
Chapter 9
Basic Concepts on the Calculus of Variations

9.1 Introduction to the Calculus of Variations

We emphasize the main references for this chapter are [37, 38, 68].
Here we recall that a functional is a function whose co-domain is the real set.

We denote such functionals by F : U → R, where U is a Banach space. In our work
format, we consider the special cases:

1. F(u) =
∫

Ω f (x,u,∇u) dx, where Ω ⊂R
n is an open, bounded, and connected set.

2. F(u) =
∫

Ω f (x,u,∇u,D2u) dx, here

Du = ∇u =

{
∂ui

∂x j

}

and

D2u = {D2ui}=
{

∂ 2ui

∂xk∂xl

}

,

for i ∈ {1, . . . ,N} and j,k, l ∈ {1, . . . ,n}.

Also, f : Ω ×R
N ×R

N×n → R is denoted by f (x,s,ξ ) and we assume

1.
∂ f (x,s,ξ )

∂ s

and
2.

∂ f (x,s,ξ )
∂ξ

are continuous ∀(x,s,ξ ) ∈ Ω ×R
N ×R

N×n.

Remark 9.1.1. We also recall that the notation ∇u = Du may be used.

Now we define our general problem, namely problem P where
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226 9 Basic Concepts on the Calculus of Variations

Problem P : minimize F(u) on U,

that is, to find u0 ∈U such that

F(u0) = min
u∈U

{F(u)}.

At this point, we introduce some essential definitions.

Definition 9.1.2 (Space of Admissible Variations). Given F : U →R we define the
space of admissible variations for F , denoted by V as

V = {ϕ | u+ϕ ∈U,∀u ∈U}.

For example, for F : U → R given by

F(u) =
1
2

∫

Ω
∇u ·∇u dx−〈u, f 〉U ,

where Ω ⊂ R
3 and

U = {u ∈W 1,2(Ω) | u = û on ∂Ω}

we have
V =W 1,2

0 (Ω).

Observe that in this example U is a subset of a Banach space.

Definition 9.1.3 (Local Minimum). Given F : U →R, we say that u0 ∈U is a local
minimum for F if there exists δ > 0 such that

F(u)≥ F(u0),∀u ∈U, such that ‖u−u0‖U < δ ,

or equivalently

F(u0 +ϕ)≥ F(u0),∀ϕ ∈ V , such that ‖ϕ‖U < δ .

Definition 9.1.4 (Gâteaux Variation). Given F : U → R we define the Gâteaux
variation of F at u ∈U on the direction ϕ ∈ V , denoted by δF(u,ϕ) as

δF(u,ϕ) = lim
ε→0

F(u+ εϕ)−F(u)
ε

,

if such a limit is well defined. Furthermore, if there exists u∗ ∈U∗ such that

δF(u,ϕ) = 〈ϕ,u∗〉U ,∀ϕ ∈U,

we say that F is Gâteaux differentiable at u ∈ U , and u∗ ∈ U∗ is said to be the
Gâteaux derivative of F at u. Finally we denote
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u∗ = δF(u) or u∗ =
∂F(u)

∂u
.

9.2 Evaluating the Gâteaux Variations

Consider F : U → R such that

F(u) =
∫

Ω
f (x,u,∇u) dx

where the hypothesis indicated in the last section is assumed. Consider u ∈
C1(Ω̄ ;RN) and ϕ ∈C1

c (Ω̄ ;RN) and let us evaluate δF(u,ϕ):
From Definition 9.1.4,

δF(u,ϕ) = lim
ε→0

F(u+ εϕ)−F(u)
ε

.

Observe that

lim
ε→0

f (x,u+ εϕ,∇u+ ε∇ϕ)− f (x,u,∇u)
ε

=
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ.

Define

G(x,u,ϕ,ε) =
f (x,u+ εϕ,∇u+ ε∇ϕ)− f (x,u,∇u)

ε
,

and

G̃(x,u,ϕ) =
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ.

Thus we have
lim
ε→0

G(x,u,ϕ,ε) = G̃(x,u,ϕ).

Now we will show that

lim
ε→0

∫

Ω
G(x,u,ϕ,ε) dx =

∫

Ω
G̃(x,u,ϕ) dx.

Suppose to obtain contradiction that we do not have

lim
ε→0

∫

Ω
G(x,u,ϕ,ε) dx =

∫

Ω
G̃(x,u,ϕ) dx.

Hence, there exists ε0 > 0 such that for each n ∈N there exists 0 < εn < 1/n such
that ∣

∣
∣
∣

∫

Ω
G(x,u,ϕ,εn) dx−

∫

Ω
G̃(x,u,ϕ) dx

∣
∣
∣
∣≥ ε0. (9.1)
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Define
cn = max

x∈Ω
{|G(x,u(x),ϕ(x),εn)− G̃(x,u(x),ϕ(x))|}.

Since the function in question is continuous on the compact set Ω , {xn} is well
defined. Also from the fact that Ω is compact, there exists a subsequence {xn j} and
x0 ∈ Ω̄ such that

lim
j→+∞

xn j = x0.

Thus

lim
j→+∞

cn j = c0

= lim
j→+∞

{|G(xn j ,u(xn j),ϕ(xn j),εn j)− G̃(x0,u(x0),ϕ(x0))|}= 0.

Therefore there exists j0 ∈ N such that if j > j0, then

cn j < ε0/|Ω |.

Thus, if j > j0, we have

∣
∣
∣
∣

∫

Ω
G(x,u,ϕ,εn j) dx−

∫

Ω
G̃(x,u,ϕ) dx

∣
∣
∣
∣

≤
∫

Ω
|G(x,u,ϕ,εn j)− G̃(x,u,ϕ)| dx ≤ cn j |Ω |< ε0, (9.2)

which contradicts (9.1). Hence, we may write

lim
ε→0

∫

Ω
G(x,u,ϕ,ε) dx =

∫

Ω
G̃(x,u,ϕ) dx,

that is,

δF(u,ϕ) =
∫

Ω

{
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ
}

dx.

