
Thread-Parallel Anisotropic Mesh Adaptation

Gerard J. Gorman, Georgios Rokos, James Southern, and Paul H.J. Kelly

Abstract Mesh adaptation is a powerful way to minimise the computational cost
of mesh based computation. It is particularly successful for multi-scale problems
where the required mesh resolution can vary by orders of magnitude across the
domain. The end result is local control over solution accuracy and reduced time to
solution.

In the case of large scale simulations, where the time to solution is unacceptable
or the memory requirements exceeds available RAM, mesh based computation
is typically parallelised using domain decomposition methods using the Message
Passing Interface (MPI). This allows a simulation to run in parallel on a distributed
memory computer. While this has been a high successful strategy up until now, the
drive towards low power multi- and many-core architectures means that an even
higher degree of parallelism is required and the memory hierarchy exploited to
maximise memory bandwidth.

For this reason application codes are increasingly adopting a hybrid parallel
approach whereby decomposition methods, implemented using the Message Pass-
ing Interface (MPI), are applied for inter-node parallelisation, while a threaded
programming model is used for intra-node parallelisation. Mesh adaptivity has
been successfully parallelised using MPI by a number of groups, and can be
implemented efficiently with few modifications to the serial code. However, thread-
level parallelism is significantly more challenging because each thread modifies the
mesh data and therefore must be carefully marshalled to avoid data races while still
ensuring enough parallelism is exposed to achieve good parallel efficiency.

G.J. Gorman (�)
Department of Earth Science and Engineering, Imperial College London, London SW8 2AZ, UK
e-mail: g.gorman@imperial.ac.uk

G. Rokos • P.H.J. Kelly
Department of Computing, Imperial College London, London SW7 2AZ, UK
e-mail: georgios.rokos09@imperial.ac.uk; p.kelly@imperial.ac.uk

J. Southern
Fujitsu Laboratories of Europe, Hayes Park Central, Hayes End Road, Hayes,
Middlesex UB4 8FE, UK
e-mail: James.Southern@uk.fujitsu.com

© Springer International Publishing Switzerland 2015
S. Perotto, L. Formaggia (eds.), New Challenges in Grid Generation
and Adaptivity for Scientific Computing, SEMA SIMAI Springer Series 5,
DOI 10.1007/978-3-319-06053-8_6

113

mailto:g.gorman@imperial.ac.uk
mailto:georgios.rokos09@imperial.ac.uk
mailto:p.kelly@imperial.ac.uk
mailto:James.Southern@uk.fujitsu.com

114 G.J. Gorman et al.

Here we describe a new thread-parallel algorithm for anisotropic mesh adaptation
algorithms. For each mesh optimisation phase (refinement, coarsening, swapping
and smoothing) we describe how independent sets of tasks are defined. We show
how a deferred updates strategy can be used to update the mesh data structures in
parallel and without data contention. We show that despite the complex nature of
mesh adaptation and inherent load imbalances in the mesh adaptivity, good parallel
efficiency can be achieved.

1 Introduction

Anisotropic mesh adaptation methods provide an important means to minimise
superfluous computation associated with over-resolving the solution while still
achieving the required accuracy, [1, 5, 17, 18]. In order to use mesh adaptation
within a simulation, the application code requires a method to estimate the local
solution error. Given an error estimate it is then possible to calculate the required
local mesh resolution in order to achieve a specific solution accuracy.

There are a number of examples where adaptive mesh methods have been
parallelised in the context of distributed memory parallel computers. The main
challenge in performing mesh adaptation in parallel is maintaining a consistent
mesh across domain boundaries. One approach is to first lock the regions of the
mesh which are shared between processes and for each process to apply the serial
mesh adaptation operation to the rest of the local domain. The domain boundaries
are then perturbed away from the locked region and the lock-adapt iteration is
repeated [7]. Freitag et al. [12, 13] considers a fine grained approach whereby a
global task graph is defined which captures the data dependencies for a particular
mesh adaptation kernel. This graph is coloured in order to identify independent sets
of operations. The parallel algorithm then progresses by selecting an independent set
(vertices of the same colour) and applying mesh adaptation kernels to each element
of the set. Once a sweep through a set has been completed, data is synchronised
between processes, and a new independent set is selected for processing. In [3] each
process applies the serial adaptive algorithm, however rather than locking the halo
region, operations to be performed on the halo are first stashed in buffers and then
communicated so that the same operations will be performed by all processes that
share mesh information. For example, when coarsening is applied all the vertices
to be removed are computed. All operations which are local are then performed
while pending operations in the shared region are exchanged. Finally, the pending
operations in the shared region are applied.

However, over the past decade there has been a trend towards multi- and many-
core compute nodes. Indeed, it is assumed that the compute nodes of a future
exascale supercomputer will each contain thousands or even tens of thousands of
cores [9]. On multi-core architectures, a popular parallel programming paradigm is
to use thread-based parallelism to exploit shared memory within a shared memory
node and a message passing using MPI for interprocess communication. When the
computational intensity is sufficiently high, a third level of parallelisation may be

Thread-Parallel Anisotropic Mesh Adaptation 115

implemented via SIMD instructions at the core level. There are some opportunities
to improve performance and scalability by reducing communication needs, memory
consumption, resource sharing as well as improved load balancing [19]. However,
the algorithms themselves must also have a high degree of thread parallelism if they
are to have a future on multi-core architectures; whether it be CPU or coprocessor
based.

Rokos et al. [20] and Gorman et al. [16] develop thread parallel algorithms
for many-core and multi-core processors based on the independent set approach
described in [12]. However, this approach does not easy carry over for a threaded
implementation of the other mesh adaptation operations. Therefore, in this paper
we take a fresh look at the anisotropic adaptive mesh methods in 2D to develop new
scalable thread-parallel algorithms suitable for modern multi-core architectures. We
show that despite the irregular data access patterns, irregular workload and need to
rewrite the mesh data structures, good parallel efficiency can be achieved.

The algorithms described in this paper have been implemented in the open source
code PRAgMaTIc (Parallel anisotRopic Adaptive Mesh ToolkIt).1 The remainder
of the paper is laid out as follows: Sect. 2 gives an overview of the anisotropic
adaptive mesh procedure; Sect. 3 describes the thread-parallel algorithm; and Sect. 4
illustrates how well the algorithm scales for a benchmark problem. We conclude
with a discussion on future work and possible implications of this work.

