
1A.G. Woods and C.C. Darie (eds.), Advancements of Mass Spectrometry 
in Biomedical Research, Advances in Experimental Medicine and Biology 806, 
DOI 10.1007/978-3-319-06068-2_1, © Springer International Publishing Switzerland 2014

    Abstract     Within the past years, we have witnessed a great improvement in mass 
spectrometry (MS) and proteomics approaches in terms of instrumentation, protein 
fractionation, and bioinformatics. With the current technology, protein identifi ca-
tion alone is no longer suffi cient. Both scientists and clinicians want not only to 
identify proteins but also to identify the protein’s posttranslational modifi cations 
(PTMs), protein isoforms, protein truncation, protein–protein interaction (PPI), and 
protein quantitation. Here, we describe the principle of MS and proteomics and 
strategies to identify proteins, protein’s PTMs, protein isoforms, protein truncation, 
PPIs, and protein quantitation. We also discuss the strengths and weaknesses within 
this fi eld. Finally, in our concluding remarks we assess the role of mass spectrom-
etry and proteomics in scientifi c and clinical settings in the near future. This chapter 
provides an introduction and overview for subsequent chapters that will discuss 
specifi c MS proteomic methodologies and their application to specifi c medical con-
ditions. Other chapters will also touch upon areas that expand beyond proteomics, 
such as lipidomics and metabolomics.  
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  Abbreviations 

   BN-PAGE    Blue native PAGE   
  CI    Chemical ionization   
  CN-PAGE    Colorless native PAGE   
  DIGE    Differential gel electrophoresis   
  EI       Electron ionization   
  ESI    Electrospray ionization   
  ESI-MS    Electrospray ionization mass spectrometry   
  FT    Fourier transform   
  IT    Ion trap   
  LC–MS/MS    Liquid chromatography–mass spectrometry   
   m / z     Mass/charge   
  MALDI    Matrix-assisted laser desorption ionization   
  MALDI-MS    MALDI mass spectrometry   
  MS    Mass spectrometry   
  Mw    Molecular weight   
  Q    Quadrupole   
  SDS-PAGE    Sodium dodecyl sulfate-polyacrylamide gel electrophoresis   
  TIC    Total ion current/chromatogram   
  TOF    Time of fl ight   

1.1           Introduction 

 Proteomics is the large scale study of the protein complement, also known as the 
proteome. Proteomics is studied through mass spectrometry (MS) [ 1 – 8 ]. MS can be 
used to investigate a large variety of chemical and biological molecules, including 
products of chemical synthesis or degradation, biological molecules such as pro-
teins, nucleic acids, lipids, or glycans, or various natural compounds of either large 
or small molecular mass. Depending on what type of molecule is being analyzed, 
there are various types of MS focus, such as small-molecule MS, large-molecule 
MS, and biological MS (when the molecules investigated are biomolecules). Within 
biological MS, there are also different MS subfi elds, such as proteomics, lipido-
mics, glycomics, and metabolomics. The focus of proteomics is to analyze proteins 
and protein derivatives (such as glycoproteins), peptides, posttranslational modifi -
cations (PTMs) within proteins, or protein–protein interactions (PPIs). 

 The standard workfl ow in a proteomics experiment starts with sample fraction-
ation, involving the separation of proteins prior to their analysis by MS [ 9 – 17 ]. This 
can be done by one or more biochemical fractionation methods. For example, a one-
dimensional separation can be achieved by sodium dodecyl sulfate- polyacrylamide 
gel electrophoresis (SDS-PAGE); a two-dimensional separation can be performed 
by two-dimensional electrophoresis or by affi nity purifi cation followed by 

A.G. Woods et al.



3

SDS-PAGE. Biochemical fractionation is then followed by enzymatic digestion 
(usually trypsin), peptide extraction, and peptide fractionation by HPLC and MS 
analysis [ 1 ]. Data analysis leads to identifi cation of one or more proteins and further 
simultaneous investigation or re-investigation of the results can extract additional 
information from the same MS experiment, such as PTMs and interaction partners 
of some proteins (PPIs) [ 18 – 26 ]. A schematic of a proteomics workfl ow is shown in 
Fig.  1.1  and a schematic of a proteomics experiment is shown in Fig.  1.2a .

    Proteomic analysis can be performed using samples from various sources such as 
supracellular, subcellular, intracellular, or extracellular, as well as at the peptide 
level (peptidomics), protein (regular proteomics), PTMs (“PTM-omics”), or protein 
complex level (interactomics). Proteomics can also be classifi ed as classical or 
functional, when one analyzes protein samples from two different conditions (for 
example, normal and cancer), and targeted proteomics, when one focuses on a par-
ticular sub-proteome, such as phosphoproteomics or glycoproteomics. Proteomics 
can also be classifi ed based on the protein complement from a set of samples that is 
being analyzed such as proteomes (i.e., all proteins) or sub-proteomes (i.e., just the 
nuclei or mitochondria). A schematic of such classifi cation is shown in Fig.  1.2b . 
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  Fig. 1.1    General proteomic experiment workfl ow schematic. Reprinted and adapted with permis-
sion from the  Australian Journal of Chemistry CSIRO Publishing    http://www.publish.csiro.
au/?paper=CH13137     [ 15 ]       
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  Fig. 1.2    General proteomics experiment. ( a ) Proteomics experiment workfl ow schematic. ( b ) 
Proteomics and applications schematic. ( c ) Mass spectrometer schematic. Reprinted and adapted 
with permission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. Andreescu 
and M. Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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 Proteomic analysis can also focus on quality such as for protein identifi cation, or 
the determination of protein amounts by quantitative proteomics. These analyses 
are usually performed using a mass spectrometer, the “workhorse” in a proteomics 
experiment. A mass spectrometer has three main components: the ionization source, 
a mass analyzer, and a detector (Fig.  1.2c ). There are primarily two types of ioniza-
tion sources on mass spectrometers: matrix-assisted laser desorption ionization 
(MALDI) and electrospray ionization (ESI). The mass spectrometers are conse-
quently named MALDI mass spectrometry (MALDI-MS) and electrospray ioniza-
tion mass spectrometry (ESI-MS). Here, we describe a proteomics experiment, 
specifi cally how proteins and peptides are analyzed by MS. We also describe the 
type of information that can be obtained from such an experiment.  