Theorem 9.2.1 (Fundamental Lemma of Calculus of Variations). Consider an
open set Ω ⊂ R

n and u ∈ L1
loc(Ω) such that

∫

Ω
uϕ dx = 0,∀ϕ ∈C∞

c (Ω).

Then u = 0, a.e. in Ω .

Remark 9.2.2. Of course a similar result is valid for the vectorial case. A proof of
such a result was given in Chap. 8.

Theorem 9.2.3 (Necessary Conditions for a Local Minimum). Suppose u ∈U is
a local minimum for a Gâteaux differentiable F : U → R. Then
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δF(u,ϕ) = 0,∀ϕ ∈ V .

Proof. Fix ϕ ∈V . Define φ(ε) =F(u+εϕ). Since by hypothesis φ is differentiable
and attains a minimum at ε = 0, from the standard necessary condition φ ′(0) = 0,
we obtain φ ′(0) = δF(u,ϕ) = 0.

Theorem 9.2.4. Consider the hypotheses stated in Section 9.1 on F : U → R. Sup-
pose F attains a local minimum at u ∈ C2(Ω̄ ;RN) and additionally assume that
f ∈C2(Ω ,RN ,RN×n). Then the necessary conditions for a local minimum for F are
given by the Euler–Lagrange equations:

∂ f (x,u,∇u)
∂ s

−div

(
∂ f (x,u,∇u)

∂ξ

)

= θ , in Ω .

Proof. From Theorem 9.2.3, the necessary condition stands for δF(u,ϕ) = 0,∀ϕ
∈ V . From the above this implies, after integration by parts

∫

Ω

(
∂ f (x,u,∇u)

∂ s
−div

(
∂ f (x,u,∇u)

∂ξ

))

·ϕ dx = 0,

∀ϕ ∈C∞
c (Ω ,RN).

The result then follows from the fundamental lemma of calculus of variations.

9.3 The Gâteaux Variation: A More General Case

Theorem 9.3.1. Consider the functional F : U → R, where

U = {u ∈W 1,2(Ω ,RN) | u = u0 in ∂Ω}.

Suppose

F(u) =
∫

Ω
f (x,u,∇u) dx,

where f : Ω ×R
N ×R

N×n is such that for each K > 0 there exists K1 > 0 which does
not depend on x such that

| f (x,s1,ξ1)− f (x,s2,ξ2)|< K1(|s1 − s2|+ |ξ1 −ξ2|)
∀s1,s2 ∈ R

N ,ξ1,ξ2 ∈ R
N×n, such that |s1|< K, |s2|< K,

|ξ1|< K, |ξ2|< K.

Also assume the hypotheses of Section 9.1 except for the continuity of derivatives
of f . Under such assumptions, for each u ∈ C1(Ω ;RN) and ϕ ∈ C∞

c (Ω ;RN), we
have

δF(u,ϕ) =
∫

Ω

{
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ
}

dx.
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Proof. From Definition 9.1.4,

δF(u,ϕ) = lim
ε→0

F(u+ εϕ)−F(u)
ε

.

Observe that

lim
ε→0

f (x,u+ εϕ,∇u+ ε∇ϕ)− f (x,u,∇u)
ε

=
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ, a.e in Ω .

Define

G(x,u,ϕ,ε) =
f (x,u+ εϕ,∇u+ ε∇ϕ)− f (x,u,∇u)

ε
,

and

G̃(x,u,ϕ) =
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ.

Thus we have
lim
ε→0

G(x,u,ϕ,ε) = G̃(x,u,ϕ), a.e in Ω .

Now we will show that

lim
ε→0

∫

Ω
G(x,u,ϕ,ε) dx =

∫

Ω
G̃(x,u,ϕ) dx.

It suffices to show that (we do not provide details here)

lim
n→∞

∫

Ω
G(x,u,ϕ,1/n) dx =

∫

Ω
G̃(x,u,ϕ) dx.

Observe that for an appropriate K > 0, we have

|G(x,u,ϕ,1/n)| ≤ K(|ϕ|+ |∇ϕ|), a.e. in Ω . (9.3)

By the Lebesgue dominated convergence theorem, we obtain

lim
n→+∞

∫

Ω
G(x,u,ϕ,1/(n)) dx =

∫

Ω
G̃(x,u,ϕ) dx,

that is,

δF(u,ϕ) =
∫

Ω

{
∂ f (x,u,∇u)

∂ s
·ϕ +

∂ f (x,u,∇u)
∂ξ

·∇ϕ
}

dx.
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9.4 Fréchet Differentiability

In this section we introduce a very important definition, namely, Fréchet
differentiability.

Definition 9.4.1. Let U,Y be Banach spaces and consider a transformation T :
U→Y . We say that T is Fréchet differentiable at u ∈ U if there exists a bounded
linear transformation T ′(u) : U→Y such that

lim
v→θ

‖T (u+ v)−T (u)−T ′(u)(v)‖Y

‖v‖U
= 0, v 
= θ .

In such a case T ′(u) is called the Fréchet derivative of T at u ∈U .

9.5 Elementary Convexity

In this section we develop some proprieties concerning elementary convexity.

Definition 9.5.1. A function f : Rn → R is said to be convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y),∀x,y ∈ R
n,λ ∈ [0,1].

Proposition 9.5.2. If f : Rn → R is convex and differentiable, then

f (y)− f (x)≥ 〈 f ′(x),y− x〉Rn ,∀x,y ∈ R
n.

