
Chapter 12
Duality Applied to Elasticity

12.1 Introduction

The first part of the present work develops a new duality principle applicable to
nonlinear elasticity. The proof of existence of solutions for the model in question
has been obtained in Ciarlet [21]. In earlier results (see [65] for details) the concept
of complementary energy is equivalently developed under the hypothesis of positive
definiteness of the stress tensor at a critical point. In more recent works, Gao [33,
34, 36] applied his triality theory to similar models obtaining duality principles for
more general situations, including the case of negative definite optimal stress tensor.

We emphasize our main objective is to establish a new and different duality
principle which allows the local optimal stress tensor to not be either positive or
negative definite. Such a result is a kind of extension of a more basic one obtained
in Toland [67]. Despite the fact we do not apply it directly, we follow a similar idea.
The optimality conditions are also new. We highlight the basic tools on convex anal-
ysis here used may be found in [25, 54, 67] for example. For related results about
the plate model presented in Ciarlet [22], see Botelho [11, 13].

In a second step, we present other two duality principles which qualitatively agree
with the triality theory proposed by Gao (see again [33, 34], for details).

However, our proofs again are obtained through more traditional tools of convex
analysis. Finally, in the last section, we provide a numerical example in which the
optimal stress field is neither positive nor negative definite.

At this point we start to describe the primal formulation.
Consider Ω ⊂ R

3 an open, bounded, connected set, which represents the
reference volume of an elastic solid under the loads f ∈ L2(Ω ;R3) and the boundary
loads f̂ ∈ L2(Γ ;R3), where Γ denotes the boundary of Ω . The field of displace-
ments resulting from the actions of f and f̂ is denoted by u ≡ (u1,u2,u3) ∈ U ,
where u1,u2, and u3 denote the displacements relating the directions x,y, and z,
respectively, in the Cartesian system (x,y,z).

Here U is defined by

U = {u = (u1,u2,u3) ∈ W 1,4(Ω ;R3) | u = (0,0,0) ≡ θ on Γ0} (12.1)
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322 12 Duality Applied to Elasticity

and Γ = Γ0 ∪Γ1, Γ0 ∩Γ1 = /0 (for details about the Sobolev space U see [2]). We
assume |Γ0|> 0 where |Γ0| denotes the Lebesgue measure of Γ0.

The stress tensor is denoted by {σi j}, where

σi j = Hi jkl

(
1
2
(uk,l +ul,k +um,kum,l)

)
, (12.2)

{Hi jkl}= {λδi jδkl +μ(δikδ jl +δilδ jk)},
{δi j} is the Kronecker delta and λ ,μ > 0 are the Lamé constants (we assume they
are such that {Hi jkl} is a symmetric constant positive definite fourth-order tensor).

The boundary value form of the nonlinear elasticity model is given by⎧⎨
⎩

σi j, j +(σm jui,m), j + fi = 0, in Ω ,
u = θ , on Γ0,

σi jn j +σm jui,mn j = f̂i, on Γ1,
(12.3)

where n denotes the outward normal to the surface Γ .
The corresponding primal variational formulation is represented by J : U → R,

where

J(u) =
1
2

∫
Ω

Hi jkl

(
1
2
(ui, j +u j,i +um,ium, j)

)(
1
2
(uk,l +ul,k +um,kum,l)

)
dx

−〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ (12.4)

where

〈u, f 〉L2(Ω ;R3) =
∫

Ω
fiui dx.

Remark 12.1.1. Derivatives must be always understood in the distributional sense,
whereas boundary conditions are in the sense of traces. Moreover, from now on by
a regular boundary Γ of Ω , we mean regularity enough so that the standard Gauss–
Green formulas of integrations by parts and the well-known Sobolev imbedding and
trace theorems hold. Finally, we denote by θ the zero vector in appropriate function
spaces, the standard norm for L2(Ω) by ‖ · ‖2, and L2(Ω ;R3×3) simply by L2.

12.2 The Main Duality Principle

Now we prove the main result.

Theorem 12.2.1. Assume the statements of last section. In particular, let Ω ⊂R
3 be

an open, bounded, connected set with a regular boundary denoted by Γ = Γ0 ∪Γ1,
where Γ0∩Γ1 = /0 and |Γ0|> 0. Consider the functional (G◦Λ) :U →R expressed by

(G◦Λ)(u)

=
1
2

∫
Ω

Hi jkl

(
ui, j +u j,i

2
+

um,ium, j

2

)(
uk,l +ul,k

2
+

um,kum,l

2

)
dx,
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where Λ : U → Y ×Y is given by

Λu = {Λ1u,Λ2u},

Λ1u =

{
ui, j +u j,i

2

}

and
Λ2u = {um,i}.

Here
U = {u ∈W 1,4(Ω ;R3) | u = (u1,u2,u3) = θ on Γ0}.

