
Chapter 3
Topics on Linear Operators

The main references for this chapter are Reed and Simon [52] and Bachman and
Narici [6].

3.1 Topologies for Bounded Operators

First we recall that the set of all bounded linear operators, denoted by L (U,Y ),
is a Banach space with the norm

‖A‖= sup{‖Au‖Y | ‖u‖U ≤ 1}.

The topology related to the metric induced by this norm is called the uniform oper-
ator topology.

Let us introduce now the strong operator topology, which is defined as the weak-
est topology for which the functions

Eu : L (U,Y )→ Y

are continuous where
Eu(A) = Au,∀A ∈ L (U,Y ).

For such a topology a base at origin is given by sets of the form

{A |A ∈ L (U,Y ), ‖Aui‖Y < ε,∀i ∈ {1, . . . ,n}},

where u1, . . . ,un ∈U and ε > 0.
Observe that a sequence {An} ⊂ L (U,Y ) converges to A concerning this last

topology if
‖Anu−Au‖Y → 0, as n → ∞,∀u ∈U.
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58 3 Topics on Linear Operators

In the next lines we describe the weak operator topology in L (U,Y ). Such a topol-
ogy is weakest one such that the functions

Eu,v : L (U,Y )→C

are continuous, where

Eu,v(A) = 〈Au,v〉Y ,∀A ∈ L (U,Y ),u ∈U, v ∈ Y ∗.

For such a topology, a base at origin is given by sets of the form

{A ∈ L (U,Y ) | |〈Aui,v j〉Y |< ε,∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}},

where ε > 0, u1, . . . ,un ∈U , v1, . . . ,vm ∈ Y ∗.
A sequence {An} ⊂ L (U,Y ) converges to A ∈ L (U,Y ) if

|〈Anu,v〉Y −〈Au,v〉Y | → 0,

as n → ∞, ∀u ∈U, v ∈ Y ∗.

3.2 Adjoint Operators

We start this section recalling the definition of adjoint operator.

Definition 3.2.1. Let U,Y be Banach spaces. Given a bounded linear operator A :
U → Y and v∗ ∈ Y ∗, we have that T (u) = 〈Au,v∗〉Y is such that

|T (u)| ≤ ‖Au‖Y · ‖v∗‖ ≤ ‖A‖‖v∗‖Y∗‖u‖U .

Hence T (u) is a continuous linear functional on U and considering our fundamental
representation hypothesis, there exists u∗ ∈U∗ such that

T (u) = 〈u,u∗〉U ,∀u ∈U.

We define A∗ by setting u∗ = A∗v∗, so that

T (u) = 〈u,u∗〉U = 〈u,A∗v∗〉U
that is,

〈u,A∗v∗〉U = 〈Au,v∗〉Y ,∀u ∈U, v∗ ∈ Y ∗.

We call A∗ : Y ∗ →U∗ the adjoint operator relating A : U → Y.

Theorem 3.2.2. Let U,Y be Banach spaces and let A : U → Y be a bounded linear
operator. Then

‖A‖= ‖A∗‖.
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Proof. Observe that

‖A‖ = sup
u∈U

{‖Au‖ | ‖u‖U = 1}

= sup
u∈U

{
sup

v∗∈Y ∗
{〈Au,v∗〉Y | ‖v∗‖Y ∗ = 1},‖u‖U = 1

}

= sup
(u,v∗)∈U×Y ∗

{〈Au,v∗〉Y | ‖v∗‖Y ∗ = 1,‖u‖U = 1}

= sup
(u,v∗)∈U×Y ∗

{〈u,A∗v∗〉U | ‖v∗‖Y∗ = 1,‖u‖U = 1}

= sup
v∗∈Y ∗

{
sup
u∈U

{〈u,A∗v∗〉U | ‖u‖U = 1},‖v∗‖Y ∗ = 1

}

= sup
v∗∈Y ∗

{‖A∗v∗‖,‖v∗‖Y∗ = 1}
= ‖A∗‖. (3.1)

In particular, if U = Y = H where H is Hilbert space, we have

Theorem 3.2.3. Given the bounded linear operators A,B : H → H we have

1. (AB)∗ = B∗A∗,
2. (A∗)∗ = A,
3. if A has a bounded inverse A−1, then A∗ has a bounded inverse and

(A∗)−1 = (A−1)∗.

4. ‖AA∗‖= ‖A‖2.

Proof.

1. Observe that

(ABu,v)H = (Bu,A∗v)H = (u,B∗A∗v)H ,∀u,v ∈ H.

2. Observe that

(u,Av)H = (A∗u,v)H = (u,A∗∗v)H ,∀u,v ∈ H.

3. We have that
I = AA−1 = A−1A,

so that
I = I∗ = (AA−1)∗ = (A−1)∗A∗ = (A−1A)∗ = A∗(A−1)∗.

4. Observe that
‖A∗A‖ ≤ ‖A‖‖A∗‖= ‖A‖2,

and

‖A∗A‖ ≥ sup
u∈U

{(u,A∗Au)H | ‖u‖U = 1}
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= sup
u∈U

{(Au,Au)H | ‖u‖U = 1}

= sup
u∈U

{‖Au‖2
H | ‖u‖U = 1}= ‖A‖2, (3.2)

and hence
‖A∗A‖= ‖A‖2.

Definition 3.2.4. Given A ∈ L (H) we say that A is self-adjoint if

A = A∗.

Theorem 3.2.5. Let U and Y be Banach spaces and let A : U → Y be a bounded
linear operator. Then

[R(A)]⊥ = N(A∗),

where
[R(A)]⊥ = {v∗ ∈ Y ∗ | 〈Au,v∗〉Y = 0, ∀u ∈U}.

Proof. Let v∗ ∈ N(A∗). Choose v ∈ R(A). Thus there exists u in U such that Au = v
so that

〈v,v∗〉Y = 〈Au,v∗〉Y = 〈u,A∗v∗〉U = 0.

Since v ∈ R(A) is arbitrary we have obtained

N(A∗)⊂ [R(A)]⊥.

Suppose v∗ ∈ [R(A)]⊥. Choose u ∈U . Thus,

〈Au,v∗〉Y = 0,

so that
〈u,A∗v∗〉U ,∀u ∈U.

Therefore A∗v∗ = θ , that is, v∗ ∈ N(A∗). Since v∗ ∈ [R(A)]⊥ is arbitrary, we get

[R(A)]⊥ ⊂ N(A∗).

This completes the proof.

The next result is relevant for subsequent developments.

Lemma 3.1. Let U,Y be Banach spaces and let A : U → Y be a bounded linear op-
erator. Suppose also that R(A) = {A(u) : u ∈U} is closed. Under such hypotheses,
there exists K > 0 such that for each v ∈ R(A) there exists u0 ∈U such that

A(u0) = v

and
‖u0‖U ≤ K‖v‖Y .
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Proof. Define L = N(A) = {u ∈U : A(u) = θ} (the null space of A). Consider the
space U/L, where

U/L = {u : u ∈U},
where

u = {u+w : w ∈ L}.
Define A : U/L → R(A), by

A(u) = A(u).

Observe that A is one-to-one, linear, onto, and bounded. Moreover R(A) is closed so
that it is a Banach space. Hence by the inverse mapping theorem we have that A has
a continuous inverse. Thus, for any v ∈ R(A), there exists u ∈U/L such that

A(u) = v

so that
u = A

−1
(v),

and therefore
‖u‖ ≤ ‖A

−1‖‖v‖Y .

Recalling that
‖u‖= inf

w∈L
{‖u+w‖U},

we may find u0 ∈ u such that

‖u0‖U ≤ 2‖u‖ ≤ 2‖A
−1‖‖v‖Y ,

and so that
A(u0) = A(u0) = A(u) = v.

Taking K = 2‖A
−1‖ we have completed the proof.

Theorem 3.1. Let U,Y be Banach spaces and let A : U → Y be a bound linear
operator. Assume R(A) is closed. Under such hypotheses

R(A∗) = [N(A)]⊥.

