
Deforming Surface Meshes

Siu-Wing Cheng and Jiongxin Jin

Abstract We study the problem of maintaining a deforming surface mesh, specified
only by a dense sample of n points that move with the surface. We propose a motion
model under which the class of ."; ˛/-meshes can be efficiently maintained by a
combination of edge flips and insertion and deletion of vertices. We can enforce
bounded aspect ratios and a small approximation error throughout the deformation.

1 Introduction

1.1 Background

The simulation of deforming surfaces appears in various settings such as the
interface between fluids [14, 18, 21, 28], boundary element methods [5, 15], moving
cloth [4, 29], and surgery simulation [10, 19]. In this paper, we consider the
simulation of a surface that deforms without changing its topology. The surface is
specified only by a set of sample points dense with respect to the local feature size
(LFS) and the goal is to approximate the surface by a mesh with vertices chosen
from the sample points and triangles of bounded aspect ratio, the latter being a
desirable feature for numerical simulation. The deformation may make the angles
in the mesh smaller between two successive time steps. Our problem is to restore
the mesh quality at the next time step before resuming the deformation. The left two
images in Fig. 1 shows snapshots of a twisting cylinder output by our algorithm.

Some notation is needed to state our results. The Euclidean distance between two
points x and y is denoted by d.x; y/. For all Y � R

3, d.x; Y / D infy2Y d.x; y/.
For every pair of vectors u and v, †.u; v/ denotes the angle between them which lies

S.-W. Cheng (�)
Department of Computer Science & Engineering, HKUST, Clear Water Bay,
Kowloon, Hong Kong
e-mail: scheng@cse.ust.hk

J. Jin
Google Inc., Mountain View, CA, USA
e-mail: jamesjjx@google.com

© Springer International Publishing Switzerland 2015
S. Perotto, L. Formaggia (eds.), New Challenges in Grid Generation
and Adaptivity for Scientific Computing, SEMA SIMAI Springer Series 5,
DOI 10.1007/978-3-319-06053-8_4

69

mailto:scheng@cse.ust.hk
mailto:jamesjjx@google.com


70 S.-W. Cheng and J. Jin

x

y

Fig. 1 The left two images show a twisting cylinder. On the right, the dashed skeleton is the medial
axis. The local feature sizes are small at x and y because the curvature is high at x and y is near a
subcurve that is far way from y along the curve

in the range Œ0; ��. Given three points a, b and c, we use †abc to denote †.a � b;

c�b/. Let h and h0 be two linear objects such as vectors, segments, lines, polygons,
and planes. We use †a.h; h

0/ to denote the nonobtuse angle between the affine
subspaces spanned by h and h0. B.x; r/ denotes the ball with center x and radius r .
Given a ball B , we use @B to denote its boundary. Given a triangle � , c� denotes its
circumcenter, �� denotes its circumradius, B� denotes the diametric ball B.c� ; �� /
of � , and n� denotes a unit vector orthogonal to aff.�/.

A triangulated polygonal surface T is a set of vertices, edges and triangles such
that the intersection of every pair of elements in T is either empty or an element
in T , and for every vertex of T , its incident triangles form a topological disk. The
union of the vertices, edge and triangles form the underlying space jT j of T . The
star of a vertex p 2 T , denoted star.p/, is the set of edges and triangles in T that
are incident to p.

Let ˙ � R
3 be a closed connected C2-smooth surface throughout this paper.

For every point x 2 ˙ , a medial ball B at x is a maximal ball tangent to ˙ at
x such that the interior of B does not intersect ˙ . The medial axis M of ˙ is
the set of centers of medial balls at points in ˙ . The local feature size of a point
x 2 ˙ is f .x/ D d.x;M /. The local feature size function f is 1-Lipschitz, i.e.,
f .x/ � f .y/C d.x; y/ [11].

A finite point set P � ˙ is an "-sample of ˙ for some " 2 .0; 1/ if d.x; P / �
"f .x/ for every point x 2 ˙ . The local feature size is mall at a point x if the
curvature is high at x or if x is near a point in ˙ whose geodesic distance from x

is much larger. The image on the right in Fig. 1 illustrates these two cases in 2D. In
such cases, a higher sampling density is needed around x for the reconstruction to be
faithful. The local feature size must be nonzero for an "-sample to be well defined.
Thus,˙ is required to beC2-smooth (no sharp feature or junction). Boundary is also
not allowed, although it seems not difficult to handle boundaries in practice as shown
in our experiments. Suppose that one has the primitive to compute intersections
between ˙ and lines, and the primitive to check for every axes-aligned cube C ,
whether every pair of surface normals in˙ \C deviate by a small angle. Then, one



Deforming Surface Meshes 71

can recursively refine an octree partition until the intersections between the leaf cell
edges and˙ define a dense sample of ˙ [25].

The nearest point map ' maps a point x 2 R
3 nM to the point '.x/ 2 ˙ closest

to x. We use nx to denote the outward unit surface normal at a point x 2 ˙ .
A mesh of˙ is a triangulated polygonal surface T such that the vertices of T are

points in ˙ and jT j is homeomorphic to ˙ .

1.2 Motion Model

Consider the simulation of a deforming surface that progresses in unit time steps.
The surface is specified by n moving sample points on it. At time t , ˙t denotes the
surface, ft denotes the LFS function of ˙t , Pt denotes the set of moving sample
points, and �t.x/ denotes the speed of a point x 2 ˙t . For any vertex v of a mesh
T of ˙t , nT .v/ denotes the distance from v to the nearest vertex in T and RT .v/
denotes the largest circumradius of the triangles incident to v.

Suppose that Pt is an "-sample of ˙t at all times and, at any time step t , the
velocities of the n sample points are returned by the numerical procedure that drives
the simulation. Not all points in Pt can be used as mesh vertices in order that no
triangle angle is too small. Theoretically, since an "-sample can be arbitrarily dense
locally, it is impossible to prove that some constant fraction of Pt must appear
as mesh vertices. However, it is unlikely that Pt is arbitrarily dense anywhere in
practice, and we have observed in our experiments that more that 50 % of the sample
points appear as mesh vertices. We assume that the deformation is smooth as defined
below.

Definition 1 We say that deformation is smooth if the following conditions are
satisfied at every time step t :

(i) For every point x 2 ˙t , �t.x/ is at most 0:005"0 sin ˛0 times the LFS of x at
t , and �tC1.x/ D O.�t.x//.

(ii) For every pair of sample points p and q, if d.p; q/ � �t.p/, then �t.p/ D
O.�t.q//.

(iii) At time t , the displaced mesh vertices from the previous time step form an
"1-sample, where "1 � �" for some constant �.

We are interested in the deformation of a particular class of surfaces meshes
defined as follows [7, 8].

Definition 2 For every " 2 .0; 1/ and every constant ˛ 2 .0; �=3�, an ."; ˛/-mesh
of ˙ is a triangulation T that satisfies the following conditions.

• The vertices of T form an "-sample of ˙ .
• The angles of every triangle in T are at least ˛.



72 S.-W. Cheng and J. Jin

• There exists a triangle � in T and a vertex p of � such that †a.np;n� / �
arcsin

�
0:8

1C2 csc.˛=2/

�
.

• ' restricted to jT j is a homeomorphism between jT j and ˙ .

1.3 Main Result

We prove that there exist constants "0 2 .0; 1/ and ˛0 2 .0; �=6/ such that
an ."0; ˛0/-mesh can be constructed before the simulation begins and, at each
subsequent time step, an ."0; ˛0/-mesh can be restored via edge flips and insertions
and deletions of vertices. Theoretically, ˛0 can be made close to �=6, but the
sampling density would need to be extremely high. Our experiments suggest that
˛0 can be made greater than 10ı in practice. The asymptotic running time can be
made O.n/ [7, 17]. In our experiments (Sect. 6), 90% of angles are in the range
Œ30ı; 120ı�, only less than 0:02% of angles are less than 15ı, and no angle is
smaller than 11ı. Our theoretical framework does not allow for topological changes,
boundaries, or sharp features. We cater for boundaries in our experiments by keeping
all input sample points on the boundaries as mesh vertices and the edges connecting
such adjacent sample points as mesh edges.

