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Abstract. Business process models are vital assets of any organization. The  
organizations prefer to use one of the modeling methods and notations accord-
ing to its features like tool support, size of user base, ease of use. On the other 
hand, prevalent methods (formalisms) to model these processes change over 
time. Furthermore, some modeling tools and/or methods might be pulled out of 
the market completely. In order to handle these kinds of changes easily, migra-
tion methods has to be defined. In this work, model transformation is proposed 
as a method to migrate from eEPC to S-BPM.  Direct mapping rules are defined 
to transform models and the application of these rules is demonstrated by on a 
real world case study. 
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1 Introduction 

Business process models describe logical order of activities and dependencies [1]. 
There are many process modeling languages and organizations use them to reach a 
comprehensive understanding of organizational processes and analyze them. In the 
frame of this study, we particularly focus on eEPC and S-BPM languages.  

EPC is a business process modeling technique developed by Scheer et al. at the Insti-
tute for Information Systems in Germany, in 1990s [2][3]. EPC represents business 
process as an ordered graph which shows chronological sequence and logical interde-
pendencies between elements. In order to model more complex business processes, EPC 
notation is extended with additional elements from the organization and data view, 
which is called eEPC (extended Event-driven Process Chain). It is relatively simple 
notation to model business processes and highly accepted by the practitioners from 
diverse areas for business process re-engineering, management and documentation.  

S-BPM is a paradigm that is developed by Albert Fleischmann [4] to describe and 
execute business processes from the perspective of subjects. S-BPM gets inspired 
from natural languages and the structure of S-BPM is similar to sentence structure of 
natural languages. According to S-BPM, subjects are active elements in a business 
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process. Therefore, they should be the starting point of the activities (like natural  
language sentences) [5]. Subjects execute business processes by exchanging messages 
with each others. Interactions between subjects are shown in the Subject Interaction 
Diagram (SID). SIDs visualize subjects and data flow (exchange messages) among 
them. Internal activities of subjects are shown in Subject Behavior Diagram (SBD).  
S-BPM uses top down approach in determining communication between subjects and 
uses bottom-up approach in determining internal behavior of subjects.  

In the industry EPC is widely accepted during the last decade by means of ARIS 
toolset. A number of organizations represented their processes using eEPC. However; 
there is a gap between business and information technology systems in the eEPC 
since it focuses on notations and this makes difficult to design business processes 
within IT systems [6]. In order to close that gap, S-BPM has emerged as a new mod-
eling paradigm. S-BPM enables to create dynamic business applications and to inte-
grate them into the existing systems seamlessly. This also provides organizations, 
which use S-BPM as modeling language, competitive advantage. In addition to this, 
S-BPM provides a better representation for human interaction patterns and its notation 
is simple and easy to understand. As an alternative to EPC, S-BPM gaining ground 
with IT support. Migration of legacy eEPC models requires considerable effort. Fur-
thermore, it’s a labor intensive work which increases the usage of personal resources 
and costs dramatically. 

Our goal is to facilitate the transformation process by defining rules with direct 
mapping. Model transformation is adopted as a main method to provide automation. 
A model transformation takes a source model and transforms it into a target model by 
using predefined transformation definition (rules) [7]. The both of the models con-
form to their respective metamodels. A transformation is defined with respect to the 
metamodels. The transformation definition is executed on concrete models by a trans-
formation engine. In our case, eEPC is the source model and S-BPM is the target 
model. Transformation definition is explained in details throughout this document. In 
order to automate eEPC to S-BPM transformation we developed an extension to exist-
ing transformation engine namely UPROM (Unified Process Modeling Tool) devel-
oped by Bilgi Grubu and SMRG Research Group. UPROM is based on bflow* toolbox 
which is an open source modeling tool contributed by at the University of Hamburg 
and the University of Applied Sciences Emden/Leer [8]. 

