Chapter 3
Topics on Linear Operators

The main references for this chapter are Reed and Simon [52] and Bachman and
Narici [6].

3.1 Topologies for Bounded Operators

First we recall that the set of all bounded linear operators, denoted by .Z(U,Y),
is a Banach space with the norm

[A[] = sup{[[Aully | [|ulle <1}

The topology related to the metric induced by this norm is called the uniform oper-
ator topology.

Let us introduce now the strong operator topology, which is defined as the weak-
est topology for which the functions

E,:ZUY)—=Y

are continuous where
E,(A) =AuNA € L (U,Y).

For such a topology a base at origin is given by sets of the form
{AlAc 2W.Y), |Auly <eVie{l,... n}},

where uy,...,u, € U and € > 0.
Observe that a sequence {A,} C .Z(U,Y) converges to A concerning this last
topology if
|Anu —Aully — 0, asn — o, Vu € U.
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In the next lines we describe the weak operator topology in -2 (U,Y). Such a topol-
ogy is weakest one such that the functions

E,,:Z(UY)—=C
are continuous, where
E,v(A) = (Au,v)y VA€ Z(U,Y),ueU,veY™.
For such a topology, a base at origin is given by sets of the form
{Ae 2U,Y) ||[{Au;,vj)y| < e Vie{l,...,n}, je{l,...,m}},

where € > 0, uy,...,u, €U, vi,...,v, €Y".
A sequence {A,} C .Z(U,Y) convergesto A € Z(U,Y) if

[{Apu,v)y — (Au,v)y| — 0,

asn—oo,YuclU,veY™.

3.2 Adjoint Operators

We start this section recalling the definition of adjoint operator.

Definition 3.2.1. Let U,Y be Banach spaces. Given a bounded linear operator A :
U — Y and v* € Y*, we have that T (u) = (Au,v*)y is such that

T ()| < [[Aully - [ < [JAT Vv [l

Hence T (u) is a continuous linear functional on U and considering our fundamental
representation hypothesis, there exists u* € U™ such that

T(u) = (u,u’)y,YueU.
We define A* by setting u* = A*v*, so that
T(u) = (u,u")y = (w,A"V)y

that is,
(u, A"V )y = (Au, vy, Yu e U, v €Y*.
We call A* : Y* — U* the adjoint operator relating A : U — Y.

Theorem 3.2.2. Let U,Y be Banach spaces and let A : U — Y be a bounded linear
operator. Then
IA[F= [[A%]].
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Proof. Observe that

[All = sup{[[Au]| | ||ully =1}
uclU

= Sup{ sup {{Au, v )y | [v¥[[y+ =1}, [Jullv = 1}

uclU (v*er*

sup  {{Au, )y [V ]lys =1, [|ullo = 1}
(uy*)eUxy*

= sup {(@ AV )y [V ]y =1, [Jully =1}
() EUxY*

sup {su5{<u,A*v*>U il = 13, [y = 1}

vieY* Lue

sup {[JAV[], [[V*[ly= = 1}
veey*

= [lA™]]. 3.1)

In particular, if U =Y = H where H is Hilbert space, we have
Theorem 3.2.3. Given the bounded linear operators A,B : H — H we have
1. (AB)* = B*A*,
2. (A*)* =4,
3. if A has a bounded inverse A~ then A* has a bounded inverse and
(A*)71 — (Ail)*.
4. [AA*| = ||A>.
Proof.
1. Observe that
(ABu,v)g = (Bu,A*"v)y = (u,B*A*v)y,Yu,v € H.
2. Observe that
(u,Av)g = (A"u,v)g = (u,A"v)g,Yu,v € H.

3. We have that
I=AA""=A"1A,

so that
I=I = (AAfl)* _ (Afl)*A* _ (AflA)* :A*(Afl)*

4. Observe that
|A*A]| < [JA[HIA*] = [IA]1%,

and

[AAl| > sup{(u,A"Au)p | [|ullv =1}
uclU
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= sup{(Au, Au)y | [|ullv =1}
uclU

= sgg{HAull%f | ullo =1} = ||A]%, (3.2)

and hence
IA*All = [IA]*.
Definition 3.2.4. Given A € .Z(H) we say that A is self-adjoint if
A=A".
Theorem 3.2.5. Let U and Y be Banach spaces and let A : U — Y be a bounded
linear operator. Then
where
R ={v* €Y* | (Au,v*)y =0, Vu € U}.

Proof. Letv* € N(A*). Choose v € R(A). Thus there exists « in U such that Au = v
so that
vy = (Au,v*)y = (u,A"V")y = 0.

Since v € R(A) is arbitrary we have obtained
N(A*) C [R(A)]*.
Suppose v* € [R(A)]*+. Choose u € U. Thus,
(Au,v")y =0,

so that
(u,A"v )y,Yu e U.

Therefore A*v* = 0, that is, v* € N(A*). Since v* € [R(A)]* is arbitrary, we get
[R(A)]F C N(A").
This completes the proof.

The next result is relevant for subsequent developments.

Lemma 3.1. Let U,Y be Banach spaces and let A : U — Y be a bounded linear op-
erator. Suppose also that R(A) = {A(u) : u € U} is closed. Under such hypotheses,
there exists K > 0 such that for each v € R(A) there exists uy € U such that

A(uo) =V

and
lluollv < K|[v]y-
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Proof. Define L=N(A) ={uecU : A(u) = 6} (the null space of A). Consider the
space U /L, where
U/L={u:ueclU},

where
u={u+w:welL}

Define A: U/L — R(A), by
A(@) =Au).

Observe that A is one-to-one, linear, onto, and bounded. Moreover R(A) is closed so
that it is a Banach space. Hence by the inverse mapping theorem we have that A has
a continuous inverse. Thus, for any v € R(A), there exists # € U /L such that

Am)=v

so that .
n=A (v),

and therefore .
[l <{lA [Vl

Recalling that
[l = inf {[lu+wlv},
weL

we may find ug € u such that
_ -1
luolly <2zl <2f]A "[[|[v]ly,

and so that

A(ug) = A(tg) = A(ut) = v.
Taking K = 2|\Zil || we have completed the proof.