Level set methods [12, 23, 27] and point-based methods [1, 22, 24] are popular
methods to model deforming objects with topological changes, but an explicit mesh
is not maintained. Our focus is on fast maintenance of a mesh with theoretical
guarantees on its quality instead of producing the deformation. We avoid recon-
struction from scratch in order to improve efficiency. Thus, our result is most
similar to the prior work on tracking a deforming mesh without any topological
change [14, 16, 28], but these prior work do not offer any guarantee. Several
techniques have been developed to track and modify a mesh in order to produce
topological changes [6, 26, 30]. It may be possible to combine them with our
algorithm to allow topological changes and preserve sharp features.

2 High Level Strategy

Our strategy is to maintain an ."0; ˛0/-mesh Mt with vertices from Pt that satisfies
the following conditions C1–C3. Let ` and � be two constants such that ` is
sufficiently large and � is less than 1. The setting of ` and � will be explained
later. By C2, ˛0 can be set to be arcsin.�=2/.

C1: For every vertex v of Mt , nMt .v/ � 20.sin˛0/�1�t .v/.
C2: For every vertex v and triangle � inMt , if v 2 B.c� ; `�� /, then nMt .v/ � ��� .
C3: Some points in Pt may not appear as vertices in Mt . Such a point p is stored

in some list points.v/, where v is a vertex of Mt and d.p; v/ � 2RMt .v/.



Deforming Surface Meshes 73

Property C1 ensures that a mesh edge turns an angle less than ˛0=10 from time t to
tC1. Property C2 ensures that the triangle circumradii vary smoothly. By C3, every
sample point that is not a vertex is stored at some vertex nearby. LetKtC1 denote the
deformedMt at time tC1, which has the same connectivity asMt . Based on C1–C3
and the smoothness of the deformation, we can show that the deformed mesh KtC1
is an ."1; ˛1/-mesh for some ˛1 2 Œ 4

5
˛0; ˛0� that satisfies the following conditions

OC1– OC3, which are degraded versions of C1–C3. The proof is given in Sect. 3.

OC1: For any vertex v ofKtC1, nKtC1
.v/ � 18.sin˛0/�1�t .v/.

OC2: For every vertex v and triangle � in KtC1, if v 2 B.c� ;
1
2
`��/, then

nKtC1
.v/ � 1

2
��� .

OC3: For every vertex v in KtC1 and every point p 2 points.v/, d.p; v/ D
O.RKtC1

.v//. The big-Oh constant depends on that the constant in assump-
tion (ii) of our smooth deformation model.

Our problem is to compute an ."0; ˛0/-mesh MtC1 from KtC1 that satisfies C1–C3
so that the simulation can continue to the next time step and so on.

The initial ."0; ˛0/-mesh can be obtained by pruning the sample to an "0-sample
that is sparse with respect to their initial velocities and the local feature sizes,
followed by running a surface reconstruction algorithm (e.g. [3, 9]) on the pruned
sample. The output mesh is an ."0; ˛0/-mesh satisfying C1–C3.

Lemma 1 One can compute an ."0; ˛0/-mesh from an "-sample that satisfies C1,
C2 and C3.

Proof We first compute a surface mesh M 0 from the "-sample using a sur-
face reconstruction algorithm. Then for every vertex v, we define its decimation
radius ıv D max

˚
4��� � �

`
d.v; c� / W triangle � 2 M 0�. Initially, all vertices are

unmarked. Take an unprocessed vertex v that is unmarked. Mark all vertices in
B.v;maxfıv; 20.sin˛0/�1�0.v/g/ n fvg. Repeat it until all vertices are processed.
Run reconstruction again on the unmarked vertices to compute our initial mesh M .
We enforce condition C3 by storing each non-vertex sample point in the point list
of its nearest vertex in M . We can show that M is an ."0; ˛0/-mesh that satisfies
C1–C3 by using the same arguments as in the proofs of Lemmas 17 and 18. ut

At time t C 1, we call UPDATE.KtC1/ to compute MtC1. UPDATE iterates two
phases, REFINE and DECIMATE. In the first iteration, REFINE inserts some sample
points as vertices to make the vertex set an O.�"1/-sample of ˙tC1. Refinement
alone cannot restore the angle lower bound ˛0, because the vertices may become
very crowded in some region, where the inter-vertex distance is much less than
" times the local features sizes, and we run out of sample points to refine its
neighborhood. In the second phase, DECIMATE deletes some vertices to increase
the inter-vertex distances while keeping a good sampling density. At the end of
the first iteration, the vertex set forms an O.�"1/-sample. Another iteration of
the two phases makes the vertex set an O.�2"1/-sample. So we obtain MtC1 in
O.log.1="0// D O.1/ iterations.



74 S.-W. Cheng and J. Jin

3 Mesh Deterioration

Inductively, the mesh at time t satisfies conditions C1–C3. We want to show that
after the deformation, the mesh at time t C 1 satisfies OC1– OC3, a set of similar
conditions with some degraded constants. The next lemma can be proved by a
straightforward trigonometric argument.

Lemma 2 Let � 0 D x0y0x0 be a triangle at time t with minimum angle larger than
˛0, and it deforms to � D xyz at time t C 1. Assume that the displacement of each
vertex is at most ��1 sin ˛0 times the length of any of its incident edges, where � is
a constant greater than 14. Then .1 � 6=�/�� 0 � �� � .1C 14=�/�� 0 .

Lemma 3 LetMt be the mesh at time t satisfying C1–C3. LetKtC1 be the deformed
mesh at time t C 1. Assume ` � 54. ThenKtC1 satisfies OC1– OC3.

Proof Consider OC1. Let u be the nearest vertex of v in KtC1. Suppose u and v
are at u0 and v0, respectively, at time t . By C1, both �t.v

0/ and �t.u0/ are less
than d.u0; v0/=20. Therefore, nKtC1

.v/ D d.u; v/ � d.u0; v0/ � �t.v
0/ � �t.u0/ �

0:9d.u0; v0/ � 0:9nMt .v
0/. which is at least 18.sin˛0/�1�t .v/ by C1.

OC2 requires that for every triangle � and every vertex v in B.c� ; 12`��/, nKtC1
.v/

is at least 1
2
��� . Let u be the vertex of � . Let u0, v0 and � 0 be the counterparts of

u, v and � in Mt . d.v0; u0/ � d.v; c� / C d.u; c� / C �t.u0/ C �t.v
0/ � .`=2 C

1/�� Cd.v0; u0/=10. Rearranging the terms, we obtain d.v0; u0/ � 10
9

�
1
2
`C 1

�
�� <

.`�1/�� 0 by Lemma 2 and the fact that ` � 54. Since d.v0; c� 0/ � d.v0; u0/C�� 0 �
`�� 0 , C2 implies that nMt .v

0/ � ��� 0 and hence nKtC1
.v/ � 0:9nMt .v

0/ � 0:9��� 0 .

Lemma 2 further implies that nKtC1
.v/ � 0:9��� 0 � 0:9���

1C14=20 >
1
2
��� , establishing

OC2.
Consider OC3. Let v be a vertex in KtC1, and p a sample point in points.v/.

Suppose they are at v0 and p0 at time t , respectively. By C1 and C3, d.p; v/ �
d.p0; v0/C�t.p

0/C�t.v
0/ � 2RMt .v

0/C�t.p
0/C nMt .v

0/=20 � 2:1RMt .v
0/C

�t.p
0/. If �t.p

0/ � d.p0; v0/, �t.p
0/ � d.p0; v0/ � 2RMt .v

0/. Otherwise, by
our assumption on the smoothness of the deformation,�t.p

0/ � c�t .v
0/ for some

constant c. Therefore, �t.p
0/ � c�t.v

0/ � cnMt .v
0/=20 � cRMt .v

0/=10. In both
cases, d.p; v/ < .5C c=10/RMt .v

0/ D O.RKtC1
.v// by Lemma 2. ut

4 Refinement

In the first iteration, the input to REFINE is KtC1. In remaining iterations, we feed
it with the output of DECIMATE. Inductively, the input mesh X of REFINE is an
("X; ˛0/-mesh satisfying OC1– OC3 for some "X � "1. Our goal is to improve the
sampling condition from "X to O.�"X/.

