
249B. Pinamonti, G. Sinagra (eds.), Clinical Echocardiography and Other Imaging 
Techniques in Cardiomyopathies, DOI 10.1007/978-3-319-06019-4_21,
© Springer International Publishing Switzerland 2014

  21      Other Cardiomyopathies: Clinical 
Assessment and Imaging in Diagnosis 
and Patient Management 

             Marco     Merlo     ,     Davide     Stolfo     ,     Giancarlo     Vitrella     , 
    Elena     Abate     ,     Bruno     Pinamonti      ,     Francesco     Negri     , 
    Anita     Spezzacatene     ,     Marco     Anzini     ,     Enrico     Fabris     , 
    Francesca     Brun     ,     Lorenzo     Pagnan     ,     Manuel     Belgrano     , 
       Giorgio     Faganello     , and     Gianfranco     Sinagra     

        M.   Merlo       (*) •     D.   Stolfo       •     G.   Vitrella       •     E.   Abate       •     B.   Pinamonti ,  MD       •     F.   Negri      
     A.   Spezzacatene       •     M.   Anzini       •     E.   Fabris       •     G.   Sinagra ,  MD, FESC      
  Department of Cardiology ,  University Hospital of Trieste , 
  via P. Valdoni 7 ,  Trieste   34139 ,  Italy   
 e-mail: supermerloo@libero.it; davide.stolfo@gmail.com; 
giancarlo.vitrella@gmail.com; abate.elena@gmail.com; 
bruno.pinamonti@gmail.com; francesco_negri@yahoo.it; 
anita.spe@gmail.com; marcoanzini@gmail.com; 
enrico.fabris@hotmail.it; gianfranco.sinagra@aots.sanita.fvg.it   

    F.   Brun      
  Department of Cardiology ,  University Hospital of Trieste , 
  via P. Valdoni 7 ,  Trieste   34100 ,  Italy   
 e-mail: frabrun77@gmail.com   

    L.   Pagnan ,  MD      •    M.   Belgrano ,  MD      
  Radiology Unit ,  University Hospital of Trieste , 
  via P. Valdoni 7 ,  Trieste   34139 ,  Italy   
 e-mail: pagny@inwind.it; belgranom@gmail.com   

    G.   Faganello ,  MD      
  Cardiovascular Center, Azienda per i Servizi Sanitari n° 1 , 
  via Slataper, 9 ,  Trieste   34125 ,  Italy   
 e-mail: giorgio.faganello@libero.it  

   Electronic supplementary material The online version of this chapter (doi:   10.1007/978-3-319-
06019-4_21    ) contains supplementary material, which is available to authorized users. Videos can 
also be accessed at   http://www.springerimages.com/videos/978-3-319-06018-7    . 

mailto:supermerloo@libero.it
mailto:davide.stolfo@gmail.com
mailto:giancarlo.vitrella@gmail.com
mailto:abate.elena@gmail.com
mailto:bruno.pinamonti@gmail.com
mailto:francesco_negri@yahoo.it
mailto:anita.spe@gmail.com
mailto:marcoanzini@gmail.com
mailto:enrico.fabris@hotmail.it
mailto:gianfranco.sinagra@aots.sanita.fvg.it
mailto:frabrun77@gmail.com
mailto:pagny@inwind.it
mailto:belgranom@gmail.com
mailto:giorgio.faganello@libero.it
http://dx.doi.org/10.1007/978-3-319-06019-4_21
http://dx.doi.org/10.1007/978-3-319-06019-4_21
http://www.springerimages.com/videos/978-3-319-06018-7


250

21.1           Introduction 

 The nonspecifi c nature of the term cardiomyopathy (CMP) allows a number of 
 diseases directly or indirectly affecting myocardial function to be included under 
this heading. In fact, in the classifi cation of CMP, some myocardial diseases cannot 
properly be defi ned: dilated (DCM), hypertrophic (HCM), right arrhythmogenic 
(ARVC), restrictive (RCM), and infi ltrative/storage CMP. These myocardial 
 diseases are generally defi ned unclassifi ed or other CMP. They are not extremely 
rare in clinical practice and are characterized by pathophysiologic processes that are 
not completely understood. Therefore, their management represents a challenge for 
clinical cardiologists. Interestingly, some of these CMP are characterized by partial 
to complete reversibility when etiologic factors are removed (reversible CMP) [ 1 ]. 
Finally, a peculiar form of CMP is left ventricular noncompaction (LV NC), with 
typical clinical–instrumental characteristics that are not yet widely known.  

21.2     Peripartum Cardiomyopathy 

 The defi nition of peripartum CMP was fi rst established according to the following 
four criteria    adapted from the study by Demakis et al. [ 2 ]:
•    Development of heart failure (HF) in the last month of pregnancy or within 5 

months of delivery  
•   Absence of an identifi able cause for HF other than pregnancy  
•   Absence of recognizable heart disease before the last month of pregnancy 

(requiring imaging data)  
•   Left ventricular systolic dysfunction demonstrated by classic echocardiographic 

criteria, such as depressed shortening fraction or ejection fraction in the last 
month of pregnancy or within 5 months of delivery [ 3 ]    
 Peripartum CMP remains an exclusion diagnosis (all other causes of HF must be 

ruled out), and it seems to be linked with several risk factors, such as one or more 
prior pregnancies, multifetal pregnancy, older maternal age, and high blood pressure 
[ 4 ]. Many etiological processes occurring during pregnancy have been suggested as 
being causative, such as viral myocarditis, coronary artery spasm, small-vessel dis-
ease, abnormal immune response to pregnancy, and excessive prolactin excretion [ 4 ]. 

 Common echocardiographic fi ndings of peripartum CMP include globally decreased 
LV systolic function and LV enlargement, usually without LV hypertrophy (Clips 
 21.1a ,  21.1b ,  21.1c , and  21.1d ). The primary echocardiographic diagnostic criteria are 
LV systolic dysfunction [LV ejection fraction (EF) <0.45 and/or M-mode fractional 
shortening <30 %) and LV dilatation (LV end-diastolic diameter >2.7 cm/m 2 ) between 
the last month of pregnancy and the fi rst 5 months postpartum in the absence of other 
known causes of systolic HF [ 3 ]. Additionally, LV thrombus is not rare in patients with 
LV EF <35 % [ 5 ]. Peripartum CMP is frequently associated with preeclampsia (22 % 
vs 3–5 % in the general population) [ 6 ]. In this context marked LV hypertrophy can be 
exceptionally observed (Fig.  21.1 , Clips  21.2a ,  21.2b ,  21.2c ,  21.2d ,  21.2e ,  21.2f ,  21.2g , 
 21.2h , and  21.2i ), which is usually reversible, such as impaired LV contractility.

M. Merlo et al.



251

   There are few data about the use of advanced echocardiographic technologies in 
this disease. A similar counterclockwise rotation during systole of both the base 
and the apex at speckle-tracking analysis was reported in one case of peripartum 
CMP associated with LV NC [ 7 ]. This subtle deformation abnormality has been 
interpreted as secondary to dysfunction of basal and midwall subepicardial fi bers, 
with resultant predominant effect exerted by the subendocardial fi bers in this 
region. These abnormalities were reversible after optimal medical therapy. 
However, further investigation is required. 

 Studies on cardiac magnetic resonance (CMR) in the acute phases of peripartum 
CMP show the presence of edema at T2 sequences and on early gadolinium 
 enhancement, suggesting an infl ammatory etiology for this condition. In addition, 
late gadolinium enhancement (LGE) seems to identify cases with unfavorable 
 prognosis [ 8 ,  9 ]. 

 Although peripartum CMP shares many features with other forms of nonisch-
emic CMP, women affected by this disease have a higher rate of spontaneous 
 recovery of LV function [ 5 ]. Monitoring patients after diagnosis should include 
serial echocardiograms to identify improvement in systolic function in response to 
conventional HF medical treatment. Less severely impaired LV EF and lower LV 
dimensions at the time of diagnosis are predictors of complete LV function recovery 
and good outcome [ 10 ]. 