Theorem 3.1. Let U,Y be Banach spaces and let A : U — Y be a bound linear
operator. Assume R(A) is closed. Under such hypotheses

R(A") = [N(A)]*.
Proof. Letu* € R(A*). Thus there exists v* € Y* such that
u=A"(v").
Letu € N(A). Hence,
(u,u )y = (u,A*(v*))y = (A(u),v")y = 0.
Since u € N(A) is arbitrary, we get u* € [N(A)]*, so that

R(A*) C [N(A)]*.
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Now suppose u* € [N(A)]*. Thus
(u,u™yy =0, Yu € N(A).

Fix v € R(A). From the Lemma 3.1, there exists K > 0 (which does not depend on v)
and u,, € U such that
Auy)=v

and
[uvllu < K[|y

Define f: R(A) — R by
Jv) = (uy,u)u.
Observe that
SO < luvllullullos < Kvlly[lu*{lo-

so that f is a bounded linear functional. Hence by a Hahn—Banach theorem corollary
there exists v* € Y* such that

fv) =)y =F(v), YW eR(A),

that is, F is an extension of f from R(A) to Y.
In particular

FO) = (uy,u™Yy = (vv")y = (A(wy),v")y Vv € R(A),
where A(u,) = v, so that
(uy,u" )y = (A(uy),v*)y Vv € R(A).
Now let u € U and define A(u) = vg. Observe that
u=(U— ty,) + Uy,

and
A(u—uy) =A(u) —A(uy,) =vo—vo = 6.

Since u* € [N(A)]* we get
(u—tyy,u" )y =0

so that
(u,u*yu = (1 —ury) + 1y, u")u
<”V07”*>U
= (A(uyy) V" )y
= (A —uyy) +Aluy,),v")y
= (A(u),v")y. (3.3)
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Hence,

(u,u?)y = (A(),v")y, VueU.
We may conclude that u* = A*(v*) € R(A*). Since u* € [N(A)]* is arbitrary we
obtain

The proof is complete.
We finish this section with the following result.

Definition 3.2.6. Let U be a Banach space and S C U. We define the positive con-
jugate cone of S, denoted by S® by

Y={u eU" : (u,u")y >0, VueS}
Similarly, we define the negative cone of S, denoted by S© by
S ={u*eU" : (uu*)y <0, VucS}.

Theorem 3.2.7. Let U,Y be Banach spaces and A : U — Y be a bounded linear
operator. Let S C U. Then

[A(S))® = (A7) 1(s7),
where
A" ={rr ey . AWV e ST
Proof. Letv* € [A(S)]® and u € S. Thus,
(A(u),v")y 20,

so that
(u,A*(v*))y > 0.

Since u € S is arbitrary, we get

*

Vvie (AN TI(SP).

From this
[A(S)]F C (A) (%),

Reciprocally, let v¥ € (A*)~1(S?). Hence A*(v*) € S so that for u € S we obtain
(u, A*(v*))y >0,

and therefore
(A(u),v*)y > 0.



64 3 Topics on Linear Operators
Since u € § is arbitrary, we get v* € [A(S)]?, that is,
(4) (%) C [A(S)]*

The proof is complete.

3.3 Compact Operators

We start this section defining compact operators.

Definition 3.3.1. Let U and Y be Banach spaces. An operator A € £ (U,Y) (linear
and bounded) is said to compact if A takes bounded sets into pre-compact sets.
Summarizing, A is compact if for each bounded sequence {u,} C U, {Au,} has a
convergent subsequence in Y.

Theorem 3.3.2. A compact operator maps weakly convergent sequences into norm
convergent sequences.

Proof. LetA :U — Y be a compact operator. Suppose
u, — u weakly in U.

By the uniform boundedness theorem, {||u,||} is bounded. Thus, given v* € Y* we
have

(V* Aup)y = (A"  up)y
— (A" u)y
= (v",Au)y. 3.4
Being v* € Y* arbitrary, we get that
Au, — Au weakly in Y. 3.5)

Suppose Au,, does not converge in norm to Au. Thus there exists € > 0 and a subse-
quence {Auy, } such that

|Auy, —Aully > €,Vk € N.

As {uy, } is bounded and A is compact, {Au,, } has a subsequence converging para
v # Au. But then such a sequence converges weakly to ¥ # Au, which contradicts
(3.5). The proof is complete.

Theorem 3.3.3. Let H be a separable Hilbert space. Thus each compact operator
in £ (H) is the limit in norm of a sequence of finite rank operators.

Proof. Let A be a compact operator in H. Let {¢;} an orthonormal basis in H. For
each n € N define

An = sup{||Ay |l | y € 81, 8]" and | y||m = 1}.
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It is clear that {A, } is a nonincreasing sequence that converges to a limit A > 0. We

will show that A = 0. Choose a sequence {y,} such that
W € (01, 0u]
lwallg = 1, and ||Ay, ||z > A /2. Now we will show that
W, — 0, weakly in H.
Let y* € H* = H,; thus there exists a sequence {a;} C C such that

l[/* = Z aj(l)j.
=1

J

Suppose given € > 0. We may find ny € N such that
2 |aj|2 <E.
J=no

Choose n > ng. Hence there exists {0} j~, such that

Vh= Y, bjo;,
j=n+1
and
> bl =1.
j=n+1
Therefore

=

(W, W)l = | Y, (¢.0))ma;-b;
j=n+1
= z aj'bj
Jj=n+1
<a X el Y (bl
j=n+1 j=n+1
< Ve,

if n > ng. Since € > 0 is arbitrary,
(Wn, W )m — 0, as n — oo.
Since y* € H is arbitrary, we get

v, — 0, weakly in H.

(3.6)
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Hence, as A is compact, we have
Ay, — 0 innorm

so that A = 0. Finally, we may define {A,} by

An(u) = A <i<u,¢j>H¢j> =S (u.0)) Ao,

j=1 Jj=1

for each u € H. Thus
A=Ayl = A — 0, as n — oo.

The proof is complete.

3.4 The Square Root of a Positive Operator

Definition 3.4.1. Let H be a Hilbert space. A mapping E : H — H is said to be a
projection on M C H if for each z € H we have

Ez=x,

where z=x+y,x €M, andy € M-,
Observe that

1. E is linear,
2. E is idempotent, that is, E’=E,
3. R(E) =M,
4. N(E) =M+,
Also observe that from
Ez=x

we have

IEz27 = lIxl7 < lIxll7 + Ill7 = llzl17,

so that
IE <1.
Definition 3.4.2. Let A,B € .Z(H). We write
A>06

if
(Au,u)y >0,Vu e H,
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and in this case we say that A is positive. Finally, we denote
A>B
if
A—B>0.

