
Chapter 13
Logic and Probabilistic Update

Lorenz Demey and Barteld Kooi

Abstract This chapter surveys recent work on probabilistic extensions of epistemic
and dynamic-epistemic logics (the latter include the basic system of public announce-
ment logic as well as the full product update logic). It emphasizes the importance of
higher-order information as a distinguishing feature of these logics. This becomes
particularly clear in the dynamic setting: although there exists a clear relationship
between usual Bayesian conditionalization and public announcement, the proba-
bilistic effects of the latter are in general more difficult to describe, because of the
subtleties involved in higher-order information. Finally, the chapter discusses some
applications of probabilistic dynamic epistemic logic, such as the Lockean thesis in
formal epistemology and Aumann’s agreement theorem in game theory.

13.1 Introduction

Epistemic logic and probability theory both provide formal accounts of information.
Epistemic logic takes a qualitative perspective on information, and works with a
modal operator K . Formulas such as Kϕ can be interpreted as ‘the agent knows
that ϕ’, ‘the agent believes that ϕ’, or, more generally speaking, ‘ϕ follows from the
agent’s current information’. Probability theory, on the other hand, takes a quantita-
tive perspective on information, and works with numerical probability functions P .
Formulas such as P(ϕ) = k can be interpreted as ‘the probability of ϕ is k’. In the
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present context, probabilities will usually be interpreted subjectively, and can thus
be taken to represent the agent’s degrees of belief or credences.

With respect to one and the same formula ϕ, epistemic logic is able to distinguish
between three epistemic attitudes: knowing its truth (Kϕ), knowing its falsity (K¬ϕ),
and being ignorant about its truth value (¬Kϕ∧¬K¬ϕ). Probability theory, however,
distinguishes infinitely many epistemic attitudes with respect to ϕ, viz. assigning it
probability k (P(ϕ) = k), for every k ∈ [0, 1]. In this sense probability theory can
be said to provide a much more fine-grained perspective on information.

While epistemic logic thus is a coarser account of information, it certainly has
a wider scope. From its very origins in Hintikka’s [34], epistemic logic has not
only been concerned with knowledge about ‘the world’, but also with knowledge
about knowledge, i.e. with higher-order information. Typical discussions focus on
principles such as positive introspection (Kϕ → K Kϕ). On the other hand, proba-
bility theory rarely talks about principles involving higher-order probabilities, such
as P(ϕ) = 1 → P(P(ϕ) = 1) = 1.1 This issue becomes even more pressing in
multi-agent scenarios. Natural examples might involve an agent a not having any
information about a proposition ϕ, while being certain that another agent, b, does
have this information. In epistemic logic this is naturally formalized as

¬Kaϕ ∧ ¬Ka¬ϕ ∧ Ka(Kbϕ ∨ Kb¬ϕ).
A formalization in probability theory might look as follows:

Pa(ϕ) = 0.5 ∧ Pa(Pb(ϕ) = 1 ∨ Pb(ϕ) = 0) = 1.

However, because this statement makes use of ‘nested’ probabilities, it is rarely used
in standard treatments of probability theory.

An additional theme is that of dynamics, i.e. information change. The agents’
information is not eternally the same; rather, it should be changed in the light of
new incoming information. Probability theory typically uses Bayesian updating to
represent information change (but other, more complicated update mechanisms are
available as well). Dynamic epistemic logic interprets new information as changing
the epistemic model, and uses the new, updated model to represent the agents’ updated
information states. Once again, the main difference is that dynamic epistemic logic
takes (changes in) higher-order information into account, whereas probability theory
does not.

For all these reasons, the project of probabilistic epistemic logic seems very inter-
esting. Such systems inherit the fine-grained perspective on information from prob-
ability theory, and the representation of higher-order information from epistemic

1 A notable exception is ‘Miller’s principle’, which states that P1(ϕ | P2(ϕ) = b) = b. The proba-
bility functions P1 and P2 can have various interpretations, such as the probabilities of two agents,
subjective probability (credence) and objective probability (chance), or the probabilities of one
agent at different moments in time—in the last two cases, the principle is also called the ‘principal
principle’ or the ‘principle of reflection’, respectively. This principle has been widely discussed in
Bayesian epistemology and philosophy of science [29, 32, 38, 40, 41].
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logic. Their dynamic versions provide a unified perspective on changes in first- and
higher-order information. In other words, they can be thought of as incorporating the
complementary perspectives of (dynamic) epistemic logic and probability theory,
thus yielding richer and more detailed accounts of information and information flow.

The remainder of this chapter is organized as follows. Section 13.2 introduces the
static framework of probabilistic epistemic logic, and discusses its intuitive inter-
pretation and technical features. Section 13.3 focuses on a rather straightforward
type of dynamics, namely public announcements. It describes a probabilistic ver-
sion of the well-known system of public announcement logic, and compares public
announcement and Bayesian conditionalization. In Sect. 13.4 a more general update
mechanism is introduced. This is a probabilistic version of the ‘product update’
mechanism in dynamic epistemic logic. Section 13.5, finally, indicates some appli-
cations and potential avenues of further research for the systems discussed in this
chapter.

13.2 Probabilistic Epistemic Logic

In this section we introduce the static framework of probabilistic epistemic logic,
which will be ‘dynamified’ in Sects. 13.3 and 13.4. Section 13.2.1 discusses the
models on which the logic is interpreted. Section 13.2.2 defines the formal language
and its semantics. Finally, Sect. 13.2.3 provides a complete axiomatization.

13.2.1 Probabilistic Kripke Models

Consider a finite set I of agents, and a countably infinite set Prop of proposition
letters. Throughout this chapter, these sets will be kept fixed, so they will often be
left implicit.

Definition 13.1 A probabilistic Kripke frame is a tuple F = 〈W, Ri , μi 〉i∈I , where
W is a non-empty finite set of states, Ri ⊆ W ×W is agent i’s epistemic accessibility
relation, and μi : W → (W ⇀ [0, 1]) assigns to each state w ∈ W a partial function
μi (w) : W ⇀ [0, 1], such that

∑

v∈dom(μi (w))

μi (w)(v) = 1.

Definition 13.2 A probabilistic Kripke model is a tuple M = 〈F, V 〉, where F is
a probabilistic Kripke frame (with set of states W ), and V : Prop → ℘(W ) is a
valuation.

Note that in principle, no conditions are imposed on the agents’ epistemic
accessibility relations. However, as is usually done in the literature on (proba-
bilistic) dynamic epistemic logic, we will henceforth assume these relations to be
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equivalence relations (so that the corresponding knowledge operators satisfy the
principles of the modal logic S5).

