

A. Nanopoulos and W. Schmidt (Eds.): S-BPM ONE 2014, LNBIP 170, pp. 53–73, 2014.
© Springer International Publishing Switzerland 2014

Transformation from eEPC to S-BPM: A Case Study

Başak Çakar1 and Onur Demirörs2

1 ASELSAN Inc., SST-MD-YMM
P.K. 1, 06172 Yenimahalle /Ankara, Turkey

bcakar@aselsan.com.tr
2 Informatics Institute, Middle East Technical University,

06531 Ankara, Turkey
demirors@metu.edu.tr

Abstract. Business process models are vital assets of any organization. The
organizations prefer to use one of the modeling methods and notations accord-
ing to its features like tool support, size of user base, ease of use. On the other
hand, prevalent methods (formalisms) to model these processes change over
time. Furthermore, some modeling tools and/or methods might be pulled out of
the market completely. In order to handle these kinds of changes easily, migra-
tion methods has to be defined. In this work, model transformation is proposed
as a method to migrate from eEPC to S-BPM. Direct mapping rules are defined
to transform models and the application of these rules is demonstrated by on a
real world case study.

Keywords: Process Modeling, eEPC, S-BPM, Model Transformation.

1 Introduction

Business process models describe logical order of activities and dependencies [1].
There are many process modeling languages and organizations use them to reach a
comprehensive understanding of organizational processes and analyze them. In the
frame of this study, we particularly focus on eEPC and S-BPM languages.

EPC is a business process modeling technique developed by Scheer et al. at the Insti-
tute for Information Systems in Germany, in 1990s [2][3]. EPC represents business
process as an ordered graph which shows chronological sequence and logical interde-
pendencies between elements. In order to model more complex business processes, EPC
notation is extended with additional elements from the organization and data view,
which is called eEPC (extended Event-driven Process Chain). It is relatively simple
notation to model business processes and highly accepted by the practitioners from
diverse areas for business process re-engineering, management and documentation.

S-BPM is a paradigm that is developed by Albert Fleischmann [4] to describe and
execute business processes from the perspective of subjects. S-BPM gets inspired
from natural languages and the structure of S-BPM is similar to sentence structure of
natural languages. According to S-BPM, subjects are active elements in a business

54 B. Çakar and O. Demirörs

process. Therefore, they should be the starting point of the activities (like natural
language sentences) [5]. Subjects execute business processes by exchanging messages
with each others. Interactions between subjects are shown in the Subject Interaction
Diagram (SID). SIDs visualize subjects and data flow (exchange messages) among
them. Internal activities of subjects are shown in Subject Behavior Diagram (SBD).
S-BPM uses top down approach in determining communication between subjects and
uses bottom-up approach in determining internal behavior of subjects.

In the industry EPC is widely accepted during the last decade by means of ARIS
toolset. A number of organizations represented their processes using eEPC. However;
there is a gap between business and information technology systems in the eEPC
since it focuses on notations and this makes difficult to design business processes
within IT systems [6]. In order to close that gap, S-BPM has emerged as a new mod-
eling paradigm. S-BPM enables to create dynamic business applications and to inte-
grate them into the existing systems seamlessly. This also provides organizations,
which use S-BPM as modeling language, competitive advantage. In addition to this,
S-BPM provides a better representation for human interaction patterns and its notation
is simple and easy to understand. As an alternative to EPC, S-BPM gaining ground
with IT support. Migration of legacy eEPC models requires considerable effort. Fur-
thermore, it’s a labor intensive work which increases the usage of personal resources
and costs dramatically.

Our goal is to facilitate the transformation process by defining rules with direct
mapping. Model transformation is adopted as a main method to provide automation.
A model transformation takes a source model and transforms it into a target model by
using predefined transformation definition (rules) [7]. The both of the models con-
form to their respective metamodels. A transformation is defined with respect to the
metamodels. The transformation definition is executed on concrete models by a trans-
formation engine. In our case, eEPC is the source model and S-BPM is the target
model. Transformation definition is explained in details throughout this document. In
order to automate eEPC to S-BPM transformation we developed an extension to exist-
ing transformation engine namely UPROM (Unified Process Modeling Tool) devel-
oped by Bilgi Grubu and SMRG Research Group. UPROM is based on bflow* toolbox
which is an open source modeling tool contributed by at the University of Hamburg
and the University of Applied Sciences Emden/Leer [8].