Proof. Let u∗ ∈ R(A∗). Thus there exists v∗ ∈ Y ∗ such that

u∗ = A∗(v∗).

Let u ∈ N(A). Hence,

〈u,u∗〉U = 〈u,A∗(v∗)〉U = 〈A(u),v∗〉Y = 0.

Since u ∈ N(A) is arbitrary, we get u∗ ∈ [N(A)]⊥, so that

R(A∗)⊂ [N(A)]⊥.
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Now suppose u∗ ∈ [N(A)]⊥. Thus

〈u,u∗〉U = 0, ∀u ∈ N(A).

Fix v ∈ R(A). From the Lemma 3.1, there exists K > 0 (which does not depend on v)
and uv ∈U such that

A(uv) = v

and
‖uv‖U ≤ K‖v‖Y .

Define f : R(A)→R by
f (v) = 〈uv,u

∗〉U .
Observe that

| f (v)| ≤ ‖uv‖U‖u∗‖U∗ ≤ K‖v‖Y‖u∗‖U∗ ,

so that f is a bounded linear functional. Hence by a Hahn–Banach theorem corollary
there exists v∗ ∈ Y ∗ such that

f (v) = 〈v,v∗〉Y ≡ F(v), ∀v ∈ R(A),

that is, F is an extension of f from R(A) to Y .
In particular

f (v) = 〈uv,u
∗〉U = 〈v,v∗〉Y = 〈A(uv),v

∗〉Y ∀v ∈ R(A),

where A(uv) = v, so that

〈uv,u
∗〉U = 〈A(uv),v

∗〉Y ∀v ∈ R(A).

Now let u ∈U and define A(u) = v0. Observe that

u = (u− uv0)+ uv0,

and

A(u− uv0) = A(u)−A(uv0) = v0 − v0 = θ .

Since u∗ ∈ [N(A)]⊥ we get
〈u− uv0,u

∗〉U = 0

so that

〈u,u∗〉U = 〈(u− uv0)+ uv0 ,u
∗〉U

= 〈uv0 ,u
∗〉U

= 〈A(uv0),v
∗〉Y

= 〈A(u− uv0)+A(uv0),v
∗〉Y

= 〈A(u),v∗〉Y . (3.3)
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Hence,
〈u,u∗〉U = 〈A(u),v∗〉Y , ∀u ∈U.

We may conclude that u∗ = A∗(v∗) ∈ R(A∗). Since u∗ ∈ [N(A)]⊥ is arbitrary we
obtain

[N(A)]⊥ ⊂ R(A∗).

The proof is complete.

We finish this section with the following result.

Definition 3.2.6. Let U be a Banach space and S ⊂ U. We define the positive con-
jugate cone of S, denoted by S⊕ by

S⊕ = {u∗ ∈U∗ : 〈u,u∗〉U ≥ 0, ∀u ∈ S}.

Similarly, we define the negative cone of S, denoted by S� by

S� = {u∗ ∈U∗ : 〈u,u∗〉U ≤ 0, ∀u ∈ S}.

Theorem 3.2.7. Let U,Y be Banach spaces and A : U → Y be a bounded linear
operator. Let S ⊂U. Then

[A(S)]⊕ = (A∗)−1(S⊕),

where

(A∗)−1 = {v∗ ∈Y ∗ : A∗v∗ ∈ S⊕}.
Proof. Let v∗ ∈ [A(S)]⊕ and u ∈ S. Thus,

〈A(u),v∗〉Y ≥ 0,

so that
〈u,A∗(v∗)〉U ≥ 0.

Since u ∈ S is arbitrary, we get

v∗ ∈ (A∗)−1(S⊕).

From this
[A(S)]⊕ ⊂ (A∗)−1(S⊕).

Reciprocally, let v∗ ∈ (A∗)−1(S⊕). Hence A∗(v∗) ∈ S⊕ so that for u ∈ S we obtain

〈u,A∗(v∗)〉U ≥ 0,

and therefore
〈A(u),v∗〉Y ≥ 0.
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Since u ∈ S is arbitrary, we get v∗ ∈ [A(S)]⊕, that is,

(A∗)−1(S⊕)⊂ [A(S)]⊕.

The proof is complete.

3.3 Compact Operators

We start this section defining compact operators.

Definition 3.3.1. Let U and Y be Banach spaces. An operator A ∈ L (U,Y ) (linear
and bounded) is said to compact if A takes bounded sets into pre-compact sets.
Summarizing, A is compact if for each bounded sequence {un} ⊂ U , {Aun} has a
convergent subsequence in Y .

Theorem 3.3.2. A compact operator maps weakly convergent sequences into norm
convergent sequences.

Proof. Let A : U → Y be a compact operator. Suppose

un ⇀ u weakly in U.

By the uniform boundedness theorem, {‖un‖} is bounded. Thus, given v∗ ∈ Y ∗ we
have

〈v∗,Aun〉Y = 〈A∗v∗,un〉U
→ 〈A∗v∗,u〉U
= 〈v∗,Au〉Y . (3.4)

Being v∗ ∈ Y ∗ arbitrary, we get that

Aun ⇀ Au weakly in Y. (3.5)

Suppose Aun does not converge in norm to Au. Thus there exists ε > 0 and a subse-
quence {Aunk} such that

‖Aunk −Au‖Y ≥ ε,∀k ∈N.

As {unk} is bounded and A is compact, {Aunk} has a subsequence converging para
ṽ �= Au. But then such a sequence converges weakly to ṽ �= Au, which contradicts
(3.5). The proof is complete.

Theorem 3.3.3. Let H be a separable Hilbert space. Thus each compact operator
in L (H) is the limit in norm of a sequence of finite rank operators.

Proof. Let A be a compact operator in H. Let {φ j} an orthonormal basis in H. For
each n ∈N define

λn = sup{‖Aψ‖H | ψ ∈ [φ1, . . . ,φn]
⊥ and ‖ψ‖H = 1}.
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It is clear that {λn} is a nonincreasing sequence that converges to a limit λ ≥ 0. We
will show that λ = 0. Choose a sequence {ψn} such that

ψn ∈ [φ1, . . . ,φn]
⊥,

‖ψn‖H = 1, and ‖Aψn‖H ≥ λ/2. Now we will show that

ψn ⇀ θ , weakly in H.

Let ψ∗ ∈ H∗ = H,; thus there exists a sequence {a j} ⊂ C such that

ψ∗ =
∞

∑
j=1

a jφ j.

Suppose given ε > 0. We may find n0 ∈N such that

∞

∑
j=n0

|a j|2 < ε.

Choose n > n0. Hence there exists {b j} j>n such that

ψn =
∞

∑
j=n+1

b jφ j,

and
∞

∑
j=n+1

|b j|2 = 1.

Therefore

|(ψn,ψ∗)H | =
∣∣∣∣∣

∞

∑
j=n+1

(φ j,φ j)Ha j ·b j

∣∣∣∣∣
=

∣∣∣∣∣
∞

∑
j=n+1

a j ·b j

∣∣∣∣∣
≤
√

∞

∑
j=n+1

|a j|2
√

∞

∑
j=n+1

|b j|2

≤ √
ε, (3.6)

if n > n0. Since ε > 0 is arbitrary,

(ψn,ψ∗)H → 0, as n → ∞.

Since ψ∗ ∈ H is arbitrary, we get

ψn ⇀ θ , weakly in H.
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Hence, as A is compact, we have

Aψn → θ in norm ,

so that λ = 0. Finally, we may define {An} by

An(u) = A

(
n

∑
j=1

(u,φ j)Hφ j

)
=

n

∑
j=1

(u,φ j)HAφ j,

for each u ∈ H. Thus
‖A−An‖= λn → 0, as n → ∞.

The proof is complete.