Proof. Pick x,y ∈ R
n. By hypothesis

f ((1−λ )x+λy)≤ (1−λ ) f (x)+λ f (y),∀λ ∈ [0,1].

Thus
f (x+λ (y− x))− f (x)

λ
≤ f (y)− f (x),∀λ ∈ (0,1].

Letting λ → 0+ we obtain

f (y)− f (x)≥ 〈 f ′(x),y− x〉Rn .

Since x,y ∈ R
n are arbitrary, the proof is complete.

Proposition 9.5.3. Let f : Rn → R be a differentiable function. If

f (y)− f (x)≥ 〈 f ′(x),y− x〉Rn ,∀x,y ∈ R
n,

then f is convex.
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Proof. Define f ∗(x∗) by

f (x∗) = sup
x∈Rn

{〈x,x∗〉Rn − f (x)}.

Such a function f ∗ is called the Fenchel conjugate of f . Observe that by hypothesis,

f ∗( f ′(x)) = sup
y∈Rn

{〈y, f ′(x)〉Rn − f (y)}= 〈x, f ′(x)〉Rn − f (x). (9.4)

On the other hand

f ∗(x∗)≥ 〈x,x∗〉Rn − f (x),∀x,x∗ ∈ R
n,

that is,
f (x)≥ 〈x,x∗〉Rn − f ∗(x∗),∀x,x∗ ∈ R

n.

Observe that from (9.4)

f (x) = 〈x, f ′(x)〉Rn − f ∗( f ′(x))

and thus
f (x) = sup

x∗∈Rn
{〈x,x∗〉Rn − f (x∗)},∀x ∈ R

n.

Pick x,y ∈ R
n and λ ∈ [0,1]. Thus, we may write

f (λx+(1−λ )y) = sup
x∗∈Rn

{〈λx+(1−λ )y,x∗〉Rn − f ∗(x∗)}

= sup
x∗∈Rn

{λ 〈x,x∗〉Rn +(1−λ )〈y,x∗〉Rn −λ f ∗(x∗)

− (1−λ ) f ∗(x∗)}
≤λ{ sup

x∗∈Rn
{〈x,x∗〉Rn − f ∗(x∗)}}

+(1−λ ){ sup
x∗∈Rn

{〈y,x∗〉Rn − f ∗(x∗)}}

=λ f (x)+(1−λ ) f (y). (9.5)

Since x,y ∈ R
n and λ ∈ [0,1] are arbitrary, we have that f is convex.

Corollary 9.5.4. Let f : Rn → R be twice differentiable and

{
∂ 2 f (x)
∂xi∂x j

}

,

positive definite, for all x ∈ R
n. Then f is convex.

Proof. Pick x,y ∈ R
n. Using Taylor’s expansion we obtain

f (y) = f (x)+ 〈 f ′(x),y− x〉Rn +
n

∑
i=1

n

∑
j=1

∂ 2 f (x̄)
∂xi∂x j

(yi − xi)(y j − x j),
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for x̄ = λx+(1−λ )y (for some λ ∈ [0,1]). From the hypothesis we obtain

f (y)− f (x)−〈 f ′(x),y− x〉Rn ≥ 0.

Since x,y ∈ R
n are arbitrary, the proof is complete.

Similarly we may obtain the following result.

Corollary 9.5.5. Let U be a Banach space. Consider F : U → R Gâteaux differen-
tiable. Then F is convex if and only if

F(v)−F(u)≥ 〈F ′(u),v−u〉U ,∀u,v ∈U.

Definition 9.5.6 (The Second Variation). Let U be a Banach space. Suppose F :
U →R is a Gâteaux differentiable functional. Given ϕ, η ∈V , we define the second
variation of F at u, relating the directions ϕ, η , denoted by

δ 2F(u,ϕ,η),

by

δ 2F(u,ϕ,η) = lim
ε→0

δF(u+ εη ,ϕ)−δF(u,ϕ)
ε

.

If such a limit exists ∀ϕ, η ∈ V , we say that F is twice Gâteaux differentiable at u.
Finally, if η = ϕ , we denote δ 2F(u,ϕ,η) = δ 2F(u,ϕ).

Corollary 9.5.7. Let U be a Banach space. Suppose F : U → R is a twice Gâteaux
differentiable functional and that

δ 2F(u,ϕ)≥ 0,∀u ∈U,ϕ ∈ V .

Then, F is convex.

Proof. Pick u,v ∈ U . Define φ(ε) = F(u+ ε(v− u)). By hypothesis, φ is twice
differentiable, so that

φ(1) = φ(0)+φ ′(0)+φ ′′(ε̃)/2,

where |ε̃| ≤ 1. Thus

F(v) = F(u)+δF(u,v−u)+δ 2F(u+ ε̃(v−u),v−u)/2.

Therefore, by hypothesis,

F(v)≥ F(u)+δF(u,v−u).

Since F is Gâteaux differentiable, we obtain

F(v)≥ F(u)+ 〈F ′(u),v−u〉U .

Being u,v ∈U arbitrary, the proof is complete.
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Corollary 9.5.8. Let U be a Banach space. Let F : U → R be a convex Gâteaux
differentiable functional. If F ′(u) = θ , then

F(v)≥ F(u),∀v ∈U,

that is, u ∈U is a global minimizer for F.

Proof. Just observe that

F(v)≥ F(u)+ 〈F ′(u),v−u〉U ,∀u,v ∈U.

Therefore, from F ′(u) = θ , we obtain

F(v)≥ F(u),∀v ∈U.

