
Chapter 8
Belief Revision and Dynamic Logic

Patrick Girard and Hans Rott

Abstract We explore belief change policies in a modal dynamic logic that explicitly
delineates knowledge, belief, plausibility and the dynamics of these notions. Taking
a Kripke semantics counterpart to Grove semantics for AGM as a starting point, we
analyse belief in a basic modal language containing epistemic and doxastic modal-
ities. We critically discuss some philosophical presuppositions underlying various
modelling assumptions commonly made in the literature, such as the limit assump-
tion and negative introspection for knowledge. Finally, we introduce in the language a
general dynamic mechanism and define various policies of iterated belief expansion,
revision, contraction and two-dimensional belief change operations.

8.1 Introduction

The history of belief revision is one in which researchers from various fields have
tackled the same problem from different perspectives, but it originated from phi-
losophy. After earlier work of Isaac Levi and William Harper, Carlos Alchourrón,
Peter Gärdenfors and David Makinson (often referred to by the acronym “AGM”)
initiated the formal study of belief change operations in the 1980s. They analyzed
belief change using three kinds of models: partial meet contractions and revisions (in
terms of maximal non-implying sets [1]), safe contractions and revisions (in terms
of minimal implying sets of sentences [2]), and entrenchment-based contractions
and revisions (based on the comparative retractability of sentences [25]). Grove [29]
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provided a possible worlds semantics for partial meet contraction. Iterated belief
change was addressed in the 1990s, with important contributions by Boutilier [16],
Darwiche and Pearl [17] and Nayak [37]. More recently, van Benthem [9], and Baltag
and Smets [4, 5] modelled epistemic and doxastic states and their transformations
on simple relational structures, introducing a new complexity due to the analysis of
higher-order belief and knowledge. The relevant problems were attacked in a plethora
of ways that may sometimes be differentiated by the degree of abstraction adopted.1

Influenced by van Benthem, we choose our level of abstraction in line with a modular
and minimalist attitude. This means that we only assume constraints on models when
they become necessary, with philosophical awareness, and we use formal languages
as simple as we can.

• Minimality: We try to keep the assumptions on models to be minimal, and we try
to keep our basic object language as simple as possible.

• Modularity: We analyse the key notions of knowledge and belief in terms of two
primitive relations representing indistinguishability and plausibility. We also break
down complex dynamic notions into simpler parts using the programmatic PDL
language.

8.2 Grove Systems of Spheres

In retrospect it looks as if AGM followed a purely syntactic approach to belief
revision. We think that this is not quite correct, for both belief sets and inputs for
belief change were essentially individuated only up to logical equivalence. Still it
was a very important step for the program of belief revision when Adam Grove [29]
provided a possible worlds semantics for AGM’s partial meet contractions. He used
systems of spheres to model belief change, closely following the seminal work of
Lewis [18] on counterfactuals. We summarise Grove’s semantics in some detail, and
later show how to adapt the notation and interpretation to our needs.

Given a language L , define a theory T over L as a set of L -sentences that are
logically closed, i.e., for which cl(T) ⊆ T . Here cl(·) is an operation that forms the
logical closure of a set of sentences from L . A possible world for L is an entity
that assigns, for each atom of L , a truth value 1 (for “true”) or 0 (for “false”).2 We
denote by W the set of all possible worlds, and by [[ϕ]] or [[T ]] the set of all possible
worlds that satisfy a sentence ϕ or a set of sentences T . For a set of worlds V , we
denote by Theory(V) the set of sentences true at each world in V .

1 This caused in turn a proliferation of acronyms such as DEL for ‘dynamic epistemic logic’ which
limits our freedom in using those that would naturally arise with our terminology throughout the
chapter. We thus use EDL to stand for ‘epistemic doxastic logic’. The reader should try not to get
confused by this choice.
2 Grove [29] himself used maximal consistent sets of sentences rather than possible worlds, but this
difference need not concern us here.
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A Grove system of spheres centered around a set B of possible worlds for L is
a set $B = {S|S ⊆ W} that satisfies the following conditions3:

1. $B is totally ordered by set-containment ⊆,
2. B ∈ $B ,
3. B ⊆ U for every U ∈ $B ,
4. The limit assumption: For any sentence ϕ, if there is a sphere S ∈ $B which

intersects [[ϕ]] , then there is a smallest sphere S′ ∈ $B which intersects [[ϕ]] .

A Grove system of spheres is called

5a. universal if in addition, W = ⋃
$B; or

5b. strongly universal if in addition, W ∈ $B .

The term “universal” is taken over from Lewis [18, p. 16]. Grove originally
required his doxastic systems of spheres to be strongly universal. We choose to
deviate from this by requiring not even universality. We do not want to rule out that
an agent may consider some metaphysically possible worlds inconceivable.

Belief in a Grovean sphere system is identified with the innermost sphere B of
$B .4 More precisely, a belief set in Grove spheres is identified with the set of all
sentences Theory(B) that are true throughout the innermost sphere B in $B . The
belief set Theory(B) is the one to be revised with the AGM operators of expansion,
contraction and revision, which we will discuss below. We represent a Grove system
of spheres centered around a set B in the following way, shading the innermost
sphere as characterizing the belief set B:

The sphere formulation is in no way necessary, as Grove notes: “a system of
spheres is really an ordering on the set of worlds” [29, p. 160]. To see this, we can
reformulate Grove spheres in terms of a relation ≤ on W , which we call a Grove
relation. A Grove relation centered around a set B ⊆ W is a relation ≤B on W that
satisfies the following conditions5:

3 We choose the notation B as a mnemonic device for ‘belief’.
4 Grove does not talk about beliefs, but about theories, and his semantics is about theory change
broadly construed. However, his semantics is directly tailored to accommodate the AGM postulates,
so we focus exclusively on a doxastic interpretation of his system.
5 Unlike Grove, we read x ≤B y as “y is more plausible than x according to ≤” and talk of maximal
worlds instead of minimal worlds. Katsuno and Mendelzon [32] is a seminal reference for the use
of ordering semantics within the belief revision community.
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1. ≤B is connected and transitive,
2. x ∈ W is ≤B-maximal iff x ∈ B.
3. The limit assumption for ≤B: For any sentence ϕ, if there are any worlds at which
ϕ is true, there are ≤B-maximal worlds w at which ϕ is true, so {x ∈ [[ϕ]] |y ≤B
x for all y ∈ [[ϕ]] } is non-empty.

In a Grove relation, the set {w ∈ W |v ≤B w for all v ∈ W} is the belief set,
identified by the maximal elements in ≤B . We again refer to that set with B. We
represent Grove relations in the following way:

We have not drawn all arrows here, assuming that it is easy to see how the relations
are transitively closed (Later we shall be even more economical in our use of arrows).

Formally, the difference between Grove spheres and relations is almost only one
of taste, just requiring a Gestalt switch of the following kind:
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We can be more specific about the connection between Grove spheres and order-
ings: A Grove ordering ≤B is obtained from a system of spheres $B by defining
v ≤B w (read: “v is at most as plausible as w”) iff for all S ∈ $B such that v ∈ S it
also holds that w ∈ S; the field WB of ≤B is

⋃
$B . Conversely, a system of Grove

spheres $B is obtained from a Grove ordering ≤B of W by collecting all sets S of
the form Sw = {v ∈ W : w ≤B v}.

This modelling importantly allows for ties between the plausibilities of possible
worlds, and this can of course be expressed in both ways of modelling. In the systems
of spheres modelling, this means that for two neighbouring spheres S and S′ in $B
with S ⊆ S′, the set S′ − S has in general more than just one element. Expressed in
orderings, this means that for many worlds w there may be any number of distinct
worlds v such that both v ≤B w and w ≤B v. The correspondence between systems
of spheres and weak orderings is not perfect, however. The (strong) universality of
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a system of spheres $B cannot be expressed by a weak ordering alone. This is why
we need to specify the field WB of ≤B . We also take into account inconsistent
belief states, represented by sphere systems $B that contain the empty sphere ∅ as
an element. But if a sphere in $B is empty, it generates the same weak ordering
≤B , in the sense just explained, as the sphere system $B−{∅}. We take the case of
empty innermost spheres seriously, because we want to address belief expansion in
Sect. 8.5.2. This requires representing trivialisation under expansion with information
inconsistent with current beliefs. As the equivalent of empty spheres is not available
in ordering semantics, we employ domain restriction in order to achieve similar
results.