First, we update the point lists of every vertex, so that a non-vertex sample point
is stored in the point list of its nearest vertex. As a result, for every non-vertex sample



Deforming Surface Meshes 75

point p and the vertex u such that p 2 points.u/, d.p; u/ � 2RX.u/. Then, initialize
an intermediate mesh T to beX and incrementally inserts points. We go through the
points in PtC1 that are not vertices and insert those that are far away from existing
vertices. Let p be the current non-vertex point being processed. Let u be the vertex
of X such that p is stored in points.u/. Let w be the vertex of the current mesh T
nearest to p, which must lie inB.u; 4RX.u// because d.u;w/ � d.u; p/Cd.p;w/ �
2d.p; u/ � 4RX.u/. We find w by searching T within B.u; 4RX.u//. If the distance
between p and w is less than �RX.u/ or 20.sin˛0/�1�tC1.p/, skip p; otherwise,
insert p as explained below.

Suppose that p is a candidate point to be inserted. We apply a result to be
introduced shortly, Theorem 1(iii), to the vertices whose incident triangles intersect
B.u; 4RX.u//. In the end, all the triangles intersecting B.u; 4RX.u// have almost
empty diametric balls, and so do their neighboring triangles. The common edge ab
between two triangles abc and abd is flippable if and only if the diametric ball of
abc contains d in its interior and the diametric ball of abd contains c in its interior.

In particular, the triangle v1v2v3 nearest to p has an almost empty diametric ball,
because the distance between u and the nearest triangle v1v2v3 is at most d.u; p/C
d.p; v1v2v3/ � 2d.u; p/ � 4RX.u/. We insert p by calling ADD(T , p, v1v2v3). It
works as follows. Compute the point Qp in v1v2v3 nearest to p. Split v1v2v3 using
Qp. That is, we replace v1v2v3 by three triangles Qpv1v2, Qpv2v3 and Qpv3v1. Flip the

edges v1v2, v2v3 and v1v3 if they are flippable. Finally, for each triangle incident to
Qp, replace its vertex Qp by p. This adds p as a vertex to T .

After all the insertions, we flip the flippable edges in T , and migrate all non-
vertex sample points to the point lists of their nearest vertices in the current mesh.

4.1 Mesh Properties

To analyze REFINE, we need some surface sampling results in the literature and
some properties of ."; ˛/-meshes that we established in another paper [8]. Some
preliminary analogous results can be found in [7].

Lemma 4 ([2, 11, 13]) Let p, q and r be any three points on ˙ .

(i) For every " � 1=3, if d.p; q/ � "f .p/, then †.np; pq/ � �=2 � " and
†.np;nq/ � 2".

(ii) For every " � 1=10, if �pqr � "f .p/, then †.np;npqr/ � 10".
(iii) For every " � 1=4 and every point z on tangent plane at p, if d.p; z/ � "f .p/,

then d.z; ˙/ � "d.p; z/.

Lemma 5 ([8]) Let p, q and r be any three points on ˙ . Let c be any positive
constant. Suppose that �pqr � c"f .p/ for some " < minf1; 1=.72c/g. Then, for
every point x in the circumdisk of pqr, d.x; '.x// � 10c" d.p; x/ � 20c2"2f .p/

and d.p; '.x// � .2c"C 20c2"2/f .p/.



76 S.-W. Cheng and J. Jin

Lemma 6 ([8]) Let 	 D 2.csc˛/4�=˛C1. There exists an "0 2 .0; 1/ depending on
˛ such that for every " 2 .0; "0�, if If T is an ."; ˛/-mesh of ˙ , then

(i) For each vertex p 2 T and every triangle � 2 star.p/, �� � 	"f .p/ and
†a.np;n� / < 6	".

(ii) For every pair of triangles 
; � 2 T that share an edge, the dihedral angle at

 \ � is greater than � � 12	".

Lemma 7 ([8, 17]) For all c > 1, if T is an ."; ˛/-mesh of ˙ for a small enough
", then for every vertex p 2 T , jT j \ B.p; c	"f .p// is connected and it projects
injectively onto any plane that makes an angle at least �=3 with np .

Theorem 1 ([7, 8]) For every constant c 2 .0; 0:5/ and every constant ˛ 2
Œ0; �=3�, there exists "0 2 .0; 1/ depending on c and ˛ such that for every " 2 .0; "0�,
if T is an ."; ˛/-mesh of a connected closed smooth surface, then the following
properties are satisfied. The common edge ab between two triangles abc and abd is
flippable if and only if the diametric ball of abc contains d in its interior and the
diametric ball of abd contains c in its interior.

(i) We can flip flippable edges in T until no edge is flippable in time linear in the
number of vertices in T . An ."; ˛/-mesh T 0 is produced in the end and for every
triangle � 2 T 0, B.c� ; .1 � "c/��/ does not contain any vertex.

(ii) For every vertex p 2 T and every triangle � 2 star.p/, if B.c� ; .1 � "c/�� /

does not contain any vertex, then �� � ."CO."1Cc//f .p/.
(iii) Given any subset V of vertices of T , we can flip flippable edges inO.jV j/ time

to produce an ."; ˛/-mesh T 0 so that for every triangle � 2 T 0 that is incident
to a vertex in V or a neighbor of a vertex in V , B.c� ; .1 � "c/�� / does not
contain any vertex.

4.2 Analysis of Refinement

We apply the mesh properties to analyze the effects of refinement. The proofs of the
next two technical lemmas are straightforward and omitted.

Lemma 8 Let T be an ."; ˛/-mesh of ˙ for a sufficiently small ".

(i) For every point x in the circumdisk of a triangle � 2 T , d.x; '.x// �
10	"�� � 10	2"2f .'.x//.

(ii) For every point y 2 ˙ , the distance between y and its nearest point z 2 jT j is at
most 10	2"2f .y/. For any triangle 
 2 T that contains z, d.y; z/ < 24	"�
 .

Lemma 9 Let T1 and T2 be a .�1; �1/-mesh and a .�2; �2/-mesh of ˙ , respectively,
possibly with different vertex sets. Let � be a triangle in T1. Let 
 be the triangle in
T2 nearest to '.c� /.

(i) d.c� ; 
/ � 10	�1�� C 24	�2�
 .



Deforming Surface Meshes 77

(ii) Let ˇ be any constant in the range .0; 1�. Assume that �1 and �2 are sufficiently
small. If B.c� ; ˇ�� / does not contain any vertex of T2, then �
 � 0:9ˇ�� .

Throughout the procedure, we need to maintain certain invariants so that the local
edge-flip algorithm works (which requires a constant lower bound on angles).

Lemma 10 Let X be an ."X ; ˛0/-mesh satisfying OC1– OC3. During the execution of
REFINE.X/, the following invariants on the intermediate mesh T are maintained.

(i) For every vertex a in X and every vertex b in T , if d.a; b/ � .`=4� 3/RX.a/,
then nT .b/ � 1

4
�2RX.a/.

(ii) T is an ."X; �/-mesh for some constant � > 0.

Proof Consider invariant (i). Let T be the mesh just after we add a vertex p. Let u
be the vertex of X nearest to p. It is also the vertex whose point list contains p at
the beginning of the main loop.

