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1A. Gerbino (ed.), Geometrical Objects: Architecture and the Mathematical  
Sciences 1400-1800, Archimedes 38, DOI 10.1007/978-3-319-05998-3_1,
© Springer International Publishing Switzerland 2014

This volume explores the mathematical character of architectural practice in diverse 
pre- and early modern contexts. It draws together two nominally distinct disciplines; 
the history of architecture is here seen through the prism of the history of science, 
and one subfield of that discipline in particular. Our theme concerns the role of 
practice in the scientific revolution. This subject—sometimes expressed in more 
anachronistic terms as the relationship between science and technology—has bur-
geoned in recent years, and our contributions here are premised on the results of 
important recent work in this area.1 In contrast to the oppositional and hierarchical 
categories that used to mark the historiography of this subject, scholars now tend to 
emphasize the jumble of intellectual, scientific, and technical factors associated 
with various forms of practice and, conversely, how practical and material factors 
were implicated in the process of actually doing science.

One of the most fruitful innovations of this approach is that it levels the artificial 
disparity between the mental and the manual, knowledge and know-how, theory and 
“application”. Even where such categories are evident, our challenge is to show how 
they depend on and reinforce each other, not in a process of top-down “vulgariza-
tion” but rather in something like a reciprocal cycle or feedback loop. We empha-
size, likewise, a micro-historical focus. In architectural as in scientific practice, 
various forms of knowledge—whether explicit and codified as in “science” or 
implicit and tacit as in “craft”—meet, interact, and augment each other in local, 
embodied ways. Such a focus is perhaps not unfamiliar to architectural historians, 
who are used to working at a fine-grained level of the individual project. To the 
extent that our approach entails a change in perspective, it is one that sees the 
designer’s studio, the stone-yard, the drawing floor, and construction site not merely 
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as places where the architectural object takes shape, but where knowledge itself is 
deployed, exchanged, and amplified among various participants in the building 
process.

Mathematics provides an obvious disciplinary framework for this kind of inves-
tigation. In contrast to its academic counterpart, natural philosophy, early modern 
mathematics was partly defined by its orientation toward practice. In the Aristotelian 
tradition, this connection was most clearly marked in the “subalternate”, intermedi-
ary, mixed, or composite sciences, as they were variously known. Those fields—
which included optics, astronomy, harmonics, and mechanics—all treated 
geometrical quantity abstracted from sensible matter. That is, they treated the prop-
erties of the physical world with a level of demonstrative rigor comparable to that of 
“pure” geometry.2 This classification of mathematical disciplines echoed that of the 
traditional quadrivium, but by the mid-seventeenth century, the mixed sciences had 
grown immensely in importance. Not only did they provide a strictly mathematical 
rationale for the investigation of nature, they also served as an umbrella category for 
newly resurgent technical arts of virtually any geometrical character. Early modern 
surveyors, cartographers, engineers, instrument-makers, gunners, navigators, and 
even painters routinely identified their activities with the various “mathematical sci-
ences” and themselves as part of an all-embracing culture of both pure and practical 
mathematics.3 Moreover, these practitioners created an important intellectual and 
technological context for the work of scholars and mathematicians—the kinds of 
figures whose names and discoveries feature more prominently in the history of 
early modern science. Galileo stands out here, but many others would also fit the 
bill. Historians have been increasingly attentive to the way practical and theoretical 
concerns were imbricated in their work as well.4

This volume proceeds from a conviction that architectural history, too, can ben-
efit from an approach that contextualizes design and construction in terms of con-
temporary mathematical knowledge, attendant forms of mathematical practice, and 
relevant social distinctions between the mathematical professions. This perspective 
is intended to respond, in the first place, to the actual character of the art; geometri-
cal and arithmetical operations of some form or another lay at the heart of early 
modern architectural practice. Indeed, the process of design was largely defined by 
the application of proportional or compass-based rules. These protocols were more-
or- less pervasive, potentially controlling the design in both plan and elevation, from 
the concept to details. Mathematics was indispensable in other ways. Measurement 
and scale conversion—particularly important when fitting the proportions of a 
design to on-site dimensions—surveying, cost estimates, bookkeeping, and even the 
use of routine graphic techniques all presupposed a certain amount of mathematical 
training.

Architecture was also connected to learned or theoretical traditions of mathe-
matics, those associated not with the workshop or building site, but rather with the 
university and the humanist’s library. The profession was after all largely shaped 
by scholar-practitioners working in or alongside a tradition of classical commen-
tary. Leon Battista Alberti is the obvious touchstone here, but it is important to 
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point out how broad and long-lasting this tradition was. Alongside its purely 
architectural content, Vitruvius’s De Architectura contains a wealth of informa-
tion on ancient theories of proportion, an anecdotal knowledge of Greek mathe-
matics, and several chapters on technical and engineering-related subjects.5 From 
the earliest printed editions, Renaissance commentators found the text to be a 
compelling stimulus, both as a source for ancient science and in many areas of 
recent research. This interest is perhaps epitomized by Daniele Barbaro, whose 
translation and commentary, appearing in two editions of 1556 and 1567, set new 
standards for the interpretation of the book’s technical and mathematical contents, 
particularly those parts dealing with astronomy and sun-dialing (Book 9). 
Barbaro’s famous description of the Vitruvian analemma—reconstructed with the 
help of Federico Commandino’s then- recent edition of Ptolemy’s De Analemma 
(1562)—was quickly recognized as a milestone both in the understanding of 
ancient astronomy and in the study of gnomonics.6 In this respect, Barbaro was an 
exemplary figure, but not an uncommon one. A similar conjunction of mathemat-
ics, technology, and architecture is evident in the work of Bernardino Baldi, 
Guillaume Philandrier, François Blondel, Teofilo Gallaccini, Nicolaus Goldmann, 
and Giovanni Poleni.7

There was clearly a manifold bond between mathematical and architectural prac-
tice, yet historians have only partially explored this relationship. The most relevant 
research focuses on the design methods of medieval architects and on the propor-
tional and geometrical layout of medieval buildings, an important vein of scholar-
ship that I will have occasion to review below. More recently, there have been a 
growing number of specialist subfields—in the history of structural mechanics or 
building technology, for example—that sometimes overlap with architectural his-
tory.8 Our volume builds on these approaches, but it is worth pointing out that they 
have remained largely peripheral to the discipline. The relative lack of scholarly 
engagement is not fully explained by the technical nature of the subject. Research 
into the mathematical basis of architectural design has a long pedigree, even if it has 
recently fallen off. Nor have other disciplines run afoul of the same hurdles. The 
historiography of early modern mechanics—to take one example relevant to archi-
tecture—has shown how technical content can be fruitfully combined with broader 
hermeneutic and historical concerns.9

The obstacles to further study in this area are several, but among the most chal-
lenging—and paradoxical—may be those posed by the physical reality of the build-
ing itself. Although mathematical practice was integral to the making of architecture, 
it is often subsumed and concealed by the finished object. In many cases, the 
designer’s intentions have to be reconstructed, and—in the absence of original 
drawings or written records—with often partial or even unreliable results. The most 
valuable scholarship in this area hews closely to the measurements of the built work, 
to known drawing practices, and to rare written sources about the design process. 
Even with these controls, however, conclusions can remain speculative, and, too 
often, scholars have done without such checks. Indeed, older scholarship on design 
methods—until well past mid-twentieth century—is frequently characterized by 
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fanciful, complex diagrams overlaid onto building plans. Recent research in this 
field is finally beginning to overcome the stigma of these earlier attempts.10 Aside 
from being difficult to recuperate, the designer’s point-of-view is only one of the 
perspectives that informs the history of architecture. Scholars are equally and justi-
fiably attentive to the desires, resources, and input of both patrons and users of a 
building. Any reconstruction of a project’s genesis will naturally involve a host of 
issues, from planning and style to patronage, iconography, and reception. 
Mathematics, in other words, is merely one part of a complex and multifaceted 
process.

The current state of scholarship reflects a normative conception of the design 
process that sees it solely as the preliminary to the building, but it is worth noting 
that this view involves some unintended drawbacks. To the extent that the built work 
remains the privileged object of study, it hinders a fuller understanding of the figure 
of the architect, particularly those aspects of his intellectual culture and expertise 
that were non-architectural. Indeed, this approach unintentionally restricts the wide 
range of mathematical practices that went hand-in-hand with building. Early mod-
ern architects built fortifications, drew maps, used instruments, and designed 
machines, but that is not what they are remembered for. To be sure, practitioners 
themselves did much to establish architecture as an autonomous discipline. The 
touchstones provided by Vitruvius and by the built remains of the ancient world 
allowed early modern architects and theorists to separate themselves very clearly 
from the wider strata of mathematical practitioners, even when their practical activi-
ties were almost indistinguishable. Yet, from a modern disciplinary perspective, the 
often-uncritical adoption of such a focus is nonetheless distorting, for it relies 
implicitly on a relatively narrow, twentieth-century definition of what the architect 
is, one that defines the profession retrospectively in terms of distinct socio- 
professional boundaries, where none existed at the time.11

The alternative is certainly not to ignore the built work, but rather to shift our 
view slightly. Instead of a restricted focus on buildings as the outcome of the design 
process, we might rather see design itself as part of a constellation of related activi-
ties that were no less central to the architectural culture of the period. We might try 
to contextualize, in other words, not only the design of specific projects, but rather 
the process of design itself. That process was and remains, of course, historically 
contingent. It is subject both to technological constraints and the level of knowledge 
available at a given time. Such an approach would consider not merely whether a 
given reconstruction fits the measured dimensions, but also how projects are con-
ceptualized and executed within a horizon of existing practices, abilities, tools, and 
techniques.

Crucial to any attempt of this sort is to recognize the distance between educated 
elites and the traditional craft culture of the building trades. The mathematical 
notation, number systems, and methods of calculation that we take for granted 
 cannot often be assumed for early modern practitioners until well into the period. 
Building craftsmen appear to have begun receiving education in the abaco— 
commercial arithmetic and simple geometry—only from the Trecento, and such 
schools were not widespread outside of central Italy. Nor did formal mathematics 
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of this sort always take precedence over the practical training of the traditional 
apprenticeship, which tended to provide graphical and rule-of-thumb solutions to 
most problems.12 In any given case, the most likely design methods were those 
that produced simple arithmetical and geometrical relationships, generated by 
physical manipulations of the compass and ruler or, alternatively, of the yardstick 
or stakes and string. It is not simply that such methods kept calculations as straight-
forward and unobtrusive as possible. They also reflected the manual and instru-
mental character of the setting- out process, in which elements of the project 
are treated not in terms of abstract number or dimension but as linked properties of 
the full-scale design.13

The relationship, in other words, between drawing and building has hardly been 
constant or universal. Indeed, the recent advent of computer-generated design and 
the almost complete disappearance of pen-and-paper drawing from architectural 
offices and schools bring home the mutability of this relationship like nothing else. 
Architectural practice in the early modern period was no less dependent on changes 
in contemporary mathematical culture and available technology, and it is this theme 
that ties together the essays presented in this volume. In the first place, our contribu-
tors explore the various uses of mathematics by early modern architects. The 
emphasis here is on practice, on activities as basic to architecture as drafting, calcu-
lating, measuring, surveying, composition, and design. In this sense, our papers will 
present a picture of architects as “consumers” of mathematics, dependent both on 
the level of mathematical knowledge available at the time and the degree to which 
they were able to understand and employ it in their own work. We also explore the 
opposite side of this issue, that is, the extent to which architects were themselves 
“producers” of mathematical knowledge or the degree to which they collaborated 
with mathematicians and natural philosophers in the production of such knowledge. 
These groups had long been associated and we know that in many cases they over-
lapped, particularly in the seventeenth century. Figures such as Christopher Wren, 
Robert Hooke, François Blondel, Girard Desargues, and Guarino Guarini spring 
easily to mind.

As these names suggest, the role of the sciences already colors our understanding 
of early modern architecture—at least for the Baroque. In fact, the entire period 
bounded by this volume was one of increasing mathematical and scientific expertise 
among architects, and this transformation was largely characterized by the recipro-
cal relationship between the two phenomena described above. On the one hand, 
mathematical and technological advance in architecture was often frustrated by the 
limited educational background and conservative practical outlook of the average 
builder. This “advance” is not a whiggish story of unimpeded progress. Yet, on the 
other hand, we also see continual instances in which architectural practice was both 
deepened and enriched by coeval advances in mathematics from both practical and 
learned spheres. This kind of influence was not unusual and kept the two fields 
closely connected throughout our period. It accounts for the live curiosity among 
architects in what mathematicians and mathematical scholars were actually doing 
and, contrariwise, for the fact that so many scholars found in the art a natural outlet 
for their own interests.

Introduction
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 Scholars and Practitioners at Milan Cathedral

As an introduction to the papers that follow, this chapter presents three examples of 
the interaction of “high” and “low” mathematics, to illustrate its transformative 
effects over the period covered in this volume. I mention these instances not to sug-
gest that they are canonical nor to imply any causal relationship between them, but 
to outline the range of issues inherent in our subject. Indeed, their geographical and 
chronological separation serves to highlight the evolution of some common themes 
across several centuries. These include: the interdependence of geometrical design 
and arithmetic calculation; the embeddedness of architecture in other mathematical 
disciplines; and the link between drawing and instruments. My examples also serve 
to illustrate a methodological point: the mathematical content of architectural prac-
tice has often been relegated as either peripheral or merely preparatory to the form-
generating process of design. Making that content visible requires a change in 
perspective that places it in its own historical schema.

The late fourteenth-century conferences held by the cathedral workshop of 
Milan, made famous in a classic article by James Ackerman, still offer a useful 
baseline from which to compare similar events.14 The preserved records of these 
meetings comprise one of our most extensive sources for medieval architectural 
theory in relation to an actual project. More importantly for our purposes, they also 
offer telling evidence for the relative level of mathematical knowledge among at 
least one group of medieval masons. As Ackerman recounts, the Lombard masters 
had fixed the ground plan and even began construction on the foundations before 
deciding on what the upper profile of the building was going to look like. They had 
envisaged an elaborate Gothic decoration for the cathedral—which still sets it apart 
from other comparably sized Italian churches—and began the work on a much more 
ambitious scale than they were normally used to working with. As a result, they 
were forced to call in a succession of outside experts to advise them both about 
decorative matters as well as the optimal height and form to give to the cross-section 
of the nave and aisles.

The workshop’s initial intentions for the nave section are preserved in a drawing 
by a visiting Bolognese architect, Antonio di Vincenzo (Fig. 1). Typically dated to 
early 1390, some four years after work began, the sketch combines the measured 
plan of the cathedral with a section of the nave as it was then projected. The plan is 
presumably based either on a model or on a survey of the cathedral’s rising walls, 
but the design of the upper parts was still very much in flux. The vertical elements 
are not drawn to scale, but Di Vincenzo’s annotated dimensions suggest that the 
section was based on a simple modular schema, in which a basic unit of 10 Milanese 
braccia (about 5.95 m) served to establish the height of the various vertical elements 
(Fig. 2). In this early scheme, the springing of the outer aisle vaults were to be 30 
braccia high, that of the inner aisles 50 braccia high (including tall capitals of 10 
braccia), and the springing of the nave vault 60 braccia high. The ground plan, in 
contrast, had been laid out according to a different module. Corresponding to the 
aisle bays, it formed a square 16 braccia to the side. With the nave two modules 
wide, the total width of the cathedral section was 96 braccia.15
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Fig. 1 Antonio di Vicenzo, plan and section of Milan Cathedral, 1390
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At an early point in the story, sometime after March 1391, the Milanese masters 
decided to adopt a revised design for the cross-section, based on an equilateral tri-
angle. This idea, put forward by the new consultant engineer, Annas de Firimburg, 
was presumably intended to lower the profile of the building and to inscribe it in a 
regular geometric shape, avoiding the somewhat arbitrary relationships between the 
aisles and the nave that had governed the earlier design. In accepting the new 
scheme, however, the building council encountered a difficult problem, for they 
needed somehow to calculate the projected height of the new structure, now incom-
mensurable with its width. The workshop appealed, not to another consulting engi-
neer, but to a mathematician from Piacenza, one Gabriele Stornaloco. Described as 
an “expert[us] in arte geometriae,” he was asked to “discuss the questions concern-
ing the height and about other things with the engineers of the said fabbrica,” that 
is, to determine the height and reconcile it with a modular system based on the 
Milanese braccio for the rest of the cathedral.16

Stornaloco’s solution to the problem is known from the reply that he sent to the 
committee, which was decoded by Paul Frankl and Erwin Panofsky in another 
famous article from the 1940s.17 Panofsky showed that Stornaloco solved the prob-
lem by translating it into a four-step algorism—that is, a calculation using Hindu- 
Arabic numerals—involving the multiplication and division of sums to three and 
four places. The formula served to approximate the irrational term that was central to 
the solution of the problem, namely the square root of three.18 Panofsky surmised that 
Stornaloco had employed an inherited formula, invented by Leonardo Fibonacci, but 
in wide use by the late fourteenth century. Adjusting the algorism to suit the circum-
stances of this particular problem (to express the value in terms of a whole number 
divisible by 8, that is, half that the module length), Stornaloco was able to determine 

Fig. 2 Modular schema for 
the first design of Milan 
Cathedral
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the height of the nave within .04 % of the true value (83.168 braccia). Indeed, he 
went farther. Using 84 braccia as a convenient approximation (giving him a module 
height of 14 braccia, as opposed to 16 in width), he was also able to correlate the 
nave height with the springing of the outer aisle and nave vaults. As Stornaloco 
pointed out in his letter, the scheme implies a series of concentric, similar triangles 
that link the module widths at the base of the section with the module heights along 
the centerline (Fig. 3).19 The two largest of these inscribed triangles establish the 
heights of the principal vertical elements, namely the nave and aisle piers.

Stornaloco’s solution is characteristic of an academic mathematician, not a prac-
ticing builder. Indeed, the strict formal regularity and thorough internal consistency 
of his design are unparalleled in Gothic architecture. These qualities may partially 
explain the project’s immediate impact. The workshop adopted his proposal not 
only for the nave height, but for the entire cross-section, using it to direct construc-
tion for the next several months. This was enough to dictate the height of the exist-
ing outer aisles and to provide the basis for a revised, compromise design for the rest 
of the work in May 1392.20

What does this episode tell us about the mathematical abilities of medieval 
masons? The answer is not straightforward. The incident is typically seen in terms 
of the masons’ limitations, that is, as an example of the kind of mathematical prob-
lem that medieval architects could not solve. While that reading is true in broad 
terms, the details need some unpacking in light of what we have learned about 

Fig. 3 Stornaloco’s design for Milan Cathedral (From Beltrami 1887)
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medieval design since Frankl and Panofsky’s day. The relevant questions are not 
only whether the workshop was able to calculate the height of the nave à la 
Stornaloco—which is unlikely—but also whether the masons were able to deter-
mine that dimension using their own methods. In this latter respect, the fact that the 
workshop felt compelled to call on a mathematician is indeed surprising. Geometrical 
design was a mainstay of medieval architectural practice, as were the “irrational” 
relationships it produced. The masons’ techniques were largely instrumental, 
graphic, and empirical—not demonstrative. Yet, combined with on-site testing and 
verification, they were more than enough to achieve very high levels of building 
precision. This was true not only for equilateral triangles. Gothic builders appear to 
have been fully capable of incorporating even more complicated shapes into their 
buildings: octagons and pentagons were not unusual.21

Looking at the problem from a different angle—arithmetically—we might again 
ask whether the workshop strictly needed an outsider to determine the nave’s height. 
Assuming the cathedral masons could not calculate the solution in the same manner 
as Stornaloco, is it possible that they could have approximated it with an arithmetic 
rule-of-thumb, one that could relate the base of the cathedral to its height in terms 
of a commensurable ratio? Procedures of this kind are believed to have been used 
widely. In the first place, geometrical relationships were not always possible to set 
out physically. Existing buildings or other obstructions might easily block the sweep 
of a long diagonal, and such operations were particularly difficult to perform in 
elevation, as Frankl himself noted with respect to the problem at Milan. Practical 
difficulties alone would suggest the occasional need for rational approximations of 
geometrically derived dimensions, and scholars have, in fact, found some evidence 
for the use of such ratios by medieval builders. Indeed, recent discoveries by 
Matthew Cohen have thrown this practice into sharp relief. At Santa Maria del Fiore 
in Florence, the first bay of the nave arcade, designed by Francesco Talenti around 
1357, incorporates a ratio of 29:41 braccia. These dimensions approximate the rela-
tionship between the side and the diagonal of a square with an error of only .03 %. 
The same ratio appears in an even more sophisticated form at San Lorenzo, built by 
Brunelleschi from 1421, where the width of the bays and height of the six western-
most columns measure 9 2

3 and 13 2
3 braccia respectively.22 This approximation and 

others were known in antiquity. Theon of Smyrna reports an arithmetic method for 
generating increasingly accurate whole-number approximations for the side-to- 
diameter ratio of a square, that is, a series that progressively converges toward 
the square root of two. Although a route of transmission remains elusive, it is pos-
sible that this method was known to ancient builders and handed down through the 
Middle Ages. Indeed, some scholars have gone farther, arguing that medieval builders 
would have had similar formulas for calculating ratios that progressively converge 
toward any desired square root, thereby approximating proportions inherent in the 
equilateral triangle, the root-5 rectangle, and even the “golden section”.23

These broader claims have not been verified, but in the case of Milan cathedral 
they are probably not relevant. A simple ratio like 8:7—the same used by Stornaloco 
in his own design (96 × 84 braccia for the width of the cathedral to its height)—
could have been handed down as part of the masons’ oral tradition. The workshop 

A. Gerbino



11

would, in any case, have been fully capable of working out an adequate ratio for the 
cross-section of the church using scaled drawings or cords set out at full scale. What 
the masons could not have known is the degree of divergence between their physical 
approximation and the closest possible numerical value, but this level of accuracy 
was for all practical purposes unnecessary, as Stornaloco himself seems to have 
recognized. In this light, the decision to call on the mathematician appears less as 
evidence of an intellectual failing on the part of the masons than as an artifact of the 
very unusual circumstances at Milan. As historians have long recognized, the 
Lombard masters were unused to the Gothic design system of their northern consul-
tants. This clash of sensibilities—which would only intensify with Heinrich Parler’s 
arrival in late 1391 and Jean Mignot’s in 1399—may have led the two parties to see 
Stornaloco as a useful go-between.24

Even this charitable interpretation, however, should not obscure the essential fact 
about this incident. As “unnecessary” as Stornoloco may have been, his solution to 
the problem was nonetheless diametrically opposed to the methods then available to 
architects and masons. Instead of working out a sequence of increasing number 
pairs for the sides and height of the triangle (assuming the masons had such a tech-
nique), Stornaloco recognized the root that lay at the heart of the problem and 
expressed it, moreover, in terms suitable to the particular circumstances he found at 
Milan cathedral. If Panofsky is right—his is still the most convincing explanation—
Stornaloco used a formula that expressed the side of the triangle in units divisible by 
eight (half the module width) and multiplied all the terms by ten to avoid fractional 
remainders. He then adjusted his approximation for √3 to be both easier to manipu-
late and more accurate (175/101 instead of 173/100).25 In comparison to Theon’s 
method, which calls for nothing more than basic addition, Stornaloco’s is a true 
algorism that requires multiplication and division of terms to three and four places.