The function μi (w) represents agent i’s probabilities (i.e. degrees of belief) at
state w. For example, μi (w)(v) = k means that at state w, agent i assigns probability
k to state v being the actual state. From a mathematical perspective, this is not the
most general approach: one can also define a probability space Pi,w for each agent
i and state w, and let μi (w) assign probabilities to sets in a σ -algebra on Pi,w,
rather than to individual states. In this way one can easily drop the requirement
that frames and models have finitely many states. This approach is taken in [28]
for static probabilistic epistemic logic, and extended to dynamic settings in [47].
However, because all the characteristic features of probabilistic (dynamic) epistemic
logic already arise in the simpler approach, in this chapter we will stick to this simpler
approach, and takeμi (w) to assign probabilities to individual states. These functions
are additively extended from individual states to sets of states, by putting (for any
set X ⊆ dom(μi (w))):

μi (w)(X) :=
∑

x∈X

μi (w)(x).

A consequence of our simple approach is that all sets X ⊆ dom(μi (w)) have
a definite probability μi (w)(X), whereas in the more general approach, sets X not
belonging to the σ -algebra on Pi,w are not assigned any definite probability at all. A
similar distinction can be made at the level of individual states. Because μi (w) is a
partial function, states v ∈ W −dom(μi (w)) are not assigned any definite probability
at all. An even simpler approach involves putting μi (w)(v) = 0, rather than leaving
it undefined. In this way, the function μi (w) is total after all. From a mathematical
perspective, these two approaches are equivalent. From an informal perspective,
however, there is a clear difference: μi (w)(v) = 0 means that agent i is certain
(at state w) that v is not the actual state, whereas μi (w)(v) being undefined means
that agent i has no opinion whatsoever (at state w) about v being the actual state.
Again, because all the characteristic features of probabilistic (dynamic) epistemic
logic already arise without this intuitive distinction, we will opt for the even simpler
approach, and henceforth assume that all probability functions are total.

To summarize: the approach adopted in this chapter is the simplest one possible,
in the sense that definite probabilities are assigned to ‘everything’: (i) to all sets (there
is no σ -algebra to rule out some sets from having a definite probability), and (ii) to
all states (the probability functions μi (w) are total on their domain W , so no states
are ruled out from having a definite probability).

We finish this subsection by mentioning two typical properties of probabilistic
Kripke frames.2 In the next subsection we will show that these properties correspond
to natural principles about the interaction between knowledge and probability.

Definition 13.3 Consider a probabilistic Kripke frame F and an agent i ∈ I . Then
F is said to be i-consistent iff for all states w, v: if (w, v) /∈ Ri then μi (w)(v) = 0.

2 See [33] for a further discussion of these and other properties, and their correspondence to
knowledge/probability interaction principles.
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Furthermore, F is said to be i-uniform iff for all states w, v: if (w, v) ∈ Ri then
μi (w) = μi (v).

13.2.2 Language and Semantics

The language L of (static) probabilistic epistemic logic is defined by means of the
following Backus-Naur form:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ | a1 Pi (ϕ)+ · · · + an Pi (ϕ) ≥ b

—where p ∈ Prop, i ∈ I, 1 ≤ n < ω, and a1, . . . , an, b ∈ Q. We only allow
rational numbers as values for a1, . . . , an, b in order to keep the language countable.
As usual, Kiϕ means that agent i knows that ϕ, or, more generally, that ϕ follows
from agent i’s information. Its dual is defined as K̂iϕ := ¬Ki¬ϕ, and means that ϕ
is consistent with agent i’s information.

Formulas of the form a1 Pi (ϕ1) + · · · + an Pi (ϕn) ≥ b are called i-probability
formulas.3 Note that mixed agent indices are not allowed; for example, Pa(p) +
Pb(q) ≥ b is not a well-formed formula. Intuitively, Pi (ϕ) ≥ b means that agent i
assigns probability at least b to ϕ. We allow for linear combinations in i-probability
formulas, because this additional expressivity is useful when looking for a complete
axiomatization [28], and because it allows us to express comparative judgments such
as ‘agent i considers ϕ to be at least twice as probable as ψ’: Pi (ϕ) ≥ 2Pi (ψ). This
last formula is actually an abbreviation for Pi (ϕ) − 2Pi (ψ) ≥ 0. In general, we
introduce the following abbreviations:

∑n
�=1 a�Pi (ϕ�) ≥ b for a1 Pi (ϕ1)+ · · · + an Pi (ϕn) ≥ b,

a1 Pi (ϕ1) ≥ a2 Pi (ϕ2) for a1 Pi (ϕ1)+ (−a2)Pi (ϕ2) ≥ 0,∑n
�=1 a�Pi (ϕ�) ≤ b for

∑n
�=1(−a�)Pi (ϕ�) ≥ −b,∑n

�=1 a�Pi (ϕ�) < b for ¬(∑n
�=1 a�Pi (ϕ�) ≥ b),∑n

�=1 a�Pi (ϕ�) > b for ¬(∑n
�=1 a�Pi (ϕ�) ≤ b),∑n

�=1 a�Pi (ϕ�) = b for
∑n
�=1 a�Pi (ϕ�) ≥ b ∧ ∑n

�=1 a�Pi (ϕ�) ≤ b.

Note that because of its recursive definition, the language L can express the
agents’ higher-order information of any sort: higher-order knowledge (for example
Ka Kbϕ), but also higher-order probabilities (for example Pa(Pb(ϕ) ≥ 0.5) = 1),
and higher-order information that mixes knowledge and probabilities (for example,
Ka(Pb(ϕ) ≥ 0.5) and Pa(Kbϕ) = 1).

3 The agents’ probabilities are thus explicitly represented in the logic’s object language L . Other
proposals provide a probabilistic semantics for an object language that is itself fully classical (i.e. that
does not explicitly represent probabilities). See [26] for a recent overview of the various ways of
combining logic and probability.
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The formal semantics for L is defined as follows. Consider an arbitrary proba-
bilistic Kripke model M (with set of states W ) and a state w ∈ W . We will often
abbreviate [[ϕ]]M := {v ∈ W | M, v |= ϕ}. Then:

M,w |= p iff w ∈ V (p),
M,w |= ¬ϕ iff M,w �|= ϕ,
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ ,
M,w |= Kiϕ iff for all v ∈ W : if (w, v) ∈ Ri then M, v |= ϕ,
M,w |= ∑n

�=1 a�Pi (ϕ�) ≥ b iff
∑n
�=1 a�μi (w)([[ϕ�]]M) ≥ b.

Furthermore, we also define:

• M |= ϕ iff M,w |= ϕ for all w ∈ W ,
• F |= ϕ iff 〈F, V 〉 |= ϕ for all valuations V on the frame F,
• |= ϕ iff F |= ϕ for all frames F.

As promised, we will now provide correspondence results for the frame properties
defined at the end of the previous subsection:

Lemma 13.1 Consider a probabilistic Kripke frame F. Then:

1. F is i -consistent iff F |= Ki p → Pi (p) = 1,
2. F is i -uniform iff F |= (ϕ → Kiϕ)∧ (¬ϕ → Ki¬ϕ) for all i -prob. formulas ϕ.

