ={x€R" : |x-e] < Apand ||%]| < Ao}

Let A € (0,A0) and
¢ € Ce((=1,1;R)

and choose a sequence

o € CT((—A%,A):R)

which converges uniformly to the Lipschitz function ¢, given by

t+2A2%,  if —A2<r<0,
Pr=¢ A(A—1), f0<t<A (9.16)
0, otherwise

and such that ¢; converges uniformly to ¢; on each compact subset of
Ay ={t:=A*<t <A, t#0}.

We emphasize the choice of {¢, } may be such that for some K > 0 we have ||¢]| <
K, [|¢c]| < K and ||¢]|- < K,Vk € N.
Observe that for any sufficiently small A > 0 we have that @, defined by

P(x) = poi(x-€)9 (% /A%) € ¥, Vk €N
so that letting k — o> we obtain that

o(x) = pg (x-€) (x> /2%),

is such that (9.15) is satisfied.
Moreover,

D.g(x) = poj (x- )9 (|x[* /A7),
and

Dg(x) = pdz (x-e)9'([x]*/2%)24 2%,

where D denotes the gradient relating the variable .
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Note that for such a ¢(x), the integrand of (9.15) vanishes if x ¢ C; , where

Cp={xeR": |x-e]<Aand |]x]| <A}.
Define C;” and C; by

C, ={x€C; : x-e<0},
and

Cy ={xeCy : x-e>0}.
Hence, denoting

gk(x)

(f (x, u(x), Du(x) + D (x)) — f (x, u(x), Du(x))
—(@r(x) - f5 (v, u(x), Du(x) + D (x) - fe (x, u(x), Du(x)) - (9.17)

and

8(x) = (f(x,u(x), Du(x) + Do(x)) — f (x, u(x), Du(x))
—(@(x) - fs(x,u(x), Du(x) + D@(x) - fe (x, u(x), Du(x))  (9.18)

letting k — oo, using the Lebesgue dominated converge theorem, we obtain

[ swars [

—>/ dx+/ ) dx >0, (9.19)
Now define
y=ye+y,
where
., X-e
y 220
and _
r
YT

The sets C; and CI correspond, concerning the new variables, to the sets B, and
B, where

Bgz{y: 5l <1, and — 21 <y <0},
={y: [FlI<1,and0 <y <A~'}
Therefore, since dx = l"*ldy, multiplying (9.19) by A", we obtain

/Bi (x(y dy+/\ dy+/ Ndy>0,  (9.20)
h l l

1
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where
x=(x-e)e+x= A} + Ay =x(y).
Observe that
po(II311%) if —1<y°<0,
Deg(x) = { po([[F]*)(—A) if0<y <A, (9.21)
0, otherwise.

Observe also that

8] < o(y/ lp() + Do) ),
so that from the expression of ¢(x) and D¢(x) we obtain, for
yGBI, ory€ B, \By,

that
lg(x(y))] < 0(1), as & — 0.

Since the Lebesgue measures of B, and BI are bounded by
212
the second and third terms in (9.20) are of o(1) where

lim o(1)/A =0,

A—0
so that letting A — 0™, considering that
x(y) =0,

and on B| (up to the limit set B)

g(x(y)) — £(0,u(0), Du(0) + p ¢ (||7]*)e)
—f(O,u(O)7Du(O)) -
P (|[311*)efz (0,1(0),Du(0)) (9.22)

we get

L 170.0).Dut0) + po([5)e) ~ £(0.(0). Du(0))

—po([I711*)efz (0,u(0), Du(0))] dy, ...y,
>0, (9.23)

where B is an appropriate limit set (we do not provide more details here) such that

B={yeR" :y=0and|y|| <1}.
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Here we have used the fact that on the set in question,
Do(x) = po([7])e, as & — 0™
Finally, inequality (9.23) is valid for a sequence {¢,} (in place of ¢) such that
0<¢,<land¢,(t) =1, if |t|] <1—1/n,

Vn e N.
Letting n — oo, from (9.23), we obtain

F(0,u(0),Du(0) +p ®e) — f(0,u(0),Du(0))
—p-efz(0,u(0),Du(0)) > 0. (9.24)

9.9 The du Bois—Reymond Lemma

We present now a simpler version of the fundamental lemma of calculus of varia-
tions. The result is specific for n = 1 and is known as the du Bois—Reymond lemma.