Theorem 9.5.9 (Sufficient Condition for a Local Minimum). Let U be a Banach
space. Suppose F : U → R is a twice Gâteaux differentiable functional at a neigh-
borhood of u0, so that

δF(u0) = θ

and
δ 2F(u,ϕ)≥ 0,∀u ∈ Br(u0), ϕ ∈ V ,

for some r > 0. Under such hypotheses, we have

F(u0)≤ F(u0 + εϕ),∀ ε , ϕ such that |ε |< min{r,1}, ‖ϕ‖U < 1.

Proof. Fix ϕ ∈ V such that ‖ϕ‖U < 1. Define

φ(ε) = F(u0 + εϕ).

Observe that for |ε |< min{r,1}, for some ε̃ such that |ε̃| ≤ |ε |, we have

φ(ε) = φ(0)+φ ′(0)ε +φ ′′(ε̃)ε2/2

= F(u0)+ ε〈ϕ,δF(u0)〉U +(ε2/2)δ 2F(u0 + ε̃ϕ,ϕ)
= F(u0)+(ε2/2)δ 2F(u0 + ε̃ϕ,ϕ)≥ F(u0).

Hence,
F(u0)≤ F(u0 + εϕ),∀ ε , ϕ such that |ε |< r, ‖ϕ‖U < 1.

The proof is complete.

9.6 The Legendre–Hadamard Condition

Theorem 9.6.1. If u ∈C1(Ω̄ ;RN) is such that

δ 2F(u,ϕ)≥ 0,∀ϕ ∈C∞
c (Ω ,RN),
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then
fξ i

α ξ k
β
(x,u(x),∇u(x))ρ iρkηα ηβ ≥ 0,∀x ∈ Ω ,ρ ∈ R

N ,η ∈ R
n.

Such a condition is known as the Legendre-Hadamard condition.

Proof. Suppose
δ 2F(u,ϕ)≥ 0,∀ϕ ∈C∞

c (Ω ;RN).

We denote δ 2F(u,ϕ) by

δ 2F(u,ϕ) =
∫

Ω
a(x)Dϕ(x) ·Dϕ(x) dx

+
∫

Ω
b(x)ϕ(x) ·Dϕ(x) dx+

∫

Ω
c(x)ϕ(x) ·ϕ(x) dx, (9.6)

where
a(x) = fξ ξ (x,u(x),Du(x)),

b(x) = 2 fsξ (x,u(x),Du(x)),

and
c(x) = fss(x,u(x),Du(x)).

Now consider v ∈ C∞
c (B1(0),RN). Thus given x0 ∈ Ω for λ sufficiently small we

have that ϕ(x) = λv
( x−x0

λ
)

is an admissible direction. Now we introduce the new
coordinates y = (y1, . . . ,yn) by setting y = λ−1(x−x0) and multiply (9.6) by λ−n to
obtain

∫

B1(0)
{a(x0 +λy)Dv(y) ·Dv(y)+2λb(x0 +λy)v(y) ·Dv(y)

+λ 2c(x0 +λy)v(y) · v(y)} dy > 0,

where a = {aαβ
i j },b = {bβ

jk} and c = {c jk}. Since a,b and c are continuous, we have

a(x0 +λy)Dv(y) ·Dv(y)→ a(x0)Dv(y) ·Dv(y),

λb(x0 +λy)v(y) ·Dv(y)→ 0,

and
λ 2c(x0 +λy)v(y) · v(y)→ 0,

uniformly on Ω̄ as λ → 0. Thus this limit gives us
∫

B1(0)
f̃ αβ

jk Dα v jDβ vk dx ≥ 0,∀v ∈C∞
c (B1(0);R

N), (9.7)

where
f̃ αβ

jk = aαβ
jk (x0) = fξ i

α ξ k
β
(x0,u(x0),∇u(x0)).
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Now define v = (v1, . . . ,vN), where

v j = ρ jcos((η · y)t)ζ (y)

ρ = (ρ1, . . . ,ρN) ∈ R
N

and
η = (η1, . . . ,ηn) ∈ R

n

and ζ ∈C∞
c (B1(0)). From (9.7) we obtain

0 ≤ f̃ αβ
jk ρ jρk

{∫

B1(0)
(ηα t(−sin((η · y)t)ζ + cos((η · y)t)Dα ζ )

·(ηβ t(−sin((η · y)t)ζ + cos((η · y)t)Dβ ζ
)

dy

}

(9.8)

By analogy for
v j = ρ jsin((η · y)t)ζ (y)

we obtain

0 ≤ f̃ αβ
jk ρ jρk

{∫

B1(0)
(ηα t(cos((η · y)t)ζ + sin((η · y)t)Dα ζ )

·(ηβ t(cos((η · y)t)ζ + sin((η · y)t)Dβ ζ
)

dy

}

(9.9)

Summing up these last two equations, dividing the result by t2, and letting t →+∞
we obtain

0 ≤ f̃ αβ
jk ρ jρkηα ηβ

∫

B1(0)
ζ 2 dy,

for all ζ ∈C∞
c (B1(0)), which implies

0 ≤ f̃ αβ
jk ρ jρkηα ηβ .

The proof is complete.

9.7 The Weierstrass Condition for n = 1

Here we present the Weierstrass condition for the special case N ≥ 1 and n = 1.
We start with a definition.

Definition 9.7.1. We say that u ∈ Ĉ1([a,b];RN) if u : [a,b] → R
N is continuous in

[a,b] and Du is continuous except on a finite set of points in [a,b].

Theorem 9.7.2 (Weierstrass). Let Ω = (a,b) and f : Ω̄ ×R
N ×R

N → R be such
that fs(x,s,ξ ) and fξ (x,s,ξ ) are continuous on Ω̄ ×R

N ×R
N.

Define F : U → R by

F(u) =
∫ b

a
f (x,u(x),u′(x)) dx,
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where
U = {u ∈ Ĉ1([a,b];RN) | u(a) = α, u(b) = β}.

