Formal Based Correctness Check for ePASS-IoS
1.1 Process Models with Integrated User
Support for Error Correcting

Stephan Borgert and Max Miihlhduser

Technische Universitdt Darmstadt
Dept. of Computer Science
64289 Darmstadt, Germany
{stephan,max}@tk.informatik.tu-darmstadt.de

Abstract. To ensure the correctness of business process models, auto-
matic and manual methods are applied. Since the manual checks are
time consuming and expensive, the automatic methods should be as ef-
fective as possible. An established verification check is the check for the
interaction soundness, i.e. the process model can be executed without
deadlocks. Normally, these approaches compile the graph based models
to expressions of a formal language which is passed on to a model check-
ing tool for verification. The drawback with this methods is that the
results are hard to use for analyzing the causes of errors. In this paper,
we present an integrated approach that is able to find important error
patterns, and supports the user in correcting errors while still having a
high performance.

Keywords: Formal Verification, Interaction Soundness , Subject Ori-
ented Modeling, PASS, w-Calculus.

1 Introduction

A model designer of the Metasonic[19] suite can move from a business process
to a complete application in four steps: 1) Model 2) Evaluate 3) Integrate 4)
Execute. The correctness of the models is checked in the steps 1) and 2) and in
accordance to [[10], p.312, Sect. 16.3] two aspects of correctness are distinguished

— A system must have certain properties, e.g. livelock free, deadlock free which
are independent of the application. This is implicit correctness. A deadlock
free system is also called an interaction sound system in the context of service
compositions. A formal definition is given in [25].

— A specified system must do what a designer has intended. This is explicit
correctness.

Explicit correctness checks what does the process and implicit correctness checks
how the process does it. To be exact: Does the process run without errors.
Therefore, explicit correctness has a higher priority than implicit correctness

A. Nanopoulos and W. Schmidt (Eds.): S-BPM ONE 2014, LNBIP 170, pp. 20-40, 2014.
© Springer International Publishing Switzerland 2014

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 21

but explicit correctness is only given when implicit correctness is fulfilled. If
a process is running into a deadlock, this should not fit the designers intents.
Manual interrupts are no solution for this problem. Of course, the deadlock would
be solved but if the model designer knows about a deadlock, the solving of the
deadlock should be part of the process model. The same applies for timeouts.
When they are only used to solve a deadlock but not to terminate the process
model in a proper way, explicit correctness is not given. Explicit correctness is
checked in step 2) by manual simulation, business users execute the model on
an abstract level and simulate the behavior of the subject providers. Checking
for explicit correctness has to be done manually since current systems are not
able to interpret the semantics of the models. The effort for this should be as
low as possible for three reasons. 1) Manual simulation is slow, 2) employees are
expensive and 3) they still can overlook errors which could become expensive if
they occur during runtime. To minimize the effort computer supported tools are
used. The Metasonic Suite includes a check for structural soundness of process
models. It checks for properties like: Is there exactly one start node per subject,
is there at least one end node per subject, is there a path from every node to
an end node and so on. This is very helpful to avoid many errors but there are
still more error types the tool can not find. Since subject and service oriented
business process models are also models of distributed systems, the verification
for interaction soundness is a common correctness check.

The “Parallel Activity Specification Scheme” (PASS[9,12]) is the modeling
concept implemented in the Metasonic Suite. An extended version of PASS was
introduced in [11]. We denote this version as extended PASS or ¢PASS and a
variant of it, focusing on support the internet of service paradigms, as ePASS-
ToS[5].

Distributed systems suffer from 3 inherent issues. Firstly, non deterministic
behavior can occur: every time a distributed system is executed, the behavior of
the system can differ. The behavior is the interaction behavior i.e. the commu-
nication protocol among the involved sub systems. The reasons for this are the
following: Not all subsystems of a distributed system work with the same speed
at all run times and further more the time needed for conveying the messages can
differ. Secondly, accessing the global state of the system is impossible. Monolithic
systems are easier to analyze because e.g. debug mechanisms like break points
can be used to detect errors. The same mechanisms are not suitable for dis-
tributed systems because even if it were possible to place break points in every
sub system, they would not meet at the same time per system run because of
the nondeterministic behavior. Therefore it would not be possible to stop the
system in every run at the exactly same global state. Finally, the system time
will be different on every subsystem: the system times will not be set to the ex-
act same time. This is an important point for time critical systems, for business
processes it is of less significance. Hence, it does not have to be considered for
our purposes. All in all, error detection in distributed systems can be very hard
and therefore the methods like verifying interaction soundness are supposed to
be useful for ePASS process models as well.

22 S. Borgert and M. Miihlhduser

The authors in [7] distinguish interconnection modeling and interaction mod-
eling. Modeling the internal behavior of the participants and relating them with
message flows is defined as interconnection modeling. Modeling the interaction
behavior between the different participants is called interaction modeling. There-
fore ePASS falls in the category interconnection models. BPMN supports inter-
connection and interaction modeling techniques. Both techniques support the
modeling of choreographies but the expressiveness is different[6]. An example for
interaction modeling can be found in [7].

Anti-patters were derived and used in [3,4,7]. In [3] anti-patterns are defined
as “Anti-patterns describe undesirable constructs that may introduce errors or
inefficiencies.” The authors in [4] have stated: “Each anti pattern declaratively
describes a violation scenario.” In [7] a set of 8 choreography modeling anti-
patterns were identified. These patterns were collected by observing people mod-
eling BPMN and “can be observed in a large number of interconnection models.”
The anti-patterns can be expressed by interconnection models.

The paper is structured as follows: Firstly, we briefly introduce the ePASS-
ToS language elements. Next, we motivate our decision to use m-calculus as for-
mal foundation and introduce how we exploit it for the purpose of interaction
soundness verification. After giving implementation details of the demonstrator,
we evaluate our approach by applying it on the 8 different choreography anti-
patterns. Then, the performance of the approach is discussed and finally, the
summary and conclusion are given.