Define (F ◦Λ2) : U → R, (GK ◦Λ) : U → R, and (G1 ◦Λ2) : U → R by

(F ◦Λ2)(u) =
K
2
〈um,i,um,i〉L2(Ω),

GK(Λu) = GK(Λ1u,Λ2u) = G(Λu)+
K
4
〈um,i,um,i〉L2(Ω),

and

(G1 ◦Λ2)(u) =
K
4
〈um,i,um,i〉L2(Ω),

respectively.
Also define

C = {u ∈U | G∗∗
K (Λu) = GK(Λu)},

where K > 0 is an appropriate constant to be specified.
For f ∈ L2(Ω ;R3), f̂ ∈ L2(Γ ;R3), let J : U → R be expressed by

J(u) = G(Λu)−〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ . (12.5)

Under such hypotheses, we have

inf
u∈C1

{J(u)}

≥ sup
(σ̃ ,σ ,v)∈Ỹ

{
inf

z∗∈Y ∗
{

F∗(z∗)− G̃∗
K(σ ,z∗,v)− G̃∗

1(σ̃ ,σ ,z∗,v)
}}

,

where Ỹ = A∗ ×Y ∗ × Ŷ ∗, Y = Y ∗ = L2(Ω ;R3×3)≡ L2,

Ŷ ∗ = {v ∈ Y ∗ such that W ∗(z∗) is positive definite in Ω}, (12.6)

and

W ∗(z∗) =
z∗miz

∗
mi

K
−Hi jklz

∗
i jz

∗
kl −

3

∑
m,i=1

(z∗i jvm j)
2

K/2
. (12.7)
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Here C1 =C2 ∩C, where

C2 = {u ∈U | {ui, j} ∈ Ŷ ∗}.

Furthermore,

A∗ = {σ̃ ∈ Y ∗ | σ̃i j, j + fi = 0 in Ω and σ̃i jn j = f̂i on Γ1}.

Also

F∗(z∗) = sup
v2∈Y

{〈v2,z
∗〉Y −F(v2)}

=
1

2K
〈z∗mi,z

∗
mi〉L2(Ω), (12.8)

where we recall that z∗i j = z∗ji. Through the relations

Qmi = (σi j + z∗i j)vm j +(K/2)vmi,

we define

G̃∗
K(σ ,z∗,v) = G∗

K(σ + z∗,Q)

= sup
(v1,v2)∈Y×Y

{〈v1,σ + z∗〉Y + 〈v2,Q〉Y −GK(v1,v2)}, (12.9)

so that in particular,

G̃∗
K(σ ,z∗,v) = G∗

K(σ + z∗,Q)

=
1
2

∫
Ω

Hi jkl(σi j + z∗i j)(σkl + z∗kl) dx

+
1
2

∫
Ω
(σi j + z∗i j)vmivm j dx+

K
4
〈vmi,vmi〉L2(Ω)

if (σ̃ ,σ ,v,z∗) ∈ B∗. We emphasize to denote

B∗ = {(σ̃ ,σ ,v,z∗) ∈ [Y ∗]4 | σK(σ ,z∗) is positive definite in Ω},

σK(σ ,z∗) =

⎧⎨
⎩

σ11 + z∗11 +K/2 σ12 + z∗12 σ13 + z∗13
σ21 + z∗21 σ22 + z∗22 +K/2 σ23 + z∗23
σ31 + z∗31 σ32 + z∗32 σ33 + z∗33 +K/2

⎫⎬
⎭ , (12.10)

and
{Hi jkl}= {Hi jkl}−1.
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Moreover,

G̃∗
1(σ̃ ,σ ,z∗,v) = G∗

1(σ̃ ,−σ ,−Q)

= sup
v2∈Y

{〈v2, σ̃ −σ −Q〉Y −G1(v2)}

=
1
K

3

∑
m,i=1

‖σ̃mi −σmi −Qmi‖2
2

=
1
K

3

∑
m,i=1

‖σ̃mi −σmi − (σi j + z∗i j)vm j − (K/2)vmi‖2
2.

Finally, if there exists a point (u0, σ̃0,σ0,v0,z∗0) ∈C1 × ((Ỹ ×Y ∗)∩B∗), such that

δ
{
〈u0i ,−σ̃0i j, j − fi〉L2(Ω)−

∫
Γ1

u0i( f̂i − σ̃0i j n j) dΓ

+F∗(z∗0)− G̃∗
K(σ0,z

∗
0,v0)− G̃∗

1(σ̃0,σ0,z
∗
0,v0)

}
= θ , (12.11)

we have

J(u0) = min
u∈C1

{J(u)}

= sup
(σ̃ ,σ ,v)∈Ỹ

{
inf

z∗∈Y ∗
{

F∗(z∗)− G̃∗
K(σ ,z∗,v)− G̃∗

1(σ̃ ,σ ,z∗,v)
}}

= F∗(z∗0)− G̃∗
K(σ0,z

∗
0,v0)− G̃∗

1(σ̃0,σ0,z
∗
0,v0). (12.12)