 Previous studies assessed prognostic implications of LV contractile reserve at 
initial diagnosis and demonstrated that improved LV EF during dobutamine stress 
echocardiography accurately correlates with subsequent recovery of LV function 
and confers a benign prognosis to this CMP [ 11 ]. 

a b

  Fig. 21.1    ( a ,  b ) Echocardiographic study in a 42-year-old woman with peripartum cardiomyopa-
thy associated with preeclampsia. Parasternal long-axis view ( a ), diastolic frame, of the fi rst 
 echocardiogram postdelivery documenting severe left ventricular (LV) hypertrophy (septal wall 
thickness 17 mm, posterior wall thickness 14 mm), with diffuse hypokinesis and severe systolic 
dysfunction [fractional shortening 15 %, ejection fraction (EF) 32 %]. After 6 months of therapy 
with beta-blocker and angiotensin-converting-enzyme inhibitor, echocardiography in the 
 parasternal long-axis view, diastolic frame ( b ) shows normal LV wall thickness (septal wall 
 thickness 9 mm, posterior wall thickness 9 mm), with normal regional wall motion and systolic 
function (fractional shortening 39 %, EF 64 %)       
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 The existing literature indicates that many patients with peripartum CMP 
 actually have myocarditis. The diagnosis of myocarditis is more suspicious in the 
presence of progressive worsening of LV dilation and systolic dysfunction at serial 
echocardiographic evaluations. In these cases, endomyocardial biopsy (EMB) can 
be useful to modify therapeutic strategies. 

 Finally, one important question asked by women with a history of this disease is 
whether they can safely get pregnant again. For women with persistently reduced 
LV EF, there is a substantial risk of recurrent HF. On the other hand, for women who 
recover, the risk is much lower and can be further stratifi ed by a stress echocardio-
gram: in the presence of normal contractile reserve, the risk of recurrent disease or 
HF seems to be low [ 4 ].  

21.3     Tako-Tsubo Cardiomyopathy 

 Tako-tsubo, or stress-induced CMP, is an acute, usually reversible, disorder of the 
heart characterized by transient LV dysfunction [ 12 – 15 ]. Clinical presentation is 
usually similar to an acute coronary syndrome, with precordial pain and dyspnea. 
Other symptoms may include palpitations, syncope, or even cardiac arrest or sudden 
death (SD). A trigger, such as a stressful physical or psychological event, can usu-
ally be detected in 27–100 % of cases. Many diagnostic criteria have been formu-
lated, but the most widely accepted are those of the Mayo Clinic in the United States 
[ 13 ], which require normality of the epicardial coronary arteries. Tako-tsubo syn-
drome may be confused with stress syndrome caused by underlying pheochromocy-
toma, and attention should be paid to this clinically important differential diagnosis. 
The etiology and pathogenesis are presently unknown. One possibility is stress- 
induced catecholamine release, producing cardiac stunning through direct toxic 
damage to myocytes and/or vasoconstriction with ischemia [ 16 ]. The apical region 
is the most vulnerable area, probably due to the large number of adrenergic recep-
tors [ 14 ]. Treatment is symptomatic and is determined by the complications occur-
ring during the acute phase. Complications are estimated to occur in 19 % of cases, 
mortality varies between 0 and 12 % [ 15 ], and recurrence is rare. 

 Echocardiography plays a major role in achieving this diagnosis. In fact, the 
most salient feature of this disease is the unusual LV contractile pattern noted at the 
time of admission. Typically, it is characterized by a transient hypokinesis, akinesis, 
or dyskinesis of the LV apical and mid segments, usually with compensatory hyper-
kinesia of the basal portions (Fig.  21.2 , Clip  21.3a ) [ 17 ]. Moreover, regional wall 
motion abnormalities (WMA) extend beyond a single epicardial vascular distribu-
tion [ 18 ]. Global contractile LV function is usually signifi cantly impaired. The time 
course for cardiac function improvement is variable, from a few days to several 
weeks; however, LV function typically recovers completely (Fig.  21.2 , Clip  21.3b ).

   Atypical forms of stress-induced CMP have been increasingly reported. Transient 
midventricular ballooning with preserved basal and apical contractility (inverted 
tako-tsubo CMP) has been described [ 19 ]. Additionally, LV apical thrombosis may 
occur during the early stage of the disease due to transient apical akinesis and 
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aneurysm formation [ 20 ]. The use of contrast agents can be particularly helpful to 
 highlight apical thrombosis and if there is a diffi cult acoustic window. 

 Dynamic LV outfl ow tract (OT) obstruction is a relatively common complication 
of stress-induced CMP, with a reported incidence of >10 % (Fig.  21.2 , Clip  21.3c ) 
[ 21 ]. There are probably some predisposing factors to LV OT obstruction, i.e., sig-
moid interventricular septum or a small LV or LV OT; more importantly, this com-
plication is frequently precipitated by certain conditions, such as hypovolemia, 
ionotropic drugs, and counterpulsation. 

 Stress-induced CMP is also frequently complicated by acute mitral regurgitation 
(MR). Systolic anterior motion (SAM) of the mitral valve (MV) is typically associ-
ated with LV OT gradient and accounts for one half of acute MR. MV tethering with 
increased valve tenting area the in presence of LV systolic dysfunction and LV 
enlargement has been proposed as an alternative mechanism responsible for MR in 
this disease [ 22 ]. 

 Right ventricular (RV) involvement and dysfunction is relatively common and is 
associated with lower LV EF [ 23 ]. Conversely, ventricular rupture is an extremely 
rare life-threatening complication of stress-induced CMP. There are a few cases 
reported in literature, principally in elderly female patients [ 24 ]. 

 Myocardial viability and contractile reserve could be evaluated with low-dose 
dobutamine stress echocardiography in suspected stress-induced CMP. However, 
particular caution must be taken considering that increasing doses of dobutamine can 
worsen LV OT gradient. Furthermore, the possible occurrence of tako-tsubo CMP as 
a complication of dobutamine stress echocardiography has been reported [ 25 ]. 

 Finally, if transthoracic echocardiography (TTE) is limited by poor acoustic win-
dows, transesophageal echocardiography (TEE) can provide clearer image quality 
and allows careful evaluation of MV anatomy and full defi nition of the MR [ 17 ]. 

 Advanced echocardiographic techniques could be useful in diagnosis and 
prognostic stratifi cation of tako-tsubo CMP. Both 2D and 3D imaging allows rec-
ognition of the contractile pattern, mainly when the apex is involved; 3D imaging 

a b c

  Fig. 21.2    ( a – c ) A 79-year-old woman with tako-tsubo-like cardiomyopathy. Echocardiography at 
the time of admission shows left ventricular (LV) apical akinesis, hypokinesis of the mid segments 
with compensatory hyperkinesis of the basal portions, and moderate systolic dysfunction ( a ) in the 
apical four chamber view, systolic frame. Apical long-axis view ( b ) recorded with color-Doppler 
imaging demonstrates marked turbulence in the LV outfl ow tract (OT), consistent with dynamic 
LV OT obstruction in the presence of a sigmoid interventricular septum. An echocardiogram per-
formed 4 months later shows complete recovery of LV wall motion and systolic function ( c ) in the 
apical long-axis view, systolic frame       
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may allow better visualization of contracting and noncontracting segments when 
medial segments are involved. Myocardial contrast echocardiography seems to be 
a useful tool by which to clarify the mechanisms involved the myocardial injury 
and to distinguish stress-induced CMP from acute coronary syndrome. In one 
study, myocardial perfusion was relatively preserved in patients with tako-tsubo 
CMP compared with those with myocardial infarction. The authors of that study 
concluded that myocardial contrast echocardiography had a high sensitivity, 
specifi city, and positive and negative predictive values for detecting stress-
induced CMP (91, 86.2, 83, and 93 %, respectively) [ 26 ]. In addition, transient 
impairment of coronary fl ow reserve, assessed by Doppler coronary fl ow analysis 
during dipyridamole test, has also been reported in this disease [ 27 ]. Finally, at 
2D strain by speckle-tracking analysis, a progressive decrease of longitudinal 
strain values from base to apex was reported in patients with classical stress-
induced CMP [ 17 ]. 