2 Overview

In this section we will give an overview of anisotropic mesh adaptation. In particular,
we focus on the element quality as defined by an error metric and the anisotropic
adaptation kernels which iteratively improve the local mesh quality as measured by
the worst local element.

2.1 Error Control

Solution discretisation errors are closely related to the size and the shape of the
elements. However, in general meshes are generated using a priori information
about the problem under consideration when the solution error estimates are not
yet available. This may be problematic because:

• Solution errors may be unacceptably high.
• Parts of the solution may be over-resolved, thereby incurring unnecessary

computational expense.

1https://code.launchpad.net/~pragmatic-core/pragmatic/pragmatic2d-2.0

https://code.launchpad.net/~pragmatic-core/pragmatic/pragmatic2d-2.0

116 G.J. Gorman et al.

A solution to this is to compute appropriate local error estimates, and use this
information to compute a field on the mesh which specifies the local mesh
resolution requirement. In the most general case this is a metric tensor field so
that the resolution requirements can be specified anisotropically; for a review of
the procedure see [14]. Size gradation control can be applied to this metric tensor
field to ensure that there are not abrupt changes in element size [2].

2.2 Element Quality

As discretisation errors are dependent upon element shape as well as size, a number
of different measures of element quality have been proposed, e.g. [1, 5, 18, 21, 22].
Here we use the element quality measure for triangles proposed by [22]:

qM .4/ D 12
p
3

j4jM
j@4j2M

„ ƒ‚ …

I

F

� j@4jM
3

�

„ ƒ‚ …

II

; (1)

where j4jM is the area of element 4 and j@4jM is its perimeter as measured in
a Riemannian space locally defined by the metric tensor M as evaluated at the
element’s centre. The first factor (I) is used to control the shape of element 4.
For an equilateral triangle with sides of length l in metric space, j4j D l2

p
3=4 and

j@4j D 3l ; and so I D 1. For non-equilateral triangles, I < 1. The second factor
(II) controls the size of element 4. The function F is smooth and defined as:

F.x/ D .min.x; 1=x/.2 � min.x; 1=x///3 ; (2)

which has a single maximum of unity with x D 1 and decreases smoothly away
from this with F.0/ D F.1/ D 0. Therefore, II D 1 when the sum of the lengths
of the edges of 4 is equal to 3, i.e. an equilateral triangle with sides of unit length,
and II < 1 otherwise. Hence, taken together, the two factors in (1) yield a maximum
value of unity for an equilateral triangle with edges of unit length, and decreases
smoothly to zero as the element becomes less ideal.

2.3 Overall Adaptation Procedure

The mesh is adapted through a series of local operations: edge collapse (Sect. 2.4.1);
edge refinement (Sect. 2.4.2); element-edge swaps (Sect. 2.4.3); and vertex smooth-
ing (Sect. 2.4.4). While the first two of these operations control the local resolution,
the latter two operations are used to improve the element quality.

Thread-Parallel Anisotropic Mesh Adaptation 117

Algorithm 1 Mesh optimisation procedure
Inputs: M , S .
.M �;S �/ coarsen.M , S /
repeat
.M �;S �/ refine.M �, S �/

.M �;S �/ coarsen.M �, S �/

.M �;S �/ swap.M �, S �/

until (maximum number of iterations reached) or (algorithm convergence)
.M �;S �/ smooth.M �, S �/

return M �

Algorithm 1 gives a high level view of the anisotropic mesh adaptation procedure
as described by Li et al. [17]. The inputs are M , the piecewise linear mesh from
the modelling software, and S , the node-wise metric tensor field which specifies
anisotropically the local mesh resolution requirements. Coarsening is initially
applied to reduce the subsequent computational and communication overheads.
The second stage involves the iterative application of refinement, coarsening and
swapping to optimise the resolution and the quality of the mesh. The algorithm
terminates once the mesh optimisation algorithm converges or after a maximum
number of iterations has been reached. Finally, mesh quality is fine-tuned using
some vertex smoothing algorithm (e.g. quality-constrained Laplacian smoothing
[11], optimisation-based smoothing [12]), which aims primarily at improving worst-
element quality.

2.4 Adaptation Kernels

2.4.1 Coarsening

Coarsening is the process of lowering mesh resolution locally by removing mesh
elements, leading to a reduction in the computational cost. Here this is done by
collapsing an edge to a single vertex, thereby removing all elements that contain
this edge. An example of this operation is shown in Fig. 1.

2.4.2 Refinement

Refinement is the process of increasing mesh resolution locally. It encompasses two
operations: splitting of edges; and subsequent division of elements. When an edge
is longer than desired, it is bisected. An element can be split in three different ways,
depending on how many of its edges are bisected:

1. When only one edge is marked for refinement, the element can be split across the
line connecting the mid-point of the marked edge and the opposite vertex. This

118 G.J. Gorman et al.

Fig. 1 Edge collapse: the dashed edge in the left figure is reduced into a single vertex by bringing
vertex VB on top of vertex VA, as can be seen in the middle figure. The two elements that used to
share the dashed edge are deleted. Edge collapse is an oriented operation, i.e. eliminating the edge
by moving VB onto VA results in a different local patch than moving VA onto VB , which can be
seen in the right figure

Fig. 2 Mesh resolution can be increased either by bisecting an element across one of its edges
(1:2 split, a), by performing a 1:3 split (b) or by performing regular refinement to that element (1:4
split, c)

operation is called bisection and an example of it can be seen on the left side of
Fig. 2 (left shape).

2. When two edges are marked for refinement, the element is divided into three
new elements. This case is shown in Fig. 2 (middle shape). The parent element is
split by creating a new edge connecting the mid-points of the two marked edges.
This leads to a newly created triangle and a non-conforming quadrilateral. The
quadrilateral can be split into two conforming triangles by dividing it across one
of its diagonals, whichever is shorter.

3. When all three edges are marked for refinement, the element is divided into four
new elements by connecting the mid-points of its edges with each other. This
operation is called regular refinement and an example of it can be seen in Fig. 2
(right shape).