Before the conversion, syntax of the eEPC model is needed to be checked. eEPC
syntactical validation rules are stated in Section 3 according to formal definitions
given in [9] [10]. The rules to check the validity of generated S-BPM model is also
defined in Section 4. These rules include constraints on inter-elements relations and
element sequence. In this study we check the validation of input and output models
manually. However; after the development of the tool is completed, it is done semi-
automatically.

In this paper, we define a set of rules (guidelines) to convert eEPC models to
S-BPM models and we validate these by applying our transformation method to a
case study. The remainder of this paper is organized as follows: Related work is
mentioned in Section 2. Notation of eEPC, its validation rules and metamodel from
scratch are presented in Section 3. Notation of S-BPM with validation rules and

 Transformation from eEPC to S-BPM: A Case Study 55

S-BPM metamodel from scratch can be found in Section 4. Section 5 presents trans-
formation methodology and rules. Case study can be found in Section 6. Discussions
and conclusion are presented in Section 7. Finally references can be found in Section 8.

2 Related Work

In the literature, there are many research studies on EPC and eEPC that are useful for
model transformation. W.M.P. van der Aalst gives a formal definition which explains
the requirements of an EPC element and defines the core elements as well [9]. Kees
van Hee et al. define extended-EPC (eEPC) by providing syntax and semantics [10].
Those studies provide a foundation for our transformation and validation rules.

Transformation techniques to generate models based on existing eEPC models are
defined for different formalisms like BPMN [10] and UML [11]. Nüttgens et al. [11]
transform EPC models into object oriented models. Relations between EPC and
UML diagrams (use case, activity diagram, class diagram and application structure
diagram) and the details about which information in an EPC element is used to trans-
form related diagram are defined. In this study, mapping between EPC and UML
elements is not stated; only structural transformation approach is explained.

In [12], Tscheschner describes a direct mapping technique to convert eEPC to
BPMN and defines transformation rules to map eEPC elements to BPMN elements. On
the other hand, eEPC and BPMN differ in their semantics and formalization. There-
fore, a complete mapping (structural and semantic) is almost not achievable by solely
using direct mapping for each and every component. In order to get complete one,
elements of core EPC definition and a subset of eEPC elements are used for mapping.

In [13], Aguilar-Savén compares different modeling languages in terms of message
exchange, communication partner’s role, process flow and timing, visualization of
none sequential process steps, understandability and clear structure of models in order
to find the most suitable language for a specific project. According to this study S-
BPM is very successful in visualizing exchange messages between subjects. Behavior
of the communication partners is also well defined in S-BPM and it has a comprehen-
sive notation. On the other hand, eEPC is stronger than S-BPM in terms of showing
the details of process flow and ease of understanding.

In [14] Sneed provides a mapping method for bidirectional transformation between
BPMN and S-BPM. Transformation consists of two main parts. In the first part; rules
for atomic structures (basic modeling constructs) are defined. The first part of the
transformation provides mapping for Subject Behavior Diagrams. In the second part,
mapping rules for complex structures are defined. Complex structures are used to
visualize the communication view between subjects. In contrast to our study, this
study focuses on SID generation.

3 eEPC Notation

The subset of eEPC elements covered by our transformation rules are listed in
Figure 1. In order to elaborate elements and their relationships, composed meta-model

56 B. Çakar and O. Demirörs

is depicted in Figure 2 (it’s also used for model transformation). It is based on the
formal definition of EPC defined by W.M.P. van der Aalst [9] and eEPC Kees van
Hee et al. [10].

Fig. 1. Covered set of eEPC elements

According to our meta-model, a process consists of at least five process elements
(start event, function, end event and control flows between them). Process elements
can be workflow elements (function, event, process path, control flow, split connector
and join connector) or extended elements (data object, resource object, actor, informa-
tion flow and relation). eEPC workflow elements are consecutive to each other to
form a process flow. Core elements (function, event and process path) are connected
to each other by control flows. Data objects (document, list, log, product and file) are
connected to functions or process paths via an information flow and they are
connected to an actor via a relation. Relation also connects functions and process
paths to actors and resource objects (application, reference and business rule).

