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       It is important to balance Vitruvius’s discussion of the architectural orders, centered 
on temples, with his sections on civil and, in particular, domestic architecture. It is 
in this domain, the subject of Book 6 (Chapters 3 and 4) of the  De Architectura , that 
the relationships implied by the term  symmetria  appear explicitly, in both functional 
and aesthetic terms and without interference from the question of whether the rec-
ommended ratios are affected by the transformation of wooden temples to stone 
ones. Based on a review of his rules for designing  atria , the Vitruvian conception of 
order as  genus  appears not as a fi xed set of ideal relationships laid down once and 
for all, but as a series of variations in proportion. While certainly not obeying the 
concept of “function” as developed in the seventeenth century, these variations can 
nevertheless be shown to follow continuous curves interpolated from sets of derived 
values. In this respect, the Vitruvian project fi nds contemporary expression in 
today’s CAD/CAM software. 

    The Atrium of the Country House 

 The instructions that Vitruvius gives for the plan of country houses begin with the 
atrium, the large central court around which the parts of the  domus  are distributed 
(Fig.  1 ). The  compluvium , the unroofed space in the center of the atrium, owes its 
name to the fact that it allows rainwater to collect in the  impluvium , or cistern, 
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below. In addition to the lateral wings, the  alae , the other principal elements of 
Vitruvius’s account are the  fauces , a passage leading from the vestibule of the house, 
and the  tablinium , at the other end of the atrium. As its name suggests, this room 
may have served to house the  tabulae , or wax covered tablets inscribed with the 
accounts of the house, but it may also have served other purposes. Varro, for example, 
relates that it was used to host meals in summer.  1  

   Vitruvius’s rules for designing  atria  consist essentially of a series of instructions, 
in which the principal dimensions of the component spaces depend on each other 
according to the following sequence, with the preceding value determining the 
subsequent:

 –    length of the atrium  
 –   width of the atrium  
 –   width of the wings ( alae )  
 –   width of the  tablinium   
 –   width of the  fauces    

However, instead of the preceding value being linked to the next by a fi xed proportion, 
Vitruvius subjects the four relationships between these fi ve elements to what we 
would call dependant variables. We will look at these case by case.  

  Fig. 1    Parts of the Roman Atrium, from  De Architectura , Book 6, Chapter 3.4       
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    The Length-to-Width Ratio of the Atrium,  A:a  

 The fi rst relation is described as depending on a typological choice between three 
genres of atrium of increasing width. Given a length  A , the width  a  of the atrium is 
calculated by choosing one of three proportions, formulated in the following manner:

 –    dividing the length in 5 parts, 3 will be given to the width  
 –   dividing the length in 3 parts, 2 will be given to the width  
 –   a square being constructed on the width, the length will be equivalent to the 

diagonal.   

The series poses a problem of consistency: in the fi rst two formulations, it is the 
length  A  that determines the width  a , while in the third it is the width that deter-
mines the length. The third formulation, moreover is different in kind, as it is geo-
metrical, while the fi rst two are numerical. In any event, the instructions seem to 
correspond to a choice between one of three types of rectangle (Fig.  2 ).

       Aisle Width to Atrium Length,  L:A  

 Next, Vitruvius moves on to the rules for calculating the width of the aisles  L . These 
are determined by the length of the atrium  A . More precisely, the aisle widths are 
given in terms of a proportion, aisle width to atrium length ( L : A ), which itself varies 
as a function of the actual length of the atrium. Vitruvius’s instructions are given in 
Table  1 . We might call this a “second order” variation,  L = f(L:A) , where the ratio 
 L : A  itself depends on  A . Another way of expressing this relationship is by the for-
mula  L = f(g(A)) .