2 Verification of ePASS IoS Models

2.1 ePASS-IoS

Graphical Syntax. The graphical elements of the extended Parallel Activities
Specification Scheme for the Internet of Services (ePASS IoS) 1.1 have been
introduced in [5]. The graphical language set has been explained by graphical
examples. We introduce a simplified notation in figure (1), in order to save space
depicting the examples.

Subjects are an abstraction of actors. The execution of the subjects is done by
concrete actors that are humans, machines or software services. These concrete
actors are called subject providers. Rules have to be defined for every process
to link the subject providers to the subjects during runtime. This late binding
mechanism also has the advantage of decoupling the process models from the
enterprise. More information can be found in [11,5]. Subjects are connected by
unidirectional channels, which enables communication among subject providers
by exchanging messages.

As shown in figure (1), we draw the internal behavior directly into the subjects.
This is in contrast to other ePASS systems where two layers are used.

Send, Receive and Action are the basic activities. Send and Receive states
are denoted with (8) and (R), while the name of the action is written directly
into the state symbol. The transition labels are exit conditions. Action states
have the results of the action as exit conditions. When Action states only have

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 23
. Subject: Seller
® Send State Types ,S_“bECt_BEdE’ | -Subjects~__ !
. :
® Receive | -
| lDone' |
Action I CF}D I payment _____
End | __________ I A 'F’ayment from Bidder,
®) " toeiveryromselerlll Message |}
@ Observer J é Type\s
@ Modal Inteme_ll ~T Payment t:)_S-eII-e; Delivery '[Ze_'"iefy_‘ﬁ’ Bidder)
Split Behavior | ey
@ | " O
Join \

Fig. 1. Simplified notation of the ePASS-IoS 1.1 language elements

one exit condition, the exit condition label can be omitted. The exit conditions of
Send states are (<Message-Type>, <Receiver>), written as <Message- Type>
to <Receiver>. The exit conditions of Receive states are (<Message-Type>,
<Sender>), written as < Message- Type> from <Sender>. The internal behavior
of subjects have exactly one Start state and can have an arbitrary number of
End states. Start states are denoted by a bold border. Every state can be a
start state. The Observer manages interrupts and exceptions. In case of such
an event, the control flow is lead to an alternative behavior. Start states can have
an arbitrary number of out-transitions and the End state can have an arbitrary
number of in-transitions. All other states can have an arbitrary number of in-
and out transitions. The semantics of this pattern is an exclusive choice split
and join. In order to fulfill a task, it is often the case that certain activities
have to perform and others could optionally be performed in addition . This
is why (MS) and (MJ), which are called Modal split and Modal join, are
introduced. They form a combination of an AND- split and join pair and an
OR- split and join pair. These symbols are specified e.g. in the BPMN 2.0 [22]
specification. Since the concerning semantics is an interleaving semantics, the
parallel execution does not have to be performed in parallel. Thus, the human
actors are still able to perform these kinds of behavior. In addition to the normal
control flow transitions, timeout transitions can be used in PASS / ePASS.
We would depict timeout transitions with a dashed line. Since the anti-patterns
do not take timeouts into consideration, we are not using them in this paper.
How ePASS timeouts can be handled concerning the formal verification can be
found in previous work [5].

2.2 7 Calculus as Formal Foundation

A formal semantics for the language elements is needed for the purpose of for-
mal verification. A common way to do this is by encoding the elements with a
suitable formalism. Many approaches of the BPM community use petri nets and

24 S. Borgert and M. Miihlhduser

its variants for it. Others use process algebras, abstract state machines, or other
state and transition based diagrams.

The used formalism should fit the verification requirements as well as possible.
For the purpose of verifying ePASS ToS models for interaction soundness, the
following requirements have been stated by us:

— As mentioned above, the purpose of the verification method is to perform a
check for interaction soundness. It has to detect deadlocks.

— Further more it has to be internal and not external. An external one del-
egates the verification task to model checker tools which verify the models
and return the results. The advantage of this approach is that it is easier
to get a result. The disadvantage is, the results are not easy to interpret.
The model checkers input consist of roughly two parameters. The first one
is the model which has to be checked and the second one is the specification
the model has to meet. The specifications are usually formulated in a for-
mula from mathematical logic and therefore allows general purpose model
checking. The results are difficult to interpret and it is not easy to analyze
the reason of error sources automatically. The results have to be analyzed
and new specifications have to be formulated; they have to be given to the
model checker again and again until the error sources are found. A user
friendly support for business users is hard to implement and therefore an
internal check is required. In consequence, verification algorithms must be
implemented into the modeling system. This way a user friendly analysis can
be achieved.

— The correctness check must not take to long. We required that the check has
to be faster then 15 seconds on an average computer.

Different diagram types can serve to model distributed systems like automata,
state charts , FSM etc. One, very simple type, is the Labeled Transitions
System (LTS).

Definition 1 (Labeled Transition System [14]). Let ACT be a fized set of
actions. A labeled transition system LTS = (PROC, —) over ACT consists of

— A set PROC of states and
— A set - C PROC x ACT x PROC of transitions between states.

To model distributed systems, three different types of actions were introduced:
send, receive and the internal action 7. These three actions are the base language
elements of ePASS but the internal action 7 is specified more precisely in the
internal behavior. They can be converted to 7 actions in order to anonymize
the internal behavior. Thereby, an external representation is obtained which can
still be used for verification purposes like deadlock, livelock checks or checks
for equivalent interaction behavior of different subjects. Modeling distributed

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 25

Table 1. Syntax of the m-calculus. {z,y, z} are names and 7 the hidden action. The
term x(g) denotes sendig y1, . . ., y» messages via channel = while x(§) denotes receiving
Y1, ...,Yn Messages via channel z.