In order to validate an eEPC diagram the following rules are used [9] [10]:

 There must be at least one start event,
 There must be at least one end event,
 All elements must be connected,
 All functions or process paths must have exactly one incoming and one

outgoing control flow,
 Events cannot be consecutive to each other,
 Split connectors must have one incoming control flow and more than one

outgoing control flow,
 Join connectors must have more than one incoming control flow and one

outgoing control flow.

 Transformation from eEPC to S-BPM: A Case Study 57

F
ig

. 2
. e

E
P

C
 M

et
am

od
el

 f
ro

m
 s

cr
at

ch

58 B. Çakar and O. Demirörs

4 S-BPM Notation

Since “eEPC to S-BPM” transformation is an injective non-surjective function, all S-
BPM elements are not covered in our mapping. The covered elements of S-BPM ele-
ments are listed in Figure 3.

Fig. 3. Covered set of S-BPM elements

SBD elements and their relations are shown in Figure 4 as a meta-model. SBD is
composed of at least 3 process elements; start subject state, end subject state and an
arc that connected these two states. SBDs consist of subject states (Receive, Send and
Function) and outgoing control flows (arcs). A control flow has a label whose value is
determined according to its source subject state. “Receive” state depicts the receiving
message action and it is followed by a control flow. That flow shows information of
sender and received data (Receive Arc). “Send” state is used to show sending mes-
sage action. It is followed by a control flow (Send Arc) that shows receiver info and
sent data. “Function” state with an outgoing arc (State Arc) is used for tasks and post-
condition of the function. In addition to those SBD elements, macro classes and
choice operators (“Multipath” structure) are also used. Macro classes are used to show
sub-processes that repeat in different SBDs in order to avoid repeated patterns. The
notation of macro class consists of three parts, in the first part valid start states which
activate the sub-process are shown. Name of the macro (sub-process) is shown in the
second part. In the final part, the outputs of the sub-process are shown. Choice opera-
tor consists of a number of parallel paths which are activated simultaneously. It starts
and ends with a bar which includes beginning and end switches for each path.
Validation rules for SBDs:

 There must be at least one start subject state,
 There must be at least one end subject state,
 All elements must be connected,
 All receive nodes must be followed by a receive arc which is annotated by

a receive clause,
 All send nodes must be followed by a send arc which is annotated by a

send clause,
 All macro classes must have at least one incoming control flow (receive,

send or state arc) and at least one outgoing state arc,

 Transformation from eEPC to S-BPM: A Case Study 59

 All multipath structures must have exactly one incoming control flow and
exactly one outgoing state arc,

 Start bar and end bar of a multipath structure must have the same number
of switches.

 All alternate paths in a multipath structure must be start and end with a
switch.

Fig. 4. S-BPM Metamodel from scratch

5 Transformation

eEPC and S-BPM differs the most in the aspect of adopted modeling techniques.
eEPC uses flow-oriented approach. Due to that, it is generally considered as a kind of
flowchart. It visualizes the sequence of tasks which are performed by different actors.
On the other hand, S-BPM uses subject-oriented modeling technique which means
that it focuses on subjects (actors) and their relationships. In eEPC, a business process
performed by more than one actor can be visualized by one eEPC diagram. However,
in S-BPM that business process is visualized by SID in higher level and internal activ-
ities of each subject are shown in separate SBDs in lower level. For that reason, our
conversion strategy consists of two phases. In the first phase, eEPC model needs to be
decomposed into individual eEPC models for each actor. Then, as a second phase,
SBDs are generated for each individual eEPC model. Input eEPC diagrams which will

60 B. Çakar and O. Demirörs

be transformed are assumed to be valid according to syntactic and semantic rules
defined in [9] [10].

Structural mapping is used as transformation technique; nevertheless there are sig-
nificant differences between eEPC and S-BPM notations. For transformation, patterns
which composed of different elements and transformation rules for those patterns are
defined in the following.

5.1 Phase One: Generating Individual eEPCs

As we stated in the previous section, eEPC to eEPC transformation is initially per-
formed in case of more than one actor are responsible for the business process. The
tasks of different actors are transformed into individual eEPC diagrams. First, the
actors who are only connected to functions are determined and then eEPC diagrams
for each of them are generated.

In the individual eEPC generation process, function or function set which are con-
nected to different actors are ignored. In order to generate continuous flow for the
actor, the output event of the last function performed by concerning actor and the
output event of the last function performed by a different actor are concatenated with
an "and” connector(Figure 5).