From a technical perspective, this lemma indicates how the notion of frame corre-
spondence from modal logic [8, 9, 20] can be extended into the probabilistic realm.
From an intuitive perspective, this lemma sheds some new light on the various interac-
tions between epistemic and probabilistic information. Probabilistic epistemic logic
distinguishes between epistemic impossibility ((w, v) /∈ Ri ) and probabilistic impos-
sibility (μi (w)(v) = 0). For example, when a fair coin is tossed, an infinite series of
tails is probabilistically impossible, but epistemically possible [37, p. 384]. Item 1 of
Lemma 13.1 establishes a connection between the principle that knowledge implies
certainty, and the property of consistency (epistemic impossibility entails probabilis-
tic impossibility). Similarly, item 2 establishes a connection between the principle
that agents know their own probabilistic setup, and the property of uniformity (the
impossibility of epistemic uncertainty about probabilities).

13.2.3 Proof System

Probabilistic epistemic logic can be axiomatized in a highly modular fashion. An
overview is given in Fig. 13.1. The propositional and epistemic components shouldn’t
need any further comments. The probabilistic component is a straightforward trans-
lation into the formal language L of the well-known Kolmogorov axioms of
probability; it ensures that the formal symbol Pi ( · ) behaves like a real probability
function. Finally, the linear inequalities component is mainly a technical tool to
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1. propositional component

all propositional tautologies and the modus ponens rule

2. epistemic component

the S5 axioms and rules for the Ki -operators

3. probabilistic component

4. linear inequalities component

for any permutation

Fig. 13.1 Componentwise axiomatization of probabilistic epistemic logic

ensure that the logic is strong enough to capture the behavior of linear inequalities
of probabilities.

Using standard techniques the following theorem can be proved [28]:

Theorem 13.1 Probabilistic epistemic logic, as axiomatized in Fig. 13.1, is sound
and complete with respect to the class of probabilistic Kripke frames.

The notion of completeness used in this theorem is weak completeness (� ϕ iff
|= ϕ), rather than strong completeness (Γ � ϕ iff Γ |= ϕ). These two notions
do not coincide in probabilistic epistemic logic, because this logic is not compact;
for example, every finite subset of the set {Pi (p) > 0} ∪ {Pi (p) ≤ k | k > 0} is
satisfiable, but the entire set is not.

13.3 Probabilistic Public Announcement Logic

In this section we discuss a first ‘dynamification’ of probabilistic epistemic logic, by
introducing public announcements into the logic. Section 13.3.1 discusses updated
probabilistic Kripke models, and introduces a public announcement operator into



388 L. Demey and B. Kooi

the formal language to talk about these models. Section 13.3.2 provides a complete
axiomatization, and Sect. 13.3.3 focuses on the role of higher-order information in
public announcement dynamics.

13.3.1 Semantics

Public announcements form one of the simplest types of epistemic dynamics. They
concern the truthful and public announcement of some piece of information ϕ by
an external source. That the announcement is truthful means that the announced
information ϕ has to be true; that it is public means that all agents i ∈ I learn
about it simultaneously and commonly. Finally, the announcement’s source is called
‘external’ because it is not one of the agents i ∈ I (and will thus not be explicitly
represented in the formal language).

Public announcement logic [27, 31, 44] represents these announcements as
updates that change Kripke models, and introduces a dynamic public announcement
operator into the formal language to describe these updated models. This strategy
can straightforwardly be extended into the probabilistic realm.

Syntactically, we add a dynamic operator [! ·] · to the static language L , thus
obtaining the new language L !. The formula [!ϕ]ψ means that after any truthful
public announcement of ϕ, it will be the case that ψ . Its dual is defined as 〈!ϕ〉ψ :=
¬[!ϕ]¬ψ , and means that ϕ can truthfully and publicly be announced, and afterwards
ψ will be the case. These formulas thus allow us to express ‘now’ (i.e. before any
dynamics has taken place) what will be the case ‘later’ (after the dynamics has taken
place). These formulas are interpreted on a probabilistic Kripke model M and state
w as follows:

M,w |= [!ϕ]ψ iff if M,w |= ϕ then M|ϕ,w |= ψ ,
M,w |= 〈!ϕ〉ψ iff M,w |= ϕ and M|ϕ,w |= ψ .

Note that these clauses not only use the model M, but also the updated model M|ϕ.
The model M represents the agents’ information before the public announcement of
ϕ; the model M|ϕ represents their information after the public announcement of ϕ;
hence the public announcement of ϕ itself is represented by the update mechanism
M �→ M|ϕ, which is formally defined as follows:

Definition 13.4 Consider a probabilistic Kripke model M = 〈W, Ri , μi , V 〉i∈I ,
a state w ∈ W , and a formula ϕ ∈ L ! such that M,w |= ϕ. Then the updated
probabilistic Kripke model M|ϕ := 〈Wϕ, Rϕi , μ

ϕ
i , V ϕ〉i∈I is defined as follows:

• Wϕ := W ,
• Rϕi := Ri ∩ (W × [[ϕ]]M) (for every agent i ∈ I ),
• μϕi : Wϕ → (Wϕ → [0, 1]) is defined (for every agent i ∈ I ) by
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μ
ϕ
i (v)(u) :=

{
μi (v)({u}∩[[ϕ]]M)
μi (v)([[ϕ]]M) if μi (v)([[ϕ]]M) > 0

μi (v)(u) if μi (v)([[ϕ]]M) = 0,

• V ϕ := V .

The main effect of the public announcement of ϕ in a model M is that all links
to ¬ϕ-states are deleted; hence these states are no longer accessible for any of the
agents. This procedure is standard; we will therefore focus on the probabilistic com-
ponents μϕi .

First of all, it should be noted that the case distinction in the definition ofμϕi (v)(u)
is made for strictly technical reasons, viz. to ensure that there are no ‘dangerous’
divisions by 0. In all examples and applications, we will be using the ‘interesting’
case μi (v)([[ϕ]]M) > 0. Still, for general theoretical reasons, something has to be
said about the case μi (v)([[ϕ]]M) = 0. Leaving μϕi (v)(u) undefined would lead to
truth value gaps in the logic, and thus greatly increase the difficulty of finding a
complete axiomatization. The approach taken in this chapter is to define μϕi (v)(u)
simply as μi (v)(u) in case μi (v)([[ϕ]]M) = 0—so the public announcement of ϕ
has no effect whatsoever on μi (v). The intuitive idea behind this definition is that an
agent i simply ignores new information if she previously assigned probability 0 to
it. Technically speaking, this definition will yield a relatively simple axiomatization.

One can easily check that if M is a probabilistic Kripke model, then M|ϕ is a
probabilistic Kripke model as well. We focus on μϕ(v) (for some arbitrary state
v ∈ Wϕ). If μi (v)([[ϕ]]M) = 0, then μϕi (v) is μi (v), which is a probability function
on W = Wϕ . If μi (v)([[ϕ]]M) > 0, then for any u ∈ Wϕ ,

μ
ϕ
i (v)(u) = μi (v)({u} ∩ [[ϕ]]M)

μi (v)([[ϕ]]M) ,

which is positive because μi (v)({u} ∩ [[ϕ]]M) is positive, and at most 1, because
μi (v)({u} ∩ [[ϕ]]M) ≤ μi (v)([[ϕ]]M)—and hence μϕi (v)(u) ∈ [0, 1]. Furthermore,

∑

u∈Wϕ

μ
ϕ
i (v)(u) =

∑

u∈W

μi (v)({u} ∩ [[ϕ]]M)
μi (v)([[ϕ]]M) =

∑

M,u|=ϕ

μi (v)(u)

μi (v)([[ϕ]]M) = 1.