Processes P,Q :: 0 Inactive Process

| 7P Prefix

| P+ Q Sum

| P |Q Parallel

| (2)P Restriction
| K Identifier

x(9) Receive

Prefixes := x(g) Send
\
| 7 Hidden Action

systems only with LTS is a very challenging task because the number of states
of a distributed system grow very fast with the number of subsystems and the
number of states of each subsystem. In this case a good choice to model the
system is a process algebra. Process algebras consist of a set of actions and a
set of operations defined on these actions. One of the simplest process algebras
is the Calculus of Communicating Systems (CCS)[21]. Its actions are also send,
receive, and 7. A more sophisticated and the most popular process algebra is the
m-calculus[20,26]. It has as additional feature to CCS like a channel construct and
a concept of mobility of channels, which allows dynamic restructuring of process
models. The syntax of the channels is defined in table (1) and the semantics
in table (2). The formalism should be as simple as possible to avoid needless
complexity. Since CCS is simpler it should be the first choice. On the other side,
two good reasons led to the choice for the m-calculus as formal foundation: 1)
The m-calculus is more expressive than CCS. Hence, complex processes can often
be modeled with less effort in 7. 2) The use of w-calculus is necessary to support
multi subjects. Although multi subjects are not supported in the current work,
using m-calculus simplify extension offers. A term of process algebra actions and
operations is called a process. The operations and the syntax are given in table
(1) and the formal semantics is given in table (2). There are also three different
types of actions: 1) send, receive and hidden actions. The send and receive actions
are used for exchanging messages between processes. The hidden action is always
donated by a 7 and serves as abstraction of concrete actions. In this section a
brief outline of the m-calculus is given since it is the foundation for this formal
verification approach. The syntax of the algebra is given in table (1).

26 S. Borgert and M. Miihlhduser

Inactive Process. The inactive process 0 does not do anything. It is a termi-
nation of a process.

Prefixes. The different prefixes define the different actions. A send action x(g)
sends the value y via the channel . Angel brackets stand for free values,
namely y. Receive actions like x(g) receive a value via the channel z and save
the result in the variable y. A send action of one process can be synchronized
with a receive action of another one by using the same channel. The result
is a 7 action which is also called hidden transition. It is an abstraction of
what the transition really does.

Sum, Parallel, Restriction. The sum is an exclusive choice between the pro-
cesses P and Q. P | Q denotes the parallel execution of P and @ and (z)P
restricts the scope of the name z to P.

Identifier. The identifier enables the definition of names for processes.

Table 2. The reduction semantics of the m-calculus

R-INTER (xy.P1 + Ml)\(x(z).Pz + Mz) — P1|P2{7y}
R-TAU PP Mo P R-Par P1|§; : 1€§|P2
e 07 esrer 2B T B
R-IDENT ;: 1;,[(=P

The semantics is defined by structural operational semantics rules (SOS) [23]
of the general form Rule = P"“'"'*** condition. The prefix “R-" denotes reduc-
tion. To give an example, the rule R-PAR can be written as:

if(Pl\PgANDP1—>P1')then P1|P2—>P1/‘P2

Let P = (zy.P1+M;) and Q = (x(z).P2+ Ms). zy is a send prefix and z(z) a
receive prefix. Therefore P can send y via the channel x to @ where the variable
z is assigned to y. In consequence all z terms of P, are renamed to y which is
denoted by P>{?%,}. The prefixes are consumed. The sub-processes M; and Mo
of P and @ are rendered void. In summary P|Q evolves to P;|P{%,}.

A variant of the conclusion of R-INTER would be: R-INTER2-CONC (xy.Pg +
M;)|(z(2).Py + My) — P2{%,}|P1. We do not have to define a second rule for
this variant because of the R-STRUCT rule: from P; = and P» — Pj and Pj = P|
infer P, — P], where = is a structural-congruence relation. It is possible to infer
R-INTER2-CONC from R-INTER-CONC using R-STRUCT because P|P’ = P'|P
for any processes P and P’. The remaining rules can be interpreted in the same
manner. For details we refer to [26]. Although this semantics is simpler than the
semantics used in [5], all language elements can be encoded.

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 27

2.3 Verification of ePASS-IoS Process Models

In this section we firstly give an outline of the algorithm and explain each step in
more detail afterwards. The algorithm is roughly processing the following steps:

— Translate the graphical process models to a m-calculus representation. We
explained this step for all language elements of ePASS-IoS in [5]. In fig. (2b)
a simple example is illustrated.

— Infer a LTS by exploiting the SOS rules.

— Identify states which have no exit transitions. These states are deadlocks.

— Ignore the final legal deadlock, determine the shortest paths to all possible
illegal deadlocks and select the shortest path of all of them.

— Determine all involved subjects and their actions involving on the path route.

— Give feedback to the Ul and label the involved subjects and actions with a
bold border in case the deadlock is illegal.

Inferring Labeled Transition Systems. The analysis of deadlocks is done
on the transition system of the respective m-calculus terms. To obtain such a
transition system, an ePASS process is firstly translated into an internal repre-
sentation of an m-calculus expression. Afterwards, a transition system is inferred
from this expression. Figure (2) shows the method exemplarily. In figure (2a) a
simplified auction business process is shown. The bidder subject (S1) performs
an internal action at first, then sends the payment and expects the delivery af-
terwards. The seller subject (S2) performs an internal action too, waits for a
payment and then sends off the delivery. This ePASS process is translated into
the m-calculus expression depicted in figure (2b). Thereby all “Do something”
actions are translated into 7 operators. The translation of Send actions leads to
an overlined channel following the grammar: <sender subject name>-<message
type>-<receiver subject name>. The channels for receive actions follow the same
grammar except not using overlined channels identifiers. The 7 expression is
translated to the transition system depicted in figure (2c) in accordance to the
following definition.

Definition 2 (Labeled Transition System of a Process). Let P be a -
calculus process. The transition system of P consists of:

— the set S of states which contains P itself and all processes which are reach-
able from P wvia transitions, and

— the transition relation — between processes in S, which is specified by
derivation rules given in table 2.