We need to comment on the interpretation of Grove spheres, or Grove orderings,
understood as semantics for the classical AGM style belief revision. Semantically, a
whole Grovean system of spheres (or a Grove ordering, or any other model for AGM-
style one-shot belief revision) represents or, loosely speaking, is a single agent’s
belief state. In some way (though it is hard to say in what way exactly), it encodes
a first-person point of view: the set of worlds considered (doxastically) possible by
the agent, and their comparative plausibilities as judged by the agent. Like the AGM
approach, this modelling does not make room for belief at a certain possible world,
it only encodes the beliefs and conditional beliefs as they are present for a single
agent at the actual world (“here and now”).

Another philosophical point: one should not identify knowledge with the “outer
belief modality” in Grove spheres, i.e., with “irrevocable belief” in the sense of
Segerberg [46]. Knowledge is not the same as irrevocable belief. While knowledge
implies truth, irrevocable belief need not do so. Baltag and Smets’s [5, p. 16] claim
that the idea of identifying knowledge and irrevocable belief “can be traced back to
Stalnaker [47]” is not quite correct; Stalnaker just defines �ϕ as ¬ϕ > ϕ, without
any epistemic interpretation.6 Segerberg [46] uses this reading only “unofficially”
and alternatively speaks of doxastic commitment. Leitgeb and Segerberg [34, p. 176]
allow themselves some philosophical looseness, too, and use the slogan K stands
for “knowledge”, not for ‘knowledge’. Our feeling is that this identification is made
only for the sake of convenience, because it is then easy to define knowledge in
terms of (conditional) belief—something that epistemologists were never able to
achieve—, and it is easy to argue for positive and negative introspection concerning
knowledge—something that epistemologists have never wanted to achieve. If agents
were infallible, then irrevocable belief would come close to knowledge, because then
irrevocable belief would be guaranteed to be true. But human agents are not infallible,
even their most deeply rooted beliefs may turn out to be false. We will return to this
topic in Sect. 8.3.

6 Alexandru Baltag (p.c.) has reminded us that Stalnaker [47, p. 102] endorses a condition akin
to universality (see Stalnaker’s semantic condition (2)). Thus irrevocable belief must be true, and
our argument against its identification with knowledge is no longer applicable. This is correct,
but endorsing universality in this context means arguing that only metaphysical necessities can be
known, since no metaphysically possible world gets epistemically excluded. For this reason, we
strongly prefer not to require universality.
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Finally, even though Grove spheres are inspired by Lewis systems of spheres
[18], Lewis explicitly rejects the limit assumption. Lewis’ argument is about similar-
ity relations on worlds underlying counterfactual reasoning, but similar worries hold
for plausibility orders: there are no most similar worlds in which Franck Ribéry is
taller than 180 cm. Lewis’ semantics for counterfactuals does not depend on the limit
assumption. Likewise, we can define belief and conditional belief using sequences
of increasingly plausible worlds that do not require the limit assumption. Further-
more, there are AGM-inspired doxastic transformations of expansion, revision and
contraction that do not require the limit assumption. Hence, following our minimalist
attitude, we refrain to assume the limit assumption until necessary.7

8.3 Epistemic Doxastic Logic

In contrast to the use of Grove models within the AGM paradigm, we will model
knowledge and belief with Kripke structures. Thus what we call ‘epistemic doxastic
logic’ in this chapter (EDL for short) stands in the tradition of epistemic logic going
back at least as far as the seminal work of Hintikka [31]. More recently, epistemic
logic has been dynamified in the Dutch tradition and is now referred to as ‘dynamic
epistemic logic’ (DEL for short). The acronym DEL is sometimes used more gener-
ally to also include doxastic transformations (see for instance van Benthem [21]). We
use DEL in this general sense, and we reserve the acronym EDL for our own version
of DEL in this chapter. For us, EDL is the static core of our analysis of knowledge
and belief. We will introduce dynamics in the next section and adapt our terminology
accordingly.

In EDL, all theorizing begins with knowledge-at-a-possible-world-w or
belief-at-a-possible-world-w. So belief and knowledge are “local” in this way. A
whole EDL model does not represent some agent’s or several agents’ doxastic and
epistemic states. The worlds in an EDL model are ways our actual world might be,
metaphysically, not epistemically speaking.

One should not get confused by some “global” structures within EDL models. It
might look strange that within a cell of the epistemic partition of the worlds, there is
only one doxastic plausibility relation. In the local interpretation, which we believe
is the correct one, it would be more precise to say that within such a cell, every world
has the same plausibility relation assigned to it, and that this relation is assigned to
the cell rather than to every world within the cell only for notational convenience.

7 Our reservation to assume the limit assumption from the outset is not only driven by philosophical
concerns. To find an adequate axiomatisation of the limit assumption in our framework is not easy,
and presently we can only make an informed conjecture that, in the context of the other axioms we
are using, the axiom known as the ‘Löb’s axiom’ is exactly what we need. We will come back to
this point below.
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If possible worlds are considered as indices of evaluation, we might say that in our
modelling, the doxastic relation is really just as indexical as the epistemic relation.8

That the plausibility relation is the same at each world within a cell, however
has a very good justification. A plausibility relation is a formal encoding of the
agent’s doxastic state. The fundamental assumption is that agents fully know their
own doxastic attitudes.9 There has to be an equally fundamental EDL axiom that
captures this assumption. If we had just beliefs, the axiom should be something like
Bϕ → KBϕ. But since we work with plausibility relations that allow us to express
something like degrees of beliefs (entrenchments), we capture that agents are fully
aware of their degrees of belief.10

Such a fundamental axiom is an expression of full (epistemic) introspection of
doxastic attitudes. By viewing a global relation within a cell of the knowledge par-
tition just as an abbreviated way of specifying that this very relation is assigned to
each world within the cell, we can justify the use of global relations (restricted to
cells) by the above introspection principles, while still staying firmly on the ground
of the local tradition of DEL.

It does not make sense to look at an EDL model and ask what an agent believes
or knows in that model. One can only ask what an agent believes or knows at a
certain world in that model. The situation changes in pointed models that come with
a distinguished world. This is why Baltag, van Ditmarsch and Moss [6], for instance,
define an ‘epistemic state’ (p. 387) or a ‘doxastic state’ (p. 397) as tuples (M, s),
where M is a (relational/plausibility) model and s is a state or world.11 Unfortunately,
the authors do not comment at all on why they add a distinguished world. Summing
up, a pointed model represents the actual world, with all the actual beliefs being in
turn represented in terms of possible (conceivable) worlds. It thus makes sense to
ask what an agent believes or knows in a pointed model.

If our interpretation is right, it hardly makes sense to drop worlds from the model
as a result of some doxastic action. Worlds in EDL models are metaphysically pos-
sible worlds, not doxastically or epistemically possible worlds, as in Grove models.
But as DEL theorists point out, a doxastic or epistemic action normally changes
what is true in a world like any other action. Unlike the case of non-doxastic or non-
epistemic actions, the effects of doxastic and epistemic actions can be represented
in the model. The corresponding model transformation consists in manipulating the
relevant relations between possible worlds, that is, in actions like cutting links, refin-
ing partitions, or shifting plausibilities.12 This tension between world-elimination
and link-cutting is a salient one for us. We will come back to it in Sect. 8.4.1.

