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Abstract We present a new immersed method for Computational Fluid Dynamics
applications. It is based on the use of Non Uniform Rational B-Splines (NURBS).
The distance function to an immersed solid is computed directly from its Computer
Aided Design (CAD) description. This allows to bypass the generation of surface
meshes and to obtain accurate levelset functions for complex geometries. Combined
with a metric based anisotropic mesh adaptation and stabilized Finite Elements
Method (FEM), it allows a novel, efficient and flexible approach to deal with a wide
range of fluid structure interaction problems. The metric field is computed directly
at the node of the mesh using the length distribution tensor and an edge based error
analysis. Several 2D and 3D numerical examples will demonstrate the applicability
of the proposed method.

1 Introduction

Immersed methods for Fluid Structure Interaction (FSI) are gaining popularity in
many scientific and engineering applications. Different approaches can be found
such as the embedded boundary method [1], the immersed boundary method [2],
the fictitious domain [3], the immersed volume method [4–7] and the cartesian
method [8]. All these methods are attractive because they simplify a number of
issues in Fluid-Structure applications such as meshing the fluid domain, using a fully
Eulerian algorithm, problems involving large structural motion and deformation [9]
or topological changes [10].

However they use non-body fitted grids which require special interface treat-
ments. Indeed recent developments are focusing on issues related to the immersion
of a surface mesh for complex 3D geometries [7], the detection and the intersection
algorithms for the interface and finally the transmission of boundary conditions
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between the solid and the fluid regions. In particular these methods appear to be
limited by the quality and the accuracy of the surface mesh description of a given
immersed solid.

In this work, we present a new immersion technique that simplifies and bypasses
the generation of a surface mesh. It is based on the use of Non Uniform Rational
B-Splines (NURBS) curves or surfaces, representing simple or complex geometries.
We compute the distance function from any point in the fluid mesh to these NURBS,
thus representing the immersed solid by the zero iso-value of this function. The
computation of the distance mainly relies on patching the NURBS functions [11]
and using a Newton method [12]. Although, many methods and techniques have
been already developed to compute the distance to NURBS functions, none of them
has been used to compute level-set functions for immersed objects needed to solve
FSI problems. Therefore instead of relying on the resolution of the surface mesh, the
proposed method uses directly the Computer Aided Design (CAD) definition which
keeps the quality of its analytical description. In practice, it eliminates the cost of the
surface mesh generation step and reduces the complexity to set up a Fluid-Structure
application.

Combined with anisotropic mesh adaptation, it provides an attractive immersed
framework. Therefore, for the mesh adaptation, we retain the use of a metric
constructed directly at the nodes of the mesh without any direct information from the
elements, neither considering any underlying interpolation [13–15]. It is performed
by introducing a statistical concept: the length distribution function. First, we use a
second order tensor to approximate the distribution of lengths defined by gathering
the edges at the node. Then we compute the error along and in the direction of each
edge. Finally we extend the approach to deal with multicomponent fields (tensors,
vectors, scalars). It uses a single metric to account for different fields such as the
levelset function of the immersed solid and all components of the velocity field. Note
also that the proposed algorithm is implemented in the context of adaptive meshing
under the constraint of a fixed number of nodes. With such an advantage, we can
provide a very useful tool for practical FSI problems and avoid a drastic increase
in the number of nodes. The paper is structured as follows. Section 2 presents the
details of the new immersion technique. Section 3 describes the used error estimator
for anisotropic mesh adaptation. In Sect. 4 several numerical examples are used to
highlight the capability of the approach. Finally conclusions and perspectives are
given in Section 5.

2 NURBS Immersion

Let us first recall some notations and definitions of the NURBS functions. All
the steps that constitute the computation of the distance function to an immersed
solid defined by NURBS functions will be outlined. First, we highlight the relation
between the computation of the distance function and the geometrical problem.
Based on the principle of an elimination criterion, we obtain the needed initial guess
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for the Newton resolution. Finally a simple algorithm is used to sign the obtained
distance function, positive in the solid domain and negative outside.