1.2     Biochemical Fractionation 

 The fi rst step in a proteomics experiment is biochemical fractionation, in which 
various proteins are separated from each other using their physicochemical proper-
ties. Biochemical fractionation usually depends on the goal of the experiment and it 
is perhaps the most important step in a proteomics experiment. A good sample frac-
tionation usually leads to a good experimental outcome. A proteomics experiment 
can still be performed without biochemical fractionation, for example, when one 
analyzes the full proteome of a cell at once. However, without biochemical fraction-
ation, the results in a proteomics experiment may not necessarily be optimal. 

 The physicochemical properties of proteins (or compounds of interest) that are 
used to achieve biochemical fractionation are, among others, molecular mass, iso-
electric point, charge at various pH, and the protein’s affi nity to other compounds. 
These properties of the proteins are well exploited by biochemical fractionations 
such as electrophoresis, centrifugation, and chromatography. Types of chromatog-
raphy can include affi nity chromatography, ion exchange chromatography, and size- 
exclusion chromatography. 

 To give one example, proteins can be separated by electrophoresis, usually SDS- 
PAGE, reduced and denatured, and then separated according to their molecular 
mass. If the reduction step is not used, the disulfi de bridges in a protein or between 
proteins remain intact, thus providing an additional fractionation principle: two pro-
teins with low molecular mass (such as haptoglobin subunits) are kept together 
through disulfi de bridges and are separated under SDS-PAGE under nonreducing 
conditions as a heterotetramer with a high molecular mass. In a different variant of 
SDS-PAGE, but not using the detergent (SDS), one may separate proteins under 
native conditions. Therefore, simply by adding one reagent (for example, SDS) or 
two (SDS and a reducing agent like dithiothreitol or DTT), separation of these pro-
teins may have a totally different outcome. A variant of SDS-PAGE is tricine-PAGE 
[ 27 ,  28 ], which has a principle of separation similar to the SDS-PAGE, but it has the 
highest separating resolution in the low molecular weight (Mw) proteins and pep-
tides (2–20 kDa), where SDS-PAGE has poor or very poor resolution. Therefore, 
SDS-PAGE and tricine-PAGE complement each other. 
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 Other types of electrophoresis are blue native PAGE (BN-PAGE), colorless 
native PAGE (CN-PAGE), and detergent-less SDS-PAGE (native PAGE) [ 1 ,  4 ,  6 , 
 18 – 22 ,  29 – 34 ], all native electrophoresis. BN-PAGE separates protein complexes 
by using the external charge induced by Coomassie dye; thus, the complexes will 
have the same charge and will separate according to their molecular weight. If the 
Coomassie dye is not used, the external charge is not induced and the separation 
does not take place according to the molecular weight of the complexes, but rather 
according to the internal charge of the protein complexes. This method, a variant on 
BN-PAGE, is named CN-PAGE. CN-PAGE is particularly useful when two protein 
complexes with identical mass must be separated from each other. 

 In addition to the techniques mentioned for biochemical fractionation, hyphen-
ated techniques may also be used. The classical example is two-dimensional elec-
trophoresis (2D-PAGE), which includes separation of proteins by isoelectric 
focusing and by SDS-PAGE [ 3 ,  7 ,  35 – 45 ], still used in some proteomics labs. In 
fact, a variant of 2D-PAGE is differential gel electrophoresis (DIGE), a powerful 
method for gel-based proteomics. Other fractionation methods such as pre-coated 
chips, centrifugal fi lters, and magnetic beads are also possible [ 46 ,  47 ].  

1.3     Mass Spectrometry 

 A mass spectrometer has three main parts: an ion source, a mass analyzer, and a 
detector. Initially, the sample is ionized and the ions produced by MALDI or ESI 
source are separated in the mass analyzer based on their mass-to-charge ( m / z ) ratio. 
The ions are then detected by the detector. The end product is a mass spectrum, 
which is a plot of ion abundance versus  m / z . 

  Ionization sources . Ionization of peptides is dependent on the electrical potential at 
the ion source and on the pH at which they are analyzed. At low pH, the peptides are 
protonated through the amino-containing amino acids such as Arg or Lys, while at 
high pH, the peptides are de-protonated through the carboxyl-containing amino 
acids such as Asp or Glu. When the electrical potential at the ion source is positive, 
ionization is in positive ion mode. Conversely, when the electrical potential is nega-
tive, ionization is in negative ion mode. Therefore, there are two types of ionization: 
positive, when peptides are analyzed at low pH and the Arg, Lys, and His are pro-
tonated, and negative ionization, when peptides are analyzed at high pH and the Asp 
and Glu are de-protonated. In the current chapter, we will focus only on positive 
ionization, because it is one of the most used ionization modes for analyzing pep-
tides and proteins.    In addition, the enzyme that is the most widely used in  proteomics 
is trypsin which cleaves conveniently at the C-terminus of Arg and Lys and pro-
duces peptides that are, upon ionization, at least doubly charged (the peptide and the 
C-terminal amino acid) and produces a y product ion series upon collision- induced 
fragmentation (described later). 

 In addition to ESI and MALDI, there are several additional ionization methods, 
such as chemical ionization (CI), electron ionization (EI), or atmospheric pressure 
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chemical ionization (APCI) [ 48 ,  49 ]. EI is used for analysis of organic compounds 
and can be used for all volatile compounds with a mass smaller than 1,000 Da. EI 
provides good structural information derived from fragmentation. However, molecu-
lar mass determination is rather poor (poor signal or the absence of M +  ions) [ 50 ]. 
Chemical ionization is the opposite: it is very good for the determination of the 
molecular mass of molecules, but it is not very good in providing structural informa-
tion due to reduced fragmentation in comparison to EI. Therefore CI and EI could 
complement each other. In CI experiments, ionized species are formed when the gas-
eous molecules to be analyzed collide with primary ions present in the source under 
a high vacuum [ 51 ]. A variant of CI is negative CI used only for volatile analytes with 
a mass of less than 1,000 Da [ 52 ,  53 ]. Another ionization technique, APCI, is an 
alternative for analysis of compounds that do not ionize in ESI. During APCI, gener-
ally only singly charged ions are formed and it is usually applied to compounds with 
a molecular weight of less than 1,500 Da [ 54 ]. 