Fig. 5. eEPC to eEPC Transformation

5.2 Phase Two: Generating S-BPM Models

SBD generation starts from the root node and follows through the nodes in sequential
order. The events without incoming control flow, the events without outgoing control

 Transformation from eEPC to S-BPM: A Case Study 61

flow and function-event pairs are taken into account firstly. In the conversion of func-
tion-event pairs, relations of the function with other elements (data and resource ob-
ject) are inspected. Matched patterns (defined in following subsections) converted
into respecting target patterns.

Functions and Events. Functions and events are the most crucial elements of eEPC.
Functions represent tasks or activities which are executed by organization units,
groups or positions. Events show the state of the process. They are triggered by func-
tions and they also trigger functions as well. Function-event pairs show the flow of
the business process. Events are problematic in transformation because there is not a
corresponding element in S-BPM to map. In order to avoid information lost, follow-
ing rules are defined in Table 1.

Table 1. Transformation rules for functions and events

Functions followed by an event
Functions are directly mapped to
performing action (function state)
element of S-BPM. Events are shown
as text on the outgoing control flow.

Functions without following event
Functions without following event
are mapped to performing action
element and a control flow without
any label.

Events without incoming control flow
Events without incoming control
flow are interpreted as start event. It’s
mapped to a dummy start function
with «Start» annotation

Events without outgoing control flow
Events without outgoing control flow
are interpreted as final event. It’s
mapped to a dummy end function
with «End» annotation

Events with incoming and outgoing control flows
Events with incoming and outgoing
control flows are mapped to a control
flow with a label that includes event
description.

62 B. Çakar and O. Demirörs

Data and Subjects. In the eEPC, there are many different types of data and subjects,
however the corresponding representations of those objects in S-BPM is not available.
Transforming these elements by ignoring their type causes information lost. In order
to overcome that, annotations for data and subject types are introduced. Table 2 gives
the subject type annotations and Table 3 gives annotations for information, material
and resource objects.

Table 2. Subjects and their annotations

Subject Type Annotation
Organization Unit «unit»

Group «group»
Position «position»

Table 3. Information, Material and Resource Objects and their annotations

Information, Material and
Resource Objects

Annotation

Document «doc »
List «list »

Product «product»
File «file»
Log «log »

Application «app»
Reference «ref »

Business rule «rule»

Document, list, product, file and log can be seen as a data object. However; appli-
cation, reference and business rule are resource objects. Applications are systems and
supports functions for execution. References (laws, regulations, standards, guidelines,
etc…) are used to provide information to execute related function. Business rules
restrict the operations of functions. For resource objects, notation with “Used” key-
word and respective annotation («app», «ref» or «rule») is used. The description of
resource object is also given as a part of this notation. Resource object notation is
connected to functions with a dotted line (Refer to Figure 6).

Fig. 6. Resource object transformation rules

Receive/Send Data. In the
(input) or produced by func
data object and function sh
do not affect the process fl
label. The value of that labe
data). “Receiving Message
conversion of data-subject
flow, it’s assumed that all r
tion and all sending messa
ceived and sent messages c
following patterns for send
with semantics are explaine

Table 4. Tra

Data with outgoing inform

Data with incoming infor

Transformation from eEPC to S-BPM: A Case Study

e eEPC, there are data objects which are used by functi
ctions (output). Direction of the information flow betw
ows whether it is a receiving or sending data. Data obje

flow. In SBD, data objects are stated on control flow a
el is set according to direction of the flow (sent or recei
e” and “Sending Message” elements are used during
pairs. Since the data objects are not ordered in the proc
receiving messages take place before the concerning fu

ages come after the function in the flow. The order of
can be stated by the user before the transformation. In

ding and receiving messages and their transformation ru
ed in Table 4.

ansformation rules for data objects and subjects

mation flow

Name of the e
ment is given
“«Receive» da
name” automa
cally.
If there is mo
than one d
object received
a function, cho
operator to co
bine receivi
messages is use

rmation flow

Name of the e
ment is given
“«Send» da
name” automa
cally.
If there is mo
than one d
object sent by
function, cho
operator to co
bine sending m
sages is used.

