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Abstract The objective of this work is to create grids for free-surface water flow
simulation entirely with automatic grid refinement. It is shown why it is necessary
to refine the mesh iteratively as the solution converges and why refinement and
derefinement of hexahedral cells must be treated anisotropically.

The proposed refinement criterion is a combination of the pressure Hessian with
refinement at the free surface, in order to capture the flow which drives the surface
motion and the position of the surface itself. Smoothing is needed in the computation
of the Hessian in order to remove oscillations in the pressure, the pressure Hessian
is extrapolated through the free surface to remove its discontinuity there.

Two test cases confirm that effective fine meshes for wave computation can be
created with the proposed automatic refinement procedure.

1 Introduction

Free-surface flows with gravity waves, such as the water flow around ships and
offshore structures, are created through the interaction between the turbulent viscous
flows on both sides of the interface and the motion of the interface. To simulate such
flows, the position of the free surface needs to be modelled as well as the velocity
and pressure fields. An attractive and very robust model is the surface capturing
mixture-fluid approach [8]. Here, the entire fluid is modelled as a numerical mixture
of the pure fluids on the two sides of the interface. The proportion of both fluids
in the mixture is computed with a convection equation for the volume fraction
of one of them, having a discontinuous inflow condition. This discontinuity is
convected through the flow, implicitly giving the position of the free surface
without any specific treatment of the surface region (as opposed to, for example,
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the Volume-of-Fluid or Level-Set approaches). However, for accuracy, special care
must be taken to keep the numerical interface sharp.

Adaptive local grid refinement is particularly well suited for these simulations.
Free-surface water flows have many features which are local in nature and whose
exact position is difficult to estimate beforehand, so their precision can be increased
with adaptive grid refinement. For example, refinement around the surface strongly
increases the resolution of the volume fraction equation, so the modeling of the free
surface is improved. But also other aspects of these flows, such as wakes and trailing
vortices, are resolved with greater precision when grid refinement is used.

The unstructured Reynolds-averaged Navier-Stokes solver ISIS-CFD which we
develop contains an automatic grid refinement method [10-13]. This flow solver,
distributed by NUMECA Int. as part of the FINE/Marine software, is aimed at
the simulation of realistic flow problems in all branches of marine hydrodynamics.
Therefore, the grid refinement method is general and flexible, featuring anisotropic
refinement on unstructured hexahedral grids, derefinement of previous refinements
to enable unsteady flow computation, and full parallelisation including integrated
dynamic load balancing. The anisotropic refinement is based on metric tensors. To
our knowledge, it is the first grid adaptation method included with success in a
general-purpose hydrodynamic flow solver.

In our earlier work on grid refinement for free-surface flows, the multiphysics
character of the flows was not explicitly taken into account for the grid refinement.
Instead, the original grid was chosen sufficiently fine to get a reasonable resolution
of the flow, then automatic grid refinement was used to improve the accuracy of one
particular flow feature. Thus, gravity waves at the water surface were computed with
refinement based on the discontinuity in the volume fraction [12] and wake flows
with refinement based on the pressure [10, 13].

The objective of this paper is to go beyond these earlier works and create fine
meshes for free-surface flow simulation entirely with adaptive grid refinement. This
removes the need for original grids with finer cells in all the possible positions of
the water surface and other important flow features, that are difficult to generate and
very costly if strong waves appear or if a simulated object is free to move. The new
refinement approach simplifies the mesh generation for users and can be much more
efficient, since all fine cells are placed only there where they are really needed.

For such refinement, the technical part of the algorithm has to be modified to treat
both refinement and derefinement of cells in an anisotropic way, allowing division
or merging of cells in one direction only. The first part of the paper highlights the
aspects of the existing algorithm that are essential for free-surface flows, such as the
need to continuously modify the refined mesh as the solution converges, and shows
why anisotropic derefinement must be introduced. The most important evolution
however is in the refinement criterion, which must be a combination of different
physical sensors due to the multiphysics character of two-fluid flows. A criterion
is proposed which combines refinement at the free surface with a pressure Hessian
criterion, modified to remove the singularity in the pressure gradient at the surface.
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The paper is organised as follows. Section 2 describes the ISIS-CFD flow
solver and the meshes that we use. Section 3 then discusses the aspects of its
grid refinement method which are relevant for free-surface flow. Section 4 looks
at anisotropic derefinement, which is currently under development. The combined
refinement criterion is introduced in Sect. 5. Finally, Sect. 6 shows a test on two ship
flow cases, with a new case which highlights the interest of grid refinement for a
flow containing both free surface and strong vortices.