  Mass analyzers . There are three main types of mass analyzers used for proteomics 
experiments: trapping type instruments (quadrupole ion trap—QIT, linear ion 
trap—LIT, Fourier transform ion cyclotron resonance—FT-ICR, and Orbitrap), 
quadrupole (Q), and time of fl ight (TOF) instruments. 

 Trapping type instruments fi rst accumulate ions and then allow for mass mea-
surement. The ion trap analyzers fi rst capture ions in three-dimensional space (trap), 
and then electrostatic gate pulses to inject ions into the ion trap. The ion trap-based 
analyzers are relatively inexpensive, sensitive, and robust. They have been exten-
sively used in proteomic analysis. However, a problem with these instruments is 
their accuracy for both precursor and product ions, partially overcome by an FT-ICR. 
Unfortunately, this instrument is not very often used in proteomics research because 
peptides do not fragment well and the instrument is expensive [ 55 ,  56 ]. 

 In quadrupole mass analyzers, ions constantly enter the analyzers, which are 
separated based on their trajectory in the electric fi eld applied to two pairs of charged 
cylindrical rods. There is an electric potential between each pair of rods drawing the 
ions towards one rod. These instruments provide good reproducibility and low cost, 
but their resolution and accuracy are limited [ 49 ,  57 ]. 

 Instruments with TOF mass analyzers are popular for sample analysis in pro-
teomics due to their high resolution and relatively low cost, speed of measurements, 
and high mass accuracy [ 49 ,  57 ]. In TOF mass analyzers, ions are accelerated by a 
known electric fi eld and then travel from the ion source to the detector. The instru-
ment measures the time it takes for ions with different masses to travel from the ion 
source to detector, 

 Mass spectrometers can have stand-alone analyzers or in combination, usually 
two or three analyzers within one instrument, thus taking advantage of the strength 
of all combined analyzers simultaneously. Examples of such instruments are Q-Trap, 
QQQ, Q-TOF, TOF–TOF, QQ-LIT; these instruments are also called hybrid mass 
spectrometers, and are highly sensitive and also have a high resolution [ 1 ,  57 – 59 ]. 

  MS detectors . The MS detectors are usually electron multipliers, photodiode arrays, 
microchannel plates, or image current detectors.  
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1.4     MALDI-TOF MS 

 MALDI-TOF MS or MALDI-MS (Fig.  1.3a ) is mostly used for determination of the 
mass of a peptide or protein and for identifi cation of a protein using peptide mass 
fi ngerprinting. In MALDI-MS, the peptide mixture is co-crystallized under acidic 
conditions with a UV-absorbing matrix (for example, dihydrobenzoic acid, sinapinic 
acid, alpha-hydroxycinnamic acid) and spotted on a plate. A laser beam (usually 
nitrogen; 337 nm) then ionizes the matrix and peptides, which desorb and start to fl y 
under an electrical fi eld. The matrix molecules transfer a proton to peptides, which 
then become ionized, fl y through the TOF tube, and are detected in the detector as a 
mass spectrum. Charged peptides fl y through the mass analyzer as ions according to 
their mass-to-charge ratio ( m / z ) and to the formula: [ M  +  zH ]/ z , where  M  is the mass 
of the peptide and  z  is the charge of the peptide;  H  is the mass of hydrogen 
(1.007825035 atomic mass units). In MALDI-MS analysis, the charge of peptides 
is almost always +1 and the peptides are mostly observed as singly charged; the 
formula is then [ M  + 1 × 1]/1 or [ M  + 1]/1 or [ M  + 1]. Therefore, the peptides are 
mostly detected as singly charged peaks or [MH]+ peaks (Fig.  1.3b ).

   In the MALDI-MS mass spectrum, one peak corresponds to one peptide and 
many peaks correspond to many peptides, either from one protein or from more 
proteins. Database search of the MALDI-MS spectra usually identifi es that single 
protein or those proteins through a process named peptide mass fi ngerprinting 
(Fig.  1.3c ).  

1.5     ESI-MS 

 In contrast to MALDI-MS, in which peptides are ionized with the help of a matrix 
(and are in the solid phase), in ESI-MS (Fig.  1.4a ) peptides are ionized in the liquid 
phase, under high electrical current. Also, while in MALDI-MS peptides are mostly 
singly charged, in ESI-MS peptides are mostly double or multiple charged. 
Regarding the ionization method, peptides fl y as ions according to  m / z  and calcula-
tion of the molecular mass of the peptide is performed according to the same 
[ M  +  z ]/ z  formula, where  z  is again the charge ( z  is 2 for doubly charged peptides, 3 
for triply charged peptides, etc.).

   When a peptide mixture is injected into the mass spectrometer, all or most pep-
tides that ionize under the experimental conditions are detected as ions in an MS 