3.4 The Square Root of a Positive Operator

Definition 3.4.1. Let H be a Hilbert space. A mapping E : H → H is said to be a
projection on M ⊂ H if for each z ∈ H we have

Ez = x,

where z = x+ y, x ∈ M, and y ∈ M⊥.

Observe that

1. E is linear,
2. E is idempotent, that is, E2 = E ,
3. R(E) = M,
4. N(E) = M⊥.

Also observe that from
Ez = x

we have
‖Ez‖2

H = ‖x‖2
H ≤ ‖x‖2

H + ‖y‖2
H = ‖z‖2

H ,

so that
‖E‖ ≤ 1.

Definition 3.4.2. Let A,B ∈ L (H). We write

A ≥ θ

if
(Au,u)H ≥ 0,∀u ∈ H,
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and in this case we say that A is positive. Finally, we denote

A ≥ B

if

A−B ≥ θ .

Theorem 3.4.3. Let A and B be bounded self-adjoint operators such that A ≥ θ and
B ≥ θ . If AB = BA, then

AB ≥ θ .

Proof. If A = θ , the result is obvious. Assume A �= θ and define the sequence

A1 =
A

‖A‖ , An+1 = An −A2
n,∀n ∈N.

We claim that
θ ≤ An ≤ I,∀n ∈ N.

We prove the claim by induction.
For n = 1, it is clear that A1 ≥ θ . And since ‖A1‖= 1, we get

(A1u,u)H ≤ ‖A1‖‖u‖H‖u‖H = (Iu,u)H ,∀u ∈ H,

so that
A1 ≤ I.

Thus
θ ≤ A1 ≤ I.

Now suppose θ ≤ An ≤ I. Since An is self-adjoint, we have

(A2
n(I−An)u,u)H = ((I−An)Anu,Anu)H

= ((I−An)v,v)H ≥ 0,∀u ∈ H, (3.7)

where v = Anu. Therefore

A2
n(I −An)≥ θ .

Similarly, we may obtain

An(I−An)
2 ≥ θ ,

so that
θ ≤ A2

n(I −An)+An(I−An)
2 = An −A2

n = An+1.

So, also we have
θ ≤ I−An +A2

n = I −An+1,

that is,
θ ≤ An+1 ≤ I,
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so that
θ ≤ An ≤ I, ∀n ∈ N.

Observe that

A1 = A2
1 +A2

= A2
1 +A2

2 +A3

. . . . . . . . . . . . . . . . . . . . . .

= A2
1 + . . .+A2

n +An+1. (3.8)

Since An+1 ≥ θ , we obtain

A2
1 +A2

2 + . . .+A2
n = A1 −An+1 ≤ A1. (3.9)

From this, for a fixed u ∈ H, we have
n

∑
j=1

‖A ju‖2 =
n

∑
j=1

(A ju,A ju)H

=
n

∑
j=1

(A2
ju,u)H

≤ (A1u,u)H . (3.10)

Since n ∈ N is arbitrary, we get ∞

∑
j=1

‖A ju‖2

is a converging series, so that

‖Anu‖→ 0,

that is,
Anu → θ , as n → ∞.

From this and (3.9), we get

n

∑
j=1

A2
j u = (A1 −An+1)u → A1u, as n → ∞.

Finally, we may write

(ABu,u)H = ‖A‖(A1Bu,u)H

= ‖A‖(BA1u,u)H

= ‖A‖(B lim
n.. ∑

j
= 1nA2

j u,u)H

= ‖A‖ lim
n... ∑

j
= 1n(BA2

j u,u)H

= ‖A‖ lim
n... ∑

j
= 1n(BA ju,BA ju)H

≥ 0. (3.11)
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Hence
(ABu,u)H ≥ 0,∀u ∈ H.

The proof is complete.

Theorem 3.4.4. Let {An} be a sequence of self-adjoint commuting operators in
L (H). Let B ∈ L (H) be a self-adjoint operator such that

AiB = BAi,∀i ∈N.

Suppose also that
A1 ≤ A2 ≤ A3 ≤ . . .≤ An ≤ . . .≤ B.

Under such hypotheses there exists a self-adjoint, bounded, linear operator A such
that

An → A in norm ,

and
A ≤ B.

Proof. Consider the sequence {Cn} where

Cn = B−An ≥ 0,∀n ∈N.

Fix u ∈ H. First, we show that {Cnu} converges. Observe that

CiCj =CjCi,∀i, j ∈ N.

Also, if n > m, then
An −Am ≥ θ

so that
Cm = B−Am ≥ B−An =Cn.

Therefore, from Cm ≥ θ and Cm −Cn ≥ θ , we obtain

(Cm −Cn)Cm ≥ θ , if n > m

and also
Cn(Cm −Cn)≥ θ .

Thus,
(C2

mu,u)H ≥ (CnCmu,u)H ≥ (C2
nu,u)H ,

and we may conclude that
(C2

nu,u)H

is a monotone nonincreasing sequence of real numbers, bounded below by 0, so that
there exists α ∈ R such that

lim
n→∞

(C2
nu,u)H = α.
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Since each Cn is self-adjoint we obtain

‖(Cn −Cm)u‖2
H = ((Cn −Cm)u,(Cn −Cm)u)H

= ((Cn −Cm)(Cn −Cm)u,u)H

= (C2
n u,u)H − 2(CnCmu,u)+ (C2

mu,u)H

→ α − 2α +α = 0, (3.12)

as
m,n → ∞.

Therefore {Cnu} is a Cauchy sequence in norm, so that there exists the limit

lim
n→∞

Cnu = lim
n→∞

(B−An)u,

and hence there exists
lim
n→∞

Anu,∀u ∈ H.

Now define A by
Au = lim

n→∞
Anu.

Since the limit
lim
n→∞

Anu,∀u ∈ H

exists we have that
sup
n∈N

{‖Anu‖H}

is finite for all u ∈ H. By the principle of uniform boundedness

sup
n∈N

{‖An‖}< ∞

so that there exists K > 0 such that

‖An‖ ≤ K,∀n ∈N.

Therefore
‖Anu‖H ≤ K‖u‖H,

so that
‖Au‖= lim

n→∞
{‖Anu‖H} ≤ K‖u‖H ,∀u ∈ H

which means that A is bounded. Fixing u,v ∈ H, we have

(Au,v)H = lim
n→∞

(Anu,v)H = lim
n→∞

(u,Anv)H = (u,Av)H ,

and thus A is self-adjoint. Finally

(Anu,u)H ≤ (Bu,u)H ,∀n ∈ N,
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so that
(Au,u) = lim

n→∞
(Anu,u)H ≤ (Bu,u)H ,∀u ∈ H.

Hence A ≤ B.
The proof is complete.

Definition 3.4.5. Let A ∈ L (A) be a positive operator. The self-adjoint operator
B ∈ L (H) such that

B2 = A

is called the square root of A. If B ≥ θ , we denote

B =
√

A.

Theorem 3.4.6. Suppose A ∈ L (H) is positive. Then there exists B ≥ θ such that

B2 = A.

Furthermore B commutes with any C ∈ L (H) such that commutes with A.

Proof. There is no loss of generality in considering

‖A‖ ≤ 1,

which means θ ≤ A ≤ I, because we may replace A by

A
‖A‖

so that if

C2 =
A
‖A‖

then
B = ‖A‖1/2C.

Let
B0 = θ ,

and consider the sequence of operators given by

Bn+1 = Bn +
1
2
(A−B2

n),∀n ∈ N∪{0}.

Since each Bn is polynomial in A, we have that Bn is self-adjoint and commute with
any operator with commutes with A. In particular

BiB j = B jBi,∀i, j ∈N.

First we show that
Bn ≤ I,∀n ∈N∪{0}.
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Since B0 = θ , and B1 =
1
2 A, the statement holds for n = 1. Suppose Bn ≤ I. Thus

I −Bn+1 = I−Bn − 1
2

A+
1
2

B2
n

=
1
2
(I −Bn)

2 +
1
2
(I−A)≥ θ (3.13)

so that
Bn+1 ≤ I.