 CMR in this CMP exhibits the characteristic fi nding of transmural high T2 signal 
in the midanterior wall and apical segments, matching the distribution of WMA [ 28 , 
 29 ]. This abnormality can persist after 3 months from the acute event although is 
substantially decreased compared with the acute phase [ 30 ]. Myocardial infl amma-
tion may also be found at global relative enhancement and quantitative T1 mapping 
sequences [ 31 ,  32 ]. 

 Patients with tako-tsubo CMP usually do not exhibit hypoenhancement at fi rst- 
pass perfusion [ 33 ], or by LGE [ 34 ,  35 ], thus helping differentiate this condition 
from acute myocardial infarction with spontaneous coronary recanalization or acute 
myocarditis [ 35 ]. When LGE is found, it is focal or patchy and has decreased signal 
intensity compared with ischemic LGE [ 36 ,  37 ]. This fi nding is usually indicative 
of a more severe acute condition, which tends to resolve within 6 months [ 38 ]. 

 CMR data from a large multicenter registry of patients with tako-tsubo CMP 
revealed four distinct patterns of regional ventricular ballooning [ 36 ]:
•    Apical (82 %)  
•   Biventricular (34 %)  
•   Midventricular (17 %)  
•   Basal (1 %)    

 Single-photon-emission CT (SPECT) fi ndings include reduced apical perfusion 
assessed with technetium-99 m ( 99m Tc)-tetrofosmin in the acute phase, which 
recedes during follow-up [ 39 – 41 ]. Severely impaired myocardial fatty-acid metabo-
lism assessed with  123 I-beta-methyl-p-iodophenyl pentadecanoic acid ( 123 I-BMIPP) 
[ 42 – 44 ], and apical sympathetic dysinnervation in the acute phase assessed by 
 123 I-metaiodobenzylguanidine (MIBG) uptake [ 43 ,  45 – 47 ] were also found, mis-
matched from perfusion defects. 

 Positron emission tomography (PET) studies also report perfusion/metabolism 
mismatch involving the apical akinetic area assessed by [ 18 F]-fl uorodeoxyglucose 
(FDG) and [ 13 N]-ammonia or by thallium-201 radiochemical thallium chloride 
( 201 Tl) SPECT [ 48 – 50 ]. Glucose metabolism assessed by [ 18 F]-FDG PET and sym-
pathetic function assessed by [ 123 I]-MIBG SPECT seem to be strictly correlated in 
affected segments [ 46 ]. 
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 In tako-tsubo CMP, LV apical WMA is typically transient and resolves over a 
period of days to weeks. Therefore, follow-up echocardiographic reevaluation is 
essential to monitor its resolution and recovery of LV systolic function. The prog-
nosis is generally favorable; reported in-hospital mortality rates range from 0 to 8 % 
[ 18 ]. As it is diffi cult to predict subsequent occurrence of complications immedi-
ately after the onset of the disease, serial echocardiographic evaluations should be 
performed during the in-hospital period. There is no established consensus on how 
to manage stress- induced CMP, but early detection of complications, such as the 
occurrence of LV OT gradient or apical thrombosis, can protect against a poor out-
come and may lead to some changes in therapeutic strategies. 

 In this disease, RV involvement is relatively common, and RV dysfunction is 
associated with lower LV EF, longer hospitalization, more complications, such as 
severe HF, and need for intra-aortic balloon pump and cardiopulmonary resuscita-
tion [ 23 ]. LV EF at admission is one of the independent predictors of mortality [ 51 ]. 
Moreover, absence of LV function recovery within 1 week was an independent fac-
tor associated with mortality [ 52 ]. Other prognostic indicators of worse outcome are 
intraventricular thrombus formation and LV OT gradient occurrence [ 17 ]. 
Recurrence of stress-induced CMP occurs in approximately 10 % of patients [ 53 ] 
and is unpredictable from imaging data at fi rst manifestation.  

21.4     Tachycardia-Induced Cardiomyopathy 

 Tachycardia-induced CMP (TIC) is a frequent cause of reversible HF secondary to 
persistent supraventricular or ventricular arrhythmias and in the absence of pre- 
existing structural heart disease [ 54 ]. Early diagnosis is crucial for prompt re- 
establishment of sinus rhythm and normal heart rate, with consequent improvement 
or even normalization of myocardial function. The pathogenesis is still controver-
sial: Elevated heart rate causes structural alterations of myocytes, mitochondrial 
abnormalities, oxidative stress, and loss of contractile tissue due to necrosis or 
apoptosis. Moreover, tachycardia reduces myocardial perfusion, leading to myocar-
dial stunning, interstitial fi brosis, and neurohumoral variations with elevations in 
natriuretic peptide, endothelin, catecholamines, and the renin-angiotensin- 
aldosterone system (RAAS). 

 Strict clinical and echocardiographic follow-up is very important in order to rec-
ognize relapses, which tend to be more severe and life threatening. Furthermore, 
due to the fact that LV remodeling can occur despite EF and heart rate normaliza-
tion, long-term treatment with beta-blockers and angiotensin-converting enzyme 
(ACE) inhibitors is recommended. 

 In TIC, imaging techniques are essential to exclude other causes of ventricular 
dysfunction and to assess its reversibility after normalization of atrial or ventricular 
rate; echocardiography, being widely available and inexpensive, is the cornerstone 
in establishing the presence of LV dysfunction and narrowing the list of differential 
diagnoses. LV systolic dysfunction is the typical model of presentation. However, 
other aspects can sustain the diagnostic hypothesis. Usually, myocardial thickness 
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is preserved, indicating the absence of scar tissue. Moreover, some studies suggest 
that the absence of severe LV dilation may support the diagnosis of TIC rather than 
DCM accompanied by supraventricular tachycardia (Fig.  21.3 , Clips  21.4a ,  21.4b , 
 21.4c , and  21.4d ) [ 55 ,  56 ]. In fact, Jeong et al. [ 55 ] reported that LV end-diastolic 
dimension ≤61 mm could predict TIC with a sensitivity of 100 % and a specifi city 
of 71 % in patients with HF and tachyarrhythmia.

   LV diastolic dysfunction should be considered a component of TIC and is indeed 
sometimes the fi rst expression of the disease [ 57 ]. However, it is particularly diffi -
cult to assess at Doppler in the presence of tachyarrhythmias. Contractile reserve at 
low-dose dobutamine stress echocardiography has been reported as a predictor of 
LV function recovery after catheter ablation of AF in TIC [ 58 ]. 

 TEE can provide better image quality in patients with a poor acoustic window. 
Moreover, it is essential to identify left atrial appendage clots when restoring sinus 
rhythm is the chosen treatment. Finally, TEE and intracardiac echocardiography 

a

c d

b

  Fig. 21.3    ( a – d ) Echocardiographic study in a 32-year-old patient with atrial fi brillation (AF) and 
tachycardia-induced cardiomyopathy. Echocardiogram shows mild left ventricular (LV) dilation 
[end-diastolic diameter corrected for body surface area (BSA) 32 mm/mq), with normal wall thick-
ness, diffuse hypo-akinesis, and severe systolic dysfunction [ejection fraction (EF) 22 %] in the 
parasternal long-axis ( a ) and apical four-chamber views ( b ), systolic frames. The echocardiogram 
performed 5 months after successful radiofrequency catheter ablation of AF shows normal LV 
dimensions (end-diastolic diameter corrected for BSA 26 mm/mq), wall motion, and systolic func-
tion (EF 60 %) in the parasternal long-axis ( c ) and apical four-chamber ( d ) views, systolic frames       
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may be helpful during catheter ablation of arrhythmias, even without fl uoroscopy 
[ 59 ]. There are a few data regarding the application of new and advanced echocar-
diographic technologies in the setting of TIC. Alterations in LV torsion have been 
reported in an experimental model [ 60 ]. Strain and strain-rate imaging can provide 
detailed regional and global LA functional assessment [ 61 ]. In patients who have 
undergone catheter ablation for atrial fi brillation, LA strain and strain rate during 
atrial fi lling (parameters of LA reservoir function) are known to be better predictors 
of sinus rhythm maintenance [ 62 ]. Real-time 3D TEE has been demonstrated to be 
feasible during ablation procedures, allowing fl uoroscopy-free navigation and pre-
cise anatomical delineation of atrial structure [ 63 ]. CMR with LGE may differenti-
ate TIC, which seldom shows LGE from primary CMP, in which LGE is frequent 
[ 64 ]. Myocardial glucose metabolism assessed by [ 18 F]-FDG PET was found to be 
impaired in TIC [ 65 ]. 