67

Theorem 3.4.3. Let A and B be bounded self-adjoint operators such that A > 0 and

B > 6. IfAB = BA, then
AB > 0.

Proof. If A = 0, the result is obvious. Assume A # 6 and define the sequence

A

= Ay =A,—A2¥neN.
fa St T e

Ay
We claim that
0<A,<I,VneN.

We prove the claim by induction.
Forn =1, it s clear that A; > 0. And since ||A;]| = 1, we get

(A, uw)g < [[Ar|[llwllmllulla = (Tu,u)n,Yu € H,

so that
A <L

Thus
0<A <L

Now suppose 6 < A, <. Since A, is self-adjoint, we have

(AR —Ap)u,u)n

((I_An)AnMaAnu)H
(I—Ap)v,v)g >0,VueH,

where v = A,u. Therefore
A2(1-A,) > 6.
Similarly, we may obtain

An(I—Ay)* >0,

so that
0 <AZI—A,)+A(I—A) =A,—A2=A,, .

So, also we have
0 <I—Ay+A;=1—Ay1,

that is,
0 < An+1 <I

3.7
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so that
0<A,<I,VneN.
Observe that
A = AT +4
= A} 4 A3+ A;

= Al 4A24A,
Since A, > 6, we obtain
AT+ A 4+ A=A A, <AL

From this, for a fixed u € H, we have

n

n
S llAull* =Y (Aju,Aju)g
=1 =1

Since n € N is arbitrary, we get

is a converging series, so that
|Anul|l — O,

that is,
Apu— 0, asn — oo,

From this and (3.9), we get

n
j=

1

Finally, we may write
(ABu,u)y = ||Al|(A1Bu,u)y
= [|A[l(BA 1, 1)
= |\A||(Bl}1912 = 1"ASu,u)y
J

= [|A[ltim Y’ = 1"(BATu, u)u
e

= |[A]|Tim S, = 1"(BAu, BA u)n
J

> 0.

A?u =(A] —Ap41)u— Aju, asn — o,

(3.8)

(3.9)

(3.10)

@3.11)



3.4 The Square Root of a Positive Operator 69

Hence
(ABu,u)y > 0,Yu e H.

The proof is complete.

Theorem 3.4.4. Let {A,} be a sequence of self-adjoint commuting operators in
Z(H). Let B€ £ (H) be a self-adjoint operator such that

A;B=BA; Vi eN.
Suppose also that
Al <A <A3<...<A,<...<B.

Under such hypotheses there exists a self-adjoint, bounded, linear operator A such
that
A, = Ain norm ,

and
A <B.

Proof. Consider the sequence {C,} where
C,=B—A,>0,¥neN.
Fix u € H. First, we show that {C,u} converges. Observe that
C,C; =C;C;,Vi,j €N,
Also, if n > m, then
Ap—An >0

so that
Cn=B—A,>B—A,=C,.

Therefore, from C,,, > 0 and C,, — C,, > 6, we obtain
(Cu—Ch)Cn>06,ifn>m
and also
Co(Cn—Cy) > 6.

Thus,
(Crznuvu)H Z (CnCmM,M)H Z (Cguvu)Hv
and we may conclude that
(Cguv u)H

is a monotone nonincreasing sequence of real numbers, bounded below by 0, so that
there exists o € R such that

}ij;(Cﬁu,u)H =a.
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Since each C,, is self-adjoint we obtain

1(Ca = Can)ully = ((Ca = Conut, (Co = Con)ut)a

((Co = Cn)(Co = Cn)u, u)

(Czu w)pg — 2(CoCrutt, 1) + (Cout,u) gy
o—20+a=0, (3.12)

as
m,n — oo,

Therefore {C,u} is a Cauchy sequence in norm, so that there exists the limit

lim Cyu = lim (B — A, )u,

n—oeo n—oeo

and hence there exists
lim A,u,Yu € H.
n—soo

Now define A by
Au= lim A,u.

n—yoo

Since the limit
lim A u,Yu € H

n—soo

exists we have that
sup{|[Anul|n}
neN

is finite for all u € H. By the principle of uniform boundedness

sup{[[An]|} < oo
neN

so that there exists K > 0 such that
HAnH <K,vneN.

Therefore
[Anulln < K|lulln,

so that
lAull = tim ([ Auull} < Klullsr,Voe € H

which means that A is bounded. Fixing u,v € H, we have
(Au,v)g = lim (Ayu,v)g = lim (u,Apv)g = (u,Av)g,
n—soo n—soo
and thus A is self-adjoint. Finally

(Apu,u)g < (Bu,u)y,¥n € N,
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so that
(Au,u) = lim (Apu,u)y < (Bu,u)n,Yu € H.

n—soo

Hence A < B.
The proof is complete.

Definition 3.4.5. Let A € .Z(A) be a positive operator. The self-adjoint operator
B € Z(H) such that
B*=A

is called the square root of A. If B > 6, we denote
B=VA.

Theorem 3.4.6. Suppose A € £ (H) is positive. Then there exists B > 0 such that
B*=A.

Furthermore B commutes with any C € £ (H) such that commutes with A.

Proof. There is no loss of generality in considering
Al <1,

which means 8 < A <], because we may replace A by

A
Al
so that if
Cc? = A
[|Al
then
B=|A|'%C.
Let
BO = 97

and consider the sequence of operators given by
1
By =Byt 5 (A — B2),Vn € NU{0}.

Since each B,, is polynomial in A, we have that B, is self-adjoint and commute with
any operator with commutes with A. In particular

BB; :BjBi,Vi,j eN.

First we show that
B, <I1,vn e NU{0}.
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Since By = 0, and B| = %A, the statement holds for n = 1. Suppose B,, < I. Thus

1 1
[—B,,  =1—-B,— EA+§Bﬁ
1 1
:EU—mY+§U—mze (3.13)
so that
Bn+l <I

The induction is complete, that is,

B, <I,VneN.