The induction is complete, that is,

Bn ≤ I,∀n ∈ N.

Now we prove the monotonicity also by induction. Observe that

B0 ≤ B1,

and supposing
Bn−1 ≤ Bn,

we have

Bn+1 −Bn = Bn +
1
2
(A−B2

n)−Bn−1 − 1
2
(A−B2

n−1)

= Bn −Bn−1− 1
2
(B2

n −B2
n−1)

= Bn −Bn−1− 1
2
(Bn +Bn−1)(Bn −Bn−1)

= (I− 1
2
(Bn +Bn−1))(Bn −Bn−1)

=
1
2
((I −Bn−1)+ (I−Bn))(Bn −Bn−1)≥ θ .

The induction is complete, that is,

θ = B0 ≤ B1 ≤ B2 ≤ . . .≤ Bn ≤ . . .≤ I.

By the last theorem there exists a self-adjoint operator B such that

Bn → B in norm.

Fixing u ∈ H we have

Bn+1u = Bnu+
1
2
(A−B2

n)u,

so that taking the limit in norm as n → ∞, we get

θ = (A−B2)u.



3.5 About the Spectrum of a Linear Operator 73

Being u ∈ H arbitrary we obtain
A = B2.

It is also clear that
B ≥ θ

The proof is complete.

3.5 About the Spectrum of a Linear Operator

Definition 3.5.1. Let U be a Banach space and let A ∈ L (U). A complex number
λ is said to be in the resolvent set ρ(A) of A, if

λ I−A

is a bijection with a bounded inverse. We call

Rλ (A) = (λ I−A)−1

the resolvent of A in λ .
If λ �∈ ρ(A), we write

λ ∈ σ(A) = C−ρ(A),

where σ(A) is said to be the spectrum of A.

Definition 3.5.2. Let A ∈ L (U).

1. If u �= θ and Au = λ u for some λ ∈ C, then u is said to be an eigenvector of A
and λ the corresponding eigenvalue. If λ is an eigenvalue, then (λ I −A) is not
injective and therefore λ ∈ σ(A).
The set of eigenvalues is said to be the point spectrum of A.

2. If λ is not an eigenvalue but
R(λ I−A)

is not dense in U and therefore λ I−A is not a bijection, we have that λ ∈σ(A). In
this case we say that λ is in the residual spectrum of A, or briefly λ ∈ Res[σ(A)].

Theorem 3.5.3. Let U be a Banach space and suppose that A ∈ L (U). Then ρ(A)
is an open subset of C and

F(λ ) = Rλ (A)

is an analytic function with values in L (U) on each connected component of ρ(A).
For λ , μ ∈ σ(A), Rλ (A), and Rμ(A) commute and

Rλ (A)−Rμ(A) = (μ −λ )Rμ(A)Rλ (A).

Proof. Let λ0 ∈ ρ(A). We will show that λ0 is an interior point of ρ(A).
Observe that symbolically we may write
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1
λ −A

=
1

λ −λ0 +(λ0 −A)

=
1

λ0 −A

⎡
⎣ 1

1−
(

λ0−λ
λ0−A

)
⎤
⎦

=
1

λ0 −A

(
1+

∞

∑
n=1

(
λ0 −λ
λ0 −A

)n
)
. (3.14)

Define

R̂λ (A) = Rλ0
(A)

{
I+

∞

∑
n=1

(λ −λ0)
n(Rλ0

)n

}
. (3.15)

Observe that
‖(Rλ0

)n‖ ≤ ‖Rλ0
‖n.

Thus, the series indicated in (3.15) will converge in norm if

|λ −λ0|< ‖Rλ0
‖−1. (3.16)

Hence, for λ satisfying (3.16), R̂(A) is well defined and we can easily check that

(λ I −A)R̂λ (A) = I = R̂λ (A)(λ I−A).

Therefore
R̂λ (A) = Rλ (A), if |λ −λ0|< ‖Rλ0

‖−1,

so that λ0 is an interior point. Since λ0 ∈ ρ(A) is arbitrary, we have that ρ(A) is
open. Finally, observe that

Rλ (A)−Rμ(A) = Rλ (A)(μI−A)Rμ(A)−Rλ (A)(λ I−A)Rμ(A)

= Rλ (A)(μI)Rμ(A)−Rλ (A)(λ I)Rμ(A)

= (μ −λ )Rλ (A)Rμ(A). (3.17)

Interchanging the roles of λ and μ we may conclude that Rλ and Rμ commute.

Corollary 3.5.4. Let U be a Banach space and A ∈ L (U). Then the spectrum of A
is nonempty.

Proof. Observe that if
‖A‖
|λ | < 1

we have

(λ I −A)−1 = [λ (I−A/λ )]−1

= λ−1(I −A/λ )−1
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= λ−1

(
I+

∞

∑
n=1

(
A
λ

)n
)
. (3.18)

Therefore we may obtain

Rλ (A) = λ−1

(
I+

∞

∑
n=1

(
A
λ

)n
)
.

In particular

‖Rλ (A)‖→ 0, as |λ | → ∞. (3.19)

Suppose, to obtain contradiction, that

σ(A) = /0.

In such a case Rλ (A) would be an entire bounded analytic function. From Liouville’s
theorem, Rλ (A) would be constant, so that from (3.19) we would have

Rλ (A) = θ ,∀λ ∈ C,

which is a contradiction.

Proposition 3.5.5. Let H be a Hilbert space and A ∈ L (H).

1. If λ ∈ Res[σ(A)], then λ ∈ Pσ(A∗).
2. If λ ∈ Pσ(A), then λ ∈ Pσ(A∗)∪Res[σ(A∗)].

Proof.

1. If λ ∈ Res[σ(A)], then
R(A−λ I) �= H.

Therefore there exists v ∈ (R(A−λ I))⊥, v �= θ such that

(v,(A−λ I)u)H = 0,∀u ∈ H

that is,
((A∗ −λ I)v,u)H = 0,∀u ∈ H

so that
(A∗ −λ I)v = θ ,

which means that λ ∈ Pσ(A∗).
2. Suppose there exists v �= θ such that

(A−λ I)v = θ ,

and
λ �∈ Pσ(A∗).
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Thus
(u,(A−λ I)v))H = 0,∀u ∈ H,

so that
((A∗ −λ I)u,v)H ,∀u ∈ H.

Since

(A∗ −λ I)u �= θ ,∀u ∈ H,u �= θ ,

we get v ∈ (R(A∗ −λ I))⊥, so that R(A∗ −λ I) �= H.
Hence λ ∈ Res[σ(A∗)].

Theorem 3.5.6. Let A ∈ L (H) be a self-adjoint operator, then

1. σ(A)⊂ R.
2. Eigenvectors corresponding to distinct eigenvalues of A are orthogonal.

Proof. Let μ ,λ ∈ R. Thus, given u ∈ H we have

‖(A− (λ + μ i))u‖2 = ‖(A−λ )u‖2+ μ2‖u‖2,

so that
‖(A− (λ + μ i))u‖2 ≥ μ2‖u‖2.

Therefore if μ �= 0, A−(λ +μ i) has a bounded inverse on its range, which is closed.
If R(A− (λ +μ i)) �= H, then by the last result (λ −μ i) would be in the point spec-
trum of A, which contradicts the last inequality. Hence, if μ �= 0, then λ +μ i∈ ρ(A).
To complete the proof, suppose

Au1 = λ1u1,

and
Au2 = λ2u2,

where
λ1,λ2 ∈R, λ1 �= λ2, and u1,u2 �= θ .

Thus

(λ1 −λ2)(u1,u2)H = λ1(u1,u2)H −λ2(u1,u2)H

= (λ1u1,u2)H − (u1,λ2u2)H

= (Au1,u2)H − (u1,Au2)H

= (u1,Au2)H − (u1,Au2)H

= 0. (3.20)

Since λ1 −λ2 �= 0 we get
(u1,u2)H = 0.
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3.6 The Spectral Theorem for Bounded Self-Adjoint Operators

Let H be a complex Hilbert space. Consider A : H →H a linear bounded operator,
that is, A ∈ L (H), and suppose also that such an operator is self-adjoint. Define

m = inf
u∈H

{(Au,u)H | ‖u‖H = 1},

and
M = sup

u∈H
{(Au,u)H | ‖u‖H = 1}.