 The improvement of LV function after normalization of the heart rate is a hall-
mark of TIC. Therefore, multiple evaluations are necessary to identify changes in 
LV EF. Echocardiography is probably the most feasible and less expensive tech-
nique allowing close follow-up of these patients. The time course of improvement 
in biventricular systolic function has not been fully established; generally it can be 
observed soon after heart rate normalization [ 66 ]. If LV systolic dysfunction does 
not improve, other causes of impaired LV function must be reconsidered, justifying 
an “impure” form of TIC (possible association with dilated CMP, myocarditis, or 
ischemic heart disease). 

 It should be noted that patients with a history of successfully treated TIC are 
susceptible to a more severe CMP if the offending tachyarrhythmia recurs [ 67 ]. For 
this reason, patients should be periodically evaluated after complete LV function 
restoration.  

21.5     Myocarditis 

 Myocarditis is an infl ammatory disease of the myocardium and is diagnosed by 
established histological [ 68 ] (Fig.  21.4 ), immunological, and immunohistochemical 
criteria [ 69 ]. Most cases of myocarditis observed in clinical practice in the Western 
world are ascribable to viral infections and to the related reaction of the immune 
system. On the other hand, myocarditis can also be triggered by many specifi c 
causes, such as bacterial or parasitic infections, autoimmune diseases, hypersensi-
tivity processes, hypercatecholaminergic states, drugs, toxic substances, and physi-
cal agents [ 69 ]. Clinical presentation of myocarditis is polymorphic, ranging from 
subclinical or benign forms to major clinical syndromes, such as severe HF or life- 
threatening ventricular arrhythmias. However, for simplifi cation purposes, it can be 
categorized into three main patterns according to disease onset: HF, arrhythmias 
(hypokinetic or hyperkinetic, supraventricular or ventricular), and chest pain [ 70 ]. 
Moreover, myocarditis is characterized by great variability in its natural history 
evolution, ranging from resolution, to relapse, to development of DCM, or to 
 unexpected SD. Patients presenting with chest pain and preserved LV function are 
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projected through a favorable natural history, whereas those presenting with HF and 
signifi cant LV dysfunction are generally characterized by a worse prognosis. On the 
other hand, it is important to emphasize that spontaneous (or therapeutically 
induced) improvement of ventricular function within a few months of symptom 
onset is described for 40–50 % of patients and identifi es a subgroup with a fair long- 
term prognosis [ 70 ]. Advanced analysis of myocardial tissue samples collected with 
endomyocardial biopsy is thus far the only way to diagnose the disease defi nitively 
and to guide eventual treatment using immunomodulating drugs.

   In clinical practice, myocarditis and pericarditis may coexist. This clinical con-
dition is known as perimyocarditis (or myopericarditis) [ 71 ]. A precise defi nition 
of perimyocarditis is still lacking. Consequently, the true incidence and prevalence 
of this disease remain unknown. The diagnosis is usually based on the combination 
of chest pain, pericardial rubs, increased infl ammation indexes, electrocardio-
graphic (ECG) and echocardiographic abnormalities (most frequently, pericardial 
effusion), with troponin release [ 71 ]. Clinical presentation is variable and may 
affect any or all cardiac chambers. Usually, chest pain is the main symptom and is 
associated with concomitant or recent fl u-like syndrome, whereas ventricular/
supraventricular arrhythmias and HF with LV dysfunction are rarely observed. 
Natural history is excellent (survival rate 100 %) during long-term follow-up, 
regardless of specifi c etiology and the presence of myocardial involvement (tropo-
nin release and WMA at echocardiography) at admission; relapses are relatively 
infrequent (<10 %) [ 72 ]. 

 Typically, patients with myocarditis who present with recent onset of HF dem-
onstrate at echocardiographic study a global impairment of ventricular function 
without signifi cant remodeling of ventricular chambers, which often maintain a 
normal or augmented wall thickness and an ellipsoidal shape. Moreover, patchy 
WMA not corresponding to coronary distribution or ECG changes are often 
observed (Fig.  21.5 , Clips  21.5a  and  21.5b ) [ 73 ,  74 ]. Additional elements, such as 
the presence of pericardial effusion, diastolic dysfunction, transient pseudohyper-
trophy of the ventricular wall, intraventricular thrombi [sometimes multiple and 
mobile (Fig.  21.6 , Clips  21.6a ,  21.6b , and  21.6c )] and alteration of the 

  Fig. 21.4    Endomyocardial 
biopsy, histologic pattern, in 
a case of myocarditis 
(hematoxylin and eosin ×40). 
Severe lymphocytic infi ltrates 
are present and are associated 
with “fraying” of myocytes 
(Dallas criteria)       
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 echocardiographic myocardial texture, may further strengthen, if correctly contex-
tualized, the suspicion of myocarditis [ 73 ,  75 – 77 ]. On the other hand, patients who 
present with arrhythmias or chest pain and those with perimyocarditis usually 
exhibit ventricular chambers characterized by normal dimensions, regional wall 
motion, and global function, even if WMA or transient mild ventricular  dysfunction 
may be observed [ 72 ,  78 ]. In such cases, careful re-evaluation of those 

a b

c d

  Fig. 21.5    ( a – d ) Echocardiographic study in a 33-year-old patient with myocarditis and severe 
heart failure. Parasternal long-axis view ( a ) and M-mode ( b ) show severe left ventricular (LV) 
dilation (end-diastolic diameter corrected for body surface area 39 mm/m 2 ), normal wall thickness, 
and severe systolic dysfunction (fractional shortening 12 %, ejection fraction 15 %). M-mode 
recorded at the level of the mitral valve ( c ) shows a B bump ( arrow ), a sign of elevated LV diastolic 
pressure. Color-Doppler imaging reveals severe functional mitral regurgitation ( d )       

a b c

  Fig. 21.6    ( a – c ) Echocardiogram in a patient with acute myocarditis and severe left ventricular 
(LV) dysfunction showing multiple pedunculated and mobile thrombi in the LV cavity. Apical 
four-chamber view ( a ) demonstrating thrombus in the LV attached to the anterior mitral annulus. 
Apical long-axis view ( b ) showing another pedunculated mobile thrombus attached to the septal 
apex. Parasternal short-axis view ( c ) in which the apical thrombus is clearly visible       
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abnormalities with a short- term follow-up is recommended in order to track disease 
evolution and promptly recognize potentially extensive myocardial involvement.

    Recent studies show that LV strain and strain rate may be promising diagnostic 
parameters in acute myocarditis, even in the presence of normal standard indices, 
such as LV EF and wall motion. Di Bella et al. [ 79 ] demonstrated that strain Doppler 
echocardiography could detect longitudinal segmental myocardial dysfunction sub-
sequent to myocardial edema in the acute phase of myocarditis. 