Thread-Parallel Anisotropic Mesh Adaptation 119

Fig. 3 Flipping the common
edge V0V1 results in the
removal of triangles 1V0V1V2
and 1V0V1V3 and their
replacement with new
triangles 1V0V2V3 and 1V1V2V3

Fig. 4 Local mesh patch: vi
is the vertex being relocated;
fei;0; : : : ; ei;mg is the set of
elements connected to vi

2.4.3 Swapping

In 2D, swapping is done in the form of edge flipping, i.e. flipping an edge shared
by two elements, see Fig. 3. The operation considers the quality of the swapped
elements—if the minimum element quality has improved then the original mesh
triangles are replaced with the edge swapped elements.

2.4.4 Quality Constrained Laplacian Smooth

The kernel of the vertex smoothing algorithm should relocate the central vertex
such that the local mesh quality is increased (see Fig. 4). Probably the best known
heuristic for mesh smoothing is Laplacian smoothing, first proposed by Field [10].
This method operates by moving a vertex to the barycentre of the set of vertices
connected by a mesh edge to the vertex being repositioned. The same approach
can be implemented for non-Euclidean spaces; in that case all measurements of

120 G.J. Gorman et al.

Algorithm 2 Smart smoothing kernel: a Laplacian smooth operation is accepted
only if it does not reduce the infinity norm of local element quality

v0i vi
quality0 Q.vi /
n 1

vni vLi F Initialise vertex location using Laplacian smooth
Mn
i metric_interpolation.vni /

qualityn D Q.vni / F Calculate the new local quality for this relocation.
while .n � max_iteration/and.qualityni � quality0i < �q/ do

vnC1
i .vni C v0i /=2
M

nC1
i metric_interpolation.vnC1

i /

qualitynC1 Q.vnC1
i /

n D nC 1
if qualityni � quality0i > �q then F Accept if local quality is improved

vi vni
Mi Mn

i

length and angle are performed with respect to a metric tensor field that describes
the desired size and orientation of mesh elements [18]. Therefore, in general, the
proposed new position of a vertex vLi is given by

vLi D
PJ

jD1 jjvi � vj jjMvj
PJ

jD1 jjvi � vj jjM
; (3)

where vj , j D 1; : : : ; J , are the vertices connected to vi by an edge of the mesh,
and jj � jjM is the norm defined by the edge-centred metric tensor Mij. In Euclidean
space, Mij is the identity matrix.

As noted by Field [10], the application of pure Laplacian smoothing can actually
decrease local element quality; at times, elements can even become inverted. There-
fore, repositioning is generally constrained in some way to prevent local decreases
in mesh quality. One variant of this, termed smart Laplacian smoothing by Freitag
and Ollivier-Gooch [11] (while they only consider the Euclidean geometry it is
straightforward to extend to Riemannian geometry), is summarised in Algorithm 2.
This method accepts the new position defined by a Laplacian smooth only if it
increases the infinity norm of local element quality,Qi (i.e. the quality of the worst
local element):

Q.vi / � kqk1; (4)

where i is the index of the vertex under consideration and q is the vector of the
element qualities from the local patch.

Thread-Parallel Anisotropic Mesh Adaptation 121

3 Thread-Level Parallelism in Mesh Optimisation

To allow fine grained parallelisation of anisotropic mesh adaptation we make
extensive use of maximal independent sets. This approach was first suggested
in a parallel framework proposed by Freitag et al. [13]. However, while this
approach avoids updates being applied concurrently to the same neighbourhood,
data writes will still incur significant lock and synchronisation overheads. For this
reason we incorporate a deferred updates strategy, described below, to minimise
synchronisations and allow parallel writes.

In the same paper [13] the authors describe the need for propagation of
operations. Adaptive operations need to be propagated to adjacent vertices/edges
because topological changes or changes in element quality might give rise to new
configurations of better quality.

3.1 Design Choices

Before presenting the adaptive algorithms, it is necessary to give a brief description
of the data structures used to store mesh-related information. Following that, we
present a set of techniques which help us avoid hazards and data races and guarantee
fast and safe concurrent read/write access to mesh data.

3.1.1 Mesh Data Structures

The minimal information necessary to represent a mesh is an element-node list
(we refer to it in this article as ENList), which is implemented in PRAgMaTIc
as a C++ Standard template library (STL) vector container class storing vertex
IDs (std::vector<int>), and an array of vertex coordinates (referred to as
coords), which is an STL vector of coordinates (std::vector<double>).
Element eid is comprised of vertices ENList[3*eid], ENList[3*eid+1]
and ENList[3*eid+2], whereas the x- and y-coordinates of vertex vid are
stored in coords[2*vid] and coords[2*vid+1] respectively. The metric
tensor field is similarly stored in the STL vector metric.

All necessary structural information about the mesh can be extracted from
ENList. However, it is convenient to create and maintain two additional adjacency-
related structures, the node-node adjacency list (referred to as NNList) and the
node-element adjacency list (referred to as NEList). As NNList is a ragged
array it is implemented as std::vector< std::vector<int> > where the
vector NNList[vid] contains the IDs of all vertices adjacent to vertex vid.
Similarly, NEList is implemented as an STL vector of STL sets of element IDs
(std::vector< std::set<int> >) and NEList[vid] contains the IDs
of all elements which vertex vid is part of.

122 G.J. Gorman et al.

It should be noted that, contrary to common approaches in other adaptive frame-
works, we do not use other adjacency-related structures such as element-element
or edge-edge lists. Manipulating these lists and maintaining their consistency
throughout the adaptation process is quite complex and constitutes an additional
parallel overhead. Instead, we opted for the approach of finding all necessary
adjacency information on the fly using ENList, NNList and NEList.

3.1.2 Colouring

There are two types of hazards when running mesh optimisation algorithms in
parallel: structural hazards and data races. The term structural hazards refers to the
situation where an adaptive operation results in invalid or non-conforming edges and
elements. For example, on the local patch in Fig. 3, if two threads flip edges V0V1
and V0V2 at the same time, the result will be two new edges V2V3 and V1VB crossing
each other. Structural hazards for all adaptive algorithms are avoided by colouring
a graph whose nodes are defined by the mesh vertices and edges are defined by
the mesh edges. Maximal independent sets are readily selected by calculating the
intersection between the set of vertices of each colour and the set of active vertices.