Fig. 1.3 (continued) peptide mixture is analyzed by MALDI-MS and a spectrum is collected. 
A similar experiment is performed in silico (a theoretical experiment in computer), but the cleavage 
is performed in all proteins from a database. During the database search, the best match between 
the theoretical and the experimental spectra then lead to identifi cation of a protein. Reprinted and 
adapted with permission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. 
Andreescu and M. Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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  Fig. 1.3    MALDI-TOF MS. ( a ) MALDI-TOF mass spectrometer principle. An ion source, a mass 
analyzer, and detector are present on the instrument. At the detector the mass spectrum is detected/
recorded. The mass analyzer is a TOF and can be used in linear mode or refl ective mode. ( b ) A 
MALDI-MS spectrum primarily contains singly charged peaks; one example is shown (enlarged) 
to reveal the peak’s charged state (single charged or +1). ( c ) Protein identifi cation via MALDI-MS 
and peptide mass fi ngerprinting (PMF). A protein is digested into peptides using trypsin and the 
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  Fig. 1.4    ESI-MS of peptides. ( a ) An ESI-MS mass spectrometer. The ESI-MS has an ion source, 
in which the ions are ionized, a mass analyzer that ions travel through, as well as an ion detector, 
which records the mass spectrum. In ESI-MS, the sample is liquid, under high temperature and 
high electric current. The sample dehydrates and becomes protonated for positive ionization. ( b ) 
TOF MS spectra example, in which two different peaks, one triply charged peak with  m / z  of 
736.81 ( left ) and one double charged with  m / z  of 785.81 ( right , both circled and zoomed in), are 
selected for fragmentation and produce the MS/MS spectra whose data analysis led to identifi ca-
tion of peptides with the amino acid sequence RESQGTRVGQALSFCKGTA ( left ) and 
EGVNDNEEGFFSAR ( right ). Note that when the protonation site (R) is on the N-terminus of the 
peptide, the quality of the MS/MS spectrum is not great and analysis of the b and y ions produced 
by the MS/MS fragmentation is diffi cult to interpret. However, when the protonation site is on the 
C-terminus of the peptide, the fragmentation produces a nice y ion series and the analysis of these 
ions can easily identify the amino acid sequence of the peptide. Reprinted and adapted with per-
mission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. Andreescu and M. 
Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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spectrum in a process called direct infusion (ESI-MS mode). For example, if one has 
10 peptides in an Eppendorf tube, one can identify all 10 peptides in one spectrum. 
However, in the MS one identifi es only the masses of the peptides. In order to iden-
tify the sequence information about one particular peptide, one must isolate one peak 
that corresponds to one of the 10 peptides (precursor ion), fragment it in the collision 
cell using a neutral gas (for example, Argon gas), and record a spectrum (a sum of 
spectra) of the product ions that resulted from fragmentation of the precursor ion 
called MS/MS (ESI-MS/MS mode). Data analysis of the MS and MS/MS spectra 
usually leads to identifi cation of the mass and sequence information about the pep-
tide of interest. Examples of ESI-MS and ESI-MS/MS spectra are shown in Fig.  1.4b . 
As observed, the quality of the MS/MS spectra is directly dependent on the amino 
acid sequence, but more important, by the position of the proton- trapping amino acid 
(R, H, or K, in this case, R). For example, if the proton-trapping amino acid is on the 
N-terminus, low intensity b and y ions are observed (Fig.  1.4b , left). However, when 
the proton-trapping amino acid is located on the C-terminus, the fragments produced 
are almost always y ions of high quality. This is also the main reason for which most 
proteomics experiments use trypsin as an enzyme, since it cleaves the C-termini of R 
and K and produces peptides with an R or a K at the C-terminus. 

 Sometimes, when a peptide has more than one proton accepting amino acid such 
as Arg or Lys, the peptide may be protonated by more than two or three protons. 
Therefore, the same peptide may be identifi ed with more than two or three charges. 
The advantage for these peptides is that if the precursor ion in a charge state of, e.g., 
2+ does not fragment well in MS/MS, then the peak that corresponds to the same 
peptide but in a different charge state (e.g., 3+ or 4+) may fragment very well. One 
drawback for the multiply charged peptides is that they are usually longer (2,500–
3,000 Da) than the regular peptides analyzed by MS (800–2,500 Da) and data analysis 
for these peptides may be more diffi cult than for regular peptides. However, overall, 
fragmentation of more than one peak corresponding to the same peptide but with dif-
ferent charge states may help in obtaining additional information about that peptide. 

 ESI-MS can be used not only for peptides but also for investigation of proteins 
and the information is particularly useful for determining the molecular mass of 
those proteins, of their potential PTMs, and of their conformation. In addition, the 
high molecular mass proteins can also be analyzed by ESI-MS in either positive 
mode (protonated) or negative mode (de-protonated), thus providing distinct, yet 
complementary, information regarding the distribution of charges on the surface of 
the protein investigated. Examples of MS spectra of a 16.9 kDa protein investigated 
by ESI-MS in both positive and negative mode are shown in Fig.  1.5 .

1.6        LC–MS/MS 

 Analysis of peptide mixtures by ESI-MS for determination of the molecular mass 
of the peptides is usually a quick procedure. However if one wants to investigate 
the sequence information of more than one peptide, it is not the method of choice, 
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  Fig. 1.5    ESI-MS proteins: ESI-MS spectra of intact 17 kDa protein, myoglobin, analyzed under 
acidic conditions (pH ~ 2). ( a ) MS spectrum in positive ionization; ( b ) MS spectrum analyzed in 
negative ionization. The positive (A) and negative (−) charges are indicated. The peak with  m / z  of 
616.32 (1+) corresponds to the heme group, which is the prosthetic group of myoglobin. Reprinted 
and adapted with permission from the  Australian Journal of Chemistry CSIRO Publishing    http://
www.publish.csiro.au/?paper=CH13137     [ 15 ]       
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since fragmentation of the ions that correspond to peptides happens manually; one 
peptide at the time. For example, if one has 4 peptides in a mixture, we can deter-
mine the molecular mass of all peptides in minutes, but to determine their amino 
acid sequence, the peptides must be selected for fragmentation one at the time. 
Therefore, to automate this process, an alternative approach is necessary. One 
option is to fractionate the peptides by column chromatography coupled to an 
HPLC, i.e., reversed phase-based HPLC (reversed phase columns are particularly 
compatible with MS). The combination of HPLC and ESI-MS is named HPLC–
ESI-MS or LC–MS. In this setting, the peptides are fractionated by HPLC prior to 
MS analysis. They can also be selected for fragmentation and then fragmented by 
MS/MS. In a process called data-dependent analysis (DDA), usually 3–4 precursor 
peaks (which correspond to peptides) are selected for fragmentation from one MS 
scan and fragmented by MS/MS in a process called LC–MS/MS. In LC–MS/MS, 
the mass spectrometer analyzes fewer peptides per unit of time as compared with 
ESI-MS, simply because the HPLC fractionates the peptide mixture over a longer 
period of time (such as a 60 min gradient) and gives the mass spectrometer more 
time to analyze more peptides. A schematic of the LC–MS/MS is shown in Fig.  1.6a .