We first show that invariant (i) holds for b D p. Let a be any vertex in X such
that d.a; p/ � .`=4 � 3/RX.a/. If RX.a/ � RX.u/, then since nT .p/ � �RX.u/
for us to decide to insert p, we have nT .p/ � �RX.a/ as desired. Assume that
RX.a/ > RX.u/. We have d.a; u/ � d.a; p/ C d.p; u/ � .`=4 � 3/RX.a/ C
2RX.u/ < .`=4� 1/RX.a/. Let � be the triangle incident to a in X with the largest
circumradius, i.e., �� D RX.a/. Then, d.u; c� / � d.a; u/ C d.a; c� / � .`=4/�� .
So OC2 applies and implies that RX.u/ � 1

2
nX.u/ � 1

4
��� D 1

4
�RX.a/. Since

nX.p/ � �RX.u/ for us to insert p, we conclude that nX.p/ � 1
4
�2RX.a/. This

proves invariant (i) for the new vertex p.
Now consider a vertex b of T other than p. If the nearest vertex to b is not

changed by the insertion of p, then invariant (i) holds for b inductively. Assume that
the nearest vertex of b becomes p. Let a be any vertex of X such that d.a; b/ �
.`=4 � 3/RX.a/. If RX.a/ � RX.u/, then nT .b/ D d.p; b/ � nT .p/ � �RX.u/ �
�RX.a/. So invariant (i) holds for b in this case. Assume that RX.a/ > RX.u/. Since
p is the nearest vertex of b, we have d.p; b/ � d.a; b/ � .`=4 � 3/RX.a/. This
implies that d.a; u/ � d.a; b/ C d.p; b/C d.p; u/ � .`=2 � 4/RX.a/. Then, we
can invoke the same analysis as in the previous paragraph to show that RX.u/ �
1
4
�RX.a/. It follows that nX.b/ D d.p; b/ � nX.p/ � 1

4
�2RX.a/. This proves

invariant (i).
Consider invariant (ii). The mesh density cannot decrease because vertices are

being inserted. We show that any new angle in X is at least some constant � after
inserting a point p. We omit the argument for establishing the bound on the triangle
circumradii and the nearest point map being a homeomorphism as required by the
definition of an ."X; �/-mesh, which is similar to the proof of Theorem 1(i) [8].

Suppose that a point p is inserted into the triangle v1v2v3. That is, v1v2v3 is
the closest triangle to p in the current mesh and we split v1v2v3 into three smaller
triangles by connecting the three vertices to the projection Qp of p on v1v2v3. Let
qv1v2 be the triangle that shares v1v2 with Qpv1v2.

We first bound the angles in the triangle qv1v2 from below. Applying
Theorem 1(iii) makes the diametric ball of qv1v2 almost empty. Thus,



78 S.-W. Cheng and J. Jin

B.cqv1v2 ; 0:8�qv1v2 / does not contain any vertex of X . Then by Lemma 9, we can
find a triangle 
 inX such that �
 > 0:7�qv1v2 , and d.cqv1v2 ; 
/ < 0:1�qv1v2 C0:1�
 .
Take the vertex a of 
 nearest to cqv1v2 . The distance between a and any vertex of
qv1v2 is at most

d.a; cqv1v2 /C �qv1v2 < �
 C .0:1�qv1v2 C 0:1�
/C �qv1v2 < 3�
 : (1)

Thus, invariant (i) applies to a and any vertex of qv1v2. We conclude that qv1v2 has
edge lengths at least 1

4
�2RX.a/ � 1

4
�2�
 >

1
6
�2�qv1v2 . The angles in qv1v2 are then

at least  D arcsin.�2=12/. Similarly, all angles in v1v2v3 are at least  .
Since we decide to insert p, nT .p/ � �RX.u/. As argued in proving (i), this

leads to nT .p/ � 1
4
�2RX.a/, so nT .p/ >

1
6
�2�qv1v2 . This implies that d.p; v1/

and d.p; v2/ are at least 1
6
�2�qv1v2 . Since Qp is the point on the current mesh nearest

to p, Lemma 8(ii) implies that d.p; Qp/ � .40�rad"X/�v1v2v3 � 40�rad"X
sin �qv1v2 �

40�rad"1
sin �qv1v2 . So for a small enough "1, d. Qp; v1/ and d. Qp; v2/ are at least 1

7
�2�qv1v2 .

Suppose that �qv1v2 � � Qpv1v2 sin. =2/. So sin † Qpv1v2 D d. Qp;v2/
2� Qpv1v2

�
1
7 �

2�qv1v2
2�qv1v2 = sin. =2/ � �2

14
sin. =2/. It follows that † Qpv2v1 � arcsin

�
�2

14
sin. =2/

�
.

Similarly, † Qpv2v1 � arcsin
�
�2

14
sin. =2/

�
. Also, we have †v1 Qpv2 � †v1v3v2 �  .

Suppose that �qv1v2 � � Qpv1v2 sin. =2/. We claim that v1v2 is flippable. Since

†v1 Qpv2 � †v1v3v2 �  and sin †v1 Qpv2 D d.v1;v2/

2� Qpv1v2

� 2�qv1v2
2� Qpv1v2

� sin. =2/, the

angle †v1 Qpv2 must be obtuse and greater than � �  =2. Imagine that we rotate
v1 Qpv2 while fixing v1v2 to make the dihedral angle between v1 Qpv2 and v1qv2 larger.
Since †v1 Qpv2 > �=2, Qp moves closer to the boundary of the diametric ball of v1qv2
as we rotate v1 Qpv2. Let p0 be the point in the plane of v1v2q such that †v1p0v2 D
†v1 Qpv2 and it is on the different side of v1v2 from q. So Qp is in the diametric ball
of v1qv2, if p0 is in the diametric ball of v1qv2, which is true because †v1p0v2 C
†v1qv2 < � . We show below that q also lies inside the diametric ball of v1v2 Qp, and
hence v1v2 is flippable. The plane of v1v2q intersects Bv1v2 Qp in a diskD with radius
� � .1�O."//�v1v2 Qp , as the dihedral angle between v1v2q and v1v2 Qp is � �O."/.
If q is outside Bv1v2 Qp, then q is outside D, and  � †v1qv2 � arcsin

�
d.v1;v2/

2�

�
.

Since d.v1; v2/ D 2�v1v2 Qp sin †v1 Qpv2 � 2�v1 Qpv2 sin. =2/, we get sin � .1 C
O."// sin. =2/ , 2 cos. =2/ � 1C O."/, which is impossible for  < �=3. So
q lies inside the diametric ball of v1v2 Qp.

Flipping v1v2 produces v1 Qpq and v2 Qpq. First, † Qpv1q � v2v1q �  , as the
dihedral angle between qv1v2 and Qpv1v2 is obtuse. Next, if †v1 Qpq is non-obtuse,
since v1v2 is flippable, one can show that †v1 Qpq � †v1v2q �  [8]. If †v1 Qpq is
obtuse, it is less than � � † Qpv1q � � �  . This implies that sin †v1 Qpq � sin .

Finally, we can bound †v1q Qp: sin †v1q Qp D d. Qp;v1/
d.q;v1/

�sin †v1 Qpq � 1
7 �

2�qv1v2
2�qv1v2

�sin D
.�2=14/ sin . A similar argument bounds the angles in v2q Qp from below.

So all new angles are at least minf ; 0;  00g before lifting the triangles incident
to Qp to p, where  0 D arcsin

�
�2

14
sin. =2/

�
, and  00 D arcsin

�
�2

14
sin 

�
. Since p



Deforming Surface Meshes 79

is very close to Qp, the lifting decreases the angles by only a constant factor. So an
angle lower bound � can be preserved by an appropriate setting of � . ut

The lemma below summarizes the properties of the final mesh obtained.

Lemma 11 Let X be an ."X ; ˛0/-mesh satisfying OC1– OC3. REFINE.X/ runs in time
linear in the number of sample points, and produces a mesh Y such that:

(i) For every triangle � in Y , there is no vertex in B.c� ; 0:8��/, and if a vertex v
lies in B

�
c� ; .`=6� 4/��

�
, then nY .v/ � 1

6
�2�� .

(ii) Y is an ."Y ; �/-mesh, where � 2 .0; �=3� and "Y D maxf0:3"0; 4	�"Xg.

Proof Consider the running time of REFINE.X/. We first show that updating the
nearest vertex for each sample point takes O.1/ time. For every non-vertex sample
point p, it is initially stored in the list of some vertex u such that d.p; u/ D
O.RX.u//, as X satisfies OC3. Set ` large enough so that 2d.p; u/ � .`=2/RX.u/.
The distance between p and its nearest vertex w is at most d.p; u/, so d.w; u/ �
2d.p; u/. All triangles intersecting B.u; 2d.p; u// are connected, and they project
injectively in the tangent plane at u by Lemma 7. OC2 ensures that all edges of those
triangles have lengths at least ˝.RX.u//. Since all angles in X are at least some
constant, a standard packing argument shows that there are only O.1/ triangles
intersecting B.u; 2d.p; u//. Therefore, we can search for the nearest vertex of p
by traversing the triangles intersecting B.u; 2d.p; u// in O.1/ time.