Now we prove the monotonicity also by induction. Observe that

By < By,
and supposing
anl S Bna
we have
1 2 1 2
B,y1—B,=B,+ E(A _Bn) —Bp1— E(A _anl)
1
= Bn _anl - E(Bﬁ _Bﬁfl)

1
= Bn _anl - E(Bn'f'anl)(Bn _anl)

(Bn"l‘anl))(Bn _anl)

| —

(1=
1

((I=Bp—1)+ (I =Bn))(Ba—By—1) = 6.

2

The induction is complete, that is,
0=By<B <By<..<B,<..<IL
By the last theorem there exists a self-adjoint operator B such that
B,, — B in norm.

Fixing u € H we have

1
Byiiu=Bu+ E(A — B)u,
so that taking the limit in norm as n — o, we get

6 = (A—B*)u.
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Being u € H arbitrary we obtain
A=B.

It is also clear that
B>0

The proof is complete.

3.5 About the Spectrum of a Linear Operator

Definition 3.5.1. Let U be a Banach space and let A € .2 (U). A complex number
A is said to be in the resolvent set p(A) of A, if

Al—A
is a bijection with a bounded inverse. We call
Ry(A) = (AT —A)""

the resolvent of A in A.
If A & p(A), we write
A € 6(A) =C—p(A),

where 6(A) is said to be the spectrum of A.

Definition 3.5.2. Let A € Z(U).

1. If u # 6 and Au = Au for some A € C, then u is said to be an eigenvector of A
and A the corresponding eigenvalue. If A is an eigenvalue, then (A — A) is not
injective and therefore A € o(A).

The set of eigenvalues is said to be the point spectrum of A.

2. If A is not an eigenvalue but

R(AI—A)

is notdense in U and therefore A1 —A is not a bijection, we have that A € 6(A). In
this case we say that A is in the residual spectrum of A, or briefly A € Res[c(A)].

Theorem 3.5.3. Let U be a Banach space and suppose that A € £ (U). Then p(A)
is an open subset of C and

F(A) =Ry(A)

is an analytic function with values in £ (U) on each connected component of p(A).
For A, u € o(A), Ry (A), and Ry (A) commute and

Ry (A) = Ru(A) = (L= A)Ru (AR, (A).

Proof. Let Ay € p(A). We will show that Ay is an interior point of p(A).
Observe that symbolically we may write
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1 = 20— 1\"
___A<1+21(—_A)>. (3.14)

Define
R,l(A)zR%(A){I—F i(l—lo)"(R%)”}. (3.15)
n=1

Observe that
[[(Rap)" | < IRz 1"

Thus, the series indicated in (3.15) will converge in norm if
A= 20| < IRy, | . (3.16)
Hence, for A satisfying (3.16), R(A) is well defined and we can easily check that
(AL —=A)R; (A) =1 =Ry (A)(Al - A).

Therefore
Ry(A) = Ry (A), if [A — Ao| < [IRy ",

so that Ao is an interior point. Since Ay € p(A) is arbitrary, we have that p(A) is
open. Finally, observe that

R3.(4) — Ry(A) = Ry (A) (1l — A)Ru(A) — Ry (A) (AL — ARy (4)
— Ry(A) (DR, (A) — Ry (A) (ADR, ()
— (1= )R, (A)Ru(A). (3.17)

Interchanging the roles of 4 and u we may conclude that Rj and R, commute.

Corollary 3.5.4. Let U be a Banach space and A € £(U). Then the spectrum of A
is nonempty.

Proof. Observe that if

Al
<l
2]

we have

(AI-A)"" = [A(I-A/2)]"
=Atu-Aa/2)7"
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=2 <1+ i (%) ) . (3.18)
n=1

In particular
IRL(A)]| =0, as 4] - e (3.19)
Suppose, to obtain contradiction, that
c(A)=0.

In such a case R; (A) would be an entire bounded analytic function. From Liouville’s
theorem, R; (A) would be constant, so that from (3.19) we would have

R;L(A) = Q,V)L eC,
which is a contradiction.

Proposition 3.5.5. Let H be a Hilbert space and A € £ (H).

1. If A € Res[o(A)], then A € Po(A*).
2. If L € Po(A), then A € Po(A*) URes[c(A")].

Proof.

1. If A € Res[c(A)], then
R(A—AI)#H.

Therefore there exists v € (R(A — A1))*, v # 0 such that
(v(A=ADu)y =0,Yu e H

that is, _
((A* = ADv,u)y =0,Yu e H

so that _
(A" =Al)v=0,

which means that A € PG(A*).
2. Suppose there exists v # 6 such that

(A—Al)v=8,

and _
A & Po(AY).
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Thus
(u,(A—=AI)v))g=0,Yu e H,
so that .
((A*—=ADu,v)y,Vu € H.
Since

(A*—=ADu+60,Yuc H,u#0,
we getv € (R(A* — AI))*, so that R(A* — A1) # H.
Hence A € Res[o(A*)].
Theorem 3.5.6. Let A € £ (H) be a self-adjoint operator, then
1. o(A) CR.

2. Eigenvectors corresponding to distinct eigenvalues of A are orthogonal.

Proof. Let u,A € R. Thus, given u € H we have
1A = (2 + i)ull* = [[(A = A)al® + ]|,

so that
(A = (A + pi))ul|* > p?|u]|>.

Therefore if 4 # 0, A — (A 4 wi) has a bounded inverse on its range, which is closed.
If R(A — (A + pi)) # H, then by the last result (A — ui) would be in the point spec-
trum of A, which contradicts the last inequality. Hence, if tt # 0, then A 4+ i € p(A).
To complete the proof, suppose

Auy = Aquy,
and
Auz = A,zuz,
where
/11,12 € R, /11 75/12, and uy,up 75 0.
Thus

(/’Ll - A‘2)(“17“2)1‘1 = A'l (ulaul)H AQ(“l;“Z)H
= (Mur,uz)y — (u1, o)
(Aul,uz) (ul,Auz)H
(ul,Auz) — (u1,Aup) g
(3.20)

Since A; — A, # 0 we get
(ul,uz)H = 0
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3.6 The Spectral Theorem for Bounded Self-Adjoint Operators

Let H be a complex Hilbert space. Consider A : H — H a linear bounded operator,
that is, A € Z(H), and suppose also that such an operator is self-adjoint. Define

m = inf {(Auu) | Julln = 1},

and
M = sup{(Au,u)y | [lullz = 1}.
ueH

Remark 3.6.1. It is possible to prove that for a linear self-adjoint operator A : H — H
we have
[A[l = sup{|(Aw,u)u| |u € H, ||ul|m =1}.