2.1 Definition of NURBS Functions

NURBS or Non-Uniform Rational B-Spline functions are piecewise-polynomial
parametric functions. They were introduced in the 1950s [16, 17] in the industrial
engineering field to represent complicated geometries like ship hulls and aircraft
exterior surfaces. They are now widely implicated in the CAD field and used
in many designing softwares (CATIA, Pro Engineer, SolidWorks. . . ). With such
mathematical functions, it is possible to represent any geometry with different levels
of complexity. Their main advantage is that they can be locally modified by just
moving control points without affecting the rest of the geometry. Figure 1 shows an
example of a NURBS curve with the corresponding control points and knots. The
definition of a NURBS curve c is as follows:

c.u/ D
Pn

iD1 Ni;p.u/!iPi
Pn

iD1 Ni;p.u/!i

(1)

where p is the degree of the curve, Ni;p the basis functions, Pi the control points, n

the number of control points, !i the weights and u the parameter taking its values
in the knot vector U . The knot vector U has n C p C 1 knots. The first and last
knots have multiplicity p C 1 (U D fu0; : : : ; u0„ ƒ‚ …

pC1

; u1; : : : ; un�1; un; : : : ; un„ ƒ‚ …
pC1

g). The

basis functions are defined by the Cox-De Boor recursion formula [18, 19]:

Ni;0.u/ D
�

1 if ui � u < uiC1

0 otherwise
(2)

Ni;p.u/ D u � ui

uiCp � ui

Ni;p�1.u/ C uiCpC1 � u

uiCpC1 � uiC1

NiC1;p�1.u/; with p 2 N
�:

(3)

Fig. 1 Example of a NURBS curve and a NURBS surface, their control points and knots
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Following the definition given by (1), a NURBS surface is defined as follows:

s.u; v/ D
Pm

iD1

Pn
j D1 Ni;p.u/Nj;q.v/!ijPij

Pm
iD1

Pn
j D1 Ni;p.u/Nj;q.v/!ij

(4)

where p and q are the polynomial degrees in the u and v directions, Ni;p and Nj;q

the basis functions in the u and v directions, Pij the control points, !ij the weights
and u and v the parameters taking their values in the U and V knot vectors. The
latters are constructed in the same way as mentioned previously in the NURBS
curve definition.

2.2 The Closest Point Problem

The objective is to compute the level-set of the immersed objects involved in the
simulations directly from their CAD definition, i.e. their CAD files. Indeed, in these
files, each object is commonly characterized by NURBS curves or surfaces. Let ˝ ,
˝f , ˝s and � represent respectively the whole domain, the fluid domain, the solid
domain and the interface verifying:

�
˝f

S
˝s D ˝

˝f

T
˝s D �

: (5)

Then for each node X of the computational domain ˝ , the level-set function ˛

which is the signed distance from the interface reads:

˛.X/

8
<

:

> 0 if X 2 ˝s

D 0 if X 2 �

< 0 if X 2 ˝f

: (6)

The immersed solid is implicitly defined by the zero iso-value of this function
˛. In what follows, we describe the algorithm to compute the minimum distance
between the nodes of the computational mesh and the surface of the immersed
object. This can be achieved by solving the closest point problem, which can be
seen as a root finding problem [20]. In fact, if we consider a point P and a NURBS
curve c, the projection of the point P on the curve c is mathematically equivalent to
finding the parameter u� such that:

.P � c.u�//:c0.u�/ D 0: (7)
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This kind of problem can be solved by using a Newton method. It requires a
good starting value in order to obtain fast and accurate results. Different approaches
are proposed in the literature. In [12], the authors make a sampling of points on the
curve and take as an initial value the closest one. However, this method has been
described as time consuming. We will adopt here a more efficient way to find a
good initial value [21]. It consists first in selecting the part of the curve containing
the root. Then the initial value is taken on this part of the curve and the Newton
method is performed only on this part. Therefore, we subdivide the NURBS curve
into rational Bezier segments as a preparation phase. We recall that a rational Bezier
curve c of degree p is defined by:

c.u/ D
Pp

iD0 Bi;p.u/!iPi
Pp

iD0 Bi;p.u/!i

(8)

where Pi are the control points, !i the weights and Bi;p the Bernstein polynomials
defined by the following formula:

Bi;p.u/ D nŠ

i Š.n � i/Š
ui .1 � u/n�i : (9)

Then we eliminate the Bezier segments that do not satisfy a certain criterion
(this criterion is detailed thereafter). Finally we use a Newton-Raphson method to
solve the point projection problem (7) on the remaining rational Bezier segments.
Analogously, a NURBS surface can be decomposed into a set of rational Bezier
surfaces. Then the same scheme is performed in order to find the minimum distance
relatively to the NURBS surface.

s.u; v/ D
Pp

iD0

Pq
j D0 Bi;p.u/Bj;q.v/!ijPij

Pp
iD0

Pq
j D0 Bi;p.u/Bj;q.v/!ij

(10)

where s is the rational Bezier surface, p and q the degrees of s, Pij the control points
and !ij the weights.

Different alternatives are proposed in the literature. For instance, in [22] and
[23], the Bezier segments are subdivided until the created control polygons become
simple and convex or until a flatness condition is reached. In our case, the Bezier
segments are not subdivided. In [24], the authors prefer to use a geometric criterion
for the elimination of the rational Bezier curves based on computing the tangent
cone of every rational Bezier curve. In [25], they introduce an algebraic function
instead of subdividing the NURBS geometry. Consequently, Eq. (7) is transformed
into a polynomial equation and the roots of this new equation are extracted using a
Sturm method.
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Algorithm 1 Closest Extremity
if 8 i 2 [1,n] P1Pi :PP1 � 0 then

P1 is the closest point
else if 8 i 2 [1,n] PnPi :PPn � 0 then

Pn is the closest point
else

Go to Algorithm 2
end if

Algorithm 2 Segment Elimination
if 8 i 2 [1,p C 1] Pk;1Pk;i :PPk;1 � 0 then

Pk;1 is the closest point and the Bezier patch Bk is eliminated
else if 8 i 2 [1,p C 1] Pk;nPk;i :PPk;n � 0 then

Pk;n is the closest point and the Bezier patch Bk is eliminated
else

Apply Newton method
end if

2.3 Outline of the Algorithm

Inspired by all the above described works, we present a new modified algorithm,
adapted mainly from [21]. We first subdivide the curve into a set of rational Bezier
segments Bk as a preparation phase. Then we check if one of the extremities of the
NURBS curve is the closest point (Algorithm 1).

If the closest point is not an endpoint, we eliminate all the subcurves Bk whose
closest point from point P is an extremity of Bk (Algorithm 2).

Pk;i being the control points of the Bezier segment Bk . If all the subcurves Bk

have been suppressed, then the curve has got at least a cust and the closest point is
one of these custs (point of multiplicity equal to p, p being the degree of the curve).
Thus we compute the distance for all the singular points and check which one is
the closest. Otherwise we look for the closest point with a Newton method on the
remaining sub segments.

Analogously, we transpose the algorithm to compute the closest distance between
a point and a NURBS surface. We first subdivide the surface into a set of rational
Bezier patches (i.e. surfaces) Bk . Then, as for NURBS curves, we check if one of
the corners of the NURBS surface is the closest point (Algorithm 3). If none of the
corners of the NURBS surface is selected as the closest point of the query point P ,
we eliminate the rational Bezier patches Bk whose closest point from point P is a
corner of Bk (Algorithm 4). If all the sub patches Bk have been suppressed, then
the surface has got at least a cust and the closest point is one of these custs (point
of multiplicity equal to p and q, p and q being the degrees of the curve respectively
in the u and v directions). Thus we compute the distance for all the singular points
and check which one is the closest. Otherwise we look for the closest point using a
Newton method on the remaining sub-patches.
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Algorithm 3 Closest Corner
if 8 i 2 [1,m] and 8 j 2 [1,n] P11Pij:PP11 � 0 then

P11 is the closest point.
else if 8 i 2 [1,m] and 8 j 2 [1,n] Pm1Pij:PPm1 � 0 then

P11 is the closest point.
else if 8 i 2 [1,m] and 8 j 2 [1,n] P1nPij:PP1n � 0 then

P11 is the closest point.
else if 8 i 2 [1,m] and 8 j 2 [1,n] PmnPij:PPmn � 0 then