 Further studies using 2D speckle-tracking strain imaging demonstrate that, 
among all deformation parameters, longitudinal strain appears to be the most pow-
erful index for diagnostic purposes [ 80 ,  81 ]. Furthermore, Escher et al. [ 82 ] demon-
strated reduced 2D speckle-tracking global systolic longitudinal strain and strain 
rate in all their patients with biopsy-proven myocarditis (even in those who had 
preserved LV systolic function); in addition, at follow-up, deformation parameters 
were signifi cantly lower in patients with than in those without infl ammation and 
correlated signifi cantly with lymphocytic infi ltrates. Finally, in a preliminary report, 
myocardial contrast echocardiography enabled detection of regional perfusion 
defects that did not conform to a coronary distribution and were not apparent with 
conventional echocardiography, suggesting the diagnosis of myocarditis later con-
fi rmed by CMR [ 83 ]. 

 CMR is extensively assessed in scientifi c literature and is frequently used in 
clinical practice to evaluate suspected myocarditis [ 84 ]. Acute myocarditis, particu-
larly if presenting as acute chest pain and positive markers of myocardial damage 
without coronary artery disease, frequently has a characteristic pattern at LGE 
imaging of subepicardial enhancement involving the basal and mid segments of the 
LV free wall [ 85 ] (Fig.  21.7 ). T2- and T1-weighed early enhancement sequences 
may, respectively, demonstrate localized myocardial edema and global hyperemia 
in the infl amed myocardium [ 86 ,  87 ] (Fig.  21.7 ). The diagnostic accuracy of CMR 

a b

  Fig. 21.7    ( a ,  b ) Cardiac magnetic resonance study in acute myocarditis. Midventricular short-
axis T2-weighed image ( a ) showing multiple foci of myocardial edema ( arrows ). Midventricular 
short- axis T1-weighted image after gadolinium contrast administration ( b ) showing late gadolin-
ium enhancement (transmural or subepicardial) in regions corresponding to hyperintensity seen at 
T2 imaging ( arrows )       
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compared with the gold-standard of EMB is very high when using a combination of 
two of the three aforementioned criteria [ 88 ].

   The same diagnostic criteria were initially reported to have high diagnostic 
accuracy in cases of myocarditis with clinical presentation such as HF [ 89 ]. 
However, more recent data report limited accuracy when evaluating a single crite-
rion or any combination thereof [ 90 ,  91 ]. These cases are usually characterized by 
lower-grade diffuse infl ammation—which is often impossible to identify with 
early- enhancement T1- or T2-weighted sequences—and by diffuse interstitial 
fi brosis, which is missed by LGE sequences [ 92 ]. Delayed multidetector CT per-
formed 5 min after contrast injection may be able to identify hyperenhancement 
similarly to LGE in CMR [ 93 ]. This may be a useful alternative in patients with 
contraindications to CMR. 

 Echocardiographic recognition of severe myocardial structural derangement 
with LV enlargement and systolic dysfunction permits identifi cation of patients at 
risk of major clinical events (death, heart transplantation) in the long-term follow-
 up. More importantly, data published by our group show that improvement or nor-
malization of LV function at 6 months echocardiographic re-evaluation are 
associated with a benign long-term prognosis, independently of the pattern of clini-
cal presentation and LV function at presentation [ 70 ]. 

 Promising data have been published in recent years on the prognostic role of 
CMR in the context of myocarditis. The presence of LGE is associated with 
increased global and arrhythmic cardiac mortality [ 94 ]. A pattern of LGE involving 
the septum, usually from human herpesvirus 6 (HHV6) or combined HHV6 parvo-
virus B-19 (PVB19) infections, may be predictive of persisting LV dilatation and 
dysfunction [ 95 ].  

21.6     Chagas Disease 

 One peculiar form of myocarditis is Chagas disease, which is caused by  Trypanosoma 
cruzi , a fl agellated protozoan. This disease continues to represent a health threat for 
an estimated 28 million people, mostly those living in Latin America [ 96 ,  97 ]. 
Chagas disease classically presents in an acute or initial phase, which is followed by 
a chronic phase that can be categorized into indeterminate, cardiac, or digestive 
forms, each with different clinical manifestations [ 97 ]. Severe acute disease is rare 
(<1 %) and characterized by acute myocarditis, pericardial effusion, and/or menin-
goencephalitis. After the acute phase, an indeterminate phase usually lasting several 
years precedes the chronic phase of the disease. The most common and serious 
problems are cardiac and are caused by an infl ammatory CMP as a result of immune 
reaction and/or the persistence of parasites in the heart. They manifest clinically 
with progressive HF, life-threatening arrhythmias, and/or thromboembolic events. 
According to severity of clinical, ECG, chest X-ray, and imaging abnormalities, 
chronic Chagas CMP is classifi ed into four stages (A, B, C, D) with different 
 mortality and morbidity rates [ 98 ]:
•    Stage A, or indeterminate, characterized by the absence of symptoms and ECG 

and structural cardiac abnormalities  
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•   Stage B, with ECG abnormalities (conduction defects and/or arrhythmias) in the 
absence of symptoms; mild/moderate LV WMA and systolic dysfunction may be 
present  

•   Stage C, LV dysfunction at imaging, and prior or current symptoms of HF  
•   Stage D: symptoms/signs of HF at rest, refractory to medical therapy [New York 

Heart Association (NYHA) IV]    
 Most patients affected by Chagas disease have no symptoms for decades after 

becoming infected with  T. cruzi . In rare cases, acute myopericarditis can manifest at 
echocardiography as pericardial effusion, sometimes massive and with tamponade, 
and/or WMA [ 97 ,  99 ]. In chronic Chagas disease, echocardiographic abnormalities 
increase in frequency and severity according to the clinical stage of the disease [ 97 , 
 99 ,  100 ]. The typical, although not pathognomonic, pattern is the presence of apical 
LV aneurysm, with or without global chamber dilatation and depressed systolic 
function    (Clips  21.7a ,  21.7b ,  21.7c , and  21.7d ) [ 99 ,  100 ]. Diastolic dysfunction is 
an important hallmark of Chagas disease and usually precedes systolic dysfunction 
[ 97 ]. Also, RV involvement is a typical feature of the disease and is usually associ-
ated with LV dysfunction; occasionally a RV apical aneurysm is observed [ 97 ]. 
Patients with LV aneurysms, similarly to those with this complication of myocardial 
infarction, are at risk of thrombosis and systemic embolism. 

 Few data are available regarding the usefulness of new echocardiographic tech-
niques in Chagas disease. Tissue-Doppler-imaging (TDI) derived myocardial strain 
can demonstrate lower radial and longitudinal values compared with normal indi-
viduals and could quantify subtle segmental contractile dysfunction not detected 
visually [ 99 ]. Speckle-tracking technology is used to quantify global and segmental 
LV deformation (radial, circumferential, and longitudinal strain) and twist and 
untwisting velocities [ 101 ]. In that study, global strains showed a signifi cant decreas-
ing trend across groups of disease severity. Interestingly, patients in the indetermi-
nate form had signifi cantly lower radial strains in both the global and midinferior 
segment and lower twist and untwisting velocities compared with normal individu-
als. CMR may help in diagnosing Chagas CMP by demonstrating aneurysm forma-
tion with preferential sites at the apex and inferolateral walls. Aneurysms are easily 
detected with SSFP cine imaging. The pattern of LGE is variable and may involve 
any or all layers of the myocardial wall [ 102 ,  103 ]. 

 Prognosis in Chagas disease mainly depends on the clinical stage of the disease 
[ 97 ]. No mortality is reported for patients in the indeterminate phase. In one series 
of 843 initially asymptomatic patients with Chagas disease [ 100 ], during long-term 
follow-up (mean 9.9 ± 5.3 years), a change in clinical stage, LV systolic dimension 
at M-mode echocardiography, and EF were the only independent predictors of mor-
tality. The frequency and severity of echocardiographic abnormalities increases 
with increasing severity of disease stage. In that series, mortality and event rates 
were, respectively, 0 and 8 % of 505 patients in group 0; 1 and 26 % of 257 patients 
of group 1; and 14 and 52 % of 87 patients of group 2. 