   Auguste Choisy was the fi rst to note, in his 1909 translation of Vitruvius, that the 
proportions of the  alae , as they diminish with respect to the length of the atrium, 
seem to imply a continuous variation. If the mean points of the fi ve atrium lengths 
 L  (35, 45, 55, 70, and 90 ft) are plotted on a graph against the corresponding ratios 
of atrium length to aisle width  L:A , the resulting points very closely approximate a 
curve, which Choisy identifi ed as a hyperbola (Fig.  3 ).  2   He also found evidence of 

  Fig. 2    Variations of the Roman Atrium (ratio  A / a ), from  De Architectura , Book 6, Chapter 3       
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an attempt to approximate continuous variation in two other sequences that Vitruvius 
had recommended: the optical corrections for the width of columns (Book 3, 
Chapter 3) and for the height of architraves (Book 3, Chapter 6), implying a parab-
ola and hyperbola respectively.  3  

   That Vitruvius’s instructions-in-series translate into a continuous variation is 
likely. As Choisy had suggested, the recommendations in these cases may be sim-
plifi ed rules-of-thumb derived from a learned mathematical tradition. But which 
tradition? Where did these recommendations originate? In one interesting analogy, 
Choisy related the curve implied by the rules for  atria  to the  scamilli impares , the 
“unequal benches” mentioned by Vitruvius in Book 3 (Chapter 4). The  scamilli , 
understood today either as small leveling blocks or as the ordinates of a full-scale 
construction drawing, are described in the text as the means of producing the subtly 
rising curve of the stylobate, or temple platform. It is by reference to the process of 
interpolating a curve, in this case that of a light chain hanging from the edges of the 
stylobate (inverted to produce a shallow mound), that the technique can be linked to 
the description of the atrium.  4   

  Fig. 3    Variations of the ratio  L / A , from  De Architectura , Book 6, Chapter 3.4       

   Table 1    Vitruvius’s instructions for determining the width of the aisle  L  in relation to the length 
of the atrium  A    

 Atrium length  Ratio  L:A as recommended by Vitruvius   Equivalent fractions 

 From 30 to 40 ft  1:3  2/6 (0.333) 
 From 40 to 50 ft  1:3.5  2/7 (0.285) 
 From 50 to 60 ft  1:4  2/8 (0.250) 
 From 60 to 80 ft  1:4.5  2/9 (0.222) 
 From 80 to 100 ft  1:5  2/10 (0.200) 
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 In a very stimulating article, Gilbert Hallier has picked up this question, adducing 
other examples of this phenomenon.  5   Hallier also refers to the design of sundials, 
such as the monumental one drawn on the pavement of the Campus Martius, near 
the Ara Pacis. The curves of the dial—some 150 m long—would have been traced 
by the tip of the shadow of the obelisk through the day at different times of the year. 
Here we are indeed dealing with curves plotted point by point. Moreover, those 
curves are hyperbolas, formed by the intersection of the horizontal dial plane with 
the cone of solar rays passing by the tip of the gnomon. 

 This suggestion, however, probably reaches too far. Although the properties of 
hyperbolas were known at least since the time of Menaechmus in the fourth 
century BCE, we have no evidence that ancient astronomers had conceived the lines 
of sundials in this way. Book 9 of  De Architectura , the sole surviving ancient treatise 
on sundials, makes no mention of the kinds of curves produced by the moving 
shadow of the gnomon. Nor does the word  hyperbola  appear in the second-hand 
references that we have of the treatise by the astronomer Diodorus of Alexandria 
concerning a method for drawing meridian lines.  6   

 Hallier probably also goes too far in the other direction, attributing the curve of 
variation implied in the ratio ( L : A ): A  to the geometrical tradition stemming from 
Apollonius of Perga and Pappus of Alexandria. Apollonius had no doubt gathered 
most of the elements for solving the problem of constructing a conic through fi ve 
points, but, as Heath explains, such constructions are not found in his  Treatise on 
Conic Sections .  7   Much later, some three centuries after Vitruvius, Pappus would 
produce a method for constructing an ellipse from fi ve given points, working from 
a problem that involved fi nding the diameter of a column from a fragment. Pappus’s 
solution, however, is not general and supposes that four of the fi ve points are found 
on two parallel lines.  8   In fact, the construction of a conic section from fi ve arbitrary 
points derives from a theorem of projective geometry that was not formulated 
explicitly until the nineteenth century.  9   Despite its color of practical usefulness, the 
study of conics does not seem to have elicited any direct application, either in per-
spective or gnomonics. To take one striking example, the concept of the visual cone 
formed by rays from the eye or from a specifi c object is well attested in ancient 
times, but its consequences—for a system of representation consisting in the inter-
section of the cone by a “picture plane”—are nowhere picked up. Euclid himself, 
who is reported to have written his own treatise on conic sections, describes the 
image of chariot wheels viewed obliquely as oblong, not as ellipses.  10   