Suppose u ∈ U minimizes locally F on U, that is, suppose that there exists ε0 > 0
such that

F(u)≤ F(v),∀v ∈U, such that ‖u− v‖∞ < ε0.

Under such hypotheses, we have

E(x,u(x),u′(x+),w)≥ 0,∀x ∈ [a,b], w ∈ R
N ,

and
E(x,u(x),u′(x−),w)≥ 0,∀x ∈ [a,b], w ∈ R

N ,

where
u′(x+) = lim

h→0+
u′(x+h),

u′(x−) = lim
h→0−

u′(x+h),

and
E(x,s,ξ ,w) = f (x,s,w)− f (x,s,ξ )− fξ (x,s,ξ )(w−ξ ).

Remark 9.7.3. The function E is known as the Weierstrass excess function.

Proof. Fix x0 ∈ (a,b) and w ∈R
N . Choose 0 < ε < 1 and h > 0 such that u+v ∈U

and
‖v‖∞ < ε0

where v(x) is given by

v(x) =

⎧
⎨

⎩

(x− x0)w, if 0 ≤ x− x0 ≤ εh,
ε̃(h− x+ x0)w, if εh ≤ x− x0 ≤ h,
0, otherwise,

where

ε̃ =
ε

1− ε
.

From
F(u+ v)−F(u)≥ 0

we obtain
∫ x0+h

x0

f (x,u(x)+ v(x),u′(x)+ v′(x)) dx

−
∫ x0+h

x0

f (x,u(x),u′(x)) dx ≥ 0. (9.10)

Define
x̃ =

x− x0

h
,
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so that

dx̃ =
dx
h
.

From (9.10) we obtain

h
∫ 1

0
f (x0 + x̃h,u(x0 + x̃h)+ v(x0 + x̃h),u′(x0 + x̃h)+ v′(x0 + x̃h) dx̃

−h
∫ 1

0
f (x0 + x̃h,u(x0 + x̃h),u′(x0 + x̃h)) dx̃ ≥ 0. (9.11)

where the derivatives are related to x.
Therefore

∫ ε

0
f (x0 + x̃h,u(x0 + x̃h)+ v(x0 + x̃h),u′(x0 + x̃h)+w) dx̃

−
∫ ε

0
f (x0 + x̃h,u(x0 + x̃h),u′(x0 + x̃h)) dx̃

+

∫ 1

ε
f (x0 + x̃h,u(x0 + x̃h)+ v(x0 + x̃h),u′(x0 + x̃h)− ε̃w) dx̃

−
∫ 1

ε
f (x0 + x̃h,u(x0 + x̃h),u′(x0 + x̃h)) dx̃

≥ 0. (9.12)

Letting h → 0 we obtain

ε( f (x0,u(x0),u
′(x0+)+w)− f (x0,u(x0),u

′(x0+))

+(1− ε)( f (x0,u(x0),u
′(x0+)− ε̃w)− f (x0,u(x0),u

′(x0+)))≥ 0.

Hence, by the mean value theorem, we get

ε( f (x0,u(x0),u
′(x0+)+w)− f (x0,u(x0),u

′(x0+))

−(1− ε)ε̃( fξ (x0,u(x0),u
′(x0+)+ρ(ε̃)w)) ·w ≥ 0. (9.13)

Dividing by ε and letting ε → 0, so that ε̃ → 0 and ρ(ε̃)→ 0, we finally obtain

f (x0,u(x0),u
′(x0+)+w)− f (x0,u(x0),u

′(x0+))

− fξ (x0,u(x0),u
′(x0+)) ·w ≥ 0.

Similarly we may get

f (x0,u(x0),u
′(x0−)+w)− f (x0,u(x0),u

′(x0−))

− fξ (x0,u(x0),u
′(x0−)) ·w ≥ 0.

Since x0 ∈ [a,b] and w ∈ R
N are arbitrary, the proof is complete.
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9.8 The Weierstrass Condition: The General Case

In this section we present a proof for the Weierstrass necessary condition for
N ≥ 1,n ≥ 1. Such a result may be found in similar form in [37].

Theorem 9.1. Assume u ∈ C1(Ω ;RN) is a point of strong minimum for a Fréchet
differentiable functional F : U →R that is, in particular, there exists ε > 0 such that

F(u+ϕ)≥ F(u),

for all ϕ ∈C∞
c (Ω ;Rn) such that

‖ϕ‖∞ < ε .

Here
F(u) =

∫

Ω
f (x,u,Du) dx,

where we recall to have denoted

Du = ∇u =

{
∂ui

∂x j

}

.

Under such hypotheses, for all x ∈ Ω and each rank-one matrix η = {ρiβ α} =
{ρ ⊗β}, we have that

E(x,u(x),Du(x),Du(x)+ρ ⊗β )≥ 0,

where

E(x,u(x),Du(x),Du(x)+ρ ⊗β )
= f (x,u(x),Du(x)+ρ ⊗β )− f (x,u(x),Du(x))

−ρ iβα fξ i
α
(x,u(x),Du(x)). (9.14)

Proof. Since u is a point of local minimum for F , we have that

δF(u;ϕ) = 0,∀ϕ ∈C∞
c (Ω ;RN),

that is, ∫

Ω
(ϕ · fs(x,u(x),Du(x))+Dϕ · fξ (x,u(x),Du(x)) dx = 0,

and hence,
∫

Ω
( f (x,u(x),Du(x)+Dϕ(x))− f (x,u(x),Du(x)) dx

−
∫

Ω
(ϕ(x) · fs(x,u(x),Du(x))−Dϕ(x) · fξ (x,u(x),Du(x)) dx

≥ 0, (9.15)
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∀ϕ ∈ V , where
V = {ϕ ∈C∞

c (Ω ;RN) : ‖ϕ‖∞ < ε}.
Choose a unit vector e ∈ R

n and write

x = (x · e)e+ x,

where
x · e = 0.