This propriety, which prove in the next lines, is crucial for the subsequent results,
since, for example, for A, B linear and self-adjoint and € > 0, we have

—el<A—B<e€l,

we also would have
lA—B| <e.

So, we present the following basic result.

Theorem 3.6.2. Let A : H — H be a bounded linear self-adjoint operator. Define

o = max{|m|,|M|},

where
m = inf {(Auw,)y | g =1},
and
M = sup{(Au,u)y | [Jullg =1}
ueH
Then

[l = o
Proof. Observe that
(A(u+v),u+v)g = (Au,u)y + (Av,v)g +2(Au,v)g,

and
(A(u—v),u—v)g = (Au,u)y + (Av,v)y — 2(Au,v)g.

Thus,

4(Au,v) = (Al v),u+ )i — (Al — V)= V)i < M+ ] = mllu =],
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so that
4(Au, ) < o[lu+v]G + e —vl7)-

Hence, replacing v by —v, we obtain
~4(Au ) < oflu+v]g + [l —vI[Z),

and therefore
4(Au,v)u| < a(flu+vlg + llu—vI7).

Replacing v by Bv, we get

4|(A(u),v)r| < 20(||ull /B + BIVIIZ)-

Minimizing the last expression in § > 0, for the optimal

B =llullu/IIvilu,
we obtain
[(Au,v)u| < ofullulvly, Vu,v € U.

Thus

1]l < o
On the other hand,

| (A, u0)g| < [ A]|ae

so that

M| < [|A]
and

Im| < [A]],
so that

a < [A].

The proof is complete.

At this point we start to develop the spectral theory. Define by P the set of all real
polynomials defined in R. Define

b, ZP—)‘,%(H),
by
@i (p(A)) =p(A),YpeP.

Thus we have

D1 (p1+p2) = p1(A) + p2(A),

D1 (p1- p2) = p1(A)p2(A),

D (op)=ap(A),VoeR, peP,

if p(1) >0, on [m,M], then p(A) > 6.

b s



3.6 The Spectral Theorem for Bounded Self-Adjoint Operators 79

We will prove (4):

Consider p € P. Denote the real roots of p(A) less or equal to m by o, 02, ..., 0
and denote those that are greater or equal to M by B, By, ..., ;. Finally denote all
the remaining roots, real or complex, by

Vit iy, Vet i

Observe that if y; = 0, then v; € (m,M). The assumption that p(1) > 0 on [m, M|
implies that any real root in (m,M) must be of even multiplicity.

Since complex roots must occur in conjugate pairs, we have the following repre-
sentation for p(1) :

k
p(2) =al T = ) TT(B~ 1%~ + D)

where a > 0. Observe that
A—oyl >0,

since
(Au,u)yg > m(u,u)g > 04(u,u)y,Yu € H,

and by analogy
Bil—A>6.

On the other hand, since A — v;I is self-adjoint, its square is positive, and hence
since the sum of positive operators is positive, we obtain

(A—wl)*> + 2> 6.

Therefore,
p(A) > 6.

The idea is now to extend the domain of @; to the set of upper semicontinuous
functions, and such set we will denote by C*P.

Observe that if f € C"P, there exists a sequence of continuous functions {g,}
such that

gn{ f, pointwise ,
that is,

gn(A) L f(A),YA €R.

Considering the Weierstrass Theorem, since g, € C([m,M]), we may obtain a se-
quence of polynomials {p,} such that
1

g}’l 2” —Pn < 5

oo
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where the norm || - || refers to [m, M]. Thus
pa(A) L f(A), on [m, M].

Therefore
P1(A) > pa(A) > p3(A) > ... > pa(A) > ...

Since p,(A) is self-adjoint for all n € N, we have
Pi(A)pk(A) = pe(A)p;(A),Vj.k € N.

Then the lim p,(A) (in norm) exists, and we denote
n—yoo

lim p,(A) = f(A).

n—yoo
Now recall the Dini’s theorem.

Theorem 3.6.3 (Dini). Let {g,} be a sequence of continuous functions defined on
a compact set K C R. Suppose g, — g point-wise and monotonically on K. Under
such assumptions the convergence in question is also uniform.

Now suppose that {p, } and {g,} are sequences of polynomial such that

an/fv andfhifa

we will show that
lim p,(A) = lim g,(A).
n—soo

n—yoo

First observe that being {p,} and {g,} sequences of continuous functions we have
that
hnie(A) = max{pn(A),qr(A)}, YA € [m, M]

is also continuous, Vn,k € N. Now fix n € N and define
hi(A) = max{pi(1),qn(1)}.

Observe that
he(A) L gn(R),Y2 € R,

so that by Dini’s theorem
hx — gn, uniformly on [m, M].
It follows that for each n € N there exists k,, € N such that if £k > &, then
(L) —gn(A) < %,V)L € [m,M].

Since
pr(A) < h(R),YA € [m,M],
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we obtain
1
Pe(A) = gn(A) <~ VA € [m, M].

By analogy, we may show that for each n € N there exists k, € N such that if k > k,,
then

qr(A) = pn(A) <

S| =

From above we obtain |
lim pi(A) < ga(A) + —.
k—yoo0 n

Since the self-adjoint g, (A) + 1/n commutes with the

lim py(A)
k—yoo
we obtain
li A) < 1i A !
Jim pi(A) < lim { ga(A) +—
< lim g, (A). (3.21)
n—soo

Similarly we may obtain

lim g,(A) < lim p, (A),
n—soo

k—>oo

so that
lim g, () = lim p,(A) = f(A).

Hence, we may extend @, : P — Z(H) to @, : C*? — £ (H), where C*?, as earlier
indicated, denotes the set of upper semicontinuous functions, where

Observe that @, has the following properties:

D (f1+ fo) = D2 f1) + P2 f2)s

Dy (f1- f2) = f1(A) f2(4),

D (of)=ad(f),VoeR, o >0,
if f1(A) > f2(1),VA € [m,M], then

fi(A) = f2(A).
The next step is to extend @, to @5 : C*” — £ (H), where
Cr={f-gl|fgeC}.