Before the conversion, syntax of the eEPC model is needed to be checked. eEPC 
syntactical validation rules are stated in Section 3 according to formal definitions 
given in [9] [10]. The rules to check the validity of generated S-BPM model is also 
defined in Section 4. These rules include constraints on inter-elements relations and 
element sequence. In this study we check the validation of input and output models 
manually. However; after the development of the tool is completed, it is done semi-
automatically. 

In this paper, we define a set of rules (guidelines) to convert eEPC models to  
S-BPM models and we validate these by applying our transformation method to a 
case study. The remainder of this paper is organized as follows: Related work is  
mentioned in Section 2. Notation of eEPC, its validation rules and metamodel from 
scratch are presented in Section 3. Notation of S-BPM with validation rules and  
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S-BPM metamodel from scratch can be found in Section 4. Section 5 presents trans-
formation methodology and rules. Case study can be found in Section 6. Discussions 
and conclusion are presented in Section 7. Finally references can be found in Section 8. 

2 Related Work 

In the literature, there are many research studies on EPC and eEPC that are useful for 
model transformation. W.M.P. van der Aalst gives a formal definition which explains 
the requirements of an EPC element and defines the core elements as well [9]. Kees 
van Hee et al. define extended-EPC (eEPC) by providing syntax and semantics [10]. 
Those studies provide a foundation for our transformation and validation rules.  

Transformation techniques to generate models based on existing eEPC models are 
defined for different formalisms like BPMN [10] and UML [11]. Nüttgens et al. [11] 
transform EPC models into object oriented models. Relations between EPC and  
UML diagrams (use case, activity diagram, class diagram and application structure 
diagram) and the details about which information in an EPC element is used to trans-
form related diagram are defined. In this study, mapping between EPC and UML 
elements is not stated; only structural transformation approach is explained.  

In [12], Tscheschner describes a direct mapping technique to convert eEPC to 
BPMN and defines transformation rules to map eEPC elements to BPMN elements. On 
the other hand, eEPC and BPMN differ in their semantics and formalization. There-
fore, a complete mapping (structural and semantic) is almost not achievable by solely 
using direct mapping for each and every component. In order to get complete one, 
elements of core EPC definition and a subset of eEPC elements are used for mapping. 

In [13], Aguilar-Savén compares different modeling languages in terms of message 
exchange, communication partner’s role, process flow and timing, visualization of 
none sequential process steps, understandability and clear structure of models in order 
to find the most suitable language for a specific project. According to this study S-
BPM is very successful in visualizing exchange messages between subjects. Behavior 
of the communication partners is also well defined in S-BPM and it has a comprehen-
sive notation. On the other hand, eEPC is stronger than S-BPM in terms of showing 
the details of process flow and ease of understanding. 

In [14] Sneed provides a mapping method for bidirectional transformation between 
BPMN and S-BPM. Transformation consists of two main parts. In the first part; rules 
for atomic structures (basic modeling constructs) are defined. The first part of the 
transformation provides mapping for Subject Behavior Diagrams. In the second part, 
mapping rules for complex structures are defined. Complex structures are used to 
visualize the communication view between subjects. In contrast to our study, this 
study focuses on SID generation. 

3 eEPC Notation 

The subset of eEPC elements covered by our transformation rules are listed in  
Figure 1. In order to elaborate elements and their relationships, composed meta-model 
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is depicted in Figure 2 (it’s also used for model transformation). It is based on the 
formal definition of EPC defined by W.M.P. van der Aalst [9] and eEPC Kees van 
Hee et al. [10]. 

 

 

Fig. 1. Covered set of eEPC elements 

According to our meta-model, a process consists of at least five process elements 
(start event, function, end event and control flows between them). Process elements 
can be workflow elements (function, event, process path, control flow, split connector 
and join connector) or extended elements (data object, resource object, actor, informa-
tion flow and relation). eEPC workflow elements are consecutive to each other to 
form a process flow. Core elements (function, event and process path) are connected 
to each other by control flows. Data objects (document, list, log, product and file) are 
connected to functions or process paths via an information flow and they are  
connected to an actor via a relation. Relation also connects functions and process 
paths to actors and resource objects (application, reference and business rule). 