The fact that topological changes are made to the mesh means that after an
independent set has been processed the graph colouring has to be recalculated.
Therefore, a fast scalable graph colouring algorithm is vital to the overall perfor-
mance. In this work we use a parallel colouring algorithm described by [15]. This
algorithm can be described as having three stages: (a) initial pseudo-colouring where
vertices are coloured in parallel and invalid colourings are possible; (b) loop over the
graph to detect invalid colours arising from the first stage; (c) the detected invalid
colours are resolved in serial. Between adaptive sweeps through independent sets
it is only necessary to execute stages (b) and (c) to resolve the colour conflicts
introduced by changes to the mesh topology.

3.1.3 Deferred Operations Mechanism

Data race conditions can appear when two or more threads try to update the same
adjacency list. An example can be seen in Fig. 5. Having coloured the mesh, two
threads are allowed to process vertices VB andVC at the same time without structural
hazards. However, NNList[VA] and NEList[VA] must be updated. If both
threads try to update them at the same time there will be a data race which could
lead to data corruption. One solution could be a distance-2 colouring of the mesh
(a distance-k colouring of G is a colouring in which no two vertices share the
same colour if these vertices are up to k edges away from each other or, in other
words, if there is a path of length � k from one vertex to the other). Although this
solution guarantees a race-free execution, a distance-2 colouring would increase the
chromatic number, thereby reducing the size of the independent sets and therefore
the available parallelism. Therefore, an alternative solution is sought.

Thread-Parallel Anisotropic Mesh Adaptation 123

Fig. 5 Example of hazards when running edge collapse in parallel. VB is about to collapse
onto VA. The operation is executed by thread T1. Clearly, VA cannot collapse at the same time.
Additionally, VC cannot collapse either, because it affects VA’s adjacency list. If a thread T2
executes the collapse operation collapse on VC , then both T1 and T2 will attempt to modify VA’s
adjacency list concurrently, which can lead to data corruption. This race can be eliminated using
the deferred-updates mechanism

In a shared-memory environment with nthreads OpenMP threads, every
thread has a private collection of nthreads lists, one list for each OpenMP
thread. When NNList[i] or NEList[i] have to be updated, the thread does
not commit the update immediately; instead, it pushes the update back into the list
corresponding to thread with ID tid D i%nthreads. At the end of the adaptive
algorithm, every thread tid visits the private collections of all OpenMP threads
(including its own), locates the list that was reserved for tid and commits the
operations which are stored there. This way, it is guaranteed that for any vertex Vi ,
NNList[Vi] and NEList[Vi] will be updated by only one thread. Because
updates are not committed immediately but are deferred until the end of the iteration
of an adaptive algorithm, we call this technique the deferred updates. A typical
usage scenario is demonstrated in Algorithm 3.

3.1.4 Worklists and Atomic Operations

There are many cases where it is necessary to create a worklist of items which
need to be processed. An example of such a case is the creation of the active sub-
mesh in coarsening and swapping, as will be described in Sect. 3.3. Every thread
keeps a local list of vertices it has marked as active and all local worklists have to
be accumulated into a global worklist, which essentially is the set of all vertices
comprising the active sub-mesh.

One approach is to wait for every thread to exit the parallel loop and then perform
a prefix sum [4] on the number of vertices in its private list. After that, every thread
knows its index in the global worklist at which it has to copy the private list. This
method has the disadvantage that every thread must wait for all other threads to

124 G.J. Gorman et al.

Algorithm 3 Typical example of using the deferred updates mechanism
typedef std::vector<Updates> DeferredOperationsList;
int nthreads = omp_get_max_threads();

// Create nthreads collections of deferred operations lists
std::vector< std::vector<DeferredOperationsList> > defOp;
defOp.resize(nthreads);

#pragma omp parallel
{

// Every OMP thread executes
int tid = omp_get_thread_num();
defOp[tid].resize(nthreads);
// By now, every OMP thread has allocated one list per thread

// Execute one iteration of an adaptive algorithm in parallel
// Defer any updates until the end of the iteration
#pragma omp for
for(int i=0; i<nVertices; ++i){

execute kernel(i);
// Update will be committed by thread i%nthreads
// where the modulo avoids racing.
defOp[tid][i%nthreads].push_back(some_update_operation);

}

// Traverse all lists which were allocated for thread tid
// and commit any updates found
for(int i=0; i<nthreads; ++i){

commit_all_updates(defOp[i][tid]);
}

}

exit the parallel loop, synchronise with them to perform the prefix sum and finally
copy its private data into the global worklist. Profiling data indicates that this way
of manipulating worklists is a significant limiting factor towards achieving good
scalability.

Experimental evaluation showed that, at least on the Intel Xeon, a better method
is based on atomic operations on a global integer variable which stores the size of
the worklist needed so far. Every thread which exits the parallel loop increments
this integer atomically while caching the old value. This way, the thread knows
immediately at which index it must copy its private data and increments the integer
by the size of this data, so that the next thread which will access this integer knows in
turn its index at which its private data must be copied. Caching the old value before
the atomic increment is known in OpenMP terminology as atomic capture. Support
for atomic capture operations was introduced in OpenMP 3.1. This functionality
has also been supported by GNU extensions (intrinsics) since GCC 4.1.2, known
under the name fetch-and-add. An example of using this technique is shown in
Algorithm 4.

Thread-Parallel Anisotropic Mesh Adaptation 125

Algorithm 4 Example of creating a worklist using OpenMP’s atomic capture
operations

int worklistSize = 0; // Points to end of the global worklist
std::vector<Item> globalWorklist;

// Pre-allocate enough space
globalWorklist.resize(some_appropriate_size);

#pragma omp parallel
{

std::vector<Item> private_list;

// Private list - no need to synchronise at end of loop.
#pragma omp for nowait
for(all items which need to be processed){

do_some_work();
private_list.push_back(item);

}

// Private variable - the index in the global worklist
// at which the thread will copy the data in private_list.
int idx;

#pragma omp atomic capture
{

idx = worklistSize;
worklistSize += private_list.size();

}

memcpy(&globalWorklist[idx], &private_list[0],
private_list.size() * sizeof(Item));

}

Note the nowait clause at the end of the #pragma omp for directive. A
thread which exits the loop does not have to wait for the other threads to exit. It
can proceed directly to the atomic operation. It has been observed that dynamic
scheduling for OpenMP for-loops is what works best for most of the adaptive
loops in mesh optimisation because of the irregular load balance across the mesh.
Depending on the nature of the loop and the chunk size, threads will exit the loop
at significantly different times. Instead of having some threads waiting for others
to finish the parallel loop, with this approach they do not waste time and proceed
to the atomic increment. The profiling data suggests that the overhead or spinlock
associated with atomic-capture operations is insignificant.