Inside the main loop, for each sample point p, we need to find its nearest vertex
again. The point p is stored in the point list of the vertex u in X nearest to p.
So d.p; u/ � 2RX.u/. Lemma 10(ii) ensures that all angles in an intermediate
mesh are at least some constant. Lemma 10(i) implies that all edges intersecting
B.u; 4RX.u// have lengths ˝.RX.u//. Then the nearest vertex of p can be found
in O.1/ time by the same reasoning. Consider edge flips before the search for the
nearest triangle of p. There are constant number of vertices whose incident triangles
intersect B.u; 4RX.u//. So by Theorem 1(iii), it takes O.1/ time to flip edges so
that their incident triangles have almost empty diametric balls. Finding the nearest
triangle of p can also be done in O.1/ time by traversing the triangles intersecting
B.u; 4RX.u//. The remaining operations in the main loop clearly take O.1/ time.

The post-processing, including the edge flips and point migrations, can be done
in linear time. Therefore, REFINE runs in linear time.

Consider (i). Since edges are flipped in post-processing until none is flippable,
Theorem 1(i) any triangle � in Y , B.c� ; 0:8��/ does not contain any vertex. Let v be
a vertex such that d.v; c� / � .`=6� 4/�� . By Lemma 9, we can find a triangle 
 in
X such that d.c� ; 
/ < 0:1.�� C �
/ and �
 � 0:7�� . Let a be a vertex of 
 . So we
have d.a; v/ � d.a; c� /Cd.v; c� / � 2�
C0:1.��C�
/C.`=6�4/�� � .`=4�3/�
 .
Lemma 10(i) applies and implies that nY .v/ � 1

4
�2RX.a/ � 1

4
�2�
 >

1
6
�2�� .

Consider (ii). The angle lower bound � follows from Lemma 10(ii). It remains to
show that the vertices of Y form an "Y -sample of ˙tC1. Take any point x in ˙tC1.
SincePtC1 remains an "-sample of˙tC1 in our motion model, there exists p 2 PtC1
such that d.p; x/ � "ftC1.x/. If p is a vertex of Y , we are done. Suppose that p is
not a vertex of Y . Let u be the vertex of X where p 2 points.u/. Recall that, before



80 S.-W. Cheng and J. Jin

the main loop, we move every sample point to the point list of its nearest vertex in
X , so d.p; u/ � 2RX.u/. Let w0 be the nearest vertex to p in the intermediate mesh
when we decided not to insert p. Let w be the vertex of Y nearest to p. The point p
was not inserted because d.p;w0/ � 20.sin˛0/�1�tC1.p/ or d.p;w0/ � �RX.u/.
Since nearest vertex distances can only decrease in the insertion phase, we have
d.p;w/ � d.p;w0/ � 20.sin˛0/�1�tC1.p/ or d.p;w/ � d.p;w0/ � �RX.u/.

In the case that d.p;w/ � 20.sin˛0/�1�tC1.p/, we have d.p;w/ �
0:1"0ftC1.p/ as �tC1.p/ � .0:005"0 sin ˛0/ftC1.p/ by the smoothness of the
deformation. Then, d.w; x/ � d.p;w/C d.p; x/ � 0:1"0ftC1.p/C "ftC1.x/. The
Lipschitzness of LFS implies that d.w; x/ � 0:1"0.1 C "/ftC1.x/ C "ftC1.x/ <
0:3"0ftC1.x/ because we assume that "0 � 10". Therefore, d.w; x/ � "Y ftC1.x/.

Thus, the requirement of an "Y -sample is fulfilled by the vertex w of Y .
Consider the case that d.p;w/ � �RX.u/. Since X is an ."X; ˛0/-mesh,

d.p; u/ � 2RX.u/ � 2	"XftC1.u/. So d.u; x/ � d.p; u/ C d.p; x/ �
2	"XftC1.u/ C "ftC1.x/. The Lipschitzness of LFS implies that ftC1.u/ � .1 C
2" C 4	"X/ftC1.x/ < 2ftC1.x/. So d.p;w/ � �RX.u/ � 	�"XftC1.u/ D
2	�"XftC1.x/, and d.w; x/ � d.p;w/ C d.p; x/ � .2	�"X C "/ftC1.x/ �
maxf4	�"X; 2"g � ftC1.x/ < "Y ftC1.x/. ut

5 Decimation

Some vertices must be deleted in order to increase the inter-vertex distances. This
will restore conditions C1 and C2 and the angle lower bound ˛0 D ˝.�/. Let Y be
the output of the refinement phase. Our idea is to define a decimation radius ıv for
each vertex v of Y sensitive to the triangle circumradii nearby, so that if we keep v,
then the vertices at distance less than radius ıv from v should be deleted. We want
the decimation radius to satisfy the following properties.

P1: For any two vertices v and u, ıv � ıu � .�=`/d.v; u/.
P2: There exists a constant �dec such that for each vertex v, ıv � 4�RY .v/ and

there exists a triangle � in Y such that d.v; c� / � �dec�� and ıv � 1
15
�� .

P1 ensures that the function is smooth, so after the decimation, the nearest vertex
distances of close vertices are similar. P2 provides lower and upper bounds on the
decimation radius.

Define the decimation radius ıv D maxf4��� � .�=`/d.v; c� / W triangle � in Y g.
It is easy to verify that it satisfies P1 and P2 with �dec D 4` for 4� � 1

15
. To evaluate

the decimation radii for all vertices, we perform a breadth-first search from each
triangle � , update the decimation radii at the vertices visited, and stop at edges e
where 4��� � .�=`/d.e; c� /.

Vertex deletions cannot be performed in an arbitrary order because this may
produce tiny angles in an intermediate mesh that makes it impossible to apply
Theorem 1(iii) in subsequent vertex deletions. To avoid this problem, we decimate
vertex neighborhoods gradually in rounds as explained below.



Deforming Surface Meshes 81

Algorithm 1 DELETE(mesh T , vertex w)
1: Flip edges so that all triangles incident to w have almost empty diametric balls.
2: H  the plane through a triangles incident to u.
3: Remove all the triangles incident to w, and let P be the polygonal hole.
4: Q the projection of P inH .
5: Compute the constrained Delaunay triangulation of Q.
6: Fill the hole P by lifting these triangles.

Define nmin to be the smallest distance between two vertices in Y . Define
ımax D max

˚
maxfıv; 20.sin˛0/�1�tC1.v/g W vertex v in Y .

�
. Place the vertices

of Y into lists S0; : : : ; Sm such that Si contains v iff 2inmin � nY .v/ < 2iC1nmin,
where m D maxf0; blog2.ımax=nmin/cg. This can be done in O.m C n/ time as
follows without assuming constant-time integral logarithm operations. We find m
by computing ımax inO.n/ time and computing the integral logarithm inO.m/ time
in a brute force manner. Then initialize mC 1 empty lists, and insert the vertex vmin

with the smallest nearest vertex distance in Sm. Next, start a breadth-first search to
traverse the mesh from vmax. Notice that for any two adjacent vertices, their nearest
vertex distances differ by a constant factor. So for each vertex encountered during
the traversal, knowing at which list any of its adjacent vertices is placed allows us
to locate its list in O.1/ time.

Then, we initialize a mesh T to be Y and decimate its vertices in mC 1 rounds.
In round i , we decimate the neighborhood of each vertex v 2 Si as follows.

1. Remove v from Si . If 2inmin � maxfıv; 20.sin˛0/�1�tC1.v/g, delete the
vertices in B.v; 2iC1nmin/ other than v from T . Algorithm 1 explains how
to delete a vertex from T . Deleted vertices are also removed from the lists
S0; : : : ; Sm.

2. Compute the nearest vertex distance nT .v/ of v by finding its nearest vertex in the
updated mesh T . The nearest vertex of v can be found by traversing the triangles
intersecting B.v; d.u; v// for any edge uv incident to v in T .

3. Compute the index j such that 2jnmin � nT .v/ < 2jC1nmin. We will show in
Lemma 16 that j D i C O.1/, so j can be computed in O.1/ time. If j > m,
then nT .v/ � ımax, so we can drop v. If j � m, we put v in Sj for future
processing.