In order to validate an eEPC diagram the following rules are used [9] [10]: 

 There must be at least one start event, 
 There must be at least one end event, 
 All elements must be connected, 
 All functions or process paths must have exactly one incoming and one 

outgoing control flow, 
 Events cannot be consecutive to each other, 
 Split connectors must have one incoming control flow and more than one 

outgoing control flow, 
 Join connectors must have more than one incoming control flow and one 

outgoing control flow. 
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4 S-BPM Notation 

Since “eEPC to S-BPM” transformation is an injective non-surjective function, all S-
BPM elements are not covered in our mapping. The covered elements of S-BPM ele-
ments are listed in Figure 3. 

 

Fig. 3. Covered set of S-BPM elements 

SBD elements and their relations are shown in Figure 4 as a meta-model. SBD is 
composed of at least 3 process elements; start subject state, end subject state and an 
arc that connected these two states. SBDs consist of subject states (Receive, Send and 
Function) and outgoing control flows (arcs). A control flow has a label whose value is 
determined according to its source subject state. “Receive” state depicts the receiving 
message action and it is followed by a control flow. That flow shows information of 
sender and received data (Receive Arc). “Send” state is used to show sending mes-
sage action. It is followed by a control flow (Send Arc) that shows receiver info and 
sent data. “Function” state with an outgoing arc (State Arc) is used for tasks and post-
condition of the function.  In addition to those SBD elements, macro classes and 
choice operators (“Multipath” structure) are also used. Macro classes are used to show 
sub-processes that repeat in different SBDs in order to avoid repeated patterns. The 
notation of macro class consists of three parts, in the first part valid start states which 
activate the sub-process are shown. Name of the macro (sub-process) is shown in the 
second part. In the final part, the outputs of the sub-process are shown. Choice opera-
tor consists of a number of parallel paths which are activated simultaneously. It starts 
and ends with a bar which includes beginning and end switches for each path. 
Validation rules for SBDs: 

 There must be at least one start subject state, 
 There must be at least one end subject state, 
 All elements must be connected, 
 All receive nodes must be followed by a receive arc which is annotated by 

a receive clause, 
 All send nodes must be followed by a send arc which is annotated by a 

send clause, 
 All macro classes must have at least one incoming control flow (receive, 

send or state arc) and at least one outgoing state arc, 
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 All multipath structures must have exactly one incoming control flow and 
exactly one outgoing state arc, 

 Start bar and end bar of a multipath structure must have the same number 
of switches. 

 All alternate paths in a multipath structure must be start and end with a 
switch.  

 

Fig. 4. S-BPM Metamodel from scratch 

5 Transformation  

eEPC and S-BPM differs the most in the aspect of adopted modeling techniques. 
eEPC uses flow-oriented approach. Due to that, it is generally considered as a kind of 
flowchart. It visualizes the sequence of tasks which are performed by different actors. 
On the other hand, S-BPM uses subject-oriented modeling technique which means 
that it focuses on subjects (actors) and their relationships. In eEPC, a business process 
performed by more than one actor can be visualized by one eEPC diagram. However, 
in S-BPM that business process is visualized by SID in higher level and internal activ-
ities of each subject are shown in separate SBDs in lower level. For that reason, our 
conversion strategy consists of two phases. In the first phase, eEPC model needs to be 
decomposed into individual eEPC models for each actor. Then, as a second phase, 
SBDs are generated for each individual eEPC model. Input eEPC diagrams which will 
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be transformed are assumed to be valid according to syntactic and semantic rules 
defined in [9] [10]. 

Structural mapping is used as transformation technique; nevertheless there are sig-
nificant differences between eEPC and S-BPM notations. For transformation, patterns 
which composed of different elements and transformation rules for those patterns are 
defined in the following. 