Lemma 9.9.1 (du Bois—Reymond). If u € C([a,b]) and

b
/ up' dx=0,Yoe v,

a

where
¥ ={p €C'la,b]| p(a) = ¢(b) =0},
then there exists ¢ € R such that

u(x) = c,Vx € [a,b].

1 b
c= b—a/a u(r) dt,

o) = [ W) -c)ds

Thus we have ¢(a) =0 and

Proof. Define

and

Moreover ¢ € C!([a,b]) so that
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Therefore
0< [ e ar
_ / ’ () — )¢’ (v) dx
= [ a0 () el 0. ©25)
Thus

/j(u(x) —¢)?dx =0,
and being u(x) — ¢ continuous, we finally obtain

u(x) —c=0,Vx € [a,b].
This completes the proof.

Proposition 9.9.2. If u,v € C([a,b]) and

[ w0t +ve ) dx=0,

Yo €V, where
¥ ={p €C'[a,b]| p(a) = ¢(b) =0},
then
Ve Cl([a,b])
and

V (x) = u(x),Vx € [a,b].

Proof. Define
"X
up(x) :/ u(t) dt,Vx € [a,b].
a

Thus u; € C!([a,b]) and
Uy (x) = u(x),Vx € [a,b)].
Hence, for ¢ € ¥/, we have
0= [ o0 (00 () dx
= [ 0090+ v9! () it i (o ()1

= [ 00— ()9 d. 926)
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That is,
/ ’ (0(3) = 1 (x))@'(x) dx.Vip € 7.
a
By the du Bois—Reymond lemma, there exists ¢ € R such that
v(x) —u (x) = ¢,Vx € [a,b].

Hence
v=u+c€C([a,b]),

so that
V(x) = u} (x) = u(x),Vx € [a,b].

The proof is complete.

9.10 The Weierstrass—Erdmann Conditions

We start with a definition.

Definition 9.10.1. Define / = [a,b]. A function u € C'([a,b];R") is said to be a
weak extremal of
if
[ .09+ ). () 9/ (5)) dx =0,
Vo € C=(fa, b RY).

Proposition 9.10.2. For any weak extremal of

b
:/a Floeu(x),u (x)) dx

there exists a constant ¢ € RN such that
f (e, u(x), —c+/ Fultsu(0),d (0) dix € [ab].  (9.27)

Proof. Fix ¢ € C=(|a,b]; RY). Integration by parts of the extremal condition

OF (u, ) =
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implies that

//ngu (1)) dt - ' (x) dx = 0.

Since ¢ is arbitrary, considering the du Bois-Reymond lemma is valid also for u €
L'([a,b]) and the respective N-dimensional version (see [37], page 32 for details),
there exists, ¢ € RY such that

fe(x,u /fgtu (¢)) dt =c,Yx € [a,b)].

The proof is complete.

Theorem 9.10.3 (Weierstrass—Erdmann Corner Conditions). Let I = [a,b]. Sup-
pose u € C'([a,b];RN) is such that

F(u) <F(),Vv €€,
for some r > 0 where
€, = {ve C([a,b];RY) | v(a) = u(a), v(b) = u(b),
and ||u—v|| < r}.

Let xo € (a,b) be a corner point of u. Denoting uy = u(xo), & = u'(xo +0), and
&y = u'(xo —0), then the following relations are valid:

1. fé(x(bu()ag()_) :fé(-xoﬂ't(hé(;‘_))
2.

f(x0,u0,8y7) — & fe(x0,u0,5)
= f(x0,u0,8") — & f (x0,u0,&5).-

Remark 9.10.4. The conditions above are known as the Weierstrass—Erdmann corner
conditions.