The start state of the process P is referred to the root node of the Labeled
Transition System. Every edge to successor states will go out of this node. Both
of the 7 processes S1 and S2 start with a 7 operation. Therefore, the R-PAR
rule of table 2 combined with the R-TAU rule leads to the first node of the
“left” branch of the LTS. Either S1 will perform firstly the action followed by
performing 7 of S2 or the other way around will take place. The “right” branch of

28 S. Borgert and M. Miihlhduser

Buyer(S1) Seller(S2)
Do S1 = r.sl-payment-s2(payment).S11 R
Leneln something S11 = s2-delivery-sl(delivery).0 Q p
I—payment—> ® l:'> S2 = 1.sl-payment-s2(payment).S22 l:'>
payTenl payment Q

822 = s2-delivery-s1(delivery).0

@ e @ P = (payment, delivery (61{62
delivery delivery Q

(a) (J) (b) ()

Fig. 2. The sequences of S1 and S2 (a) are translated to m expressions (b). By exploit-
ing the SOS rules, defined in table (2), a LTS is inferred (c) in accordance to definition
2. The capacity of the subject input-pools are set to 0 in order to obtain a simple LTS.

the LTS can be inferred of by applying the R-STRUCT rule. Since the process P
is restricted by the exchange of the messages payment and delivery , the message
payment can be exchanged only between S1 and S2 in the next two steps. This
system is used for the deadlock analysis. A deadlock is a state without outgoing
transitions. The example transition system has only one deadlock state which
is also the final state. It is called legal deadlock since we are modeling business
process instances which have to be terminated at the end of their runtime. Every
subject is equipped with a storage for incoming messages. This storage is called
input pool and its data structure is a set of FIFO buffers. One FIFO buffer is
needed for every receive exit condition which is a pair of (<Message-Type>,
<Sender Subject>). The inputpool enables asynchronous communication and
the multi set data structure provides a flexible access to the stored messages. It
has a limited capacity which can be set in the editor. Without loss of generality,
all FIFO buffers of a subject have the same capacity.

Different Cases of Deadlocks. When a deadlock was found, four different
cases have to be distinguished.

All internal behaviors and all inputpool actors are terminated. In this
case the process instance can always finish well.

Some internal behaviors are not terminated but all inputpool actors are
terminated. The non terminated internal behaviors are in a receive state but
no message will be send to them.

All internal behaviors are terminated and some inputpool actors not.
In this case some messages left in the non terminated input pools. This can
happen when either messages are send in a loop or when the internal be-
havior of the sender subject has one send transition more then the internal
behavior of the receiver subject.

Some internal behaviors are terminated, others arestillinthestart state.
When a process model includes a subject that only will be used optionally, this
subject will stay in the start state.

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 29

The first case is a valid case. The second one is not valid, the cases 3 and 4 can
be both and the verification system can not make this decision without input
of the model designer. Therefore the system informs the user who can specify
whether this is a valid case or not.

2.4 Implementation

A graphical editor was developed for the verification of the subject oriented
process models. Fig. 3 and 4 show screenshots of the editor. The editor follows
the same designing principles like the original Metasonic[19] editor but is using
the ePASS-IoS elements and is extended by the check for interaction soundness.
The implementation of the editor is based on the Graphical Editing Framework
(GEF) [2] and on frameworks of the Metasonic AG. GEF is an open framework of
the Eclipse environment and provides the opportunity to implement a graphical
user interface for an existing data model. The Metasonic frameworks enabled
the use of data binding and the pre-compiler AspectJ[1] RCP plug-ins were
implemented which can be integrated into the Eclipse environment to use the
ePASS editor.

= Java - ePASS1.1/EcoCalculator.epp - Eclipse [9][= %
Fle Edt Mavigate Search Froject Run Window Hep
M-rle -0 BiHge- F™s 9 0 (e I |& 3ava |
Bra X\ JHe| = O |'® EPASS Edior: Ecocalculator.epp 23 [SubjectEdior | =
BESl e~

PASSL.1
> Artipatterns

= Eloments @

(= SchrittweiserTest
(D antragsstelung.epp 3 Subject
(D Ecoakulator.epp Messagechannel
¥ ecocaleulator graphr =
lessages @

|5 EcoCalculator.pi

Honduranteed.orapt Create anew Message

(?) NnnGl‘Jvar\taad.pl ilve et —

TravelAgency.epp o value for material =

= Material specification (COE; BOM i

5 Ingostack ¥ 0 eworccosy S

1% 12 Paper 5-8PM 13 BOMRes
BOM

Eco value For material (CDE)
Eco value for material (CL)
Eror (CDB

Error (CDE)

Material specification

Eco value for material
BOM result Eco valus for material (€L)

||| material specification (DB}

| il | (] Mategial spegification (CL)
roblems | @ Javadoc | [, Declaration | = Froperties 2 . [F] TaskList | Bl Consols| ¥ =0
Subject: Orchestratar
,] =
€| [3]| Seneal SubjectSection 1
Subject Grchestrator
Is Gptional |t defined] =
Il subject 314893494381
Start state: | Receive Bil of material [~ 1
nameSpace
comment
| version s

Fig. 3. Screenshots of the eclipse based editor, developed for the evaluation. The sub-
ject interaction view is shown with one of the test process models.

30 S. Borgert and M. Miihlhduser

2 Java - ePASS1.1/EcoCalculator.epp - Eclipse =JoJ&d
Fle Edit Mavigate Search Project Run Window Help
Mrl@ i~ 0 A~ ilESHE i3S - = | & 2ava
[#pa 22 % Hie = O|[(D)Epass Edtor; EcoCalculator.epp | [SubjectEditer 52 =
=S 2 Al L5 palstte [
=1 ePASSL1 [} [:;
(= Antipatierns ol =
-G SchrittweissrTest IReceiveBilof material = Lo 5] Convert BOM = ehrice il
@ antragsstellung =pp [Send State:
() Ecocaleulstor.epp 3| Function State

¥ Ecocalkculator.qraphr P
- EcoCalculator.pi ~1Receive State

¥ monGuranteed. grapt § Madal Start State

® Nor(adyantead:pt 4 Modal End State
Travelagency.epp
T Ingolstadt ZiSend Boo. . 4 Sone. O End State
1= Paper 5-8PM 13) Observer State
| (= Transitionen 0
Transition
From: Ch. Database —
To: Ch, Database . EEN Timeout-Transition
Material specification (CDE) ~! Response from Ch Da. .s——— Error (COB) “wBoom o ...