Stornaloco’s approach to the problem, in other words, was thoroughly arith-
metized, and it is this quality that sets it apart from the masons’ techniques. Indeed, 
his explanatory letter suggests that it may not have been simply the translation of 
the problem into a formula that lay beyond the capabilities of the builders, but also 
the manipulation of the numbers themselves. Why else would he have expressed the 
coefficients used in the solution with Roman numerals, rather than the Hindu-Arabic 
ones necessary to calculate it? It is also worth noting that Roman numerals predomi-
nate in the conference minutes. Calculation using Hindu-Arabic numerals was still 
not universal in 1391, and Stornaloco may have had some reason to assume that the 
masons were not familiar or comfortable with them.26

These conferences are very well-trodden ground, but the great advantage of this 
material is that it offers a concrete historical link between the mathematics of the 
worksite and that of the classroom. Indeed, these conferences remain the only source 
we have for the direct interaction between medieval mason-practitioners and a uni-
versity- or abaco trained mathematical scholar. At the same time, the Milan affair 
also makes clear the distance between these two worlds, and in this respect, rein-
forces the work of other historians in this area. As Lon Shelby has shown, the 
“geometry” of the medieval mason appears distant from most practical geometrical 
texts of the time. The few and scattered sources we have of the mason’s art—texts 
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by Villard de Honnecourt, Matthias Roriczer, and Hanns Schmuttermayer—
reveal that it consisted largely of rule-of-thumb procedures involving the construc-
tion and manipulation of simple geometrical forms. Unlike the methods taught in 
the schoolman’s Practica geometriae, the mason’s techniques were often imprecise 
and approximate. They utilized no arithmetic calculations of the kind known at the 
time, nor did they reveal any understanding of the Euclidian theorems and proofs 
that would justify the operations involved. Although medieval masons certainly pos-
sessed a sophisticated intuitive grasp of spatiality and of spatial forms, their design 
and construction methods appear to have been essentially pragmatic and empirical, 
not mathematical or analytic.27 What is immediately striking about the Milan 
story, particularly about Stornaloco’s involvement, is that the two parties involved 
correspond, almost perfectly, to the two modes of geometrical thought that Shelby 
describes.

 “High” and “Low” Mathematics: Antonio da Sangallo 
the Younger

Did medieval builders ever benefit from contact with “higher” mathematics, that of 
the university classroom or the humanist’s library? The record is indeed scarce, but 
historians have unearthed some isolated examples that point to increasing interac-
tion between the two domains. The Florentine new towns of the early fourteenth 
century, brought to light by David Friedman, provide unique evidence of an entirely 
innovative and sophisticated application of geometry to the problems of urban 
design.28 The street plans of San Giovanni and Terranuova, founded in 1299 and 
1337 respectively, are laid out in such a way that the widths of the residential blocks 
decrease in proportion to the chords of a circle advancing at set intervals. As 
Friedman points out, these designs presuppose a knowledge of trigonometry that 
could only have originated in a textbook tradition far removed from the working 
knowledge of most mason-builders. Matthew Cohen’s work on San Lorenzo in 
Florence has brought to light an analogous example. The nave arcade appears to 
embody a complex set of interdependent proportional relationships that may incor-
porate a Boethian number system.29 Without these examples, we might be entirely 
justified in believing that the level of mathematical knowledge at Milan cathedral 
was representative of medieval masons in general. In reality, there may have been 
particular workshops, cities, or regions, where graphical, numerical, and technical 
ability were more advanced and where individual craftsmen were more receptive to 
influences from parallel or analogous fields. Given the prevalence of the abaco cur-
riculum in central Italy, the influence of a highly educated merchant culture, and the 
sophistication of local surveyors, it is perhaps not surprising that innovations of this 
kind first appear there.

The Stornaloco incident is worth scrutinizing not to belittle medieval masons, 
but to underline one of the central premises of this volume, namely that Renaissance 
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architectural practice was characterized by a new orientation toward both the 
speculative tradition of ancient geometry and to the advances in practical mathematics 
that accompanied its revival. Indeed, Renaissance architects often distinguished 
themselves from their predecessors on these very grounds. In the opening pages 
of the Primo Libro (1545), for example, Sebastiano Serlio complained of those 
“who today bear the title, ‘architect’ but who do not know how to give a definition 
of a point, a line, a plane or body, or say what correspondence and harmony are.”30 
He explicitly identified his approach with the theoretical principles derived from 
Euclid’s Elements. This transformation has typically been laid to the influence of 
Neoplatonism, but it was in fact impelled by a number of factors, including the 
rediscovery of linear perspective and the general resurgence of the practical, 
mathematical sciences in the fifteenth and early sixteenth century. This influence is 
evident in many areas. As several recent studies have affirmed, Renaissance archi-
tects show a newfound awareness of the dynamic properties of structure, a greater 
familiarity with techniques of arithmetic calculation, and a growing interest in new 
mathematical sciences, such as trigonometry.31 This change is also reflected in the 
art’s renewed status as an intellectual discipline. Sixteenth-century divisions of 
knowledge—ramified disciplinary “trees”—often list architecture under the general 
heading of mathematics, usually alongside mechanics.32

It is against the background of this transformation that I want to set a second 
example, a series of drawings of the 1520s and 1530s from the recently published 
corpus of Antonio da Sangallo the Younger.33 Ann Huppert’s chapter below discusses 
these documents at length and in a more specific architectural context. They serve 
here simply as a contrast with the picture suggested by the Milan cathedral work-
shop and to illustrate the enormous sea change that was entailed in the transition to 
the humanist architectural culture of the Renaissance. In that light, the drawings are 
remarkable, because they show the architect engaged in a purely personal study of 
just the kinds of problems that appear to have stumped the Milanese masters and 
that Shelby describes as being outside the normal working methods of medieval 
masons in general. Indeed, the great fascination of these notes and sketches is that 
we have very few earlier examples for this kind of interest or ability among archi-
tects. It is important to note here that we are not dealing here with an Alberti or a 
Barbaro, but with a building practitioner trained in a traditional—if not to say medi-
eval—apprenticeship system.34

In the first place, the drawings evince an ease and facility with arithmetic calcula-
tions, examples of which cover large portions of the sheets concerned. These are all 
the more striking in light of the Milan episode, since the multiplied sums often 
include regular fractions in an attempt to find approximate values for square- and 
cube roots (Fig. 4). In a general sense, the figures show the importance of the abaco 
in the period. Indeed, the editors of the volume make a point of noting Sangallo’s 
mastery of technique.35 Not only was he apparently taught by such a master, he was 
also able to think in terms of algorism, adapting it to new problems thrown up by 
craft practice and his theoretical interests. In this respect, Sangallo was far from 
alone among contemporary architects. As Ann Huppert remarks in her essay below, 
his mathematical abilities were matched, if not exceeded, by those of Baldassarre 
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Peruzzi, whose own use of algorism was even more closely intertwined with his 
architectural practice.

In many respects, these drawings are characteristic of what Carlo Maccagni has 
described as the intermediary or “vulgar” science of Renaissance artisans, technical 
experts, and practitioners. Works of this kind typically take the form of taccuini and 
zibaldone, written in the vernacular with a mixture of notes and diagrams. Like 
Leonardo’s notebooks—the most emblematic of the genre—they represent an ad 
hoc process of learning adapted from the experience of the workshop, where activ-
ity tends to follow not a formal curriculum, but rather the meandering course of an 
apprenticeship or the unpredictable demands of a clientele. Such works investigate 
individual problems as they are encountered and worked through on a case-by-case 
basis. In this respect at least, they tend to mirror the format of contemporary abacist 
manuals and practical geometries.36

Sangallo’s drawings illustrate the way in which his abaco education provided 
routes into his theoretical and quasi-scholarly interests. In the case noted above, the 
architect’s calculations seem to have arisen from an exploration of geometric con-
structions relating to the doubling of the square and the cube, as mentioned in 
Vitruvius (Book 9, Introduction). Other drawings also seem related to those parts of 
the abaco curriculum concerned with solid geometry. One sheet, for example, 
reflects attempts to find the volume of pyramids of different form (Fig. 5). This kind 
of problem was famously and rather more expertly explored by Piero della Francesca 
and Luca Pacioli in their own abaco instruction manuals, but here Sangallo seems 
to have again been inspired by Vitruvius. As the editors point out, the interspersed 
diagrams of stepped pyramids may reflect an attempt to reconstruct the Mausoleum 
of Halicarnassus as described by the Roman author (Book 2, Chapter 8.10–11).37 
The figure in the upper right portion of the sheet, showing the doubling of the 
square, is likely stimulated by the same source.

The range and variety of Sangallo’s graphic oeuvre are remarkable. Like the 
drawings of his older contemporary, Francesco di Giorgio Martini, Sangallo’s 
encompass an array of technical and engineering-related activities that far exceeds 
modern notions of the architect’s role. Drawings of artillery, instruments, and 
machines of all kinds are perhaps the most unexpected, precisely for their lack of 
any specific connection with building. Yet, it is also clear that these sketches 
formed part of a common disciplinary constellation. The same range of interests—
especially in the fields of astronomy and cartography—would characterize the 
principal concerns of mathematical practitioners throughout the sixteenth and 
seventeenth centuries.

Among the most striking examples of Sangallo’s curiosity is a proposal—“my 
opinion” he calls it—for a system of curved panels or gores for the construction of 
a globe (Fig. 6). This technique of cartographic projection was relatively new, hav-
ing been published for the first time by Martin Waldseemüller in 1507. Sangallo 
might have come across the idea in an intermediary text—several other examples 
had appeared over the intervening twenty-odd years—but his awareness of an inno-
vation so far outside his own training is nevertheless surprising. The projection is com-
posed of twelve gores, dividing the globe by 30° intervals of longitude. The figure 
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1865 is inscribed between each gore, calculated (incorrectly) as one twelfth of the 
total circumference of the Earth, which Sangallo gives at the top of the sheet as 
22,500 miles. As the editors point out, no other world maps are found among the 
architect’s drawings, but that is not to say that the work is entirely isolated. Antonio 
executed several topographical surveys—typically involving fortifications—and 
still other drawings related more broadly to cosmography. A geometrical study of 
the constellations in the northern hemisphere, for example, is conceptually not far 
removed from Sangallo’s globe gores.38

Several drawings of mathematical instruments reveal another dimension of this 
concern for terrestrial and celestial measurement. The most extraordinary of this 
group—indeed, of the corpus as a whole—is an astonishingly faithful replica of an 
Arabic astrolabe, complete with its Kufic inscriptions (Fig. 7). Sangallo surely 
could not read them, but this did not diminish his fascination with the object, as is 

Fig. 5 Antonio da Sangallo the Younger, calculations and geometrical diagrams, UA 857r
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evidenced by his painstaking method of description. The drawing stunned the edi-
tors of the volume. “We marvel,” writes Gustina Scaglia, “at his determination to 
make a facsimile of all the letters.” Indeed, the transcription is legible enough to 
determine the maker’s signature, as well as the place and rough date of origin: 
Morocco, probably—on the basis of its similarity to other known instruments—in 
the tenth or eleventh century.39 Not only was Sangallo’s study precise, it is also sys-
tematic. The astrolabe’s front and rear faces are juxtaposed, and its component 
parts—alidade, rete, even a replacement screw and nut—presented separately and 
distinctly. As Scaglia points out, Sangallo evidently knew something about such 
instruments. The inscribed notes suggest that he was familiar with the names, 
arrangement, and function of the parts, including the use of the sight holes in the 
alidade. He evidently knew how to engrave the scales and geometric constructions 
on the two faces. Astrolabes featured commonly in medieval and quattrocento prac-
tical geometries, where they are typically shown as helpmates for rudimentary sur-
veying problems. Sangallo’s knowledge of such instruments seems to have gone 
much deeper.

One last image from the group reveals Sangallo’s more-than-passing interest in 
instruments. In terms of contemporary advances in mathematical practice, it is one 
of the most noteworthy of the entire corpus: the earliest known representation of a 
flat-sided, proportional compass—or sector—with scales incised on the face of each 
leg (Fig. 8). It is a hinged rule used with dividers to transfer dimensions to and from 

Fig. 6 Antonio da Sangallo the Younger, globe gores, UA 850r

Introduction



18

Fig. 7 (a, b) Antonio da Sangallo the Younger, front and rear faces of an Arabic astrolabe, with 
rete below, UA 1454r-v
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the pairs of identical scales on its two legs. Opened to a given length, the matching 
scale divisions provide additional dimensions continuously proportioned to that ini-
tial length. Sangallo designed the instrument as a rough graphic method of approxi-
mating cubes and cube roots. As Filippo Camerota has shown, theorists of 
perspective—Alberti, Piero, and Dürer, in particular—had earlier demonstrated the 

Fig. 8 (a, b) Antonio da Sangallo the Younger, sheet of notes for a proportional compass or 
sector (UA 1491r), with modern reconstruction (from Camerota 2000)
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basic principle, but it was Sangallo who gave this instrumental form to it. The idea 
may have been inspired by his study of the problems in Book 9 of Vitruvius; the 
drawing appears to have been preceded by a number of preparatory studies explor-
ing analogous methods of approximating square and cube roots. In practical terms, 
the instrument could be used to easily rescale architectural elements, but the impor-
tant innovation was conceptual: the sector provided a mechanical and geometrical 
approach to problems that resisted a quick arithmetic solution. The same principle 
governed the many more sophisticated forms of the instrument that appeared 
throughout the century, culminating in Galileo’s own version, invented in 1597 and 
published in 1606. That the device had originated in an architectural context had 
been largely forgotten, but it makes sense in light of later attempts to adapt the sec-
tor to the rules of classical design, first by Ottavio Revesi Bruti in the early seven-
teenth century and later in eighteenth-century England.40

Sangallo’s mathematical drawings make a blunt, but telling, contrast to the Milan 
cathedral debates—the Stornaloco episode in particular. In light of the latter, the 
former reveals the profound transformation that had taken place in the mathematical 
culture of elite building practitioners during the preceding century. Sangallo’s train-
ing was traditional, but it was bolstered by a sound mathematical education and by 
a rich humanistic culture that linked his art with the latest advances in the practical 
mathematical sciences. Sangallo’s inspirations were not only textual, but also per-
sonal and professional. The drawings as a group reflect two important influences. 
The first was the Della Volpaia family of clock- and instrument makers, with whom 
the Sangallos had been linked since the late fifteenth century. Antonio appears to 
have been close to Benvenuto della Volpaia, in particular. The two men are believed 
to have shared drawings of instruments and mechanisms; several duplicates are 
found among their respective manuscripts. The second—and more important—
influence was likely the learned architect, engineer, and antiquarian Fra Giovanni 
Giocondo of Verona. Among contemporary humanists, Giocondo had a virtually 
unique ability to marry erudition and practice, an admixture evident both in his 
groundbreaking 1511 edition of Vitruvius—the first with illustrations—and in his 
work as a manuscript hunter. Giocondo was an assiduous collector of medieval 
practical geometries, including several rare French versions, acquired presumably 
during his time in Paris as the royal engineer to Charles VIII. Sangallo’s connection 
with Giocondo probably dates to sometime after June 1514, when both men were 
employed at the workshop of St. Peter’s. In terms of the direction of influence, we 
are here on more solid ground. A note on one of the geometrical studies in Antonio’s 
collection attributes it explicitly to the Franciscan friar.41

 From the Mathematical to the Physical Sciences: Pierre Bullet

It would be difficult to link Sangallo’s mathematical notes and drawings directly to 
the design of any one of his buildings. As Ann Huppert demonstrates, below, they 
bear rather on the history of design itself. Architects of Sangallo’s generation were 
among the first to incorporate Hindu-Arabic algorithms into the design process, 
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with all the advantages that entailed for cost estimates and bookkeeping, not to  
mention site surveying and the ability to build from accurate drawings.42 Sangallo’s 
notes also say something about his broader intellectual culture, particularly his 
receptivity to forms of mathematics that lay, strictly speaking, outside his craft. In 
this respect, the influence of figures like Giocondo must have been decisive. This 
kind of encounter is also significant in a longer historical perspective, for it was 
typical of the kind of intellectual relationships that architects would continue to 
exploit throughout the early modern period.

It is with this idea in mind that I want to adduce a third case-study. This one 
comes from a later moment, in 1688, toward the end of our period. In that year, the 
architect Pierre Bullet published a treatise on the long-distance level (Fig. 9).43 This 
was an instrument used to determine precise gradients over large tracts of land, to 
cut slopes and terraces, for example, or to align canals or divert waterways. The 
principle was simple enough. One team would stabilize the device horizontally and 
aim it into the distance. Communicating with visual signals, a second team at the 
other end of the area to be surveyed would raise or lower a cardboard marker until 
it met the sightline. Changes in elevation were determined simply by subtracting the 
height of the eyepiece from the height of the marker or vice versa. Over longer dis-

Fig. 9 Long-distance level (from Bullet 1688)
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tances, the cumulative rise or fall of the terrain was calculated by adding or  
subtracting the shifts recorded with each measurement.

The success of such operations often hinged on the precision with which they 
were conducted. Water diversion projects were especially tricky, as they often 
involved extremely small variations in height over large areas, and the distances 
involved would considerably magnify any small mistakes or inaccuracies in 
measurement. Bullet’s instrument was intended to respond to this need. His level 
took the form of a wooden H-shaped frame, with either open sights or—more 
innovatively—a telescope fixed to the crossbar. The long surveying distances 
assumed throughout the book make it clear that Bullet favored the latter option. One 
upright was hollowed out to contain a plumb line, while the other could be raised or 
lowered by a crank to keep the crossbar level. More than earlier treatises, Bullet 
detailed the technique and materials to be used in constructing the instrument, an 
indication of the kind of audience he envisioned for the book. As his thorough 
instructions suggest and as Bullet himself asserted, “I have used it on several occa-
sions where I’ve needed it.”44

As is evident, the substitution of the telescope for sight vanes increased the level 
of precision by an order of magnitude. Bullet himself refers to the span of 400 m for 
a typical observation, a distance that far exceeded the effective range of more com-
mon instruments. This innovation in what is more or less a standard leveling instru-
ment suggests some knowledge of geodesy and cartography, but in fact there are 
several other indications of Bullet’s more-than-passing interest in these fields. He 
began, for example, by distinguishing the true level from the apparent. Few practi-
tioners were aware, he complained, that the sight line produced by a telescopic level 
does not follow the curved surface of the earth but actually forms a tangent to that 
surface (Fig. 10). The longer the distance surveyed, the more the visual ray actually 
rises away from the true level, which follows a circular arc with the radius toward 
the center of the earth. He then provided a rule-of-thumb to compensate for the 
deviation. In distances over 200 m (100 toises) the apparent level has to be lowered 
by about 21 mm (1/12 pouce) to remain accurate. After 600 m, it has to be lowered by 
190 mm, and so on. More accurate values for the deviation, Bullet noted, could be 
obtained by using sine- or log tables. In contrast, his rule was “more mechanical but 
also quicker and easier to understand.” 45

That a guild-trained architect would be familiar with the basic trigonometry of 
the problem is surprising enough. More impressive is the fact that the effective value 
that he employed for the radius of the Earth was taken from the most up-to-date 
work of “les astronomes modernes.” That was not all. Bullet also warned of the 
refraction of the visual ray caused by water vapor in the air. “This,” he explained to 
his readers, is “what mathematicians call parallax.” In describing the phenomenon, 
Bullet articulated a fully-fledged mechanical theory of evaporation, noting that the 
rays of the sun on the surface of the earth “excite and cause large particles of water 
to rise with the more subtle matter.”46 His method of correcting such errors called 
for two leveling teams, each compensating for the discrepancy in the other’s 
measurement. The technique was borrowed directly from astronomical practice for 
verifying the built-in deviation caused by non-centered lenses.
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Bullet’s source for this information is not difficult to find. His interest in the 
subject of large-scale leveling followed a number of recent advances in surveying 
by the Académie royale des sciences, in particular by the astronomer Jean Picard, as 
part of his research in geodesy and large-scale cartography. As reported in his offi-
cial account, Picard’s procedure involved establishing an arc of meridian between 
two distant localities by connecting between them a series of triangles formed by 
prominent landmarks—typically hilltops and church steeples. Triangulation had 
been used for this purpose since the early sixteenth century, but Picard revolution-
ized the technique. By incorporating telescopes into his surveying device—an astro-
nomical quadrant adapted to take horizontal measurements—he greatly expanded 
the distance between stations (Figs. 11 and 12). The resulting meridian ran through 

Fig. 10 The apparent level 
(from Bullet 1688)
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Fig. 11 Triangulation of the meridian between Malvoisine and Amiens (from Picard 1671)

A. Gerbino



25

Paris between Amiens and Malvoisine, a distance of about 154 km, calculated to the 
nearest third of a meter. By comparing the latitude at both ends of the meridian, 
Picard used this measure to determine the length of a terrestrial degree. His results 
for the Earth’s dimensions were more accurate than any previously attained and 
were cited well into the eighteenth century. In fact, they have been shown to be 
within 0.15 % of the latest values for this latitude (111.38 km).47

As a by-product of his meridian project Picard developed a second instrument: a 
telescopic level—the progenitor of Bullet’s—for measuring changes in elevation 
over long distances (Fig. 13). Unlike the telescopic quadrant, Picard’s level played 
no role in the construction of the meridian, which was established using only angu-
lar, horizontal measurements.48 The level was, therefore, purely a practical tool, 
brought about as an incidental outcome of the meridian project. Yet it was precisely 
this connection that legitimized it, for the results of the operation made it possible 
to utilize the device with previously unimaginable precision. As Picard pointed 
out, the newly derived value for the radius of the Earth now made it possible to 
calculate the rise of the apparent level over the true level, that is, the rate at which 
the visual ray of the telescope diverged from the curved surface of the globe. 
Anticipating Bullet, he even provided a table of measurements to compensate for 
that deviation in distances beyond 100 m. The telescope also prompted another 
important “philosophical” consideration: the problem of water in the atmosphere, 
which subjected the visual ray to downward refraction as it passed from thinner to 
denser air, thus raising the apparent level. In this case, rather than tinkering with 
readings Picard recommended the use of middle stations to avoid the problem 
altogether.49 What Bullet took from Picard’s work was not merely a newfangled 
instrument, but an optical-physical theory—partly adopted from astronomical 
practice—to explain and justify its use.