2 Solver and Meshes

ISIS-CFD is an incompressible unsteady Reynolds-averaged Navier-Stokes method.
The solver is based on the finite-volume method to build the spatial discretisation
of the transport equations. The velocity field is obtained from the momentum con-
servation equations and the pressure field is extracted from the mass conservation
constraint transformed into a pressure equation. These equations are similar to
the Rhie and Chow SIMPLE method [9], but have been adapted for flows with
discontinuous density fields. As mentioned, free-surface flow is simulated with a
mixture flow approach: the water surface is captured with a conservation equation
for the volume fraction of water, discretised with specific compressive discretisation
schemes. A detailed description of the solver is given by [3, 8].

The unstructured discretisation is face-based: fluxes are computed face by face,
the reconstructions of the cell-centred state variables to the face centres are made
with interpolations that use the two cells next to a face and their neighbour cells
without a-priori assumptions about the cell topologies. And while the linearised
systems used to solve the momentum and pressure equations are formulated in the
cell-centred unknowns, these systems are constructed by summing the contributions
of the faces to each cell. Thus, no cell topology assumptions are made anywhere,
which means that cells with any number of arbitrarily shaped faces are accepted.

The solver is mostly used with unstructured hexahedral grids generated by the
HEXPRESS grid generator which is also part of FINE/Marine. The grid in Fig. 1
shows the typical features of such meshes: several semi-structured regions, with
body-fitted boundary grids near the walls in order to ensure the best possible grid
quality in the boundary. The grid consists purely of hexahedral cells, with mesh size
variations obtained by placing one large cell next to two or four smaller neighbour
cells. Due to its face-based nature, the ISIS-CFD solver treats these grids just
the same as any other type of mesh. With these meshes, good solution accuracy
is obtained from the semi-structured parts and the body-fitted boundary meshes,
combined with the flexibility to mesh complex geometries.
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3 Grid Refinement Method

The natural method of grid adaptation for unstructured pure-hexahedral meshes is
local grid refinement by dividing cells into smaller cells, as this is how the original
grids themselves are constructed. Thus, adaptively refined grids are of the same type
as all other grids so the flow solver can use them without modifications. This section
shows our existing grid refinement method and how refinement criteria in a metric
context are used to pilot the refinement, focusing on those aspects which are relevant
for free-surface flows. More details of the metric criteria are found in [12].

3.1 Refinement Algorithm

For free-surface flows the simulated position of flow features often depends strongly
on the level of grid refinement; for example, waves may become steeper when the
flow is resolved on finer and finer grids. This means either that automatic grid
refinement should be applied in a large buffer zone around the flow features of
interest to take into account their displacement once the grid is refined, or that
the refinement procedure must be iterative, continuously changing the grid as the
solution converges. Thus, in each refinement iteration, new cells must be refined if
the features of interest have moved, while previous refinements of other cells may
need to be undone in positions which the features of interest have left. For such an
approach, the derefinement of previously refined cells is a necessity.

Our refinement algorithm takes this second approach. ISIS-CFD computes both
steady and unsteady flows with a time integration technique. For grid refinement,
after a given number of time steps (usually 25 for steady flows and 2—4 for unsteady
flows), the grid is adapted to the current solution, after which the time integration
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continues until the grid is adapted again. For steady flows, this procedure eventually
converges (typically after 40-50 refinement cycles). If the refinement criterion
(Sect. 3.4) indicates that the grid is well adapted to the flow and the flow solution
itself has converged, then the refinement procedure will no longer modify the mesh.

3.2 Anisotropy

Anisotropic refinement is the possibility to divide a hexahedral cell in its three
directions independently, either in two, four or eight smaller cells. This is essential
for our refinement procedure, since isotropic refinement (division in eight cells only)
is much too costly in three dimensions if very fine cells are needed to accurately
resolve a local flow feature. By applying anisotropic refinement for features that
require a fine grid in only one direction (notably, the water surface!), the total
number of cells required can be greatly reduced, or much finer flow details can
be resolved.