8 The indexical stance is represented in the models of Board [14, pp. 60–61], van Ditmarsch
[20, p. 237], and van Benthem [9, p. 138], while Baltag and Smets [3, p. 12] and [4, pp. 17–23]
prefer a presentation in terms of global plausibility relations.
9 Similar ideas of extending positive and negative introspection assumptions about belief were
advanced by Stalnaker [48, p. 145] [49, p. 189] and Board [14, pp. 60–61]. See Demey [19, p. 387]
on “uniform” epistemic plausibility models.
10 We will return to this point later, see the comment on definitions (8.2)–(8.4) in Sect. 8.3.2.
11 Similarly for van Ditmarsch’s [20, p. 237] ‘doxastic-epistemic state’.
12 Perhaps making some worlds “infinitely implausible”.
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The established tradition in modal logic as applied in computer science and game
theory is to model knowledge by an equivalence relation that represents indistin-
guishability for the agent. The idea is that an agent knows that ϕ if and only if ϕ is
true in all possible worlds that the agent cannot distinguish from the real world. We
should like to emphasize that this is decidedly not the ordinary notion of knowledge.
For knowledge in anything close to the ordinary, general sense, and the sense studied
by epistemologists, negative introspection is a paradigmatic non-theorem rather than
a theorem for epistemic logic.13 More often than we like, we fail to know because
we are wrong. In many such cases, we believe that we know p, but this belief is
wrong. Thus, we don’t know (because p is false), but don’t know that we don’t know
(an exemplification of an important kind of unknown unknowns). It is abundantly
clear that the Brouwerian principle ¬ϕ → K¬Kϕ and the interaction principle
BKϕ → Kϕ are invalid for the ordinary, general notion of knowledge,14 but they
come out as valid according to the standard DEL semantics. The notion of knowledge
that is modelled by S5 structures is the knowledge of agents that are infallible. But
humans are not. We can justify taking such structures only by restricting ourselves
to specific domains or contexts in which agents do not make any mistakes, i.e., in
which their doxastic possibilities do not rule out the actual world. Such contexts
are provided by certain fields of research in computer science and game theory. We
pretend that we are working in some such context and just ignore this problem as a
matter of idealisation.

We thus conceive of the combination of the epistemic and doxastic relations in
the following way. The epistemic relation creates a partition of the domain W , and
each equivalence class of the partition contains a Grove relation (or a system of
spheres). That we only have a single Grove relation (or a single system of spheres)
for each epistemic indistinguishability class reflects the idea that an agent has the
same doxastic state in each possible world within a cell of the knowledge partition.
So we assume that agents are fully knowledgeable about (have full introspection
concerning) their own doxastic states. If they were not, we would need to assign Grove
spheres to each world individually. We represent the doxastic epistemic structure of
a single agent as follows:

13 Even positive introspection for knowledge, the so-called KK thesis, has been much contested,
especially in the light of the success of externalist and reliabilist accounts in epistemology. Very
recently, some new defenders of KK have entered the scene, see Okasha [38] and Greco [28].
14 Lenzen [35] and, following Lenzen, Stalnaker [49] offer very strong arguments in favour of
defining Bϕ as ¬K¬Kϕ. In the light of this definition. Brouwer’s principle, which corresponds
to the symmetry of the accessibility relation, just means Bϕ → ϕ, i.e., infallibility! Lenzen [35,
p. 43], Lamarre and Shoham [33, pp. 415, 420] and Stalnaker [49, p. 179] advocate the principle
of strong belief Bϕ → BKϕ (the term “strong belief” is Stalnaker’s, Lamarre and Shoham use
the term “certainty”). Taken together with the strong belief principle, the interaction principle
BKϕ → Kϕ implies the undesirable Bϕ → Kϕ. – In his attempt to maintain negative introspection
for knowledge, Halpern [30] proposes to restrict the principle that knowledge implies belief to
nonmodal sentences.
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The domain is partitioned in two equivalence classes, and each “cell” contains
a Grove relation, with maximal elements shaded in gray. The maximal elements of
each cell are the states at which beliefs at a world in that very cell are to be evaluated.
All worlds within a cell refer to the same belief set. So we picture Grovean sphere
systems only within the cells of the knowledge partition (and each such cell contains
exactly one such system). We impose this as a (the one standard) constraint on the
interaction between the doxastic and epistemic relation, namely that the former is a
subrelation of the latter: ≤⊆∼.

The fact that we have Grove relations ≤ within each knowledge cell means that
the domain of such Grove relations is not the whole of W (i.e., that the relevant
Grove systems are not universal). The structural properties of Grove relations are
all restricted to each individual indistinguishability cell. There are no plausibility
comparison across cells. Hence, if we want to stick to the single relation modelling,
we have to use more complicated structures than Grove orderings.

A generalized Grove relation is a reflexive and transitive relation ≤ over W such
that the relation ∼, defined by

u ∼ v if and only if either u ≤ v or v ≤ u

is an equivalence relation.15 Notice that we do not assume the limit assumption for
the generalized Grove relation. This definition derives the epistemic relation from the
doxastic relation: Indistinguishability means comparability in terms of plausibility.
The definition guarantees that ∼ contains ≤. It is not required that generalized Grove
relations are connected over the whole of W . They may have, and typically do have
many belief sets (sets of doxastically possible worlds) on which systems of spheres
are centered—one such structure in each cell of the partition. So ≤ never makes
any plausibility comparisons across cells. But it is easily verified that each cell with
respect to ∼ is a Grove relation—without the limit assumption.

15 Given the transitivity of ≤, a condition equivalent to the transitivity of ∼ thus defined is the
requirement of weak connectedness of ≤ both forwards and backwards, also known as “no branching
of ≤ to the left or to the right”:

If w ≤ u and w ≤ v, then either u ≤ v or v ≤ u (NBR)
If u ≤ w and v ≤ w, then either u ≤ v or v ≤ u (NBL)

This requirement is used by Baltag et al. [6, p. 396].
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8.3.1 EDL Language and Semantics

We define epistemic doxastic models (for single agents), or EDL models for short,
as structures M = 〈W ,∼,≤,<,V〉, with W a non-empty set of worlds, an V a
valuation function assigning sets of possible worlds to propositional variables. We
take ≤ to be a generalised Grove relation. We define ∼ as above, and take < as the
strict subrelation of ≤ in the usual way: w < v iff w ≤ v and v �≤ w.16 We read
w ≤ v as ‘v is at least as plausible as w’, and w < v as ‘v is (strictly) more plausible
than w’. To talk about EDL models, we use a basic EDL modal language with three
modalities corresponding to the three accessibility relations:

ϕ :: = p | ¬ϕ | (ϕ ∧ ψ) | [∼]ϕ | [≤]ϕ | [<]ϕ

As usual, we define dual diamond operators as, for example, 〈∼〉ϕ := ¬[∼]¬ϕ.
For the interpretation of the EDL language, we extend the valuation V to a valua-

tion [[ · ]]M assigning semantic values, or sets of possible worlds, to the sentences of
the EDL langauge. Hence, in each epistemic doxastic model M = 〈W , ∼, ≤, <, V〉,
semantic values [[ϕ]]M ⊆ W are given by:

[[p]]M = V(p)

[[¬ϕ]]M = W \ [[ϕ]]M

[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M

[[[∼]ϕ]]M = {w ∈ W | if w ∼ v, then v ∈ [[ϕ]]M , for every v ∈ W}
[[[≤]ϕ]]M = {w ∈ W | if w ≤ v, then v ∈ [[ϕ]]M , for every v ∈ W}
[[[<]ϕ]]M = {w ∈ W | if w < v, then v ∈ [[ϕ]]M , for every v ∈ W}

For convenience, we sometimes use the more common notation M,w |= ϕ instead
of w ∈ [[ϕ]]M .

8.3.2 Knowledge and Belief in EDL

For reasons of simplicity and continuity with much of the literature, we assume that
agents know that ϕ in a world w just in case ϕ is true in all worlds v that they cannot
distinguish from w:

M,w |= Kϕ iff for all v such that v ∼ w,M, v |= ϕ.

16 The presence of ∼ and < is thus redundant, as they are definable in terms of ≤ in models, but
we keep them for reasons that will become clear later.



8 Belief Revision and Dynamic Logic 213

In other words,
Kϕ := [∼]ϕ (8.1)

We thus have a semantics for Kϕ that is widely accepted in computer science and
game theory. As we explained above, we have philosophical scruples about it, but
we wish to keep the focus of this chapter on belief.