Picard’s Mesure de la terre—prestigious as it was—would hardly have been 
enough to give the telescopic level a broad appeal. People did notice, however, what 

Fig. 12 Triangulation of the Paris meridian, showing a night-time observation (from Picard 1671)
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Fig. 13 Telescopic level (from Picard 1671)
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the academicians did with it. In spring 1668, the academy began a long involvement 
with the gardens of Versailles, when they used the new instrument to establish the 
level of the Grand Canal. In the early 1670s, Picard and his colleagues systemati-
cally surveyed the terrain around the chateau and, from October 1677, developed 
the first branches of an extensive rainwater collection system to feed the garden’s 
many fountains. Picard himself set out the channels and determined their rate of 
descent. Six years later, the marquis de Louvois commissioned Philippe de La Hire 
to extend Picard’s system to the west, by damming several additional plains at con-
secutively higher elevations and linking them to the already existing conduits. In 
1684–1685, the monumental—if ultimately aborted—project for the canal de l’Eure 
offered the Académie even greater scope for their abilities.50 By the time Bullet 
published his own treatise, the telescopic level had been used to reshape the area 
around Versailles for 20 years.

The academicians knew that their work in this area had a potentially large and 
untapped audience. In 1684, La Hire edited and published Picard’s manuscript treatise, 
Traité du nivellement, and in 1689, he wrote his own work dealing substantially with 
the subject, L’Ecole des arpenteurs. Unlike Picard’s sumptuous folio volume, Mesure 
de la Terre, these were inexpensive, pocket-sized books oriented explicitly toward 
practitioners. The Académie’s efforts to publicize their work paid off. Indeed, the 
added combination of efficacy and glamour associated with such devices could hardly 
fail to have had a wider effect. References to them began to appear in the Journal des 
savants from 1677 and in popular books on practical geometry from 1685.51

Bullet may have learned about the instrument from one of these texts, but a direct 
route is more likely; as a royal architect, he travelled in circles close to the Académie. 
The architect-academician François Blondel, with whom Bullet had collaborated 
since the late 1660s, is one possible source. From 1672, the two men worked 
together on a new urban plan of Paris, the first since 1652 to coordinate the streets 
and landmarks in a rigorous geometrical survey. For an architect interested in the 
latest advances in surveying and cartography, the Académie’s work in this area 
would have been a natural focus of curiosity. More direct knowledge probably dates 
to 1685, during the planning of the canal de l’Eure. In spring of that year, Louvois 
summoned the Académie royale d’architecture to submit proposals for the aqueduct 
at Maintenon. A long elevation for the project is held among Bullet’s papers in the 
Stockholm Nationalmuseum.52 Whatever the ultimate source of Bullet’s knowledge, 
it is the result of this interaction that stands out. His treatise represents a serious 
effort to respond to the Académie’s discoveries in terms of everyday use. He was the 
first practitioner to digest these developments systematically and re-present them in 
a manner suitable for professional gardeners and architects.

A comparison between Bullet and Sangallo—artificial though it may be—serves 
to highlight some salient themes. Both men subscribed to a disciplinary identity that 
transcended their background in the building trades and that linked architecture with 
analogous—but quite distinct—forms of mathematical practice. Indeed, one of the 
striking similarities of this comparison is how prominently geography and astron-
omy figure in the work of each. Mathematics provided not only the basis of the 
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craft, but also the means by which the architect might exceed the limitations of the 
builder’s traditional background. New instruments were a particular focus of inter-
est, both for the routes that they opened in to more prestigious, “theoretical” fields 
and for the greater control and effectiveness that they promised in everyday prac-
tice. The ambitions and motivations of both men, finally, were stimulated by per-
sonal and intellectual relationships, formed in active communities of both scholars 
and “enlightened” practitioners.

The comparison suggests a broad continuity of mathematical expertise and inter-
ests between elite building practitioners in the early sixteenth and late seventeenth 
century, but some significant differences are also worth noting. The first is the role 
of institutional authority in fostering a culture of both “high” and “low” mathemat-
ics. Not only did the crown sponsor Picard’s high-status work in geodesy, the com-
missions for Versailles also spurred the Académie to develop the practical benefits 
of the research. The court provided, moreover, a pervasive patronage context that 
served to drive interest in the telescopic level. The instrument was effective and it 
had prestigious scientific origins, but it also contributed dramatically to the self- 
presentation of the king in an area that was both deeply important to him personally 
and central to contemporary notions of absolutist monarchy. The gardens at 
Versailles represented, above all, the control of nature as an expression of royal 
power. This patronage context—fully attuned to the material and political value of 
“utility”—contrasts markedly with that of Sangallo, who was able to pursue a 
broader interest in mathematical practice only in the shadow of his “official” archi-
tectural work.

A second difference involves the role of print. Whereas Sangallo’s mathematical 
interests were sustained by a humanistic and erudite print culture—witness his con-
tinued engagement with Vitruvius—manuscripts were evidently still an important 
source of information. The extent to which he traded, copied, and collected draw-
ings underlines both the personal nature of his collaborations and their origins in the 
workshop. Bullet, in contrast, had recourse to a stream of inexpensive publications, 
directed towards like-minded practitioners. Indeed, Bullet himself participated in 
this extended community, publicizing the new surveying techniques to a wider audi-
ence of architects, builders, and gardeners.

The third and most important difference has to do with the broadening scope of 
mathematical practice in the late seventeenth century, transformed not only by new 
inventions and techniques, but by novel physical claims about the natural world. 
These arguments—like Picard’s about the accurate size of the Earth—were both 
derived from instrumental practice and consequently fed back again into it. For 
Bullet, the telescope made the “theory” of surveying—that is, its optical and physi-
cal content—integral to its use. As a result, his directions for using the instrument 
were replete with “scientific” content wholly novel for a surveyor’s manual. What 
is perhaps most unexpected is the role that architects played in this cycle. Although 
mathematical instruments do not feature in the scholarship on early modern archi-
tecture, they were nevertheless central to the profession. They also show how the art 
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was connected to the broader intellectual currents of the early modern period, 
indeed, to the scientific revolution itself.

Comparing Bullet’s example to that of Stornaloco turns us back 180 degrees. The 
later episode—in which theory and practice directly informed each other—is the 
inverse of the earlier. By the late seventeenth century, Shelby’s distinction between 
the schoolman’s textual understanding of practical geometry and the mason’s 
empirical, “constructive” approach no longer held. Indeed, they two traditions of 
mathematics had folded into one another.

 Aims and Scope of the Volume

In addition to this long narrative trajectory, the three examples adumbrated above 
also suggest something of the diversity inherent in early modern architectural and 
mathematical practice. In the Milan cathedral episode, we see how mathematical 
knowledge—unequally distributed across disparate mathematical communities—
informed the design of an actual project. In Sangallo’s notes and drawings, we see 
mathematics shaping the wide-ranging interests of an individual architect, while 
Bullet’s publication on the long-distance level reveals how innovations in mathe-
matical and instrumental technology drove architectural practice. All three cases 
involve the interaction—sometimes incidental, sometimes concerted—of scholars 
and practitioners engaging in, for want of a less value-laden distinction, “high” and 
“low” forms of mathematical practice. Juxtaposing these case studies also serves a 
valuable end, for it evokes themes that broadly represent the historical evolution of 
this relationship. These transitions, though blunt, do highlight a number of broad 
realignments in the period covered by this volume. These include a marked increase 
in mathematical competence among practitioners, the shift from a culture of manu-
script to one of print, and the transformation in institutional and patronage 
structures.

The essays in this volume may also be considered as case studies of a kind. As 
discrete examples of the use of mathematics in architectural practice and discourse, 
they reveal the diverse forms this relationship took, while also greatly expanding on 
the issues presented above. Setting these historical episodes against each other is 
likewise intended to generate questions about development and change. Our contri-
butions are arranged chronologically and thematically into sections that follow a 
familiar subdivision into four broad historical “moments”: Antiquity, Renaissance, 
Baroque, and Enlightenment. We use these terms not to reify them, but merely as 
convenient shorthand, to group papers into coherent sections, while also marking 
out some basic historical shifts. Although the contributions cover a wide time span, 
they are linked by a basic premise: the use of mathematics was a defining feature of 
early modern architectural practice, one that both characterizes the period as a 
whole and helps to explain developments within it.
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 26. For the conference minutes for this period, see the transcription in Ackerman 
(1949, 108–11). Documents of the Opera of Santa Maria del Fiore in Florence 
show that Hindu-Arabic numerals begin to overtake Roman ones from 1411. 
See Cohen (2010, 16, 2013, 244). On Renaissance architects’ knowledge of 
arithmetic, see Carpo (2003) and Ann Huppert’s contribution in this volume 
(Practical Mathematics in the Drawings of Baldassarre Peruzzi and Antonio da 
Sangallo the Younger).

 27. See Shelby (1972). On the medieval Practica geometriae, see Saint-Victor 
(1991) and Victor (1979). For two recent attempts to challenge Shelby’s rather 
strict distinction between mathematical and masonic practices, see Zenner 
(2002) and Liefferinge (2010).

 28. Friedman (1988).
 29. Cohen (2008).
 30. Serlio (1996–2001, vol. 1, 5). Although purely practical in aim, the Primo Libro 

is nevertheless organized according to a deductive, “Euclidean” structure, in 
which preceding constructions furnish the concepts necessary to complete sub-
sequent ones. Alberti begins De pictura with a similar formulation. This method 
contrasts with Albrecht Dürer’s Underweysung der Messung (Nuremberg, 
1525), which is otherwise taken as Serlio’s model. See Lorber (1989).

 31. On Renaissance innovations in the theory and practice of structural design, see 
Sanabria (1982, 1989); and Betts (1993). On the rise of numeracy and arithme-
tic calculation, see Carpo (2003). For examples of the application of trigonom-
etry to town planning, see Friedman (1988, 117–48) and Jäger (2004).

 32. There were ancient and medieval precedents for such classifications. For one 
Hellenistic classification system, see Downey (1948). For medieval schemes 
and early Renaissance schemes involving fortification, see Wilkinson (1988). 
Alina Payne mentions several sixteenth-century examples in Payne (1999). For 
the English context, see Bennett (1993, 23–30).

 33. The drawings are held in the Gabinetto dei Disegni e Stampe degli Uffizi, 
Florence, Architettura (hereafter UA). See Frommel and Adams (1994–2000).

 34. See the still-useful overview by Ackerman (1954, 3–11). For a basic biography, 
see Bruschi (1983). On the role of drawings in Antonio’s career, see Frommel 
and Adams (1994–2000, vol. 1, 1–60).

 35. Pier Nicola Pagliara and Gian Luca Veronese, “U 856A recto” and “U 856A 
verso,” in Frommel and Adams (1994–2000, vol. 1, 156–58). William E. 
Wallace, however, notes that there is also a degree of literalism in Sangallo’s 
arithmetic, which appears rather alien to modern modes of calculation. See 
Wallace (1995).

 36. See Maccagni (1993, 1996). An earlier example of such a manuscript from the 
hand of an architect is Francesco di Giorgio Martini’s practical geometry, 
focusing largely on surveying problems. See Martini (1970).

 37. Pier Nicola Pagliara and Gian Luca Veronese, “U 857A recto,” in Frommel and 
Adams (1994–2000, vol. 1, 158). Also see Veronese, “U 851A verso,” and “U 
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1478 recto,” in Frommel and Adams (1994–2000, vol. 1, 154, 240–41). On Piero’s 
mathematics, specifically his Trattato d’abaco, see Davis (1977) and Field (2005, 
6–32, 119–28). On Pacioli, See Jayawardene (2008) and Baldasso (2010). On 
Sangallo’s study of Vitruvius, see Pagliara (1986, 46–55, 1988).

 38. Nicholas Adams, “U 850A recto” in Frommel and Adams (1994–2000, vol. 1, 
153–54). On the star chart, see Maria Losito, “U 1459A recto and verso,” in 
Frommel and Adams (1994–2000, vol. 1, 231–32). Also see Snyder (1993, 
40–43) and Shirley (2001).

 39. In addition to recording instruments himself—see his similarly detailed study 
of a trecento quadrant (U 1455A recto)—Antonio also collected such drawings. 
Scaglia cites anonymous reproductions of two other Moorish astrolabes among 
the architect’s former papers. See Gustina Scaglia, “U 1454A recto and verso,” 
in Frommel and Adams (1994–2000, vol. 1, 227–29). Sangallo’s transcription 
skills appear to go well beyond those of his contemporaries. On Italian artists’ 
fascination with Kufic script, see Mack (2002).

 40. See Nicholas Adams, Pier Nicola Pagliara, and Gian Luca Veronese, “U 1491A 
recto and verso,” in Frommel and Adams (1994–2000, vol. 1, 246–47). For 
Sangallo’s preparatory studies, see 856Ar, 1456Ar, 1457Ar, 1466Ar, 1499Ar, 
1500Ar, 3949Ar. On the history of the proportional compass, see Camerota 
(2000, 5–19). On Galileo’s sector, see Drake (1978). On the later adaption of 
the sector to architecture in the seventeenth and eighteenth century, see Bruti 
(1627) and Gerbino and Johnston (2009, 111–51).

 41. See Gustina Scaglia, “1463A recto and verso,” in Frommel and Adams (1994–
2000, vol. 1, 233–34). For the most recent biography, see Pagliara (2001). On 
Giocondo’s Vitruvius, see Juřen (1974), Ciapponi (1984), and Rowland (2011). 
On his mathematical manuscripts, see Tura (2008).

 42. On this subject, also see Thoenes (1990) and Carpo (2003, 463, 468–9). On 
Sangallo’s drawing conventions, see Lotz (1977) and Lefèvre (2004).

 43. Bullet (1688). More broadly on this subject, see Gerbino (2008).
 44. Bullet (1688, Unpaginated Preface).
 45. Bullet (1688, 29–35).
 46. Bullet (1688, 60–65); Gerbino (2008, 89).
 47. Picard (1671). See also Taton (1987). For the comparison of modern results 

with Picard’s, see Levallois (1987). For a longer perspective, see Gallois (1909). 
More recently, see Pelletier (2002).

 48. Changes in elevation between stations were disregarded, as these were consid-
ered to be minimal in relation to the circumference of the Earth. Picard (1671, 
16).

 49. Picard ignored refraction while establishing the meridian, as this phenomenon 
affected the direction of the visual ray only on the vertical plane, leaving the 
angular measurements between stations unaltered. Picard (1671, 27–28).

 50. For Picard’s work on the reservoir system, see Loriferne (1987). For a still- 
useful overview of the whole water management system, see Barbet (1907). For 
the Académie’s later involvement, see Gerbino (2008).
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 51. Journal des sçavans (1677, 227–28); (1678, 441–43); (1679, 215–16); (1680, 
21–24, 174–76, 275–76). Also see Deshayes (1685, 9); Du Torar (1688, 182–
85); Clermont (1693, 112); and Ozanam (1693, 241–44). On the reception of 
the instrument, see Gerbino (2008).

 52. On Bullet’s collaboration with Blondel, see Gerbino (2010, 71–117). On his 
later involvement at Versailles, see Lemonnier (1911–1929, vol. 2, 71–91). For 
the aqueduct drawing, see Walton (1985, 52–53).

 Photographic Credits

Archivio della Fabbriceria di San Petronio: Fig. 1
Author: Fig. 2
Beltrami (1887, 73): Fig. 3
Uffizi, Gabinetto dei Disegni e Stampe (by permission of the Ministero dei beni e 
delle attività culturali e del turismo): Figs. 4–9
Filippo Camerota: Fig. 10
Bibliothèque Nationale de France : Figs. 11–13
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Introduction



             Our fi rst section, on Vitruvius, may appear out-of-place in a book largely about 
early modernity, but its inclusion is calculated. On the level of practice, this section 
shows that the use of mathematics in architecture long predated the Renaissance. 
Indeed, the connection persisted in some form through the middle ages. What does 
seem to have disappeared in those intervening centuries was a self-consciously 
learned architectural practice, infl ected by a textual and philosophical tradition of 
mathematics, an infl uence evident throughout  De Architectura . It was this union of 
practice and erudition that Alberti largely resurrected, a fact that points to the other 
reason for beginning this volume with some discussion of Vitruvius. The study of 
this ancient author—along with the infl uence of scholarly humanism as a whole—
was transformative for both the self-identity and intellectual culture of the profes-
sion. Any attempt to recuperate the meaning of this text was necessarily bound up 
with the whole apparatus of humanist mathematics. 

 The mathematical content of the  De Architectura  is diverse and diffuse, but the 
core surely lies in the notion of  symmetria . Introduced at the head of Book 3, the 
concept underlies the design of temples and the proportional schema for what we 
now think of as the orders (Ionic in Book 3, Doric and Corinthian in Book 4), but, 
as Pierre Gros has pointed out, its import extends throughout the treatise, as a con-
stant applicable to virtually all forms of architectural practice.  1   In essence,  symme-
tria  means commensurability, the application of a common measure, or module, to 
all the components of a complex work. For Vitruvius, the principle is more than 
merely operative, it is rooted in nature. The unity that it confers to the design of 
buildings fi nds an analogue in the human body, which exhibits a similar modular 
rigor. Human proportions, Vitruvius implies, using his own Polyclitus-inspired 
canon, evince the same thorough rationality that the architect must bring to the art 
building. The famous  homo bene fi guratus  inscribed in a circle and square—over-
lapping images of perfection—confi rms this “natural” harmony. These Platonic-
Pythagorean overtones continue with a disquisition on the characteristics of the 
“perfect” numbers ten and six. 

   Part I 
   Foundations 
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 In addition to this metaphysical tradition, the  De Architectura  also reveals some 
knowledge of demonstrative geometry, at least in its more popular form. Book 9 on 
sundials begins with a celebration of Greek scientifi c heroes, whose “discoveries” are 
contrasted with and, to some extent, modeled on the exploits of Olympic athletes. It is 
here that Vitruvius trumpets the solution to several famous ancient mathematical 
problems, beginning with the “doubling of the square” ascribed to Plato, that is, how 
to fi nd the side of a square twice the area of the original. The author continues, moving 
from the Pythagorean Theorem to Archimedes’s crown problem and fi nally to 
Archytas and Eratosthenes’s solutions to the “Delian” problem, that is, how to fi nd the 
side of a cube twice the volume of the original (Book 9, Pref.1.14). Despite his enthu-
siasm, it is evident that Vitruvius’s understanding is not that of a mathematician, but 
of a practitioner. Not only are the solutions relayed in anecdotal form, they are also 
couched in material, instrumental terms. Vitruvius explains the doubling of the square, 
for example, as a surveying problem, while the Pythagorean Theorem appears as no 
more than a method for making accurate set squares by means of joining a 3-, 4-, and 
5-foot ruler. More telling is that the author does not appear to see the relationship 
between the two solutions in terms of the properties of right triangles. For him, the 
connection lies rather in their ease of application, in particular, the fact that they allow 
the practitioner to avoid dealing with irrational magnitudes. Some hint of this discom-
fort with incommensurable quantities emerges when Vitruvius explains that the side 
of a doubled square “is not discovered by means of numbers.” As Pierre Gros has 
noted, geometrical constructions that involve rotating squares or diagonals are rare in 
the treatise, and when they do appear, Vitruvius is careful to subsume them in a larger 
net of simple whole-number relationships.  2   

  De Architectura  is clearly more of a manual than an academic treatise. Despite 
the learned references on the subject, it is evident that Vitruvius understands geom-
etry as a means of execution, not a source for refl ection. That is not to say that his 
design protocols are devoid of theoretical content, but that they tend to disguise that 
content in the form of operative techniques. In fact, historians have found evidence 
throughout the treatise of a complex and sophisticated intertwining of number and 
geometry, presented as a relatively simple and straightforward series of proportional 
instructions. As Louis Frey has argued, several of Vitruvius’s recommendations for 
the design of colonnades, capitals, and entablatures reveal a carefully interlinked 
succession of “harmonic” and, in one case, “geometric” proportions. The former are 
related as terms of the triplets 5:7:10 and 12:17:24, while the latter are derived from 
the ratio 17:38.  3   One property of such proportions is that they provide whole- number 
approximations for the “irrational” geometry of the square and the double-square 
rectangle. Because they can be visualized by “rotating” sides and diagonals, these 
ratios may have served to reconcile geometrical form and arithmetical measure in a 
way that preserved the desirable—even mystical—characteristics of both. Whether 
Vitruvius understood the basis of these ratios is an open question. The text makes no 
mention of the theory of proportional means or of rational approximations as they 
were set out, for example, by Euclid. Given this silence, it is more likely that 
Vitruvius merely lifted the ratios from a Hellenistic building manual, a mathematical 
compilation, or some other intermediate source. 

 I Foundations
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 In his essay, Bernard Cache casts similar light on another part of  De Architectura : 
Vitruvius’s instructions for the layout of Roman houses. Although again presented 
under a practical veneer, these protocols differ in both kind and complexity from 
those found elsewhere in the book. Vitruvius regulates the elements of the courtyard 
not with a set of predetermined values, but with series of ratios that vary according to 
the courtyard’s own dimensions. Instead of a fi xed rule for all the parts of a design—
otherwise the norm throughout the treatise—these instructions generate a series of 
 possible  proportions, under the rubric, “if  x , then  y ”. Moreover, as Cache shows, 
those potential outcomes are themselves linked by a proportional rule. Although this 
system does not conform to modern notions of a curvilinear function, the variation in 
series that it produces does appear to be mathematically continuous. This circum-
stance—fi rst noticed by Auguste Choisy more than a century ago—raises the ques-
tion of whether these instructions were derived from a learned mathematical tradition. 
Cache considers the possible origins of such a system, focusing especially on con-
temporary graphical practices in ancient drawing and construction. 

       Notes 

     1.    Vitruvius ( 1999 , 46–48, 188–91) and Vitruvius ( 1990 , 3–11, 55–63). Also see 
Gros ( 2006 [1989] ); Wilson Jones ( 2000 , 40–43); Gros ( 2001 ); and more 
recently, Hon and Goldstein ( 2008 ).   

   2.    See Vitruvius ( 1999 , 107–109, 281–82) and Vitruvius ( 1969 , xix–xxi). Also see 
Gros ( 2006 [1976] ).   

   3.    Frey ( 1990 ). Admittedly, the terms harmonic and geometric are uncomfortably 
reminiscent of the intricate geometrical speculations that characterized older 
scholarship on proportions. The advantage of Frey’s analysis is that it accounts 
for each of the examples mentioned above in terms of the numbers Vitruvius 
himself provides. Frey focuses on four cases: the diastyle temple with a four-
column or tetrastyle portico, the eustyle temple with a six-column or hexastyle 
portico, the Ionic capital, and Ionic entablature.           
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       It is important to balance Vitruvius’s discussion of the architectural orders, centered 
on temples, with his sections on civil and, in particular, domestic architecture. It is 
in this domain, the subject of Book 6 (Chapters 3 and 4) of the  De Architectura , that 
the relationships implied by the term  symmetria  appear explicitly, in both functional 
and aesthetic terms and without interference from the question of whether the rec-
ommended ratios are affected by the transformation of wooden temples to stone 
ones. Based on a review of his rules for designing  atria , the Vitruvian conception of 
order as  genus  appears not as a fi xed set of ideal relationships laid down once and 
for all, but as a series of variations in proportion. While certainly not obeying the 
concept of “function” as developed in the seventeenth century, these variations can 
nevertheless be shown to follow continuous curves interpolated from sets of derived 
values. In this respect, the Vitruvian project fi nds contemporary expression in 
today’s CAD/CAM software. 