For h = f — g € C"" we define

el
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Now we will show that @; is well defined. Suppose that & € C* and

h=fi—girandh= f, — g».

Thus

fi—g1=fr—g,
that is

fit+g = fa+egl,

so that from the definition of @, we obtain

f1(A) +82(A) = f2(A) + g1 (A),

that is,
fi(A) —g1(A) = f2(A) — g2(A).

Therefore @5 is well defined. Finally observe that for oc < 0

a(f—g)=—oag—(-a)f,
where —ag € C*P and —af € C*P. Thus

D3(af) = af(A) = ads(f),Vo € R.

3.6.1 The Spectral Theorem

Consider the upper semicontinuous function

[ 1,ifA <p,

hu(A) = {0, if A > pu. (3.22)
Denote

E(u) = ®3(hy) = hu(A).
Observe that

hu(l)hu(l) = hu()t),V)L € R,

so that

[E(W)]* =E(u),Vu € R,
Therefore

{E(n) [neR}

is a family of orthogonal projections. Also observe that if v > u, we have
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hy (M) hy(A) = hu(R)hy(A) = hu(R),

so that
E()E(1) = E()E(V) = E(1),%v > .
If 4 < m, then hy () =0, on [m,M], so that

E(u)=0,if u <m.
Similarly, if 4 > M, then hy(A) =1, on [m,M], so that

E(u)=1,ifu>M.
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Next we show that the family {E ()} is strongly continuous from the right. First

we will establish a sequence of polynomials {p,} such that

Pn \l/h/.l

and
pu(A) > hu+%(l), on [m,M].

Observe that for any fixed n there exists a sequence of polynomials { p’]’} such that

P 4 hyy1)n, point-wise.
Consider the monotone sequence
gn(A) = min{p{(4) [r,s € {1,...,n}}.

Thus
gn(d) > hH%(?L),WL € R,

and we obtain

lim g,(4) > lim iy 1 (A) = hy(R).
On the other hand
gn(A) < pr(A),VA e R Vre{l,...,n},
so that
lim g,(4) < lim p;(4).
Therefore

lim g,(A) < lim lim p) (1)

n—seo r—yeoi—yo0

= hu(Q).

(3.23)
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Thus
1211 gn(A) =hu(R).

Observe that g, are not necessarily polynomials. To set a sequence of polynomials,
observe that we may obtain a sequence {p,} of polynomials such that

80(A) +1/n = pu(A)] < 57,92 € [, M, mEN,

so that
pn(A) 2 gn(A) +1/n—=1/2" > gn(A) Z hyy1/u(A).
Thus
pn(A) = E(u),
and

PalA) = hy 1(A) = E(u+1/n) > E(1).

Therefore we may write

E(u) = lim p,(A) > lim E(u+1/n) > E(1).

n—roo

Thus
lim E(u+1/n) = E(1).

From this we may easily obtain the strong continuity from the right.
For 4 < v we have

p(hy(2) =hu(R)) < A(hy(A) = hu(2))
v

(hv(A) —hyu(R)). (3.24)

IAIA

To verify this observe that if A < p or A > v, then all terms involved in the above
inequalities are zero. On the other hand if

U<A<v

then
hy(R) —hu(l) =1,

so that in any case (3.24) holds. From the monotonicity property we have

H(E(v) —E(u)) <A(E(v)—E(u))
< V(E(v)—E(u)). (3.25)

Now choose a,b € R such that

a<mandb > M.
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Suppose given € > 0. Choose a partition P, of [a,b], that is

P(): {a:/’Lo,ll,...,/’Ln :b},
such that

M— A <
pax {1 — M|} <&

Hence

A1 (E(A) — E(M—1)) < A(E(Ak) — E(Ae—1))
< M(E(M) — E(Mg-1))-
Summing up on k and recalling that
D EM) —E(Mh) =1,
k=1
we obtain
2 A1 ( E(M4-1)) <A
2 E(A-1))- (3.27)
Let 2 € [Ae—1,A]. Since (A — AQ) < (A4 — A1) from (3.26) we obtain
Pk E(l1)) < € Y (E(A) —E(A1))
k=1 k=1
el. (3.28)
By analogy
—el <A=Y W(E(M) —E(M-1)). (3.29)
k=1
Since

A—

-
M=
N

M(EM) —E(M-1))

is self-adjoint we obtain

m—éwwW%

Being € > 0 arbitrary, we may write

A:/ab?LdE(A)

E(A-1))|l <e.

(3.26)

85
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that is,
M
A= / " AAEQ).

3.7 The Spectral Decomposition of Unitary Transformations

Definition 3.7.1. Let H be a Hilbert space. A transformation U : H — H is said to
be unitary if
(Uu,Uv)g = (u,v)n,Yu,v € H.

Observe that in this case
U'u=U0U"=1,

so that
ul=u.

Theorem 3.7.2. Every unitary transformation U has a spectral decomposition

2 .
U= [ ¢€%dE(9),
o

where {E(9)} is a spectral family on [0,27]. Furthermore E(@) is continuous at 0
and it is the limit of polynomials in U and U~".

We present just a sketch of the proof. For the trigonometric polynomials
P(€i¢) = Z Ckeikq’,

consider the transformation

where ¢, € C,Vk € {—n,...,0,...,n}.
Observe that

Also if
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there exists a polynomial g such that
. o\
p(e?) =lq(e?)]* = g(e)q(e®),

so that

Therefore

(pW)vv)u = (qU) qU)v,v)u = (q(U)v,q(U)v)u > 0,Yv € H,

which means
p(U) > 0.

Define the function 4, (¢) by

(o) = 1724w <0 <2
w0 =10, if 2km+p < ¢ <2(k+ 1),
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(3.30)

for each k € {0,+1,+2,+3,...}. Define E(u) = hy(U). Observe that the family

{E(u)} are projections and in particular

E(0) =0,
EQ2m) =1
and if u < v, since
hu(9) < hv(9),
we have
E(u) <E(v).