Remark 3.6.1. It is possible to prove that for a linear self-adjoint operator A : H →H
we have

‖A‖= sup{|(Au,u)H | | u ∈ H, ‖u‖H = 1}.
This propriety, which prove in the next lines, is crucial for the subsequent results,
since, for example, for A,B linear and self-adjoint and ε > 0, we have

−εI ≤ A−B ≤ εI,

we also would have
‖A−B‖< ε.

So, we present the following basic result.

Theorem 3.6.2. Let A : H → H be a bounded linear self-adjoint operator. Define

α = max{|m|, |M|},

where
m = inf

u∈H
{(Au,u)H | ‖u‖H = 1},

and
M = sup

u∈H
{(Au,u)H | ‖u‖H = 1}.

Then
‖A‖= α.

Proof. Observe that

(A(u+ v),u+ v)H = (Au,u)H +(Av,v)H + 2(Au,v)H,

and
(A(u− v),u− v)H = (Au,u)H +(Av,v)H − 2(Au,v)H.

Thus,

4(Au,v) = (A(u+ v),u+ v)H − (A(u− v),u− v)H ≤ M‖u+ v‖2
U −m‖u− v‖2

U,
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so that
4(Au,v)H ≤ α(‖u+ v‖2

U + ‖u− v‖2
U).

Hence, replacing v by −v, we obtain

−4(Au,v)H ≤ α(‖u+ v‖2
U + ‖u− v‖2

U),

and therefore
4|(Au,v)H | ≤ α(‖u+ v‖2

U + ‖u− v‖2
U).

Replacing v by β v, we get

4|(A(u),v)H | ≤ 2α(‖u‖2
U/β +β‖v‖2

U).

Minimizing the last expression in β > 0, for the optimal

β = ‖u‖U/‖v‖U ,

we obtain
|(Au,v)H | ≤ α‖u‖U‖v‖U ,∀u,v ∈U.

Thus
‖A‖ ≤ α.

On the other hand,
|(Au,u)H | ≤ ‖A‖‖u‖2

U,

so that
|M| ≤ ‖A‖

and
|m| ≤ ‖A‖,

so that
α ≤ ‖A‖.

The proof is complete.

At this point we start to develop the spectral theory. Define by P the set of all real
polynomials defined in R. Define

Φ1 : P → L (H),

by
Φ1(p(λ )) = p(A),∀p ∈ P.

Thus we have

1. Φ1(p1 + p2) = p1(A)+ p2(A),
2. Φ1(p1 · p2) = p1(A)p2(A),
3. Φ1(α p) = α p(A),∀α ∈ R, p ∈ P,
4. if p(λ )≥ 0, on [m,M], then p(A)≥ θ .
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We will prove (4):
Consider p ∈ P. Denote the real roots of p(λ ) less or equal to m by α1,α2, . . . ,αn

and denote those that are greater or equal to M by β1,β2, . . . ,βl . Finally denote all
the remaining roots, real or complex, by

v1 + iμ1, . . . ,vk + iμk.

Observe that if μi = 0, then vi ∈ (m,M). The assumption that p(λ ) ≥ 0 on [m,M]
implies that any real root in (m,M) must be of even multiplicity.

Since complex roots must occur in conjugate pairs, we have the following repre-
sentation for p(λ ) :

p(λ ) = a
n

∏
i=1

(λ −αi)
l

∏
i=1

(βi −λ )
k

∏
i=1

((λ − vi)
2 + μ2

i ),

where a ≥ 0. Observe that
A−αiI ≥ θ ,

since
(Au,u)H ≥ m(u,u)H ≥ αi(u,u)H ,∀u ∈ H,

and by analogy
βiI−A ≥ θ .

On the other hand, since A− vkI is self-adjoint, its square is positive, and hence
since the sum of positive operators is positive, we obtain

(A− vkI)2 + μ2
k I ≥ θ .

Therefore,
p(A)≥ θ .

The idea is now to extend the domain of Φ1 to the set of upper semicontinuous
functions, and such set we will denote by Cup.

Observe that if f ∈ Cup, there exists a sequence of continuous functions {gn}
such that

gn ↓ f , pointwise ,

that is,
gn(λ ) ↓ f (λ ),∀λ ∈ R.

Considering the Weierstrass Theorem, since gn ∈ C([m,M]), we may obtain a se-
quence of polynomials {pn} such that

∥∥∥∥
(

gn +
1
2n

)
− pn

∥∥∥∥
∞
<

1
2n ,
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where the norm ‖ · ‖∞ refers to [m,M]. Thus

pn(λ ) ↓ f (λ ), on [m,M].

Therefore
p1(A)≥ p2(A)≥ p3(A)≥ . . .≥ pn(A)≥ . . .

Since pn(A) is self-adjoint for all n ∈ N, we have

p j(A)pk(A) = pk(A)p j(A),∀ j,k ∈ N.

Then the lim
n→∞

pn(A) (in norm) exists, and we denote

lim
n→∞

pn(A) = f (A).

Now recall the Dini’s theorem.

Theorem 3.6.3 (Dini). Let {gn} be a sequence of continuous functions defined on
a compact set K ⊂ R. Suppose gn → g point-wise and monotonically on K. Under
such assumptions the convergence in question is also uniform.

Now suppose that {pn} and {qn} are sequences of polynomial such that

pn ↓ f , and qn ↓ f ,

we will show that
lim
n→∞

pn(A) = lim
n→∞

qn(A).

First observe that being {pn} and {qn} sequences of continuous functions we have
that

ĥnk(λ ) = max{pn(λ ),qk(λ )},∀λ ∈ [m,M]

is also continuous, ∀n,k ∈ N. Now fix n ∈N and define

hk(λ ) = max{pk(λ ),qn(λ )}.

Observe that
hk(λ ) ↓ qn(λ ),∀λ ∈ R,

so that by Dini’s theorem

hk → qn, uniformly on [m,M].

It follows that for each n ∈ N there exists kn ∈ N such that if k > kn then

hk(λ )− qn(λ )≤ 1
n
,∀λ ∈ [m,M].

Since
pk(λ )≤ hk(λ ),∀λ ∈ [m,M],
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we obtain

pk(λ )− qn(λ )≤ 1
n
,∀λ ∈ [m,M].

By analogy, we may show that for each n ∈N there exists k̂n ∈N such that if k > k̂n,
then

qk(λ )− pn(λ )≤ 1
n
.

From above we obtain

lim
k→∞

pk(A)≤ qn(A)+
1
n
.

Since the self-adjoint qn(A)+ 1/n commutes with the

lim
k→∞

pk(A)

we obtain

lim
k→∞

pk(A) ≤ lim
n→∞

(
qn(A)+

1
n

)

≤ lim
n→∞

qn(A). (3.21)

Similarly we may obtain

lim
k→∞

qk(A)≤ lim
n→∞

pn(A),

so that
lim
n→∞

qn(A) = lim
n→∞

pn(A) = f (A).

Hence, we may extend Φ1 : P → L (H) to Φ2 : Cup →L (H), where Cup, as earlier
indicated, denotes the set of upper semicontinuous functions, where

Φ2( f ) = f (A).

Observe that Φ2 has the following properties:

1. Φ2( f1 + f2) = Φ2( f1)+Φ2( f2),
2. Φ2( f1 · f2) = f1(A) f2(A),
3. Φ2(α f ) = αΦ2( f ),∀α ∈ R, α ≥ 0,
4. if f1(λ )≥ f2(λ ),∀λ ∈ [m,M], then

f1(A)≥ f2(A).