Proof. We start by proving that G∗
K(σ + z∗,Q) = G∗

KL
(σ + z∗,Q) if σK(σ ,z∗) is

positive definite in Ω , where

G∗
KL
(σ ,Q) =

∫
Ω

g∗KL
(σ ,Q) dx

is the Legendre transform of GK : Y ×Y → R. To simplify the notation we denote
(σ ,Q) = y∗ = (y∗1,y

∗
2). We first formally calculate g∗KL

(y∗), the Legendre transform
of gK(y), where

gK(y) = Hi jkl

(
y1i j +

1
2

y2miy2m j

)(
y1kl +

1
2

y2mk y2ml

)

+
K
4

y2miy2mi . (12.13)

We recall that

g∗KL
(y∗) = 〈y,y∗〉

R18 −gK(y) (12.14)
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where y ∈ R
18 is the solution of equation

y∗ =
∂gK(y)

∂y
. (12.15)

Thus

y∗1i j = σi j = Hi jkl

(
y1kl +

1
2

y2mk y2ml

)
(12.16)

and

y∗2mi = Qmi = Hi jkl

(
y1kl +

1
2

y2ok y2ol

)
y2m j +(K/2)y2mi (12.17)

so that

Qmi = σi jy2m j +(K/2)y2mi . (12.18)

Inverting these last equations, we have

y2mi = σK
i jQm j (12.19)

where {σK
i j}= σ−1

K (σ),

σK(σ) =

⎧⎨
⎩

σ11 +K/2 σ12 σ13

σ21 σ22 +K/2 σ23

σ31 σ32 σ33 +K/2

⎫⎬
⎭ (12.20)

and also

y1i j = Hi jklσkl − 1
2

y2miy2m j . (12.21)

Finally

g∗KL
(σ ,Q) =

1
2

Hi jklσi jσkl +
1
2

σ̄K
i j QmiQm j. (12.22)

Now we will prove that g∗KL
(y∗) = g∗K(y∗) if σK(y∗1) = σK(σ) is positive definite.

First observe that

g∗K(y
∗) = sup

y∈R18
{〈y1,σ〉

R9 + 〈y2,Q〉
R9 −gK(y)}

= sup
y∈R18

{
〈y1,σ〉

R9 + 〈y2,Q〉
R9

−1
2

Hi jkl

(
y1i j +

1
4

y2miy2m j

)(
y1kl +

1
2

y2mk y2ml

)

−K
4

y2miy2mi

}
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= sup
(ȳ1,y2)∈R9×R9

{
〈ȳ1i j − 1

2
y2miy2m j ,σi j〉R+ 〈y2,Q〉

R9

−1
2

Hi jkl [ȳ1i j ][ȳ1kl ]− K
4

y2miy2mi

}
.

The result follows just observing that

sup
ȳ1∈R9

{
〈ȳ1i j ,σi j〉R− 1

2
Hi jkl [ȳ1i j ][ȳ1kl ]

}
=

1
2

Hi jklσi jσkl (12.23)

and

sup
y2∈R9

{
〈−1

2
y2miy2m j ,σi j〉R+ 〈y2,Q〉

R9 − K
4

y2miy2mi

}

=
1
2

σK
i jQmiQm j (12.24)

if σK(y∗1) = σK(σ) is positive definite.
Now observe that using the relation

Qmi = (σi j + z∗i j)vm j +(K/2)vmi,

we have

G̃∗
K(σ ,z∗,v) = G∗

K(σ + z∗,Q)

=

∫
Ω

g∗KL
(σ + z∗,Q) dx, (12.25)

if σK(σ + z∗) is positive definite.
Also, considering the concerned symmetries, we may write

G̃∗
K(σ ,z∗,v)+ G̃∗

1(σ̃ ,σ ,z∗,v) = G∗
K(σ + z∗,Q)+G∗

1(σ̃ ,−σ ,−Q)

≥ 〈Λ1u,σ〉L2 + 〈Λ2u,z∗+Q〉L2

+〈Λ1u, σ̃ −σ〉L2 −〈Λ2u,Q〉L2

−G∗∗
K (Λu)−G1(Λ2u), (12.26)

∀u ∈U, z∗ ∈ Y ∗, (σ̃ ,σ ,v) ∈ Ỹ , so that

G̃∗
K(σ ,z∗,v)+ G̃∗

1(σ̃ ,σ ,z∗,v)
≥ 〈Λ2u,z∗〉L2 + 〈Λ1u, σ̃〉L2

−GK(Λu)−G1(Λ2u)

= 〈Λ2u,z∗〉L2 + 〈u, f 〉L2(Ω ;R3)