In other words, vertices within distances 2nmin; 4nmin; 8nmin; : : : from v are deleted
in rounds. After processing all vertices in SmC1, we need to migrate the points in
points.w/ for each vertex w deleted.

In the end, the algorithm flips edges until none is flippable, and places every point
that is not a vertex to the point list of its nearest vertex.

In the following, we show that the algorithm correctly decimates the neighbor-
hood of each vertex (Lemma 12); and it does not over-decimate in the sense that each
deleted vertex is at distance O

�
maxfıv; 20.sin˛0/�1�tC1.v/g

�
from some vertex v

in Z (Lemma 13).



82 S.-W. Cheng and J. Jin

Lemma 12 LetZ be the output mesh of DECIMATE.Y /. The distance between any
vertex v to its nearest vertex in Z is at least maxfıv; 20.sin˛0/�1�tC1.v/g.

Proof Throughout the decimation procedure, we maintain the invariant that each
vertex v in Si has nearest vertex distance nZ.v/ � 2inmin, and we drop it only when
2inmin > maxfıv; 20.sin˛0/�1�tC1.v/g. So the lemma follows. ut

Consider a chronological sequence of vertices .w0;w1; : : : ;wg/ that satisfies the
following properties: (1) for k 2 Œ0; g�, wk is a vertex in the initial mesh Y ; (2)
wg is a vertex of an intermediate mesh T in DECIMATE.Y /; (3) for k 2 Œ1; g�,
wk�1 2 B.wk; 2ikC1nmin/ and wk�1 was deleted when we processed wk in some list
Sik . We call the chronological sequence .w0;w1; : : : ;wg/ a deletion chain. It has the
following property.

Lemma 13 Let .w0;w1; : : : ;wg/ be a deletion chain. Suppose that wg 2 Sj when
wg�1 was deleted. If 2jnmin � ıwg , then d.w0;wg/ � 2jC2nmin � 4ıwg ; otherwise,
d.w0;wg/ � 80.sin˛0/�1�tC1.wg/ � 0:4"0f .wg/.

Proof For k 2 Œ0; g � 1�, after deleting the vertices in B.wk; 2ikC1nmin/ n fwkg for
some ik , we cannot delete wk when examining another vertex in the same list Sik .
Thus, wkC1 2 SikC1

for some ikC1 > ik when wk was deleted. We have d.w0;wg/ �Pg

kD1 d.wk�1;wk/ � Pj
iD0 2iC1nmin � 2jC2nmin. Since wg 2 Sj when wg�1 was

deleted, we have 2jnmin � maxfıwg ; 20.sin˛0/�1�tC1.wg/g. If 2jnmin � ıwg ,
we obtain d.w0;wg/ � 4ıwg . Suppose that 2jnmin � 20.sin˛0/�1�tC1.wg/.
Since we assume that �tC1.wg/ � .0:005"0 sin˛0/ftC1.wg/, we get d.w0;wg/ �
80.sin˛0/�1�tC1.wg/ � 0:4"0ftC1.wg/. ut

In DELETE(T , w), the first step is to flip edges so that the triangles incident to
w have almost empty diametric balls. The next technical result shows the property
ensured by this step.

Lemma 14 Consider the intermediate mesh T during DECIMATE.Y /. Suppose that
` is sufficiently large and � is sufficiently small. (Their settings depend on the hidden
constant in assumption (i) in our motion model.) Suppose that all the angles are at
least some constant before calling DELETE.T;w/. Then after the execution of line 1
of DELETE.T;w/, for any vertex v of T , nT .v/ � 1

14
�2RT .v/.

Proof Let � be the triangle incident to v such that �� D RT .v/. Recall that Y stands
for the output mesh of the insertion phase. Let 
 be the triangle in Y closest to
'˙tC1

.c� /. By Lemma 9, we have d.c� ; 
/ < 0:1.�� C �
/. Let a be any vertex of

 . The distance d.a; c� / is at most 2:1�
 C 0:1�� .

Suppose that the vertices of 
 lie outside B.c� ; 0:5��/. Then, �
 � 0:45�� by
Lemma 9. We have d.a; v/ � d.a; c� / C d.v; c� / � 2:1�
 C 0:1�� C �� < 5�
 .
Then, for ` � 54, Lemma 11(i) implies that nT .v/ � nY .v/ � 1

6
�2�
 � 1

14
�2�� .

Suppose that some vertex a of 
 lies in B.c� ; 0:5�� /. There is a deletion chain
.a; : : : ; u;w/, where w is a vertex in the current T . Since B.c� ; 0:8��/ contains no
vertex of T , d.w; c� / � 0:8�� . So we have d.a;w/ � d.w; c� / � d.a; c� / � 0:3��



Deforming Surface Meshes 83

Hence, d.v;w/ � d.v; c� / C d.a; c� / C d.a;w/ < 1:5�� C d.a;w/ � 6d.a;w/.
Assume that u was deleted when we processed w in some list Si .

Suppose that 2inmin � ıw. Lemma 13 implies that ıw � 1
4
d.a;w/: Combining

it with the previous inequality and the smoothness of the decimation radii, we
have ıv � ıw � .�=`/d.v;w/ � ıw � .24�=`/ıw > ıw=2. If we dropped v
before processing w (i.e., did not place v in any list for further processing), we
must have nT .v/ � ıv, which is greater than 1

2
ıw. Then, Lemma 13 implies that

nT .v/ > ıw=2 � d.a;w/=8 � 0:3��=8, which is greater than �2��=14. If we did
not drop v before processing w, we must have nT .v/ � 2inmin. Then, Lemma 13
implies that nT .v/ � 2inmin � d.a;w/=4 � 0:3��=4, which is also greater than
�2��=14.

If 2inmin > ıw, then d.a;w/ � 80.sin˛0/�1�tC1.w/ by Lemma 13. By
assumption,�tC1.w/ � c�t .w/ for some constant c. Condition OC1 and the working
of REFINE ensure that RY .w/ � nY .w/ � 18�t .w/

sin˛0
� 18�tC1.w/

c sin˛0
� 9d.a;w/

40c
.

Recall that d.a;w/ � 0:3�� . By property P2 of decimation radii, we have ıw �
4�RY .w/ >

9
10c
�d.a;w/ � 27

100c
��� . Set ` to be a constant greater than 20c=3. Then

ıv � ıw � �
`

� d.w; v/ � ıw � �
`

� 6d.a;w/ � ıw � �
`

� 10c
9�

� 6ıw � ıw=2 � 27
200c

��� .
Then, we can invoke the same analysis in the previous paragraph and show that
nT .v/ � �2��=14 by setting � small enough. ut

By Lemma 14, all triangles have angles at least arcsin
�
1
28
�2

�
after the execution

of line 1 in DELETE. This allows us to show that the deletion of a single vertex
preserves an˝.1/ lower bound on angles. Then, inductively, any intermediate mesh
during the decimation has constant lower bound on its smallest angle.

Lemma 15 At any time during DECIMATE, DELETE.T;w/ produces angles that
are at least some constant.

Proof Consider the deletion of a vertex w from T . We first show that the distance
between any two vertices adjacent to w is at least ˝.nT .w//. Take any two vertices
a and b incident to w. If †awb � �=2, then d.a; b/ � d.a;w/ � nT .w/. Suppose
†awb < �=2. Then d.a; b/ � d.a;w/ � sin †awb � nT .w/ � sin †awb. Since each
angle at w is at least arcsin

�
1
28
�2

�
and triangles incident to w are fairly flat, we have

†awb � arcsin
�
1
28
�2

�
, and hence d.a; b/ � 1

28
�2nT .w/.

Let Q be the projection of the triangles incident to w to the plane of one of
these triangles. By Lemma 7, Q is a simple polygon. The distance between any
two vertices adjacent to w is shortened by a constant factor by the projection.
So the distance between any two vertices of Q is ˝.�2nT .w//. In the following,
we prove that any triangle � in the constrained Delaunay triangulation of Q has
circumradius at most 112

�2
RT .w/. Then, the ratio of the shortest edge length of � to

�� is ˝
�
�4 � nT .w/

RT .w/

�
D ˝.1/, which implies that the smallest angle in � is ˝.1/.