So much for the epistemic part. For doxastic operators, we need to do more work.
Our strategy is to derive the analysis of (various kinds of) belief by using the more
primitive modalities [≤] and [<]. Following a strategy that can be traced back to at
least Boutilier [15, p. 44], we have an intended semantics for belief that is in line
with the AGM tradition:

M,w |= Bϕ iff there is a u such that u ∼ w and for all v with u ≤ v, M, v |= ϕ.

Notice the epistemic constraint v ∼ w in the semantic definition of Bϕ, in order
to guarantee that beliefs are independently evaluated in each class of the epistemic
partition. Given our assumption of connectedness inside each epistemic class, this
semantics says that at some point along the plausibility order, ϕ is true for every
world at least as plausible. We can explicitly define this notion of belief in the EDL
language:

Bϕ := 〈∼〉[≤]ϕ (8.2)

The right-hand-side of Eq. (8.2) says that some worlds among the epistemically indis-
tinguishable worlds have [≤]ϕ, which is precisely the semantics of Bϕ. Assuming
the limit assumption would guarantee that ϕ is true in all maximal worlds in the
model, which is the more common definition of belief in the AGM tradition.

We can also express that a belief in ϕ is stronger or more entrenched than a belief
in ψ , which we denote by B(ψ ≺ ϕ).

B(ψ ≺ ϕ) := 〈∼〉(¬ψ ∧ [≤]ϕ) (8.3)

If we set ψ = ⊥ in definition (8.3), we recover definition (8.2). Another doxastic
notion that we can define is conditional belief of ϕ given ψ (cf., for instance, [4, 5,
12, 14]):

B(ϕ |ψ) := 〈∼〉ψ → 〈∼〉(ψ ∧ [≤](ψ → ϕ)) (8.4)

If we set ψ = � in definition (8.4), we again recover exactly definition (8.2). Notice
that we didn’t need to use the strict modality [<]ϕ to define belief so far. But if
we were to work over partial orders, we could use it to define belief, comparative
entrenchment of belief and conditional belief in the following way:

Bϕ := [∼](¬ϕ → 〈<〉(ϕ ∧ [<]ϕ)) (8.5)

B(ψ ≺ ϕ) := [∼](¬ϕ → 〈<〉((ϕ ∧ ¬ψ) ∧ [<]ϕ)) (8.6)

B(ϕ |ψ) := [∼]((ψ ∧ ¬ϕ) → 〈<〉((ψ ∧ ϕ) ∧ [<](ψ → ϕ))) (8.7)
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Again, if we set ψ = ⊥ in definition (8.6) or ψ = � in definition (8.7), we recover
definition (8.5), as expected.

Finally, if we setψ = ¬ϕ in definition (8.4) or (8.7), we get the notion of irrevoca-
ble belief (Segerberg [46]), i.e., belief that is sustained even in the face of contradict-
ing evidence. Since 〈<〉(ϕ∧¬ϕ) cannot be true anywhere, B(ϕ | ¬ϕ) reduces to [∼]ϕ.
But this means that irrevocable belief reduces to knowledge-as-indistinguishability.
In contrast to Baltag and Smets [4, 5, pp. 14–15, 28], we have argued against such
an identification on Sect. 8.2, because even the strongest beliefs may be wrong. But
with the means used in this chapter we cannot express the difference.17

We can now address the idea that agents have full introspection of their doxastic
states. This is in fact built firmly into our notions of belief. Notice that the definitions
(8.2)–(8.7) of belief have either 〈∼〉 or [∼] as their main operator.18 Given our
semantics for the indistinguishability relations, it is clear that we get the characteristic
S5 axioms of positive and negative introspection with respect to [∼]. But given
definition (8.1), this means that if the agent has certain beliefs at a world w that can
be expressed by Bϕ, B(ψ ≺ ϕ) or B(ϕ|ψ), then, by the very definition of these
expressions, KBϕ, KB(ψ ≺ ϕ) or KB(ϕ|ψ), respectively, are also true at w.19

17 Here are a few hints how this situation could get remedied. The picture is basically that within
each indistinguishability cell (∼-cell), there is a single system of spheres $ that need not exhaust
this cell. In order to characterize

⋃
$B, we suggest to extend epistemic doxastic models by a

new relation� that helps representing non-universal systems of spheres (see Sect. 8.2—but now
everything happens within every single ∼-cell). � should be a serial, transitive and Euclidean
subrelation of the global indistinguishability relation ∼ that specifies a unique set of “conceivable”
worlds within each set of indistinguishable worlds. Intuitively, u � v for worlds u and v means
that u ∼ v and v is within the relevant ∼-cell’s system of spheres. Thus, if u ∼ v and u� w, then
also v� w. We would also need to harmonise�with < (and ≤), by conditions like ‘If u ∼ v and
w � u but not w � v, then v < u’ and ‘If u ∼ v and there is no w such that w � u or w � v,
then neither u < v nor v < u.’ We would then use 〈�〉 and [�] rather than 〈∼〉 and [∼] in the
definitions (8.4) and (8.7) of conditional belief. Correspondingly, the notion of irrevocable belief
would reduce to [�]ϕ rather than [∼]ϕ. Knowledge that ϕ (in the indistinguishability sense) would
then imply irrevocable belief that ϕ, but not vice versa, as desired.
18 Definition (8.4) is an exception. But even on this definition, we have B(ϕ|ψ) → KB(ϕ|ψ). It
is easy to see this. Assume that M,w |= B(ϕ|ψ) for some w. For M,w |= KB(ϕ|ψ), we need to
show that M, v |= B(ϕ|ψ) for all v such that w ∼ v. By definition, M,w |= B(ϕ|ψ) means that
either M,w |= [∼]¬ψ or M,w |= 〈∼〉(ψ ∧ [≤](ψ → ϕ)). But the truth value of both of these
sentences are independent of the world v of evaluation, as long as w ∼ v. So either M, v |= [∼]¬ψ
or M, v |= 〈∼〉(ψ ∧ [≤](ψ → ϕ)), and thus M, v |= B(ϕ|ψ), as desired.
19 The modality ‘[≤]’ is referred to as “knowledge” by Lamarre and Shoham [33, p. 418], as
“knowledge according to the defeasibility analysis” by Stalnaker [49, Sect. 6], and as “safe belief”,
“defeasible knowledge” and “Stalnaker knowledge” by Baltag and Smets [4, see in particular
pp. 27–32]. In contrast to Kϕ and Bϕ, the truth value of [≤]ϕ is in general not constant within
a ∼-cell. The early chapter of Lamarre and Shoham is interesting: It disavows negative introspec-
tion for knowledge and finds strong belief (“certainty”) thatϕ to be equivalent with ¬K¬Kϕ—points
we acclaim from a philosophical perspective. But it also finds knowledge that ϕ to be equivalent
with the conditional belief B(ϕ|¬ϕ)—a result we object to from a philosophical perspective. This
unexpected conjunction is connected with the fact that Lamarre and Shoham let not only knowledge,
but also conditional belief and conditional certainty vary from world to world, and thus disavow
negative introspection for conditional belief and conditional certainty, too.
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One advantage of our modular and minimalist approach is that we can express
precisely what we mean when we talk of knowledge and (comparative firmness of)
belief. We are very economical with the assumptions we impose on our models, and
we relegate them to explicit definitions in our language. We refrain as much as we
can to use background assumptions.