+
∫

Γ1

f̂iui dΓ −GK(Λu)−G1(Λ2u), (12.27)
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∀u ∈C1, z∗ ∈ Y ∗, (σ̃ ,σ ,v) ∈ Ỹ . Hence

−F∗(z∗)+ G̃∗
K(σ ,z∗,v)+ G̃∗

1(σ̃ ,σ ,z∗,v)
≥−F∗(z∗)+ 〈Λ2u,z∗〉L2 + 〈u, f 〉L2(Ω ;R3)

+
∫

Γ1

f̂iui dΓ −GK(Λu)−G1(Λ2u), (12.28)

∀u ∈C1, z∗ ∈ Y ∗, (σ̃ ,σ ,v) ∈ Ỹ , and thus

sup
z∗∈Y ∗

{−F∗(z∗)+ G̃∗
K(σ ,z∗,v)+ G̃∗

1(σ̃ ,σ ,z∗,v)}

≥ sup
z∗∈Y ∗

{−F∗(z∗)+ 〈Λ2u,z∗〉L2 + 〈u, f 〉L2(Ω ;R3)

+
∫

Γ1

f̂iui dΓ −GK(Λu)−G1(Λ2u)}, (12.29)

∀u ∈C1,(σ̃ ,σ ,v) ∈ Ỹ .
Therefore,

sup
z∗∈Y ∗

{−F∗(z∗)+ G̃∗
K(σ ,z∗,v)+ G̃∗

1(σ̃ ,σ ,z∗,v)}

≥ F(Λ2u)+ 〈u, f 〉L2(Ω ;R3) +
∫

Γ1

f̂iui dΓ

−GK(Λu)−G1(Λ2u), (12.30)

∀u ∈C1,(σ̃ ,σ ,v) ∈ Ỹ , that is,

sup
z∗∈Y ∗

{−F∗(z∗)+ G̃∗
K(σ ,z∗,v)+ G̃∗

1(σ̃ ,σ ,z∗,v)}

≥ −J(u), (12.31)

∀u ∈C1,(σ̃ ,σ ,v) ∈ Ỹ . Finally,

inf
u∈C1

{J(u)} (12.32)

≥ sup
(σ̃ ,σ ,v)∈Ỹ

{
inf

z∗∈Y ∗
{

F∗(z∗)− G̃∗
K(σ ,z∗,v)− G̃∗

1(σ̃ ,σ ,z∗,v)
}}

.

Now suppose there exists a point (u0, σ̃0,σ0,z∗0,v0)∈C1×((Ỹ ×Y ∗)∩B∗), such that

δ
{
〈u0i ,−σ̃0i j, j − fi〉L2(Ω)−

∫
Γ1

u0i( f̂i − σ̃0i j n j) dΓ

+F∗(z∗0)− G̃∗
K(σ0,z

∗
0,v0)− G̃∗

1(σ̃0,σ0,z
∗
0,v0)

}
= θ , (12.33)
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that is,

δ

{
〈u0i ,−σ̃0i j, j − fi〉L2(Ω)−

∫
Γ1

u0i( f̂i − σ̃0i j n j) dΓ

+F∗(z∗0)−
1
2

∫
Ω

H̄i jkl(σ0i j + z∗0i j)(σ0kl + z∗0kl ) dx

−1
2

∫
Ω
(σ0i j + z∗0i j)v0miv0m j dx− K

4
〈v0mi ,v0mi〉L2(Ω)

−
3

∑
m,i=1

1
K
‖σ̃0mi −σ0mi − (σ0i j + z∗0i j)v0m j −K/2v0mi‖2

2

}
= θ .

Observe that the variation in σ̃ gives us

σ̃0mi −σ0mi − (σ0i j + z∗0i j)v0m j − (K/2)v0mi = (K/2)u0m,i in Ω . (12.34)

From this and recalling that σ̃i j = σ̃ ji, so that we may use the replacement

σ̃i j =
σ̃i j + σ̃ ji

2
= σ̃ ji

(observe that a similar remark is valid for σ0i j + z∗0i j ), the variation in σ gives us

−H̄i jkl(σ0kl + z∗0kl )− v0miv0m j/2

+
u0i, j +u0 j,i

2
+u0m,i v0m j = 0, (12.35)

in Ω . From (12.34) and the variation in v we get

−(σ0i j + z∗0i j)vm j − (K/2)v0mi

+(σ0i j + z∗0i j
)u0m, j +(K/2)u0m,i = 0, (12.36)

so that
{v0i j}= {u0i, j}, in Ω . (12.37)

From this and (12.35) we get

σ0i j + z∗0i j = Hi jkl

(
u0k,l +u0l,k

2
+

u0m,k u0m,l

2

)
. (12.38)

Through such relations the variation in z∗ gives us

z∗0i j =
K
2
(u0i, j +u0 j,i) in Ω . (12.39)