   Various types of improvements can be done to increase the number of MS/MS 
spectra with high quality data which can lead to identifi cation of additional proteins. 
One is at the fl ow rate of the HPLC. On a high fl ow rate, the mass spectrometer will 
have less time to analyze the peptide mixtures, as compared with lower fl ow rate. 
On a longer HPLC gradient (such as 120 min), the mass spectrometer will have 
more time to analyze more peptides, as compared with a shorted gradient. The num-
ber of MS/MS may also infl uence the number of peptides fragmented per minute. 
For example, a mass spectrometer has usually one MS survey followed by several 
MS/MS, for example, between 3 and 10 channels for MS/MS (newer instruments 
can be up to 30 MS/MS). If the method is set to have one MS survey scan and then 
to do MS/MS of the two most intense peaks, then the instrument will work as fol-
lows: one second MS survey, one second MS/MS (Peak 1), one second MS/MS 
(Peak 2), and then again one second MS survey (Fig.  1.6a ). 

 Assuming that a mass spectrometer has a cycle of one MS and two MS/MS (such 
as 0.1 s for an MS survey followed by selection of two precursor peaks for fragmen-
tation by MS/MS; 3 s per MS/MS), this means that in 1 min, the MS instrument can 
perform ~30 MS/MS that can lead to identifi cation of ~15 proteins. In a 120 min 
gradient, the possible number of proteins that can be identifi ed is ~15 × 120 = 1,800 
proteins, but keeping in mind that the real length of a 120 min gradient is about 
90 min (the rest of 30 min in washing with organic), this means that an MS run can 
identify ~15 × 90 = 1,350 proteins. If the length of an MS/MS decreases from 3 to 1 s 
and the number of precursors selected within MS survey for MS/MS increases to 6, 
then the number of proteins identifi ed increases by sixfold (~1,350 × 6 = 8,100 pro-
teins). Assuming that these results are at a fl ow rate of 0.5 μL/min, if we reduce the 
fl ow rate by ½, the number of proteins that can be identifi ed increases by a factor of 
2 (i.e., 8,100 × 2 = 16,200). 

 However, when we calculate the number of these proteins that can be identifi ed, 
our assumption is that all the steps mentioned work perfectly. In practice, this is often 
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  Fig. 1.6    LC–MS/MS experiment. ( a ) In each LC–MS/MS experiment, with elution of peptides from 
the HPLC gradually, the mass spectrometer analyzes corresponding ions via MS survey (recorded 
in an MS spectrum). Ions with highest intensity (typically 1–8 ions; two ions in this example) 
are selected for MS/MS fragmentation, fragmented, and then recorded as MS/MS #1 and MS/MS #2. 
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not the case. For example, the type and length of the gradient in HPLC (for example, 
sharp or shallow) do play an important role in peptide fractionation. An optimized 
versus a non-optimized nanospray will always play a role in the outcome of the pro-
teomics experiment and the number of proteins identifi ed. Obtaining a nanospray is 
just not good enough; “getting a good nanospray” is crucial to the success of a pro-
teomics experiment. These and other known and/or unknown factors (not described 
here) that may infl uence the protein identifi cation do indeed decrease the number of 
proteins identifi ed in a proteomics experiment and in practice, a good LC–MS/MS 
run usually leads to identifi cation of about 500–1,000 proteins. An example of a total 
ion current/chromatogram (TIC), MS, and MS/MS is shown in Fig.  1.6b .  

1.7     Data Analysis 

 The raw data collected by a mass spectrometer are usually processed with software 
(for example, Protein Lynx Global Server, PLGS from Waters Corporation) and the 
output data (i.e., a peak list) is used for database search. There are many database 
search engines such as Sequest, X!Tandem, Mascot, or Phenyx. The results from the 
database search (such as from PLGS processing or Mascot search) can also be 
imported into a third-party software such as Scaffold (proteomesoftware.com) and 
further analyzed for protein modifi cation, quantitation, and other factors. 

 MS may be not only qualitative but also quantitative and methods such as DIGE 
[ 60 ], isotope-coded affi nity tag (ICAT) [ 5 ], stable isotope labeling by amino acids 
in cell culture (SILAC) [ 61 ], absolute quantitation (AQUA) [ 62 ], multiple reaction 
monitoring (MRM) [ 63 ], or spectral counting [ 64 ] have been successfully used in 
detection, identifi cation, and quantifi cation of proteins or peptides.  

1.8     Protein Identifi cation and Characterization 

 Determination of the molecular mass and amino acid sequence is the fi rst step in 
protein identifi cation. Once the protein is identifi ed, then it is characterized. There 
are two methods for protein characterization using MS: a top-down approach when 

Fig. 1.6 (continued) The mass spectrometer returns to the MS function at that point, recording an 
MS spectrum (MS survey). Once again ions with highest intensity are selected for fragmentation, 
fragmented, and recorded as MS/MS spectra. ( b ) An example of an LC–MS/MS experiment in 
which total ion current is recorded and at a specifi ed time, an MS survey is recorded and one peak 
corresponding to a peptide ( m / z  of 582.56, doubly charged) is selected, and then fragmented in MS/
MS. The fragmentation pattern (primarily b and y ions) from MS/MS provides sequence information 
regarding the peptide, leading to identifi cation via database search. In this example, the peptide iden-
tifi ed had the sequence VSFELFADK, identifi ed as a component of human cyclophilin A. Reprinted 
and adapted with permission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. 
Andreescu and M. Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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intact proteins are investigated and bottom-up approach when proteins are digested 
and the peptide mixture is analyzed (Fig.  1.7 ).

   A top-down approach allows for the identifi cation of protein isoforms or any 
potential PTMs within proteins [ 65 ]. In bottom-up approach, digested proteins are 
subjected to MS analysis using on-line tandem mass spectrometry (MS/MS). In the 
same bottom-up approach, peptide mass fi ngerprinting for protein identifi cation is 
also used, particularly in MALDI-MS analyses. 