Suppose given € > 0. Let P be a partition of [0,27], that is,

PO:{O:%vq)la"'a nzzn}

such that
max {|¢; —¢;1[} <e.
je{l,...,n}

For fixed ¢ € [0,2x], let j € {1,...,n} be such that

0 € [0j1,0].

[ =3 €% (hg,(9) = hg_,(9))] = [ — €]
k=1

<|¢p—9¢;l<e.

(3.31)
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Thus,
n
0< |el¢ - z el¢k(h¢k(¢) - h¢k71 (¢))|2 < 82
k=1

so that, for the corresponding operators

<[U- 2€l¢k E(¢—1))"[U — z€'¢k E(¢x-1))]
<l

and hence

U-— ze"i”‘ E(¢—1)|| <

Being € > 0 arbitrary, we may infer that

21
_ io
U—/O FOdE(9).

3.8 Unbounded Operators

3.8.1 Introduction

Let H be a Hilbert space. Let A : D(A) — H be an operator, where unless indi-
cated D(A) is a dense subset of H. We consider in this section the special case where
A is unbounded.

Definition 3.8.1. Given A : D — H we define the graph of A, denoted by I'(A), by
I'(A) = {(u,Au) | u € D}.
Definition 3.8.2. An operator A : D — H is said to be closed if I'(A) is closed.

Definition 3.8.3. Let A| : D; — H and A; : D, — H operators. We write A, D Ay if
D, D Dy and
Aru=Au,Yu € D;.

In this case we say that A, is an extension of A;.
Definition 3.8.4. A linear operator A : D — H is said to be closable if it has a linear

closed extension. The smallest closed extension of A is denoted by A and is called
the closure of A.

Proposition 3.8.5. Let A : D — H be a linear operator. If A is closable, then

r(A) =T(A).
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Proof. Suppose B is a closed extension of A. Then

T'(A) c T(B) = I'(B),

so that if (8,¢) € I'(A), then (8,¢) € I'(B), and hence ¢ = 0. Define the operator
Cby
D(C)={vy|(y,9) e I'(A) for some ¢},

and C(y) = ¢, where ¢ is the unique point such that (y,¢) € I'(A). Hence

rC)=r(A) cr(s),
so that
ACC.

However C C B and since B is an arbitrary closed extension of A we have
C=A

so that

r(C)=T(A)=T(A).
Definition 3.8.6. Let A : D — H be a linear operator where D is dense in H. Define
D(A*) by
D(A*) = {9 € H | (Ay.0)r = (w,n), Yy € D for some n € H}.

In this case we denote
A =n.

A* defined in this way is called the adjoint operator related to A.

Observe that by the Riesz lemma, ¢ € D(A*) if and only if there exists K > 0 such
that

Ay, 9)u| < K| yln, Yy € D.

Also note that if
A C Bthen B* C A*.

Finally, as D is dense in H, then
n=A%(¢)

is uniquely defined. However the domain of A* may not be dense, and in some
situations we may have D(A*) = {0}.
If D(A*) is dense, we define
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Theorem 3.8.7. Let A : D — H a linear operator, being D dense in H. Then

1. A* is closed,
2. A is closable if and only if D(A*) is dense and in this case

A :14**7
3. IfA is closable, then (A)* = A*.

Proof.
1. We define the operator V : H x H — H x H by

V(o) =(-v,9).
Let E C H x H be a subspace. Thus, if (¢1,y1) € V(EL), then there exists
(¢,w) € E* such that

V(o,y) = (_qu)) = (‘Plvwl)'
Hence
V= _¢l and q) =V,
so that for (y1,—@;) € E* and (w,w;) € E we have

((w1,=¢1), wi,w2))uxm =0 = (Yi,w)u + (= ¢1,w2)n-
Thus
(¢1,—w2)m + (y1,w1)a =0,
and therefore
(91, w1), (—w2,w1))axH =0,

that is,
(&1, w1),V(wi,w2))axm = 0,¥(wy,w2) €E.

This means that

(01, 1) € (V(E))™,
so that

V(EY) C (V(E))"

It is easily verified that the implications from which the last inclusion results are
in fact equivalences, so that

V(EY) = (V(E))"-.
Suppose (¢,m) € H x H. Thus, (¢,n) € V(I'(A))* if and only if

((‘Pvn)u (_AW7 "I/))HXH = O,VII/ eD,

which holds if and only if



3.9 Symmetric and Self-Adjoint Operators 91

(0,AY)y = (N, ¥)u,Vy €D,
that is, if and only if
(9,m) € T'(A7).

Thus
[(A%) = V(I (4))*".

Since (V(I"(A))* is closed, A* is closed.
2. Observe that I'(A) is a linear subset of H x H so that

V(I(A*)]* (3.32)

so that from the proof of item 1, if A* is densely defined, we get

r(A) =T[A")].

Conversely, suppose D(A*) is not dense. Thus there exists y € [D(A*)]* such
that y # 0. Let (¢,A*¢) € I'(A*). Hence

((er)a((p;A*q)))HxH = (qu))H =0,

so that
(w,6) € [(A)]*.

Therefore V[I['(A*)]* is not the graph of a linear operator. Since I'(A) =
V[['(A*)]* A is not closable.
3. Observe that if A is closable, then

3.9 Symmetric and Self-Adjoint Operators

Definition 3.9.1. Let A : D — H be a linear operator, where D is dense in H. A is
said to be symmetric if A C A*, that is, if D C D(A*) and

A*9 =Ap,V¢ €D.
Equivalently, A is symmetric if and only if

(AP, ¥)u = (¢,Ay)u, Y9,y € D.
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Definition 3.9.2. Let A : D — H be a linear operator. We say that A is self-adjoint if
A = A*, that is, if A is symmetric and D = D(A*).

Definition 3.9.3. Let A : D — H be a symmetric operator. We say that A is
essentially self-adjoint if its closure A is self-adjoint. If A is closed, a subset
E C D is said to be a core for A if A|g = A.

Theorem 3.9.4. Let A : D — H be a symmetric operator. Then the following state-
ments are equivalent:

1. A is self-adjoint,
2. Ais closed and N(A* +il) = {0},
3. R(A+il)=H.

Proof.

e | implies 2:
Suppose A is self-adjoint, let ¢ € D = D(A*) be such that

Ap =i

so that
A*p =i¢.
Observe that

—i(9,9)n = (i0,9)u

=i(0,9)n, (3.33)
so that (¢,¢)y =0, thatis, ¢ = 0. Thus
N(A—il) = {6}.