P11 is the closest point.
else

Go to Algorithm 4
end if

Algorithm 4 Patch Elimination
if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;11Pk;ij :PPk;11 � 0 then

Pk;11 is the closest point and the Bezier patch Bk is eliminated
else if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;m1Pk;ij :PPk;m1 � 0 then

Pk;m1 is the closest point and the Bezier patch Bk is eliminated
else if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;1nPk;ij :PPk;1n � 0 then

Pk;1n is the closest point and the Bezier patch Bk is eliminated
else if 8 i 2 [1,m] and 8 j 2 [1,n] Pk;mnPk;ij :PPk;mn � 0 then

Pk;mn is the closest point and the Bezier patch Bk is eliminated
else

Apply Newton method
end if

2.4 The Newton Method Resolution

The last part of the algorithm consists in solving, using the Newton method, the
point inversion problem (7) on the selected segments or patches of the NURBS
function. Since the corners of the NURBS function have been treated in the previous
subsection, the distance between a point and a NURBS function can now simply be
expressed as an orthogonal point projection problem [c.f. Eq. (7)]. The segment
constituted by the query point and the closest point on the curve is orthogonal to the
derivative of the curve at this closest point. From the Taylor expansion of Eq. (7),
we can state that the parameter of the curve in the Newton algorithm is computed as
follows:

uiC1 D ui � .c.ui / � P /:c0.ui /

.c.ui � P /:c00.ui / C kc0.ui /k2
: (11)

The algorithm is performed as far as the parameter value does not change
significantly or until Eq. (7) is satisfied under a given precision. Analogously, the
problem statement for finding the distance between a point and a NURBS surface is
the following, find the parameters u and v such that:

�
a.u; v/ D .s.u; v/ � P /:su.u; v/ D 0

b.u; v/ D .s.u; v/ � P /:sv.u; v/ D 0
(12)
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where su and sv are the partial derivatives respectively in the u and v directions of the
NURBS surface s. The problem is transformed by solving iteratively the following
system:

�
au.ui ; vi /av.ui ; vi /

bu.ui ; vi /bv.ui ; vi /

� �
ıu
ıv

�

D
��a.ui ; vi /

�b.ui ; vi /

�

(13)

where au, av , bu and bv are the partial derivatives respectively in the u and v

directions of a and b. Replacing (12) in (13) gives:

Ji :

�
ıu
ıv

�

D
��.s.ui ; vi / � P /:su.ui ; vi /

�.s.ui ; vi / � P /:sv.ui ; vi /

�

(14)

with Ji D

2

6
6
4

ksu.ui ; vi /k2 C .s.ui ; vi / � P /:suu.ui ; vi /su.ui ; vi /:sv.ui ; vi /

C.s.ui ; vi / � P /:suv.ui ; vi /

su.ui ; vi /:sv.ui ; vi / C .s.ui ; vi / � P /:svu.ui ; vi /ksv.ui ; vi /k2

C.s.ui ; vi / � P /:svv.ui ; vi /

3

7
7
5 :

(15)

Finally the parameters are computed by the following equation:

�
uiC1

viC1

�

D
�

ıu
ıv

�

C
�

ui

vi

�

: (16)

The method is performed iteratively until the u and v parameters do not change
significantly or both equations in (12) are satisfied under a given precision.

2.5 Computing the Sign of the Distance

Now that the distance has been obtained with the detailed algorithm, we need to
sign it in order to check whether the point lies inside or outside the object. If the
point is outside the object, then the distance will take a negative sign and vice versa.
We propose two methods for signing the distance. The first one consists in defining

a point O lying inside the object and computing the scalar product
���!
PpP :

���!
PpO, P

being the query point and Pp the closest point of P on the object boundary (Fig. 2).
If the sign of the obtained scalar product is negative, then it means that the point

P is outside of the object and the distance takes a negative sign. This method is
efficient and easy to implement but its main drawback lies in the fact that it works
only for convex objects. The second method is more generic and works for any type
of objects. It consists in computing the number of intersections between the edge
constituted by the query point P and the inside point O and the object’s boundary
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Fig. 2 Scalar product signing method (left) and intersection signing method (right)

(Fig. 2). If the number of intersections is odd, then the distance takes a negative sign.
The outline of the new implemented algorithm takes finally the following form:

1. The NURBS curve (respectively surface) is subdivided into rational Bezier
segments (respectively patches).

2. Then we check if one of the corner of the NURBS function is the closest point.
3. If it is the case, go to step 6.
4. Eliminate the rational Bezier segments (respectively patches) that do not contain

the closest point.
5. Compute the closest point with a Newton method on the remaining segment

(respectively patch).
6. Sign the distance.