A second reason for directional refinement is, that the original grids (Fig. 1)
already contain anisotropic refinement with cells of different aspect ratios lying side
by side. Therefore, when refining, we need to control the size of the fine cells in all
their directions independently, otherwise refined grids may have smoothly varying
sizes in one direction, but repeated changes from fine to coarse and back to fine
in another. Isotropic refinement cannot prevent this (see Fig.2 for an example), so
directional refinement is the mandatory choice.

a

Original Isotropic

b

Original Isotropic Directional

Fig. 2 Isotropic grid refinement is satisfactory on an original grid where all cells have the
same aspect ratios (a), otherwise directional refinement is needed (b). (a) Locally isotropic grid;
(b) Locally anisotropic grid
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3.3 Quality of Refined Cells

Since the cells in the refined grid are formed by the subdivision of the cells in the
original grid, the shape of the refined cells is entirely determined by the original
grid. If these original cells are close to rectangular, then the refined cells will be
rectangular as well (this is the case in Fig. 2). However, the quality of bad original
cells is deteriorated by grid refinement. Especially if an original cell is arrow-
shaped, its subdivision may result in cells that are turned inside out.

Thus, the quality of the refined grids can be assured by making sure that the
original grid is as regular as possible. In HEXPRESS meshes, bad quality cells
only appear near the surface of objects, typically at inward-facing angles in the
geometry. Usually, bad original grids can be prevented by locally imposing fine
original cells near these surface features. This is not contrary to the idea of automatic
grid refinement; if the original grid is made to capture the geometry well, the rest of
the fine grid can be created by automatic refinement.

3.4 Metric-Based Refinement Criteria

The use of metric tensors as refinement criteria allows us to specify different cell
sizes in different directions. This technique was first developed for the generation
and refinement of unstructured tetrahedral meshes [4]. It is also an extremely useful
and flexible framework for the anisotropic refinement of hexahedral meshes.

In the metric context, the refinement criterion is a smoothly varying tensor field
whose values at every point in the flow domain indicate what the ideal size for a cell
in that position would be. In each cell, the criterion is a 3 x 3 symmetric positive
definite matrix ¥, which is interpreted as a geometric transformation of the cell in
the physical space to a deformed space. The refinement of the cells is decided as
follows. Let the criterion tensors % in each cell be known (their computation from
the flow solution is described in Sect. 5). In each hexahedral cell, the cell sizes d;
(j = 1,2,3), which are the vectors between the opposing face centres in the three
cell directions, are determined. Next, the modified sizes are computed as:

d, = ¢d;. (1)

Finally, a cell is refined in the direction j when the modified size exceeds a given,
constant threshold value 7, :

ld; || > 7. )
while a previously refined group of cells is derefined back into one cell if:

ld;| <Ty/d  ¥j=1---3, 3)



Creating Free-Surface Flow Grids with Automatic Grid Refinement 311

for all cells in the group. d is chosen slightly larger than 2, to prevent cells being
alternately derefined and re-refined (because d ; doubles when cells are derefined).
Since the procedure only uses the vectors d; to characterise a cell, it can be used for
any shapes and sizes of cells.

The objective of the refinement is thus to create a uniform grid in the deformed
space. The tensors ¢ are direct specifications of the desired cell sizes: in a converged
refined grid, the cell sizes are inversely proportional to the magnitude of the 4. The
threshold 7, functions as a global specification of the fineness of the grid; sensible
choices for 7, in different situations are discussed in Sect. 6 (see also Sect. 5.3).

4 The Need for Directional Derefinement

The derefinement of previously refined cells, like the refinement, ought to be treated
in an anisotropic way. Until now, the refinement of a cell is decided separately for
each direction [Eq. (2)] but the derefinement only allows the complete undoing of
a refinement step; if a cell was divided in eight, the eight cells have to be derefined
back into one which requires the criterion (3) to be satisfied in all three directions ;.
This section shows why this limitation is much too restrictive and how we will
modify our method to anisotropic derefinement. As the transformation of an existing
grid refinement method like ours is difficult compared with developing it correctly
from the beginning, this section may serve as a warning to others. ...