    The Atrium of the Country House 

 The instructions that Vitruvius gives for the plan of country houses begin with the 
atrium, the large central court around which the parts of the  domus  are distributed 
(Fig.  1 ). The  compluvium , the unroofed space in the center of the atrium, owes its 
name to the fact that it allows rainwater to collect in the  impluvium , or cistern, 
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below. In addition to the lateral wings, the  alae , the other principal elements of 
Vitruvius’s account are the  fauces , a passage leading from the vestibule of the house, 
and the  tablinium , at the other end of the atrium. As its name suggests, this room 
may have served to house the  tabulae , or wax covered tablets inscribed with the 
accounts of the house, but it may also have served other purposes. Varro, for example, 
relates that it was used to host meals in summer.  1  

   Vitruvius’s rules for designing  atria  consist essentially of a series of instructions, 
in which the principal dimensions of the component spaces depend on each other 
according to the following sequence, with the preceding value determining the 
subsequent:

 –    length of the atrium  
 –   width of the atrium  
 –   width of the wings ( alae )  
 –   width of the  tablinium   
 –   width of the  fauces    

However, instead of the preceding value being linked to the next by a fi xed proportion, 
Vitruvius subjects the four relationships between these fi ve elements to what we 
would call dependant variables. We will look at these case by case.  

  Fig. 1    Parts of the Roman Atrium, from  De Architectura , Book 6, Chapter 3.4       
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    The Length-to-Width Ratio of the Atrium,  A:a  

 The fi rst relation is described as depending on a typological choice between three 
genres of atrium of increasing width. Given a length  A , the width  a  of the atrium is 
calculated by choosing one of three proportions, formulated in the following manner:

 –    dividing the length in 5 parts, 3 will be given to the width  
 –   dividing the length in 3 parts, 2 will be given to the width  
 –   a square being constructed on the width, the length will be equivalent to the 

diagonal.   

The series poses a problem of consistency: in the fi rst two formulations, it is the 
length  A  that determines the width  a , while in the third it is the width that deter-
mines the length. The third formulation, moreover is different in kind, as it is geo-
metrical, while the fi rst two are numerical. In any event, the instructions seem to 
correspond to a choice between one of three types of rectangle (Fig.  2 ).

       Aisle Width to Atrium Length,  L:A  

 Next, Vitruvius moves on to the rules for calculating the width of the aisles  L . These 
are determined by the length of the atrium  A . More precisely, the aisle widths are 
given in terms of a proportion, aisle width to atrium length ( L : A ), which itself varies 
as a function of the actual length of the atrium. Vitruvius’s instructions are given in 
Table  1 . We might call this a “second order” variation,  L = f(L:A) , where the ratio 
 L : A  itself depends on  A . Another way of expressing this relationship is by the for-
mula  L = f(g(A)) .

   Auguste Choisy was the fi rst to note, in his 1909 translation of Vitruvius, that the 
proportions of the  alae , as they diminish with respect to the length of the atrium, 
seem to imply a continuous variation. If the mean points of the fi ve atrium lengths 
 L  (35, 45, 55, 70, and 90 ft) are plotted on a graph against the corresponding ratios 
of atrium length to aisle width  L:A , the resulting points very closely approximate a 
curve, which Choisy identifi ed as a hyperbola (Fig.  3 ).  2   He also found evidence of 

  Fig. 2    Variations of the Roman Atrium (ratio  A / a ), from  De Architectura , Book 6, Chapter 3       

 

Proportion and Continuous Variation in Vitruvius’s De Architectura



50

an attempt to approximate continuous variation in two other sequences that Vitruvius 
had recommended: the optical corrections for the width of columns (Book 3, 
Chapter 3) and for the height of architraves (Book 3, Chapter 6), implying a parab-
ola and hyperbola respectively.  3  

   That Vitruvius’s instructions-in-series translate into a continuous variation is 
likely. As Choisy had suggested, the recommendations in these cases may be sim-
plifi ed rules-of-thumb derived from a learned mathematical tradition. But which 
tradition? Where did these recommendations originate? In one interesting analogy, 
Choisy related the curve implied by the rules for  atria  to the  scamilli impares , the 
“unequal benches” mentioned by Vitruvius in Book 3 (Chapter 4). The  scamilli , 
understood today either as small leveling blocks or as the ordinates of a full-scale 
construction drawing, are described in the text as the means of producing the subtly 
rising curve of the stylobate, or temple platform. It is by reference to the process of 
interpolating a curve, in this case that of a light chain hanging from the edges of the 
stylobate (inverted to produce a shallow mound), that the technique can be linked to 
the description of the atrium.  4   

  Fig. 3    Variations of the ratio  L / A , from  De Architectura , Book 6, Chapter 3.4       

   Table 1    Vitruvius’s instructions for determining the width of the aisle  L  in relation to the length 
of the atrium  A    

 Atrium length  Ratio  L:A as recommended by Vitruvius   Equivalent fractions 

 From 30 to 40 ft  1:3  2/6 (0.333) 
 From 40 to 50 ft  1:3.5  2/7 (0.285) 
 From 50 to 60 ft  1:4  2/8 (0.250) 
 From 60 to 80 ft  1:4.5  2/9 (0.222) 
 From 80 to 100 ft  1:5  2/10 (0.200) 
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 In a very stimulating article, Gilbert Hallier has picked up this question, adducing 
other examples of this phenomenon.  5   Hallier also refers to the design of sundials, 
such as the monumental one drawn on the pavement of the Campus Martius, near 
the Ara Pacis. The curves of the dial—some 150 m long—would have been traced 
by the tip of the shadow of the obelisk through the day at different times of the year. 
Here we are indeed dealing with curves plotted point by point. Moreover, those 
curves are hyperbolas, formed by the intersection of the horizontal dial plane with 
the cone of solar rays passing by the tip of the gnomon. 

 This suggestion, however, probably reaches too far. Although the properties of 
hyperbolas were known at least since the time of Menaechmus in the fourth 
century BCE, we have no evidence that ancient astronomers had conceived the lines 
of sundials in this way. Book 9 of  De Architectura , the sole surviving ancient treatise 
on sundials, makes no mention of the kinds of curves produced by the moving 
shadow of the gnomon. Nor does the word  hyperbola  appear in the second-hand 
references that we have of the treatise by the astronomer Diodorus of Alexandria 
concerning a method for drawing meridian lines.  6   

 Hallier probably also goes too far in the other direction, attributing the curve of 
variation implied in the ratio ( L : A ): A  to the geometrical tradition stemming from 
Apollonius of Perga and Pappus of Alexandria. Apollonius had no doubt gathered 
most of the elements for solving the problem of constructing a conic through fi ve 
points, but, as Heath explains, such constructions are not found in his  Treatise on 
Conic Sections .  7   Much later, some three centuries after Vitruvius, Pappus would 
produce a method for constructing an ellipse from fi ve given points, working from 
a problem that involved fi nding the diameter of a column from a fragment. Pappus’s 
solution, however, is not general and supposes that four of the fi ve points are found 
on two parallel lines.  8   In fact, the construction of a conic section from fi ve arbitrary 
points derives from a theorem of projective geometry that was not formulated 
explicitly until the nineteenth century.  9   Despite its color of practical usefulness, the 
study of conics does not seem to have elicited any direct application, either in per-
spective or gnomonics. To take one striking example, the concept of the visual cone 
formed by rays from the eye or from a specifi c object is well attested in ancient 
times, but its consequences—for a system of representation consisting in the inter-
section of the cone by a “picture plane”—are nowhere picked up. Euclid himself, 
who is reported to have written his own treatise on conic sections, describes the 
image of chariot wheels viewed obliquely as oblong, not as ellipses.  10   

 These considerations must necessarily invalidate Hallier’s conjectures. The his-
torical problem posed by Vitruvius’s text involves not the construction of a curve 
from given points or lines, but rather the determination of fractional values in series 
in a way that happens to approximate a certain curve. It follows, too, that these 
ratios cannot have originated as a hyperbola. Despite the seeming accuracy of 
Choisy’s formulas, Greek mathematical thought did not provide the techniques nec-
essary to model such complex curves arithmetically. These objections, however, do 
not fundamentally alter the fact that we are dealing with a second order variation, 
that is to say, a variation in proportional relationships where the coeffi cient  L:A  is 
itself depending on the variable  A , expressed in increments and interpolable, 
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moreover, in a continuous form. More importantly, as Hallier shows, the ratios seem 
to correspond to archaeological reality, falling within a cluster of points produced 
by the analysis of the remains of roughly 100 Roman villas.  11   

 This formulation of variation clearly goes well beyond the simple concept of 
proportion, strictly speaking. That is not to say that Vitruvius somehow anticipates 
the modern concept of “function”, which would only appear in the seventeenth cen-
tury. For this, Vitruvius would have had to overcome a deeply rooted epistemologi-
cal obstacle to the concept of a change  in  change. To Aristotle, for example, change 
was an irreducible category belonging to the order of the pure event. It is worth 
noting that Galileo himself did not go so far as to elaborate a concept of accelera-
tion.  12   This Vitruvian variation is, instead, best seen as one of many incremental 
steps necessary for the formation of the concept of the continuous mathematical 
function. One of the interests of the  De Architectura  lies precisely in this and other 
such contributions to the archeology of the modern sciences. 

 For his part, Herman Geertman has developed a competing interpretation of the 
Vitruvian ratios of the atrium. Geertman sees the ratios as an attempt to simplify and 
approximate not a curve, but a diminishing geometric series defi ned by the ratio 
1:2√n. This interpretation has a very different orientation in that it focuses not on 
an implied continuity, but on the discontinuity resulting from the approximate roots 
of a series of consecutive integers.  13   Vitruvius’s instructions, as interpreted by 
Geertman, appear in Table  2 .

   This interpretation has a number of strengths. In the fi rst place, it is based on a 
geometric pattern conceivably rooted in an ancient design technique, namely length-
ening a given rectangle by means of its diagonal. At full-scale, such a procedure 
would have made use of stakes and string (Fig.  4 ). Moreover, similar ratios appear 
in other passages of the text. Geertman notes that Vitruvius recommends apparent 
approximations of 1:√5 for the width and height of doors in Doric temples and of 
1:√6 for Ionic temples (Book 4, Chapter 6). Finally, Geertman’s interpretation rests 
on methods of approximating square roots that would conceivably have been codi-
fi ed at least in the fourth century BCE. As Geertman and others have argued, 
Vitruvius may have inherited standard approximations for such values from 
Hellenistic mathematical texts.  14  

   The main weakness of the hypothesis, however, relates to this last point: 
Geertman’s series relies on at least one rather imprecise approximation, in 

   Table 2    Vitruvius’s proportional series  L : A  (columns 1 and 2), as interpreted by Herman Geertman 
(columns 3 and 4) (to be read with Fig.  4 )   

 Atrium length 
 Ratio  L:A as recommended 
by Vitruvius  

 Geometrical 
series 

 Approximation 
used 

 From 30 to 40 ft  1:3 = 2/6 (0.333)  1:2√2 (0.354)  √2 ≈ 15/10 
 From 40 to 50 ft  1:3.5 = 2/7 (0.289)  1:2√3 (0.289)  √3 ≈ 17.5/10 
 From 50 to 60 ft  1:4 = 2/8 (0.250)  1:2√4 (0.250)  √4 ≈ 20/10 
 From 60 to 80 ft  1:4.5 = 2/9 (0.222)  1:2√5 (0.224)  √5 ≈ 22.5/10 
 From 80 to 100 ft  1:5 = 2/10 (0.200)  1:2√6 (0.204)  √6 ≈ 55/10 
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particular, that of √2 to 15/10 or 3/2. This would have been among the least accu-
rate of the available approximations for this value, differing from the next closest 
(7/5) by more than 6 %. It also requires explaining why Vitruvius, a few lines above, 
where he lists three types of atrium by length to width, would have distinguished the 
ratio 3/2 from the geometrical process leading to the ratio √2/1. This divergence 
may spring from an inaccuracy in the manuals or graphical constructions that the 
author relied on, but it is nevertheless jarring, given his earlier instructions. Perhaps 
the most incongruous aspect of this hypothesis is that it ignores the straightforward 
and consistent series that Vitruvius himself provides, to replace it with a conjectural 
and more complicated one.  

    Tablinium Width to Atrium Width,  T:a  

 In this regard, the case of the atria is certainly exemplary. For if we continue the 
examination of the other elements, namely the  tablinium  and  fauces , we fi nd the 
same characteristic approach. Regarding the  tablinium , Vitruvius says explicitly:

  For smaller atria cannot have the same principles of symmetry that larger ones do. If we use 
the proportions of larger atria in the design of smaller ones, the  tablinum  and the  alae  will 
be too small to be functional. If, on the other hand, we use the proportional systems of 
smaller atria to design the larger ones, the dependent rooms will seem vacant and over- 
sized. Therefore I thought that the principles for the dimensions of  atria  should be recorded 
precisely in the interests of function and appearance (Book 6, Chapter 3.5).  15   

 On this basis, the architect explains that the ratio  T:a , which determines the width 
of  tablinium  as a function of the width of the atrium, will be 2/3 for  atria  20 ft wide, 
1/2 for  atria  30–40 ft wide, and 2/5 for those between 40 and 60 ft wide. Note here 
that the author provides three increments rather than fi ve. This reduction in the 
number of variables refl ects a different approach to dealing with the subsidiary 
spaces of the atrium, also evident in the rules for dealing with entryways, or  fauces , 
below. For the moment, it is worth noting the mathematical consequences of this 
change. Although three increments might still plausibly correspond to points on a 
continuous curve, they alone cannot provide the construction of the curve itself, at 

  Fig. 4    Generation of 
rectangles of the ratio 2√n       
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least for a conic section. This consideration, in case any more were needed, further 
weakens the hypothesis that the architect had conceived of these points as a 
hyperbola.  

    Fauces Width to Tablinium Width,  f:T  

 The same reasoning that characterizes the discussion of the  alae  and  tablinium  also 
applies to the  fauces , but with a still further reduction in the number of increments. 
For these spaces, Vitruvius declares simply: “The entryways for smaller atria should 
be determined by the width of the  tablinum , minus one-third; those of the larger 
 atria  should be one-half (Book 6, Chapter 3.6)”  16   This formulation, reduced now to 
only two values, indicates that Vitruvius intended his readers to adopt a different 
approach in determining the dimensions of this room. Rather than moving abruptly 
between only two ratios, it is more likely that he expected practitioners to gradually 
interpolate the proportions for  atria  of intermediate size, even according to a linear 
variation, as suggested by the two extreme values of the ratio of the  fauces  to  tablin-
ium f/T . In the absence of explicit rules, Vitruvius seems to be recommending a 
trial-and-error process of interpolation, reminiscent of the notion of “correction”. 
This idea, mentioned throughout  De Architectura , is always described with a com-
bination of two words,  adiectio / detractio , as though to suggest that the method pro-
ceeds by estimation, sometimes by adding, sometimes by taking away. In such 
cases, Vitruvius implicitly calls on the architect to exercise his own qualities of 
 ingenium  and  acumen , talent and skill. 

 Although often discussed in relation to the use of optical refi nements, the dual 
concept  adiectio / detractio  is not confi ned to that fi eld. The terms appear, in fact, in 
the introduction to the chapters on the atrium, in a general formulation that relates 
only partially to the visual appearance of a building. Here,  adjectio / detractio  appear 
as an  ad hoc  method of fi ne-tuning a given proportional system:

  Thus, once the principle of the symmetries has been established and the dimensions have 
been developed by reasoning, then it is the special skill [ acuminis ] of a gifted architect to 
provide for the nature of the site, or the building’s appearance, or its function, and make 
adjustments by subtractions or additions, should something need to be subtracted from or 
added to the proportional system, so that it will seem to have been designed correctly with 
nothing wanting in its appearance (Book 6, Chapter 2.1).  17   

 This explanation for correcting a set of “symmetries” seems to point to a visual, 
or more specifi cally, a graphical method of interpolation. To determine the correct 
ratio  f/T  between two extreme values requires that it be visually calibrated accord-
ing to the length of the atrium, which is itself situated between the larger and the 
smaller  atria . In addition, the coeffi cients of proportionality governing the relation-
ships of the  tablinium  to the atrium and of the  alae  to the atrium themselves vary 
depending on the length of the atrium. These intermediate cases, defi ned only by a 
limited set of values, would be diffi cult to determine without the aid of an elemen-
tary diagram. 
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 We know of similar graphical procedures in ancient design and construction. 
Aristotle—an unusual source in this context—speaks of a fl exible, leaden rule used 
to replicate molding profi les.  18   The  De Architectura  itself provides other examples. 
Like the passage on the  scamili impares , they appear to relate to the point-by-point 
construction of curves. In the chapter on baths, Vitruvius describes how to hang a 
plaster ceiling from metal arcs suspended from rafters in order to mimic a curved 
vault (Book 5, Chapter 10.3).  19   In explaining the construction of the water screw, the 
author gives explicit instructions for wrapping strips of willow or chasteberry 
around a beam so as to build up a helicoid (Fig.  5 ). This lattice of lateral and longi-
tudinal strips forms a cylindrical graph, on which one literally plots the path of the 
spiral: “Where the lines have been drawn along the length, the transverse scorings 
create intersections, and these intersections determine specifi c points (Book 10, 
Chapter 6.1).” These supple branches, coated with pitch, constitute the physical 
equivalent of our contemporary curve-approximating software for Beziers, splines 
or NURBS. The word “spline” derives, in fact, from a craft context of just the sort 
Vitruvius describes, to designate fl exible strips forced to pass through specifi ed 
points. We can imagine an analogous attempt to regulate the proportions of the 
atrium by virtue of drawn plans. In some respects, these would follow a pre- 
established proportional or schematic logic, but in others, they would have to be 
estimated more-or-less faithfully by the eye. Indeed, Vitruvius emphasizes the role 
of visual judgment in this process, “so that [the whole] will seem [ videatur ] to have 
been designed correctly with nothing wanting in its appearance [ in aspectu ].”  20  

   Whatever the tools used to achieve it, it is evident that Vitruvius’s conception of 
the atrium possesses a high degree of elaboration. Taken as a whole, his instructions 
clearly form a system or, more precisely, a variational one. The consistency of the 
system is not always easy to achieve, but it is described well enough that we can 
construct an organizational diagram for it—the kind required, incidentally, in 
computer- aided design and manufacturing (Fig.  6 ). We see, in this case, that two of 
the interrelated variables—the length of the atrium, and the ratio of its length to its 

  Fig. 5    Interpolation of an 
Archimedean screw using 
splines, from  De 
Architectura , Book 10, 
Chapter 6.2       
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width—launch the two deductive chains that determine the dimensioning of the 
wings as well as that of the  fauces  and  tablinium . Everything therefore depends on 
the fi rst two decisions regarding the length and type of the atrium.

   That Vitruvius’s ratios for the atrium cannot be related to modern continuous 
functions, such as a hyperbola, should come as no surprise. Yet, it is also clear that 
the proportional series varies in a way that seems to imply some sort of interpolated 
continuity. This is what I have termed—for want of a better expression—a “second 
order” variation. To be sure, modern mathematicians would have a totally different 
notion of continuity, but it is enough only to open an up-to-date CAD-CAM pack-
age to see that Vitruvius’s methods are in other ways not far from our own. To 
describe a continuous variation, all that is necessary is to input a set of values and 
let the software interpolate the resulting curve.  

                        Notes 

     1.    The explanation given by Vitruvius here closely refl ects the defi nitions that 
Varro gives for the words  domus ,  aedes ,  cavum ,  aedium ,  impluvium , and  atrium . 
See Varro ( 1977 –1979, 1st ed. 1938, 151–53) (Book V, 160–161). Further on 
the  tablinium , see Riposati ( 1939 , Book I, 29).   

   2.    The curve corresponds to the equation  L:A  = 1/9 + 70/9 (1/ A ). His values for all 
fi ve points come within three decimal places of Vitruvius’s fractions. Solving 
for the atrium width  L , reduces this to the linear equation  L  = 1/9A + 7.77 ft. 
Choisy ( 1909 , vol. 1, 230–36; vol. 4, pl. 62, Fig. 3).   

   3.    Choisy ( 1909 , vol. 1, 149–156; vol. 2, pl. 30, 31).   
   4.    See the very detailed commentary in Vitruvius ( 1990 , 139–145), which pro-

vides several interpretations for controlling the curvature of the stylobate. 

  Fig. 6    Organizational 
diagram for the composition 
of the atrium, based on  De 
Architectura , Book 6, 
Chapter 3.3 [The  boxes  
denote entities to be 
dimensioned, while the 
 unframed terms  refer to the 
variable ratios that govern 
them.]       
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For the current state of the question, including recent archaeological discoveries, 
see Bankel ( 1999 ) and Haselberger ( 1999 ).   

   5.    Hallier ( 1989 ).   
   6.    This method, known from Arabic sources and the surviving writings of the 

agrimensor Hyginus, derives the meridian from any three shadows made during 
the day. See Neugebauer ( 1975 , vol. 2, 840–43). My thanks to Bernard Vitrac 
for bringing this important work to my attention.   

   7.    See Heath ( 1896 , cli–clvi).   
   8.    See Pappus of Alexandria ( 1982 , Book VIII, chapter 16). Also see Heath ( 1921 , 

vol. 2, 434–437).   
   9.    The theorem was discovered independently by William Braikenridge and Colin 

Maclaurin c. 1733. See Coxeter ( 1964 , 85).   
   10.    See, for example, Euclid,  Optics , see Defi nition 2 and Proposition 46. On the 

concept of the visual cone, with reference to Roman sources, see Haselberger 
( 1999 , 57–58).   

   11.    Hallier ( 1989 , 199).   
   12.    Panza ( 1989 , Chapter 2).   
   13.    Geertman ( 1984 ).   
   14.    See Heath ( 1921 , vol. 1, 60–63; vol. 2, 323–24). Also see Gros ( 2006  [1976]).   
   15.    Vitruvius ( 1999 , 79).   
   16.    Vitruvius ( 1999 , 79).   
   17.    Vitruvius ( 1999 , 78).   
   18.    Aristotle describes this building tool in terms of a metaphor for laws that are 

applicable only to particular situations. “In fact this is the reason why all things 
are not determined by law, that about some things it is impossible to lay down 
a law, so that a decree is needed. For when the thing is indefi nite the rule also is 
indefi nite, like the leaden rule used in making the Lesbian moulding; the rule 
adapts itself to the shape of the stone and is not rigid, and so too the decree is 
adapted to the facts.” Aristotle ( 1925 , 1137b).   