 These considerations must necessarily invalidate Hallier’s conjectures. The his-
torical problem posed by Vitruvius’s text involves not the construction of a curve 
from given points or lines, but rather the determination of fractional values in series 
in a way that happens to approximate a certain curve. It follows, too, that these 
ratios cannot have originated as a hyperbola. Despite the seeming accuracy of 
Choisy’s formulas, Greek mathematical thought did not provide the techniques nec-
essary to model such complex curves arithmetically. These objections, however, do 
not fundamentally alter the fact that we are dealing with a second order variation, 
that is to say, a variation in proportional relationships where the coeffi cient  L:A  is 
itself depending on the variable  A , expressed in increments and interpolable, 
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moreover, in a continuous form. More importantly, as Hallier shows, the ratios seem 
to correspond to archaeological reality, falling within a cluster of points produced 
by the analysis of the remains of roughly 100 Roman villas.  11   

 This formulation of variation clearly goes well beyond the simple concept of 
proportion, strictly speaking. That is not to say that Vitruvius somehow anticipates 
the modern concept of “function”, which would only appear in the seventeenth cen-
tury. For this, Vitruvius would have had to overcome a deeply rooted epistemologi-
cal obstacle to the concept of a change  in  change. To Aristotle, for example, change 
was an irreducible category belonging to the order of the pure event. It is worth 
noting that Galileo himself did not go so far as to elaborate a concept of accelera-
tion.  12   This Vitruvian variation is, instead, best seen as one of many incremental 
steps necessary for the formation of the concept of the continuous mathematical 
function. One of the interests of the  De Architectura  lies precisely in this and other 
such contributions to the archeology of the modern sciences. 

 For his part, Herman Geertman has developed a competing interpretation of the 
Vitruvian ratios of the atrium. Geertman sees the ratios as an attempt to simplify and 
approximate not a curve, but a diminishing geometric series defi ned by the ratio 
1:2√n. This interpretation has a very different orientation in that it focuses not on 
an implied continuity, but on the discontinuity resulting from the approximate roots 
of a series of consecutive integers.  13   Vitruvius’s instructions, as interpreted by 
Geertman, appear in Table  2 .

   This interpretation has a number of strengths. In the fi rst place, it is based on a 
geometric pattern conceivably rooted in an ancient design technique, namely length-
ening a given rectangle by means of its diagonal. At full-scale, such a procedure 
would have made use of stakes and string (Fig.  4 ). Moreover, similar ratios appear 
in other passages of the text. Geertman notes that Vitruvius recommends apparent 
approximations of 1:√5 for the width and height of doors in Doric temples and of 
1:√6 for Ionic temples (Book 4, Chapter 6). Finally, Geertman’s interpretation rests 
on methods of approximating square roots that would conceivably have been codi-
fi ed at least in the fourth century BCE. As Geertman and others have argued, 
Vitruvius may have inherited standard approximations for such values from 
Hellenistic mathematical texts.  14  

   The main weakness of the hypothesis, however, relates to this last point: 
Geertman’s series relies on at least one rather imprecise approximation, in 

   Table 2    Vitruvius’s proportional series  L : A  (columns 1 and 2), as interpreted by Herman Geertman 
(columns 3 and 4) (to be read with Fig.  4 )   