 In a variation of bottom-up proteomics, known as shotgun proteomics, a large 
protein mixture is digested, and the resulting peptides are fractionated by one- 
dimensional or multidimensional chromatography and further analyzed by MS/MS 
[ 66 ]. For maximum protein identifi cation and characterization, a combination of 
bottom-up and top-down proteomics is/can be used [ 67 ,  68 ]. 
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  Fig. 1.7    Schematic workfl ow for bottom-up and top-down MS-based protein characterization and 
identifi cation. Reprinted and adapted with permission from the  Australian Journal of Chemistry 
CSIRO Publishing    http://www.publish.csiro.au/?paper=CH13137     [ 15 ]       
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 Characterization of proteins is not easy, but it becomes even more complicated 
due to the intensive PTMs of proteins. It is very diffi cult to fully identify PTMs at a 
particular time point in cells, tissues, or organisms and to derive a meaningful inter-
pretation and biological signifi cance from these identifi ed PTMs. So far, the only 
method that is appropriate for large scale identifi cation of PTMs is MS-based pro-
teomics [ 69 ]. PTMs are time- and site-specifi c events and are important to all bio-
logical processes. However, for a meaningful characterization, special enrichment 
strategies must be used. These strategies are able to characterize most stable modi-
fi cations in proteins which include glycosylation, phosphorylation, disulfi de bridges, 
acetylation, ubiquitination, and methylation. MS approaches for  identifi cation and 
characterization of proteins and PTMs are shown in Fig.  1.8 .

   Two common PTMs in proteins are glycosylation and phosphorylation. 
   Glycosylation is commonly found in extracellular proteins or in the proteins that 
form the extracellular side and are responsible for biological processes such as cell–
cell communication or ligand–lectin interaction [ 70 ,  71 ]. In the pharmaceutical and 
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  Fig. 1.8    MS-based characterization of protein PTMs (glycosylation and phosphorylation), gen-
eral strategies. Reprinted and adapted with permission from the  Australian Journal of Chemistry 
CSIRO Publishing    http://www.publish.csiro.au/?paper=CH13137     [ 15 ]       
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biotechnology industry that focus on biotherapeutics, glycosylation is a critical 
modifi cation of recombinant proteins, which infl uences their stability and solubility 
[ 72 ,  73 ]. Therefore, characterization of glycoproteins is diffi cult because the glyco-
sylation is not uniform and usually more glycoforms are simultaneously produced 
by the cells and the accuracy in the MS-based identifi cation and characterization of 
the glycoprotein isoforms is crucial [ 74 ]. 

 Analysis of glycoproteins may be accomplished by LC–MS/MS analysis of tryp-
tic digests. This method allows for identifi cation of saccharide diagnostic fragments 
(i.e., hexoses), but its detection effi ciency for glycoproteins is rather poor [ 75 – 77 ]. 
A better strategy involves glycoprotein enrichment by affi nity chromatography (lec-
tins), which facilitates its identifi cation in subsequent LC–MS/MS analysis [ 78 ]. 
Another strategy involves the release of the glycans from glycopeptides, followed 
by targeted analysis of the glycans. N-linked glycans can be digested using peptide-
 N -glycosidase F (PNGase F), while O-linked glycans can be released by 
β-elimination. Change in mass units for peptides upon glycan removal allows for 
identifi cation of the types of glycosylation (N- or O-linked), as well as the sites of 
glycosylation. For N-linked glycans, PNGase F treatment leads to an asparagine-to- 
aspartate conversion, with a net increase of 1 mass unit [ 14 ]. 

 For O-glycans, conversion of serine to alanine and of threonine to aminobutyric 
acid results in a net loss of 16 mass units [ 79 ]. While the currently developed meth-
ods allow for fast and reliable identifi cation of glycosylation sites, their character-
ization is still a great challenge, mostly due to the presence of glycan positional 
isomers [ 74 ]. 

 Phosphorylation is a common and reversible PTM that plays a role in modulating 
many cellular processes [ 80 ]. Abnormal phosphorylation in various proteins and the 
phosphorylation patterns in the proteomes have been connected to various diseases 
[ 81 ,  82 ]. Therefore identifi cation of protein phosphorylation will allow us to under-
stand many physiological processes such as the phosphorylation-based signal trans-
duction pathways and hopefully may lead to the discovery of new therapeutic targets 
[ 83 – 85 ]. 

 Identifi cation and characterization of phosphorylation on peptides are usually 
accomplished by MS and scanning for neutral loss of HPO 3  (80 mass units) from 
phosphotyrosine and H 3 PO 4  (98 mass units) from phosphoserine and phosphothreo-
nine residues [ 86 ,  87 ] usually allows the identifi cation of phosphopeptides and the 
amino acid that is phosphorylated. Complete methylation of peptide sample fol-
lowed by MALDI-MS analysis in both positive and negative ionization modes was 
also successfully employed [ 88 ]. However, since phosphorylation is a transient 
event and phosphorylation–dephosphorylation events may have opposite biological 
effects, data verifi cation, data validation, and data interpretation may be diffi cult. 
Therefore, enrichment of phosphopeptides using TiO 2 , metal-oxide-based resins 
(MOAC), a combination of TiO 2  and IMAC (TiMAC), and antibody affi nity purifi -
cations [ 89 ,  90 ] is advised. 

 Another important protein PTM is disulfi de bridges [ 11 ,  12 ,  15 ,  91 ], formed 
through the oxidation of cysteine residues, with an important role in maintaining the 

A.G. Woods et al.



19

three-dimensional conformation of proteins and inherently their physiological 
function. Disulfi de bridges are usually found in extracellular and membrane-bound 
proteins, both as homodimers and homopolymers, but also as heterodimers and het-
eropolymers. Correct disulfi de bridge formation is essential for proteins in adopting 
their optimal three-dimensional structure and assignment of the disulfi de connec-
tivities allows researchers to understand the structure and function of these proteins 
under physiological conditions and to predict problems in normal functioning of 
proteins when the disulfi de bridges are scrambled or misconnected [ 92 ,  93 ]. 