Finally, from the variation in u, we get

σ̃0i j, j + fi = 0, in Ω , (12.40)

u0 = θ on Γ0,
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and
σ̃0i j n j = f̂i on Γ1,

where from (12.34), (12.37), and (12.39), we have

σ̃0i j = Hi jkl

(
u0k,l +u0l,k

2
+

u0m,k u0m,l

2

)

+Hm jkl

(
u0k,l +u0l,k

2
+

u0p,k u0p,l

2

)
u0i,m . (12.41)

Replacing such results in the dual formulation we obtain

J(u0) = F∗(z∗0)− G̃∗
K(σ0,z

∗
0,v0)− G̃∗

1(σ̃0,σ0,z
∗
0,v0). (12.42)

From the hypothesis indicated in (12.6), the extremal relation through which z∗0
is obtained is in fact a global one.

From this, (12.2) and (12.42), the proof is complete.

Remark 12.2.2. About the last theorem, there is no duality gap between the primal
and dual problems, if K is big enough so that for the optimal dual point, σK(σ0,z∗0)
is positive definite in Ω , where

σK(σ ,z∗) =

⎧⎨
⎩

σ11 + z∗11 +K/2 σ12 + z∗12 σ13 + z∗13
σ21 + z∗21 σ22 + z∗22 +K/2 σ23 + z∗23
σ31 + z∗31 σ32 + z∗32 σ33 + z∗33 +K/2

⎫⎬
⎭ , (12.43)

and

σ0i j + z∗0i j = Hi jkl

(
u0k,l +u0l,k

2
+

u0m,k u0m,l

2

)
, (12.44)

and, at the same time, K is small enough so that for the fixed point {v0m j}= {u0m, j}
the quadratic form (in z∗) W ∗(z∗) is also positive definite in Ω , where

W ∗(z∗) =
z∗miz

∗
mi

K
− H̄i jklz

∗
i jz

∗
kl −

3

∑
m,i=1

(z∗i jv0m j)2

K/2
. (12.45)

For K ≈ O(min{H1111/2,H2222/2,H1212/2}) there is a large class of external
loads for which such a K satisfies the conditions above, including to some extent the
large deformation context.

Finally, we have not formally proven, but one may obtain from the relation be-
tween the primal and dual variables that

C = {u ∈U | G∗∗
K (Λu) = GK(Λu)}

= {u ∈U | σK(σ(u),θ) is positive definite in Ω}, (12.46)
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where as above indicated

σi j(u) = Hi jkl

(
1
2
(uk,l +ul,k +um,kum,l)

)
. (12.47)

12.3 Other Duality Principles

At this point we present another main result, which is summarized by the follow-
ing theorem.

Theorem 12.3.1. Let Ω ⊂ R
3 be an open, bounded, connected set with a regu-

lar boundary denoted by Γ = Γ0 ∪Γ1, where Γ0 ∩Γ1 = /0. Consider the functional
(G◦Λ) : U → R expressed by

(G◦Λ)(u)

=
1
2

∫
Ω

Hi jkl

(
ui, j +u j,i

2
+

um,ium, j

2

)(
uk,l +ul,k

2
+

um,kum,l

2

)
dx,

where

U = {u = (u1,u2,u3) ∈W 1,4(Ω ;R3) | u = (0,0,0)≡ θ on Γ0}, (12.48)

and Λ : U → Y = Y ∗ = L2(Ω ;R3×3)≡ L2 is given by

Λu = {Λi j(u)}=
{

1
2
(ui, j +u j,i +um,ium, j)

}
.

Define J : U → R by

J(u) = G(Λu)−〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ . (12.49)

Also define
JK : U ×Y → R

by

JK(u, p) = G(Λu+ p)+K〈p, p〉L2 −〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ − K
2
〈p, p〉L2 ,

and assume that K > 0 is sufficiently big so that JK(u, p) is bounded below.
Also define

J∗K(σ ,u) = Ff (σ)−G∗(σ)+K

∥∥∥∥Λu− ∂G∗(σ)

∂σ

∥∥∥∥
2

L2
+

1
2K

〈σ ,σ〉L2 , (12.50)
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where

G∗(σ) = sup
v∈Y

{〈v,σ〉L2 −G(v)}

=
1
2

∫
Ω

Hi jklσi jσkl dx, (12.51)

{Hi jkl}= {Hi jkl}−1

and

Ff (σ) = sup
u∈U

{
〈Λu,σ〉L2 −〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}
.

Under such assumptions, we have

inf
(u,p)∈U

{JK(u, p)} ≤ inf
(σ ,u)∈Y∗×U

{J∗K(σ ,u)}. (12.52)

Finally, assume that Γ0, f ∈ L2(Ω ;R3) and f̂ ∈ L2(Γ ;R3) are such that a local
minimum of JK over V0 = Br(u0)×Br(p0) is attained at some (u0, p0) ∈U ×Y such
that

σ0 =
∂G(Λu0 + p0)

∂v
(12.53)

is negative definite.
Here

Br(u0) = {u ∈U | ‖u−u0‖U < r},
and

Br(p0) = {p ∈ Y | ‖p− p0‖Y < r},
for some appropriate r > 0.