It should be noted that the definition of μϕi (v)—in the interesting case when
μi (v)([[ϕ]]M) > 0—can also be expressed in terms of conditional probabilities:

μ
ϕ
i (v)(u) = μi (v)({u} ∩ [[ϕ]]M)

μi (v)([[ϕ]]M) = μi (v)(u | [[ϕ]]M).

In general, for any X ⊆ Wϕ we have:

μ
ϕ
i (v)(X) = μi (v)(X ∩ [[ϕ]]M)

μi (v)([[ϕ]]M) = μi (v)(X | [[ϕ]]M).
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In other words, after the public announcement of a formula ϕ, the agents calculate
their new, updated probabilities by means of Bayesian conditionalization on the
information provided by the announced formula ϕ. This connection between public
announcements and Bayesian conditionalization will be explored more thoroughly
in Sect. 13.3.3.

Example 13.1 We finish this subsection by discussing a simple example. Consider
the following scenario. An agent does not know whether p is the case, i.e. she cannot
distinguish between p-states and ¬p-states. (In fact, p happens to be true.) Further-
more, the agent has no specific reason to think that one state is more probable than
any other; therefore it is reasonable for her to assign equal probabilities to all states.
This example can be formalized by the following model: M = 〈W, R, μ, V 〉,W =
{w, v}, R = W × W, μ(w)(w) = μ(w)(v) = μ(v)(w) = μ(v)(v) = 0.5, and
V (p) = {w}. (We work with only one agent in this example, so agent indices can
be dropped.) This model is a faithful representation of the scenario described above;
for example:

M,w |= ¬K p ∧ ¬K¬p ∧ P(p) = 0.5 ∧ P(¬p) = 0.5.

Now suppose that p is publicly announced (this is indeed possible, since p was
assumed to be actually true). Applying Definition 13.4 we obtain the updated model
M|p, with W p = W, R = {(w,w)}, and

μp(w)([[p]]M|p) = μp(w)(w) = μ(w)({w} ∩ [[p]]M)
μ(w)([[p]]M) = μ(w)(w)

μ(w)(w)
= 1.

Using this updated model M|p, we find that

M,w |= [!p](K p ∧ P(p) = 1 ∧ P(¬p) = 0
)
.

So after the public announcement of p, the agent has come to know that p is in fact
the case. She has also adjusted her probabilities: she now assigns probability 1 to p
being true, and probability 0 to p being false. These are the results that one would
intuitively expect, so Definition 13.4 seems to yield an adequate representation of
the epistemic and probabilistic effects of public announcements.

13.3.2 Proof System

Public announcement logic can be axiomatized by adding a set of reduction axioms
to the static base logic [27]. These axioms allow us to recursively rewrite formu-
las containing dynamic public announcement operators as formulas without such
operators; hence the dynamic language L ! is equally expressive as the static L .
Alternatively, reduction axioms can be seen as ‘predicting’ what will be the case
after the public announcement has taken place in terms of what is the case before the
public announcement has taken place.
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1. static base logic

probabilistic epistemic logic, as axiomatized in Fig. 13.1

2. necessitation for public announcement

3. reduction axioms for public announcement

Fig. 13.2 Axiomatization of probabilistic public announcement logic

This strategy can be extended into the probabilistic realm. For the static base
logic, we do not simply take some system of epistemic logic (usually S5), but rather
the system of probabilistic epistemic logic described in Sect. 13.2.3 (Fig. 13.1),
and add the reduction axioms shown in Fig. 13.2. The first four reduction axioms
are familiar from classical (non-probabilistic) public announcement logic. Note that
the reduction axiom for i-probability formulas makes, just like Definition 13.4, a
case distinction based on whether the agent assigns probability 0 to the announced
formulaϕ. The significance of this reduction axiom, and its connection with Bayesian
conditionalization, will be further explored in the next subsection.

Once again, standard techniques suffice to prove the following theorem [37]:

Theorem 13.2 Probabilistic public announcement logic, as axiomatized in Fig. 13.2,
is sound and complete with respect to the class of probabilistic Kripke frames.

13.3.3 Higher-Order Information in Public Announcements

In this subsection we will discuss the role of higher-order information in probabilistic
public announcement logic. This will further clarify the connection, but also the dis-
tinction, between (dynamic versions of) probabilistic epistemic logic and probability
theory proper.

In the previous subsection we introduced a reduction axiom for i-probability
formulas. This axiom allows us to derive the following principle as a special case:

(ϕ ∧ P(ϕ) > 0) −→ ([!ϕ]Pi (ψ) ≥ b ↔ P(〈!ϕ〉ψ) ≥ bPi (ϕ)
)
. (13.1)
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The antecedent states that ϕ is true (because of the truthfulness of public announce-
ments) and that agent i assigns it a strictly positive probability (so that we are in the
‘interesting’ case of the reduction axiom). To see the meaning of the consequent more
clearly, note that � 〈!ϕ〉ψ ↔ (ϕ ∧ [!ϕ]ψ), and introduce the following abbreviation
of conditional probability into the formal language:

Pi (β |α) ≥ b := Pi (α ∧ β) ≥ bPi (α).

Principle (13.1) can now be rewritten as follows:

(ϕ ∧ P(ϕ) > 0) −→ ([!ϕ]Pi (ψ) ≥ b ↔ P([!ϕ]ψ |ϕ) ≥ b
)
. (13.2)

A similar version can be proved for ≤ instead of ≥; combining these two we get:

(ϕ ∧ P(ϕ) > 0) −→ ([!ϕ]Pi (ψ) = b ↔ P([!ϕ]ψ |ϕ) = b
)
. (13.3)

The consequent thus states a connection between the agent’s probability of ψ
after the public announcement of ϕ, and her conditional probability of [!ϕ]ψ , given
the truth of ϕ. In other words, after a public announcent of ϕ, the agent updates her
probabilities by Bayesian conditionalization on ϕ. The subtlety of principle (13.3),
however, is that the agent does not take the conditional probability (conditional
on ϕ) of ψ itself, but rather of the updated formula [!ϕ]ψ .

The reason for this is that [!ϕ]Pi (ψ) = b talks about the probability that the
agent assigns to ψ after the public announcement of ϕ has actually happened. If we
want to describe this probability as a conditional probability, we cannot simply make
use of the conditional probability Pi (ψ |ϕ), because this represents the probability
that the agent would assign to ψ if a public announcement of ϕ would happen—
hypothetically, not actually! Borrowing a slogan from van Benthem: “The former
takes place once arrived at one’s vacation destination, the latter is like reading a travel
folder and musing about tropical islands.” [11, p. 417]. Hence, if we want to describe
the agent’s probability of ψ after an actual public announcement of ϕ in terms of
conditional probabilities, we need to represent the effects of the public announcement
of ϕ on ψ explicitly, and thus take the conditional probability (conditional on ϕ) of
[!ϕ]ψ , rather than ψ .