8.3.3 Axiomatisation of EDL

The axiomatisation of static EDL is based on standard propositional logic. Figure 8.1
shows the axioms for the static part of our modal logic in building blocks. We have the
standard set of S5 axioms for the knowledge-as-indistinguishability modality [∼].
For the non-strict plausibility relation [≤] which takes ≤ as an accessibility relation,
we have the S4.3 axioms that correspond to connected relations. For strict plausi-
bility [<], we have K4 plus (Mod<). This latter axiom is interesting. As far as we
know, it has not been used in epistemic or doxastic logics so far, but van Benthem
[7, p. 200] has stated and analyzed it early on in the context of temporal logic. Being
a Sahlqvist formula (cf. Blackburn, de Rijke and Venema [13]), (Mod<) enforces
the modularity (or ‘almost-connectedness’ or ‘virtual connectivity’20) to the right of
the strict plausibility relation <: If u < v, u < w, u < z and v < w, then either
v < z or z < w. Finally, we need interaction principles between [∼], [≤] and [<].
These principles are there to counteract the modal undefinability of < in terms of
≤, as has been noted in van Benthem, Girard and Roy [10]. They guarantee that the
relation< is adequate under bulldozing (cf. Segerberg [45]) of the canonical model,
so that w < v iff w ≤ v and v �≤ w. In a similar fashion, it is well-known that we
cannot modally express that ∼ is the same as ≤ ∪ ≤−1, but the canonical model
can be adapted accordingly. Since the interaction principles are fairly strong, we are
not claiming that our axiomatisation is free of redundancies. We prefer to have fully
independent axiomatizations for each of our modal operators instead.

We have not assumed the limit assumption up until now, and we are still inclined
against endorsing it. However, should one insist to include it, we suggest to add the
so-called Löb axiom (Löb<), which corresponds to transitivity and converse well-
foundedness (and thus irreflexivity), as an optional extra. It is known to exclude
infinite chains and so is the natural counterpart to the limit assumption in ordering
semantics.21 While the limit assumption is not important in the static contexts of
(conditional and unconditional) belief, it will turn out to be necessary for many
important belief change operations on epistemic doxastic models.

20 The most descriptive term ‘modularity’ was suggested by Ginsberg [26, p. 49]; ‘almost-
connectedness’ is due to van Benthem [7, 8, pp. 194, 232], ‘virtual connectivity’ to Alchourón
and Makinson [2, p. 415]. Notice that there is also a different sense of ‘almost-connectedness’ in
the literature (see Doble et al. [22]).
21 See Blackburn, de Rijke and Venema [13, pp. 130–132]. It would be nice to have a more compact
axiomatisation of K4 plus (Mod<) and (Löb<). At this point, we can only conjecture that adding
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Fig. 8.1 Axiomatisation of static EDL. For the reader’s convenience, we have added a few variants
using the possibility operator ♦, since these are sometimes more intuitive

8.4 Epistemic Doxastic PDL Logic

Epistemic doxastic PDL logic, EDPDL for short, is a variant of the now well-
established PDL logic (propositional dynamic logic), whose first interpretation over
relational structures can be found in Pratt [41], and further elaborated in Fischer and
Ladner [24]. The original purpose of PDL was to provide a logic of programs in a
modal framework, taking programs as modal operators or binary relations between
states (transitions between states of a machine). The interpretation of PDL modalities
〈π〉ϕ according to [24] is: ‘π can terminate with ϕ holding on termination’. However,

(Footnote 21 continued)
Löb is sufficient to get a complete axiomatisation with the limit assumption, but we have to leave
open the problem of showing the logic to be (weakly) complete with respect to the relevant class
of frames.
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Fig. 8.2 Axiomatization of general PDL part

this interpretation is not what we are after. The part of PDL that is relevant to us
is the modal calculus of relation combination, which we exploit to formalise belief
change. Formally, we extend the language of EDL by adding the PDL operations of
test, choice and composition to the basic ingredients of our language:

π :: = ∼ | ≤ | < | ϕ? | π ∪ π ′ | π ; π ′
ϕ :: = p | ¬ϕ | (ϕ ∧ ψ) | [π ]ϕ

As usual, we define dual box operators [π ]ϕ := ¬〈π〉¬ϕ for each program π .
In this notation, the special modalities [π ]ϕ with π ∈ {∼,≤,<} are just the basic
modalities [∼]ϕ, [≤]ϕ and [<]ϕ of the previous section. In each epistemic doxastic
model M = 〈W ,∼,≤,<,V〉, semantic values [[ϕ]]M ⊆ W and [[π ]]M ⊆ W2 are
given by:

[[p]]M = V(p)

[[¬ϕ]]M = W \ [[ϕ]]M

[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M

[[〈π〉ϕ]]M = {u ∈ W |u[[π ]]Mv and v ∈ [[ϕ]]M , for some v ∈ W}
[[∼]]M =∼
[[≤]]M =≤
[[<]]M =<
[[ϕ?]]M = {〈u, u〉|u ∈ [[ϕ]]M}

[[π1;π2]]M = {〈u, v〉|u[[π1]]Mw and w[[π2]]Mv, for some w ∈ W}
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

As usual, we also write u[[π ]]Mv for 〈u, v〉 ∈ [[π ]]M and M, u |= ϕ for u ∈ [[ϕ]]M .
Incorporating PDL in our axiomatisation is simple, especially since we are only
appealing to the fragment of PDL without the Kleene star. In line with our mod-
ular approach, the PDL operators or test, choice and composition are recursively
introduced (Fig. 8.2).
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8.4.1 Doxastic PDL Transformations

To formalise belief change, we use a special case of PDL-transformations as defined
in Girard, Seligman and Liu [27]. This latter chapter was directly motivated by Fact 19
from van Benthem and Liu [11]: every relation-changing operation that is definable in
PDL without iteration has a complete set of reduction axioms in dynamic epistemic
logic. We fully exploit this idea in the remainder of the chapter. For the details of the
general case of PDL-transformations, the reader should consult Sect. 1 of [27]. We
give here a self-contained specification of the special case of PDL-transformations
required for our purposes. Basically, a doxastic PDL-transformation � is a trans-
formation on models that has two components: (1) a domain restriction provided
by some sentence denoted |�|,22 and (2) PDL-definable transformations of the rela-
tions ∼, ≤ and<. Even though we feel unconfortable about world-elimination, as we
already explained, we will use domain restrictions to differentiate between expansion
and revision. We are very much aware of philosophical difficulties that may ensue,
and will treat them with care.

Given a model M = 〈W ,∼,≤,<,V〉 and a PDL-transformation �, the result of
transforming M with� is the model�M = 〈�W ,�(∼),�(≤),�(<),�V〉.�M is
computed by setting�W = [[|�|]]M and taking all relations�(∼),�(≤) and�(<)
that are defined explicitly for each particular program to be restricted to (�W)2.
Likewise the valuation �V is simply the valuation V restricted to the domain �W .

We also define computable translations ϕ� of sentences corresponding to PDL-
transformations on models:

p� = p
(¬ϕ)� = ¬ϕ�
(ϕ ∧ ψ)� = (ϕ� ∧ ψ�)
(〈π〉ϕ)� = 〈π�〉ϕ�

∼� = �(∼) ; |�|?
≤� = �(≤) ; |�|?
<� = �(<) ; |�|?
(ϕ?)� = (ϕ�)?
(π1 ; π2)

� = π�1 ; π�2
(π1 ∪ π2)

� = π�1 ∪ π�2

As demonstrated in [27], the translation ϕ� guarantees that the following lemma
holds:

Lemma 8.1 For each state u of �M and v of M, and for each sentence ϕ,

M, u |= ϕ� iff �M, u |= ϕ, and

u[[π�]]Mv iff v ∈ �W and u[[π ]]�Mv.

We represent PDL-transformations in the following way:

22 The accustomed reader will recognise this as something very much like a public announcement.
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Name of a PDL-transformation

� |�|
∼:= �(∼)
≤:= �(≤)
<:= �(<)

A well-known special case of a PDL-transformation is the public announcement
of a sentence ϕ, first studied by Plaza in 1989 and now republished in [40]:

Public Announcement

ϕ! ϕ

∼:=∼
≤:=≤
<:=<

In this representation, ‘∼ :=∼’ means that the relation ∼ is assigned to its
restriction to the new domain in the new model, i.e., ϕ!(∼) = ∼ ∩ (ϕ!W)2 =
∼ ∩ ([[ϕ]]M)2. Thus, all a public announcement does is to restrict the domain by
eliminating ¬ϕ-worlds. All relations are kept as they were, but restricted to the new
domain. To ease notation, we omit writing identity assignment such as ‘∼ :=∼’ in
transformations. We also omit writing the domain restriction when |�| = �. Thus
the public announcement transformation can be succinctly written as:

Public Announcement

ϕ! ϕ

With this established, we expand our language of doxastic epistemic PDL logic
with modalities [�]ϕ for each PDL-transformation� with the following semantics:

M,w |= [�]ϕ iff �M,w |= ϕ.