63

ions
ween

ects
as a
ived
the

cess
unc-
f re-

the
ules

ele-
as

ata
ati-

ore
data

by
oice
om-
ing

ed.

ele-
as

ata
ati-

ore
data
y a
oice
om-

mes-

64 B. Çakar and O. Demirö

Data without any subject

Logical Connectors. Logic
tions and events in the con
or more control flows or to
are three types of logical c
not any element in S-BPM
sion of them is the most p
functions with “«and»”, “«o
logical connectors. In S-BP
and more than one outgoin
tion” element with a respe
Table 5, logical connectors
brief descriptions.

Table 5.

Join Functions

örs

relation

«undefined»
annotation is us
for missing su
jects.

cal connectors show the logical relationships between fu
trol flow. They are used to split one control flow into t
concatenate two or more control flows. In the eEPC th

connectors; “and”, “or” and “exclusive-or”. Since ther
with the same behavior to map logical connectors, conv

problematic part of the transformation process. Three n
or»” and “«xor»” annotations are defined in order to use
PM functions with more than one incoming control flo
ng control flows are possible. Therefore, “Performing A
ective annotation is used to depict logical connectors
grouped by behavior are mapped to S-BPM elements w

. Transformationrules for logical connectors

Join Functions connectors joi
the controls flows that ends w
functions and activates the res
event.

Join Functions is mapped
performing action elements w
«and», «or» or «xor» annotatio
according to logical connecto
These elements have incomi
control flows without any lab
and an outgoing control flo
with a label that includes t
description of the output event
join function.

sed
ub-

unc-
two
here
e is
ver-
new
e as
ows
Ac-
. In

with

ins
ith
ult

to
ith

ons
ors.
ing
bel
ow
the
of

 Transformation from eEPC to S-BPM: A Case Study 65

Split Function

Split Function connectors acti-
vate two or more post-conditions
(events) of a function.

Split Function is mapped to
performing action element with
«and», «or» or «xor» annotations.
These elements have one incom-
ing control flow and outgoing
control flows with a label that
includes event description.

Join Events

Join Events connectors concate-
nate preconditions (events) and
activate the following function.

Join Events is mapped to per-
forming action element with
«and», «or» or «xor» annotations.
These elements have incoming
control flows with a label that
includes the description of pre-
condition (event) and an outgoing
control flow without any label.

Split Event

Split Event connector activates
two or more functions when the
precondition (event) is satisfied.

For Split Event, performing
action element with «and» anno-
tation is used. It has an incoming
control flow with a label that
includes the description of pre-
condition (event) and outgoing
control flows without any label.

66 B. Çakar and O. Demirö

In order to transform of
erator is used. Choice oper
discretion of the respectiv
usage of choice operator is
cal connectors can be used
parallel processes in eEPC
Therefore, predefined mapp
(logical elements match an
ment), they are transforme
goes well with the intended
lowing functions are to be e
the behavioral difference in
cal connector starts/ends an

Fig. 7.

Process Path. Process path
tion rules, defined for func
In contrast to function elem
notation of macro class ele
output transitions are show
of the process is sought in t
project folder, start states o
and end states of sub-proc
the model of the sub-pro
states and output transition
information.

Fig. 8. T

örs

“and” block (“and” connectors using in pairs), choice
rator leaves the execution sequence of the activities to
e person, can be preferred for transformation. Howev
directly related to structure of eEPC model. In eEPC lo
singly or in pairs. If there is only one connector is used
, there is no way to determine the end of those proces
ping rule is applied. If “and” connectors are used in p

nd parallel paths are opened and closed with the same e
d into choice operator (Figure 7). In most situations,

d semantics of “and” in EPC process models when the
executed by the same person. However, in order to iden
n “and” connectors, modelers have to define whether lo
n alternative path block.

. Mapping rule for “And” connector block

h navigates the control flow to sub-processes. Transform
ction element, are also applicable to process path elem
ment, process path element is mapped to macro class. In
ement, invalid start states, name of the macro and possi
wn respectively. In transformation, firstly the expans
the project folder. If the model of the sub-process is in

of sub-process are used as valid start states of macro cl
cess are used as possible output transitions (Figure 8)
ocess is not in the project folder, user can define s
s manually, or «undefined» annotation is used for miss

Transformation rule of Process Path element

op-
the

ver,
ogi-

d for
ses.
airs
ele-
this
fol-

ntify
ogi-

ma-
ment.

the
ible
sion
the

lass
). If
start
sing

6 Case Study

eEPC models generated by
itiated by Ministry of Deve
BPM. The aim of the proj
processes with IT Systems
business processes which
essential processes of Arch
ure 9 shows activity and da
eEPC model of the Acquirin

Transformation from eEPC to S-BPM: A Case Study

y Bilgi Grubu in UPROM within a project, which is
elopment of the Republic of Turkey, are transformed to
ject is to define business processes and to support th
s. Within the scope of the project, main and support
belong to development agencies are modeled [15]. T

hive Management System are selected for case study. F
ata (sent/received) flow of archiving process. In Figure
ng archive material process is given.