 Atrium length 
 Ratio  L:A as recommended 
by Vitruvius  

 Geometrical 
series 

 Approximation 
used 

 From 30 to 40 ft  1:3 = 2/6 (0.333)  1:2√2 (0.354)  √2 ≈ 15/10 
 From 40 to 50 ft  1:3.5 = 2/7 (0.289)  1:2√3 (0.289)  √3 ≈ 17.5/10 
 From 50 to 60 ft  1:4 = 2/8 (0.250)  1:2√4 (0.250)  √4 ≈ 20/10 
 From 60 to 80 ft  1:4.5 = 2/9 (0.222)  1:2√5 (0.224)  √5 ≈ 22.5/10 
 From 80 to 100 ft  1:5 = 2/10 (0.200)  1:2√6 (0.204)  √6 ≈ 55/10 
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particular, that of √2 to 15/10 or 3/2. This would have been among the least accu-
rate of the available approximations for this value, differing from the next closest 
(7/5) by more than 6 %. It also requires explaining why Vitruvius, a few lines above, 
where he lists three types of atrium by length to width, would have distinguished the 
ratio 3/2 from the geometrical process leading to the ratio √2/1. This divergence 
may spring from an inaccuracy in the manuals or graphical constructions that the 
author relied on, but it is nevertheless jarring, given his earlier instructions. Perhaps 
the most incongruous aspect of this hypothesis is that it ignores the straightforward 
and consistent series that Vitruvius himself provides, to replace it with a conjectural 
and more complicated one.  

    Tablinium Width to Atrium Width,  T:a  

 In this regard, the case of the atria is certainly exemplary. For if we continue the 
examination of the other elements, namely the  tablinium  and  fauces , we fi nd the 
same characteristic approach. Regarding the  tablinium , Vitruvius says explicitly:

  For smaller atria cannot have the same principles of symmetry that larger ones do. If we use 
the proportions of larger atria in the design of smaller ones, the  tablinum  and the  alae  will 
be too small to be functional. If, on the other hand, we use the proportional systems of 
smaller atria to design the larger ones, the dependent rooms will seem vacant and over- 
sized. Therefore I thought that the principles for the dimensions of  atria  should be recorded 
precisely in the interests of function and appearance (Book 6, Chapter 3.5).  15   

 On this basis, the architect explains that the ratio  T:a , which determines the width 
of  tablinium  as a function of the width of the atrium, will be 2/3 for  atria  20 ft wide, 
1/2 for  atria  30–40 ft wide, and 2/5 for those between 40 and 60 ft wide. Note here 
that the author provides three increments rather than fi ve. This reduction in the 
number of variables refl ects a different approach to dealing with the subsidiary 
spaces of the atrium, also evident in the rules for dealing with entryways, or  fauces , 
below. For the moment, it is worth noting the mathematical consequences of this 
change. Although three increments might still plausibly correspond to points on a 
continuous curve, they alone cannot provide the construction of the curve itself, at 

  Fig. 4    Generation of 
rectangles of the ratio 2√n       
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least for a conic section. This consideration, in case any more were needed, further 
weakens the hypothesis that the architect had conceived of these points as a 
hyperbola.  

    Fauces Width to Tablinium Width,  f:T  

 The same reasoning that characterizes the discussion of the  alae  and  tablinium  also 
applies to the  fauces , but with a still further reduction in the number of increments. 
For these spaces, Vitruvius declares simply: “The entryways for smaller atria should 
be determined by the width of the  tablinum , minus one-third; those of the larger 
 atria  should be one-half (Book 6, Chapter 3.6)”  16   This formulation, reduced now to 
only two values, indicates that Vitruvius intended his readers to adopt a different 
approach in determining the dimensions of this room. Rather than moving abruptly 
between only two ratios, it is more likely that he expected practitioners to gradually 
interpolate the proportions for  atria  of intermediate size, even according to a linear 
variation, as suggested by the two extreme values of the ratio of the  fauces  to  tablin-
ium f/T . In the absence of explicit rules, Vitruvius seems to be recommending a 
trial-and-error process of interpolation, reminiscent of the notion of “correction”. 
This idea, mentioned throughout  De Architectura , is always described with a com-
bination of two words,  adiectio / detractio , as though to suggest that the method pro-
ceeds by estimation, sometimes by adding, sometimes by taking away. In such 
cases, Vitruvius implicitly calls on the architect to exercise his own qualities of 
 ingenium  and  acumen , talent and skill. 