126 G.J. Gorman et al.

3.1.5 Reflection on Alternatives

Our initial approach to dealing with structural hazards, data races and propagation
of adaptivity was based on a thread-partitioning scheme in which the mesh was
split into as many sub-meshes as there were threads available. Each thread was
then free to process items inside its own partition without worrying about hazards
and races. Items on the halo of each thread-partition were locked (analogous
to the MPI parallel strategy); those items would be processed later by a single
thread. However, this approach did not result in good scalability for a number of
reasons. Partitioning the mesh was a significant serial overhead, which was incurred
repeatedly as the adaptive algorithms changed mesh topology and invalidated the
existing partitioning. In addition, the single-threaded phase of processing halo items
was another hotspot of this thread-partition approach. In line with Amdahl’s law,
these effects only become more pronounced as the number of threads is increased.
For these reasons this thread-level domain decomposition approach was not pursued
further.

3.2 Refinement

Every edge can be processed and refined without being affected by what happens to
adjacent edges. Being free from structural hazards, the only issue we are concerned
with is thread safety when updating mesh data structures. Refining an edge involves
the addition of a new vertex to the mesh. This means that new coordinates and
metric tensor values have to be appended to coords and metric and adjacency
information in NNList has to be updated. The subsequent element split leads to
the removal of parent elements from ENList and the addition of new ones, which,
in turn, means that NEList has to be updated as well. Appending new coordinates
to coords, metric tensors to metric and elements to ENList is done using
the thread worklist strategy described in Sect. 3.1.4, while updates to NNList and
NEList can be handled efficiently using the deferred operations mechanism.

The two stages, namely edge refinement and element refinement, of our threaded
implementation are described in Algorithms 5 and 6, respectively. The procedure
begins with the traversal of all mesh edges. Edges are accessed using NNList, i.e.
for each mesh vertex Vi the algorithm visits Vi ’s neighbours. This means that edge
refinement is a directed operation, as edge ViVj is considered to be different from
edge Vj Vi . Processing the same physical edge twice is avoided by imposing the
restriction that we only consider edges for which Vi ’s ID is less than Vj ’s ID. If
an edge is found to be longer than desired, then it is split in the middle (in metric
space) and a new vertex Vn is created. Vn is associated with a pair of coordinates
and a metric tensor. It also needs an ID. At this stage, Vn’s ID cannot be determined.
Once an OpenMP thread exits the edge refinement phase, it can proceed (without
synchronisation with the other threads) to fix vertex IDs and append the new data
it created to the mesh. The thread captures the number of mesh vertices index D

Thread-Parallel Anisotropic Mesh Adaptation 127

Algorithm 5 Edge-refinement
Global worklist of split edges W , refined_edges_per_element[NElements]
#pragma omp parallel

private W split_cnt 0; newCoords; newMetric; newVertices
#pragma omp for schedule(dynamic)
for all vertices Vi do

for all vertices Vj adjacent to Vi , ID.Vi / < ID.Vj / do
if length of edge ViVj > Lmax then
Vn new vertex of split edge ViVnVj ; Append new
coordinates, interpolated metric, split edge to newCoords,
newMetric, newVertices; split_cnt split_cntC 1

#pragma omp atomic capture
index NNodes; NNodes NNodesC splint_cnt

Copy newCoords into coords, newMetric into metric
for all edges ei 2 newVertices do
ei D ViVnVj ; increment ID of Vn by index

Copy newVertices into W
#pragma omp barrier
#pragma omp parallel for schedule(dynamic)
for all Edges ei 2 W do

Replace Vj with Vn in NNList[Vi]; replace Vi with Vn in NNList[Vj]
Add Vi and Vj to NNList[Vn]
for all elements Ei 2 fNEList ŒVi �\ NEList ŒVj �g do

Mark edge ei as refined in refined_edges_per_element[Ei].

Algorithm 6 Element refinement phase
#pragma omp parallel

private W newElements
#pragma omp for schedule(dynamic)
for all elements Ei do

REFINE_ELEMENT(Ei)
Append additional elements to newElements.

Resize ENList.
Parallel copy of newElements into ENList.

NNodes and increments it atomically by the number of new vertices it created. After
capturing the index, the thread can assign IDs to the vertices it created and also copy
the new coordinates and metric tensors into coords and metric, respectively.

Before proceeding to element refinement, all split edges are accumulated into a
global worklist. For each split edge ViVj , the original vertices Vi and Vj have to
be connected to the newly created vertex Vn. Updating NNList for these vertices
cannot be deferred. Most edges are shared between two elements, so if the update
was deferred until the corresponding element were processed, we would run the risk
of committing these updates twice, once for each element sharing the edge. Updates
can be committed immediately, as there are no race conditions when accessing
NNList at this point. Besides, for each split edge we find the (usually two) elements

128 G.J. Gorman et al.

sharing it. For each element, we record that this edge has been split. Doing so makes
element refinement much easier, because as soon as we visit an element we will
know immediately how many and which of its edges have been split. An array of
length NElements stores this type of information.

During mesh refinement, elements are visited in parallel and refined indepen-
dently. It should be noted that all updates to NNList and NEList are deferred
operations. After finishing the loop, each thread uses the worklist method to append
the new elements it created to ENList. Once again, no thread synchronisation is
needed.

Compared to Freitag’s task graph approach, this parallel refinement algorithm
has the advantage of not requiring any mesh colouring and having low synchronisa-
tion overhead as. Additionally, the element refinement phase is based on the results
of the edge refinement phase, so we completely avoid having non-conformities and
the subsequent need to propagate operations in order to eliminate them.