Denote Dev = Dv · e and let ρ = (ρ1, . . . .,ρN) ∈ R
N .

Also, let x0 be any point of Ω . Without loss of generality assume x0 = 0.
Choose λ0 ∈ (0,1) such that Cλ0

⊂ Ω , where

Cλ0
= {x ∈ R

n : |x · e| ≤ λ0 and ‖x‖ ≤ λ0}.

Let λ ∈ (0,λ0) and
φ ∈Cc((−1,1);R)

and choose a sequence
φk ∈C∞

c ((−λ 2,λ );R)

which converges uniformly to the Lipschitz function φλ given by

φλ =

⎧
⎨

⎩

t +λ 2, if −λ 2 ≤ t ≤ 0,
λ (λ − t), if 0 < t < λ
0, otherwise

(9.16)

and such that φ ′
k converges uniformly to φ ′

λ on each compact subset of

Aλ = {t : −λ 2 < t < λ , t 
= 0}.

We emphasize the choice of {φk} may be such that for some K > 0 we have ‖φ‖∞ <
K, ‖φk‖∞ < K and ‖φ ′

k‖∞ < K,∀k ∈ N.
Observe that for any sufficiently small λ > 0 we have that ϕk defined by

ϕk(x) = ρφk(x · e)φ(|x|2/λ 2) ∈ V ,∀k ∈ N

so that letting k → ∞ we obtain that

ϕ(x) = ρφλ (x · e)φ(|x|2/λ 2),

is such that (9.15) is satisfied.
Moreover,

Deϕ(x) = ρφ ′
λ (x · e)φ(|x|2/λ 2),

and
Dϕ(x) = ρφλ (x · e)φ ′(|x|2/λ 2)2λ−2x,

where D denotes the gradient relating the variable x.



9.8 The Weierstrass Condition: The General Case 241

Note that for such a ϕ(x), the integrand of (9.15) vanishes if x 
∈Cλ , where

Cλ = {x ∈ R
n : |x · e| ≤ λ and ‖x‖ ≤ λ}.

Define C+
λ and C−

λ by

C−
λ = {x ∈Cλ : x · e ≤ 0},

and
C+

λ = {x ∈Cλ : x · e > 0}.
Hence, denoting

gk(x) = ( f (x,u(x),Du(x)+Dϕk(x))− f (x,u(x),Du(x))

−(ϕk(x) · fs(x,u(x),Du(x)+Dϕk(x) · fξ (x,u(x),Du(x)) (9.17)

and

g(x) = ( f (x,u(x),Du(x)+Dϕ(x))− f (x,u(x),Du(x))

−(ϕ(x) · fs(x,u(x),Du(x)+Dϕ(x) · fξ (x,u(x),Du(x)) (9.18)

letting k → ∞, using the Lebesgue dominated converge theorem, we obtain
∫

C−
λ

gk(x) dx+
∫

C+
λ

gk(x) dx

→
∫

C−
λ

g(x) dx+
∫

C+
λ

g(x) dx ≥ 0, (9.19)

Now define
y = yee+ y,

where
ye =

x · e
λ 2 ,

and

y =
x
λ
.

The sets C−
λ and C+

λ correspond, concerning the new variables, to the sets B−
λ and

B+
λ , where

B−
λ = {y : ‖y‖ ≤ 1, and −λ−1 ≤ ye ≤ 0},
B+

λ = {y : ‖y‖ ≤ 1, and 0 < ye ≤ λ−1}.
Therefore, since dx = λ n+1dy, multiplying (9.19) by λ−n−1, we obtain

∫

B−
1

g(x(y)) dy+
∫

B−
λ \B−

1

g(x(y)) dy+
∫

B+
λ

g(x(y)) dy ≥ 0, (9.20)
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where
x = (x · e)e+ x = λ 2ye +λy ≡ x(y).

Observe that

Deϕ(x) =

⎧
⎨

⎩

ρφ(‖y‖2) if −1 ≤ ye ≤ 0,
ρφ(‖y‖2)(−λ ) if 0 ≤ ye ≤ λ−1,
0, otherwise.

(9.21)

Observe also that

|g(x(y))| ≤ o(
√
|ϕ(x)|2 + |Dϕ(x)|2),

so that from the expression of ϕ(x) and Dϕ(x) we obtain, for

y ∈ B+
λ , or y ∈ B−

λ \B−
1 ,

that
|g(x(y))| ≤ o(λ ), as λ → 0.

Since the Lebesgue measures of B−
λ and B+

λ are bounded by

2n−1/λ

the second and third terms in (9.20) are of o(1) where

lim
λ→0+

o(1)/λ = 0,

so that letting λ → 0+, considering that

x(y)→ 0,

and on B−
1 (up to the limit set B)

g(x(y)) → f (0,u(0),Du(0)+ρφ(‖y‖2)e)

− f (0,u(0),Du(0))−
ρφ(‖y‖2)e fξ (0,u(0),Du(0)) (9.22)

we get
∫

B
[ f (0,u(0),Du(0)+ρφ(‖y‖2)e)− f (0,u(0),Du(0))

−ρφ(‖y‖2)e fξ (0,u(0),Du(0))] dy2 . . .dyn

≥ 0, (9.23)

where B is an appropriate limit set (we do not provide more details here) such that

B = {y ∈ R
n : ye = 0 and ‖y‖ ≤ 1}.
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Here we have used the fact that on the set in question,

Dϕ(x)→ ρφ(‖y‖2)e, as λ → 0+.