3 Construction of an Anisotropic Mesh

In this section, we recall important features of the anisotropic meshing approach
relying on the length distribution tensor approach and the associated edge based
error analysis as developed in [13].

3.1 Edge Based Error Estimation

We consider u 2 C 2.˝/ D V and Vh a simple P 1 finite element approximation
space:

Vh D ˚
wh 2 C 0.˝/; whjK 2 P 1.K/; K 2 K

�

where ˝ D S

K2K
K and K is a simplex (segment, triangle, tetrahedron, . . . ).
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Fig. 3 Length Xij of the edge
joining nodes i and j

We define X D ˚
Xi 2 R

d ; i D 1; � � � ; N
�

as the set of nodes of the mesh and we
denote by U i the nodal value of u at Xi and we let ˘h be the Lagrange interpolation
operator from V to Vh such that:

˘hu.Xi / D u.Xi / D U i ; 8i D 1; � � � ; N:

As shown in Fig. 3, we define the set of nodes connected to node i by � .i/ D˚
j ; 9i K 2 K ; Xi ; Xj are nodes of K

�
.

By introducing the following notation: Xij D Xj � Xi and using the analysis
carried in [13], we can set the following results:

ruh � Xij D U ij ; (17)

jj ruh � Xij

„ ƒ‚ …
U ij

�ru.Xi/ � Xijjj � max
Y 2ŒXi ;Xj �

jH.u/.Y /Xij � Xijj ; (18)

where H.u/ D r.2/u is the associated Hessian of u. Recall that taking u 2 C 2.˝/

we obtain ru 2 C 1.˝/.
Applying the interpolation operator on ru and using (17) we obtain a definition

of the projected second derivative of u in terms of only the values of the gradient at
the extremities of the edge:

rghXij � Xij D gij � Xij (19)

where rgh D ˘hru, gi D ru.Xi/ and gij D gj � gi .
Using a mean value argument, we set that:

9y 2 Œxi ; xj �jgij � Xij D H.u/.Y /Xij � Xij :

We use this projection as an expression of the error along the edge:

eij D gij � Xij: (20)
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However this equation cannot be evaluated exactly as it requires that the gradient of
u be known and continuous at the nodes of the mesh. For that reason, we resort to a
gradient recovery procedure.

3.2 Gradient Recovery

Based on an optimization analysis, the author in [13] proposes a recovery gradient
operator defined by:

Gi D .Xi /�1
X

j 2� .i/

U ijXij (21)

where X
i D d

j� .i/j
P

j 2� .i/

Xij ˝ Xij is what we call the length distribution tensor at

node Xi . Note that this construction preserves the second order:

ˇ
ˇ
�
Gi � gi

� � Xij
ˇ
ˇ � �

H.u/Xij � Xij
�

where Gi is the recovery gradient at node i [given by (21)] and gi being the exact
value of the gradient at node i .

The error is evaluated by substituting G by g in (20):

eij D Gij � Xij:

3.3 Metric Construction from the Edge Distribution Tensor

Taking into account this error analysis, we construct the metric for the unit mesh as
follows:

M
i D

0

@ d

j� .i/j
X

j 2� .i/

Xij ˝ Xij

1

A

�1

:

For a complete justification of this result, the reader is referred to [13].