Proof. Condition (1) is just a consequence of (9.27). For (2), define
7o (x) =3+ eA(x),

where A € C°(I). Observe that T:(a) = a and T¢(b) = b, Ve > 0. Also 1p(x) =
Choose g > 0 sufficiently small such that for each ¢ satisfying |e| < &), we have
7/ (x) > 0and

e (x) = (wot; ) (x) €6,
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Define
¢(8) = F(xvﬁb‘vﬁ/e(x))'
Thus ¢ has a local minimum at 0, so that ¢’(0) = 0, that is,

d(F (x, g, it (x)))

—0=0.
-
Observe that 1( )
dii _ dt. " (x
()
and
dr; ' (x) 1
dx l—i—el’(r;l(x))'
Thus,

fmasz@wuw»waw»Q+d%JmQ)w

Defining

we obtain
1
di=—71——4d
Tlrer®m
that is,
dx = (1+eM' (%)) dx

Dropping the bar for the new variable, we may write

i (x)

F (i) :/abf(x—kel(x),u(x),HW) (1+€eA(x)) dx

From
dF (i)

de

‘8:07

we obtain

b
A0 (50) 4 2 ) (). )
— i (x) fz (x,u(x),u' (x)))) dx = 0. (9.28)

Since A is arbitrary, from Proposition 9.9.2, (in fact from its version for u € L' ([a, b])
and respective extension for the N dimensional case, please see [37] for details), we
obtain

P, (5)) =1 (6) s a).ad () = [ fulrte) o 1)) dr = e

for some ¢; € RV.
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Since [ fo(t,u(t),u'(t)) dt + ¢ is a continuous function (in fact absolutely con-
tinuous), the proof is complete.

9.11 Natural Boundary Conditions

Consider the functional f: U — R, where
F(u) / S u(x), Vu(x)) dx,
Jo

fx,s,E) e CH(Q,RY,RV*m),
and Q2 C R”" is an open bounded connected set.
Proposition 9.11.1. Assume
U={ueW"2(Q;R");u=ugon I},

where I C 0L is closed and dQ =T = IyUI; being I openin I and IzNI; = 0.
Thus if 9Q € C', f € C?*(Q,RN R¥*") and u € C*(Q;RYN), and also

SF(u, @) = 0,Yp € C1(Q;RY), such that o =0 on I,
then u is a extremal of F which satisfies the following natural boundary conditions:
nofei (x,u(x)Vu(x)) =0, a.e. on I, Vi € {1,...,N}.

Proof. Observe that §F (u, ) =0,V € C(€2;R"); thus u is an extremal of F and
through integration by parts and the fundamental lemma of calculus of variations,

we obtain
L¢(u) =0, in Q,

where
Ly(u) = fy(x,u(x),Vu(x)) —div(fg (x,u(x), Vu(x)).

Defining
¥ ={pecC(QRY)|p=00nIp},

for an arbitrary ¢ € ¥/, we obtain
8F(u,9) = [ Ly(u)- g dx
Q
+ [ fey (), Vu() @' () dT
1

= /F nofei (x,u(x), Vu(x)) @' (x) dT
—0Ype V. (9.29)
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Suppose, to obtain contradiction, that
nofe (xo,u(xo), Vu(xp)) =B >0,
for some xp € I and some i € {1,...,N}. Defining
G(x) = ngfzi (x,u(x), Vu(x)),
by the continuity of G, there exists r > 0 such that
G(x) > B/2, in B,(xp),

and in particular
G(x) > B/2, in By(xp) NIj.

Choose 0 < r; < r such that B, (xg) NIy = 0. This is possible since Iy is closed and
xo € I7.

Choose ¢ € CZ(B,,(x0)) such that ¢’ > 0in B,, (x9) and ¢ > 0 in B, ;2(x0)-
Therefore 5

Gx)p'(x)dx>= [ ¢ dx>0,
n 2Jn

and this contradicts (9.29). Thus
G(x) <0,Vx e I3,

and by analogy
G(x) > 0,Vx e I3,

so that
G(x)=0,VxeI;.

The proof is complete.
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