We stipulate that M,w |= [�]ϕ is vacuously true in case M,w �|= |�|.
A technical difficulty with PDL-transformations is that they may not always trans-

form models into new models of the right kind. A doxastic epistemic model M may
be transformed by a PDL-transformation� in such a way that�M is not a doxastic
epistemic model. To avoid this issue, we do not accept any possible doxastic PDL-
transformation, but instead provide a class of doxastic PDL-transformations that are
proper, in the sense that they always return doxastic epistemic model.
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8.5 AGM Operations

In this section we provide a class of PDL-transformations which are candidates of
unrestricted transformations in the style of Alchourrón, Gärdenfors and Makinson
(compare [1, 2, 17, 25, 29, 32]); we refer to them as “AGM operations” or “doxastic
transformations”. We base our selection on those given in Rott [42].23 We first study
the operations of belief expansion and belief revision, which can be nicely treated in
EDPDL logic. We then move to a study of the operation of belief contraction. Our
selection is partly for the sake of exposition, but we include standard DEL doxastic
change operations to be found in recent work such as van Benthem [9] or Baltag and
Smets [4].

8.5.1 Expansion and Revision

The operations of expansion and revision are about adding beliefs to belief states. We
start with three types of doxastic change, that we categorise as conservative, radical
and moderate. A conservative doxastic transformation by ϕ is one that only shifts
around maximal ϕ-worlds (or, in the case of contraction, ¬ϕ-worlds), and leaves the
ordering between the other worlds intact. A moderate doxastic transformation by ϕ
is one that shifts around all ϕ-worlds (or, in the case of contraction, ¬ϕ-worlds) in
a uniform way. A radical doxastic transformation by ϕ is one that only preserves
ϕ-worlds (or, in the case of contraction, almost only ¬ϕ-worlds).

We use the following abbreviations:

∼ϕ :: = (ϕ? ; ∼ ; ϕ?)
≤ϕ :: = (ϕ? ; ≤ ; ϕ?)
<ϕ :: = (ϕ? ; < ; ϕ?)
max ϕ :: = (ϕ ∧ [<]¬ϕ)

Notice that the sentence max ϕ is only true in the most plausible ϕ-worlds, i.e.,
ϕ-worlds such that all worlds more plausible, if there are any, satisfy ¬ϕ.24

8.5.2 Expansion

We start with expansion. Generally speaking, expanding one’s beliefs with ϕ is
to start believing ϕ without caring about consistency. If ϕ is not consistent with
what the agent believes, then her beliefs trivialise and she now believes ⊥. But it

23 Any PDL transformation which outputs a Grove relation would be formally legitimate. To
categorise this general class of transformations is still an open problem in GDDL, and we will not
address it here, as our main concern is with AGM motivated transformations.
24 Slightly abusing the term “maximality”, one could also experiment with putting max(ϕ) ::=
(ϕ ∧ ([<]¬ϕ ∨ [≤]ϕ)), but we will not pursue this idea in the present chapter.
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is important to note that her belief state does not trivialise. In the semantics using
Grovean systems of spheres, we can represent this nicely by adding an empty sphere
to $B . Unfortunately, no such picture is possible with the pure ordering approach.
We have to stipulate here that if ϕ is inconsistent with the beliefs supported by ≤,
which we write as ¬[∼]〈≤〉ϕ, then the belief set that results from the expansion is the
trivial one, cl(⊥). We achieve this by introducing the domain restriction |[∼]〈≤〉ϕ|
in expansion transformations. Notice that this restriction doesn’t really restrict the
domain, because of our underlying assumption that the plausibility order is uniform
inside epistemic classes. So either all worlds in a class satisfy [∼]〈≤〉ϕ, or none do.
In the latter case, the agent ends-up believing ⊥.

We first look at conservative expansion. Conservative expansion by ϕ reorders
maximal ϕ-worlds and leaves the rest of the model intact. That is, the order stays
intact among the worlds that are not maximal ϕ-worlds (those that either do not
satisfy ϕ or for which there are strictly more plausible worlds that satisfy ϕ), and
it makes every maximal ϕ-world equally plausible to each other as well as strictly
more plausible than any other world:

Conservative expansion

CEϕ [∼]〈≤〉ϕ
≤:=≤¬max(ϕ) ∪ (∼ ; max ϕ?)
<:=<¬max(ϕ) ∪ (¬ max ϕ? ; ∼ ; max ϕ?)

To say that beliefs of agents trivialise under expansion with information ϕ that
is inconsistent with their beliefs amounts to saying that M,w |= [CEϕ]B⊥ in case
M,w �|= [∼]〈≤〉ϕ. Notice that conservative expansion is not successful if we do not
assume the limit assumption. If there are no maximal ϕ-worlds, then nothing happens
to the doxastic structure.

Second, consider the operation of moderate expansion, which differs from the
conservative operation by reordering all ϕ-worlds instead of only the maximal ones.
Hence, moderate expansion preserves the order among the ϕ-worlds and among the
¬ϕ-world, and makes every ϕ-world strictly more plausible than every ¬ϕ-world.
In this case, the old maximal ϕ-worlds become the most plausible ones overall.
Formally, moderate expansion MEϕ is defined by:

Moderate expansion

MEϕ [∼]〈≤〉ϕ
≤:=≤ϕ ∪ ≤¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)
<:=<ϕ ∪ <¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

Finally, radical expansion is an action which reduces to a domain restriction.
If ϕ is consistent with the agent’s beliefs, then we only keep the ϕ-worlds. Thus,
if there are maximal worlds that are ϕ-worlds, radical expansion deletes all ¬ϕ-
worlds; otherwise beliefs trivialise. This is all that is required, so relations are simply
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Three kinds of expansion
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Fig. 8.3 Three kinds of expansion by p. Models are closed under transitivity and reflexivity

restricted as they were to the new domain. Formally, radical expansion REϕ is defined
by:

Radical expansion

REϕ ϕ ∧ [∼]〈≤〉ϕ

Figure 8.3 displays the three kinds of expansion acting on the same model. Every
expansion returns the same set of maximal states. The difference is in the ordering of
the remaining worlds. We have chosen a model in which some p-worlds are among the
maximal worlds. Radical expansion restricts the domain to p-worlds, exemplifying
the way in which it is radical compared to the other ones.

Now that we have precise definitions of expansion as doxastic transformation, we
can specify distinguished modalities for each of them: [CEϕ], [MEϕ], and [REϕ].
So for instance, the sentence [CEϕ]Bψ says that ψ is believed after moderately
expanding with ϕ. As we have no restriction on iterations of doxastic actions, we can
also express and analyse complex sentences such as the validities [CEp][REp]Bψ ↔
[REp]Bψ and [REp][REq]ψ ↔ [RE(p ∧ q)]ψ . In a multi-agent language, we
could also analyse higher-order beliefs about doxastic change. For instance, with s
= “Robert is a spy” and l = “Robert is a liar”, the sentence Br[REbs]Bbl expresses
that “Robert believes that Bernadette believes that Robert is a liar after radically
expanding her belief by the fact that Robert is a spy”.



8 Belief Revision and Dynamic Logic 223

8.5.3 Revision

Revision is exactly like expansion, except that agents do not get trivial beliefs when
revising with information that was not consistent with their initial beliefs. Thus the
only difference between revision and expansion is in the way the beliefs are retrieved
from a plausibility ordering. For revisions, the standard rules apply, and thus an agent
simply cannot have an inconsistent belief set! We can accommodate this nicely
with conservative and moderate revision, but radical revision is problematic. We
can get two interpretations, but neither works properly as a revision. We start with
conservative and moderate revision:

Conservative revision

CRϕ ≤:=≤¬max(ϕ) ∪ (∼ ; max ϕ?)
<:=<¬max(ϕ) ∪ (¬ max ϕ? ; ∼ ; max ϕ?)