3.4 Error Behavior due to Varying the Edge Length

In this section, we introduce a new way to enforce the number of nodes N and
we propose a novel approach to compute the stretching factor without using the
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dimensional parameter p as was proposed in [13]. First, we start by examining how
the error behaves when we change the length of the edges by stretching coefficients

S D ˚
sij 2 R

C ; i D 1; � � � ; N ; j D 1; � � � ; N ; � .i/ \ � .j / ¤ �
�

:

In order to obtain a new metric depending on the error analysis, one has to calculate
first a new length for each edge and then to use it for rebuilding the length
distribution tensor. An interesting way of linking the error variations to the changes
in edge lengths is by introducing a stretching factor s 2 R such that

�
fXij D sXij

jjeeijjj D s2jjeijjj D s2jjGij � Xijjj (22)

where eeij and fXij are the target error at edge ij and its associated edge length.
Following the lines of [13] we can simply define the metric associated with S by:

f
M

i D 1

d

�
e
X

i
	�1

(23)

where

e
X

i D 1

� .i/

X

j 2� .i/

s2
ijX

ij ˝ Xij

is the length distribution tensor. Let nij be the number of created nodes in relation
with the stretching factor sij and along the edge ij. When scaling the edges by a factor
sij, the error changes quadratically so that the number of created nodes (number of
sub-edges as shown in Fig. 4) along the edge ij is given by:

nij D


eeij

eij

� 1
2

D s�1
ij :

Here eeij denotes the induced error for edge fXij.
Giving the number of nodes (or sub-edges) created along the current edge, it is

possible now to build a tensor of distribution of nodes in all directions by solving

Fig. 4 Varying the edge in its
own direction
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the following optimization problem:

min
i

X

j 2� .i/

jN i � Xij � nijXij ˝ Xijj2

where

N i D det.N i / D det

0

@.Xi /�1
X

j 2� .i/

nijXij ˝ Xij

1

A :

By considering the averaging process of the number of nodes distribution function,
the total number of nodes in the adapted mesh is given by

N D
X

i

N i :

Assuming a uniform totally balanced error along the edge, eeij D e is constant, we
get a direct relation between N and e as follows:

N ij.e/ D s�1
ij .e/ D



eeij

eij

�C 1
2

:

For a node i we have

N i.e/ D det

0

@



1

d

�

.Xi /�1
X

j 2� .i/

Nij.e/Xij ˝ Xij

1

A

with

N i .e/ D e
2
d N i .1/

so that

N D e
2
d

X

i

N i .1/:

Hence, the global induced error for a given total number of nodes N can be
determined by:

e.N / D
0

@ N
P

i

N i .1/

1

A

� 4
d

:
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Therefore the corresponding stretching factors under the constraint of a fixed
number of nodes N are given by:

sij D



eeij

e.N /

�� 1
2

:

3.4.1 Extension to Multi-Component Field

Here we propose to construct a unique metric directly from a multi-component
vector field containing, for instance, all the components of the velocity field and/or
different levelset functions of the immersed solids. Consequently, we do not need
to intersect several metrics but construct it using the following error vector: eij Dn
e1

ij; e2
ij; � � � ; en

ij

o
.

Let us introduce u D fu1; u2; � � � ; ung,

Z D V � V � � � � � V

and

Zh D Vh � Vh � � � � � Vh:

In the view of constructing a unique metric, we choose to apply the above theory for
each component of u. It comes out immediately that the error is now a vector given
by the following expression:

�!eij D ˚
e1

ij; e2
ij; � � � ; en

ij

�

and then

sij D
 

jjeeijjj
jj�!eij jj

!� 1
2

:

Here, the norm can be L2, L1 or L1. In the following numerical experiments, we
used the L2 case to compute the error.

3.5 Application to the Velocity Field and to the Levelset
Function

Let vh.Xi / D V i 2 R
d ; d D 2; 3 the finite element solution of the Navier-Stokes

equations. Introduce the vector field Y D
�

v
jvj ; jvj; ˛

	
made of d C 1 components
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vector fields. Recall that ˛ is the level set function used to localize an immersed
body. We obtain then for every node i ,

˘hY .Xi / D
�

V i

jV i j ; jV i j; ˛

�

D Y i :

Obviously the case jvj D 0 must be accounted for by using V i

max.jvi j;"/
with " �

10�6 chosen as a small value so that Y i
k D 0 when jvi j D 0.