   19.    Vitruvius ( 1999 , 72).   
   20.    “…uti id videatur recte esse formatum in aspectuque nihil desideretur.” 

Vitruvius ( 1999 , 78).      
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             Part II, on fi fteenth- and sixteenth-century Italy, also considers the use of mathemat-
ics in design, particularly as it is embedded in the profession’s material culture. The 
following three essays concentrate on Renaissance architectural drawings, instru-
ments, and, not least, buildings themselves. This shift in emphasis allows our con-
tributors to focus on the physical character of the design and construction process, 
an aspect of architectural practice that is often obscured by idealizing, literary form 
of the treatise. One of the overarching themes of this section has to do with the way 
mathematical techniques of design were both stymied by—and ultimately adapted 
to—the constraints posed by the site itself. Measurement and scale drawing, in par-
ticular, were crucial in translating the design into built form, but these techniques 
were themselves subject to broader changes in mathematical knowledge during the 
period concerned. 

 Francesco Benelli looks at the way in which the architect and builders of the 
Palazzo del Podestà in Bologna (begun 1472) sought to translate the building’s 
ideal proportions into actual dimensions, a task made diffi cult by an irregular site 
and the need to utilize the walls of a pre-existing building. The attempt to preserve 
the image of perfect geometrical regularity in the façade involved a complex mix of 
arithmetic manipulation, optical fudging, and basic concerns over cost. The empha-
sis on consistency of measure was no doubt partly carried over from medieval prac-
tice. What does appear novel in the Palazzo del Podestà is the “optical” character of 
its proportions, that is, the dimensional fi ne-tuning intended either to emphasize or 
to retain the appearance of modular rigor, particularly in elevation. These adjust-
ments—which can be distinguished from normal constructional “tolerance”—were 
probably determined by the architect, Aristotele Fioravanti. They suggest that he 
was familiar with the architectural values of early humanism. The application of 
whole-number ratios in the elevation, for example, may derive from a reading of 
Vitruvius, but Alberti is another possible source. Benelli points to the proportions of 
the window surrounds, similar to prescriptions in  De Re Aedifi catoria  as well as in 
Alberti’s built work. More provocative is the idea that an “optical correction” has 
been used to hide an irregularity in one of the lateral bays. Vitruvius’s speculations 
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about the negative effect of void spaces may have inspired the architect to think of 
the arched bays as compositional elements in themselves. 

 Ann Huppert is also interested in how architects negotiated the material and 
physical restrictions imposed by their commissions. Her contribution focuses on the 
way Renaissance design practice was shaped by the use of algorism, that is, calcula-
tions using Hindu-Arabic numerals. A comparison between Antonio da Sangallo the 
Younger and his contemporary Baldassarre Peruzzi forms the basis of her study. 
Drawings from the hands of these two practitioners survive in great quantity. Scaled 
to on-site dimensions and copiously annotated, they afford some of the earliest and 
most varied evidence for the use of paper calculations in architectural practice. This 
new and powerful tool offered architects several benefi ts: for converting often- 
incompatible local dimensions, for estimating the cost of materials, and for com-
municating with workers and patrons—all directly on the drawing. More important 
was the way in which Peruzzi, in particular, was able to integrate calculations 
directly into the design process, using them to generate alternative projects and 
compare them to each other. This ability points to a crucial difference between the 
two architects. Although both men were masters of the technique, Huppert shows 
that Peruzzi found more creative, intuitive, and practical ways of incorporating 
numerical calculations into the design and building process. The difference is strik-
ing, especially given Sangallo’s greater theoretical interests in mathematical and 
humanist scholarship. 

 The third essay of this section, by David Friedman, shifts our attention from 
architectural to urban design. Following his groundbreaking work on medieval town 
plans, the author began several years ago to look at the adoption of modern mapping 
and planning techniques during the sixteenth and seventeenth centuries. This was 
by no means a story of straightforward technical progress. As Friedman argues, the 
limitations of available instruments and the complexity of urban environments made 
the principal methods of survey—particularly the compass traverse—unpredictable 
and often unreliable. His focus in this chapter is a single drawing, a proposal from 
the late 1550s for a new convent in the center of Rome. The proposal is unusual in 
that it incorporates the results of a geometrical survey in a densely built area, where 
such techniques were diffi cult to carry out. Friedman’s microscopic attention to the 
plan’s details reveals the practical and conceptual obstacles to the adoption of geo-
metrical survey for urban planning. Needle holes, erased lines, and compass pricks 
show the project’s halting and rather imprecise construction. With no accurate 
printed map of the city to go on, all the data about the neighboring blocks had to be 
generated anew. Yet, despite its provisional quality, this document portended another 
very powerful visual tool. The large-scale survey plan would come into its own in 
the seventeenth century, allowing new and unimagined levels of control and defi ni-
tion over urban space.      
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        Mario Carpo has shown how to map out a parallel history of Renaissance architecture 
and numeracy through the study of treaties and theory.  1   He also suggests that such 
results are much more diffi cult to obtain when examining built works. Existing 
architectural drawings, especially those from fi fteenth-century Italy, are scarce, as 
are accurate surveys and written construction documents. 

 In light of these obstacles, historians may usefully consider the evidence of the 
buildings themselves. The Palazzo del Podestà in Bologna offers an important case 
study for some of the quantitative and numeric features of built architecture of the 
last quarter of the fi fteenth century. It shows, in particular, how imperfections in 
construction and diffi cult site conditions could hinder the much-desired ideal of 
geometrical, mathematical, and proportional exactitude that was already well dif-
fused in both the theory and practice of Renaissance architecture.  2   The Palazzo, a 
project of the early 1470s, can serve as a model for understanding how the idea of a 
building conceived on the model of the geometric grid—with precisely calculated, 
exact, and whole measurements—was the strongest prerogative of the well- educated 
Renaissance architect (Fig.  1 ).  3   Such characteristics imply a knowledge of precise 
geometrical and mathematical rules, the ability to render meticulous and accurate 
drawings, and to execute them in built form. It also refl ects the capabilities of stone-
masons to create architectural elements of great precision.

   The Palazzo del Podestà illuminates how architects reconciled a desire for geo-
metrical accuracy and modularity—an ideal condition of simplicity but also a neces-
sity for building a portico  all’antica— with the irregularities inherent in a pre- existing 
medieval site and the need to fully exploit the existing foundations. The building 
reveals, in particular, how careful attention to minute differences between architec-
tural elements helped the designer to form an analyzable, modular, and geometrically 
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quantifi able “exact” space. The use of such optical refi nements, in particular, was 
precocious. The technique was in principle known only through the obscure and still 
poorly known writings of Vitruvius and the treatise of Leon Battista Alberti, both of 
which were at that time still available only in manuscript form.  4   Finally, the Palazzo 
suggests that dimensional exactitude and repeatability were important not only for 
the composition of a building but also for reasons of cost and effi ciency. 

    Correcting Irregularities 

 On 9 November 1472, the  Comune  of Bologna commissioned a model that would 
determine the basic volumetric features and architectural elements of the new 
 Palazzo Comunale . The project was intended to utilize the existing foundations and 
walls of a previous medieval building constructed, along with the related piazza, in 
1200–1203.  5   

 While the document does not mention the architect in charge, we can attribute 
the work, for various reasons, to the illustrious Bolognese engineer Aristotele 
Fioravanti.  6   Aristotele—his name itself expresses, not by chance, a connection with 
geometry—was already known both throughout the Italian peninsula and abroad for 
his engineering endeavors. These began in 1451–1452 with the excavation and 
transportation of giant monolithic roman columns from the area of the church of Santa 
Maria sopra Minerva in Rome to the Vatican, to be employed in the choir of the new 
Basilica.  7   In 1455, he successfully transported Bologna’s tower of the Magione 13 m 

  Fig. 1    Palazzo del Podestà, Bologna       
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to the opposite side of Strada maggiore (Fig.  2 ), a feat for which he gained consider-
able fame and enough work to keep him busy under three papacies and at several 
Italian and foreign courts, some as far away as Hungary and Russia.  8   Fioravanti’s 
renown must also have brought him the commission for the Palazzo del Podestà, but 

  Fig. 2    Tower of the Magione, Bologna, Biblioteca Archiginnasio       
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he did not oversee the reconstruction. By 1484, when work began on the site, he had 
already died, probably during a trip to Siberia.  9  

   The primary goal of the project was to obtain a series of arches around the pre-
existing medieval envelope of the building that were as similar as possible to one 
another and that presented the greatest rhythmic, proportional, and modular coher-
ence.  10   The end result is visible in a modern, measured survey of the building, which 
also makes clear the relationship between the earlier building and later additions 
(Fig.  3 ).  11   The footprint of the Renaissance arcade running around the perimeter is 
indicated with hatching, while the earlier medieval structure is marked in black on 
the plan. This structure consisted principally of a massive rear wall running east-
west and divided into narrow shops. This long wall was capped on its extremities by 
two perpendicular end walls, and it was pierced by a passageway on axis with the 
central arch. The passageway, centered on the intersection of a minor Roman road 
to the rear of the Palazzo, contained the foundations of the bell tower.  12   Another 
given established by the earlier building—which is not visible on this plan—was the 
height of the fl oor of the great hall—the  sala magna— on the second story.  13  

   These pre-existing elements—particularly the perpendicular sections on either 
end of the medieval wall—determined the building’s basic proportional schema. 
The two terminal walls established both the depth of the internal shops and the inner 
boundary line of the arcaded loggia. These elements had to remain fi xed in order to 
respect the cross axis of the central passage and the piazza on the exterior. Those 
medieval end walls would also determine the general width of the bays to be used 
throughout the façade. 

 Considering the desire for precise regularity in the arcade, the pre-existing con-
dition of the site presented several problems. The fi rst was that the bays defi ned by 

  Fig. 3    Measured ground plan of the Palazzo del Podestà       
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the terminal walls of the medieval structure were not compatible with the length 
of the façade, being slightly too broad to provide even multiples that could be 
 contained within its length. More importantly, the two ends were themselves of 
different width. As is shown on the plan, the line of the Palazzo’s rear medieval wall 
followed the slightly crooked outline of the roman road to the rear of the structure. 
This road deviated 1.5° to the north from the base of the bell tower at the center of 
our building, creating an extra 60 cm on the eastern side. The deviation is shown by 
the red and green arrows on the plan. The result of these slight discrepancies was 
that the perimeter of the building, far from being regular in form, embodied an axial 
incongruity that made the site incompatible with the demands of regular bays 
 all’antica  with pillars, engaged columns and arches. 

 A survey of the building’s elevations reveals the intriguing solution to this problem 
(Table  1 , Fig.  4 ). In confronting it, Fioravanti—or his builder—created subtle differ-
ences in the width of the front and side bays that are invisible to the naked eye. 
Discrepancies are normal to certain extent—especially in porticoes. In a Renaissance 
building like this one, a normal construction “tolerance”—that is, the inaccuracy 
inherent in contemporary building methods—would be within 5 or 6 cm for every 
700. The difference of 5 cm between the two corner bays of the front façade, for 
example, is relatively negligible and therefore we can consider them to be equal. 
However, in other parts of the building, the measurements diverge by as much as 
61 cm. Bay 8—the narrowest in the building—differs from bay 1 by this amount, 
or just under two Bolognese feet.  14   Such an easily measured and evenly quantifi ed 
irregularity—which corresponds incidentally to the length of two Bolognese 
bricks—rules out the possibility that the discrepancy was simply within the normal 
“tolerance” of early Renaissance builders.  15  

    To solve the fi rst problem, the lateral arcades were made to fi t a subtly different 
dimensional scheme that that of the façade. The side bays, in other words, are on 
average 20 cm wider than those on the long façade. It is a very slight difference of 
less that 3 %, but nonetheless an important one. The second problem—the long wall 
section caused by the crooked road—was solved in a similar way. To compensate 
for the additional length, the architect widened the corresponding bay by 33 cm 
more than its counterpart on the opposite end. Of the lateral bays, only this one is 
perceptibly bigger. The other three vary within a difference of at most 6 cm. The 
module chosen for the short ends of the building is therefore based on the opposite 
bay (13) on the west. This solution, however, necessitated another irregularity. 
Because they were restricted by the railed architrave above, the lateral arches, par-
ticularly those of the longer bay (1) are actually squashed. The height of the ground 
story could not be greatly altered in order to keep the hall on the same level with the 
 iter in voltis , a terraced path leading from the rear to other buildings in the complex 
(Figs.  5  and  6 ).  16   This deformation, however, is too slight to be visually perceptible. 
It has only come to light through our measured survey.
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  Fig. 4    Side and front elevations of the Palazzo del Podestà (to be read with Table  1 )       

    Table 1    Dimensions in the facade of the Palazzo del Podestà, Bologna (to be read with Fig.  4 )   

 1  2  3  4  5  6  7  8  9  10  11  12  13 

  A   734  707  681  681  680  680  673.5  673  682  680  682  702  701 

  B   525  514  480  483  480  486  476  475  482  481  481  507  495 

  C   320.5  304  282.5  295  300  304  292.5  299.5  300  300  307  307  312 

  D   736  706  671  681  698.25  684  668.5  677.5  677.25  680  687.5  703.5  728.5 

  s   115  114  104.5  99  102.5  102  97.5  93  98  94  101  105.5  111 
  d   114.5  101  97  100.5  101  91  93  99  94  99.5  94.25  105.5  119 

  Measures expressed in cm  
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    This solution of adjusting the width of the bays is economical and logical, as it 
allows for corrections to be made through the manipulation of the “empty spaces”, 
while leaving the masonry elements among them as consistently equal as possible. 
The strategy also serves a more subtle visual purpose, particularly on the east side, 
where the difference in width between the two lateral arches is most perceptible. By 
concentrating the variations in the arches, rather than in the piers, the narrow bay (2) 
at the head of the portico benefi ts from the optical effect of the voids surrounding it. 
The problem here is reminiscent of one of the several passages on optical correc-
tions that Vitruvius describes in regard to the Ionic temple. In Book 3 of the  De 
Architectura , Vitruvius states that a corner column appears thinner to the eyes, as if 
it were consumed by the air all around (Book 3, Chapter 8).  17   It can therefore be 
built bigger in order to correct the negative effect of the space around it, thereby 
making it look like all the others. The architect of the Podestà may have been 
inspired by this idea, but in a roundabout way, for he has used it to amplify the per-
ceived width of a void rather than a solid. By using the empty spaces of the bays as 
an element of composition, the incompatibility of the two shorter sides is more 
readily concealed.  18    

    Composition and Planning 

 The composition of the principal façade took a more straightforward path. The front 
elevation was established using the bay as the basic module, the width obtained by 
dividing the entire façade into nine intervals. That module measures 18 Bolognese 
feet—a whole number that is also easily divisible by 2 and 3. This module provided 

  Fig. 5    Upper story plan of 
the Palazzo del Podestà, with 
building complex to the rear       
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in turn whole-number dimensions for the long side of the pedestal at the base of the 
half-columns, which measure 3 ft, and the diameter of the base of the half-column, 
which is reduced to 2 ft (Fig.  7 ). In other words, the half-column is proportioned 
according to the measurement of the bay, with its diameter being a whole number so 
to facilitate the process of construction. The result is a ratio of exactly 1:9. At the 
same time, the height of the column works out to be 10 times its diameter. This ratio 
is rather slender for the Corinthian order, but is understandable in view of the 
unchangeable height of the ground fl oor.  19   The rest of the measurements are not 
multiples of the Bolognese metric system, but are calibrated according to the pro-
portions established by the half-columns, giving the impression, in this case, that 
the secondary dimensions have been determined by geometrical constructions 
rather than arithmetical calculations.

   The depth of the façade pillars, on the other hand, was not determined by the 
same proportional logic. That measurement was based on the depth of the angle 

  Fig. 6    Rear facade of the 
Palazzo del Podestà       
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piers, which was derived, in turn, by the length of the pre-existing medieval wall 
sections. There also appear to have been structural considerations at work here. 
Although lightened by great arched windows, the walls of the great hall on the 
upper story are further weighed down by the massive roof. As was known empiri-
cally in Gothic practice, the outward thrust of the roof truss required an increase in 
the depth of the pillar to counteract it. As a result, the pillars are deeper than is 
structurally necessary. Ultimately, the formal and structural logic of the building is 
based on the development of measurements in two different directions (along with 
two different rationales). On the surface of the façade, the architectural elements are 
determined according to “formal” issues of rhythm and proportion, while in the 
depth of the façade they are determined by the dimensions of the pre-existing struc-
ture and by structural considerations, with the pillars understood as having an 
important weight-bearing function. 

 The second level of the façade follows the same logic of the ground story (Fig.  8 ). 
The ratio between base and height of the pilaster is 1:7.5, while the width and height 
of the bays are equal, creating a square. This ratio is replicated in the widows, where 
the height of the small pilasters is equal to the total width of the window, a relation-
ship further emphasized by the squared moldings of the small pilasters. Furthermore, 
the wall space between the larger and smaller pilasters is a quarter of the height of 
the window pilasters. Given the lack of obstacles posed by a pre- existing structure, 
the simple proportional relationships in the upper level stand out. Indeed, the preva-
lence here of the ratios 1:1 and 1:4 suggests some familiarity with Alberti’s theory 
and practice.  20   It is also evident that some of the bays on this level are laid out care-
lessly. Indeed, the imprecise placement of certain pilasters is readily apparent to the 

  Fig. 7    Palazzo del Podestà, column base       
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naked eye, but these dimensional blunders appear quite random. That is, they do not 
contradict the sense of geometry in the building, appearing instead to be the result 
of sloppy construction.

   Despite these discrepancies, the upper story also reveals some surprising subtle-
ties. These are found on the eastern side, where the size and spacing of the windows 
have been slightly shifted to counteract visually the irregular widths of the bays 
below. While the window over bay 1 is positioned symmetrically over its corre-
sponding archway, the window over bay 2 has been made 16.5 cm narrower, to 
correlate it, presumably, with the narrower archway below. That window, moreover, 
has been distinctly slipped toward the center of the façade. Rather than equalizing 
the space on either side of the window, the architect pushed the irregularities to one 
side, so that at least one of the dimensions—the distance of the window to the corner 
pier—matched those on the right bay. 

  Fig. 8    Palazzo del Podestà, 
upper story window       
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 Given this analysis, it seems that Fioravanti was conscious of the fact that apply-
ing an ideal geometrical system to a project, especially in the form of a grid, was not 
enough to reach acceptable formal results. In order to overcome the limitations 
imposed by the site, he considered the modular grid as a system not of geometric 
points but rather of clusters or bounded areas, within which vertical elements could 
be fl exibly arranged. This operation was undertaken with a view to regularizing the 
proportional and rhythmical effects of the façade composition. Indeed, he appears 
to have often positioned irregularities in those areas of the elevation where they 
could be most easily hidden. That this was sometimes done through optical correc-
tions suggests that Fioravanti worked with precise plans and elevations in order to 
articulate the relationships between elements, in particular the axes of the bays. 
Such a practice would also fi t with Alberti’s prescriptions.  21    

    Construction 

 By keeping the dimensions of the masonry elements as consistent as possible, the 
builders obtained a second important advantage, namely the reduction of costs. The 
building records held in the Bologna State Archive reveal some interesting facts 
regarding this process.  22   In particular, a payment made to the stonemason Antonio 
Frangipani on 19 March 1492 for the masonry of the western side tells us not only 
the date of completion of the body of the building, but also lists the pieces paid for, 
moving from the lowest to the highest. From the prices in the document, we can see 
that individual elements such as pedestals, capitals, brackets, and  roxuni  (the rose 
motifs on the rusticated bosses), but also rounded forms such as the two great arches 
of the portico and the circular windows of the attic story, were all priced at consis-
tent rates (Fig.  9 ). The Corinthian capitals of the ground story, for example, were 
much more expensive (16  lire ) than the fl at pilaster capitals on the upper level (6 
 lire ) (Fig.  10 ). By the same token, varying quantities of different elements that 
required roughly the same amount of work—such as the rose motifs of the piers, the 
half-columns, and the architraves and cornice moldings of the large order—all cost 
the same: 8  scudi  and 6  denari .

    One curious feature of the price list suggests that the masons did not know how 
to calculate the length of curves. The sums paid for the masonry of the fi rst fl oor 
arches are about 25 % more expensive than those paid for their corresponding sec-
ond story cornices, which have identical moldings and are set in bays of the same 
width. We can surmise therefore that the 25 % increase is therefore based solely on 
the workmanship of non-rectilinear elements. This surcharge, however, is inade-
quate. The circumference, for example, of the ground-fl oor arch in bay 2, measured 
on the intrados, is 8.07 m (21.6 Bolognese feet). That is 36 % longer than the width 
of the bay. Although masons’ rules-of-thumb are by nature rough and approximate, 
this discrepancy does seem surprisingly large. 

The Palazzo del Podestà in Bologna: Precision and Tolerance in a Building…



72

 The masons may very well have charged a different amount for each arch, 
according to its characteristic size and form. As we have seen, almost all of the 
arches vary in size according to the different widths of the bays, particularly those 
on the short sides, which are considerably larger than those of the principal façade. 
But that variation would not have affected the consistent and standardized means of 
pricing per piece of masonry. That mechanism points to the use of exact and repeated 
dimensions—one might say serial or even standard—to optimize the production 
and cost of individual elements. By standardizing the size of the parts while manip-
ulating the voids, not only are the irregularities of the façade better hidden, the 
masonry elements themselves can be produced offsite, thereby reducing costs and 
simplifying the construction process. The construction of the Palazzo del Podestà 
shows how a clear and regular geometry not only facilitates the composition of a 
building but also serves as a cost-effi cient parameter of its construction, providing a 
powerful tool for patron, architect, and builders alike.  

  Fig. 9    Palazzo del Podestà, 
side facade       
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                          Notes 

     1.    Carpo ( 2003 ). For a recent account of the role of quantifi cation and measure-
ment in early Renaissance architecture, see Cohen ( 2013 ).   

   2.    The notion of precision appears at the beginning of Leon Battista Alberti’s  De 
Re Aedifi catoria,  in relation to the role of the architectural drawings. See Alberti 
( 1988 ,7). The bibliography on the issue of proportion in Renaissance 
Architecture has become vast and unmanageable. See Wittkower ( 1988 ). For a 
recent overview on the topic see Curti ( 2006 , 65–138).   