T
o | ! >
2. Problems | @ Javadac | (&) Declaration | = Properties 52 [E] TaskList | B Canscle oY O

“1 Receive: Response from Ch. Database

= N (]| General SiateSection

EE outline &2 -8 Name Response from Ch, Database
type 1

Id statel314893624043
stateMametorking

stateMameTaxonomy

statelanguages

statelature v

Fig. 4. Screenshots of the eclipse based editor, developed for the evaluation. An internal
behavior of a subject is illustrated.

3 Evaluation

In [7] eight choreography patterns were identified. We have chosen these patterns
for our evaluation because they are the most suitable ones for our purpose. The
anti-pattern introduced in [4] tackle problems concerning compliance checking.
They are not suitable for issues which can be arise by incompatible interaction
behavior. Some of the patterns introduced in [3] are covered by anti-patterns
described in [7]. We translated the choosen patterns including the examples in
subject oriented models and verified them afterwards.

The input pool is the tool which enables asynchronous communication and
has a limited capacity. Therefore a S-BPM process consisting of two subjects
can run into an illegal deadlock in exactly three cases. Firstly, two participants
are waiting for each other. Secondly, one participant has already terminated and
the other one is still waiting for a message. Thirdly, the input pool limit of one
participant is exceeded and the other one will send a message. The first two cases
are particularly well represented by the contradicting sequence flow and the not-
guaranteed termination anti-pattern. The last case is non of the 8 introduced
anti-patterns but we evaluated that our approach detect this pattern as well.

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 31

3.1 AP1: Incomplete Sequence Flow

The first anti-pattern is called Incomplete sequence flow and is the most simple
one. A path in the internal behavior of a subject is interrupted. This anti-pattern
is already detectable by the check of structural soundness which is included in
the Metasonic suite.

3.2 AP2: Contradicting Sequence Flow

A contradicting sequence flow means that the order of a send / receive action
sequence is contradicted in two participants who are interacting with each other.
An example for this anti-pattern is shown in figure 5. The bider will do the
payment after the delivery arrived and the seller will deliver after the payment
arrived. This leads to a classical deadlock situation. The final state of the model
LTS is an illegal deadlock as shown in the right figure of (5). In the example
each subject provider can only perform the internal action Do something and
is locked in the receive state afterwards. Hence the LTS has exactly 4 states.
Because of the non deterministic behavior either the Bidder or the Seller can
perform the first action. When the Bidder performs the first action the path (0
-> 1 -> 3) is generated. Otherwise the path (0 -> 2 -> 3) of the LTS in figure
(5) is generated.

e N ()

Subject: Bidder Subject: Seller

Do something

Do something

t: Bidder t: Seller

—Payment—»

d;) t: Seller t: Bidder

'Payment to SeIIer < Delivery— 'Dehvery to B|dder
S———— —————

Fig. 5. Contradicting sequence flow. Each participant is waiting for each other what
leads to an illegal deadlock (state 3). t:Bidder denotes that the Bidder performs an
internal action 7.

3.3 AP3: Not-guaranteed Termination

An example for an not-guaranteed termination is depicted in figure 6. A bidder
will process always an Feedback request / replay sequence but the Auctioning
Service demands only sometimes one. When the Auctioning Service demands no
feedback the Bidder is running into a deadlock. The concerning LTS includes
besides the legal deadlock (state 8) the illegal deadlock (state 4)

32 S. Borgert and M. Miihlhduser

. .) - . t: Confirmation(Bidder)
Subject: Bidder Subject: Auctioning -> Auction Service-IP
Service é
___ E --=s @ t: Confirmation(Bidder)
,Confnrmauon to | Pl -> Auction Service-BH
lAuctlon Service | Conflrmatlon from |
________ |B|dder
3 Confirmation - 1 _____) t: Auction Service 1: Auction Service
- >
___ @_ - - Feedback Feedback
required ?
:Feedbz(;l;nﬁequest: 'Ye;' q t: Feedback Request
| [Shad] N Auction Service
.5u_ct_io_n_8e£vi_cg _/u N \Noi (-> Bidder-IP)

____ ; —— |Feedback Request to) . @ .
lFeedback to | <_Feedback 'Bidder t: Feedback Request t: Feedback
!Auction Service! Request | --f--------- / (Auction Service) (Bidder)

________________ -> Bi -BH - i ice-|
% Feedback from ! > Bidder > Auction Service-BH
'Bldder | t: Feedback
. TTTTmmm) (Bidder)
——— -> Auction Service-IP

Fig.6. A not guaranteed termination process snippet and its concerning LTS. The
Bidder always expect a Feedback request but the Auctioning Service not.

3.4 AP4: Incompatible Branching Behavior

The next anti-pattern is called incompatible branching behavior. Internal behav-
iors of different subjects can contain same states with same transitions. If the
decision made at these states are different, the control flow will take different
branches and therefore the interaction behavior can become incompatible. This
issue is depicted in figure 7 The two subject exchange the messages Bank trans-
fer and Credit card. Both internal behaviors contain the action state Payment
which has two successor transitions each. The exit conditions of the transitions
are Bank transfer and Credit card. When the two subjects have different infor-
mation about the payment options, the different exit conditions lead to different
successor states. Since the successor states are Send and Receive actions, which
will exchange the concerning messages, the interaction behavior is not compati-
ble to each other.

When we apply the verification on these patterns, the verification will state
that the model is not valid and that the labeled transition system contains two
faulty end-states. They are colored red in figure 7 which depicts the inferred LTS
of the process model. The LTS was created with the yed editor [29] which offers
functions for automatic layouting. The green end state in figure 7 is the legal
deadlock. In this state all system actors are terminated, namely the actors for
the internal behavior and for the inputpool of each subject. The conditions have
two different transitions and therefore four different exit condition combinations
are possible. When the bidder and the seller make the same choice of of payment
options, the successor paths will lead to the same end state, the legal deadlock
state with number (15) in the figure. When the bidder choose Credit card and
the seller choose Bank transfer the paths will lead to one red deadlock state.