Finally, inequality (9.23) is valid for a sequence {φn} (in place of φ ) such that

0 ≤ φn ≤ 1 and φn(t) = 1, if |t|< 1−1/n,

∀n ∈ N.
Letting n → ∞, from (9.23), we obtain

f (0,u(0),Du(0)+ρ ⊗ e)− f (0,u(0),Du(0))

−ρ · e fξ (0,u(0),Du(0))≥ 0. (9.24)

9.9 The du Bois–Reymond Lemma

We present now a simpler version of the fundamental lemma of calculus of varia-
tions. The result is specific for n = 1 and is known as the du Bois–Reymond lemma.

Lemma 9.9.1 (du Bois–Reymond). If u ∈C([a,b]) and

∫ b

a
uϕ ′ dx = 0,∀ϕ ∈ V ,

where
V = {ϕ ∈C1[a,b] | ϕ(a) = ϕ(b) = 0},

then there exists c ∈ R such that

u(x) = c,∀x ∈ [a,b].

Proof. Define

c =
1

b−a

∫ b

a
u(t) dt,

and

ϕ(x) =
∫ x

a
(u(t)− c) dt.

Thus we have ϕ(a) = 0 and

ϕ(b) =
∫ b

a
u(t) dt − c(b−a) = 0.

Moreover ϕ ∈C1([a,b]) so that
ϕ ∈ V .



244 9 Basic Concepts on the Calculus of Variations

Therefore

0 ≤
∫ b

a
(u(x)− c)2 dx

=
∫ b

a
(u(x)− c)ϕ ′(x) dx

=
∫ b

a
u(x)ϕ ′(x) dx− c[ϕ(x)]ba = 0. (9.25)

Thus ∫ b

a
(u(x)− c)2 dx = 0,

and being u(x)− c continuous, we finally obtain

u(x)− c = 0,∀x ∈ [a,b].

This completes the proof.

Proposition 9.9.2. If u,v ∈C([a,b]) and

∫ b

a
(u(x)ϕ(x)+ v(x)ϕ ′(x)) dx = 0,

∀ϕ ∈ V , where
V = {ϕ ∈C1[a,b] | ϕ(a) = ϕ(b) = 0},

then
v ∈C1([a,b])

and
v′(x) = u(x),∀x ∈ [a,b].

Proof. Define

u1(x) =
∫ x

a
u(t) dt,∀x ∈ [a,b].

Thus u1 ∈C1([a,b]) and

u′1(x) = u(x),∀x ∈ [a,b].

Hence, for ϕ ∈ V , we have

0 =
∫ b

a
(u(x)ϕ(x)+ v(x)ϕ ′(x) dx

=

∫ b

a
(−u1(x)ϕ ′(x)+ vϕ ′(x)) dx+[u1(x)ϕ(x)]ba

=
∫ b

a
(v(x)−u1(x))ϕ ′(x) dx. (9.26)
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That is,
∫ b

a
(v(x)−u1(x))ϕ ′(x) dx,∀ϕ ∈ V .

By the du Bois–Reymond lemma, there exists c ∈ R such that

v(x)−u1(x) = c,∀x ∈ [a,b].

Hence
v = u1 + c ∈C1([a,b]),

so that

v′(x) = u′1(x) = u(x),∀x ∈ [a,b].

The proof is complete.

9.10 The Weierstrass–Erdmann Conditions

We start with a definition.

Definition 9.10.1. Define I = [a,b]. A function u ∈ Ĉ1([a,b];RN) is said to be a
weak extremal of

F(u) =
∫ b

a
f (x,u(x),u′(x)) dx,

if
∫ b

a
( fs(x,u(x),u

′(x)) ·ϕ + fξ (x,u(x),u
′(x)) ·ϕ ′(x)) dx = 0,

∀ϕ ∈C∞
c ([a,b];R

N).

Proposition 9.10.2. For any weak extremal of

F(u) =
∫ b

a
f (x,u(x),u′(x)) dx

there exists a constant c ∈ R
N such that

fξ (x,u(x),u
′(x)) = c+

∫ x

a
fs(t,u(t),u

′(t)) dt,∀x ∈ [a,b]. (9.27)

Proof. Fix ϕ ∈C∞
c ([a,b];R

N). Integration by parts of the extremal condition

δF(u,ϕ) = 0,



246 9 Basic Concepts on the Calculus of Variations

implies that

∫ b

a
fξ (x,u(x),u

′(x)) ·ϕ ′(x) dx

−
∫ b

a

∫ x

a
fs(t,u(t),u

′(t)) dt ·ϕ ′(x) dx = 0.

Since ϕ is arbitrary, considering the du Bois-Reymond lemma is valid also for u ∈
L1([a,b]) and the respective N-dimensional version (see [37], page 32 for details),
there exists, c ∈ R

N such that

fξ (x,u(x),u
′(x))−

∫ x

a
fs(t,u(t),u

′(t)) dt = c,∀x ∈ [a,b].

The proof is complete.

Theorem 9.10.3 (Weierstrass–Erdmann Corner Conditions). Let I = [a,b]. Sup-
pose u ∈ Ĉ1([a,b];RN) is such that

F(u)≤ F(v),∀v ∈ Cr,

for some r > 0 where

Cr = {v ∈ Ĉ1([a,b];RN) | v(a) = u(a), v(b) = u(b),

and ‖u− v‖∞ < r}.

Let x0 ∈ (a,b) be a corner point of u. Denoting u0 = u(x0), ξ+
0 = u′(x0 +0), and

ξ−
0 = u′(x0 −0), then the following relations are valid:

1. fξ (x0,u0,ξ−
0 ) = fξ (x0,u0,ξ+

0 ),
2.

f (x0,u0,ξ−
0 )−ξ−

0 fξ (x0,u0,ξ−
0 )

= f (x0,u0,ξ+
0 )−ξ+

0 fξ (x0,u0,ξ+
0 ).