The next step is to extend Φ2 to Φ3 : Cup
− → L (H), where

Cup
− = { f − g | f ,g ∈Cup}.

For h = f − g ∈Cup
− we define
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Φ3(h) = f (A)− g(A).

Now we will show that Φ3 is well defined. Suppose that h ∈Cup
− and

h = f1 − g1 and h = f2 − g2.

Thus
f1 − g1 = f2 − g2,

that is
f1 + g2 = f2 + g1,

so that from the definition of Φ2 we obtain

f1(A)+ g2(A) = f2(A)+ g1(A),

that is,
f1(A)− g1(A) = f2(A)− g2(A).

Therefore Φ3 is well defined. Finally observe that for α < 0

α( f − g) =−αg− (−α) f ,

where −αg ∈Cup and −α f ∈Cup. Thus

Φ3(α f ) = α f (A) = αΦ3( f ),∀α ∈ R.

3.6.1 The Spectral Theorem

Consider the upper semicontinuous function

hμ(λ ) =
{

1, if λ ≤ μ ,
0, if λ > μ . (3.22)

Denote
E(μ) = Φ3(hμ) = hμ(A).

Observe that
hμ(λ )hμ(λ ) = hμ(λ ),∀λ ∈ R,

so that
[E(μ)]2 = E(μ),∀μ ∈ R.

Therefore
{E(μ) | μ ∈R}

is a family of orthogonal projections. Also observe that if ν ≥ μ , we have
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hν(λ )hμ(λ ) = hμ(λ )hν(λ ) = hμ(λ ),

so that
E(ν)E(μ) = E(μ)E(ν) = E(μ),∀ν ≥ μ .

If μ < m, then hμ(λ ) = 0, on [m,M], so that

E(μ) = 0, if μ < m.

Similarly, if μ ≥ M, then hμ(λ ) = 1, on [m,M], so that

E(μ) = I, if μ ≥ M.

Next we show that the family {E(μ)} is strongly continuous from the right. First
we will establish a sequence of polynomials {pn} such that

pn ↓ hμ

and
pn(λ )≥ hμ+ 1

n
(λ ), on [m,M].

Observe that for any fixed n there exists a sequence of polynomials {pn
j} such that

pn
j ↓ hμ+1/n, point-wise.

Consider the monotone sequence

gn(λ ) = min{pr
s(λ ) | r,s ∈ {1, . . . ,n}}.

Thus
gn(λ )≥ hμ+ 1

n
(λ ),∀λ ∈ R,

and we obtain
lim
n→∞

gn(λ )≥ lim
n→∞

hμ+ 1
n
(λ ) = hμ(λ ).

On the other hand

gn(λ )≤ pr
n(λ ),∀λ ∈ R,∀r ∈ {1, . . . ,n},

so that
lim
n→∞

gn(λ )≤ lim
n→∞

pr
n(λ ).

Therefore

lim
n→∞

gn(λ ) ≤ lim
r→∞

lim
n→∞

pr
n(λ )

= hμ(λ ). (3.23)
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Thus
lim
n→∞

gn(λ ) = hμ(λ ).

Observe that gn are not necessarily polynomials. To set a sequence of polynomials,
observe that we may obtain a sequence {pn} of polynomials such that

|gn(λ )+ 1/n− pn(λ )|< 1
2n ,∀λ ∈ [m,M], n ∈N,

so that
pn(λ )≥ gn(λ )+ 1/n− 1/2n ≥ gn(λ )≥ hμ+1/n(λ ).

Thus
pn(A)→ E(μ),

and
pn(A)≥ hμ+ 1

n
(A) = E(μ + 1/n)≥ E(μ).

Therefore we may write

E(μ) = lim
n→∞

pn(A)≥ lim
n→∞

E(μ + 1/n)≥ E(μ).

Thus
lim
n→∞

E(μ + 1/n) = E(μ).

From this we may easily obtain the strong continuity from the right.
For μ ≤ ν we have

μ(hν(λ )− hμ(λ )) ≤ λ (hν(λ )− hμ(λ ))
≤ ν(hν(λ )− hμ(λ )). (3.24)

To verify this observe that if λ < μ or λ > ν , then all terms involved in the above
inequalities are zero. On the other hand if

μ ≤ λ ≤ ν

then
hν(λ )− hμ(λ ) = 1,

so that in any case (3.24) holds. From the monotonicity property we have

μ(E(ν)−E(μ)) ≤ A(E(ν)−E(μ))
≤ ν(E(ν)−E(μ)). (3.25)

Now choose a,b ∈ R such that

a < m and b ≥ M.
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Suppose given ε > 0. Choose a partition P0 of [a,b], that is,

P0 = {a = λ0,λ1, . . . ,λn = b},

such that
max

k∈{1,...,n}
{|λk −λk−1|}< ε.

Hence

λk−1(E(λk)−E(λk−1)) ≤ A(E(λk)−E(λk−1))

≤ λk(E(λk)−E(λk−1)). (3.26)

Summing up on k and recalling that

n

∑
k=1

E(λk)−E(λk−1) = I,

we obtain

n

∑
k=1

λk−1(E(λk)−E(λk−1)) ≤ A

≤
n

∑
k=1

λk(E(λk)−E(λk−1)). (3.27)

Let λ 0
k ∈ [λk−1,λk]. Since (λk −λ 0

k )≤ (λk −λk−1) from (3.26) we obtain

A−
n

∑
k=1

λ 0
k (E(λk)−E(λk−1)) ≤ ε

n

∑
k=1

(E(λk)−E(λk−1))

= εI. (3.28)

By analogy

− εI ≤ A−
n

∑
k=1

λ 0
k (E(λk)−E(λk−1)). (3.29)

Since

A−
n

∑
k=1

λ 0
k (E(λk)−E(λk−1))

is self-adjoint we obtain

‖A−
n

∑
k=1

λ 0
k (E(λk)−E(λk−1))‖ < ε.

Being ε > 0 arbitrary, we may write

A =

∫ b

a
λ dE(λ ),
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that is,

A =

∫ M

m−
λ dE(λ ).

3.7 The Spectral Decomposition of Unitary Transformations

Definition 3.7.1. Let H be a Hilbert space. A transformation U : H → H is said to
be unitary if

(Uu,Uv)H = (u,v)H ,∀u,v ∈ H.

Observe that in this case
U∗U =UU∗ = I,

so that
U−1 =U∗.

Theorem 3.7.2. Every unitary transformation U has a spectral decomposition

U =
∫ 2π

0−
eiφ dE(φ),

where {E(φ)} is a spectral family on [0,2π ]. Furthermore E(φ) is continuous at 0
and it is the limit of polynomials in U and U−1.

We present just a sketch of the proof. For the trigonometric polynomials

p(eiφ ) =
n

∑
k=−n

ckeikφ ,

consider the transformation

p(U) =
n

∑
k=−n

ckU
k,

where ck ∈ C,∀k ∈ {−n, . . . ,0, . . . ,n}.
Observe that

p(eiφ ) =
n

∑
k=−n

cke−ikφ ,

so that the corresponding operator is

p(U)∗ =
n

∑
k=−n

ckU
−k =

n

∑
k=−n

ck(U
∗)k.

Also if
p(eiφ )≥ 0
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there exists a polynomial q such that

p(eiφ ) = |q(eiφ )|2 = q(eiφ )q(eiφ ),

so that
p(U) = [q(U)]∗q(U).

Therefore

(p(U)v,v)H = (q(U)∗q(U)v,v)H = (q(U)v,q(U)v)H ≥ 0,∀v ∈ H,

which means
p(U)≥ 0.

Define the function hμ(φ) by

hμ(φ) =
{

1, if 2kπ < φ ≤ 2kπ + μ ,
0, if 2kπ + μ < φ ≤ 2(k+ 1)π , (3.30)

for each k ∈ {0,±1,±2,±3, . . .}. Define E(μ) = hμ(U). Observe that the family
{E(μ)} are projections and in particular

E(0) = 0,

E(2π) = I

and if μ ≤ ν , since
hμ(φ)≤ hν(φ),

we have
E(μ)≤ E(ν).