3.3 Coarsening

Because any decision on whether to collapse an edge is strongly dependent upon
what other edges are collapsing in the immediate neighbourhood of elements, an
operation task graph for coarsening has to be constructed. Edge collapse is based on
the removal of vertices, i.e. the elemental operation for edge collapse is the removal
of a vertex. Therefore, the operation task graph G is the mesh itself.

Figure 5 demonstrates what needs to be taken into account in order to per-
form parallel coarsening safely. It is clear that adjacent vertices cannot collapse
concurrently, so a distance-1 colouring of the mesh is sufficient in order to avoid
structural hazards. This colouring also enforces processing of vertices topologically
at least every other one which prevents skewed elements forming during significant
coarsening [8, 17].

An additional consideration is that vertices which are two edges away from each
other share some common vertex Vcommon. Removing both vertices at once means
that Vcommon’s adjacency list will have to be modified concurrently by two different
threads, leading to data races. These races can be avoided using the deferred
operations mechanism.

Algorithm 7 illustrates a thread parallel version of mesh edge collapse. Coars-
ening is divided into two phases: the first sweep through the mesh identifies what
edges are to be removed, see Algorithm 8; and the second phase actually applies
the coarsening operation, see Algorithm 9. Function coarsen_identify(Vi) takes as
argument the ID of a vertex Vi , decides whether any of the adjacent edges can
collapse and returns the ID of the target vertex Vt onto which Vi should collapse (or
a negative value if no adjacent edge can be removed). coarsen_kernel(Vi) performs
the actual collapse, i.e. removes Vi from the mesh, updates vertex adjacency
information and removes the two deleted elements from the element list.

Thread-Parallel Anisotropic Mesh Adaptation 129

Algorithm 7 Edge collapse
Allocate dynamic_vertex;worklist.
#pragma omp parallel

#pragma omp for schedule(static)
for all vertices Vi do dynamic_vertexŒVi � �2
Colour mesh
repeat

#pragma omp for schedule(dynamic)
for all vertices Vi do

if dynamic_vertexŒVi �DD �2 then
dynamic_vertexŒVi � COARSEN_IDENTIFY(Vi)

if dynamic vertex countDD 0 then break
Im maximal independent set of dynamic vertices
#pragma omp for schedule(dynamic)
for all Vi 2 Im do

F mark all neighbours for re-evaluation
for all vertices Vj 2 NNList[Vi] do

dynamic_vertexŒVj � �2
dynamic_vertexŒVi � �1
COARSEN_KERNEL(Vi)

Commit deferred operations.
Repair colouring

until true

Algorithm 8 coarsen_identify
procedure COARSEN_IDENTIFY(Vi)
Si the set of all edges connected to Vi
S0 Si
repeat
Ej shortest edge in Sj

if length of Ej > Lmin then F if shortest edge is of acceptable
return -1 F length, no edge can be removed

Vt the other vertex that bounds Ej
evaluate collapse of Ej with the collapse of Vi onto Vt
if (8 edges 2 Si � Lmax) and (6 9 inverted elements) then

return Vt
else

remove Ej from Sj F Ej is not a candidate for collapse

until Si D ;

130 G.J. Gorman et al.

Algorithm 9 Coarsen_kernel with deferred operations
procedure COARSEN_KERNEL(Vi)
Vt dynamic_vertexŒVi �
removed_elements NEList[Vi] \ NEList[Vt]
common_patch NNList[Vi] \ NNList[Vt]
for all Ei 2 removed_elements do
Vo the other vertex of Ei D1ViVtVo
NEList[Vo].erase(Ei) F deferred operation
NEList[Vt].erase(Ei) F deferred operation
NEList[Vi].erase(Ei)
ENList[3*Ei] �1 F erase element by resetting its first vertex

for all Ei 2 NEList[Vi] do
replace Vi with Vt in ENList[3*Ei+{0,1,2}]
NEList[Vt].add(Ei) F deferred operation

remove Vi from NNList[Vt] F deferred operation
for all Vc 2 common_patch do

remove Vi from NNList[Vc] F deferred operation

for all Vn 62 common_patch do
replace Vi with Vt in NNList[Vn]
add Vn to NNList[Vt] F deferred operation

NNList[Vi].clear()
NEList[Vi].clear()

Parallel coarsening begins with the initialisation of array dynamic_vertex which
is defined as:

dynamic_vertexŒVi � D
8

<

:

�1 Vi cannot collapsed;
�2 Vi must be re-evaluated;
Vt Vi is about to collapse onto Vt :

At the beginning, the whole array is initialised to -2, so that all mesh vertices will
be considered for collapse.

In each iteration of the outer coarsening loop, coarsen_identify_kernel is called
for all vertices which have been marked for (re-)evaluation. Every vertex for which
dynamic_vertexŒVi � � 0 is said to be dynamic or active. At this point, a reduction
in the total number of active vertices is necessary to determine whether there is
anything left for coarsening or the algorithm should exit the loop.

Next up, we find the maximal independent set of active vertices Im. Working
with independent sets not only ensures safe parallel execution, but also enforces the
every other vertex rule. For every active vertex Vr 2 Im which is about to collapse,
the local neighbourhood of all vertices Va formerly adjacent to Vr changed and target
vertices dynamic_vertexŒVa�may not be suitable choices any more. Therefore, when
Vr is erased, all its neighbours are marked for re-evaluation. This is how propagation
of coarsening is implemented.

Algorithm 9 describes how the actual coarsening takes place in terms of
modifications to mesh data structures. Updates which can lead to race conditions

Thread-Parallel Anisotropic Mesh Adaptation 131

have been pointed out. These updates are deferred until the end of processing of
the independent set. Before moving to the next iteration, all deferred operations are
committed and colouring is repaired because edge collapse may have introduced
inconsistencies.