Similarly we prove that N(A +il) = {0}. Finally, since A* = A* = A, we get that
A =A*is closed.

e 2 implies 3:
Suppose 2 holds. Thus the equation

A*p = —if

has no nontrivial solution. We will prove that R(A —il) is dense in H. If y €
R(A —il)*, then
(A=iD¢,y)y =0,Y¢ € D,

so that y € D(A*) and
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A—-i'y=A"+ily=10,

and hence by above y = 6. Now we will prove that R(A — il) is closed and
conclude that
R(A—il)=H.

Given ¢ € D we have
I(A—iD)gll7 = A7 + 1817 (3.34)
Let Wy € H be a limit point of R(A — il ). Thus we may find {¢, } C D such that
(A—il)gn — o
From (3.34)
0 = Ouller < [[(A—il)(¢n — Om)l|r,Vm,n €N

so that {¢,,} is a Cauchy sequence, therefore converging to some ¢y € H. Also
from (3.34)

|Adn — Al < [(A—il)($n — )|, Ym,n € N

so that {A¢,} is a Cauchy sequence, hence also a converging one. Since A is
closed, we get ¢o € D and

(A—il)go = wo.
Therefore R(A — i) is closed, so that

R(A—il)=H.

Similarly )
R(A+il)=H.

e 3implies 1: Let ¢ € D(A*). Since R(A —il) = H, there is an 1] € D such that
(A—ilyn = (A"~ il)g,
and since D C D(A*) we obtain ¢ — 1 € D(A*) and
(A" —i(6—n)=e.

Since R(A +il) = H we have N(A* —iI) = {0}. Therefore ¢ = 1, so that
D(A*) = D. The proof is complete.
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3.9.1 The Spectral Theorem Using Cayley Transform

In this section H is a complex Hilbert space. We suppose A is defined on a dense
subspace of H, being A self-adjoint but possibly unbounded. We have shown that
(A+1i) and (A —i) are onto H and it is possible to prove that

U=A-i)A+i)",
exists on all H and it is unitary. Furthermore, on the domain of A,
A=i(l+U)I-U)"".

The operator U is called the Cayley transform of A. We have already proven that

2r
— io
U= /0 ¢dF(9),

where {F(¢)} is a monotone family of orthogonal projections, strongly continuous
from the right and we may consider it such that

_[0,if¢ <0,
Since F(¢) =0, forall ¢ <0 and
F(0)=F(0")

we obtain
F(0")=0=F(07),

that is, F(¢) is continuous at ¢ = 0. We claim that F' is continuous at ¢ = 27.
Observe that F(27) = F(2n") so that we need only to show that

F(2n™)=F(2n).

Suppose
F(2m)—F(2n™) # 6.

Thus, there exists some u,v € H such that
(F2r)—FQ2(n7))u=v#0.

Therefore

so that

[0, if ¢ <2x,
Flo)y = {v, if g > 27. (3.36)
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Observe that

and
2
*_ = 7“1)—
U —1 /0 (e 1)dF(¢).

Let {¢,} be a partition of [0,27]. From the monotonicity of [0,27] and pairwise
orthogonality of
{F(9n) = F(9n-1)}
we can show that (this is not proved in details here)
2 . .
U =DW-D= [ =D~ 1dF(9),

0

so that, given z € H, we have

2
(U =D(U—-1z,2)u = /0 e —11%d|[F (9)z]%,
thus, for v defined above

I = 1pl* = (U =Dy, (U =1)v)u
— (U=D"U =DV

o 2 2
= [1e® ~1PalF (o))

2.
= [ 1e* = 1PdIF@
=0. (3.37)

The last two equalities result from ™ — 1 = 0 and d||F(¢)v|| = 6 on [0,27). Since
v # 0 the last equation implies that 1 € Po(U), which contradicts the existence of

(1-u)..

Thus, F' is continuous at ¢ = 27.
Now choose a sequence of real numbers {¢,} such that ¢, € (0,27), n =

0,£1,4£2,4£3,... such that
—cot (%) =n.

Now define T, = F(¢,) — F(¢,—1). Since U commutes with F(¢), U commutes
with 7. Since

A=i(I+U)I-U)"",
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this implies that the range of T, is invariant under U and A. Observe that

D Tn = Y (F(9n) = F(9n-1))

' = ’;im F(¢)—lim F(9)

O—2m ¢—0
=]-0=1I. (3.38)
Hence
N\R(T,) =H.
Also, for u € H, we have that
0,if ¢ <Py,
F()Thu= q (F(¢) —F(@n—1))u, if g1 < ¢ < @, (3.39)
F(¢n) = F(@n—1))u, if ¢ > ¢y,
so that
2n .
(I—U)Tu = / (1—¢®)dF (¢)T,u
Jo
- /% (1—€®)dF(¢)u. (3.40)
¢n71
Therefore
On .
/q) (1—¢)'dF(¢)(I - U)Tu
n—1
= [ a—eyarie) [* - e)ar oy
¢n71 ‘Pn—l
_ [ (1— €)1 (1 = ¢®)dF (¢)u
¢n71
On
= dF ()u
¢n71
= " dF (¢)T,u = Tyu. (3.41)
0
Hence

(I~ U)lrery] ' = /;ﬂ (1—€)"'dF ().

n—1

From this, from above, and as

A=il+U)I-U)"!
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we obtain
n , on 1
AT u = / i(14e9)(1 =€) 'dF (¢)u.
. ‘pnfl
Therefore defining
¢
A=—cot| =
co (2 ,
and
E(A)=F(=2cot ' 1),
we get
i(1+€9)(1—e?)1 = —cot (%) =2
Hence,
n
AT u = AdE(A)u
Jn—1

Finally, from

we can obtain

Au=A( Y, Tu)

n=—oo

= i AT,u

n=-—oco

oo

" AdE()u. (3.42)

n=—oco/n—1

Being the convergence in question in norm, we may write
Au = / AdE(A)u.
Since u € H is arbitrary, we may denote

A= /w AdE(A). (3.43)
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