Remark 9.10.4. The conditions above are known as the Weierstrass–Erdmann corner
conditions.

Proof. Condition (1) is just a consequence of (9.27). For (2), define

τε(x) = x+ ελ (x),

where λ ∈ C∞
c (I). Observe that τε(a) = a and τε(b) = b, ∀ε > 0. Also τ0(x) = x.

Choose ε0 > 0 sufficiently small such that for each ε satisfying |ε | < ε0, we have
τ ′ε(x)> 0 and

ũε(x) = (u◦ τ−1
ε )(x) ∈ Cr.
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Define
φ(ε) = F(x, ũε , ũ

′
ε(x)).

Thus φ has a local minimum at 0, so that φ ′(0) = 0, that is,

d(F(x, ũε , ũ′ε(x)))
dε

|ε=0 = 0.

Observe that
dũε
dx

= u′(τ−1
ε (x))

dτ−1
ε (x)
dx

,

and
dτ−1

ε (x)
dx

=
1

1+ ελ ′(τ−1
ε (x))

.

Thus,

F(ũε) =
∫ b

a
f

(

x,u(τ−1
ε (x)),u′(τ−1

ε (x))

(
1

1+ ελ ′(τ−1
ε (x))

))

dx.

Defining
x̄ = τ−1

ε (x),

we obtain

dx̄ =
1

1+ ελ ′(x̄)
dx,

that is,
dx = (1+ ελ ′(x̄)) dx̄.

Dropping the bar for the new variable, we may write

F(ũε) =
∫ b

a
f

(

x+ ελ (x),u(x),
u′(x)

1+ ελ ′(x)

)
(
1+ ελ ′(x)

)
dx.

From
dF(ũε)

dε
|ε=0,

we obtain
∫ b

a
(λ fx(x,u(x),u

′(x))+λ ′(x)( f (x,u(x),u′(x))

−u′(x) fξ (x,u(x),u
′(x)))) dx = 0. (9.28)

Since λ is arbitrary, from Proposition 9.9.2, (in fact from its version for u∈ L1([a,b])
and respective extension for the N dimensional case, please see [37] for details), we
obtain

f (x,u(x),u′(x))−u′(x) fξ (x,u(x),u
′(x))−

∫ x

a
fx(t,u(t),u

′(t)) dt = c1

for some c1 ∈ R
N .
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Since
∫ x

a fx(t,u(t),u′(t)) dt + c1 is a continuous function (in fact absolutely con-
tinuous), the proof is complete.

9.11 Natural Boundary Conditions

Consider the functional f : U → R, where

F(u)
∫

Ω
f (x,u(x),∇u(x)) dx,

f (x,s,ξ ) ∈C1(Ω̄ ,RN ,RN×n),

and Ω ⊂ R
n is an open bounded connected set.

Proposition 9.11.1. Assume

U = {u ∈W 1,2(Ω ;RN);u = u0 on Γ0},

where Γ0 ⊂ ∂Ω is closed and ∂Ω =Γ =Γ0∪Γ1 being Γ1 open in Γ and Γ0∩Γ1 = /0.
Thus if ∂Ω ∈C1, f ∈C2(Ω̄ ,RN ,RN×n) and u ∈C2(Ω̄ ;RN), and also

δF(u,ϕ) = 0,∀ϕ ∈C1(Ω̄ ;RN), such that ϕ = 0 on Γ0,

then u is a extremal of F which satisfies the following natural boundary conditions:

nα fξ i
α
(x,u(x)∇u(x)) = 0, a.e. on Γ1,∀i ∈ {1, . . . ,N}.

Proof. Observe that δF(u,ϕ) = 0,∀ϕ ∈C∞
c (Ω ;RN); thus u is an extremal of F and

through integration by parts and the fundamental lemma of calculus of variations,
we obtain

L f (u) = 0, in Ω ,

where
L f (u) = fs(x,u(x),∇u(x))−div( fξ (x,u(x),∇u(x)).

Defining
V = {ϕ ∈C1(Ω ;RN) | ϕ = 0 on Γ0},

for an arbitrary ϕ ∈ V , we obtain

δF(u,ϕ) =
∫

Ω
L f (u) ·ϕ dx

+
∫

Γ1

nα fξ i
α
(x,u(x),∇u(x))ϕ i(x) dΓ

=
∫

Γ1

nα fξ i
α
(x,u(x),∇u(x))ϕ i(x) dΓ

= 0,∀ϕ ∈ V . (9.29)
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Suppose, to obtain contradiction, that

nα fξ i
α
(x0,u(x0),∇u(x0)) = β > 0,

for some x0 ∈ Γ1 and some i ∈ {1, . . . ,N}. Defining

G(x) = nα fξ i
α
(x,u(x),∇u(x)),

by the continuity of G, there exists r > 0 such that

G(x)> β/2, in Br(x0),

and in particular
G(x)> β/2, in Br(x0)∩Γ1.

Choose 0 < r1 < r such that Br1(x0)∩Γ0 = /0. This is possible since Γ0 is closed and
x0 ∈ Γ1.

Choose ϕ i ∈ C∞
c (Br1(x0)) such that ϕ i ≥ 0 in Br1(x0) and ϕ i > 0 in Br1/2(x0).

Therefore ∫

Γ1

G(x)ϕ i(x) dx >
β
2

∫

Γ1

ϕ i dx > 0,

and this contradicts (9.29). Thus

G(x)≤ 0,∀x ∈ Γ1,

and by analogy
G(x)≥ 0,∀x ∈ Γ1,

so that
G(x) = 0,∀x ∈ Γ1.

The proof is complete.
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