Using the vector Y i , the adaptivity will now take into account, using one unique
metric, the variations in the velocity directions, the velocity norm and the levelset
functions. Indeed, the adaptivity will focus mainly on the change of direction rather
than the intensity of the velocity. Consequently, and as presented by the numerical
results in the following section, even the small vortices developed by the solution
will be very well captured. What is even more interesting is the capability of the
method to automatically detect the boundary layers at the fluid-solid interfaces due
to the anisotropically adapted mesh exhibiting highly stretched elements. Finally,
we recall that we use a mesh technique (MTC) based on the local modification and
the conformity control through the theorem for minimal volume preserving. This
was introduced in [26] and extended to anisotropic mesh adaptation in [13, 27].

4 Applications

The performance of the new NURBS immersed method will be assessed using
several 2D and 3D examples. First we show that combining the new immersed
method with anisotropic mesh adaptation can lead to a novel, efficient and flexible
immersed framework able to handle simple and very complex geometries. Then, we
combine it with flow solvers based on a stabilized three-fields velocity-pressure-
stress finite element formulation, designed for the computation of rigid bodies
in an incompressible Navier-Stokes flow at high Reynolds number. Indeed, this
formulation consists of considering the whole domain as a single one, meshed
by a single grid, and solved with an Eulerian framework. Continuity at the fluid-
solid interface is then obtained naturally and there is no need to enforce it. Then, it
imposes the use of an appropriate constitutive equation describing both the fluid and
the solid domain. For instance, the presence of the solid is taken into account as an
extra stress in the Navier-Stokes equation [6, 28]. The results show that the method
is very efficient and robust in particular at high Reynolds numbers using anisotropic
meshes with highly stretched elements.
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Fig. 5 2D applications of the immersed NURBS method: level-set zero iso-value (top); adapted
meshes (bottom)

4.1 Immersed 2D and 3D Simple Geometries

First we test the method by immersing simple objects. Indeed, the distance function
for the circle and the rectangle can be obtained easily using analytical functions.
Therefore, they will be used first to test the implemented algorithm, in particular
in the presence of curvatures, sharp angles and singularity. We immerse the CAD
descriptions of a circle, a rectangle and a NACA profile in 2D, a sphere and cube in
3D. We use the computed levelset functions as the mesh criterion.

Figure 5 presents the zero isovalues of the immersed objects inside the compu-
tational domain. As expected, it reflects the sharp capture of the geometries and
the right orientation and deformation of the mesh elements (longest edges parallel
to the boundary). This yields a great reduction of the number of triangles and
consequently a reduction in the computational costs. These first results show that
the method works properly and that the obtained results are accurate and respect
well the geometry of the objects.

The extension of the method to deal with 3D objects described this time by
NURBS surfaces is tested on a sphere and a cube immersed inside a larger domain.
Figure 6 shows the zero-isovalues of the computed levelset functions and several
cut in the planes highlighting the obtained meshes at the interfaces. Once again the
results prove that the implemented method works well and shows that combining
the new immersed method with anisotropic mesh adaptation lead to a very practical
tool for immersed methods.

Taking a closer look at the mesh near the interfaces, we can detect the good ori-
entation of the elements with the stretching in the right direction. This demonstrates
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Fig. 6 3D applications of the immersed NURBS method: level-set zero iso-value (top); adapted
meshes (bottom)

the ability of the algorithm to work under the constraint of a fixed number of nodes
and to effectively control the elements sizes, orientations and locations.

4.2 Immersed 3D Complex Geometries

In this section, we test the immersed method on complex geometries: a ship hull and
a large airship. Two difficulties must be underlined. The first is clearly the edge of
the ship hull while the second is the presence of the hole all along the airship. Note
also that both geometries are described this time by several NURBS surfaces.
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Fig. 7 3D applications of the immersed NURBS method: level-set zero iso-value (top); adapted
meshes (bottom)

The same algorithm is applied iteratively on both geometries: (1) distance
function computation using NURBS, (2) sign determination and (3) anisotropic
mesh adaptation. The obtained results are shown in Fig. 7. As expected, the
algorithm progressively detects and refines the mesh at the interfaces leading to
a well respected shape in terms of curvature, angles, etc. All the small details in
the given geometries are captured accurately. These observations reflect the ability
of the anisotropic mesh adaptation algorithm to automatically adjust the shape
and orientation of the elements while optimizing their numbers. For instance, the
singularity of these edges could not be recovered without an accurate distance
computation and anisotropic refined mesh adaptation.