Fig. 9. Archiving Process

67

in-
o S-
hose
ting

Two
Fig-
10,

68 B. Çakar and O. Demirö

Fig.

In both of them, two acto
the process. Thus in the fir

örs

10. Acquiring Archive Material Process

ors Personnel and Archivist takes a role to accomp
rst part of the transformation, process are divided into t

lish
two

sub-processes by omitting
model. Figure 11.a-12.a sh
13.a-14.a shows the sub-pro

In the second part of the
using the rules defined in se
the explanations of transfor
the rules “Events without
flow”, “Functions followed
“Events without outgoing co

Fig. 11. Tran

In the transformation of
without incoming control
flow”, “Functions without f
with incoming information
control flow” rules are used

Transformation from eEPC to S-BPM: A Case Study

actors which are directly connected to functions from
hows the sub-processes of Archiving process and Fig
ocesses of Acquiring archive material process.

transformation SBD for each sub-process are generated
ection 5.2. Thus, only the name of the applied rule is given
rmations. While transforming Personnel_Archiving Proc
incoming control flow”, “Data with outgoing informat
 by an event”, “Data with outgoing information flow”
ontrol flow” are used respectively.(Figure 11.a-11.b).

nsformation of Archiving Process for Personnel

Archivist_Archiving Process of Archivist subject, “Eve
flow”, “Split Event”, “Data with outgoing informat

following event”, “Resource object transformation”, ”D
n flow”, “Join Functions” and “Events without outgo
d (Figure 12.a-12.b).

69

the
gure

d by
n in

cess,
tion
and

ents
tion

Data
oing

70 B. Çakar and O. Demirörs

Fig. 12. Transformation of Archiving Process for Archivist

“Events without incoming control flow”, “Data with incoming information flow”,
“Resource object transformation”, “Functions followed by an event” and “Events
without outgoing control flow” are used in given order to transform Acquiring archive
material process in the view of personnel (Figure 13.a-13.b).

Fig. 13. Transformation of Acquiring Archived Material Process for Personnel

 Transformation from eEPC to S-BPM: A Case Study 71

S-BPM model of Achivist_Acquiring archive material process is generated by
practicing the following rules respectively; “Events without incoming control flow”,
“Data with outgoing information flow”, “Functions without following event”, “Split
Function”, “Events without outgoing control flow”, “Functions without following
event”, “Data with incoming information flow”, “Split Function”, “Functions fol-
lowed by an event”, “Events without outgoing control flow” (Figure 14.a-14.b).

Fig. 14. Transformation of Acquiring Archived Material Process for Archivist

72 B. Çakar and O. Demirörs

The validity of output S-BPM models are checked manually by traversing the vali-
dation rules given in section 3.

7 Discussion and Conclusion

In our case study, eEPC model has been transformed to S-BPM without any informa-
tion lost by using the defined transformation rules. The generated S-BPM models are
valid and semantics of the input model are preserved in output models. As a result of
eEPC to S-BPM transformation, individual models for each subject are generated.
The output model names give information about subject and related process. Howev-
er, interactions of the subjects and message flow between them are missing. User can
only get this information by tracking the generated models and finding the common
points (events) manually. In order to provide traceability, SBD for input process
should also be generated. That generation is out of this paper’s scope, it is left as a
future work.

Duplication is another problem which occurs in the conversion of sending and re-
ceiving messages. If there is a function which includes “receive” keyword in its de-
scription and an incoming information flow connected to it, information flow part is
converted as receive message with «receive» annotation and conversion of function
part also includes “receive” keyword which refers to the same data. The duplication
problem also occurs in the conversion of outgoing information flow connected to a
function that contains “Send” keyword. In order to avoid this problem, description of
functions is also taken into account. Information flow and related function is consi-
dered as a different pattern and that pattern is mapped to “Receive Message” or “Send
Message” element directly. On the other hand, there is no way to show all flow in-
formation in a single S-BPM element (e.g. send-receive element) if there are more
than one information flow related to the function. Thus, possible duplicates are not
handled in order not to complicate transformation.