Suppose given ε > 0. Let P0 be a partition of [0,2π ], that is,

P0 = {0 = φ0,φ1, . . . ,φn = 2π}

such that
max

j∈{1,...,n}
{|φ j −φ j−1|}< ε.

For fixed φ ∈ [0,2π ], let j ∈ {1, . . . ,n} be such that

φ ∈ [φ j−1,φ j].

|eiφ −
n

∑
k=1

eiφk(hφk(φ)− hφk−1(φ))| = |eiφ − eiφ j |

≤ |φ −φ j|< ε. (3.31)
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Thus,

0 ≤ |eiφ −
n

∑
k=1

eiφk(hφk(φ)− hφk−1(φ))|2 ≤ ε2

so that, for the corresponding operators

0 ≤ [U −
n

∑
k=1

eiφk(E(φk)−E(φk−1))]
∗[U −

n

∑
k=1

eiφk (E(φk)−E(φk−1))]

≤ ε2I

and hence ∥∥∥∥∥U −
n

∑
k=1

eiφk(E(φk)−E(φk−1)

∥∥∥∥∥< ε.

Being ε > 0 arbitrary, we may infer that

U =
∫ 2π

0
eiφ dE(φ).

3.8 Unbounded Operators

3.8.1 Introduction

Let H be a Hilbert space. Let A : D(A) → H be an operator, where unless indi-
cated D(A) is a dense subset of H. We consider in this section the special case where
A is unbounded.

Definition 3.8.1. Given A : D → H we define the graph of A, denoted by Γ (A), by

Γ (A) = {(u,Au) | u ∈ D}.

Definition 3.8.2. An operator A : D → H is said to be closed if Γ (A) is closed.

Definition 3.8.3. Let A1 : D1 → H and A2 : D2 → H operators. We write A2 ⊃ A1 if
D2 ⊃ D1 and

A2u = A1u,∀u ∈ D1.

In this case we say that A2 is an extension of A1.

Definition 3.8.4. A linear operator A : D → H is said to be closable if it has a linear
closed extension. The smallest closed extension of A is denoted by A and is called
the closure of A.

Proposition 3.8.5. Let A : D → H be a linear operator. If A is closable, then

Γ (A) = Γ (A).
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Proof. Suppose B is a closed extension of A. Then

Γ (A)⊂ Γ (B) = Γ (B),

so that if (θ ,φ) ∈ Γ (A), then (θ ,φ) ∈ Γ (B), and hence φ = θ . Define the operator
C by

D(C) = {ψ | (ψ ,φ) ∈ Γ (A) for some φ},
and C(ψ) = φ , where φ is the unique point such that (ψ ,φ) ∈ Γ (A). Hence

Γ (C) = Γ (A)⊂ Γ (B),

so that
A ⊂C.

However C ⊂ B and since B is an arbitrary closed extension of A we have

C = A

so that
Γ (C) = Γ (A) = Γ (A).

Definition 3.8.6. Let A : D → H be a linear operator where D is dense in H. Define
D(A∗) by

D(A∗) = {φ ∈ H | (Aψ ,φ)H = (ψ ,η)H , ∀ψ ∈ D for some η ∈ H}.

In this case we denote
A∗φ = η .

A∗ defined in this way is called the adjoint operator related to A.

Observe that by the Riesz lemma, φ ∈ D(A∗) if and only if there exists K > 0 such
that

|(Aψ ,φ)H | ≤ K‖ψ‖H ,∀ψ ∈ D.

Also note that if
A ⊂ B then B∗ ⊂ A∗.

Finally, as D is dense in H, then

η = A∗(φ)

is uniquely defined. However the domain of A∗ may not be dense, and in some
situations we may have D(A∗) = {θ}.

If D(A∗) is dense, we define

A∗∗ = (A∗)∗.
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Theorem 3.8.7. Let A : D → H a linear operator, being D dense in H. Then

1. A∗ is closed,
2. A is closable if and only if D(A∗) is dense and in this case

A = A∗∗,

3. If A is closable, then (A)∗ = A∗.

Proof.

1. We define the operator V : H ×H → H ×H by

V (φ ,ψ) = (−ψ ,φ).

Let E ⊂ H × H be a subspace. Thus, if (φ1,ψ1) ∈ V (E⊥), then there exists
(φ ,ψ) ∈ E⊥ such that

V (φ ,ψ) = (−ψ ,φ) = (φ1,ψ1).

Hence
ψ =−φ1 and φ = ψ1,

so that for (ψ1,−φ1) ∈ E⊥ and (w1,w2) ∈ E we have

((ψ1,−φ1),(w1,w2))H×H = 0 = (ψ1,w1)H +(−φ1,w2)H .

Thus
(φ1,−w2)H +(ψ1,w1)H = 0,

and therefore
((φ1,ψ1),(−w2,w1))H×H = 0,

that is,
((φ1,ψ1),V (w1,w2))H×H = 0,∀(w1,w2) ∈ E.

This means that
(φ1,ψ1) ∈ (V (E))⊥,

so that
V (E⊥)⊂ (V (E))⊥.

It is easily verified that the implications from which the last inclusion results are
in fact equivalences, so that

V (E⊥) = (V (E))⊥.

Suppose (φ ,η) ∈ H ×H. Thus, (φ ,η) ∈V (Γ (A))⊥ if and only if

((φ ,η),(−Aψ ,ψ))H×H = 0,∀ψ ∈ D,

which holds if and only if
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(φ ,Aψ)H = (η ,ψ)H ,∀ψ ∈ D,

that is, if and only if
(φ ,η) ∈ Γ (A∗).

Thus
Γ (A∗) =V (Γ (A))⊥.

Since (V (Γ (A))⊥ is closed, A∗ is closed.
2. Observe that Γ (A) is a linear subset of H ×H so that

Γ (A) = [Γ (A)⊥]⊥

= V 2[Γ (A)⊥]⊥

= [V [V (Γ (A))⊥]]⊥

= [V (Γ (A∗)]⊥ (3.32)

so that from the proof of item 1, if A∗ is densely defined, we get

Γ (A) = Γ [(A∗)∗].

Conversely, suppose D(A∗) is not dense. Thus there exists ψ ∈ [D(A∗)]⊥ such
that ψ �= θ . Let (φ ,A∗φ) ∈ Γ (A∗). Hence

((ψ ,θ ),(φ ,A∗φ))H×H = (ψ ,φ)H = 0,

so that
(ψ ,θ ) ∈ [Γ (A∗)]⊥.

Therefore V [Γ (A∗)]⊥ is not the graph of a linear operator. Since Γ (A) =
V [Γ (A∗)]⊥ A is not closable.

3. Observe that if A is closable, then

A∗ = (A∗) = A∗∗∗ = (A)∗.

3.9 Symmetric and Self-Adjoint Operators

Definition 3.9.1. Let A : D → H be a linear operator, where D is dense in H. A is
said to be symmetric if A ⊂ A∗, that is, if D ⊂ D(A∗) and

A∗φ = Aφ ,∀φ ∈ D.

Equivalently, A is symmetric if and only if

(Aφ ,ψ)H = (φ ,Aψ)H ,∀φ ,ψ ∈ D.
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Definition 3.9.2. Let A : D → H be a linear operator. We say that A is self-adjoint if
A = A∗, that is, if A is symmetric and D = D(A∗).

Definition 3.9.3. Let A : D → H be a symmetric operator. We say that A is
essentially self-adjoint if its closure A is self-adjoint. If A is closed, a subset
E ⊂ D is said to be a core for A if A|E = A.

Theorem 3.9.4. Let A : D → H be a symmetric operator. Then the following state-
ments are equivalent:

1. A is self-adjoint,
2. A is closed and N(A∗ ± iI) = {θ},
3. R(A± iI) = H.

Proof.