It is worth mentioning that both the use of NURBS and anisotropic mesh
adaptation are complementary. As mentioned previously, immersed objects are
usually surface meshes. Therefore the anisotropic mesh adaptation can be limited by
the facetization of the object, i.e. the accuracy of the surface mesh file. By immersing
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Table 1 Computational time
in seconds of the distance
calculation of the ship hull
immersed with an IGES file,
a STL file and the
transportation method

n cores NURBS Surface mesh NURBS + transport

1 138:10 13:37 2:72

2 70:92 6:99 2:23

4 43:14 3:53 2:12

8 22:30 2:03 0:70

NURBS objects we overcome this issue as the object geometry is kept analytical.
Thus the anisotropic mesh adaptation reaches its full potential.

We present in Table 1 the computational time taken to compute the distance
function of the ship hull. We compare several techniques and we use different
number of cores (1, 2, 4 and 8) also to test the implementation in a parallel
environment. First, we notice that the algorithm works well in parallel and shows a
good scalability. Note that we did not extend further this study since it is not in the
scope of this paper. Secondly, we compare the present method to the computation
of the distance function obtained by immersing a surface mesh (i.e. STL file). Even
though the comparison is not fair since the execution time to obtain the surface mesh
is not counted and the quality of the surface mesh remains unclear, the purpose
of this comparison still gives us an idea on the potential of the method and the
possibilities for improvement. However, to make the comparisons fair, we immersed
first the ship hull inside a smaller domain using the NURBS, and then we transport
the obtained distance function on this refined mesh to the larger computational
domain. In the latter case, the cost of this method referred as NURBS + Transport
becomes negligible and interesting for practical CFD applications.

4.3 CFD Applications

The objective of this test case is to show the utility of the immersed NURBS
method. Indeed, combined with flow solvers it allows to easily and accurately
deal with complex fluid structure interaction problems. Therefore, we consider a
turbulent flow past an immersed large scale airship. This 3D computations have been
obtained using 64 2:4 GHz Opteron cores. The air movement around the airship is
quite complex and interesting; i.e. it allows the study of the influence of different
airfoils and their positions to optimize the aerodynamic design. A number of vortices
between the objects and the surroundings can be observed due to the turbulence
dissipation. All these observations are highlighted by the streamlines in Fig. 8.
Moreover, we can clearly see on the vertical planes cutting through the airships
that the solid region satisfies the zero velocity and, hence, the no-slip condition
on the extremely refined interface is also verified. The airship slows down the air
circulation on the surface and influences the main air circulation along the hole.

Note also in Fig. 9 the concentration of the resolution not only along all the
boundary layers but also at the detachment and in the wake regions. This reflects
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Fig. 8 Snapshots of the streamlines around an airship described by NURBS surfaces

Fig. 9 Snapshots of the adapted mesh around an airship described by NURBS surfaces
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well the anisotropy of the solution caused by the discontinuity of the boundary
conditions and the nature of the flow. The elements far from the immersed solid are
mostly isotropic and increase in size as the velocity gradient decreases. Again, this
reflects and explains why, for a controlled number of nodes, the mesh is naturally
and automatically coarsened in that region with the goal of reducing the mesh size
around the boundaries and in the wake regions.

5 Conclusions

We present a new NURBS immersed method for Computational Fluid Dynamics
applications. This method is an extension of the standard Immersed Volume method
and more accurate. The immersion of an object described by surface meshes is
replaced by the direct use of the CAD definition keeping the quality of its analytical
description. The distance computation is performed using a modified algorithm
based on the decomposition of the NURBS functions in sub-curves or surfaces
and a selection criterion. The Newton method is presented and used to solve the
distance problem. The numerical examples show that combined with anisotropic
mesh adaptation and flow solver, it leads to a novel, accurate and efficient method
to deal with complex fluid structure interaction problems. The natural extension of
this work is to optimize and accelerate the implemented algorithm.
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