During the case study, we have had some observations for more understandable
model generations. These remarks can be summarized as follows:

• Each function should be followed by an event and each function should be trig-
gered by an event in the input model. Otherwise, null transitions will be occurred
in the model.

• Each data object should be related to a subject. Otherwise, subject information will
be marked as «undefined».

• In case of eEPC model belongs to only one actor, no information lost occurs in
transformation. Otherwise, subject’s interactions will be lost.

As a conclusion, in this paper we have defined metamodels (based on MOF) and
validation rules for eEPC and S-BPM. The main contribution of the study is defining
a transformation approach and it is divided into two phases. In the first phase, indi-
vidual eEPC models are generated and then eEPC to S-BPM transformation is per-
formed as a second phase. Common eEPC patterns and rules for each of them are
defined as guidelines. These guidelines are validated on a real world case study and

 Transformation from eEPC to S-BPM: A Case Study 73

they are evaluated to be used in the development of the extension to UPROM (work
in progress).

References

1. Aguilar-Savén, R.S.: Business Process Modeling: Review and Framework. International
Journal of Production Economics (90), 129–149 (2004)

2. Scheer, A.W: ARIS- Modeling Methods, Meta-models, Applications. Springer, Berlin
(1998) (in German)

3. Scheer, A.W.: ARIS - Business Process Modeling, 3rd edn. Springer (1999)
4. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subject-Oriented

Business Process Management (2012)
5. Fleischmann, A.: What is S-BPM? In: Buchwald, H., Fleischmann, A., Seese, D., Stary, C.

(eds.) S-BPM ONE 2009. CCIS, vol. 85, pp. 85–106. Springer, Heidelberg (2010)
6. Singer, R., Zinser, E.: Business Process Management — S-BPM A New Paradigm for

Competitive Advantage? In: Buchwald, H., Fleischmann, A., Seese, D., Stary, C. (eds.)
S-BPM ONE 2009. CCIS, vol. 85, pp. 48–70. Springer, Heidelberg (2010)

7. Sendall, S., Kozaczynski, W.: Model Transformation the Heart and Soul of Model-Driven
Software Development. IEEE Software 20(5), 42–45 (2003)

8. Böhme, C.: bflow* Toolbox-an Open-Source Modeling Tool (2011)
9. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains. In-

formation and Software Technology 41(10), 639–650 (1999)
10. van Hee, K.M., Oanea, O., Sidorova, N.: Colored Petri Nets to Verify Extended Event-

Driven Process Chains. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp.
183–201. Springer, Heidelberg (2005)

11. Nüttgens, M., Feld, T., Zimmermann, V.: Business Process Modeling with EPC and UML:
Transformation or Integration? In: Schader, M., Korthaus, A. (eds.) The Unified Modeling
Language—Technical Aspects and Applications. Physica-Verlag, Heidelberg (1998)

12. Tscheschner, W.: Transformation from EPC to BPMN. Oryx Research. Potsdam, Germany
(2010)

13. Handy, B., Dirndorfer, M., Schneeberger, J., Fischer, H.: Methods of Process Modeling in
the Context of Civil Services by the Example of German Notaries. In: Schmidt, W. (ed.)
S-BPM ONE 2011. CCIS, vol. 213, pp. 281–295. Springer, Heidelberg (2011)

14. Sneed, S.: Mapping Possibilities of S-BPM and BPMN 2.0. In: Oppl, S., Fleischmann, A.
(eds.) S-BPM ONE 2012. CCIS, vol. 284, pp. 91–105. Springer, Heidelberg (2012)

15. Coşkunçay, A., Aysolmaz, B., Demirörs, O., Bilen, Ö., Doğan, İ.: An Approach for Con-
current Business Process Modeling and Requirements Analysis. In: Symposium on Soft-
ware Quality and Software Development Tools, İstanbul, Turkey (2010)

	Transformation from eEPC to S-BPM: A Case Study
	1 Introduction
	2 Related Work
	3 eEPC Notation
	4 S-BPM Notation
	5 Transformation
	5.1 Phase One: Generating Individual eEPCs
	5.2 Phase Two: Generating S-BPM Models

	6 Case Study
	7 Discussion and Conclusion
	References