For free-surface flows, isotropic derefinement is inefficient because cells refined
initially in different directions often need to remain refined in at least one direction.
A typical example is the simulation of a travelling wave with grid refinement around
the free surface (see Sect. 5.1). When the wave passes, the free surface is inclined so
the grid is refined both in horizontal and in vertical direction. Then after the wave
has passed and the free surface has returned to its rest state, the vertical refinement
must remain in place. Thus, with isotropic derefinement, the horizontal refinement
cannot be removed either. This leads to large clusters of unnecessary fine cells and
the more the grid is refined, the more this is evident. Since the creation of free-
surface grids entirely with automatic refinement requires much refinement of the
original cells, this problem has to be solved.

A situation which shows the problem of isotropic derefinement particularly
well is the initialisation of the refined grid. Usually the mesh is adapted to the
undisturbed position of the free surface before starting the simulation, to have a
good initial resolution of the volume fraction. When the original grid contains
no specific refinement at the free surface, it has varying cell sizes at the surface
position (Fig.3a): the grid near a solid wall is much finer than elsewhere. Thus,
the discontinuity in the volume fraction is thinner near solid walls than far
away, which means that its top and bottom are inclined! This, in turn, leads to
horizontal refinement of cells. At the end of the initialisation, when the vertical
cell sizes around the surface have become equal due to the automatic refinement,
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Fig. 3 Initialisation of the free-surface refined grid from the original grid (a): as it should
be (b) and with only isotropic derefinement (c). The middle figure was created artificially by
initialising without allowing refinement in x- and y-directions

this horizontal refinement is no longer required (Fig. 3b). However, with isotropic
derefinement it cannot go away because the vertical refinement must remain in place
(Fig. 3c¢).

Thus, for efficient derefinement it is necessary to remove previous refinements
in one direction only (in Fig. 3 the horizontal direction), for example by changing
a cell divided in four into one divided in two. The problem that we have is that our
data structure is not suited for this, since the history of the refinement is stored in
the refined cells as ‘mother’ pointers towards the cells that were divided and ‘sister’
pointers to one of the other refined cells, forming a loop. This structure does not
preserve the relative position of the fine cells. The solution that we are working on
consists of adaptively modifying the refinement history after the fact in order to suit
the required directional derefinement. Clearly, it would be much more elegant to
work with a suitable data structure, for example one which directly indicates the
position of a small cell within the original cell.
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5 Combined Criteria

Suitable refinement criteria for free-surface flows must take into account gravity
waves, which propagate through a cyclic exchange of potential (gravity) and kinetic
energy, caused by the interaction of the free-surface motion with the pressure and
velocity fields below the surface. So in order to correctly simulate free-surface flows,
a good resolution is needed of the volume fraction equation which gives the position
of the free surface, as well as the pressure and velocity variations below the surface.

A grid refinement criterion for free-surface wave simulation must therefore be
based both on the pressure and velocity field and on the volume fraction. For these
two, different indicators are used because the volume fraction « is discontinuous at
the free surface and constant everywhere else, while the pressure and the velocity
are smooth in the whole flow field except at the surface. Spatial derivative based
error indicators can identify the regions of importance for the flow field below the
surface, but do not work at the water surface itself since any derivative of o goes to
infinity when the grid is refined. Also, the grid specified by the criterion must be as
uniform as possible near the surface, since transitions from fine to coarse cells lead
to large errors in the volume fraction. Basing a criterion only on the value of « itself
gives the most stable values for the criterion and thus the best meshes.

This section describes a criterion which is based on the Hessian of the pressure,
combined with refinement where « is neither O nor 1. These criteria are first
introduced individually, then we indicate how they are combined. The section is
a continuation of the work in [11].

5.1 Free-Surface Criterion

To resolve accurately the volume fraction field o which is a discontinuity that is
convected with the flow, it is sufficient to refine the grid at and around the free
surface, in the direction normal to the surface. When the surface is locally aligned
with the cell directions, anisotropic refinement can be used to keep the total number
of cells as low as possible. It is important that cells locally have the same size, to
prevent distortions of the volume fraction.