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 33

(N (\
Subject: Bidder Subject: Seller
Payment ? Payment ?

li;aalzt:a;sfe_n lCredit Card\ lBamk transfer\ lCredn Card) l

_______ __é__, P b Le

__é__ - ___%D___ ,__g%__\ ¥
|Bank transfer. ICredlt Card : |Bank transfer Y :Cred|t Card !
1 to Seller " lto Seller) 'from Bidder | from Bldder,

- Bank transfer 5 L r.

- Credit Card {

Fig. 7. Incompatible branching behavior of the subjects Bidder and Seller. The exe-
cution of the process model starts at the purple state in the LTS and can lead to one
legal deadlock (green) and two illegal deadlocks (red).

The other way around the system will end in the other deadlock state. Another
variant of this anti-pattern contains loops but the result is the same.

3.5 AP5: Impossible Data-Based Decisions

Sometimes process model designers put decisions in the model which are sup-
posed to work on data not be available. These impossible data-based decisions
are not detectable by the structural soundness check and only in certain cases by
the formal verification for interaction soundness. The formal verification works
on an abstract level and takes every internal action as a 7 action. Therefore
impossible data-based decisions can only be detected if they have an impact on
later interaction actions. In these cases the anti-pattern is treated in the same
way like the incompatible branching behavior pattern. The other cases effects
only the participant where the error occurs and can not block the hole process.
In figure (8) an example is outlined where it is assumed that the Bidder works
on not available data.

3.6 APG6 Optional Participation

Not all of the including subjects have to participate in every process instance.
4 eye principles or fallback solutions are examples for this and the concerning
pattern is called optional participation. When a subject is not being used, this

34 S. Borgert and M. Miihlhduser

\ 4 \ . .
Subject: Bidder Subject: Reviewer1 Employee Reviewer2
Soller
Have | won EN -
the auction ? inoi l)ies,'
-
N
| | \
foi e -
Contract | (Contract |
e Ito Reviewer1! 'to Reviewer1!
\---I---’ \---é---,
) {Contract)
Ito Reviewer2!
N _I -
S— —
I—ContramJ I—ContractJ

Fig. 8. Outline of the impossible data- Fig. 9. Outline of the optional participation
based decisions anti-pattern. The Bid- anti-pattern. When the contract is not send
der can not know whether the auction to Reviewer2, the concerning internal behav-
is won. These decisions lead most often ior stays at the start state. This leads to a
to incorrect interaction behavior. deadlock.

subject will stay in its start state or in one of its first receive states. This is
a deadlock situation: The verification system detects the deadlock and throws
an error message on the UI first. The option to ignore this deadlock is included
in the message dialog. The process designer can inspect the issue and decide
whether it is a wanted or not wanted situation. If the process designer labeled it
as wanted the verification system is not throwing the error message again.

The 4 eye principle process in figure 9 is a good example for optional par-
ticipation. An insurance has to cover a damage and when the amount of loss
exceeds a certain threshold, a second reviewer is needed. In other cases the sub-
ject Reviewer?2 is still waiting for an application and the overall process can not
terminate.

3.7 APT: Uni-lateral Sequentialization

Uni-lateral sequentialization is another anti-pattern. Because of the modal split
/ join operator pair, sequences can be processed in parallel. The subject Seller in
figure 10 is processing a part of the interaction actions in parallel. The behavior
is more permissive than it would be in the case that all interaction actions are
ordered in only one sequence. This leads not to an error in ePASS modeled pro-
cesses, since the subjects store received messages in their input pools. Although,
the processing of certain tasks can be delayed. If incompatible interaction be-
havior occurs as aftereffect, our method will detect this.

3.8 APS8: Mixed Choices

One of the most complex anti-pattern is the mized choices pattern. It consist
of a branching of a send and a receive action. The send action can as long take

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 35

- Payment . .
- Delivery ack ,—Conflrmatlon _l
Bidder Seller N [)
@ | S2 Seller
Payment to Sellr; ey
: ©. @ 1
® o \
Py \ 1Delivery Payment | —— ==
\Payment ack from Seller; \to Bidder! {from Bidder, ___T___ |Update |
v R S S \Confirmation | 082 1
@ ito 52 | 6 I
iDelivery from Seller} =T —--T-_o \ |
Nemmmmp - IDelivery ack , !'Payment ack, —_—-L__
'from Bidder | \toBidder ! |Confirmation
______ s Oy
1 1 ifrom S2)
{Detvery ac o seer |

T - Delivery *
U

- Payment ack date

Fig.10. The wni-lateral sequentialization Fig.11l. The mixed choices anti-
anti-pattern does not lead directly to errors. pattern is hard to model correct.
It just states that one internal behavior is = When it leads to a left message in
more permissive than the other one. If incom- the input pool, the verification method
patible interaction behavior occurs as after- would find it.

effect, our method will detect this.

p

place as the receive action did not receive a message. The figure (11) gives an
example for that. The seller can update its setting until the confirmation message
is received. The solution for this kind of problem is not obvious and according to
[7] even experienced modeler make errors describing such situations. While the
seller is in the branch of sending update information, the Confirmation message
could be received. Due to this overlapping, the Update message could be left in
the input pool of subject S2 which would be detected by our verification method
as explained in section (2.4).

3.9 Performance of the Verification Method

Next to the detection of the anti-patterns the solution is supposed to be that
fast, that it does not slow down the work of the model designer to much. To
check whether our performance requirements are met, we applied the algorithm
to ten different process models. Three of them were delivered with the S-BPM
Suite from Metasonic [19] and serve as example process models for customers.
One is a process modeled as use case in the Theseus / TEXO project [24]. Since
these process models could be verified in less than a second, we modeled 6 further
fictional process models. The fictional process models were developed such a way
that LTSs with a large amount of states could be inferred easily . The tests were
run on a notebook with an Intel Core 2 Duo microprocessor and with 4 GB
RAM. The operating system was Windows 7. The results are listed in table 3.
Nine of ten models could be verified in less then 15 seconds and eight of ten in

36 S. Borgert and M. Miihlhduser

Table 3. Verification time of different process models. F1 to F6 are fictional process
models. They were developed by using a high number of modal split and modal join
actions.The action sequences between these actions can be executed in parallel and
therefor a large number of LTS states could be inferred. Only the verification time of
F6 exceed the required limit of 15 seconds.