 Although often discussed in relation to the use of optical refi nements, the dual 
concept  adiectio / detractio  is not confi ned to that fi eld. The terms appear, in fact, in 
the introduction to the chapters on the atrium, in a general formulation that relates 
only partially to the visual appearance of a building. Here,  adjectio / detractio  appear 
as an  ad hoc  method of fi ne-tuning a given proportional system:

  Thus, once the principle of the symmetries has been established and the dimensions have 
been developed by reasoning, then it is the special skill [ acuminis ] of a gifted architect to 
provide for the nature of the site, or the building’s appearance, or its function, and make 
adjustments by subtractions or additions, should something need to be subtracted from or 
added to the proportional system, so that it will seem to have been designed correctly with 
nothing wanting in its appearance (Book 6, Chapter 2.1).  17   

 This explanation for correcting a set of “symmetries” seems to point to a visual, 
or more specifi cally, a graphical method of interpolation. To determine the correct 
ratio  f/T  between two extreme values requires that it be visually calibrated accord-
ing to the length of the atrium, which is itself situated between the larger and the 
smaller  atria . In addition, the coeffi cients of proportionality governing the relation-
ships of the  tablinium  to the atrium and of the  alae  to the atrium themselves vary 
depending on the length of the atrium. These intermediate cases, defi ned only by a 
limited set of values, would be diffi cult to determine without the aid of an elemen-
tary diagram. 
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 We know of similar graphical procedures in ancient design and construction. 
Aristotle—an unusual source in this context—speaks of a fl exible, leaden rule used 
to replicate molding profi les.  18   The  De Architectura  itself provides other examples. 
Like the passage on the  scamili impares , they appear to relate to the point-by-point 
construction of curves. In the chapter on baths, Vitruvius describes how to hang a 
plaster ceiling from metal arcs suspended from rafters in order to mimic a curved 
vault (Book 5, Chapter 10.3).  19   In explaining the construction of the water screw, the 
author gives explicit instructions for wrapping strips of willow or chasteberry 
around a beam so as to build up a helicoid (Fig.  5 ). This lattice of lateral and longi-
tudinal strips forms a cylindrical graph, on which one literally plots the path of the 
spiral: “Where the lines have been drawn along the length, the transverse scorings 
create intersections, and these intersections determine specifi c points (Book 10, 
Chapter 6.1).” These supple branches, coated with pitch, constitute the physical 
equivalent of our contemporary curve-approximating software for Beziers, splines 
or NURBS. The word “spline” derives, in fact, from a craft context of just the sort 
Vitruvius describes, to designate fl exible strips forced to pass through specifi ed 
points. We can imagine an analogous attempt to regulate the proportions of the 
atrium by virtue of drawn plans. In some respects, these would follow a pre- 
established proportional or schematic logic, but in others, they would have to be 
estimated more-or-less faithfully by the eye. Indeed, Vitruvius emphasizes the role 
of visual judgment in this process, “so that [the whole] will seem [ videatur ] to have 
been designed correctly with nothing wanting in its appearance [ in aspectu ].”  20  

   Whatever the tools used to achieve it, it is evident that Vitruvius’s conception of 
the atrium possesses a high degree of elaboration. Taken as a whole, his instructions 
clearly form a system or, more precisely, a variational one. The consistency of the 
system is not always easy to achieve, but it is described well enough that we can 
construct an organizational diagram for it—the kind required, incidentally, in 
computer- aided design and manufacturing (Fig.  6 ). We see, in this case, that two of 
the interrelated variables—the length of the atrium, and the ratio of its length to its 

  Fig. 5    Interpolation of an 
Archimedean screw using 
splines, from  De 
Architectura , Book 10, 
Chapter 6.2       
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width—launch the two deductive chains that determine the dimensioning of the 
wings as well as that of the  fauces  and  tablinium . Everything therefore depends on 
the fi rst two decisions regarding the length and type of the atrium.