Under such hypotheses, there exists a set Ṽ0 ⊂ Y ∗ ×U, such that

JK(u0, p0) = inf
(u,p)∈V0

{JK(u, p)}
≤ inf

(σ ,u)∈Ṽ0

{J∗K(σ ,u)}

≤ J∗K(σ0,u0)

= JK(u0, p0)

≈ J(u0)+O(1/K). (12.54)

Proof. Define
G1(u, p) = G(Λu+ p)+K〈p, p〉L2 ,

and

G2(u, p) = 〈u, f 〉L2(Ω ;R3) +
∫

Γ1

f̂iui dΓ +
K
2
〈p, p〉L2 .



12.3 Other Duality Principles 333

Observe that αK = inf(u,p)∈U×Y{JK(u, p)} ∈ R is such that

JK(u, p) = G1(u, p)−G2(u, p)≥ αK ,∀u ∈U, p ∈ Y.

Thus,
−G2(u, p)≥−G1(u, p)+αK ,∀u ∈U, p ∈ Y,

so that

〈Λu+ p,σ〉L2 −G2(u, p)≥ 〈Λu+ p,σ〉L2 −G1(u, p)+αK ,∀u ∈U, p ∈ Y.

Hence,

sup
(u,p)∈U×Y

{〈Λu+ p,σ〉L2 −G2(u, p)}≥〈Λu+p,σ〉L2 −G1(u, p)+αK ,∀u∈U, p∈Y.

(12.55)
In particular for u, p such that

σ =
∂G(Λu+ p)

∂v
,

we get

p+Λu =
∂G∗(σ)

∂σ
,

that is,

p =
∂G∗(σ)

∂σ
−Λu,

and
G∗(σ) = 〈Λu+ p,σ〉L2 −G(Λu+ p).

Hence

〈Λu+ p,σ〉L2 −G1(u, p) = G∗(σ)−K

∥∥∥∥∂G∗(σ)

∂σ
−Λu

∥∥∥∥
2

L2
.

On the other hand,

sup
(u,p)∈U×Y

{〈Λu+ p,σ〉L2 −G2(u, p)}= Ff (σ)+
1

2K
〈σ ,σ〉L2 .

Replacing such results in (12.55), we get

Ff (σ)−G∗(σ)+K

∥∥∥∥∂G∗(σ)

∂σ
−Λu

∥∥∥∥
2

L2
+

1
2K

〈σ ,σ〉L2 ≥ αK ,

∀σ ∈ Y ∗,u ∈U.
Thus,

αK = inf
(u,p)∈U×Y

{JK(u, p)} ≤ inf
(σ ,u)∈Y ∗×U

{J∗K(σ ,u)}. (12.56)
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Now, let (u0, p0) ∈U ×Y be such that

J(u0, p0) = min
(u,p)∈V0

{JK(u, p)}.

Defining

σ0 =
∂G(Λu0 + p0)

∂v
, (12.57)

since for the extremal point, we have

δu

{
G(Λu+ p0)−〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}
|u=u0= θ ,

from this and (12.57), we also have

δu

{
〈Λu,σ0〉L2 −〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}
|u=u0= θ ,

and therefore, since σ0 is negative definite, we obtain

Ff (σ0) = 〈Λu0,σ0〉L2 −〈u0, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iu0i dΓ . (12.58)

From (12.57), we get

G∗(σ0) = 〈Λu0 + p0,σ〉L2 −G(Λu0 + p0), (12.59)

so that, from (12.58) and (12.59), we obtain

Ff (σ0)−G∗(σ0)+K

∥∥∥∥∂G∗(σ0)

∂σ
−Λu0

∥∥∥∥
2

L2
+

1
2K

〈σ0,σ0〉L2

= G(Λu0 + p0)+
K
2
〈p0, p0〉L2 −〈u0, f 〉L2(Ω ;R3)

−
∫

Γ1

f̂iu0i dΓ , (12.60)

that is,

J∗K(σ0,u0) = JK(u0, p0). (12.61)

Observe that, from the hypotheses,

JK(u, p)≥ JK(u0, p0),∀(u, p) ∈V0.

At this point we develop a reasoning similarly to the lines above but now for the
specific case of a neighborhood around the local optimal point. We repeat some
analogous details for the sake of clarity.
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From above,
G1(u, p) = G(Λu+ p)+K〈p, p〉L2 ,

and

G2(u, p) = 〈u, f 〉L2(Ω ;R3) +
∫

Γ1

f̂iui dΓ +
K
2
〈p, p〉L2 .