Assume to the contrary that �� > 112
�2

RT .w/. Refer to Fig. 2. Since the distance
between w and any vertex incident to w is at most 2RT .w/, each edge of � is at most
4RT .w/. The large circumradius of � implies that it has an obtuse angle. Moreover,
c� lies outsideQ because �� is larger than the largest distance between two vertices



84 S.-W. Cheng and J. Jin

Fig. 2 � is a constrained
Delaunay triangle of the
projected polygon Q

a

c

Q

x

y
p

w

of Q. Let a be the vertex of � with an obtuse angle. Since Q contains � , the line
segment ac� must intersect at least one edge of Q. Let xy be the one closest to a.
Let p denote the intersection point xy \ ac� . Both x and y avoid the interior of the
circumcircle of � by the constrained Delaunay condition. The line segment ap is
insideQ by our choice of xy. The polygonQ is star-shaped with w in the kernel, so
the line segment wp lies inside Q as well. Thus, w and a are on the same side of xy.
If †wxy > †axy and †wyx > ayx, the triangle wxy would contain a in its interior,
which is impossible. So †wxy � †axy or †wyx � ayx. Assume the former is true.

Recall that all angles in the triangles incident to w are at least arcsin
�
1
28
�2

�
. They

can be affected by the projection only slightly. So †axy � †wxy > arcsin. 1
56
�2/.

Since x and y are outside the circumcircle of � and xy separates a and c� , we have
�� � �axy � d.a;y/

2 sin†axy � 28d.a;y/

�2
. Both a and y are at distance at most 2RT .w/ from

w, so d.a; y/ � 4RT .w/. It follows that �� � 112
�2

RT .w/, a contradiction. ut
Lemma 16 Let v be a vertex in list Si . Lines 14–15 of DECIMATE place v in list
Sj for some j D i CO.1/.

Proof Let T be the current mesh. Consider the mesh T 0 right before the last vertex
u in B.v; 2inmin/ n fvg is deleted. Let w ¤ v be a vertex adjacent to u in T 0. By
Lemma 15, d.w; u/ � cnT 0.u/ � cd.u; v/ for some constant c. So d.v;w/ �
d.v; u/Cd.u;w/ � .cC1/d.v; u/ � .cC1/2inmin, and the nearest vertex distance
of v after deleting u is at most .c C 1/2inmin.

If u is deleted during the decimation of the neighborhood of v, then w remains a
vertex in T . Therefore, nT .n/ � d.v;w/ � .c C 1/2inmin, and j D i CO.log c/.

Suppose that u is deleted during the decimation of the neighborhood of another
vertex. Consider the deletion chain .w0;w1; : : : ;wg/ that contains u, where wg is
a vertex in T . The neighborhood of wg is decimated in round i or earlier, so we
have d.u;wg/ � Pg�1

kD0 d.wk;wkC1/ < 2d.wg�1;wg/ � 2iC1nmin. So nT .v/ �
d.v;wg/ � d.v; u/C d.u;wg/ � 3 � 2inmin, meaning that j � i C 2. ut

Next, we show that the vertices of the output mesh Z of DECIMATE is still a
dense sample despite the vertex deletions.

Lemma 17 Let Y be the output of the refinement phase, andZ D REFINE.Y /. The
vertices of Z form an "Z-sample, where "Z D maxf"0; 15	�"Xg.



Deforming Surface Meshes 85

Proof Take any point x 2 ˙tC1. Let w be the nearest vertex in Y to x. So
d.w; x/ � "Y ftC1.x/ by Lemma 11. If w is a vertex of Z, we are done. Suppose
that w was deleted. Then by Lemma 13, there exists a vertex v in Z such that
d.v;w/ � maxf4ıv; 0:4"0ftC1.v/g.

Suppose d.v;w/ � 0:4"0ftC1.w/. Then, d.x; v/ � d.x;w/ C d.w; v/ �
"Y ftC1.x/ C 0:4"0ftC1.v/. The Lipschitzness of LFS implies that d.x; v/ �
0:4"0C"Y
1�0:4"0 ftC1.x/ � .0:7"0 C "Y / � ftC1.x/. Since "Y � maxf0:3"0; 4	�"Xg by

Lemma 11, it can be verified that 0:7"0 C "Y � maxf"0; 15	�"Xg: So d.x; v/ �
"ZftC1.x/.

Consider the case that d.v;w/ � 4ıv. By property P2 of decimation radii,
we can find a triangle � in Y such that d.v; c� / � �dec�� and ıv � 1

15
�� . Let

a be a vertex of � . By Theorem 1(ii), �� � 1:5"Y ftC1.a/. Therefore, we have
d.v; c� / � 1:5�dec"Y ftC1.a/ and ıv � 1

15
�� � 0:1"Y ftC1.a/. The Lipschitzness

of LFS implies that ıv � 0:1"Y
�
1 C 1:5.�dec C 1/"Y

�
ftC1.v/ � 0:2"Y ftC1.v/.

Thus, d.x; v/ � 4ıv C "Y ftC1.x/ � 0:8"Y ftC1.v/C "Y ftC1.x/ < 3"Y ftC1.x/ �
"ZftC1.x/. ut

We are ready to show that DECIMATE restores the angle lower bound to ˛0, while
ensuring a good sampling density.

Lemma 18 LetX be an ."X ; ˛1/-mesh satisfying OC1– OC3 for some constants "X and
˛1. Let Y be the output mesh of REFINE.X/. Assume that the decimation radii for
the vertices in Y are known. Then, DECIMATE.Y / runs in linear time and produces
an ."Z; ˛0/-meshZ that satisfies conditions C1–C3, where "Z D maxf"0; 15	�"Xg
and ˛0 D ˝.�/.

Proof The angles in Y are at least some constant by Lemma 11, so deleting
the first vertex can be done in O.1/ time. Then by Lemma 15, all angles in
the mesh after the deletion are still at least some constant. So Lemmas 14
and 15 are applicable inductively, and hence the deletion of each single vertex
can be deleted in O.1/ time. Thus, we only need to bound the total number
of migrations of vertices in the m C 1 rounds of vertex deletions. Let � be
the triangle in Y with the largest circumradius. Let u be the vertex in Y with

the largest �tC1.u/. So, m � log
�

1
nmin

max
˚
1
15
�� ; 20.sin˛0/�1�tC1.u/

��
D

log O.��C�t .u//
nmin

D log O.��CRY .u//
nmin

D O
�
log.��=nmin/

�
. Since each angle in Y is

at least some constant, the circumradii of two adjacent triangles differ by a constant
factor, implying that the radio of the largest to the smallest circumradii is at most
2O.n/. Therefore, m D O.n/. Consider the processing of v 2 Si in a round. In
the case that i < j � mC 1, we deleted some vertex p in a previous round where
d.p; v/ equals the old nM.v/. We charge to p the migration of v to Sj . We can show
that p is charged only O.1/ time as in bounding the degree of a planar minimum
spanning tree by six. Therefore, the total number of migrations is O.n/, implying
that the total running time is O.n/.

Condition C1 follows from Lemma 12.



86 S.-W. Cheng and J. Jin

Condition C2 requires that for any vertex v and any triangle � in Z, if v 2
B.c� ; `�� /, then nM.v/ > ��� . Let 
 be the triangle in Y closest to '˙tC1

.c� /. Let a
be any vertex of 
 . By Lemma 9, d.a; c� / < 2:1�
C0:1�� . Suppose that the vertices
of 
 lie outsideB.c� ; 0:7��/. Then, Lemma 9 implies that �
 > 0:6�� , and we have
d.a; v/ � d.a; c� /C d.v; c� / � 2:1�
 C 0:1�� C `�� < 2`�
 . By the properties of
decimation radii, ıa � 4��
 and nZ.v/ � ıv � ıa � .�=`/d.a; v/ � 2��
 > ��� .
If some vertex a of 
 lies inside B.c� ; 0:7�� /, d.a; v/ � `�� C 0:7�� < 2`�� .
We can invoke the same proof as that in Lemma 14: identify the deletion chain
.a; : : : ;w/ where w is a vertex ofZ, and relate ıv and ıw. We have d.w; c� / � 0:8��
and 0:1�� � d.a;w/ � 4ıw. Set � to be a small enough number. We have ıv �
ıw�.�=`/d.v;w/ � ıw�.�=`/.d.v; a/Cd.a;w// � .1�4�=`/ıw�.�=`/.2`�� / >
1
80
�� > ��� .
Condition C3 is satisfied simply because we put every point p 2 PtC1 that is not

a vertex of M in points.w/ such that w is the nearest vertex of M to p.
Finally, by Lemma 17, the vertices of the output mesh Z form an "Z-sample of

˙tC1, and by C2, ˛0 can be set to arcsin.�=2/, so Z is an ."Z; ˛0/-mesh. ut
Lemma 19 LetKtC1 be the deformed mesh at time tC1, which is an ."1; ˛1/-mesh
satisfying OC1� OC3. We can iterate REFINE and DECIMATE O.1/ times to return an
."0; ˛0/-mesh MtC1 that satisfies C1–C3.