Moderate revision
MRϕ ≤:=≤ϕ ∪ ≤¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

<:=<ϕ ∪ <¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

Moderate revision precisely corresponds to the lexicographic upgrade, and con-
servative revision to the elite change of van Benthem [9, p. 141]. We will see in
Sect. 8.5.4 that these operations can be regarded as the natural limiting cases of a
common idea (viz., that of bounded revision). However, there is an important dif-
ference. While moderate revision has no need whatsoever for the limit assumption,
conservative revision needs it badly. Like conservative expansion, conservative revi-
sion might not be successful without the limit assumption. If it is not met, then there
may not be any maximal ϕ-worlds and conservative revision may not effect anything.

We can give two interpretations of radical revision as described in Rott [42]. An
important aspect of radical revision by ϕ is that ¬ϕ-worlds can never be recovered.
One way of incorporating this is by using a domain restriction |ϕ| that removes ¬ϕ-
worlds from the model altogether. Another way is to have no domain restriction, like
in conservative and moderate revision, but cut every link between ϕ and ¬ϕ-worlds.

The first approach, in which we guarantee irrevocable revision with a domain
restriction, is the following doxastic transformation:

Radical revision, version 1

RRϕ ϕ

This version of radical revision by ϕ is the same as a public announcement of ϕ
as we’ve analysed above. In the terminology of van Benthem [9], radical revision is
a change under hard information, whereas conservative and moderate revisions are
two alternatives of change under soft information.
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The way in which this version of radical revision captures the irrevocability of
ϕ is by deleting all the ¬ϕ-worlds. This is indeed a radical way of guaranteeing
that ¬ϕ-worlds cannot be recovered. This approach also captures success of revision
for Boolean sentences, but not without a price. The price to pay is that beliefs of
agents trivialise in ¬ϕ-worlds when radically revising by ϕ. Indeed, assume that
M,w |= ¬ϕ in some model M. Because of the domain restriction |ϕ|, we get that
M,w |= [RRϕ]B⊥. Success comes at the price of triviality, which is not what revision
operators have been invented for.

One way to make sure that belief sets do not trivialise under revision is to avoid
restricting the domain, as in conservative and moderate revision, with the following
transformation:

Radical revision, version 2

RRϕ ∼:=∼ϕ ∪ ∼¬ϕ
≤:=≤ϕ ∪ ≤¬ϕ
<:=<ϕ ∪ <¬ϕ

The way in which this version of radical revision is irrevocable comes from the
definition of our epistemic relation. We did not introduce a free transition as a basic
program. We have been using the relation ∼ instead. For instance, in moderate
revision, we can make sure that all ϕ-worlds become more plausible than ¬ϕ-worlds
by re-defining < as <ϕ ∪ <¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?), where ∼ is used to create new
plausibility links in (¬ϕ? ; ∼ ; ϕ?). Now, in our second interpretation of radical
revision, once we cut links between ϕ and ¬ϕ-worlds, these links are no longer
recoverable! This is nice, but also comes with its own cost, again when radical
revision is evaluated in ¬ϕ-worlds.25

Let us highlight the problem about interpreting (possibly untruthful) public
announcement and radical revision with the help of an example. Take a very simple
model with two epistemically indistinguishable and equiplausible worlds w and v,
with p and q true at w, but false at v (Fig. 8.4). Consider a radical revision by p. If
radical revision goes by domain restriction, v simply vanishes, and we get that both
[RRp]Bp and K[RRp]Bp are true at w. However, if radical revision goes by a “link-
cutting” action then again [RRp]Bp is true at w, but false at v—surprisingly, even
[RRp]B¬p is true at v. Hence, since v ∼ w, K[RRp]Bp is false at w. Suppose that in
the initial situation the agent is actually located at v, but cannot distinguish v from w.
So all the agent knows or believes at the beginning is p ↔ q. Now the agent receives
a public (but not truthful!) announcement that p and as a result performs some kind
of radical revision on p. What would happen? Metaphysically, world v would not

25 For complex sentences ϕ that involve doxastic operators, it is possible that ϕ becomes true
again at a ¬ϕ-world after other doxastic transformations. The old ϕ-worlds are irrevocable. It is the
worlds that are irrevocable, not sentences. Only Boolean sentences (those without modalities) are
truly irrevocable. This is related to the consideration of the AGM success postulate: Only Boolean
sentences are guaranteed to be successful. If one revises by a sentence that says “p is true but you
don’t know it”, then one does not get success.
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Fig. 8.4 Small example illustrating a problem with radical revision. Models are closed under
reflexivity

cease to exist—this is what makes domain restriction strange.26 The agent would
(wrongly) believe that p, but of course she would not know that p. But she would
not know or believe that ¬p either – this is what makes link-cutting problematic.
Intuitively, while the beliefs have changed—and this is why [RRp]Bp should come
out true at v—, the knowledge has not increased. The agent located at v is still not
able to epistemically distinguish her world from w. None of our modellings have this
option.

The versions of revision we have been investigating are illustrated as operating
on the same initial model in Fig. 8.5.

8.5.4 Two-Dimensional Belief Change Operators

We continue our brief overview of revision operations in the framework of EDL with
two-dimensional change operations in the sense of Rott [44]. These models are meant
to increase the expressive power of purely qualitative, relational, thus non-numerical
models for belief change. The extent to which an input sentence ϕ is accepted,
is specified by a reference sentence ψ . The first two-dimensional belief change
operation we consider is bounded revision. The idea of bounded revision is to accept
ϕ as long asψ holds along with ϕ—and just a little longer. Bounded revision satisfies
(generalizations of) the semantically motivated postulates of Darwiche and Pearl
[17], as well as a “Same beliefs condition” according to which the posterior beliefs
of the agent should not depend on the reference sentence (although the posterior
belief state does). For further motivation we refer to [44]. Bounded revision BdRψϕ
is defined by:

It is not difficult to verify that bounded revision reduces to the unary operation of
conservative revision if the reference sentence ψ is fixed to ⊥, and that it reduces to
the unary operation of moderate revision if the reference sentence ψ is fixed to �.

26 How can we evaluate a sentence at a world v which has vanished in the course of the evaluation?
Above, we have stipulated that M,w |= [�]ϕ to be vacuously true in case M,w �|= |�|, in order to
avoid facing the main clause �M,w |= ϕ when w fails to be in �W of �M. But evidently, this is
not a solution to the problem of untruthful public announcements or radical revisions.
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Three kinds of revision
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Fig. 8.5 Three kinds of revision by p. Models are closed under transitivity and reflexivity

Bounded revision

BdRψϕ ≤:=≤ϕ∧[<](ϕ→ψ) ∪ ≤¬(ϕ∧[<](ϕ→ψ)) ∪
(¬(ϕ ∧ [<](ϕ → ψ))? ; ∼ ; (ϕ ∧ [<](ϕ → ψ))?)
<:=<ϕ∧[<](ϕ→ψ) ∪ <¬(ϕ∧[<](ϕ→ψ)) ∪
(¬(ϕ ∧ [<](ϕ → ψ))? ; ∼ ; (ϕ ∧ [<](ϕ → ψ))?)

In general, bounded revision requires the limit assumption, since for instance, if ϕ
and ψ are inconsistent with each other, minimal ϕ-worlds are needed to ensure the
success of the revision operation. By a deliberate choice of the reference sentence
ψ , however, one may in many cases make sure that there is a broad enough range
of worlds that satisfy ϕ ∧ [<](ϕ → ψ), and then the operation performs well even
if the model does not satisfy the limit assumption. Figure 8.6 gives an illustration of
bounded revision in a finite model.