 Assignment of disulfi de bridges in proteins may be accomplished by many 
approaches. For example, separation of disulfi de-linked proteins or peptides by 
SDS-PAGE or tricine-PAGE under nonreducing and reducing conditions, followed 
by Coomassie staining and MS analysis, is one option. This MS analysis involves 
digestion of reduced and non-reduced aliquots of the same peptide mixture, fol-
lowed by comparison of the masses of peptides that contain one cysteine, versus the 
disulfi de-linked peptides in their oxidized form using MALDI-MS or ESI-MS [ 94 , 
 95 ]. This task (assignment of disulfi de bridges) is diffi cult when only one protein is 
analyzed and it is even more diffi cult when there are more cysteine residues per 
protein. In addition, there is no particular approach that allows one to identify disul-
fi de bridges on a large scale. While mass spectrometry is capable of simultaneously 
analyzing many disulfi de bridges, there are no bioinformatics means to interpret the 
MS data. Here we discussed only three types of PTMs, but there are many addi-
tional PTMs with biological signifi cance and a similar number of challenges that 
are yet to be solved for each PTM and for automation of high-throughput identifi ca-
tion and characterization of PTMs. However, it is clear to us that MS-based pro-
teomics is perhaps the best and only option to accomplish both identifi cation and 
characterization of PTMs.  

1.9     Mass Spectrometry-Based Peptide and Protein Profi ling 
and Quantitation 

 In addition to qualitative proteomics, another dimension in a proteomics experiment 
is quantitative analysis of proteins from the samples analyzed.    Changes in protein 
expression between different physiological states or between physiological and 
pathological ones are common and qualitative proteomics without quantitative 
interrogation is at its best, partial proteomics. Therefore adding an extra dimension 
(quantitative) to MS-based proteomics expands its capabilities and advantages [ 96 ]. 

 There are many workfl ows that have been developed and optimized to interrogate 
two or more proteomes or particular proteins from these proteomes using quantita-
tive analysis, some of which are depicted in Fig.  1.9 . Traditional quantitative analysis 
compares two sets of proteomes or a proteome from two different physiological 
states or physiological and pathological states and is a gel-based protein profi ling 
technology which employs 2D-PAGE [ 97 ]. The protein spots that have different 
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intensities are usually excised, digested, and analyzed by MS, usually accomplished 
by instruments capable of MS/MS fragmentation (i.e., triple quadruple or ion trap 
mass spectrometers), simply because many compounds have similar masses and it 
may be diffi cult to monitor them in complex matrices. In addition, combination of 
MS and MS/MS allows one to use a combination of precursor ion for MS and 
fragment ions for MS/MS, thus providing a more selective monitoring of peptide/
protein quantity [ 98 – 100 ].

   Protein quantitation can be made using label-based or label-free techniques. 
Label-free methods are often used in many proteomic measurements because they 
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  Fig. 1.9    MS-based protein quantifi cation workfl ow strategies via stable isotope labeling. 
Reprinted and adapted with permission from the  Australian Journal of Chemistry CSIRO 
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are simple and the cost is low [ 99 ]. Proteins also do not require special handling, 
such as tag or isotope labeling. With current advancements in software technology, 
there is no limit to the number of samples that can be analyzed. 

 Among the approaches used for label-free protein quantifi cation are spectral 
counting and measurement of MS precursor ion intensity (or chromatographic peak 
area) [ 101 ,  102 ]. In spectral counting, one measures the number of spectra that cor-
respond with peptides that are part of one protein [ 64 ,  103 ], while MS precursor ion 
intensity approach interrogates the chromatographic peaks corresponding to par-
ticular peptides at a normalized elution time. The protein or peptide quantity is then 
calculated using a standard curve or area under the curve as compared with another 
sample. All these label-free methods, although fast and cheap, also have disadvan-
tages: they depend on analytical and biological reproducibility and any variation in 
sample preparation or sample analysis can lead to technical and instrumental errors, 
well refl ected in the quantitation outcome [ 104 ,  105 ]. 

 In addition to label-free quantitation, label-based quantitation strategies have 
emerged that use stable isotopes ( 13 C,  15 N,  18 O, or  2 H) [ 106 ], in which native and 
labeled samples are combined and analyzed simultaneously. This isotope-based 
quantitation is also called absolute quantitation, as opposed to label-free, relative 
quantitation. 

 Using the absolute quantifi cation method, synthetic peptides or proteins are 
used, which are labeled with stable isotopes on one or more amino acids [ 6 ,  107 ]. 
The peptides are used as internal labeled standards, which are added directly to the 
samples to be analyzed. Due to the difference in the isotope pattern (and the mass 
difference) during MS analysis, quantitation can be performed [ 108 – 110 ]. One 
label-based quantitation method is stable isotope labeling of select amino acids 
(usually arginine or lysine) in cell culture (SILAC), used for metabolic labeling 
[ 61 ]. This method can be used in many applications such as investigation of signal-
ing pathways [ 8 ,  22 ,  111 – 119 ], but it is mostly restricted to cell culture and it cannot 
be used to investigate biological fl uids (i.e., blood, urine, saliva) [ 120 ]. However, 
recently, Matthias Mann’s group created labeled mice. Animals were fed with a  13 C 
arginine- and  13 C lysine-infused diet and then can be used to investigate biological 
fl uids [ 121 ,  122 ]. Another method for stable isotope labeling is the incorporation of 
labeled/modifi ed tags on specifi c amino acids. In one such method, cysteine resi-
dues may be labeled using an ICAT, in which two conditions (i.e., two proteomes) 
are investigated [ 5 ]. For analysis of more than two conditions, such as for time-
course experiments, or for three or more different biological samples, labeling strat-
egies using isobaric tags for relative and absolute quantifi cation (iTRAQ) and 
tandem mass tags (TMT) have been successfully developed [ 123 – 125 ]. Although 
these methods have improved quantifi cation capabilities, there are still limitations 
such as lack of reproducibility between individual analyses. Some of these issues 
are addressed through targeted quantifi cation using approaches such as selected 
reaction monitoring (SRM) [ 126 ] and MRM [ 127 ], which have shown excellent 
reproducibility when used with stable isotope-labeled internal standards [ 128 ,  129 ]. 