   3.    The use of the geometrical grid in order to reproduce the human body in paint-
ing was already known during the Gothic era. Villard de Honnecourt, for exam-
ple, represents a woman’s head proportioned in this way. See Barnes ( 2009 , fol. 
38). Lorenzo Ghiberti describes a human fi gure using the same method in the 

  Fig. 10    Palazzo del Podestà, 
capitals from the half- 
columns of the ground story, 
to be compared with those 
from the pilasters of the 
upper story (Fig.  8 )       
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fi rst  folio  of his third commentary. See Ghiberti ( 1998 ). This tool was also 
widely diffused among architects of that time as a tool for composition and 
design. Antonio Averlino (Filarete) begins the plan of Sforzinda’s Cathedral 
from a square grid of 15 modules on each side, though its function is only for 
proportioning and dimensioning, less for composing. Another grid appears in 
the book for the design of the  Casa Regia . See Averlino [Filarete] ( 1972 , vol. 1, 
182–183, 207–208; vol. 2, Fig. 24). For another example, see Martini ( 1967 , 
Fig. 236). A famous architectural drawing that clearly shows the grid as a tool 
of design is Bramante’s plan of Saint Peter’s, Uffi zi 20. See Thoenes ( 2006 ) 
with bibliography on the drawing. Further analysis of fi fteenth- and sixteenth-
century plans and drawings would likely turn up other examples.   

   4.    For the history of Vitruvius’ treatise, see Pagliara ( 1986 ). For the history of 
Alberti’s treatise, see Orlandi ( 1994 ). Also see Burns ( 1998 , 120).   

   5.    Libri Mandatorum ,  reg. 17, fol. 30r, Archivio di Stato di Bologna. Published in 
Sighinolfi  ( 1909 , 57–58, 147).   

   6.    For the attribution, see Benelli ( 2001 , 47–68 and  2005a , 100–103) with com-
plete bibliography on Aristotele Fioravanti. For a brief but detailed biography 
of Fioravanti, see Ghisetti Giavarina ( 1997 ).   

   7.    Müntz ( 1878 , vol. 1, 83, 108). Bertolotti ( 1886 , 2).   
   8.    The transport was accomplished not by dismantling the tower but by splitting it 

from its foundations and carrying it vertically on a wooden cart over a track at 
the bottom of a trench. See Pattaro ( 1976 ).   

   9.    For the phases of construction, see Benelli ( 2005a , 73–87). For Fioravanti in 
Russia, the bibliography is quite extensive, but see the complete list in Ghisetti 
Giavarina ( 1997 ).   

   10.    Earlier attempts to reconstruct the proportional basis of the façade have been 
suggested by De Angelis and Nannelli ( 1976 ) and Licciardello ( 1991 ). Neither 
of these reconstructions, however, considers the irregularity of the site.   

   11.    The survey, made with traditional methods, was organized and executed by the 
author with the help of Anna Maria Moro, Lucia Bacchiani, and Vittorio 
Pizzigoni.   

   12.    This road served to link the Via Emilia—connecting Rimini with Milan across 
the Po Valley—with the new  Platea Comunis,  a rectangular piazza created 
along with the fi rst communal palace from 1200 to 1203. Within the city wall, 
the Via Emilia was the  decumanus maior  of Roman Bologna, to become one of 
the busiest streets of the city during the Medieval period and beyond.   

   13.    Part of the medieval structure was revealed during heavy restorations by 
Alfonso Rubbiani beginning in 1905. For a brief synthesis of the restoration, 
see Mazzei ( 1979 ).   

   14.    One Bolognese foot is 0.380098 cm. See Martini ( 1883 , vol. 1, 92). A Bolognese 
brick during the Renaissance was 28.50 cm long, 12.66 wide, and 6.33 high, or 
9 by 4 by 2 Bolognese inches. See Benelli ( 2005b ). Reprinted in Ricci ( 2007 , 
75–94).   

   15.    This sort of “elastic system” is actually common among medieval Bolognese 
porticoes, which were normally adjusted according the preexisting façade to 
which they were attached. For a similar topic, see Hubert ( 2001 , 33–34).   
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   16.    This elevated terrace was built from 1438 to connect the medieval palaces of the 
compound, the so-called Palazzo di Re Enzo and the palace of the Capitano del 
Popolo, with the Palazzo del Podestà, also creating a uniformed loggia façade 
facing west. The original  iter in voltis  was destroyed in 1572 for the construc-
tion of a building to house the Auditori della Sacra Rota, employed in the local 
Vatican Court. It was rebuilt in the same shape by Alfonso Rubbiani in the 
beginning of the twentieth century. On this feature, see Benelli ( 2005a , 74, 108).   

   17.    “Etiamque angulares columnae crassiores faciendae sunt ex suo diametro quin-
quagesima parte, quod eae ab aere circumciduntur et graciliores videntur esse 
aspicientibus.” Vitruvius ( 1997 , vol. 2, 247). The same optical refi nement was 
underlined by Alberti ( 1988 , 215–216). Vitruvius was known in medieval 
Bologna. A manuscript copy of the text belonged to the university lecturer and 
canon Giovanni Calderini as early as the fourteenth century. See Ibanez ( 1998 , 
62). Further copies of the treatise are accounted between 1426 and 1455. They 
belonged to Carlo Ghisilieri and Cardinal Bessarion, the latter appointed  Legato 
apostolico  in Bologna from 1450 to 1455. See Hubert ( 2001 , 35).   

   18.    The dimensional consistency of the pillars also refl ects an appreciation of 
ancient practice, as in, for example, the Colosseum, the Tabularium, and in 
general all Roman theaters. As Christoph Thoenes has pointed out, such consis-
tency is rare in Renaissance loggias. The Bolognese case is best seen therefore 
not a superfi cial imitation of Roman classical architecture, but rather as an 
attempt to recreate its “structural substance”. Thoenes ( 1998 , 59–65).   

   19.    Both Alberti (Book VII, Chapter 6) and Filarete (Book VIII) recommend the 
height of a Corinthian column to be eight times its diameter. See Alberti ( 1988 , 
201) and Averlino [Filarete] ( 1972 , vol. 1, 218). Vitruvius’ description of the 
Corinthian order is more complex (Book III, chapt. 5, 1–9; Book IV, chapt. 1, 
11). Though generally broader, it includes in some cases proportions of 1:10. 
See Vitruvius ( 1997 , vol. 1, 255–259, 369–375). Alberti faced same problem in 
designing the façade of Santa Maria Novella in Florence, where he was also 
forced to stretch his columns beyond their theoretically ideal proportions. See 
Benelli ( 2005a , 93).   

   20.    Fioravanti may have known Alberti from 1451 to 1452, when they are both 
documented at the Vatican working under Nicholas V. It was precisely at this 
time, in fact, between December 1451 and January 1452 that Alberti presented 
his manuscript of the  De Re Aedifi catoria  to the Pope. See Burns ( 1998 , 120). 
On Alberti’s work for Nicholas V, see Tafuri ( 1992 , 33–88) and Frommel 
( 2005 ). Fioravanti may also have been familiar with Alberti’s project for the 
Tempio Malatestiano in Rimini, which also involved “wrapping” a classical 
envelope around a pre-existing medieval building. For a chronology of the 
Tempio, see Hope ( 1992 ).   

   21.    Examples of optical refi nements in Alberti’s buildings are found, for example, 
in the portal of Santa Maria Novella in Florence and in the façade of Sant’Andrea 
in Mantua. See Bulgarelli ( 2007 ) and Curti ( 2007 ).   

   22.    “Massarolo dei Lavori, Spese relative al Palazzo del Podestà,” 13r–15r, Archivio 
di Stato di Bologna. Partially published in Valeri ( 1895 , 251). Also see Valeri 
( 1896 , 78) and Zucchini ( 1912 , 14).      
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    Photographic Credits 

 Author: Fig.  1 ,  3 – 10 
Biblioteca Archiginnasio, Bologna: Fig.  2      
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      Combining technical practice with aesthetic intent, Renaissance architecture was by 
nature a mathematical art. Although the limitations of surviving documents hinder 
efforts to discern what Italian Renaissance architects knew of mathematics, where 
they learned it, and how they applied this knowledge, extant drawings from the 
period offer one means of addressing these questions.  1   Inscribed numerals and cal-
culations, in particular, abound in the drawings by two leading architects of early 
sixteenth-century Italy, Baldassarre Peruzzi and Antonio da Sangallo the Younger, 
suggesting that both attained a high degree of numeracy. 

 Comparing these contemporaries is also revealing since, while each incorporated 
mathematics as a central element in their architectural practice, their approaches 
diverge in ways that point to and illuminate signifi cant differences in their back-
ground and design methods. Sangallo, who was born in Florence, lived from 1484 
to 1546. His initial training was in carpentry but once in Rome, where he was based 
for most of his career, he turned exclusively to architecture. Sangallo was involved 
in designing the new basilica of St Peter at the Vatican for much of his professional 
life, having succeeded Raphael in 1520 as head of the project. As papal architect, 
Sangallo’s projects were wide ranging, including fortifi cations throughout the 
Italian peninsula.  2   Peruzzi, born in Siena in 1481, instead trained as a painter. His 
career also focused on architectural work, especially in Rome, where he worked at 
St Peter’s under Bramante and Raphael and then as second architect to Sangallo. 
After the Sack of the city in 1527, he returned to Siena, where he was named head 
of the Cathedral works and architect to the Republic, responsible for the refortifi ca-
tion of the city. He died in Rome in 1536.  3   
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 Of surviving Italian architectural drawings from the early sixteenth century, 
those by Peruzzi and Sangallo form the largest quantity. Finished drawings for 
major projects, such as the basilica of St Peter and the Palazzo Farnese in Rome, 
emphasize their respective graphic abilities, but as a rule the corpuses of both 
men contain a greater quantity of preliminary sketches and studies.  4   These more 
typical sheets, inscribed with dimensions and calculations, demonstrate that 
Peruzzi and Sangallo were extremely numerate and skilled in basic mathematics. 
Indeed, both architects littered their drawings with fi gures, showing basic arith-
metic, correctly calculated and using the latest methods.  5   In general, Peruzzi’s 
fi gures appear on drawings that relate to concrete projects, while Sangallo’s 
mathematics also refl ect more abstract and theoretical pursuits, and these prove 
to be key distinctions. The appearance and use of numbers in these sources reveal 
the ways that mathematical knowledge contributed to the professional require-
ments and design processes of the Renaissance architect. Both Peruzzi and 
Sangallo demonstrated skills that reveal their earliest general education, yet the 
contrast in how they applied their knowledge refl ects differences in their subse-
quent professional training. 

    “New Math” Education: Numbers, Algorism, 
and Measurement 

 Sangallo and Peruzzi were fully at ease using Hindu-Arabic numerals and employing 
them in basic arithmetical calculations. These are skills that one might safely assume 
today but that could not be taken for granted in the Renaissance, a period in which 
even literacy was far from universal.  6   While the mathematician Leonardo da Pisa, 
known as Fibonacci, had promulgated this new notation system to Italy in the thir-
teenth century, it in fact supplanted Roman numerals only gradually.  7   Fibonacci also 
taught the application of these fi gures in “algorism”, or basic arithmetic, as appears 
on Peruzzi and Sangallo’s drawings.  8   This “new” number system was increasingly 
taught in Italian  abaco  schools by the fourteenth and fi fteenth century.  9    Abaco  here 
refers not to the instrument called an abacus but to the algorithmic methods intro-
duced from the east, which were used in particular by merchants. 

 Since we lack documentation about the specifi c early education that either 
Sangallo or Peruzzi received, the mathematical aptitude displayed in their drawings 
provides valuable evidence that each received standard  abaco  instruction in their 
native cities.  10   By the fi fteenth century, communal schools providing instruction in 
mercantile mathematics existed throughout Tuscany. Such general education was 
offered to boys of about age 10 or 11 and therefore preceded the specifi c training 
that Peruzzi and Sangallo received in their respective crafts.  11   The  abaco  treatises 
began with explanations of Hindu-Arabic numbers and the basic operations of 
mathematics (addition, subtraction, multiplication and division), then progressed to 
the application of these operations in increasingly more complex problems or 
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exercises, involving fractions, translations between monetary systems, and simple 
geometry.  12   These exercises refer specifi cally to architecture only on occasion but, 
as Nicholas Adams has noted, it is in general easy to see their applicability for an 
architect.  13   Moreover, many of the  abaco  masters, those who taught and wrote trea-
tises on practical mathematics, were also closely involved in the engineering and 
building trades in their own and nearby cities.  14   

 Measurement was one fundamental architectural application for  abaco  skills, and 
measuring ancient monuments also served as essential training for Renaissance 
architects. Evidence of this practice appears in some of the earliest drawings we 
have by our two architects. On his measured plan of the Baths of Diocletian, dated 
1507, Peruzzi’s abbreviated notations identify the measurement units as contempo-
rary Roman  canne ,  palmi , and  digiti  (Fig.  1 ). Sangallo’s comparable study does not 
indicate the units, but notes on the other side of the sheet show that he was using the 
Florentine  braccio , as he tended to do on most of his early drawings (Fig.  2 ). Both 
architects also made drawings of antique details. In these, Peruzzi consistently iden-
tifi ed the units of measure, and frequently he used the ancient Roman  piede  (Fig.  3 ).

     Such studies were not new by this date. It is noteworthy, though, that Sangallo 
and Peruzzi’s surveys surpass those of their predecessors in both comprehensiveness 
and level of detail, as a comparison of drawings from a generation earlier demon-
strates. Francesco di Giorgio, for example, with whom Peruzzi trained, tended to 
limit the measurements on his drawings of ancient structures, which often took the 
form of overall plans rather than details (Fig.  4 ). In contrast, Sangallo’s master and 

  Fig. 1    Baldassarre Peruzzi, plan of the Baths of Diocletian (UA 528r detail)       
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uncle, Giuliano da Sangallo, produced many measured detail studies, such as those 
in the Codex Barberini sketchbook. Even so, the work of Antonio exhibits far greater 
attention to discrete elements and individual measurements (Fig.  5 ).

    The very process of measuring could engender complexity, since changes of 
location required adopting different local dimensional units. The measure most 
familiar to Sangallo and Peruzzi was the  braccio , equivalent to an arm’s length or 
about three-fi fths of a meter. Different city-states, however, had their own version: 
the  braccio  of Sangallo’s native Florence was marginally shorter than the Sienese 
 braccio  familiar to Peruzzi. Upon transferring to Rome in the early 1500s both 
architects encountered the smaller local unit, the  palmo , roughly one-quarter of a 
meter in length. Drawings by both suggest that they could readily adapt to new 
contexts. They each employed the local  trabucco  and  braccio , for example, in 
their respective fortifi cation designs for Piacenza. Peruzzi measured his project 
for a new bastion using the local units, introducing on one of his drawings a scale 
line of 48  trabucchi , alongside which he noted the relationship of 6  braccia  to 
each  trabucco  (Fig.  6 ). The scale on a later project drawing by Sangallo for the 
same city shows a simple ratio of 1 to 2 between the local  braccio  and the Roman 
 palmo  (Fig.  7 ).  15  

    Such convenient whole-number ratios were the exception; more often, converting 
between local measurements would produce complex fractions. Peruzzi’s drawings in 
particular suggest that he did not shun such complexity. On a measured sketch of a 
column base in Rome, he noted that one Roman  palmo  was equal to 22-4/5  minuti  of 
one Florentine  braccio . Perhaps more surprisingly, he also included such precise 

  Fig. 2    Antonio da Sangallo the Younger, plan of the Baths of Diocletian (UA 2134v detail)       
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  Fig. 3    Baldassarre Peruzzi, ancient entablature at S. Stefano del Cacco, Rome (UA 413r)       
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relationships on clean presentation drawings. On a plan for the Ricci Palace in 
Montepulciano, Peruzzi recorded the ratio of the Roman  palmo  to the local  braccio  as 
1 to 2-16/25, which he represented by the fraction 8 over 12-1/2.  16   Such translations 
between units of measure directly parallel the problem faced by merchants needing to 
convert between different local currencies, and in this respect, Peruzzi’s comfort with 
complex fractions may represent an element of his Sienese education.  17   A different 
kind of source, an accounting ledger, offers more direct evidence of Peruzzi’s knowl-
edge of merchant accounting. As  camerlengo  or treasurer from 1515 to 1516, Peruzzi 
maintained the cash book for the Confraternity of San Rocco in Rome.  18   This ledger 
might seem to have an obvious architectural corollary in the account books for build-
ing projects. However, among the records that exist for large projects of the period, it 
is unusual to fi nd project accounts in the architect’s own hand.  19   

 In general, Peruzzi appears somewhat more comfortable than Sangallo with 
arithmetic, but he differs also in his attitude toward numbers themselves. His facil-
ity with diffi cult fractions provides one point of comparison, the use of recorded 
dimensions and graphic scales offers another. Peruzzi was not consistent in his use 
of scale lines, which sometimes appear without dimensional units, and instead 
tended to rely much more on inscribed measurements. This contrasts with the prac-
tice of Sangallo, who varied his use depending on the purpose of the drawing. As 
Mario Carpo has noted, Sangallo typically reserved inscribed measures for sketches 
and working drawings, and included scale lines for fi nal project or presentation 

  Fig. 4    Francesco di Giorgio Martini, plan of the Flavian palace on the Palatine, Rome (UA 328r)        
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drawings.  20   Two plans for an unrealized fortifi ed palace in Casigliano show this 
transition clearly. The copious measurements on an initial sketched plan for the 
palace give way, in Sangallo’s more fi nished version, to a discreet scale line at 
the bottom of the sheet (Figs.  8  and  9 ).  21   Peruzzi, by comparison, seems to have 

  Fig. 5    Antonio da Sangallo the Younger, entablature from the Basilica Aemilia, Rome (UA 1413v)        
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remained fully wedded to the actual dimensions, even on carefully fi nished drawings. 
His plan for the renovations to the Rocca Sinabaldi completed around 1530, is just 
one of many examples (Fig.  10 ).  22   Here the extensive measurements and careful 
recording of dimensions for all the parts suggest that he wanted to exert a degree 
of precision and control over the realization of his designs, and that he retained a 

  Fig. 6    Baldassarre Peruzzi, fortifi cation design, Piacenza, (UA 459r)       

  Fig. 7    Antonio da Sangallo the Younger, fortifi cation design, Piacenza, (UA 808r)       
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greater faith in the numbers themselves than in proportional relationships alone. 
This almost-obsessive attachment to numbers distinguishes Peruzzi, not only from 
Sangallo but from other contemporaries as well.

     As this brief overview indicates, the mathematics found in Sangallo and Peruzzi’s 
drawings are very practically grounded. Although well removed from the realm of 
“high” or theoretical mathematics, their work is nonetheless representative of the 
most advanced state of the fi eld. Along with the recovery of classical mathematical 
texts, it was precisely in the area of practical mathematics that historians of the dis-
cipline have identifi ed the major contributions of the Italian Renaissance. According 
to Warren Van Egmond, an inherent shift towards abstraction associated with the 
writing, calculating and conceiving of numbers in the new Hindu-Arabic system 
was decisive for the period.  23    

  Fig. 8    Antonio da Sangallo the Younger, fortifi ed palace project, Casigliano (UA 731r)       
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    Practical Mathematics and Design 

 Measurement and unit conversion routinely called on an architect’s mathematical 
abilities, but these procedures formed only one aspect of Renaissance architectural 
practice. How were calculations actually involved in the design process? How might 
different levels of mathematical ability have led to different design choices? 
Sangallo and Peruzzi’s drawings reveal answers to these questions in two important, 
often overlapping areas: cost estimates and structural design. 

 Estimates of costs and materials lay within the purview of the Renaissance archi-
tect, just as they do today. On a preliminary study by Sangallo for unrealized fortifi ca-
tions in Amelia, for example, columns of fi gures adjacent to the plan reveal his effort 
to calculate the overall dimensions with reference to the total cost, estimated in the 

  Fig. 9    Antonio da Sangallo the Younger, fortifi ed palace project, Casigliano (UA 839r)       
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Roman coinage of  giuli .  24   It is worth observing, however, that notes of this sort only 
rarely appear on surviving drawings from this period, including Sangallo’s. His many 
surviving drawings for St Peter’s demonstrate this point. Over the course of forty years, 
twenty-six as chief architect, Sangallo left more than one hundred pages of designs and 
studies for this project. Yet, none of these include notes on cost or material estimates. 

 In this regard, too, Peruzzi was distinctive. A number of his drawings show 
evidence of cost calculations alongside the designs, including several for new 
St Peter’s. This juxtaposition is striking, for it suggests that his numeracy allowed 
him to integrate considerations of economy within the design process, that is, to 
weigh the cost and effectiveness of different solutions directly on the drawing. We 
can see this process at work in two Peruzzi drawings of St Peter’s. That these seem 
to date from the early 1530s is signifi cant since, during this period in which construction 
resumed following the Sack, the pope may have been particularly concerned about 
the price of the new building.  25   

 Another group of Peruzzi’s drawings from Siena shows this phenomenon more 
clearly. After a fi re destroyed the roof of the church of San Domenico in late 1531, 
Peruzzi proposed fi ve different schemes—in eighteen surviving autograph sheets—for 
restoring and modernizing its interior while re-using its surviving medieval walls. 
Although his proposals eventually were rejected in favor of rebuilding the original 
trussed, wooden ceiling and simple hall nave, Peruzzi’s designs attest to both the gran-
deur and fecundity of his imagination. Far from visionary, however, the designs were 
fi rmly grounded in practical considerations of measurement, structure, and materials.  26   

  Fig. 10    Baldassarre Peruzzi, plan of the Rocca Sinabaldi (UA 579r)       
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 A magisterial drawing, showing a sectional view through the nave, refl ects one of 
the more ambitious of the proposals, all of which began in plan with the T-shaped 
outline of the existing structure (Fig.  11 ). Within this shell, Peruzzi proposed over the 
nave a series of three sail vaults of differing diameters, supported on angled piers that 
project into the central space. The corresponding plan shows the nave intersected by 
a transept at its east end (Fig.  12 ). The circles of alternating sizes indicate the pro-
posed vaults over each bay, and Peruzzi also provided extensive measurements, 

  Fig. 11    Baldassarre Peruzzi, project for the church of San Domenico, Siena (Oxford, Ashmolean 
Museum, WA 1944.102.40)       

  Fig. 12    Baldassarre Peruzzi, project for San Domenico, Siena (UA 339r)       
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including the overall dimensions for the length of the nave and transept, diameters 
for the individual vaults, dimensions of smaller elements, such as the piers and niches 
along the perimeter. He also included a summary cost estimate.  27  

    The complexity of the vaults led Peruzzi to study both the structural elements 
and building mass in more depth on separate drawings, including one that shows a 
single main pier of the nave (Fig.  13 ). His annotations distinguish between the dif-
ferently sized vaults to either side of the projecting pier. For each dome, he included 
two different radius dimensions, one for the circles as drawn and a second for the 
distance to the face of the pier. Whereas the section shows a seamless sail vault, the 
drawing and notes make it clear that Peruzzi conceived the structure and calculated 
the wall dimensions as though it were a saucer dome placed atop four pendentives. 
The extensive notes around the pier and down the center of the sheet refer to the 
total wall masses calculated for various elements, including the piers, arches, and 
the pendentives, or “ trianguli .” A revealing note appears at the lower right: it regis-
ters the change to the overall dimensions entailed in increasing the width of the nave 
pier, serving, in effect, as a variant proposal expressed in numerical terms. 
Graphically he explored this alternative on a separate sheet.  28  

   Additional studies on the reverse of this sheet represent Peruzzi’s further analysis 
of the vault dimensions (Fig.  14 ). Amid arcs that relate to the lines of the vaults, 
Peruzzi provided dimensions for “ la cherica ,” referring to the crown of the vault. 
This crowning section, the dome segment that rises from above the transverse arches 
that span the nave, functioned structurally as a true dome.  29   In other notes, he 
referred to obtaining the overall area (“ superfi cie ”) of different sections by slicing 

  Fig. 13    Baldassarre Peruzzi, project for San Domenico, Siena (UA 344r)       
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through (“ falcato ”) at various points.  30   Although the fragmentary and hermetic 
nature of the annotations hinders a full analysis of Peruzzi’s numbers, the written 
notes demonstrate that he was thinking in terms of overall surface areas. The num-
bers therefore represent quantities that would have fi nancial and structural implica-
tions for constructing the vaults.