Process Subjects LTS states Verification time [s]

Eco Calculator 4 52 <1
Application Process 3 22 <1
Banking process 5 105 <1
Ordering Process 4 28 <1
F1 2 20 <1
F2 3 108 <1
F3 4 271 <1
F4 5 559 <1

F5 6 4072 8

Fo6 7 12223 41

less than one second. All of the practice related process models (F'1-F4) could be
verified in less than a second. Although the verification of F6 took 41 seconds,
which is almost 3 times higher than the required limit, in summary the results
can be scored as good. Nevertheless the algorithms should be improved since we
could not verify real world processes.

3.10 User Support for Error Correction

We required not to use external verification tools but integrate verification al-
gorithms into the tool. The reason for that is to get the ability providing better
support for the user to correct errors. We developed two mechanisms to achieve
this goal. The first mechanism is to visualize possible error sources graphically.
Therefore, the shortest path from the start state to the deadlock state is de-
termined. This path delivers information about the involved subjects and the
involved actions of the subjects. Hence it is possible to label these elements. We
have labeled the involved subjects and the involved internal actions with a big
blue frame. The user can easily see which elements are involved and therefore
can better trace the error sources. In some cases many subjects can be involved
on the path from the start state to a deadlock state. The ability to detect errors
suffer from this fact and so a second mechanism has been introduced to find error
sources. It is called stepwise check and gives the ability to check only parts of the
process. The user can select subjects which are supposed to verify. Instead of the
remaining subjects an open environment is used. This environment is an ideal
interaction partner. It receives all messages the subjects will send and delivers
necessary messages when the subjects requires them. If the verification method
detect errors, the error sources can be localized within the subjects verified. This
way the process designer is able to find errors systematically.

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 37
4 Related Work

In [25] a solution for checking interaction soundness for service orchestrations
is introduced. The authors introduce an graphical example but have to write
the concerning mw-calculus terms manually, since the BPMN related, graphical
notation does not allow an automatic transformation. To evaluate the method
the Mobility Workbench (MWB) is used[27,28]. The tool takes a m-calculus ex-
pression as input and outputs a binary result in this case. Either the check is
positive or negative. Therefore they can not use this result to analyze the error
sources. Further more, the tool is not optimized for this purpose in that sense,
that certain loop constructs are not detectable. In [13] a BPMN extension is
introduced together with a graphical editor. This editor enables the automatic
transformation to m-calculus terms. The weaknesses of the verification method
itself are still unsolved.

In [16,17] Lohmann et al. transform BPMN and BPEL models to Open Work-
flow Nets. The Open Workflow Nets are verified with a model checker tool and
exploiting a graph edit distance and deadlocks are supposed to solve automati-
cally. The algorithm is not able to discover in all cases which participant behavior
causes the error. No graphical support is provided for the model designer to solve
the cause of the error in that cases it can not be done automatically.

In the work of Deng et al.[8] services are described by the Web Service Defi-
nition Language (WSDL) and were transformed to m-calculus expressions. They
also propose to use the MWB to verify the expressions though without giving
details how the results could be used to detect the reasons for errors.

A further approach is introduced in [15]. Business process are described with
BPEL and the Business Property Specification Language (BPSL). The BPEL
process were transformed to w-calculus expressions and were inferred into finite
state machines. Linear temporal logic (LTL) forms were generated from the
BPSL expression. Both kinds of expressions were given to a compliance checking
framework called OPAL. Again, the outputs are either the check failed or the
check succeeded.

In [4,18] approaches for compliance checking are featured. These approaches
give visual feedback to the model designer but can not be used for compositions of
participants. The capacity and the structure of the technique for asynchronous
communication must be taken into account. Both approaches fail concerning
this point.

5 Summary and Conclusion

Finding deadlocks in distributed systems and resolving them are two very chal-
lenging tasks. These challenges are well known and many different formalisms,
algorithms and tools have been developed over the years to tackle the associated
problems. Nevertheless it is not clear which solution is suitable for finding dead-
locks in S-BPM processes and resolving them. In this paper it has been shown
how ePASS-ToS 1.1 process models can be verified for interaction soundness by

38 S. Borgert and M. Miihlhduser

using the 7-calculus as formal foundation. An graphical editor was developed
and the verification algorithms were integrated. Further more, two mechanisms
to support the user finding the reasons for errors are integrated. We modeled the
eight choreography anti-patterns in ePASS-IoS and investigated which of them
can be detected. The incomplete sequence flow anti-pattern can already be de-
tected by the structural soundness check which is integrated in the Metasonic
Suite. Five of them can always be detected namely contradicting sequence flow,
not-guaranteed termination, incompatible branching behavior, impossible data-
based decisions and optional participation. The remaining two Uni-lateral se-
quentialization and mixed choices can be detected when they lead to incompat-
ible interaction behavior. Further more, we evaluated that the performance is
fast enough to use the method in practice, although the algorithms are simple.
For future work, we currently plan the following:

— Extend ePASS IoS and formal semantics to support multi subjects.

— Optimize the algorithms to obtain even faster results to be able to verify
also very complex processes.

— Combine the verification method with Abstract State Machines.

Acknowledgments. We thank Kai Mehringskotter for his great work devel-
oping the graphical editor and implementing the verification method. We thank
Albert Fleischmann for fruitful discussions and valuable comments. The work
presented in this paper was performed in the context of the Software-Cluster
project SINNODIUM (www.software-cluster.org). It was funded by the Ger-
man Federal Ministry of Education and Research (BMBF) under grant no.
"01IC10S01” | “01|C10S05”. The authors assume responsibility for the content.