One might wonder about the relevance of this subtle distinction between actual
and hypothetical public announcements. The point is that the public announcement
of ϕ can have effects on the truth value of ψ . For large classes of formulas ψ , this
will not occur: their truth value is not affected by the public announcement of ϕ.
Formally, this means that � ψ ↔ [!ϕ]ψ , and thus (the consequent of) principle
(13.3) becomes:

[!ϕ]Pi (ψ) = b ↔ Pi (ψ |ϕ) = b

—thus wiping away all differences between the agent’s probability ofψ after a public
announcement of ϕ, and her conditional probability of ψ , given ϕ. A typical class
of such formulas (whose truth value is unaffected by the public announcement of ϕ)
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is formed by the Boolean combinations of proposition letters, i.e. those formulas
which express ontic or first-order information. Since probability theory proper is
usually only concerned with first-order information (‘no nested probabilities’), the
distinction between actual and hypothetical announcements—or in general, between
actual and hypothetical learning of new information—thus vanishes completely, and
Bayesian conditionalization can be used as a universal update rule to compute new
probabilities after (actually) learning a new piece of information.

However, in probabilistic epistemic logic (and its dynamic versions, such as prob-
abilistic PAL), higher-order information is taken into account, and hence the distinc-
tion between actual and hypothetical public announcements has to be taken seriously.
Therefore, the consequent of principle (13.3) should really use the conditional prob-
ability Pi ([!ϕ]ψ |ϕ), rather than just Pi (ψ |ϕ).4

Example 13.2 To illustrate this, consider again the model defined in Example 13.1,
and put ϕ := p ∧ P(¬p) = 0.5. It is easy to show that

M,w |= P(ϕ |ϕ) = 1 ∧ P([!ϕ]ϕ |ϕ) = 0 ∧ [!ϕ]P(ϕ) = 0.

Hence the probability assigned to ϕ after the public announcement is the condi-
tional probability P([!ϕ]ϕ |ϕ), rather than just P(ϕ |ϕ). Note that this example
indeed involves higher-order information, since we are talking about the probability
of ϕ, which itself contains the probability statement P(¬p) = 0.5 as a conjunct.
Finally, this example also shows that learning a new piece of information ϕ (via
public announcement) does not automatically lead to the agents being certain about
(i.e. assigning probability 1 to) that formula. This is to be contrasted with probability
theory, where a new piece of information ϕ is processed via Bayesian conditional-
ization, and thus always leads to certainty: P(ϕ |ϕ) = 1. The explanation is, once
again, that probability theory is only concerned with first-order information, whereas
the phenomena described above can only occur at the level of higher-order informa-
tion.5,6

4 Romeijn [45] provides an analysis that stays closer in spirit to probability theory proper. He argues
that the public announcement of ϕ induces a shift in the interpretation of ψ (in our terminology:
from ψ to [!ϕ]ψ , i.e. from [[ψ]]M to [[ψ]]M|ϕ), and shows that such meaning shifts can be modeled
using Dempster-Shafer belief functions. Crucially, however, this proposal is able to deal with the
case ofψ expressing second-order information (e.g. when it is of the form Pi (p) = b), but not with
the case of higher-order information in general (e.g. when ψ is of the form Pj (Pi (p) = b) = a, or
involves even more deeply nested probabilities) [45, p. 603].
5 Similarly, the success postulate for belief expansion in the (traditional) AGM framework [1, 30]
states that after expanding one’s belief set with a new piece of information ϕ, the updated (expanded)
belief set should always contain this new information. Also here the explanation is that AGM is
only concerned with first-order information. (Note that we talk about the success postulate for belief
expansion, rather than belief revision, because the former seems to be the best analogue of public
announcement in the AGM framework.)
6 The occurrence of higher-order information is a necessary condition for this phenomenon, but not a
sufficient one: there exist formulasϕ that involve higher-order information, but still |= [!ϕ]Pi (ϕ) = 1
(or epistemically: |= [!ϕ]Kiϕ).
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13.4 Probabilistic Dynamic Epistemic Logic

In this section we will move from a probabilistic version of public announcement
logic to a probabilistic version of ‘full’ dynamic epistemic logic. Section 13.4.1
introduces a probabilistic version of the product update mechanism that is behind
dynamic epistemic logic. Section 13.4.2 introduces dynamic operators into the formal
language to talk about these product updates, and discusses a detailed example.
Section 13.4.3, finally, shows how to obtain a complete axiomatization in a fully
standard (though non-trivial) fashion.

13.4.1 Probabilistic Product Update

Classical (non-probabilistic) dynamic epistemic logic models epistemic dynamics by
means of a product update mechanism [4, 5]. The agents’ static information (what is
the current state?) is represented in a Kripke model M, and their dynamic information
(what type of event is currently taking place?) is represented in an update model E.
The agents’ new information (after the dynamics has taken place) is represented
by means of a product construction M ⊗ E. We will now show how to define a
probabilistic version of this construction.

Before stating the formal definitions, we show how they naturally arise as proba-
bilistic generalizations of the classical (non-probabilistic) notions. The probabilistic
Kripke models introduced in Definition 13.2 represent the agents’ static information,
in both its epistemic and its probabilistic aspects. This static probabilistic informa-
tion is called the prior probabilities of the states in [17]. We can thus say that when
w is the actual state, agent i considers it epistemically possible that v is the actual
state ((w, v) ∈ Ri ), and, more specifically, that she assigns probability b to v being
the actual state (μi (w)(v) = b).

Update models are essentially like Kripke models: they represent the agents’ infor-
mation about events, rather than states. Since probabilistic Kripke models represent
both epistemic and probabilistic information about states, by analogy probabilistic
update models should represent both epistemic and probabilistic information about
events. Hence, they should not only have epistemic accessibility relations Ri over
their set of events E , but also probability functions μi : E → (E → [0, 1]). (Formal
details will be given in Definition 13.5.) We can then say that when e is the actually
occurring event, agent i considers it epistemically possible that f is the actually
occurring event ((e, f ) ∈ Ri ), and, more specifically, that she assigns probability b
to f being the actually occurring event (μi (e)( f ) = b). This dynamic probabilistic
information is called the observation probabilities in van Benthem et al. [17].

Finally, how probable it is that an event e will occur, might vary from state to
state. We assume that this variation can be captured by means of a setΦ of (pairwise
inconsistent) sentences in the object language (so that the probability that an event e
will occur can only vary between states that satisfy different sentences ofΦ). This will
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be formalized by adding to the probabilistic update models a set of preconditionsΦ,
and probability functions pre : Φ → (E → [0, 1]). The meaning of pre(ϕ)(e) = b
is that if ϕ holds, then event e occurs with probability b. In van Benthem et al. [17]
these are called occurrence probabilities.7

We are now ready to formally introduce probabilistic update models:

Definition 13.5 A probabilistic update model is a tuple E = 〈E, Ri , Φ,pre, μi 〉i∈I ,
where E is a non-empty finite set of events, Ri ⊆ E × E is agent i’s epistemic
accessibility relation,Φ ⊆ L ⊗ is a finite set of pairwise inconsistent sentences called
preconditions, μi : E → (E → [0, 1]) assigns to each event e ∈ E a probability
function μi (e) over E , and pre : Φ → (E → [0, 1]) assigns to each precondition
ϕ ∈ Φ a probability function pre(ϕ) over E .