 Nunes et al. [ 104 ] reported on the prognostic value of LA volume assessed by 2D 
echocardiography, adding incremental prognostic value to clinical factors (NYHA 
class), LV EF, RV function, and Doppler parameters of diastolic function [Ratio of 
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transmitral E velocity to mitral annular E′ velocity (E/E′)]. In that series, an 
LA-indexed end-systolic volume >51 ml/m 2  was associated with signifi cant excess 
mortality. The prognostic impact of TDI index on LV diastolic dysfunction (E/E′) 
was subsequently analyzed by Nunes et al. [ 105 ], who showed a different and oppo-
site prognostic signifi cance of E/E′ according to LV systolic dysfunction severity. In 
fact, a high E/E′ (>15) was a strong adverse prognostic factor only for patients with 
mild to moderate LV EF depression (>30 %), whereas it was “protective” in the 
subset patients with severe LV systolic dysfunction. An interaction between RV 
dysfunction, frequent in the most severe cases with advanced congestive HF, was 
hypothesized.  

21.7     Chemotherapy-Induced Cardiomyopathy 

 The incidence of complications after antineoplastic therapy is increasing in rela-
tion to the incidence of cancer and prolonged survival rate. Cardiotoxicity is one 
of the major complications. The Cardiac Review and Evaluation Committee estab-
lished some criteria for diagnosing chemotherapy-related cardiac dysfunction 
[ 106 ], which consider clinical history, LV EF reduction, and presence of HF symp-
toms and signs. Echocardiography is recommended before the start of treatment 
and periodically during and after chemotherapy cycles. Anthracyclines (doxoru-
bicin, daunomycin, idarubicin) are the most frequent chemotherapeutic agents 
involved in cardiotoxicity; however, adverse cardiotoxic effects are reported also 
for other drugs (mitoxantrone, 5-fl uorouracil, cyclophosphamide, trastuzumab). 
Anthracycline may exhibit two different types of cardiac toxicity over time: 
early- onset cardiotoxicity (often expressed with ventricular or supraventricular 
arrhythmias), or late-onset chronic cardiotoxicity that emerges many years after 
chemotherapy has been completed. The risk and severity of anthracycline CMP 
is typically dose related. Clinical manifestations are those of severe biventricu-
lar HF with decreased EF and frequently severe diastolic dysfunction. Because of 
the progressive morphologic changes and the persistence of changes over a long 
period, symptoms are reported to occur any time up to months after stopping the 
drug. Although HF is reported to have a high mortality rate, successful treatment 
is possible [ 107 ]. 

 Traditional therapies, such as anthracyclines, have been recognized for years as 
causing cardiovascular complications. Less expected were the cardiovascular effects 
of targeted cancer therapies, which were initially thought to be specifi c to cancer 
cells and would spare any adverse effects on the heart. In patients with breast cancer 
treated with anthracyclines, taxanes, and trastuzumab, systolic longitudinal myocar-
dial strain and ultrasensitive troponin I measured at the completion of anthracycline 
therapy are useful for predicting subsequent cardiotoxicity and may help guide 
treatment [ 108 ]. 

 Echocardiographic characteristics of anthracyclines-induced CMP are indistin-
guishable from other causes of LV dysfunction [ 109 ]. A typical pattern is a mildly 
dilated but severely dysfunctioning LV with severe diastolic dysfunction [restrictive 

21 Other Cardiomyopathies: Clinical Assessment and Imaging in Diagnosis



264

fi lling pattern (RFP)}. RV dysfunction, MR, tricuspid regurgitation (TR), and 
 pulmonary hypertension are frequently present (Fig.  21.8 , Clips  21.8a ,  21.8b ,  21.8c , 
and  21.8d ). Other antineoplastic drugs, such as the monoclonal antibody trastu-
zumab, can induce reversible forms of cardiac dysfunction [ 110 ].

   Furthermore, several forms of cancer treatment, such as 5-fl uorouracil, are asso-
ciated with an increased risk of coronary artery disease and/or acute coronary syn-
drome, with transient regional hypokinesia at echocardiographic evaluation. 

 Strain and strain-rate imaging is used to detect subtle early impairment in cardiac 
contractility due to chemotherapeutic agents. Reduced strain and strain-rate param-
eters can, in fact, precede any appreciable change in LV EF and might therefore help 
in identifying patients who develop chemotherapy-related cardiotoxicity in an early 
subclinical stage (Fig.  21.9 ) [ 111 ]. Early subclinical abnormalities occur after low 
to moderate dosages of anthracycline-based chemotherapy and persist after 6 
months, although without evidence of myocardial fi brosis by LGE [ 112 ].

   CMR is able to detect signifi cantly reduced LV EF and cardiac mass in 
 survivors of childhood cancer previously undiagnosed with cardiotoxicity by 2D 

a b

c d

  Fig. 21.8    ( a – d ) A 19-year-old patient with cardiomyopathy that developed after chemiotherapy 
(including anthracyclines) and radiotherapy for acute lymphatic leukemia. M-mode echocardiog-
raphy ( a ), parasternal long- axis view, shows moderate left ventricular (LV) dilation (end-diastolic 
diameter corrected for body surface area 36 mm/mq), with severe systolic dysfunction (fractional 
shortening 11 %). There is also pericardial effusion posteriorly to the LV (21-mm thick), around 
the right atrium (12 mm), and laterally to the LV (14 mm), as shown in the apical four-chamber 
view ( b ), which also shows mild biatrial dilation. Pulsed-wave-Doppler interrogation of transmi-
tral fl ow reveals a restrictive fi lling pattern ( c ). Pulsed-wave Doppler of the aortic valve ( d ) shows 
a low velocity (0.5 m/s), a sign of low cardiac output       
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echocardiography [ 113 ,  114 ]. Indexed LV mass by CMR is inversely associated 
with cumulative anthracycline dose and predictive of events at follow-up [ 115 ]; 
LGE is rare [ 114 ,  115 ]. Diffuse myocardial fi brosis seen at T1 mapping may 
 represent an early marker of anthracycline cardiotoxicity [ 116 ,  117 ]. 

 Conversely, when trastuzumab is combined with anthracyclines for human 
 epidermal growth factor receptor-2 (HER-2)-positive breast cancer, subepicardial 
lateral wall LGE is often found in patients who develop drug-induced CMP [ 118 ]. 
Serial LV EF determination may be performed using  99m Tc radionuclide ventricu-
lography and has long been regarded as the gold standard for measuring anthracy-
cline cardiotoxicity in adult patients [ 119 ]. Imaging with [ 123 I]-MIBG or  123 I-labelled 
antimyosin may detect subclinical changes before LV function is impaired in 
patients treated with anthracyclines [ 120 ]. 

 Regular heart-function monitoring during treatment is important to detect car-
diac involvement in neoplastic patients treated with chemotherapy. A baseline, LV 
EF evaluation is usually necessary. It is recommended that the same methodology 
be used for comparing serial studies [ 109 ]. Decreased longitudinal strain, together 
with troponin I, increases early after treatment with anthracyclines and trastuzumab, 
can predict cardiotoxicity development [ 108 ]. CMR imaging is also emerging as a 
promising tool in the oncology setting [ 113 ]. 

 A clinically important deterioration in LV function can be variously defi ned (i.e., 
10 % absolute decrease in LV fractional shortening, 10 % decrease in LV EF, or 
absolute LV EF value <55 %). Guidelines recommend discontinuing anthracycline 
therapy if LV deterioration is found and, preferably, is confi rmed on two successive 
tests [ 110 ]. 

a b

  Fig. 21.9    ( a ,  b ) Normal 2D global longitudinal strain (−19.5 %) ( a ) measured in a 22-year-old 
woman before chemotherapy treatment. After 6 months of chemotherapy ( b ), a signifi cant reduc-
tion in global longitudinal strain is observed (−10.1 %) despite persistence of normal left ventricu-
lar ejection fraction.  ANT  anterior,  ANT _ SEPT  anteroseptal,  INF  inferior,  LAT  lateral,  POST  
posterior,  SEPT  septal (From Oreto et al. [ 111 ], with permission)       
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 Treating anthracycline-induced LV dysfunction is the same as for treating other 
causes of myocardial dysfunction according to international HF guidelines. 
Echocardiography continues to be the mainstay of monitoring therapeutic effi cacy, 
given that it is portable, widely available, noninvasive, causes minimal pain, and 
provides real-time data [ 110 ].  