The free-surface criterion $s is non-zero when « is neither O nor 1. The normal
direction to the surface is computed from a field «; which corresponds to «,
smoothed out by averaging over a cell and its neighbours a given number of times.
The gradient of this field gives the normal directions. The criterion is then derived
from vectors v, in each cell which are unit vectors in this normal direction for those
cells where the smoothed o field is non-zero:

Vo, -
vy = JTvey 01 =0 =09, )
0 otherwise.
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Using the smoothed field guarantees that the normals are well defined and also that
the mesh is refined in a certain zone around the surface to create a margin of safety.

In tensor form, the free-surface criterion is computed as matrices having only one
non-zero eigenvalue, associated with the direction of the vector v,. The tensors %
are computed as follows (with ® representing the tensor product):

Cs = Vo @ V. 5)

In the directions normal to the vector v,, the eigenvalues are zero. This implies a
modified cell size of zero [Eq.(1)]. As a consequence, the grid is not refined in
these directions. Since the v, are unit vectors, the only non-zero eigenvalues of
are equal to 1. Thus, Eq. (2) shows that the threshold value 7, directly indicates the
desired cell size at the surface. Also, the specified cell size normal to the surface is
exactly the same in all surface cells, as required. The free-surface criterion has been
used on its own, with good results, in our earlier work [10, 12].

5.2 Computing the Pressure Hessian

The Hessian matrix of second spatial derivatives can be linked to the interpolation
error of a smooth solution, thus it is a well-known refinement criterion for
anisotropic refinement (see for example [6, 7]). Here this criterion is based on the
pressure, since we prefer a criterion which is insensitive to boundary layers [12].
The number of layers in the boundary layer grid should be the same everywhere for
solution accuracy and the required layer thickness is known, so these layers can be
created in the original grid and do not have to come from adaptive refinement.

For the numerical computation of the Hessian (see also [11]) we need discretised
second-derivative operators. A particular complication for this discretisation is
that our meshes always contain places where the grid size changes abruptly, as
small cells lie next to twice larger cells (see Sect.2). The number of these places
increases significantly when automatic refinement is used so a suitable technique
for computing the Hessian must be insensitive to cell size variations.

5.2.1 Definition of the Hessian Criterion

The pressure Hessian matrix is:

(P)xx (p)xy (P)xz
H(p) = (P (P)yy (P)yz | - (6)
(P)xz (P)yz (P)z
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Assuming, heuristically, that an indication of the local truncation error is given by
¢ times the cell sizes to a power b (where b depends on the numerical method)
and requiring equidistribution of this error indicator leads to a refinement criterion
where the Hessian matrix is modified with a power law:

Cu = (A (p)*). (7

where 77 has the same eigenvectors as .7 and eigenvalues that are those of JZ (in
absolute value) to the power a = % In general, we use a = % which is appropriate
for a second-order accurate discretisation.

5.2.2 Smoothed Gauss (SG) Method

Unfortunately, due to the variations in cell sizes, the numerical pressure is non-
smooth. The SIMPLE-based pressure equation in ISIS-CFD contains a Laplace
operator in finite-volume form for which normal derivatives on the cell faces are
constructed with central interpolation. On non-uniform meshes these interpolations
are first-order accurate, so the Laplace operator itself in the worst case has a
truncation error of order zero. The pressure still converges because these local errors
cancel, but the second derivatives of the pressure have the same order of accuracy
as the Laplace operator, i.e. they are inconsistent. This is not due to the numerical
evaluation of the second derivatives, but inherent in the pressure solution itself. The
consequence for grid refinement is, that refining cells creates large errors in the
Hessian on the boundaries between finer and coarser cells. Thus, the grid is not only
refined where the solution dictates it, but also in places where it has already been
refined. This leads to irregular meshes.