 With fast advancement in current proteomic methodologies and technologies, 
protein quantifi cation and profi ling will become a standard for use in clinical 
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diagnostic laboratories. However, before large scale proteomics experiments can be 
performed for clinical use, the reproducibility of large scale quantitation must be 
addressed and new, improved quantitation platforms developed and tested. 
Nevertheless, these new technologies indeed have the potential to be easily inte-
grated in the set of tools that can perform disease- or disorder-specifi c protein profi ling 
and that future is close to becoming a reality.  

1.10     Identifi cation of Protein–Protein Interactions (PPIs) 
Using MS 

 The molecules within a cell are not static, but rather dynamic. They form various 
types of interactions. These interactions can be static, as in protein complexes, or 
dynamic, as in transient protein interactions such as hormone–receptor interactions 
or substrate–enzyme interactions. All of these interactions within a cell form the 
interactomics network or interactome, and the proteins are a major component 
[ 130 ], modifying and controlling their own or other proteins’ functions [ 131 ]. The 
dysregulation of these interactions, particularly PPIs, usually leads to a pathological 
state such as diseases or disorders and their investigation is essential to the current 
efforts to understand these diseases or disorders. 

 There are many methods for identifying PPIs such as size-exclusion chromatog-
raphy (SEC) [ 132 – 134 ], sucrose gradient ultracentrifugation [ 135 ,  136 ], the yeast 
two-hybrid system (Y2H), or affi nity purifi cation MS (AP-MS) [ 3 ,  130 ,  137 – 140 ]. 
These methods allow identifi cation of stable PPIs (i.e., by sucrose gradient, SEC, or 
AP-MS), of binary interactions (Y2H), or of transient PPIs (AP-MS). However, 
these current methods have limitations. Sucrose gradient ultracentrifugation and 
SEC are time-consuming and not suitable for automation, while Y2H and AP-MS 
can be automated, but have high rate of false positive identifi cations of PPIs [ 141 –
 143 ]. Therefore, efforts are being made to reduce these limitations. 

 Native gel electrophoresis (clear native PAGE or CN-PAGE and BN-PAGE) are 
an alternative option and separate protein complexes according to their molecular 
mass (BN-PAGE) or according to their internal charge and independent of their 
mass (CN-PAGE) [ 21 ,  144 ]. The advantage of these methods is that they can sepa-
rate all protein complexes from the whole proteome in one single experiment and 
can be combined with MS to identify protein complexes [ 145 ,  146 ]. However, the 
problem with these methods is that the gels are usually “home-made,” are not 
always reproducible, and require extensive work and bioinformatics expertise. 

 As an alternative option, one may also use ESI-MS for direct measurement of 
stable and transient PPIs in a solution [ 147 ,  148 ]. However, we still do not have 
capability to fully comprehend and the means to fully investigate the PPIs, in 
particular transient PPIs and even more complicated transient PPIs that have 
transient or reversible PTMs. This fi eld will perhaps be called something like 
PTM-ed-PPI-omics.  
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1.11     Recent Advances 

 Currently we have the means to create disease animal models or control animal 
models (such as the SILAC mouse for absolute quantitation) [ 149 ,  150 ]. Capabilities 
of mass spectrometers have recently increased and currently MS-based technology 
allows us to identify thousands of proteins. Current machines are rich in additional 
technology that allows one to identify not only proteins and their PTMs and PPIs 
but also their shape and confi guration. Such instruments are commercially available 
[ 151 ], thus fi lling the need for analysis of proteins that are not easy to investigate 
using classical approaches such as X-ray and NMR [ 152 ]. Therefore, these and 
other methods not listed here not only provide a solution for analysis of challenging 
proteins but have also opened the doors to new fi elds such as structural proteomics 
[ 153 ,  154 ].  

1.12     Challenges and Perspectives 

 Many genomes have been sequenced. Many proteins from various sources have 
been identifi ed. However, it will be an enormous mistake to state that we have 
identifi ed a full proteome of a whole cell. This milestone has not yet been achieved. 
We have identifi ed many or most of proteins in specifi c cells, such as bacteria, 
expressed at a particular time point, under particular growing conditions. However, 
while we are close to identifi cation of most proteins in a cell, we are far from iden-
tifi cation of the full proteome, including all proteins, isoproteins, modifi ed proteins 
(PTMs), and truncated proteins. After the sequencing of the human genome, 
humans realized that our genome contains only ~30,000 genes, but encodes for 
about 100,000 unique protein sequences [ 155 ,  156 ]. Adding the truncated proteins, 
splice isoforms, and mutated proteins, PTMs will give us a number of, between 1 
and 2,000,000, proteins, many of them expressed either transiently or in a very low 
concentration, thus making the cell’s proteome complexity more diffi cult to ana-
lyze and interpret [ 157 ]. To partially overcome some of these challenges, more and 
more advanced MS-based technologies can be combined with many fractionation, 
separation, and identifi cation methods within one experiment, such as combining 
immunoaffi nity with gel electrophoresis, liquid chromatography (LC), and MS, to 
increase sensitivity and dynamic range. Furthermore, there is plenty of room for 
optimization of MS-based methods to be successfully used in high-throughput 
analysis. 

 Therapeutic proteins are frequently membrane proteins [ 158 – 161 ]. However, the 
membrane proteomics (membranomics) is the most diffi cult task that can be 
achieved in proteomics. In addition, transmembrane proteins are the most modifi ed 
proteins by PTMs and are simply very diffi cult to investigate by MS, although some 
progress has been made in this direction [ 162 ,  163 ].  
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1.13     Conclusions 

 Despite the many challenges that the MS and proteomics fi elds face, the impact of 
MS is stronger and stronger, year after year. The number of unknown proteins 
decreases and protein databases become more comprehensive over time. With new 
MS technology and with combinatorial approaches towards the simultaneous iden-
tifi cation of proteins, isoproteins, and truncated PTMs, PPIs will hopefully allow us 
to  completely characterize proteomes at both a qualitative and quantitative level.     
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