21.8     Left Ventricular Noncompaction 

 A position statement from the European Society of Cardiology categorized LV NC 
as an “unclassifi ed CMP,” asserting: “it is not clear whether it is a separate cardio-
myopathy or merely a morphological trait shared by many phenotypically distinct 
cardiomyopathies” [ 121 ]. There is no gold-standard criteria for making this diagno-
sis, so that it can even be diffi cult to assess the real incidence of the disease. In 1990, 
Chin et al. [ 122 ] proposed echocardiographic criteria for diagnosing this entity. LV 
NC can be present from birth or it can develop later in life. It is diffi cult to identify 
strong predictors of outcome to select effective management strategies in this CMP 
due to the rarity of the disease and to different studies that are not comparable for 
type and number of patients included [ 123 ]. The standard therapy HF management 
should be applied to patients with LV NC and LV dysfunction. 

 Systemic thromboembolic events are commonly associated with LV NC. 
However, there is no agreement in the cardiology community regarding the use 
warfarin and/or antiplatelet therapy, particularly in patients with preserved LV EF, 
and the risk/benefi t ratio must be individualized. Also the practice to use anticoagu-
lation in patients with LV NC and signifi cantly impaired LVEF is not based on 
robust data [ 124 ]. 

 The typical echocardiographic features of LV NC are the presence of multiple, 
prominent LV endocardial trabeculations separated by multiple, deep intertrabecu-
lar recesses fi lled with blood from the ventricular cavity, with a predominant 
involvement of the apex, the lateral, and the inferior wall. Wall thickness of spared 
segments is normal [ 123 ]. Dimensions and shape of cardiac chambers are usually 
preserved [ 122 ], but, in the late stages of HF, the LV can also be signifi cantly dilated. 
Noncompacted segments are usually hypokinetic, such as the noninvolved walls; 
therefore, the LV systolic function is commonly depressed (~60 % of patients). 
Maximal end-systolic ratio of the noncompacted endocardial layer to the compacted 
myocardium and the number of affected segments are independent predictors of LV 
systolic dysfunction [ 125 ]. 

 RV involvement is reported in 20–30 % of cases [ 126 ], but it is very diffi cult to 
demonstrate due to the normal trabeculated pattern of the RV walls. Myocardial 
thickness is apparently increased, but with a patchy structure and deep intertrabecu-
lar recesses, which are radially oriented. Usually, these aspects are better appreci-
ated in childhood (Fig.  21.10 , Clips  21.9a  and  21.9b ). Considering its predominant 
direction, anomalous trabeculation should be assessed by multiple views. Oblique 
of-axis images or images in the parasternal short-axis view, which are not perpen-
dicular to the LV long axis, can produce the morphological appearance of prominent 
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trabeculations and thus mimic LV NC. It is therefore crucial to obtain images that 
are not foreshortened and are perpendicular to the ventricular long axis [ 124 ]. Color-
Doppler fl ow imaging can be useful to detect intertrabecular recesses fi lled with 
blood in the LV cavity. In adults, prominent trabeculations are less evident; more 
frequently, there are echo-free spaces interrupting the homogeneous myocardial 
echogenic pattern [ 127 ]. Moreover, typically, progressive increase in the noncom-
pacted/compacted segment ratio from base to apex is seen, showing the typical hon-
eycomb appearance [ 128 ]. The presence of thrombi, which are hidden in the 
sponge-like myocardium, can be detected by 2D echocardiography, but the accuracy 
of CMR is certainly superior. Diastolic function is usually affected, and an restric-
tive pattern is present in 20–40 % of patients [ 126 ]. Atrial cavities are typically 
dilated [ 127 ]. Differential diagnosis can be challenging and includes apical form of 
HCM, a combination of apical HCM and LV NC, hypertensive CMP, endocardial 
fi broelastosis, abnormal chords, apical thrombus, or tumors [ 129 ]. Differential diag-
nosis between DCM and LV NC can be a challenge, especially in dilated ventricles. 
Furthermore, the degree of trabeculated LV myocardium is far more frequent than 
previously thought; this supports the concept of a continuous trait between the nor-
mal and pathological appearance of the myocardium [ 130 ]. Given the high interob-
server variability, it is not suffi cient to limit the diagnostic approach to a simple 
qualitative morphologic assessment. Therefore, three different quantitative diagnos-
tic criteria exist (Table  21.1 ). All criteria are based on morphological fi ndings and 
require the presence of prominent trabeculations, with deep intertrabecular recesses 
communicating with the ventricular cavity, as well as a two- layered appearance of 
the myocardium (trabecular myocardium as one layer, compacted myocardium as 
the second layer) [ 122 ,  131 – 134 ]. Chin et al. [ 122 ] calculated the ratio between the 
depth of the intertrabecular recesses and posterior wall thickness by comparing the 
distance between the epicardial surface trough of intertrabecular recesses ( X ) with 
the distance between the epicardial surface and peak trabeculations ( Y ) in end-dias-
tole. A decade later, Jenni et al. [ 131 ] published their criteria for LV NC consisting 
of four components and validated with anatomical heart preparations. In contrast to 

a b c

  Fig. 21.10    ( a – c ) Echocardiographic study in a 6-year-old patient with left ventricular (LV) non-
compaction. Subcostal four-chamber view ( a ) showing multiple endocardial trabeculations in the 
LV lateral wall, with normal wall thickness of the spared segments. Compacted myocardium thick-
ness is 4 mm ( green arrow ); compacted + noncompacted myocardial thickness is 15 mm at end- 
diastole ( blue arrow ) ( b ). Subcostal short-axis view ( c ) showing the typical honeycomb 
appearance       
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Chin et al., the Zurich group relied on measurements at end-systole because the 
thickness of the two layers is best visualized in that phase. The combination of these 
criteria was very specifi c [ 135 ]. The third criteria, by Stollberger et al. [ 132 ], 
required the presence of more than three trabeculations located apical to insertion of 
the papillary muscles, as visible in one apical image plane. These authors were the 
fi rst to clearly defi ne trabeculations as structures with the same echogenicity as the 
myocardium, moving synchronously with the ventricle.

    Belanger et al. [ 136 ] also assessed the utility of the LV trabecular area as mea-
sured by echocardiography using a four-chamber view to identify LV NC. 

 Several limitations are reported regarding these criteria. Kohli et al. [ 137 ] dem-
onstrated an unexpectedly high percentage (23.6 %) of patients with HF fulfi lling 
one or more of the diagnostic criteria for LV NC, in addition to 8.3 % of healthy 
controls. Furthermore, the reproducibility of the measurement of noncompacted/
compacted segment ratio, such as the quantifi cation of trabeculations, has been 
shown to be poor [ 138 ]. Interestingly, a high proportion of young athletes (8.1 %) 
fulfi lled conventional criteria for LV NC [ 139 ]. 