All components of a probabilistic update model have already been commented
upon. Note that we use the same symbols Ri and μi to indicate agent i’s epistemic
and probabilistic information in a probabilistic Kripke model M and in a probabilistic
update model E—from the context it will always be clear which of the two is meant.
The language L ⊗ that the preconditions are taken from will be formally defined
in the next subsection. (As is usual in this area, there is a non-vicious simultaneous
recursion going on here.)

We now introduce occurrence probabilities for events at states:

Definition 13.6 Consider a probabilistic Kripke model M, a state w, a probabilistic
update model E, and an event e. Then the occurrence probability of e at w is defined
as

pre(w)(e) =
{

pre(ϕ)(e) if ϕ ∈ Φ and M,w |= ϕ

0 if there is no ϕ ∈ Φ such that M,w |= ϕ.

Since the preconditions are pairwise inconsistent, pre(w)(e) is always well-defined.
The meaning of pre(w)(e) = b is that in state w, event e occurs with probability b.
Note that if two states w and v satisfy the same precondition, then always pre(w)(e) =
pre(v)(e); in other words, the occurrence probabilities of an event e can only vary
‘up to a precondition’ (cf. supra).

The probabilistic product update mechanism can now be defined as follows:

Definition 13.7 Consider a probabilistic Kripke model M = 〈W, Ri , μi , V 〉i∈I and
a probabilistic update model E = 〈E, Ri , Φ,pre, μi 〉i∈I . Then the updated model
M ⊗ E := 〈W ′, R′

i , μ
′
i , V ′〉i∈I is defined as follows:

• W ′ := {(w, e) | w ∈ W, e ∈ E,pre(w)(e) > 0},
• R′

i := {((w, e), (w′, e′)) ∈ W ′ × W ′ | (w,w′) ∈ Ri and (e, e′) ∈ Ri } (for every
agent i ∈ I ),

7 Occurrence probabilities are often assumed to be objective frequencies. This is reflected in the
formal setup: the function pre is not agent-dependent.
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• μ′
i : W ′ → (W ′ → [0, 1]) is defined (for every agent i ∈ I ) by

μ′
i (w, e)(w′, e′) := μi (w)(w′) · pre(w′)(e′) · μi (e)(e′)∑

w′′∈W
e′′∈E

μi (w)(w′′) · pre(w′′)(e′′) · μi (e)(e′′)

if the denominator is strictly positive, and μ′
i (w, e)(w′, e′) := 0 otherwise,

• V ′(p) := {(w, e) ∈ W ′ | w ∈ V (p)} (for every p ∈ Prop).

We will only comment on the probabilistic component of this definition (all other
components are fully classical). After the dynamics has taken place, agent i calculates
at state (w, e) her new probability for (w′, e′) by taking the arithmetical product of
(i) her prior probability for w′ at w, (ii) the occurrence probability of e′ in w′, and
(iii) her observation probability for e′ at e, and then normalizing this product. The
factors in this product are not weighted (or equivalently, they all have weight 1)—
van Benthem et al. [17] also discusses weighted versions of this update mechanism,
and shows how one of these weighted versions corresponds to the rule of Jeffrey
conditioning from probability theory [36]. Finally, note that M ⊗ E might fail to
be a probabilistic Kripke model: if the denominator in the definition of μ′

i (w, e)
is 0, then μ′

i (w, e) assigns 0 to all states in W ′. We will not care here about the
interpretation of this feature, but only remark that technically speaking it is harmless
and, perhaps most importantly, still allows for a reduction axiom for i-probability
formulas (cf. Sect. 13.4.3).

13.4.2 Language and Semantics

To talk about these updated models, we add dynamic operators [E,e] to the static
language L , thus obtaining the new language L ⊗. Here, E,e are formal names for
the probabilistic update model E = 〈E, Ri , Φ,pre, μi 〉i∈I and event e ∈ E (recall
our remark about the mutual recursion of the dynamic language and the updated
models). The formula [E,e]ϕ means that after the event e has occurred, it will be
the case that ϕ. It has the following semantics:

M,w |= [E,e]ψ iff if pre(w)(e) > 0, then M ⊗ E, (w, e) |= ψ.

Example 13.3 Consider the following scenario. While strolling through a flee mar-
ket, you see a painting that you think might be a real Picasso. Of course, the chance
that the painting is actually a real Picasso is very slim, say 1 in 100,000. You know
from an art encyclopedia that Picasso signed almost all his paintings with a very
characteristic signature. If the painting is a real Picasso, the chance that it bears
the characteristic signature is 97 %, while if the painting is not a real Picasso, the
chance that it bears the characteristic signature is 0 % (nobody is capable of imitating
Picasso’s signature). You immediately look at the painting’s signature, but determin-
ing whether it is Picasso’s characteristic signature is very hard, and—not being an
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expert art historian—you remain uncertain and think that the chance is 50 % that the
painting’s signature is Picasso’s characteristic one.

Your initial information (before having looked at the painting’s signature) can be
represented as the following probabilistic Kripke model: M = 〈W, R, μ, V 〉, where
W = {w, v}, R = W × W, μ(w)(w) = μ(v)(w) = 0.00001, μ(w)(v) = μ(v)(v) =
0.99999, and V (real) = {w}. (We work with only one agent in this example, so agent
indices can be dropped.) Hence, initially you do not rule out the possibility that the
painting in front of you is a real Picasso, but you consider it highly unlikely:

M,w |= K̂ real ∧ P(real) = 0.00001.

The event of looking at the signature can be represented with the following update
model: E = 〈E, R, Φ,pre, μ〉, where E = {e, f }, R = E × E , Φ = {real,¬real},
pre(real)(e) = 0.97, pre(real)( f ) = 0.03, pre(¬real)(e) = 0, pre(¬real)( f ) =
1, and μ(e)(e) = μ( f )(e) = μ(e)( f ) = μ( f )( f ) = 0.5. The event e represents
‘looking at Picasso’s characteristic signature’; the event f represents ‘looking at a
signature that is not Picasso’s characteristic one’.

We now construct the updated model M ⊗ E. Since M, v �|= real, it holds that
pre(v)(e) = pre(¬real)(e) = 0, and hence (v, e) does not belong to the updated
model. It is easy to see that the other states (w, e), (w, f ) and (v, f ) do belong
to the updated model. Furthermore, one can easily calculate that μ′(w, e)(w, e) =
0.0000003 andμ′(w, e)(w, f ) = 0.0000097, soμ′(w, e)([[real]]M⊗E) = 0.0000003
+ 0.0000097 = 0.00001, and thus

M,w |= [E,e]P(real) = 0.00001.