5.1 Phase One: Generating Individual eEPCs 

As we stated in the previous section, eEPC to eEPC transformation is initially per-
formed in case of more than one actor are responsible for the business process. The 
tasks of different actors are transformed into individual eEPC diagrams. First, the 
actors who are only connected to functions are determined and then eEPC diagrams 
for each of them are generated. 

In the individual eEPC generation process, function or function set which are con-
nected to different actors are ignored. In order to generate continuous flow for the 
actor, the output event of the last function performed by concerning actor and the 
output event of the last function performed by a different actor are concatenated with 
an "and” connector(Figure 5). 

 

Fig. 5. eEPC to eEPC Transformation 

5.2 Phase Two: Generating S-BPM Models 

SBD generation starts from the root node and follows through the nodes in sequential 
order. The events without incoming control flow, the events without outgoing control 
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flow and function-event pairs are taken into account firstly. In the conversion of func-
tion-event pairs, relations of the function with other elements (data and resource ob-
ject) are inspected. Matched patterns (defined in following subsections) converted 
into respecting target patterns.   

Functions and Events. Functions and events are the most crucial elements of eEPC. 
Functions represent tasks or activities which are executed by organization units, 
groups or positions. Events show the state of the process. They are triggered by func-
tions and they also trigger functions as well. Function-event pairs show the flow of 
the business process. Events are problematic in transformation because there is not a 
corresponding element in S-BPM to map.  In order to avoid information lost, follow-
ing rules are defined in Table 1. 

Table 1. Transformation rules for functions and events 

Functions followed by an event 
Functions are directly mapped to 
performing action (function state) 
element of S-BPM. Events are shown 
as text on the outgoing control flow. 

Functions without following event
Functions without following event 
are mapped to performing action 
element and a control flow without 
any label. 

Events without incoming control flow
Events without incoming control 
flow are interpreted as start event. It’s 
mapped to a dummy start function 
with «Start» annotation  

Events without outgoing control flow
Events without outgoing control flow 
are interpreted as final event. It’s 
mapped to a dummy end function 
with «End» annotation 

Events with incoming and outgoing control flows
Events with incoming and outgoing 
control flows are mapped to a control 
flow with a label that includes event 
description. 
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Data and Subjects. In the eEPC, there are many different types of data and subjects, 
however the corresponding representations of those objects in S-BPM is not available. 
Transforming these elements by ignoring their type causes information lost. In order 
to overcome that, annotations for data and subject types are introduced. Table 2 gives 
the subject type annotations and Table 3 gives annotations for information, material 
and resource objects. 

Table 2. Subjects and their annotations 

Subject Type Annotation 
Organization Unit «unit» 

Group «group» 
Position «position» 

 

Table 3. Information, Material and Resource Objects and their annotations 

Information, Material and 
Resource Objects 

Annotation 

Document «doc » 
List «list » 

Product «product» 
File «file» 
Log «log » 

Application «app» 
Reference «ref » 

Business rule «rule» 
 

Document, list, product, file and log can be seen as a data object. However; appli-
cation, reference and business rule are resource objects. Applications are systems and 
supports functions for execution. References (laws, regulations, standards, guidelines, 
etc…) are used to provide information to execute related function. Business rules 
restrict the operations of functions. For resource objects, notation with “Used” key-
word and respective annotation («app», «ref» or «rule») is used. The description of 
resource object is also given as a part of this notation. Resource object notation is 
connected to functions with a dotted line (Refer to Figure 6). 

 

Fig. 6. Resource object transformation rules 
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Split Function 

Split Function connectors acti-
vate two or more post-conditions 
(events) of a function.  

Split Function is mapped to 
performing action element with 
«and», «or» or «xor» annotations. 
These elements have one incom-
ing control flow and outgoing 
control flows with a label that 
includes event description. 

Join Events

 

Join Events connectors concate-
nate preconditions (events) and 
activate the following function. 