Another interesting two-dimensional operation is revision by comparison (Fermé
and Rott [23]). It is motivated by the same concerns as bounded revision. But while
the idea of bounded revision is to accept ϕ as long as ψ holds along with it (and a
little longer), revision by comparison accepts ϕ with a strength that at least equals
that of the acceptance of ψ . In contrast to bounded revision, revision by comparison
does not satisfy the Darwiche-Pearl postulates. In its intended cases of application,
it is a revision operation, but it can also have the effects of a contraction operation
(see Sect. 8.5.5): If the reference sentence is too weak (more precisely, if the input
sentence is at least as surprising as the negation of the reference sentence), then the
revision fails, and instead a severe contraction with respect to the reference sentence
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Bounded revision

p

p

pq
q

pq

BdRq p

p

p

pq

q

pq

Fig. 8.6 Bounded revision by p with respect to reference sentence q. Models are closed under
transitivity and reflexivity

is performed, provided that there are maximal nonmodels of the reference sentence.27

In at least one way of presenting it (namely by manipulations of prioritized belief
bases, cf. Rott [42]), revision by comparison is an extremely natural belief change
operation.

The definition of revision by comparison given in Fermé and Rott [23, p. 14] can
be represented in our framework as follows:

Revision by comparison

RbCψϕ ≤:=≤ϕ ∪ (¬[≤]ψ? ; ≤) ∪ (¬ϕ? ; ∼ ; [<]ψ?)
<:=<ϕ ∪ (¬[<]ψ? ; <) ∪ (¬ϕ? ; ∼ ; (ϕ ∧ [≤]ψ)?)

Figure 8.7 gives an illustration of revision by comparison in a finite model. We are
representing two cases, the successful one in which the input sentence gets accepted,
and the unsuccessful one in which the reference sentence gets withdrawn.

If we set the reference sentence to �, then revision by comparison reduces to a
unary revision operation that is more radical than moderate revision but somewhat
less radical than the revision operations we have called radical:

Radical revision, version 3

RR3ϕ ≤:=≤ϕ ∪ (¬ϕ? ; ∼)
<:=<ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

We deal with another interesting limiting case of revision by comparison obtained
by setting the input sentence to ⊥ in the next section.28

27 The limit assumption guarantees this. If, however, the limit assumption is not satisfied, revision
by comparison as defined below may fail to make the input sentence at least as firmly accepted as
the reference sentence.
28 Also compare Rott [43].
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Revision by comparison

p

q
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q

RbCq p
p

q

pq
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q
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pq

q
RbCq p

p
pq

q

Fig. 8.7 Revision by comparison by p with respect to stronger and weaker reference sentences q:
the successful case of a revision and the unsuccessful case reducing to a severe withdrawal of q.
Models are closed under transitivity and reflexivity

8.5.5 Contraction

The operation of contraction is about withdrawing beliefs from belief states. The main
idea is that a contraction by ϕ is effected by promoting the maximal ¬ϕ-worlds, and
possibly some more worlds, to the ranks of the maximal worlds (i.e., the maximal
�-worlds).

To be successful, each of the following operations requires the use of max ¬ϕ,
and most of them require the use of max � as well. Thus the difficulty with belief
contraction is that we need to identify maximal states: the states where [<]ϕ or,
respectively, [<]⊥ hold. But without something like the limit assumption, there is
no guarantee that maximal states exist in models. We can still define the operations
with PDL-transformations, as we did for all other operations, but unless we have
some means of ensuring the existence of maximal worlds, contraction even with
atomic information might not be successful. Now, the way we have proposed to get
the limit assumption is by introducing the Löb axiom. We know that our logic is
sound over the appropriate class of frames in which there are maximal worlds, but
we do not know how to prove completeness. Setting this technical question aside
for future research, we proceed in this section assuming that models always have
maximal worlds, which we identify as those worlds in which max ¬ϕ or [<]⊥ is
true.

Our first contraction operation is very simple. It has been studied by various
authors and is perhaps best known under the names severe withdrawal (Pagnucco
and Rott [39]) and mild contraction (Levi [36]). The incisions into sets of beliefs
induced by severe withdrawal are substantially greater than those induced by (iterable
generalisations of) AGM contraction functions.
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Severe withdrawal

SWϕ ≤:=≤ ∪ (∼ ; [<]ϕ?)
<:= (¬[<]ϕ? ; <)

Severe Withdrawal

p
p

p

SWp

p
p

p

Fig. 8.8 Severe withdrawal of p. Models are closed under transitivity and reflexivity

Notice that severe withdrawal has no need of identifying maximal �-worlds. But
if the limit assumption is not met, then there may be no maximal ¬ϕ-worlds and
severe withdrawal may weaken the beliefs of the agent without getting rid of ϕ.
Figure 8.8 gives an illustration of a successful severe withdrawal:

It is easy to check that a revision by comparison RbCψϕ reduces to a severe
withdrawal of the reference sentence, SWψ , if we substitute ⊥ for ϕ.29

The following three kinds of contraction are modelled in analogy to conserva-
tive, moderate and radical revision. In line with the basic AGM theory, the way the
corresponding contraction operations proceed is by putting the maximal ¬ϕ-worlds
and the maximal �-worlds on a par, in a maximal position. We now move to the
investigation of conservative, moderate and radical contraction (Fig. 8.9).

Conservative contraction, like conservative revision above, keeps most of the
structure intact and reorders maximal worlds. First, the order is preserved among the
non-maximal ¬ϕ-worlds. Second, the maximal ¬ϕ-worlds are upgraded on top of
non-maximal ϕ-worlds and made as plausible as the maximal �-worlds. Formally,
conservative contraction is the following doxastic transformation:

Conservative contraction

CCϕ ≤:=≤¬max(¬ϕ) ∪(∼ ; max ¬ϕ?) ∪ (∼ ; max �?)
<:=<¬max(¬ϕ) ∪ ((¬ max ¬ϕ ∧ ¬ max �)? ; ∼ ; max ¬ϕ?)

Moderate contraction is defined in analogy to moderate revision, but it is hard to
come up with a motivation for it. Why should the idea of being open-minded about
ϕ result in a belief state that gives a lot of credit to ¬ϕ? We present it for reasons of
uniformity [42].

29 Notice that the transformation (¬[≤]ψ? ; ≤) ∪ (∼ ; [<]ψ?) is identical to the transformation
≤ ∪ (∼ ; [<]ψ?), because M,w |= [≤]ψ and w ≤ v taken together imply M, v |= [<]ψ .
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Three kinds of contraction

p p

CCp

p p

MCp

p p

RCp

p

Fig. 8.9 Four kinds of contractions with respect to p. Models are closed under transitivity and
reflexivity

Moderate contraction

MCϕ ≤:=≤¬ϕ ∪ ≤ϕ ∪((ϕ ∧ ¬ max �)? ; ∼ ; ¬ϕ?)
∪(∼ ; max �?) ∪ (∼ ; max ¬ϕ?)

<:=<ϕ ∪ <¬ϕ ∪((ϕ ∧ ¬ max �)? ; ∼ ; ¬ϕ?)
∪((¬ max ¬ϕ ∧ ¬ max �)? ; ∼ ; max �?)

We finally turn to radical contraction to which similar, and even stronger, cau-
tionary remarks concerning its reasonableness apply.

Radical contraction

RCϕ |¬ϕ ∨ max �|
≤:=≤¬ϕ ∪(∼ ; max ¬ϕ? ; ) ∪ (∼ ; max �?)
<:=<¬ϕ ∪((¬ϕ ∧ ¬ max ¬ϕ)? ; ∼ ; max �?)

8.6 Conclusion

We have explored AGM belief change policies in a modal dynamic logic that explic-
itly delineates knowledge, belief, plausibility and the dynamics of these notions.
Taking a Kripke semantics counterpart to Grove semantics for AGM as a starting
point, we used a basic modal language containing one epistemic modality [∼]ϕ and
two plausibility modalities [≤]ϕ and [<]ϕ, and defined several notions of belief. We
critically discussed the philosophical presuppositions underlying various modelling
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assumptions commonly made in the literature, such as negative introspection for
knowledge and the limit assumption. Then, we introduced PDL-transformations to
define various policies of iterated belief expansion, revision, contraction and two-
dimensional belief change operations. EDPDL thus formalises our minimalist and
modular attitude.
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