Hence, even though the painting in front of you is a real Picasso (in state w), after
looking at the signature (which is indeed Picasso’s characteristic signature!—the
event that actually happened was event e) you still assign a probability of 1 in 100,000
to it being a real Picasso.

Note that if you had been an expert art historian, with the same prior probabilities,
but with the reliable capability of recognizing Picasso’s characteristic signature—
let’s formalize this as μ(e)(e) = 0.99 and μ(e)( f ) = 0.01—, then the same update
mechanism would have implied that

M,w |= [E,e]P(real) = 0.00096.

In other words, if you had been an expert art historian, then looking at the painting’s
signature would have been highly informative: it would have led to a significant
change in your probabilities.

13.4.3 Proof System

A complete axiomatization for probabilistic dynamic epistemic logic can be found
using the standard strategy, viz. by adding a set of reduction axioms to static



398 L. Demey and B. Kooi

probabilistic epistemic logic. Implementing this strategy, however, is not entirely
trivial. The reduction axioms for non-probabilistic formulas are familiar from clas-
sical (non-probabilistic) dynamic epistemic logic, but the reduction axiom for i-
probability formulas is more complicated.

First of all, this reduction axiom makes a case distinction on whether a certain
sum of probabilities is strictly positive or not. We will show that this corresponds
to the case distinction made in the definition of the updated probability functions
(Definition 13.7). In the definition of μ′

i (w, e), a case distinction is made on the
value of the denominator of a fraction, i.e. on the value of the following expression:

∑

v∈W
f ∈E

μi (w)(v) · pre(v)( f ) · μi (e)( f ). (13.4)

But this expression can be rewritten as

∑

v∈W
f ∈E
ϕ∈Φ

M,v|=ϕ

μi (w)(v) · pre(ϕ)( f ) · μi (e)( f ).

Using the definition of ki,e,ϕ, f (cf. Fig. 13.3), this can be rewritten as

∑

ϕ∈Φ
f ∈E

μi (w)([[ϕ]]M) · ki,e,ϕ, f .

Since E and Φ are finite, this sum is finite and corresponds to an expression in the
formal language L ⊗, which we will abbreviate as σ :

σ :=
∑

ϕ∈Φ
f ∈E

ki,e,ϕ, f Pi (ϕ).

This expression can be turned into an i-probability formula by ‘comparing’ it with
a rational number b; for example σ ≥ b. Particularly important are the formulas
σ = 0 and σ > 0: exactly these formulas are used to make the case distinction in
the reduction axiom for i-probability formulas.8

Next, the reduction axiom for i-probability formulas provides a statement in each
case of the case distinction: 0 ≥ b in the case σ = 0, and χ (as defined in Fig. 13.3)
in the case σ > 0. We will only explain the meaning of χ in the ‘interesting’ case

8 Note that E andΦ are components of the probabilistic update model E named by E; furthermore,
the values ki,e,ϕ, f are fully determined by the model E and event e named by E and e, respec-
tively (consider their definition in Fig. 13.3). Hence any i-probability formula involving σ is fully
determined by E, e, and can be interpreted at any probabilistic Kripke model M and state w.
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1. static base logic

probabilistic epistemic logic, as axiomatized in Fig. 13.1

2. necessitation for [E,e]

3. reduction axioms

using the following definitions:

Fig. 13.3 Axiomatization of probabilistic dynamic epistemic logic

σ > 0. If M,w |= σ > 0, then the value of (13.4) is strictly positive (cf. supra), and
we can calculate:

μ′
i (w, e)([[ψ]]M⊗E) = ∑

M⊗E,(w′,e′)|=ψ μ′
i (w, e)(w′, e′)

= ∑
w′∈W,e′∈E

M,w′|=〈E,e′〉ψ
μi (w)(w′)·pre(w′)(e′)·μi (e)(e′)∑
v∈W
f ∈E

μi (w)(v)·pre(v)( f )·μi (e)( f )

=
∑
ϕ∈Φ
f ∈E

μi (w)([[ϕ∧〈E,f〉ψ]]M)·ki,e,ϕ, f

∑
ϕ∈Φ
f ∈E

μi (w)([[ϕ]]M)·ki,e,ϕ, f
.

Hence, in this case (σ > 0) we can express that μ′
i (w, e)([[ψ]]M⊗E) ≥ b in the

formal language, by means of the following i-probability formula:

∑

ϕ∈Φ
f ∈E

ki,e,ϕ, f Pi (ϕ ∧ 〈E, f〉ψ) ≥
∑

ϕ∈Φ
f ∈E

bki,e,ϕ, f Pi (ϕ).

Moving to linear combinations, we can express that
∑
� a�μ′

i (w, e)([[ψ�]]M⊗E) ≥
b in the formal language using an analogous i-probability formula, namely χ (cf. the
definition of this formula in Fig. 13.3).
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We thus obtain the following theorem [17]:

Theorem 13.3 Probabilistic dynamic epistemic logic, as axiomatized in Fig. 13.3,
is sound and complete with respect to the class of probabilistic Kripke frames.

13.5 Further Developments and Applications

Probabilistic extensions of dynamic epistemic logic are a recent development, and
there are various open questions and potential applications to be explored. In this
section we discuss a selection of such topics for further research; more suggestions
can be found in [17] and [15, ch. 8].

We distinguish between technical and conceptual open problems.9 A typical tech-
nical problem that needs further research is the issue of surprising information. In
the update mechanisms described in this chapter, the agents’ new probabilities are
calculated by means of a fraction whose denominator might take on the value 0. The
focus has been on the ‘interesting’ (non-0) cases, and the 0-case has been treated as
mere ‘noise’: a technical artefact that cannot be handled convincingly by the system.
However, sometimes such 0-cases do represent very intuitive scenarios; for example,
one can easily think of an agent being absolutely certain that a certain proposition ϕ is
false (P(ϕ) = 0), while that proposition is actually true, and can thus be announced!
In such cases, the system of probabilistic public announcement logic described in
Sect. 13.3 predicts that the agent will simply ignore the announced information
(rather than performing some sensible form of belief revision). More can, and should
be said about such cases [2, 6, 46].

Another technical question is whether other representations of soft information
can learn something from the probabilistic approach to dynamic epistemic logic.
Probabilistic Kripke models represent the agents’ soft information via the probabil-
ity functions μi , and interpret formulas of the form Pi (ϕ) ≥ b. Plausibility models,
on the other hand, represent the agents’ soft information via a (non-numerical) plau-
sibility ordering ≤i , and interpret more qualitative notions of belief [7, 12, 15, 22].
In particular, if we use Min≤i (X) to denote the set of ≤i -minimal states in the set
X , then the formula Biϕ is interpreted in a plausibility model M as follows:10

M,w |= Biϕ iff for all v ∈ Min≤i (Ri [w]) : M, v |= ϕ.