   That Vitruvius’s ratios for the atrium cannot be related to modern continuous 
functions, such as a hyperbola, should come as no surprise. Yet, it is also clear that 
the proportional series varies in a way that seems to imply some sort of interpolated 
continuity. This is what I have termed—for want of a better expression—a “second 
order” variation. To be sure, modern mathematicians would have a totally different 
notion of continuity, but it is enough only to open an up-to-date CAD-CAM pack-
age to see that Vitruvius’s methods are in other ways not far from our own. To 
describe a continuous variation, all that is necessary is to input a set of values and 
let the software interpolate the resulting curve.  

                        Notes 

     1.    The explanation given by Vitruvius here closely refl ects the defi nitions that 
Varro gives for the words  domus ,  aedes ,  cavum ,  aedium ,  impluvium , and  atrium . 
See Varro ( 1977 –1979, 1st ed. 1938, 151–53) (Book V, 160–161). Further on 
the  tablinium , see Riposati ( 1939 , Book I, 29).   

   2.    The curve corresponds to the equation  L:A  = 1/9 + 70/9 (1/ A ). His values for all 
fi ve points come within three decimal places of Vitruvius’s fractions. Solving 
for the atrium width  L , reduces this to the linear equation  L  = 1/9A + 7.77 ft. 
Choisy ( 1909 , vol. 1, 230–36; vol. 4, pl. 62, Fig. 3).   

   3.    Choisy ( 1909 , vol. 1, 149–156; vol. 2, pl. 30, 31).   
   4.    See the very detailed commentary in Vitruvius ( 1990 , 139–145), which pro-

vides several interpretations for controlling the curvature of the stylobate. 

  Fig. 6    Organizational 
diagram for the composition 
of the atrium, based on  De 
Architectura , Book 6, 
Chapter 3.3 [The  boxes  
denote entities to be 
dimensioned, while the 
 unframed terms  refer to the 
variable ratios that govern 
them.]       
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For the current state of the question, including recent archaeological discoveries, 
see Bankel ( 1999 ) and Haselberger ( 1999 ).   

   5.    Hallier ( 1989 ).   
   6.    This method, known from Arabic sources and the surviving writings of the 

agrimensor Hyginus, derives the meridian from any three shadows made during 
the day. See Neugebauer ( 1975 , vol. 2, 840–43). My thanks to Bernard Vitrac 
for bringing this important work to my attention.   

   7.    See Heath ( 1896 , cli–clvi).   
   8.    See Pappus of Alexandria ( 1982 , Book VIII, chapter 16). Also see Heath ( 1921 , 

vol. 2, 434–437).   
   9.    The theorem was discovered independently by William Braikenridge and Colin 

Maclaurin c. 1733. See Coxeter ( 1964 , 85).   
   10.    See, for example, Euclid,  Optics , see Defi nition 2 and Proposition 46. On the 

concept of the visual cone, with reference to Roman sources, see Haselberger 
( 1999 , 57–58).   

   11.    Hallier ( 1989 , 199).   
   12.    Panza ( 1989 , Chapter 2).   
   13.    Geertman ( 1984 ).   
   14.    See Heath ( 1921 , vol. 1, 60–63; vol. 2, 323–24). Also see Gros ( 2006  [1976]).   
   15.    Vitruvius ( 1999 , 79).   
   16.    Vitruvius ( 1999 , 79).   
   17.    Vitruvius ( 1999 , 78).   
   18.    Aristotle describes this building tool in terms of a metaphor for laws that are 

applicable only to particular situations. “In fact this is the reason why all things 
are not determined by law, that about some things it is impossible to lay down 
a law, so that a decree is needed. For when the thing is indefi nite the rule also is 
indefi nite, like the leaden rule used in making the Lesbian moulding; the rule 
adapts itself to the shape of the stone and is not rigid, and so too the decree is 
adapted to the facts.” Aristotle ( 1925 , 1137b).   

   19.    Vitruvius ( 1999 , 72).   
   20.    “…uti id videatur recte esse formatum in aspectuque nihil desideretur.” 

Vitruvius ( 1999 , 78).      
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