   Peruzzi’s care to fi x exact dimensions refl ects a newfound measure of control 
over the building process. Such control was necessary partly for reasons of econ-
omy, given that exact measurements enabled a precise materials survey, but also for 
communicating ideas effectively to builders as well as to patrons. As Richard Betts 
has argued, Renaissance architectural practice was characterized by complex new 
structural forms that challenged traditional methods of construction.  31   We fi nd 
Sangallo similarly exploiting drawing as a communicative tool in his work at 
St Peter’s, in particular, for the great wooden model of the basilica. More than the 
new building itself, it was the model, constructed between 1539 and 1546, that most 
occupied Sangallo in the fi nal years of his career. The extensive graphic record for 
this project includes a number of drawings for the dome as it was to be realized in 
the model. As Christof Thoenes has shown in his detailed analyses, these drawings 
demonstrate a distinctive approach to design problems.  32   For Sangallo, complex 
arithmetic could at times prove an insoluble challenge. In these and other instances, 
he often fell back on empirical methods of design and calculation that refl ect his 
practical training, rather than relying on the abstract power of numbers. 

 The sequence begins with a preliminary study, in which Sangallo shifted away 
from Bramante’s initial proposal for a hemispherical dome modeled on the Pantheon 

  Fig. 14    Baldassarre Peruzzi, project for San Domenico, Siena (UA 344v)       
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in favor of a pointed profi le inspired by that of Florence cathedral (Fig.  15 ). In part, the 
drawing studies the proportions of the dome, which is narrower and more steeply 
raked than Brunelleschi’s original. Yet it also illustrates a concern with structure, since 
a more steeply inclined vault would produce less outward thrust.  33   To examine this 
effect, Sangallo ruled a line from the base of the dome to that of the lantern, juxtapos-
ing this with a literal depiction of the tools he used to measure the angle of inclination. 
Notably, this quadrant and plumb line are instruments of construction, not of design.

   On this sheet and its reverse, Sangallo explored alternatives for a series of radiat-
ing piers to support the dome at its base, and it was in his attempt to determine the 
dimensions of these elements that the architect encountered a considerable mathe-
matical obstacle. A partial plan at the lower right corner of the verso shows him 
investigating the necessary dimensions of these supporting piers (Fig.  16 ). The 
arithmetic surrounding the plan refl ects his calculations of the overall circumfer-
ence of the dome at its base and his effort to subdivide this into 48 equal bay divi-
sions, the “ vani  48” he noted below. However, with the pier elements of this chosen 
size, the sum of the dimensions did not add up to the given circumference.  34   At this 
point, as Thoenes has proposed, Sangallo switched methods. For his subsequent 
drawing, Sangallo resorted to a geometric rather than arithmetic solution: using a 
compass and straight edge he established the scale of 150  palmi , at the left, and from 
that, determined the dimensions of the radiating piers at the lower edge (Fig.  17 ).

  Fig. 15    Antonio da Sangallo the Younger, design for the dome of St. Peter’s, Rome (UA 87r)       
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    The last drawing of the sequence outlined the defi nitive form of the buttresses 
and other elements (Fig.  18 ). This fi nal drawing, made at the scale of the model, is 
nearly 2 m in height and served as a guide for the dome as executed in wood.  35   In 
addition to the drawing, showing a pointed profi le, Sangallo also offered a written 
counter-proposal for the dome. The extended note in the center of the sheet, which 
gives an elaborate geometrical procedure for constructing an alternate dome profi le 
in the shape of an ellipse, offers further insight into Sangallo’s empirical, somewhat 
non-intuitive approach to design.  36   A small diagram above the text shows a compass 
over a square inscribed within a circle, illustrating the instruments he used to derive 
the requisite profi le. Thoenes, an architectural historian, worked with Wolfgang 
Böhm a mathematician, to analyze the drawing and the complex method Sangallo 
described. The fi rst step would be to curve a sheet of paper over a carefully dimen-
sioned wooden barrel-vault form. Then, using a fi xed compass, an arc is traced from 
one mid-point of the barrel to the other. Next the paper is laid on a fl at table, producing 
a half oval, which then is completed. Rotating the sheet 90° and bisecting the oval 
along its second, shorter axis produces the desired arch of the dome.

   Why such a complicated form of construction? As Thoenes concludes, although 
sound in terms of the arithmetic and geometry involved, Sangallo’s method for 
deriving the curvature was cumbersome and impractical, as well as nearly 

  Fig. 16    Antonio da Sangallo the Younger, design for the dome of St. Peter’s, Rome (UA 87v)       
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impossible to replicate at the full scale of the building.  37   Both aesthetic and structural 
considerations seem to have driven the choice. Sangallo recognized that, potentially, 
the form could combine measurements that are proportionally related.  38   Second 
and more importantly, the ellipse combines the advantages of the two basic 
models that Sangallo was contemplating. Its narrower profi le and raised crown 
offered a compromise between the stability of the Gothic pointed form and the 
 aesthetically- preferable, but less stable, classical shape of the hemisphere.  39    

    Pragmatism and Theory 

 The oval also interested Peruzzi, one of the fi rst Italian architects to use this form in 
plan proposals.  40   His design method, however, stands in stark contrast to that of 
Sangallo. Where the latter pursued an empirical and indirect solution for the sake of 

  Fig. 17    Antonio da Sangallo the Younger, design for the dome of St. Peter’s, Rome (UA 798r)       
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  Fig. 18    Antonio da Sangallo the Younger, design for the dome of St. Peter’s, Rome (UA 267r)       
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a desired outcome, Peruzzi’s approach was to leverage his mathematical abilities to 
produce simpler and more practical results. His exploration of the construction of 
ovals provides a clear basis for comparison (Fig.  19 ). Sebastiano Serlio, who pub-
lished Peruzzi’s diagrams, praised one in particular for its beauty and ease of use. 
This method, which appears at the right edge of Peruzzi’s sheet, is based on 

  Fig. 19    Baldassarre Peruzzi, design for the Palazzo Massimo alle Colonne, Rome, with oval construction 
diagrams (UA 531r)        
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intersecting circles. Following Serlio’s recommendation, it became the standard for 
approximating an ellipse in Renaissance architectural practice.  41   Whereas both 
designers used practical mathematics for their geometric constructions, when com-
pared with Sangallo’s complicated technique for deriving an oval, Peruzzi’s method 
points to a distinctive pragmatism in his work.

   Peruzzi displayed the same mathematical intuition in his multiple studies of the 
scrolling volute of the Ionic capital, and on one drawing in particular (Fig.  20 ). 
Typically this spiral form is constructed by joining progressively smaller circular 
arcs, according to proportional rules that dictate the step-by-step diminution of the 
compass and the placement of the compass point on the volute’s center.  42   In his 
study, Peruzzi began with a foreshortened perspectival grid of the kind he con-
structed for scenographic designs, using the diminishing spans between the orthog-
onals to provide the measures for the decreasing radii of the volute below. Peruzzi 
himself labeled the source of the construction with the inscription “ per piramide .” 
Peruzzi’s drawing demonstrates an impressive insight: that the constant diminution 
within a perspectival construction represented a proportional sequence that could be 
transferred to an area conceptually far removed from it.  43   However, he made no 
reference to one of the key sources for the form of the volute, the instructions pro-
vided by the ancient author Vitruvius.  44  

   This omission points to another difference that separates Peruzzi and Sangallo, 
namely their approach to learning and erudition. Sangallo clearly sought authority 
in the works of both ancient and contemporary authors. Several of his mathematical 
and geometrical studies attest, for example, to the infl uence of the Veronese archi-
tect and engineer, Fra Giovanni Giocondo. A scholar of wide-ranging interests, 
Giocondo worked alongside both Sangallo and Peruzzi at St Peter’s until his death 
in 1515. Sangallo, on the verso of a geometrical study, a diagram of a 12-pointed 
fi gure inscribed within a circle, included the credit “ Geometrio di fra Iochundo ” 
(Fig.  21 ).  45   This explicit attribution is signifi cant, for it parallels Sangallo’s practice 
of noting and comparing literary and archaeological sources in his studies of ancient 
architecture.  46  

   Peruzzi’s approach was different. While he was aware of contemporary develop-
ments in practical mathematics, purely theoretical studies are completely absent in 
his work. Nor do his drawings or designs carry the kind of scholarly references that 
litter Sangallo’s. Peruzzi’s archaeological studies provide a case in point, particu-
larly in his frequent use of the Roman  piede  as a measurement unit (Fig.  3 ). The 
exact length of the  piede  as used in antiquity had been rediscovered by the humanist 
Angelo Colocci in the early sixteenth century. Like Bramante, who used the mea-
sure to establish the dimensions of the Belvedere Courtyard in 1505, it is character-
istic of Peruzzi to exploit erudite antiquarian knowledge for practical use.  47   Such an 
application demonstrates that Peruzzi recognized the instrumental value of mathe-
matics, yet he also appreciated its social import. One scholar has seen Sangallo’s 
quest for a theoretical basis for design as an avenue towards legitimacy, but a paral-
lel argument might be made regarding Peruzzi’s practical approach towards with 
numbers and quantities.  48   
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  Fig. 20    Baldassarre Peruzzi, Ionic volute study (UA 465v)       
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  Fig. 21    Antonio da Sangallo the Younger, geometrical study after Fra Giocondo (UA 1463r)       
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 Both Peruzzi and Sangallo developed a knowledge of mathematics from their 
earliest education. The differences in their application of this knowledge, however, 
refl ect their professional training, and several of the drawings examined above epit-
omize these distinctions. Peruzzi’s apprenticeship as a painter, and his mastery of 
perspective in particular, are clearly evident in his great longitudinal section for San 
Domenico and his Ionic volute study (Figs.  11  and  20 ). By contrast, the appearance 
of a plumb line in Sangallo’s St Peter’s dome study and the great technical drawing 
of the wooden model exemplify his background in construction (Figs.  15  and  18 ). 
These drawings manifested the particular skills that each brought to the fi eld of 
architecture and with which each was most comfortable. But many others among 
the surviving corpuses point to the skills each focused on specifi cally, because these 
had not formed part of their particular training. Seen in this light, then, each sought 
through their particular use of mathematics to transcend the limitations of their 
respective backgrounds. Peruzzi’s preoccupation with numbers refl ects his legiti-
mation through the practicalities of measure and quantity, while Sangallo’s invest-
ment in the abstraction of theory was his comparable search for validation.  

                                                    Notes 

 This essay developed out of a paper fi rst presented at the Annual Meeting of the 
Society of Architectural Historians, Vancouver, April 2005, and benefi tted from dis-
cussions at the Italian Renaissance Seminar, University of Oxford, and the 
Bibliotheca Hertziana, Rome, in February and March of 2005. Francesco Benelli, 
Jim Bennett, Filippo Camerota, Mario Carpo, Rob Corser, Anthony Gerbino, 
Richard Goldthwaite, Stephen Johnston, Martin Kemp, Pamela Long, Gervase 
Rosser, and Christof Thoenes all graciously shared expertise. I am also indebted to 
the Scott Opler Foundation and Worcester College, Oxford for the fellowship that 
supported this research. 

     1.    Architectural treatises offer another avenue for such exploration, as Mario 
Carpo recently has demonstrated in Carpo ( 2003 ).   

   2.    Bruschi ( 1983 ).   
   3.    Adams ( 1996 ).   
   4.    Ackerman ( 1954 ) in Ackerman ( 1991 , esp. 370–73).   
   5.    See for example Peruzzi’s calculations on a plan for San Domenico in Siena, 

Gabinetto dei Disegni e Stampe degli Uffi zi, Florence, Architettura (hereafter 
UA) 545r, or Sangallo’s page of calculations on UA 858r. Wurm ( 1984 , 237); 
Frommel and Adams ( 1994–2000 , vol. 1, 343).   

   6.    Grendler’s conservative estimate of the literacy rate for Florentine males in 
1480 is between 30 and 33 %;  abaco  training presupposed the ability to read 
and write. Grendler ( 1989 , 77–78).   

   7.    Wide-scale adoption of the new, Hindu-Arabic number system seems to have 
varied by fi eld but in general occurred slowly. Roman numerals continued to 

Practical Mathematics in the Drawings of Peruzzi and Sangallo



102

predominate in account books, for example, through the fi fteenth century, 
despite the institution of communal  abaco  schools in central and northern Italy 
during the fourteenth century. See Berggren ( 2002 , 361); Franci and Rigatelli 
( 1982 , 22); Arlinghaus ( 2004 ).   

   8.    Swetz ( 1987 , xiv, 12–14). Raffaella Franci and Laura Toti Rigatelli have traced 
the infl uence of Fibonacci on Italian abaco education in numerous publications 
that build upon their fundamental study of 1982,  Introduzione all’aritmetica 
mercantile  (as in note 7). See especially their recent contribution, Franci and 
Rigatelli ( 2002 , 45–66).   

   9.    Grendler ( 1989 , chapter 3).   
   10.    Christoph L. Frommel discusses Sangallo’s education and training in Frommel 

( 1994 , 1–22). Frommel also summarizes the little that is known of Peruzzi’s 
earliest years in Frommel ( 2005 , 4–7). For further discussion of Peruzzi’s edu-
cation, see Huppert ( 2008 ) and Huppert ( 2015 ).   

   11.    Professional apprenticeships typically occurred between ages 12 and 15. 
Grendler ( 1989 , 22 and 306–11); Grendler ( 1995 , 167–68); and Franci and 
Rigatelli ( 1982 , 32–33).   

   12.    Van Egmond ( 1981 , 21–26) and Moscadelli ( 1991 , 209).   
   13.    Adams ( 1985 , 386).   
   14.    Pietro dell’Abaco, active in Siena later in the fi fteenth century, was one such 

instructor. Another example is Giovanni d’Abacco, who consulted on the con-
struction of the dome of Florence’s cathedral in the early fi fteenth century. See 
Scolari ( 1994 , 586).   

   15.    On the projects for Piacenza see Adorni ( 1986 ).   
   16.    See Peruzzi’s drawings, UA 632r and 355r. A comparably complex fraction of 

17 and 3 over 8-1/2 occurs on a study for San Domenico on UA 344r (Fig.  16 ). 
Wurm ( 1984 , 463, 325).   

   17.    Franci and Toti Rigatelli point out that, as a result of its location on the via 
Francigena, Siena in particular was a center for currency exchange. Franci and 
Rigatelli ( 1982 , 29).   

   18.    Arch. Arcisped. S. Rocco, vol. 233, Archivio di Stato di Roma. Peruzzi served 
as  camerlengo  for the 12 month period beginning September 1515.   

   19.    For example, extensive records survive for Michelangelo’s work at San Lorenzo 
in Florence, but the expenses and accounting were overseen by others, in this 
case bankers, leaving the architect more freedom to concentrate on design. See 
Wallace ( 1994 , 87, 138).   

   20.    Carpo ( 2003 , 466–67 and n. 54).   
   21.    See Fabiano T. Fagliari Zeni Buchicchio, “U 731 A  recto ,” in Frommel and 

Adams ( 1994–2000 , vol. 2, 147).   
   22.    Ognaretto ( 1998 , 49–68).   
   23.    Van Egmond ( 1986 , 53).   
   24.    Fabiano T. Fagliari Zeni Buchicchio, “U 724 A  recto ,” in Frommel and Adams 

( 1994–2000 , vol. 1, 111 and 284).   
   25.    Total costs in  scudi  appear along the edges of Peruzzi’s drawings, UA 16r and 

18r, together with calculations of overall dimensions. Wurm ( 1984 , 499, 505).   
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   26.    See Wurm ( 1992 ) and Huppert ( 2008 ).   
   27.    The extensive note within the central nave bay on UA 339r includes an overall 

cost of 7,000  scudi .   
   28.    Peruzzi study on UA 343r shows the same pier form but with the increased 

dimensions. Wurm ( 1984 , 231).   
   29.    The same measurements for “ la cherica ” that he labeled on the verso, 44 and 

98  canne , appear on the recto of the sheet. Here Peruzzi identifi ed these as the 
size of the vaults above the arches, without specifying what aspect of the vault 
he referred to (“ la volta piccola e can[ne] 44 sop[r]a ali archi ”, “ la volta 
grande sopra deli archi e can[ne] 98 ”). Peruzzi did not provide suffi cient infor-
mation to explain the relationship of these  canne  measurements to other dimen-
sions on the drawings, such as the radii of the vaults.   

   30.    The two notes towards the center of the sheet read: “ di falcato li quattro vani 
deli archi in superfi cie e can[n]e 133 b 19-1/2, ” and “ di falcato li archi in una 
superfi cie per fi ne ale imposte e le due volte son can[ne] 132 ”. Below this he 
wrote “ si di falca b[raccia] 905 2/14 p[er] 4 archi cioe can[ne] 56 b [raccia] 
9… [ illegible number ] el semicirculo .”   

   31.    Betts ( 1993 , 5–6).   
   32.    For his analysis of Sangallo’s sequence of drawings see Thoenes ( 1997 ) and his 

catalog entries in Frommel and Adams ( 1994–2000 , vol. 2, 101–3, 129–31, and 
153).   

   33.    Thoenes ( 1997 , 192), calls this study “a graphic investigation of statics.”   
   34.    Working with the interaxial dimension for the piers of 13-1/8  palmi  would give 

him a total circumference of 630  palmi . However, this did not match the cir-
cumference of 616  palmi  that he correctly converted from the diameter of the 
dome, 196  palmi , using the Archimedean approximation of 3-1/7 for π.   

   35.    Sangallo identifi ed the scale for the sheet as “ colli palmi del modello .”   
   36.    Thoenes identifi ed the alternative arch described in the note as the one used in 

the model. See Thoenes ( 1997 , 194–97).   
   37.    Thoenes critiques this non-algebraic curve on practical terms in Thoenes ( 1994 , 

641).   
   38.    He concluded his written note with a proposal for an elliptical form with a ratio 

of base diameter (196  palmi ) to dome height of 3:2, which he realized in the 
built model. Thoenes ( 1997 , 196–97).   

   39.    Sangallo identifi ed the profi le variations as “ todescho ” and “ antico buono ,” the 
latter having “ piu gratia .” For analysis of Sangallo’s design as a solution that 
surpasses both Gothic and classical forms, see Benedetti ( 2009 , 65–77).   

   40.    Lotz ( 1955 , 7–99).   
   41.    Serlio ( 1996–2001 , vol. 1, 27). Also see Rosin ( 2001 ) and Kitao ( 1974 , 31–35).   
   42.    For Renaissance interest in the Ionic volute, see Günther ( 1988 , 221–25) and 

Losito ( 1993 ).   
   43.    Poggi ( 2005 , 450, 455).   
   44.    Vitruvius provides instructions for constructing the volute in Book III, chapter 

5. See Vitruvius ( 1999 , 52).   
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   45.    See Scaglia ( 1994 , 87); Frommel and Adams ( 1994–2000 , vol. 1, 233–34) and 
Ciapponi ( 1984 ).   

   46.    On the differing degrees of reliance on Vitruvius between Sangallo and Peruzzi, 
see Huppert ( 2015 ), chapter 2.   

   47.    On the rediscovery of the Roman  piede , see Günther ( 1988 , 227–29) and 
Rowland ( 1998 , 133–34). Günther also discusses a wide-spread interest in 
ancient weights and measures among humanists in the early sixteenth century. 
Among architects, use of the ancient  piede  became prevalent, and the unit 
appears frequently in drawings by Antonio da Sangallo.   