Observe that α = inf(u,p)∈V0
{JK(u, p)} ∈ R is such that

JK(u, p) = G1(u, p)−G2(u, p)≥ α,∀(u, p) ∈V0.

Thus,
−G2(u, p)≥−G1(u, p)+α,∀(u, p) ∈V0,

so that

〈Λu+ p,σ〉L2 −G2(u, p)≥ 〈Λu+ p,σ〉L2 −G1(u, p)+α,∀(u, p) ∈V0.

Hence,

sup
(u,p)∈U

{〈Λu+ p,σ〉L2 −G2(u, p)}

≥ sup
(u,p)∈V0

{〈Λu+ p,σ〉L2 −G2(u, p)}

≥ 〈Λu+ p,σ〉L2 −G1(u, p)+α,∀(u, p) ∈V0. (12.62)

In particular, if (σ ,u) ∈ Ṽ0, where such a set is defined by the points (σ ,u) such
that u ∈ Br(u0) and for the σ in question there exists p ∈ Br(p0) such that

σ =
∂G(Λu+ p)

∂v
,

that is,

p+Λu =
∂G∗(σ)

∂σ
,

we get

p =
∂G∗(σ)

∂σ
−Λu,

and
G∗(σ) = 〈Λu+ p,σ〉L2 −G(Λu+ p).

Hence

〈Λu+ p,σ〉L2 −G1(u, p) = G∗(σ)−K

∥∥∥∥∂G∗(σ)

∂σ
−Λu

∥∥∥∥
2

L2
. (12.63)
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On the other hand

sup
(u,p)∈V0

{〈Λu+ p,σ〉L2 −G2(u, p)}

≤ sup
(u,p)∈U×Y

{〈Λu+ p,σ〉L2 −G2(u, p)}

= Ff (σ)+
1

2K
〈σ ,σ〉L2 . (12.64)

Observe that σ0 ∈ Ṽ0. We do not provide details here, but from the generalized
inverse function theorem, also an appropriate neighborhood of σ0 belongs to Ṽ0.

Replacing the last relations (12.63) and (12.64) into (12.62), we get

Ff (σ)−G∗(σ)+K

∥∥∥∥∂G∗(σ)

∂σ
−Λu

∥∥∥∥
2

L2

+
1

2K
〈σ ,σ〉L2 ≥ α, (12.65)

∀(σ ,u) ∈ Ṽ0.
Thus,

α = inf
(u,p)∈V0

{JK(u, p)} ≤ inf
(σ ,u)∈Ṽ0

{J∗K(σ ,u)}. (12.66)

Finally, since

p0 =− 1
K

∂G(Λu0 + p0)

∂ p
, (12.67)

we get

‖p0‖Y ≈ O

(
1
K

)
,

so that from this, (12.61), and (12.65), we may finally write

α = JK(u0, p0) = inf
(u,p)∈V0

{JK(u, p)}
≤ inf

(σ ,u)∈Ṽ0

{J∗K(σ ,u)}

≤ J∗K(σ0,u0)

= JK(u0, p0)

≈ J(u0)+O(1/K). (12.68)

The proof is complete.

Remark 12.3.2. Of particular interest is the model behavior as K → +∞. From
(12.68) it seems to be clear that the duality gap between the original primal and
dual formulations goes to zero as K goes to +∞.
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Our final result is summarized by the next theorem. It refers to a duality principle
for the case of a local maximum for the primal formulation.

Theorem 12.3.3. Let Ω ⊂ R
3 be an open, bounded, connected set with a regu-

lar boundary denoted by Γ = Γ0 ∪Γ1, where Γ0 ∩Γ1 = /0. Consider the functional
(G◦Λ) : U → R expressed by

(G◦Λ)(u)

=
1
2

∫
Ω

Hi jkl

(
ui, j +u j,i

2
+

um,ium, j

2

)(
uk,l +ul,k

2
+

um,kum,l

2

)
dx,

where

U = {u = (u1,u2,u3) ∈W 1,4(Ω ;R3) | u = (0,0,0)≡ θ on Γ0}, (12.69)

and Λ : U → Y = Y ∗ = L2(Ω ;R3×3)≡ L2 is given by

Λu = {Λi j(u)}=
{

1
2
(ui, j +u j,i +um,ium, j)

}
.