As the error in the Hessian is related to small-scale irregularities in the pressure
field, which can be reduced by smoothing, we define a smoothed Gauss (SG)
Hessian. Let the Gauss approximation to the gradient of a field g be given as:

— 1
Ve@) = 5 Y arSymy, ®)
7

where the face values ¢, are computed with central interpolation from the two
neighbour cells. V' is the volume of the cell, S are the areas of the faces. With
the same face reconstructions, a Laplacian smoothing . is defined as:

Zf qrSy

Lg) = =L—-.
(9) T

€))
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Then the SG Hessian is computed as follows:

1. Compute the gradient of p using Vg.

2. Smooth each component of the gradient by applying N times the smoothing %,
where N = 4 is sufficient in most cases. =

3. Compute the gradients of the smoothed gradient components using V .

4. Symmetrize the resulting Hessian matrix by setting (J¢°); = %((%ﬂ),j + (J0)i).

5. Smooth the Hessian by applying N times . to each component.

The reason for this procedure is, that the second derivatives of the pressure have
zeroth-order oscillatory errors which means first-order errors in the derivatives and
second-order wiggles in the solution itself. The smoothing operator uses the same
type of discretisation as the original Laplace equation, so the smoothing itself
introduces second-order wiggles. Therefore, it is useless to smooth the pressure.
However, the gradient of the pressure has first-order errors; these are still small
compared with the gradient itself but they are large enough to be removed by the
smoother. Therefore, step 2 is the core of the procedure. The smoothing of the
second derivative cannot further remove errors since they are of the same order
as the solution now, but it creates a more regular refinement criterion and thus better
meshes.

The smoothing procedure decreases the spurious oscillations in the refinement
criterion but also reduces the intensity of physical small-scale features. This
limitation of the criterion is the reason that all smoothing should be kept to a
minimum.

5.2.3 Hessian at the Free Surface

The Hessian criterion cannot be directly evaluated at the free surface. Due to the
presence of gravity, there exists a pressure gradient proportional to the density
p, which is discontinuous in the normal direction at the free surface. Therefore,
the second derivative is a Dirac § function. For numerical solutions, the second
derivative in the zone of varying o has a peak which grows as the grid becomes
finer. Numerical differentiation produces large errors in this case.

As a result, no correct values can be computed for the pressure Hessian around
the surface so an approximative procedure is needed. In the cells where 0.0001 <
a < 0.9999, the gradient smoothing (step 2 in the SG algorithm) is not performed.
The Hessian smoothing (step 5) is replaced by the following algorithm:

5a. Smooth the Hessian in all cells except those where 0.0001 < o < 0.9999 plus
two layers of cells around those, to take into account that the perturbed pressure
gradient in the cells at the surface influences the Hessian in their neighbours as
well.

5b. Copy the computed values of the Hessian from outside the zone in (5a) across
the zone, following the vertical direction (this removes the peak at the surface).
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The criterion is copied in the upward direction, so the Hessian values computed
in the water are used across the surface region.
5c. Smooth the Hessian only in the zone of (5a).

The idea of this approach is, that the SG Hessian at the surface must not be used.
Therefore, sensible values must be copied from elsewhere. While this procedure is
heuristic, it works well in practice as will be shown in Sect. 6.

5.3 The Combined Criterion

The final criterion is a combination of the two criteria above. Considering the
problems of the Hessian criterion at the surface, it is tempting to select the free-
surface criterion there and the Hessian everywhere else. However, the free-surface
criterion specifies no refinement in the direction parallel to the surface, while this
refinement may be needed if only to ensure that the grid at the surface is not less
refined than just below it. The criterion in each cell is thus computed from both
criteria.

The criteria are combined with a weighted maximum of the two tensors. We
want the threshold 7, to indicate directly the desired cell size at the surface (as for
the free-surface criterion), so a weighting factor ¢ is applied only to the Hessian
criterion:

(fc = max ((55,6 (fH). (10)

Computing the approximate maximum of the two tensors is described in [12], a
modification of the procedure presented by [4].

There are (as yet) no universal guidelines for choosing c, since appropriate
values depend on the type of problem the results of interest. However, for the
specification of guidelines for computations which are similar, a non-dimensional ¢

is introduced as:
L2\’
c=¢c|l———1] . (11)
VS

where L, Vi, and p are respectively the reference length, velocity, and the density.
The power a is the one in Eq. (7). If two computations are geometrically identical
except for a scaling in L and Vs, then choosing the same ¢ will result in identical
refinement for both cases.
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6 Test Cases

This section presents two test cases which evaluate the capacity of the refinement
method to create effective fine meshes for typical ship flow cases and discuss the
choice of the weighting factor c. The cases are the Series 60 ship (Sect. 6.1) and the
Delft Catamaran in drift condition (Sect. 6.2).