 When noncompaction is subtle or incomplete, differential diagnosis with other 
disorders is uncertain. Contrast echocardiography can be helpful in such cases or 

   Table 21.1    Echocardiographic diagnostic criteria for left ventricular noncompaction (LV NC)   

 Study  Criteria 

 Chin et al. 
[ 122 ] 

 Two-layered structure of the myocardium (epicardial compacted, endocardial 
noncompacted layer) 
 Determination of  X  to  Y  ratio (≤0.5).  X : distance between epicardial surface 
and through intertrabecular recess;  Y : distance between epicardial surface and 
peak of trabeculation 
 Image acquisition. Parasternal short-axis view, measurements of  X  to  Y  ratio 
at end-diastole 

 Jenni et al. 
[ 127 ,  131 ] 

 Image acquisition. Short-axis views, measurement of noncompacted (N)/
compacted (C) ratio at end-systole 
 Thickened myocardium, with a two-layered structure consisting of a thin, 
compacted, epicardial layer/band (C) and a much thicker, noncompacted, 
endocardial layer (N) or trabecular meshwork with deep endomyocardial 
spaces; N/C ratio >2.0 
 Predominant location of the pathology. Midlateral, midinferior, and apex 
 Color-Doppler evidence of deep intertrabecular recesses fi lled with blood 
from the left ventricular cavity 
 Absence of coexisting cardiac abnormalities (in the presence of isolated LV 
NC) 

 Stollberger 
et al. [ 132 ,  133 ] 

 More than three trabeculations protruding from the LV wall, located apically 
to the papillary muscles and visible in one image plane 
 Trabeculations with the same echogenicity as the myocardium and 
synchronous movement with ventricular contractions. Perfusion of 
intertrabecular spaces from the LV cavity 
 Ratio of noncompacted to compacted segment >2.0 at end-diastole (this 
criterion was introduced later) 
 Image acquisition. Apical four-chamber view; transducer angulation, and 
image acquisition in atypical views to obtain the best technical picture quality 
for differentiation between false chords/aberrant bands and trabeculations 
 Diagnostic criteria have changed in recent years 
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when conventional echocardiographic images are poor, improving visualization of 
trabeculations and the compacted myocardium, and illustrating intertrabecular per-
fusion [ 140 ]. Moreover, TEE can support the diagnosis of LV NC, thus highlighting 
the spongy appearance of the LV walls and showing the peculiar morphology of the 
papillary muscles [ 141 ]. Finally, it can be helpful when intraventricular thrombi 
cannot be excluded by TTE. 

 A functional evaluation, in addition to morphological assessment, can be useful in 
LV NC diagnosis. Myocardial strain values are abnormal in patients with LV NC, 
even in the context of preserved systolic function [ 142 ]. In addition, an abnormal 
pattern of LV twist/rotation was observed on speckle-tracking echocardiography in 
patients with LV NC. In one study [ 143 ], rotation was clockwise at the base and 
counterclockwise at the apex in all controls as well as in patients with DCM. In con-
trast, LV base and apex rotated in the same direction (LV solid-body rotation) in all 
LV NC patients. Thus, LV solid-body rotation/twist may be a new objective, func-
tional, and quantitative diagnostic criterion for this CMP. However, this feature might 
not be entirely specifi c [ 144 ] and was not present in all LV NC patients in another 
study [ 145 ]. In that study, the presence of rigid-body rotation was not associated with 
worse LV remodelling compared with LV NC individuals with normal twist. 

 Furthermore, Nieman et al. [ 146 ] found no difference in standard echocardio-
graphic parameters between LV NC and DCM but observed a unique regional 
deformation pattern in LV NC characterized by preserved deformation in basal seg-
ments with decreased myocardial deformation in more apical segments. Conversely, 
in DCM, strain and strain rate were homogeneously reduced in all LV segments. 
Thus, the authors proposed this special regional deformation pattern as an addi-
tional diagnostic tool to differentiate LV NC from DCM (Fig.  21.11 ).

   In LV NC, 3D echocardiography allows a more comprehensive LV assessment, 
including trabecular volume measurement, which may further aid in diagnosis 
(Fig.  21.12 ) [ 147 ]. Moreover, Bodiwala et al. [ 148 ] suggested the use of 3D echo-
cardiography to visualize the trabecular meshwork, referred to as a honeycomb 
appearance, as an useful feature for differentiating LV NC from other diseases.

   CMR has an important diagnostic contribution in suspected LV NC, particularly 
in patients with poor echocardiographic quality. A ratio between noncompacted and 
compacted myocardium >2.3:1 seen at steady-state free-precession (SSFP) CMR 
sequences was demonstrated to have high sensitivity and specifi city and is the 
accepted diagnostic criterion for diagnosing this disease [ 149 ] (Fig.  21.13 ). 
However, when using this criterion, an unexpectedly high rate of LV NC is found 
[ 150 ]. Other proposed diagnostic criteria are the percentage of LV trabeculated 
mass >20 % [ 151 ,  152 ] or >25 %, or >15 g/m 2  indexed noncompacted myocardial 
mass [ 153 ]. Operators must be aware of the potential pitfalls in CMR, which have 
frequently led to overdiagnosis of LV NC, such as assessing long-axis instead of 
short-axis views [ 150 ], possibly due to incorrect piloting of long-axis planes [ 154 ].

   LGE correlates with the extent of WMA and severity of clinical status [ 155 –
 157 ]. However, these relations were not confi rmed in other series [ 153 ,  158 ]. 

 Multidetector CT (MDCT) of the heart may be a valuable diagnostic option. A 
noncompacted to compacted ratio of 2.2 or 2.3 measured in end-diastole, and 
involvement of two or more segments, is suggested to distinguish LV NC from other 
CMP and healthy individuals [ 159 ,  160 ]. 
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 Regional myocardial perfusion defects assessed by [ 13 N]-ammonia PET are 
described in most noncompacted segments and in a minority of normal segments. 
Coronary fl ow reserve is signifi cantly decreased in most segments with WMA and 
not confi ned to noncompacted segments only [ 161 ]. 

 Considering the possible prognostic implications of imaging, the presence of LV 
systolic dysfunction in LV NC is related with the number of affected segments and 
the thickness of the noncompacted layer [ 125 ]. LV dysfunction by itself places 
patients at a higher risk for morbidity and mortality [ 162 ]. Other echocardiographic 
predictors of adverse outcome are reported in previous studies, specifi cally the ratio 
of noncompacted to compacted layers, the number of affected segments, the LV 
end-diastolic diameter, and an a decreased E′ velocity of the LV lateral wall on TDI 
[ 123 ,  125 ,  163 – 165 ]. 

 Patients with systolic dysfunction, even if asymptomatic, should be treated with 
evidenced-based HF therapy and need careful follow-up. Insertion of an implant-
able cardioverter defi brillator (ICD) for primary prevention should be considered, 
according to guidelines, for nonischemic CMP [ 166 ].      

  Fig. 21.11    Tissue-Doppler 
strain imaging performed in 
three lateral wall segments in 
a patient with left ventriculare 
noncompaction ( LV NC ) 
( upper ) and dilated 
cardiomyopathy ( DCM ) 
( lower ).  Yellow ,  blue , and  red 
curves  show strain curves in 
apical, mid, and basal 
segments, respectively. There 
is an increasing gradient in 
end-systolic strain from the 
apex to the base in the patient 
with LV NC, whereas strain 
in the patient with DCM is 
homogeneously reduced. 
 AVC  aortic valve closure 
(From Niemann et al. [ 146 ], 
with permission)       
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Left ventricular volume at the
bottom of recesses

Left ventricular volume at the
peak of trabeculae

Trabeculated left
 ventricular volume

  Fig. 21.12    Result of the 3Dechocardiographic analysis for trabeculated left ventricular (LV) vol-
ume estimation in a patient with LV noncompaction. After tracing the endocardial border at the 
bottom of the trabeculae and at the peak of the recesses, end-diastolic volumes including    ( red ) and 
excluding ( blue ) trabeculae are obtained.  Yellow arrows  indicate that the difference between vol-
umes ( blue  and  red ) corresponds to the trabeculated LV volume (indicated by the other  yellow 
arrow ), which is normalized by LV end-diastolic volume including trabeculae and represents the 
proportion of the LV cavity occupied by trabeculae (From Caselli et al. [ 147 ], with permission)       

  Fig. 21.13    Patient with left 
ventricular noncompaction 
(LV NC). Steady-state 
free-precession cardiac 
magnetic resonance, 
three-chamber image, taken 
at end-diastole showing a 
thick layer of noncompacted 
myocardium ( dotted arrows ) 
over compacted myocardium 
( solid arrows ) in LV posterior 
wall       
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