3.4 Swapping

The data dependencies in edge swapping are virtually identical to those of edge
coarsening. Therefore, it is possible to reuse the same thread parallel algorithm as
for coarsening in the previous section with slight modifications

In order to avoid maintaining edge-related data structures (e.g. edge-node list,
edge-edge adjacency lists etc.), an edge can be expressed in terms of a pair of
vertices. Just like in refinement, we define an edge Eij as a pair of vertices .Vi ; Vj /,
with ID.Vi / < ID.Vj /. We say that Eij is outbound from Vi and inbound to
Vj . Consequently, the edge Eij can be marked for swapping by adding Vj to
marked_edgesŒVi �. Obviously, a vertex Vi can have more than one outbound edge,
so unlike dynamic_vertex in coarsening, marked_edges in swapping needs to be a
vector of sets.

The algorithm begins by marking all edges. It then enters a loop which is
terminated when no marked edges remain. The maximal independent set Im of
active vertices is calculated. A vertex is considered active if at least one of its
outbound edges is marked. Following that, threads process all active vertices of Im

in parallel. The thread processing vertex Vi visits all edges in marked_edgesŒVi � one
after the other and examines whether they can be swapped, i.e. whether the operation
will improve the quality of the two elements sharing that edge. It is easy to see that
swapping two edges in parallel which are outbound from two independent vertices
involves no structural hazards.

Propagation of swapping is similar to that of coarsening. Consider the local patch
in Fig. 3 and assume that a thread is processing vertex V0. If edge V0V1 is flipped,
the two elements sharing that edge change in shape and quality, so all four edges
surrounding those elements (forming the rhombus in bold) have to be marked for
processing. This is how propagation is implemented in swapping.

One last difference between swapping and coarsening is that Im needs to be
traversed more than once before proceeding to the next one. In the same example
as above, assume that all edges adjacent to V0 are outbound and marked. If edge
V0V1 is flipped, adjacency information for V1, V2 and V3 has to be updated. These
updates have to be deferred because another thread might try to update the same lists
at the same time (e.g. the thread processing edge VCV1). However, not committing
the changes immediately means that the thread processing V0 has a stale view of the
local patch. More precisely,NEList[V2] and NEList[V3] are invalid and cannot
be used to find what elements edges V0V2 and V0V3 are part of. Therefore, these two
edges cannot be processed until the deferred operations have been committed. On
the other hand, the rest of V0’s outbound edges are free to be processed. Once all

132 G.J. Gorman et al.

Algorithm 10 Thread-parallel mesh smoothing
repeat

relocate_count 0

for colour D 1! k do
#pragma omp for schedule(static)
for all i 2 V c do

F move_success is true if vertex was relocated,
move_success smooth_kernel.i/ F false otherwise.
if move_success then

relocate_count relocate_countC 1
until .n � max_iteration/or.relocate_count D 0/

threads have processed whichever edges they can for all vertices of the independent
set, deferred operations are committed and threads traverse the independent set
again (up to two more times in 2D) to process what had been skipped before.

3.5 Smoothing

Algorithm 10 illustrates the colouring based algorithm for mesh smoothing and is
described in greater detail in [16]. In this algorithm the graph G .V ;E / consists
of sets of vertices V and edges E that are defined by the vertices and edges of
the computational mesh. By computing a vertex colouring of G we can define
independent sets of vertices, V c , where c is a computed colour. Thus, all vertices
in V c , for any c, can be updated concurrently without any race conditions on
dependent data. This is clear from the definition of the smoothing kernel in
Sect. 2.4.4. Hence, within a node, thread-safety is ensured by assigning a different
independent set V c to each thread.

4 Results

In order to evaluate the parallel performance, an isotropic mesh was generated on
the unit square with using approximately 200�200 vertices. A synthetic solution
is defined to vary in time and space:

 .x; y; t/ D 0:1 sin.50x C 2�t=T /C arctan.�0:1=.2x � sin.5y C 2�t=T ///;

(5)

where T is the period. An example of the field at t D 0 is shown in Fig. 6. This
is a good choice as a benchmark as it contains multi-scale features and a shock
front. These are the typical solution characteristics where anisotropic adaptive mesh
methods excel.

Thread-Parallel Anisotropic Mesh Adaptation 133

Fig. 6 Benchmark solution field

Fig. 7 Histogram of element qualities aggregated over all iterations

Because mesh adaptation has a very irregular workload we simulate a time
varying scenario where t varies from 0 to 51 in increments of unity and we use
the mean and standard deviations when reporting performance results. To calculate
the metric we used the Lp-norm as described by [6], where p � 2. The number of
mesh vertices and elements maintains an average of approximately 250k and 500k
respectively. As the field evolves all of the adaptive operations are heavily used,
thereby giving an overall profile of the execution time.

In order to demonstrate the correctness of the adaptive algorithm we plot a
histogram (Fig. 7) showing the quality of all element aggregated over all time steps.

134 G.J. Gorman et al.

Fig. 8 Wall time for each mesh adaptation phase

Fig. 9 Speedup for each mesh adaptation phase

We can see that the vast majority of the elements are of very quality. The lowest
quality element had a quality of 0:34, and in total only ten elements out of 26million
have a quality less than 0:4.

The benchmarks were run on a Intel(R) Xeon(R) E5-2650 CPU. The code was
compiled using the Intel compiler suite, version 14.0.1 and with the compiler flags
-Ofast. In all cases we used Intel’s thread-core affinity support - specifically
scatter which distributes the threads as evenly as possible across the entire
system.

Figures 8, 9 and 10 show the wall time, speedup and efficiency of each phase
of mesh adaptation. Simulations using between 1 and 8 cores are run on a single

Thread-Parallel Anisotropic Mesh Adaptation 135

Fig. 10 Parallel efficiency for each mesh adaptation phase

socket while the 16 core simulation runs across two CPU sockets and thereby
incurring NUMA overheads. From the results we can see that all operations achieve
good scaling, including for the 16 core NUMA case. The dominant factors limiting
scaling are the number of synchronisations and load-imbalances. Even in the case
of mesh smoothing, which involves the least data-writes, the relatively expensive
optimisation kernel is only executed for patches of elements whose quality falls
below a minimum quality tolerance. Indeed, the fact that mesh refinement, coarsen-
ing and refinement are comparable is very encouraging as it indicates that despite
the invasive nature of the operations on these relatively complex data structures it is
possible to get good intra-node scaling.