References

1. AspectJ, http://www.eclipse.org/aspectj/ (last accessed on January 15, 2014)

2. Graphical Editing Framework, http://www.eclipse.org/gef (last accessed on
January 15, 2014)

3. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: Pat-
terns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro,
G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 42-88. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-01918-0_2

4. Awad, A., Weske, M.: Visualization of Compliance Violation in Business Process
Models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP,
vol. 43, pp. 182-193. Springer, Heidelberg (2010)

5. Borgert, S., Steinmetz, J., Miihlhduser, M.: ePASS-IoS 1.1: Enabling Inter-
enterprise Business Process Modeling by S-BPM and the Internet of Services
Concept. In: Schmidt, W. (ed.) S-BPM ONE 2011. CCIS, vol. 213, pp. 190-211.
Springer, Heidelberg (2011)

6. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies.
Information Technology 50(2), 122-127 (2008)

7. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. In-
formation Systems 36(2), 292-312 (2011),
http://linkinghub.elsevier.com/retrieve/pii/S0306437910000591

http://www.eclipse.org/aspectj/
http://www.eclipse.org/gef
http://dx.doi.org/10.1007/978-3-642-01918-0_2
http://linkinghub.elsevier.com/retrieve/pii/S0306437910000591

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Formal Based Correctness Check for ePASS-IoS 1.1 Process Models 39

Deng, S., Wu, Z., Zhou, M., Li, Y., Wu, J.: Modeling Service Compatibility with
Pi-calculus for Choreography. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006.
LNCS, vol. 4215, pp. 26-39. Springer, Heidelberg (2006)

Fleischmann, A.: PASS - A Technique for Specifying Communication Protocols.
In: Proceedings of the IFIP WG6.1 Seventh International Conference on Protocol
Specification, Testing and Verification VII, pp. 61-76. North-Holland Publishing
Co, Amsterdam, http://portal.acm.org/citation.cfm?id=645831.670083
Fleischmann, A.: Distributed Systems: Software Design and Implementation.
Springer, Berlin (1994)

Fleischmann, A.: What Is S-BPM? In: Buchwald, H., Fleischmann, A., Seese, D.,
Stary, C. (eds.) S-BPM ONE 2009. CCIS, vol. 85, pp. 85-106. Springer, Heidelberg
(2010), http://dx.doi.org/10.1007/978-3-642-15915-2_7

Fleischmann, A., Lippe, S., Meyer, N., Stary, C.: Coherent Task Modeling and
Execution Based on Subject-Oriented Representations. In: England, D., Palanque,
P., Vanderdonckt, J., Wild, P.J. (eds.) TAMODIA 2009. LNCS, vol. 5963, pp.
78-91. Springer, Heidelberg (2010)

Freund, J., Rcker, B., Henninger, T.: Praxishandbuch BPMN. Hanser (2010),
http://books.google.com/books?id=bwIYPgAACAAT

Keller, R.M.: Formal Verification of Parallel Programs. Communications of the
ACM 19(7), 384 (1976),
http://portal.acm.org/citation.cfm?id=360248.360251

Liu, Y., Miller, S., Xu, K.: A static Compliance-Checking Framework
for Business Process Models. IBM Systems Journal 46(2), 335-361 (2007),
http://dx.doi.org/10.1147/sj.462.0335

Lohmann, N.: Correcting Deadlocking Service Choreographies Using a Simulation-
Based Graph Edit Distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132-147. Springer, Heidelberg (2008)

Lohmann, N.; Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17-32. Springer, Heidelberg (2006)

Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Goser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: Seaflows toolset compliance verification made easy for process-aware
information systems. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 76-91. Springer, Heidelberg (2011)

Metasonic: Metasonic Suite (2014), http://www.metasonic.de/ (last accessed on
January 15, 2014)

Milner, R.: Communicating and mobile systems: The m-calculus. Cambridge
University Press (1999)

Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

OMG: Business Process Modeling Notation. 2.0 edn. (2012),
http://www.omg.org/spec/BPMN/2.0/ (last accessed on January 15, 2014)
Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, University of Aarhus (1981)

Project of the German Federal Ministry of Economy and Technology: TEXO Infras-
tructure for Web-based services (2012), http://theseus.pt-dlr.de/en/914.php
(last accessed on January 15, 2014)

Puhlmann, F., Weske, M.: Interaction Soundness for Service Orchestrations. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 302-313.
Springer, Heidelberg (2006)

http://portal.acm.org/citation.cfm?id=645831.670083
http://dx.doi.org/10.1007/978-3-642-15915-2_7
http://books.google.com/books?id=bw9YPgAACAAJ
http://portal.acm.org/citation.cfm?id=360248.360251
http://dx.doi.org/10.1147/sj.462.0335
http://www.metasonic.de/
http://www.omg.org/spec/BPMN/2.0/
http://theseus.pt-dlr.de/en/914.php

40

26.

27.

28.

29.

S. Borgert and M. Miihlhduser

Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press (2003)

Uppsala Universites, Department of Information Technology: The Mobility Work-
bench (2006), http://www.it.uu.se/research/group/mobility/mwb (last ac-
cessed on January 15, 2014)

Victor, B., Moller, F.: The Mobility Workbench - a tool for the 7-calculus. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428-440. Springer, Heidelberg (1994)
yWorks: yED Graph Editor (2012), http://www.yworks.com/ (last accessed on
January 15, 2014)

http://www.it.uu.se/research/group/mobility/mwb
http://www.yworks.com/

	Formal Based Correctness Check for ePASS-IoS
1.1 Process Models with Integrated User
Support for Error Correcting

	1 Introduction
	2 Verification of ePASS IoS Models
	2.1 ePASS-IoS
	2.2
Calculus as Formal Foundation
	2.3 Verification of ePASS-IoS Process Models
	2.4 Implementation

	3 Evaluation
	3.1 AP1: Incomplete Sequence Flow
	3.2 AP2: Contradicting Sequence Flow
	3.3 AP3: Not-guaranteed Termination
	3.4 AP4: Incompatible Branching Behavior
	3.5 AP5: Impossible Data-Based Decisions
	3.6 AP6 Optional Participation
	3.7 AP7: Uni-lateral Sequentialization
	3.8 AP8: Mixed Choices
	3.9 Performance of the Verification Method
	3.10 User Support for Error Correction

	4 Related Work
	5 Summary and Conclusion
	References