Define J : U → R by

J(u) = G(Λu)−〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ . (12.70)

Assume that Γ0, f ∈ L2(Ω ;R3), and f̂ ∈ L2(Γ ;R3) are such that a local maximum
of J over V0 = Br(u0) is attained at some u0 ∈U such that

σ0 =
∂G(Λu0)

∂v
(12.71)

is negative definite.
Also define

J∗(σ) = Ff (σ)−G∗(σ), (12.72)

where

G∗(σ) = sup
v∈Y

{〈v,σ〉L2 −G(v)}

=
1
2

∫
Ω

Hi jklσi jσkl dx, (12.73)

{Hi jkl}= {Hi jkl}−1

and

Ff (σ) = sup
u∈U

{
〈Λu,σ〉L2 −〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}
.
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Under such assumptions, there exists a set Ṽ0 ⊂ Y ∗ such that

− J∗(σ0) = max
σ∈Ṽ0

{−J∗(σ)}= max
u∈V0

{J(u)}= J(u0). (12.74)

Proof. Define α = J(u0).
Thus,

J(u) = G(Λu)−〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ ≤ J(u0) = α,

∀u ∈V0.
Hence,

−〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ ≤−G(Λu)+α,∀u ∈V0,

so that

〈Λu,σ〉L2 −〈u, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iui dΓ

≤ 〈Λu,σ〉L2 −G(Λu)+α,∀u ∈V0,σ ∈ Y ∗. (12.75)

Therefore,

sup
u∈V0

{
〈Λu,σ〉L2 −〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}

≤ sup
v∈Y

{〈v,σ〉L2 −G(v)}+α,∀σ ∈ Y ∗. (12.76)

We define Ṽ0 by the points σ ∈ Y ∗ such that

sup
u∈V0

{
〈Λu,σ〉L2 −〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}

= sup
u∈U

{
〈Λu,σ〉L2 −〈u, f 〉L2(Ω ;R3)−

∫
Γ1

f̂iui dΓ
}

= Ff (σ). (12.77)

We highlight that σ0 ∈ Ṽ0, and from the generalized inverse function theorem,
any σ in an appropriate neighborhood of σ0 also belongs to Ṽ0 (we do not provide
the details here).

From this and (12.76), we get

Ff (σ)−G∗(σ)≤ α = J(u0),∀σ ∈ Ṽ0. (12.78)
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Finally, observe that

Ff (σ0)−G∗(σ0) = G(Λu0)−〈u0, f 〉L2(Ω ;R3)−
∫

Γ1

f̂iu0i dΓ

= J(u0). (12.79)

From this and (12.78), the proof is complete.

12.4 A Numerical Example

Consider the functional J : U → R defined by

J(u) =
H
2

∫ 1

0

(
ux +

1
2

u2
x

)2

dx−
∫ 1

0
Pu dx,

where

U = {u ∈W 1,4([0,1]) | u(0) = u(1) = 0}=W 1,4
0 ([0,1]),

H = 105

P =−1000

where the units refer to the international system. The condition indicated in (12.45)
here stands for W ∗(z∗) to be positive definite in a critical point u0 ∈U, where

W ∗(z∗) =
(z∗)2

K
− (z∗)2

H
− (u′0(x))

2(z∗)2

K/2
,

which is equivalent to
∂ 2W ∗(z∗)

∂ (z∗)2 ≥ 0,

so that, for K = H/2, we get

(u′0(x))
2 ≤ 0.25, a.e. in [0,1],

that is,
|u′0(x)| ≤ 0.5, a.e. in [0,1].

We have computed a critical point through the primal formulation, again denoted by
u0 ∈U. Please see Fig. 12.1. For u′0(x), see Fig. 12.2.

We may observe that
|u′0(x)| ≤ 0.5,

in [0,1], so that by the main duality, such a point is a local minimum on the set
C1 =C∩C2, where

C = {u ∈U | G∗∗
K (ux) = GK(ux)}

= {u ∈U | H(ux +u2
x/2)+K/2 > 0, in [0,1]}, (12.80)
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Fig. 12.1 The solution u0(x) through the primal formulation
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Fig. 12.2 The solution u′0(x) through the primal formulation

C2 = {u ∈U | ux ∈ Ŷ ∗}, where

GK(ux) =
H
2

∫ 1

0
(ux +u2

x/2)2 dx+
K
4

∫ 1

0
u2

x dx,

and
Ŷ ∗ = {v ∈ L2([0,1]) |W ∗(z∗) is positive definite in [0,1]}.

In fact, plotting the function F(x) = H(x+x2/2)2/2, we may observe that inside
the set [−0.5,0.5] there is a local minimum, that is, in a close set, the Legendre
necessary condition for a local minimum is satisfied. Please see Fig. 12.3.

We emphasize on the concerned sets there is no duality gap between the primal
and dual formulations. Also, from the graphic of u′0(x), it is clear that the stress

H(u′0 +1/2(u′0)
2)

is not exclusively positive or negative in [0,1].
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Fig. 12.3 The function F(x) = H(x+ x2/2)2/2

12.5 Conclusion

In this chapter we develop new duality principles applicable to nonlinear finite
elasticity. The results are obtained through the basic tools of convex analysis and
include sufficient conditions of restricted optimality. It is worth mentioning that the
methods developed here may be applied to many other situations, such as nonlin-
ear models of plates and shells. Applications to related areas (specially to the shell
model presented in [23]) are planned for future works.
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