5 Conclusions

This paper is the first to examine the scalability of anisotropic mesh adaptivity
using a thread-parallel programming model and to explore new parallel algorithmic
approaches to support this model. Despite the complex data dependencies and
inherent load imbalances we have shown it is possible to achieve practical levels
of scaling. To achieve this two key ingredients were required. The first was to use
colouring to identify maximal independent sets of tasks that would be performed
concurrently. In principle this facilitates scaling up to the point that the number of
elements of the independent set is equal to the number of available threads. The
second important factor contributing to the scalability was the use of worklists and
deferred whereby updates to the mesh are added to worklists and applied in parallel
at a later phase of an adaptive sweep. This avoids the majority of serial overheads
otherwise incurred with updating mesh data structures.

136 G.J. Gorman et al.

While the algorithms presented are for 2D anisotropic mesh adaptivity, we
believe many of the algorithmic details carry over to the 3D case as the challenges
associated with exposing a sufficient degree of parallelism are very similar.

Acknowledgements The authors would like to thank Fujitsu Laboratories of Europe Ltd. and
EPSRC grants EP/I00677X/1 and EP/L000407/1 for supporting this work.

References

1. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Adaptive generation of quasi-optimal tetrahedral
meshes. East West J. Numer. Math. 7(4), 223–244 (1999)

2. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elem. Anal. Des. 46(1), 181–
202 (2010)

3. Alauzet, F., Li, X., Seol, E.S., Shephard, M.S.: Parallel anisotropic 3D mesh adaptation by
mesh modification. Eng. Comput. 21(3), 247–258 (2006)

4. Blelloch, G.E.: Prefix sums and their applications. Technical Report CMU-CS-90-190, School
of Computer Science, Carnegie Mellon University (1990)

5. Buscaglia, G.C., Dari, E.A.: Anisotropic mesh optimization and its application in adaptivity.
Int. J. Numer. Methods Eng. 40(22), 4119–4136 (1997)

6. Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation errors in
Lp-norm. Math. Comput. 76(257), 179–204 (2007)

7. Coupez, T., Digonnet, H., Ducloux, R.: Parallel meshing and remeshing. Appl. Math. Model.
25(2), 153–175 (2000)

8. De Cougny, H., Shephard, M.S.: Parallel refinement and coarsening of tetrahedral meshes. Int.
J. Numer. Methods Eng. 46(7), 1101–1125 (1999)

9. Dongarra, J.: What you can expect from exascale computing. In: International Supercomputing
Conference (ISC’11), Hamburg (2011)

10. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer.
Methods 4, 709—712 (1988)

11. Freitag, L., Ollivier-Gooch, C.: A comparison of tetrahedral mesh improvement techniques. In:
Fifth International Meshing Roundtable (1996)

12. Freitag, L., Jones, M., Plassmann, P.: An efficient parallel algorithm for mesh smoothing.
In: Proceedings of the 4th International Meshing Roundtable, Sandia National Laboratories,
Citeseer, pp. 47–58 (1995)

13. Freitag, L.F., Jones, M.T., Plassmann, P.E.: The scalability of mesh improvement algorithms.
In: Improvement Algorithms. IMA Volumes in Mathematics and Its Applications, pp. 185–212.
Springer, New York (1998)

14. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for cfd computations. Comput. Methods
Appl. Mech. Eng. 194(48), 5068–5082 (2005)

15. Gebremedhin, A.H., Manne, F.: Scalable parallel graph coloring algorithms. Concurrency
Pract. Experience 12(12),1131–1146 (2000)

16. Gorman, G., Southern, J., Farrell, P., Piggott, M., Rokos, G., Kelly, P.: Hybrid OpenMP/MPI
anisotropic mesh smoothing. In: Proceedings of the International Conference on Computa-
tional Science. Procedia Computer Science, vol. 9, pp. 1513–1522 (2012)

17. Li, X., Shephard, M., Beall, M.: 3D anisotropic mesh adaptation by mesh modification.
Comput. Methods Appl. Mech. Eng. 194(48-49), 4915–4950 (2005)

18. Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H.: Tetrahedral mesh optimisa-
tion and adaptivity for steady-state and transient finite element calculations. Comput. Methods
Appl. Mech. Eng. 190(29-30), 3771–3796 (2001)

Thread-Parallel Anisotropic Mesh Adaptation 137

19. Rabenseifner, R., Hager G, Jost, G.: Hybrid MPI/OpenMP parallel programming on clusters of
multi-core SMP nodes. In: 17th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, 2009, pp. 427–436. IEEE (2009)

20. Rokos, G., Gorman, G., Kelly, P.H.J.: Accelerating anisotropic mesh adaptivity on nVIDIA’s
CUDA using texture interpolation. In: Proceedings of the 17th International Conference on
Parallel Processing - Volume Part II, Euro-Par’11, pp. 387–398. Springer, Berlin (2011). http://
dl.acm.org/citation.cfm?id=2033408.2033453

21. Tam, A., Ait-Ali-Yahia, D., Robichaud, M., Moore, M., Kozel, V., Habashi, W.: Anisotropic
mesh adaptation for 3D flows on structured and unstructured grids. Comput. Methods Appl.
Mech. Eng. 189(4), 1205–1230 (2000)

22. Vasilevskii, Y., Lipnikov, K.: An adaptive algorithm for quasioptimal mesh generation.
Comput. Math. Math. Phys. 39(9), 1468–1486 (1999)

http://dl.acm.org/citation.cfm?id=2033408.2033453
http://dl.acm.org/citation.cfm?id=2033408.2033453

	Thread-Parallel Anisotropic Mesh Adaptation
	1 Introduction
	2 Overview
	2.1 Error Control
	2.2 Element Quality
	2.3 Overall Adaptation Procedure
	2.4 Adaptation Kernels
	2.4.1 Coarsening
	2.4.2 Refinement
	2.4.3 Swapping
	2.4.4 Quality Constrained Laplacian Smooth

	3 Thread-Level Parallelism in Mesh Optimisation
	3.1 Design Choices
	3.1.1 Mesh Data Structures
	3.1.2 Colouring
	3.1.3 Deferred Operations Mechanism
	3.1.4 Worklists and Atomic Operations
	3.1.5 Reflection on Alternatives

	3.2 Refinement
	3.3 Coarsening
	3.4 Swapping
	3.5 Smoothing

	4 Results
	5 Conclusions
	References