Proof Our mesh update procedure iterates REFINE and DECIMATE forO.log 1
"0
/ D

O.1/ times. The angle bound ˛0 and the conditions C1–C3 are enforced by
Lemma 18. Consider the sampling condition. The vertex set ofKtC1 is an "1-sample,
so after the first iteration, we obtain a mesh whose vertex set is an maxf"0;O.�"1/g-
sample by Lemma 18. Another iteration gives a maxf"0;O.�2"1/g-sample. There-
fore, after O.log 1

"0
/ iterations, we can obtain an ."0; ˛0/-mesh. ut

Finally, we obtain our deforming mesh maintenance result as stated in the
theorem below. The O.n/ running time bound is obtained by using an octree to
speed up the computation of the decimation radii.

Theorem 2 ([7, 17]) Consider the simulation of a deforming surface, specified by
n moving sample points, that progresses in unit time steps. Suppose that the sample
points form an "-sample for a sufficiently small " throughout the simulation. There
exist constants "0 2 .10"; 1/ and ˛0 > 0 such that an ."0; ˛0/-mesh can be built
before the simulation begins and if the deformation is smooth, an ."0; ˛0/-mesh can
be restored in O.n/ time at each subsequent time step.

6 Experiments

We built a prototype of the mesh maintenance algorithm and experimented with two
test cases on a machine with Intel Xeon E5450 3GHz CPU and 16G memory. Two
iterations of the insertion and deletion phases were run on the two test cases, and
we found that the mesh size and quality are nearly identical at the end of the first



Deforming Surface Meshes 87

Fig. 3 The leftmost screen shots are taken at time 0.2, 0.4 and 0:7 respectively. The rightmost
screen shot is the back of the object at time 0.7

Fig. 4 A piece of cloth falling on a ball

and second iterations. Since the iterations aim to increase the mesh density, it is
reasonable to stop if the mesh size stays nearly the same.

The first test case is a deformation of a sphere [12, 20]. The velocity field is
defined as: vx D 2 sin2.�x/ sin.2�y/ sin.2�z/, vy D � sin.2�x/ sin2.�y/ sin.2�z/,
and vz D � sin.2�x/ sin.2�y/ sin2.�z/. Initially we have 10K random samples on
a sphere centered at .0:35; 0:35; 0:35/ with radius 0:15. After the simulation starts,
the points move with the velocity determined by its current position. Figure 3
shows how the object deforms. The rightmost two images in Fig. 3 show the front
and back views of the surface mesh at time 0.7. As the object deforms, the front
side is stretched and the sample points move to the back side of object. From the
screen shots, one can see that our algorithm is indeed adaptive to the sampling: the
triangles in the front are much larger than those at back. The average number of
mesh vertices is around 6K, 90 % of angles are in the range Œ30ı; 120ı�, less than
0:02% of them are less than 15ı, and none is smaller than 11ı. The average update
time per time step is less than 0.36 s. Reduction in running time seems possible as
we did not optimize the code. For comparison, we reconstructed the mesh from the
sample points using Cocone [3]. Cocone took 3.7 s on average per time step.

We also ran our algorithm with different numbers of sample points and observed
that the average update time increases linearly with the number of sample points.

Our second test case is the deformation of a piece cloth as it falls on a sphere [4].
10K sample points are used. The cloth boundary is preserved by not allowing any
boundary edge to be flipped. Figure 4 shows the results. The statistics is highly
similar to the first test case.



88 S.-W. Cheng and J. Jin

Acknowledgements Research supported by the Research Grant Council, Hong Kong, China
(project no. 612107).

References

1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans.
Graph. 26, 3–48 (2007)

2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom.
22, 481–504 (1999)

3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface
reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002)

4. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH, pp. 43–54 (1998)
5. Beer, G., Smith, I., Duenser, C.: The Boundary Element Method with Programming. Springer,

New York (2008)
6. Bredno, J., Lehmann, T.M., Spitzer, K.: A general discrete contour model in two, three, and

four dimensions for topology-adaptive multichannel segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 25, 550–563 (2003)

7. Cheng, S.-W., Jin, J.: Edge flips and deforming surface meshes. In: Proceedings of the 28th
Annual Symposium on Computational Geometry, pp. 331–340 (2011)

8. Cheng, S.-W., Jin, J.: Edge flips in surface meshes. Manuscript. http://www.cse.ust.hk/faculty/
scheng/pub/deform.pdf (2013)

9. Cheng, S.-W., Jin, J., Lau., M.-K.: A fast and simple surface reconstruction algorithm. In:
Proceedings of the 28th Annual Symposium on Computational Geometry, pp. 69–78 (2012)

10. Delingette, H.: Towards realistic soft tissue modeling in medical simulation. In: Proceedings
of the IEEE: Special Issue on Surgery Simulation, pp. 512–523 (1998)

11. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis.
Cambridge University Press, New York (2006)

12. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for
improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

13. Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds.
Discrete Comput. Geom. 32, 245–267 (2004)

14. Glimm, J., Grove, J.W., Li, X.L., Tan, D.C.: Robust computational algorithms for dynamic
interface tracking in three dimensions. SIAM J. Sci. Comput. 21, 2240–2256 (1999)

15. Hall, W.S.: The Boundary Element Method. Kluwer Academic Publishers, Dordrecht (1994)
16. Jiao, X.: Face offsetting: a unified approach for explicit moving interfaces. J. Comput. Phys.

220, 612–625 (2007)
17. Jin, J.: Surface reconstruction and deformation. Doctoral Dissertation, The Hong Kong

University of Science and Technology (2012)
18. Khayat, R.E.: Three-dimensional boundary element analysis of drop deformation in confined

flow for Newtonian and viscoelastic systems. Int. J. Numer. Methods Fluids 34, 241–275
(2000)

19. Koch, R.K., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.:
Simulating facial surgery using finite element methods. In: SIGGRAPH, pp. 421–428 (1996)

20. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow.
SIAM J. Numer. Anal. 33, 627–665 (1996)

21. Liu, T., Shen, D., Davatzikos, C.: Deformable registration of cortical structures via hybrid
volumetric and surface warping. NeuroImage 22, 1790–1801 (2004)

22. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applica-
tions. In: SIGGRAPH, pp. 154–159 (2003)

23. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on
Hamiltonian Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

http://www.cse.ust.hk/faculty/scheng/pub/deform.pdf
http://www.cse.ust.hk/faculty/scheng/pub/deform.pdf


Deforming Surface Meshes 89

24. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of
fracturing solids. ACM Trans. Graph. 24, 957–964 (2005)

25. Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007)
26. Pons, J., Boissonnat, J.D.: Delaunay deformable models: topology-adaptive meshes based on

the restricted Delaunay triangulation. In: CVPR, 1–8 (2007)
27. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press,

Cambridge (1999)
28. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas,

S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput.
Phys. 169(2), 708–759 (2001)

29. Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth
simulation. In: Proceedings of the International Conference on Computer Graphics, pp. 265–
272 (2001)

30. Wojtan, C., Thüey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM
Trans. Graph. 28 (2009). Article 76


	Deforming Surface Meshes 
	1 Introduction
	1.1 Background
	1.2 Motion Model
	1.3 Main Result

	2 High Level Strategy
	3 Mesh Deterioration
	4 Refinement
	4.1 Mesh Properties
	4.2 Analysis of Refinement

	5 Decimation
	6 Experiments
	References