6.1 Series 60 Wave Pattern

The Series 60 hull is studied in straight-ahead motion and calm water. Detailed
experiments for this case are available from IIHR [5] at Fr = 0.316 and Re =
5.3 - 10°. Apart from this Froude number, we also compute the flow at Fr = 0.16
and Fr = 0.41 with Re = 2.7 - 10° and Re = 6.9 - 10° respectively.

The computations are started from an original grid (242k cells) without any
refinement around the free surface. Since directional derefinement is not yet
available, the refinement is initialised as in Fig.3b by allowing only refinement
in vertical direction. The computation is then continued with refinement in all
directions. The threshold (equivalent to the desired cell size at the surface) is the
same for all cases, 7, = 0.001 L which is the usual cell size at the surface for ISIS-
CFD. For each Froude number, the flow is computed with ¢ = 0.016, 0.024 and
0.032 which gives the grid sizes in Table 1. Reference results are obtained without
grid refinement on a fine mesh of 3.45M cells. Turbulence is modelled with the
Menter k — @ SST model.

The wave pattern at the three Froude numbers is shown in Fig.4. The wave
strength varies strongly with Fr; for the two highest Fr, the bow wave breaks.
Figure 5 shows cross-sections of the mesh for the three Froude numbers at the largest
weighting factor ¢ = 0.032. Around the position of the free surface, the meshes have
directional refinement. The cell size below the surface decreases gradually from the
bottom up, the finest cells are concentrated in the bow wave (left) and the stern wave
(right). The refined cells below the waves are predominantly square, although some
cells near the surface are smaller in the vertical direction. The size of the cells in the
original grid can be seen in the upper right corner of Fig. 5b, so the entire fine grid
is actually created by automatic refinement.

Table 1 Number of cells in = 0016 | 0024 0032
the refined meshes for the

Series 60 test cases Fr=20.16 | 698k |1169 | 1793k

Fr=0.316 |597k 892k | 1360k
Fr=10.41 | 757k 973k | 1348k
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Fig. 4 Wave patterns for the Series 60 at Fr = 0.16 (a), Fr = 0.316 (b), and Fr = 0.41 (c). The
isoline distance is the same for all figures and corresponds to L/1000. The Fr = 0.316 result is

compared with experiments from ITHR [5]

The solutions for all cases are compared in Fig. 6, which shows the free surface
in three X -cuts when ¢ is varied, compared with the non-adapted fine grid. For the
highest Froude number (Fig. 6¢), all solutions are close to the fine-grid solution, only
some discrepancy is seen for the ¢ = 0.024 solution behind the ship. However, at
Fr = 0.316 (Fig. 6b) notable differences exist for ¢ = 0.016. Finally, at Fr = 0.16
(Fig. 6a) the computation for ¢ = 0.016 is the closest to the fine-grid solution, which
means that both are questionable! For very small waves, the wave heights may in fact
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(b), and Fr = 0.41 (¢)

be overpredicted on too coarse grids [2]. The solutions for ¢ = 0.024 and ¢ = 0.032
are reasonably close. Figure 6d shows velocity profiles on a horizontal line below
the water at the stern. Only Fr = 0.316 is shown here, since the results for other Fr
are similar. Results for all ¢ are close to the fine-grid solution, the discrepancy with
the experiments may be due to the isotropic k — w SST turbulence model which is
not always well adapted to the simulation of ship wake flows [1, 3].

In conclusion, to accurately model the wave pattern, higher values for ¢ are
needed at low Fr than at high Fr. However, considering the weak influence of the
waves on the rest of the flow field at low Fr, a constant choice for ¢ is justified, which
gives the added advantage that the grid on the hull below the surface is refined in the
same way for all Fr. For slender hulls like the Series 60, setting 7, = 0.001L with
a value of ¢ around 0.024 gives sufficient accuracy. Higher ¢ increase significantly
the total number of cells (Table 1).
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6.2 Delft Catamaran in Sideslip