Join Events is mapped to per-
forming action element with 
«and», «or» or «xor» annotations. 
These elements have incoming 
control flows with a label that 
includes the description of pre-
condition (event) and an outgoing 
control flow without any label. 

Split Event 
 

 
 

Split Event connector activates 
two or more functions when the 
precondition (event) is satisfied. 

For Split Event, performing 
action element with «and» anno-
tation is used. It has an incoming 
control flow with a label that 
includes the description of pre-
condition (event) and outgoing 
control flows without any label.  
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Fig. 12. Transformation of Archiving Process for Archivist 

“Events without incoming control flow”, “Data with incoming information flow”, 
“Resource object transformation”, “Functions followed by an event” and “Events 
without outgoing control flow” are used in given order to transform Acquiring archive 
material process in the view of personnel (Figure 13.a-13.b). 

 

Fig. 13. Transformation of Acquiring Archived Material Process for Personnel 
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S-BPM model of Achivist_Acquiring archive material process is generated by 
practicing the following rules respectively; “Events without incoming control flow”, 
“Data with outgoing information flow”, “Functions without following event”, “Split 
Function”, “Events without outgoing control flow”, “Functions without following 
event”, “Data with incoming information flow”, “Split Function”, “Functions fol-
lowed by an event”, “Events without outgoing control flow” (Figure 14.a-14.b). 

 

Fig. 14. Transformation of Acquiring Archived Material Process for Archivist 
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The validity of output S-BPM models are checked manually by traversing the vali-
dation rules given in section 3.  

7 Discussion and Conclusion 

In our case study, eEPC model has been transformed to S-BPM without any informa-
tion lost by using the defined transformation rules. The generated S-BPM models are 
valid and semantics of the input model are preserved in output models. As a result of 
eEPC to S-BPM transformation, individual models for each subject are generated. 
The output model names give information about subject and related process. Howev-
er, interactions of the subjects and message flow between them are missing. User can 
only get this information by tracking the generated models and finding the common 
points (events) manually. In order to provide traceability, SBD for input process 
should also be generated. That generation is out of this paper’s scope, it is left as a 
future work. 

Duplication is another problem which occurs in the conversion of sending and re-
ceiving messages. If there is a function which includes “receive” keyword in its de-
scription and an incoming information flow connected to it, information flow part is 
converted as receive message with «receive» annotation and conversion of function 
part also includes “receive” keyword which refers to the same data. The duplication 
problem also occurs in the conversion of outgoing information flow connected to a 
function that contains “Send” keyword. In order to avoid this problem, description of 
functions is also taken into account. Information flow and related function is consi-
dered as a different pattern and that pattern is mapped to “Receive Message” or “Send 
Message” element directly. On the other hand, there is no way to show all flow in-
formation in a single S-BPM element (e.g. send-receive element) if there are more 
than one information flow related to the function. Thus, possible duplicates are not 
handled in order not to complicate transformation. 

During the case study, we have had some observations for more understandable 
model generations. These remarks can be summarized as follows: 

• Each function should be followed by an event and each function should be trig-
gered by an event in the input model. Otherwise, null transitions will be occurred 
in the model.  

• Each data object should be related to a subject. Otherwise, subject information will 
be marked as «undefined». 

• In case of eEPC model belongs to only one actor, no information lost occurs in 
transformation. Otherwise, subject’s interactions will be lost. 

As a conclusion, in this paper we have defined metamodels (based on MOF) and 
validation rules for eEPC and S-BPM. The main contribution of the study is defining 
a transformation approach and it is divided into two phases. In the first phase, indi-
vidual eEPC models are generated and then eEPC to S-BPM transformation is per-
formed as a second phase. Common eEPC patterns and rules for each of them are 
defined as guidelines. These guidelines are validated on a real world case study and 
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they are evaluated to be used in the development of the extension to UPROM (work 
in progress). 
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