• 1 implies 2:
Suppose A is self-adjoint, let φ ∈ D = D(A∗) be such that

Aφ = iφ

so that
A∗φ = iφ .

Observe that

− i(φ ,φ)H = (iφ ,φ)H

= (Aφ ,φ)H

= (φ ,Aφ)H

= (φ , iφ)H

= i(φ ,φ)H , (3.33)

so that (φ ,φ)H = 0, that is, φ = θ . Thus

N(A− iI) = {θ}.

Similarly we prove that N(A+ iI) = {θ}. Finally, since A∗ = A∗ = A, we get that
A = A∗ is closed.

• 2 implies 3:
Suppose 2 holds. Thus the equation

A∗φ =−iφ

has no nontrivial solution. We will prove that R(A− iI) is dense in H. If ψ ∈
R(A− iI)⊥, then

((A− iI)φ ,ψ)H = 0,∀φ ∈ D,

so that ψ ∈ D(A∗) and
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(A− iI)∗ψ = (A∗+ iI)ψ = θ ,

and hence by above ψ = θ . Now we will prove that R(A − iI) is closed and
conclude that

R(A− iI) = H.

Given φ ∈ D we have

‖(A− iI)φ‖2
H = ‖Aφ‖2

H + ‖φ‖2
H. (3.34)

Let ψ0 ∈ H be a limit point of R(A− iI). Thus we may find {φn} ⊂ D such that

(A− iI)φn → ψ0.

From (3.34)

‖φn −φm‖H ≤ ‖(A− iI)(φn −φm)‖H ,∀m,n ∈ N

so that {φn} is a Cauchy sequence, therefore converging to some φ0 ∈ H. Also
from (3.34)

‖Aφn −Aφm‖H ≤ ‖(A− iI)(φn −φm)‖H ,∀m,n ∈N

so that {Aφn} is a Cauchy sequence, hence also a converging one. Since A is
closed, we get φ0 ∈ D and

(A− iI)φ0 = ψ0.

Therefore R(A− iI) is closed, so that

R(A− iI) = H.

Similarly
R(A+ iI) = H.

• 3 implies 1: Let φ ∈ D(A∗). Since R(A− iI) = H, there is an η ∈ D such that

(A− iI)η = (A∗ − iI)φ ,

and since D ⊂ D(A∗) we obtain φ −η ∈ D(A∗) and

(A∗ − iI)(φ −η) = θ .

Since R(A + iI) = H we have N(A∗ − iI) = {θ}. Therefore φ = η , so that
D(A∗) = D. The proof is complete.
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3.9.1 The Spectral Theorem Using Cayley Transform

In this section H is a complex Hilbert space. We suppose A is defined on a dense
subspace of H, being A self-adjoint but possibly unbounded. We have shown that
(A+ i) and (A− i) are onto H and it is possible to prove that

U = (A− i)(A+ i)−1,

exists on all H and it is unitary. Furthermore, on the domain of A,

A = i(I +U)(I−U)−1.

The operator U is called the Cayley transform of A. We have already proven that

U =

∫ 2π

0
eiφ dF(φ),

where {F(φ)} is a monotone family of orthogonal projections, strongly continuous
from the right and we may consider it such that

F(φ) =
{

0, if φ ≤ 0,
I, if φ ≥ 2π . (3.35)

Since F(φ) = 0, for all φ ≤ 0 and

F(0) = F(0+)

we obtain
F(0+) = 0 = F(0−),

that is, F(φ) is continuous at φ = 0. We claim that F is continuous at φ = 2π .
Observe that F(2π) = F(2π+) so that we need only to show that

F(2π−) = F(2π).

Suppose
F(2π)−F(2π−) �= θ .

Thus, there exists some u,v ∈ H such that

(F(2π)−F(2(π−)))u = v �= θ .

Therefore
F(φ)v = F(φ)[(F(2π)−F(2π−))u],

so that

F(φ)v =
{

0, if φ < 2π ,
v, if φ ≥ 2π . (3.36)



3.9 Symmetric and Self-Adjoint Operators 95

Observe that

U − I =
∫ 2π

0
(eiφ − 1)dF(φ),

and

U∗ − I =
∫ 2π

0
(e−iφ − 1)dF(φ).

Let {φn} be a partition of [0,2π ]. From the monotonicity of [0,2π ] and pairwise
orthogonality of

{F(φn)−F(φn−1)}
we can show that (this is not proved in details here)

(U∗ − I)(U − I) =
∫ 2π

0
(e−iφ − 1)(eiφ − 1)dF(φ),

so that, given z ∈ H, we have

((U∗ − I)(U − I)z,z)H =
∫ 2π

0
|eiφ − 1|2d‖F(φ)z‖2,

thus, for v defined above

‖(U − I)v‖2 = ((U − I)v,(U − I)v)H

= ((U − I)∗(U − I)v,v)H

=

∫ 2π

0
|eiφ − 1|2d‖F(φ)v‖2

=

∫ 2π−

0
|eiφ − 1|2d‖F(φ)v‖2

= 0. (3.37)

The last two equalities result from e2π i−1 = 0 and d‖F(φ)v‖= θ on [0,2π). Since
v �= θ the last equation implies that 1 ∈ Pσ(U), which contradicts the existence of

(I −U)−1.

Thus, F is continuous at φ = 2π .
Now choose a sequence of real numbers {φn} such that φn ∈ (0,2π), n =

0,±1,±2,±3, . . . such that

−cot

(
φn

2

)
= n.

Now define Tn = F(φn)− F(φn−1). Since U commutes with F(φ), U commutes
with Tn. Since

A = i(I +U)(I−U)−1,
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this implies that the range of Tn is invariant under U and A. Observe that

∑
n

Tn = ∑
n
(F(φn)−F(φn−1))

= lim
φ→2π

F(φ)− lim
φ→0

F(φ)

= I −θ = I. (3.38)

Hence

∑
n

R(Tn) = H.

Also, for u ∈ H, we have that

F(φ)Tnu =

⎧⎨
⎩

0, if φ < φn−1,
(F(φ)−F(φn−1))u, if φn−1 ≤ φ ≤ φn,
F(φn)−F(φn−1))u, if φ > φn,

(3.39)

so that

(I −U)Tnu =

∫ 2π

0
(1− eiφ)dF(φ)Tnu

=
∫ φn

φn−1

(1− eiφ )dF(φ)u. (3.40)

Therefore
∫ φn

φn−1

(1− eiφ)−1dF(φ)(I −U)Tnu

=

∫ φn

φn−1

(1− eiφ)−1dF(φ)
∫ φn

φn−1

(1− eiφ)dF(φ)u

=

∫ φn

φn−1

(1− eiφ)−1(1− eiφ)dF(φ)u

=
∫ φn

φn−1

dF(φ)u

=

∫ 2π

0
dF(φ)Tnu = Tnu. (3.41)

Hence [
(I −U)|R(Tn)

]−1
=

∫ φn

φn−1

(1− eiφ )−1dF(φ).

From this, from above, and as

A = i(I+U)(I−U)−1
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we obtain

ATnu =

∫ φn

φn−1

i(1+ eiφ )(1− eiφ)−1dF(φ)u.

Therefore defining

λ =−cot

(
φ
2

)
,

and
E(λ ) = F(−2cot−1 λ ),

we get

i(1+ eiφ)(1− eiφ )−1 =−cot

(
φ
2

)
= λ .

Hence,

ATnu =
∫ n

n−1
λ dE(λ )u.

Finally, from

u =
∞

∑
n=−∞

Tnu,

we can obtain

Au = A(
∞

∑
n=−∞

Tnu)

=
∞

∑
n=−∞

ATnu

=
∞

∑
n=−∞

∫ n

n−1
λ dE(λ )u. (3.42)

Being the convergence in question in norm, we may write

Au =

∫ ∞

−∞
λ dE(λ )u.

Since u ∈ H is arbitrary, we may denote

A =

∫ ∞

−∞
λ dE(λ ). (3.43)
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