As a second case, the flow around the Delft-327 Catamaran in sideslip is computed.
The particularity of this case is that it has both strong waves and longitudinal
vortices created below the hull, so the combined refinement criterion is of great
interest since it can capture both these features. The case concerns a motion in
steady drift (8 = 6°) at Fr = 0.4. Automatic grid refinement is started from an
original grid of 1.0M cells which has some limited refinement around the surface,
it is computed with 7, = L /500 and with ¢ = 0.064. This higher value of ¢ than
for the Series 60 case comes mostly from the higher 7,; the combination creates
refinement that is concentrated in the trailing vortices. The converged refined grid
has 2.96M cells, the results are compared with a fine-grid solution of 20M cells. The
anisotropic EASM turbulence model [1] is used.
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Fig. 7 Delft Catamaran, free surface on adaptively refined (a) and fine (b) grid. The vertical line
shows the position of the cut in Fig. 8

A cut through the mesh is shown in Fig. 8a, with refinement around the deformed
surface and in the cores of two vortices below the hulls. Figure 7 compares the free
surface for the refined-grid and fine-grid solution. The two are similar, although
the far-field waves are damped slightly more on the refined grid due to the high
threshold. However, the breaking bow waves have more details on the refined grid,
because the cells are locally smaller in y-direction than on the fine grid. These small
waves (especially between the hulls) are also seen in Fig. 8b, ¢, which show the axial
velocity and the free surface. The vortices are computed on very fine cells in the
refined mesh, so they are notably stronger than on the fine mesh.

Thus, also for this case the relevant flow features can be computed well on an
adaptively refined mesh. The value for ¢, if 7, = L/1000 had been used, would
have been 0.032. This is still higher than for the Series 60 case, which is justified by
the objective to capture the trailing vortices particularly well.
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7 Conclusions

The goal of this paper is the simulation of free-surface water flows. For these flows,
fine grids are needed around the water surface and the surface position is not known
beforehand. Therefore, automatic grid refinement can be very useful, placing fine
cells only exactly where they are needed and removing from the user the task of
estimating the surface position before the computation in order to generate the mesh.

To create the fine grid needed for flows with waves entirely using grid refinement,
the refinement technique must adapt the grid often to the solution as it evolves,
since the surface position for example may change position when the grid becomes
finer. For refinement by subdivision of cells, this means that both refinement
and derefinement are needed even for steady cases, the latter to remove refined
cells which are no longer needed as the simulation converges. Refinement and
derefinement must be performed in an anisotropic way to limit the total number
of cells in three dimensions. The anisotropic derefinement is especially important to
allow cells which were refined in several directions and need to remain refined in
only one, to get rid of the refinement in the other directions.

Suitable refinement criteria must create refinement both around the surface, to
resolve the convection equation for the volume fraction, and in the region below
the surface in order to capture the orbital flow fields. To ensure a regular mesh
at the surface, a derivative-based criterion suitable for detecting the velocity and
pressure fields is combined with a robust free-surface capturing criterion. We
choose a criterion which uses directional refinement in the region where the volume
fraction is between 0.1 and 0.9 and refinement based on the pressure Hessian. On
unstructured hexahedral meshes, the Hessian is found with Gauss derivation twice to
compute first the gradient of the pressure and then the second derivatives, followed
by smoothing to remove irregularities. The numerical pressure Hessian has a peak
at the free surface, due to the discontinuity in the pressure gradient. Therefore, the
free-surface region is not smoothed and the computed Hessian outside the surface
zone is extrapolated through this zone. To combine the two criteria, their relative
weights must be chosen; a non-dimensional scale-independent form for the Hessian
criterion is introduced with a weight c.

Two different ship flow test cases show that the automatic grid refinement is able
to create effective fine meshes from original meshes which are neither much refined
near the surface, nor around other significant flow features such as vortices. These
features were simulated with the same precision as on uniformly fine meshes using
50 % to 85 % less cells. For the weight of the Hessian, the Series 60 case shows that
it is acceptable to choose ¢ independently of Fr. Sensible values for slender ships
are ¢ = 0.02-0.035 with a refinement threshold set around 7, = L /1000, a high
must be chosen if wake features are of major importance. Based on these tests, the
perspective of generating complete free-surface meshes with automatic refinement
seems entirely realistic.
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