The product update for probabilistic Kripke models described in Definition 13.7
takes into account prior probabilities (μi (w)(v) for states w and v), observation
probabilities (μi (e)( f ) for events e and f ), and occurrence probabilities (pre(w)(e)
for a state w and event e). One can also define a product update for plausibility
models; a widely used rule to define the updated plausibility ordering is the so-called
‘priority update’ [7, 15]:

9 In practice, this distinction will not always be clear-cut, of course.
10 As usual, Ri [w] denotes the set {v ∈ W | (w, v) ∈ Ri }.
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(w, e) ≤i (v, f ) iff e <i f or (e ∼=i f and w ≤i v).

The updated plausibility ordering thus gives priority to the plausibility ordering on
events, and otherwise preserves the original plausibility ordering on states as much
as possible. In analogy with the probabilistic setting, the plausibility orderings on
states and events can be called the ‘prior plausibility’ and ‘observation plausibility’,
respectively. However, the notion of occurrence probability does not seem to have a
clear analogue in the framework of plausibility models. van Benthem [16] defines a
notion of ‘occurrence plausibility’, which can be expressed as e ≤w f : at state w,
event e is at least as plausible as f to occur (this ordering is not agent-dependent;
recall Footnote 7). New product update rules thus have to merge three plausibility
orderings: prior plausibility, observation plausibility, and occurrence plausibility. van
Benthem [16] makes some proposals for such rules, but finding a fully satisfactory
definition remains a major open problem in this area.

An important conceptual issue that is currently actively being investigated, is
the exact relation between the quantitative (probabilistic) and qualitative perspec-
tives on soft information. A widespread proposal is to connect belief with high
probability, where ‘high’ means ‘above some treshold τ ∈ (0.5, 1]’; formally:
Biϕ ⇔ Pi (ϕ) ≥ τ . An immediate problem of this proposal is that belief is standardly
taken to be closed under conjunction, while ‘high probability’ is not closed under
conjunction (unless τ = 1). Despite this initial problem, there’s also a lot in favor
of this proposal. Plausibility models not only interpret a notion of belief, but also a
notion of conditional belief : Bαi ϕ means that agent i believes that ϕ, conditional on
α. The connection between belief and high probability can perfectly be extended to
conditional belief and high conditional probability:

Bαi ϕ ⇔ Pi (ϕ |α) ≥ τ. (13.5)

Furthermore, (conditional) belief and high (conditional) probability seem to display
highly similar dynamic behavior under public announcements. We saw in Sect. 13.3.3
that [!ϕ]Pi (ψ) ≥ τ can sometimes diverge in truth value from Pi (ψ |ϕ) ≥ τ ,
because of the presence of higher-order information. In exactly the same way (and
for the same reason), [!ϕ]Biψ and Bϕi ψ can diverge in truth value on plausibility
models. Furthermore, (conditional) belief and high (conditional) probability have
exactly the ‘same’ reduction axiom. This means that (13.6) (which is interpreted on
probabilistic Kripke models) and (13.7) (which is interpreted on plausibility models)
are intertranslatable, using principle (13.5) above:

[!ϕ]Pi (ψ |α) ≥ τ ↔
(
ϕ → Pi (〈!ϕ〉ψ | 〈!ϕ〉α) ≥ τ

)
, (13.6)

[!ϕ]Bαi ψ ↔
(
ϕ → B〈!ϕ〉α

i 〈!ϕ〉ψ
)
. (13.7)

The significance of these observations is further discussed in [24].
Several fruitful applications of probabilistic dynamic epistemic logic can be

expected in the fields of game theory and cognitive science. In recent years, dynamic
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epistemic logic has been widely applied to explore the epistemic foundations of game
theory [10, 13, 18]. However, given the importance of probability in game theory
(for example, in the notion of mixed strategy), it is surprising that very few of these
logical analyses have a probabilistic component.11 Probabilistic dynamic epistemic
logic provides the required tools to explore the epistemic and the probabilistic aspects
of game theory.

For example, [21, 23] uses a version of probabilistic public announcement logic
to analyze the role of common knowledge and communication in Aumann’s well-
known agreeing to disgaree theorem. Classically, this theorem is stated as follows:
“If two people have the same prior, and their posteriors for an event [ϕ] are com-
mon knowledge, then these posteriors are equal” [3, p. 1236]. If we represent the
experiments (with respect to which the agents’ probabilities are called ‘prior’ and
‘posterior’) with a dynamic operator [EXP], then this version can be formalized as
(13.8), which is derivable in the underlying logical system:

[EXP]C(
P1(ϕ) = a ∧ P2(ϕ) = b

) → a = b. (13.8)

However, this version does not say how the agents are to obtain this common knowl-
edge; it just assumes that they have been able to obtain it one way or another. The
way to obtain common knowledge is via a certain communication protocol, which
is described explicitly in the intuitive scenario that is used to motivate and explain
this theorem. Once this communication dynamics is made explicitly part of the story,
common knowledge of the posteriors need no longer be assumed in the formulation
of the agreement theorem, since it will now simply follow from the communica-
tion protocol. If we represent the communication protocol with a dynamic operator
[DIAL(ϕ)], this new version of the theorem can be formalized as (13.9):

[EXP][DIAL(ϕ)](P1(ϕ) = a ∧ P2(ϕ) = b
) → a = b. (13.9)

The notion of common knowledge is thus less central to the agreement theorem
than is usually thought: if we compare (13.8) and (13.9), it is clear that common
knowledge and communication are two sides of the same coin; the former is only
needed to formulate the agreement theorem if the latter is not represented explicitly.

Another potential field of application is cognitive science. The usefulness of (epis-
temic) logic for cognitive science has been widely recognized [14, 35, 43]. Of course,
as in any other empirical discipline, one quickly finds out that real-life human cog-
nition is rarely a matter of all-or-nothing, but often involves degrees (probabili-
ties). Furthermore, a recent development in cognitive science is toward probabilistic
(Bayesian) models of cognition [42]. If epistemic logic is to remain a valuable tool
here, it will thus have to be a thoroughly ‘probabilized’ version. For example, prob-
abilistic dynamic epistemic logic has been used to model the cognitive phenomenon
of surprise and its epistemic aspects [25, 39].

11 The logic in [19] does have a probabilistic component, but this logic is fully static.



13 Logic and Probabilistic Update 403

13.6 Conclusion

In this chapter we have introduced probabilistic epistemic logic, and several of its
dynamic versions. These logics provide a standard epistemic (possible-worlds) analy-
sis of the agents’ hard information, and supplement it with a fine-grained probabilistic
analysis of their soft information. Higher-order information of any kind (knowledge
about probabilities, probabilities about knowledge, etc.) is represented explicitly.
The importance of higher-order information in dynamics is clear from our discussion
of the connection between public announcements and Bayesian conditionalization.
The probabilistic versions of both public announcement logic and dynamic epistemic
logic with product updates can be completely axiomatized in a standard way (via
reduction axioms). The fertility of the research program of probabilistic dynamic
epistemic logic is illustrated by the variety of technical and conceptual issues that
are still open for further research, and its (potential) use in analyzing theorems and
phenomena from game theory and cognitive science.
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