   48.    Pagliara ( 1986 , 52–54).      

   Photographic Credits

   Uffi zi, Gabinetto dei Disegni e Stampe (by permission of the Ministero dei beni e 
delle attività culturali e del turismo): Figs.  1 – 10 ,  12 – 21  
 Biblioteca Apostolica Vaticana: Fig.  7  
 Ashmolean Museum, Oxford: Fig.  11      
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Sciences 1400-1800, Archimedes 38, DOI 10.1007/978-3-319-05998-3_5,
© Springer International Publishing Switzerland 2014

        The slow development of survey technology—from the fi rst statement of its 
geometric principles in the mid-fi fteenth century to its application in the administra-
tion of property and the design of urban spaces—spans an arc of almost two centu-
ries. One of the landmarks of this progress is a drawing in the Uffi zi collection, 
catalogued under the number 4180A (Fig.  1a, b ). It is a large drawing, composed of 
ten joined sheets, and measuring 117 cm by 133 at its widest points. It is a project 
for a large building complex on an urban site. The constituent elements identify it as 
a cloister: the cruciform space of a church, an atrium, and an arcaded court. A “rota” 
and “parlatoio”, located between the two latter spaces allow communication 
between the cloistered religious and lay visitors. This is not an ideal scheme, and it 
is the survey that makes it specifi c. The “Piazza del arco di camillo” to the right side 
and the “piazza di S. Ma(c)uto” at the bottom left, place the project in Rome, on the 
site occupied today by the late sixteenth-century structures of the Collegio Romano 
and the seventeenth-century church of Sant’Ignazio. The drawing represents a 
project for a convent of Franciscan nuns, or Poor Clares, sponsored by the Marchesa 
Vittoria della Tolfa and was executed in the period 1555–1559, during the pontifi -
cate of the marchioness’s uncle, Paul IV Caraffa   .  1  

   Topographic survey is an invention of the Renaissance. Its underlying geometry 
was described as early as the mid-fi fteenth century in a treatise on mathematics by 
Leon Battista Alberti. In this text, the  Ludi rerum mathematicarum , Alberti describes 
a circular instrument for measuring angles in the plane of the horizon and gives 
instructions for coordinating observations from two station points to fi x the position 
of a distant landmark: that is, for the system of triangulation that is the foundation 
of geometric mapping (Fig.  2 ).  2   The mapping of cities required additional tech-
niques. What the cartographer needed to know about the fabric of cities included not 
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just the position of things but also their form. In the heavily built up environment of 
the city the only way to measure form was by the technique that modern survey calls 
the compass traverse. Raphael described the technique in his report to Leo X, dated 
1518–1520, on the project to make a census of the monuments of ancient Rome.  3   It, 
too, used the circular angle-measuring device known in the sixteenth century as a 
 bussola . By combining measurements of orientation and length for every face of a 
block or section of street it could, in theory, record the internal structure of the city. 
A sketch plan of the Ponte Sant’Angelo area in Rome from the workshop of Antonio 
da Sangallo the Younger dated to 1524–5 (UA 1013) records dimensions and 

  Fig. 1    ( a ) Project for a convent of Poor Clares in Rome, on the site occupied today by the Collegio 
Romano and Sant’ Ignazio 1555–1559, UA 4180 ( b ) Giovanni Battista Nolli,  Nuova Pianta di 
Roma , 1748. The area covered by UA 4180         
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bearings and shows the fi rst stages of this process (Fig.  3a–c ).  4   The collection of 
Sangallo drawings in the Uffi zi also preserves a series of working sheets—compass 
roses—that record observations taken from station points throughout Florence in 
preparation for the construction by triangulation of a plan of the city (Fig.  4 ).  5  

     All the techniques necessary for mapping the city were in place by the early 
sixteenth century. Execution, though, lagged far behind theory. In part the problem 
lay with the instruments, which remained without telescopic sights until the 
eighteenth century. The compass traverse, in particular, was notoriously inaccurate. 
The great Ferrarese engineer and cartographer Giovanni Battista Aleotti (1546–1636) 
testifi ed to the diffi culty of this kind of survey: 

Knowledgeable mathematicians (that is map makers) do not hold the bussola to be a reliable 
instrument. I, honestly, have only rarely, and maybe never, been able to successfully close any 
plan that I have made using it, and I don’t think anyone else does any better. Beyond 
even the instability of the magnetic compass there are many practical problems ( imperfet-
tioni di mano ) in surveying and drawing the plan of a town or territory.  6   

Fig. 1 (continued)
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  Fig. 2    Triangulation (From Bartoli  1564 )       

By “closing a plan” Aleotti referred to the successful outcome of a compass traverse, 
when the endpoint of a series of observations around a closed perimeter coincided 
with the spot where the survey began. The great Leonardo da Vinci himself was one 
of those who failed. When Nando de Toni constructed a plan of the walls of Cesena 
from the survey data recorded in Leonardo’s notebooks, he discovered that the artist 
had made enough errors that the last segment of wall did not meet the fi rst.  7   

 The great number of observations required to complete the survey of even a 
small section of the city made the failure of the compass traverse there almost inevi-
table. Antonio da Sangallo’s survey of four short blocks in the Banchi (Fig.  3 ) 
required approximately 80 measurements of distance and bearing to record the 
course of the streets and the contour of the building fronts that defi ne them. The 
labor involved in capturing this level of detail goes a long way toward explaining the 
rarity of drawings of this kind. It is not surprising, then, that Leonardo Bufalini’s 
pioneering plan of Rome of 1551 (Fig.  5a, b ), despite seven years of work, does not 
attempt a precise account of the course of the city’s streets. Bufalini gave purchasers 
of his plan a new, comprehensive view of the city that included the fi rst published 
survey of the Aurelian wall and, thus, the fi rst realistic representation of the shape 
of the city. The plan seems to be based on at least two different systems of survey: 
a triangulation of major monuments and a compass traverse of the wall. The two 
were not integrated and the forms generated by them on the plan cannot be recon-
ciled. Most streets may not have been surveyed at all but their courses laid down by 
eye between the points fi xed by the two survey systems.  8  

 

D. Friedman



111

  Fig. 3    ( a ) Workshop of Antonio da Sangallo, the younger. Sketch plan of the area of the Banchi, 
at Ponte Sant’Angelo, Rome, 1524–5 (UA 1013) ( b ) UA 1013, detail ( c ) Area of the Banchi in the 
view of Rome of Antonio Tempesta, 1593           

   Because of its limited precision and inadequate level of detail and because of its 
woodcut format and 14 poorly coordinated sheets, Bufalini’s  Roma  was not a useful 
instrument for urban planning. Uffi zi 4180A gives a better account of Renaissance 
survey. It also preserves considerable information about how maps were produced 
in the mid-sixteenth century. The drawing consists of two discrete parts: the project 
for the convent and the plan of the building site. The architectural project is a 
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fi nished work, developed elsewhere and transcribed here line for line. This part of 
UA 4180 shows no revisions or construction lines and the level of presentation is 
high. Walls have been reinforced with a light wash and the function of the rooms 
inscribed. The survey of the site is also handsomely drawn, the wash, applied here with 
a broad brush, blocking out the built up area beside the streets. This is a drawing meant 
for presentation outside the workshop, probably to the clients of the project. The 
survey, however, unlike the project, is not redrawn after an earlier draft. At this stage in 
the history of urban mapping, the process of transforming survey data into a plan took 
place on the fi nished drawing itself. A couple of details speak for this conclusion. 

 In a publication only a decade old when UA 4180 was drafted, the mathematician 
Nicolo Tartaglia characterized the process of map-making as one of transferring 
data from the site to the sheet. Translation was to be as direct as possible, extending 
to the use of the same instrument for both survey and drafting. North is the constant 
reference and the magnetic compass fi xes it both in the fi eld and on the drafting 

  Fig. 4    Workshop of Antonio da Sangallo the Younger, Notes from one station point for a survey 
of Florence, UA 773       
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table. The plan was to be drawn by laying the “ bossolo ” (Tartaglia’s spelling of  bus-
sola ) on the drawing surface, aligning it with north using the magnetic compass, and 
rotating the sighting arm to the bearing recorded in the fi eld for the fi rst side of the 
fi gure. A stylus line impressed in the paper recorded the bearing of the sighting arm, 
and perforations in the paper mark the center of the instrument and the terminal 
point of the length, measured to scale, of that fi rst side. These steps are repeated 
around all faces of the fi gure and only when they were complete was ink applied 
between terminal points to make the fi gure visible.  9   

 In a process like this there are signs that identify the sheets on which data became 
image: needle holes, stylus lines that extend beyond inked ones, and, of course, cor-
rections. UA 4180 has all of these. Most are visible only with a magnifying lens but 

  Fig. 5    ( a ) Leonardo Bufalini, Map of Rome, 1560 (original 1551) and ( b ) detail         
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one correction is large enough to see in the photograph of the drawing as a whole 
(Figs.  6a, b  and  7a–c ). A long erased line running down the left side and across the 
bottom of the sheet represents a fi rst attempt to construct the block plan. The exe-
cuted plan is different from the erased one in a number of ways. In the fi rst place, it 
is laid on the sheet differently, rotated with respect to the earlier image by about 5°. 
This adjustment served to coordinate the street facades on the north and west sides 
of the convent block with the left and bottom edges of the sheet, establishing a 

Fig. 5 (continued)
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  Fig. 6    ( a ,  b ) Details from UA 4180 (1555–1559), showing the failed fi rst effort to construct the 
image from the survey         
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stable compositional base for the mapped image as a whole. The second attempt to 
lay out the plan also involved moving the building site about 15 cm higher on the 
page, which further solidifi ed the image by making room for the entire Piazza di San 
Macuto. But the most fundamental change is the simplest one. The redrawn plan is 
50 % larger than the draftsman’s fi rst effort.  10   The change in scale meant that the 
plan had to be constructed anew from the survey data.

    The differences between these two versions of the plan illustrate something fun-
damental about the condition of survey imagery at the middle of the sixteenth cen-
tury. The diffi culties of sizing the image and positioning it on the page show that the 
draftsman did not know the shape of the blocks before beginning the drawing. There 
existed no map of the city that he could consult, nor had he transformed his own 
survey data into a plan before beginning work on UA 4180. For an image intended 
as a formal presentation drawing, the inability to envision the shape of the project 
created signifi cant diffi culties. The redrafting of the plan shows the author of UA 
4180 coming to terms with the surprises inherent in the sixteenth century mapping 
process. 

 As both the product of an on-site survey and formal presentation of a design 
project, UA 4180 has a complex character very different from what we have come 
to expect from the more rationalized design process of modern practice. The place 
where the drawing’s two natures collide is on the northern and western perimeter of 
the convent, where the regular forms of church and cloister meet the circumstantial 

Fig. 6 (continued)
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  Fig. 7    ( a – c ) Details from 
UA 4180, showing the 
pinholes and stylus lines used 
for the construction of the 
image       

shapes of the city. Here, the drawing presents two separate, superimposed plans 
(Fig.  8a–c ). One, with the wall thickness washed in pink, represents the convent 
project. The other—drafted with a single, un-reinforced line—records the limits of 
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  Fig. 8    ( a – c ) Details from UA 4180, showing the existing building lines and the proposed street 
front of the new project       

the existing structures. It is easy to imagine that in an early moment, the plan 
constructed on UA 4180 consisted only of this line drawing, which was then copied 
onto a separate sheet where the convent project was worked out. Only when a fi nal 
design had been established would the internal articulation of the convent have been 
added to the master sheet. One of the results of this process is the small failure of 
the convent project to fi t the available space. One sees this best at the left of the 
drawing where the walls of the atrium, church and service rooms have been thinned 
beyond serviceability to remain within the line defi ned by the existing property 
(Fig.  9 ). In places like this, it is evident that the walls defi ning the convent were 
drawn over those outlining the block.

       Planning with UA 4180 

 In modern practice, the plan constructed on UA 4180 would have served to generate 
two kinds of information important for the design process. In the fi rst place, it would 
reveal the shape of the property and give a scaled representation of its size. In the 
second, it would fi x the position of the elements of the project in relation to the exist-
ing urban fabric. In this latter respect, the most important features of the design were 
the endpoints of the proposed street that was to defi ne the southern boundary of the 
convent, the streets and square to the right of the sheet. To accomplish these goals 
the surveyor had to execute the most diffi cult of all the operations of his discipline. 
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This is not a plan that could be made by the elegant and relatively accurate methods 
of triangulation. Only a compass traverse could measure the shape of the streets and 
blocks at the convent site, and this, as we have seen, was a process notoriously prone 
to error. The common solution to the open circuit of an imperfect traverse, one 

  Fig. 9    UA 4180, Detail of the church’s left transept and confessionals showing the wall thinned 
to fi t the architectural project within the mapped space of the city block       
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supposes, was to “adjust” angles and segment lengths. The draftsman of UA 4180 
did something like this on the right side of his sheet. This is the side least related to 
either the convent or the new street and therefore the side least likely to have been 
the starting point for the construction of the plan. It is here that the draftsman would 
have discovered his problem, and a series of erasures suggest that it was also here 
that he made the changes that resolved the plan. This adjustment had little effect on 
the shape of the area to be rebuilt for the convent but at the overall scale, that of the 
street project, the distortions make an important difference.  11   

  Fig. 10    UA 4180, overlaid with the outline of the Nolli plan, 1748. The scale of the two images 
has been equalized and the outline positioned on the basis of the Via di Sant’Ignazio frontage 
(the street in front of the proposed church). North is to the left of the fi gure       
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 By superposing UA 4180 onto the representation of the Collegio Romano area 
in Giambattista Nolli’s 1748 plan of Rome, we get some measure of the accuracy 
of the sixteenth century survey (Fig.  10 ). Figure  10  aligns the Via di Sant’Ignazio 
front of the Collegio Romano represented by Nolli with the  fi lo , or building line, 
proposed in UA 4180 on the west side of the central block. When the scales of the 
two plans are equalized the comparison reveals the differences. One is the com-
pression of the UA 4180 plan on the east-west axis, from the top to the bottom of 
the plan. This is most easily read in the position of the Corso. Running right- left 
on the small fl ap attached to the top of the plan, it lies closer to the Via di 
Sant’Ignazio in UA 4180 than it does in Nolli’s  Ichnografi a . More important as a 
measure of the value of UA 4180 for the planning process, is the bearing of the 
new street. Although the eastern end of the street aligns with its position on 
the Nolli map, the western end is signifi cantly displaced. Instead of leading to the 
door in the northern arm of the transept of the Minerva, it intersects the church 
to the south of the apse. If buildings had been cleared from the transept door 
following the orientation indicated in the drawing, the street would not have 
intersected the existing road on the east side of the site, the “Strada a Monte 
Cavallo” leading to the Quirinal.

   It would not have been possible to build directly from UA 4180, nor can this 
have been the purpose of the drawing. Had it been, a compass rose to plot the ori-
entation of the new street would have been a minimum requirement. To build the 
street, direct visual observation would have been essential. Surveyors on the roofs 
of buildings at the ends of the street and at intervals in between would probably 
have been necessary to direct a somewhat approximate demolition of structures. 
The only way that the project represented in drawings like UA 4180 could be realized 
on the ground was through the presence of the architect or a knowledgeable 
collaborator at the site. The information of this drawing, like contemporary drawings 
prepared for projects purely architectural in nature, was approximate—essential 
but not suffi cient.  12   

 UA 4180 is unusually expansive as an architectural drawing in that it presents a 
broad physical context for the convent project. It is also a rare document of the use 
of survey for urban design. As a project of civil architecture, it is comparable to the 
sketch plan of the Banchi area in Rome (Fig.  3 ), which seems to have been related 
to a project to improve the street system at the Ponte San Angelo and the sight lines 
to the church of San Giovanni dei Fiorentini.  13   A more fully developed design—also 
by Antonio da Sangallo the Younger’s workshop—for the expansion and fortifi ca-
tion of the feudal residence of Pratica in the Pontine marshes is more typical of the 
kind of project for which surveys were produced (Fig.  11 ).  14   The geometric nature 
of fortifi cations based on canon and interdependent bastions made drawings and 
models essential to military design. Tartaglia speaks of them as if their production 
were a matter of course.  15   In contrast, the area inside the city walls was less fre-
quently mapped, and design there lagged in its use of survey.  16  

   Surveys of urban design sites become more common in the second half of the 
century, as patrons began to see their utility in the planning process. A painting of 

D. Friedman



123

  Fig. 11    UA 483, Workshop of Antonio da Sangallo, the Younger. Project for the reconstruction of 
the town of Pratica (after 1539)       
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1557 on the ceiling of the Sala di Cosimo I in the Palazzo Vecchio in Florence 
makes an explicit claim about their use (Fig.  12 ). The image by the painter and 
architect Giorgio Vasari celebrates the foundation in 1548 of Cosmopolis 
(Portoferraio on the island of Elba). Cosimo, surrounded by his advisors, looks at 
the site from some indeterminate vantage. In his hand, he holds a plan of the project, 
while before and, symbolically, below him lies the city itself. It, too, is represented 
in plan   .  17   Vasari’s painting makes the purpose of such plans explicit: they allow the 
patron to visualize the city as a whole, as though hovering over it like a demigod. 
A more literal statement of purpose appears in the dedicatory text of a survey plan 
of Parma executed between 1589 and 1592 and given a new dedication in 1601. 
With the plan, “You, Duke Ranuccio, can see the proportions and relationships of 
the streets to one another and of any street to the body (of the city) as a whole, and 
if you want to bring the city to its full dignity you will clearly see the places that 
need to be improved.”  18  

   With few exceptions, sixteenth-century plans that represent the whole city—like 
Bufalini’s  Roma —give a schematic and generalized picture of their subject. In that 
regard, the Cosmopolis plan of Vasari’s painting is probably not dissimilar from real 
working drawings. A plan for the enlargement of the village of Guastalla of 1553 
provides an example of this kind of image (Fig.  13 ). The town, located on the Po 

  Fig. 12    The Foundation of Cosmopolis, Sala di Cosimo I, Palazzo Vecchio, Florence (1557)       
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between Mantua and Parma, was being transformed into a feudal residence by 
Ferrante Gonzaga, then governor of Milan for Charles V. The drawing is by 
Domenico Giunti, Ferrante’s architect.  19   It is a survey of the defensive perimeter 
then in the course of construction and also includes a necessarily less concrete and 
only partially drawn project to develop the area within the new walls. In comparison 
to UA 4180, the schematic character of the plan is striking. Geometric survey is 
limited. Inscriptions give bearings for the western curtains at the top of the sheet 
but for no others. The street plan is defi ned by dimensions alone. The town as 
built follows this project in part, but the drawing can only be considered an outline 

  Fig. 13    Domenico Giunti, plan of Guastalla, 1553 (Archivio di Stato di Parma, Raccolta mappa e 
disegni, volume 48, plan 76)       
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of the scheme. It gives a general picture of the arrangement of blocks, but the 
orientation of streets and the angles of intersections are signifi cantly different in the 
town itself. While there is no question that this plan responds to the idiosyncrasies of 
the Guastalla site, its rough accuracy and limited detail give it an appearance similar 
to the images that illustrate ideal towns in the literature of military architecture.

   UA 4180 is much more precise. It records plan details of individual house fronts 
and takes as its subject a block and street system of a complexity that no Italian city 
plan of the sixteenth century had yet addressed. While it was not a blueprint to be 
executed without further creative intervention, it did establish terms for the consider-
ation of the architectural and urban design project that would not have been possible 
before the invention of survey. At the practical level, it identifi ed the property to be 
dedicated to the convent and to the proposed street and marked out the areas of 
demolition. At the conceptual level, the level of formal design, it offered an outline 
of the area available to the architect for design, something that the verbal descrip-
tion of sites that we know from medieval practice could not do.  20   Without survey, 
information about shape would only have been known after demolition had cleared 
the ground. The drawing also allowed the designer to understand the relationship 
between the convent and street projects and, at the largest scale, to know the rela-
tionship between them and the rest of the city. 

 UA 4180 was also the means by which the architectural and urban planning idea 
was represented to a public outside the design workshop. What it might have com-
municated to that audience is embodied, fi rst of all, in the medium. The translation 
of the three dimensional city into a two dimensional diagram would still, at this 
date, have preserved an element of wonder. At the same time, the mathematically 
based image claimed an objectivity that removed its content from the realm of rhet-
oric. Spectacular and matter of fact, the survey had very special virtues as an advo-
cate for the project. As it turns out, the drawing is not an entirely honest witness to 
the situation. In the fi rst place, the drawing presents information about the avail-
ability of land. It illustrates an entire city block, washed by a unifying grey-green 
tint, implying a resource that was not, in fact, in the hands of either the Marchesa or 
the Pope. A contemporaneous plan for the same site gives what is probably a more 
accurate picture of the Marchesa’s property. Inscribed with the date 1557 and identi-
fi ed as the “Pianta del palazzo di Paolo 4o”, it illustrates the area of the houses at 
San Macuto that the Marchesa proposed to convert into the convent of Poor Clares 
(Fig.  14 ).  21   The property mapped there represents less than half of the site covered 
by the UA 4180 project. It was not until 1581 that the land between the houses of 
the Marchesa and the Piazza del arco di Camigliano (now the piazza of the Collegio 
Romano) was acquired from private owners, and then by Pope Gregory XIII for the 
Collegio Romano, the successor to the convent of Poor Clares as the recipient of the 
Marchesa’s pious charity.  22  

   UA 4180 also makes an assertion about the centrality of the site. The project is 
the central focus of the drawing, of course, but the identifi cation of connections to 
the Pantheon, to San Marco, to the Minerva, and to Monte Cavallo suggest a similar 
relation to the city as a whole. Finally, and most importantly, the drawing claims 
that the convent and street were natural improvements to the site. The blank space 
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of the Piazza di San Macuto gets an architectural focus and the new street (thanks to 
the slight distortion of the survey) is shown as an organic continuation of the existing 
road from the Quirinal. For all its technical accomplishment, the plan’s rhetorical 
sophistication also stands out. 

 The project described on UA 4180 had a mixed fortune. The convent of Poor 
Clares was very short lived. For the few years that the nuns were in residence at San 

  Fig. 14    “Pianta del palazzo di paolo 4o,” partially showing the area covered in UA 4180, 1557 
(Accademia di San Luca, Fondo Mascarino 2360, plan 1)       
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Macuto, they occupied quarters adapted from earlier structures. No part of the 
convent project described in the Uffi zi drawings was built. The Marchesa della 
Tolfa did lay the foundations for a new church—later inherited by the Jesuits—but 
these occupied a different and less grand position on the convent site than had been 
imagined in the drawing.  23   The street fared much better. Though not complete in all 
its parts, the section within the convent block was built as planned. It disappeared 
under the construction for the Collegio Romano in the late sixteenth century but the 
earliest drawings for that project include it as one of the boundaries of the site, and 
plan-views of the city from the 1570s (Mario Cartaro 1576, DuPérac-Lafréry 1577) 
illustrate it as part if the street system of the area (Fig.  15 ).  24  

   The use of survey did not transform the kind of project that was proposed in 
UA 4180. The new street connects two terminal points in much the same way that 
the Via Giulia or the Via Lungara, Julius II’s streets through the properties just 
east and west of the Tiber, had done at the beginning of the century. Plans of the 
generation of UA 4180 were, nevertheless, pioneers. They taught an audience of 
designers, building patrons, and civic administrators the value of survey both in 
design practice and as a tool of representation. Such plans allowed projects to be 
represented in much more concrete terms than had been possible when verbal 
description was the only way of communicating information about a design idea. 
If the imprecision of early survey limited its value for the defi nition of form, the 

  Fig. 15    Early project drawing for the Collegio Romano, Rome (Archivium Romanum Societatis 
Iesu, Armadio 5). The street at the bottom of the sheet (the west side of the site) is the Via di San 
Ignazio       
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uniquely abstract vantage on urban space that it offered ultimately opened up 
unimagined possibilities. 

 Urban design in the sixteenth century continued to be dominated by orthogonal 
spaces and straight streets, but a century later, in projects by Bernini, Borromini, 
and Pietro da Cortona, the topography revealed by survey and displayed in plan 
would inspire projects that transformed the accidents of the city’s street system into 
coherent formal designs. There is no more spectacular example of this type of 
Roman urban design than the piazza built on the northwest corner of the Marchesa 
della Tolfa’s site 170 years after the drafting of UA 4180. The circular spaces and 
triangular buildings of the Piazza Sant’Ignazio that Filippo Raguzzini built for the 
Jesuits of the Collegio Romano (1727–1736) demonstrate more dramatically than 
any other Roman square the formal control that drawing and survey introduced to 
urban design (Fig.  16 ).  25  

  Fig. 16    UA 4180, Detail overlaid with Filippo Raguzzini’s Piazza Sant’Ignazio (1727–1736) 
from Nolli 1748       
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                                Notes 

     1.    UA 4180 is attributed to Bartolomeo de’Rocchi. See Popp ( 1937 ). On the 
UA4180 site, see Rinaldo ( 1914 ); Bösel and Karner ( 1986–2007 , vol. 1, 180–
211, especially 180–182); Benedetti ( 1992 ); Palmerio and Villetti ( 1987 ); 
Villoslada ( 1954 , 61–67, 93–98, 133–36); Valone ( 1994 ); and Lucas ( 1990 , 
164–165). On Paul IV more generally, see von Pastor ( 1901–1953 , vol. 14, 
56–434).   

   2.    Alberti ( 1960 –1973, vol. 3, 135–173). Also see Vagnetti ( 1968 ) and Stroffolino 
( 1999 ).   

   3.    See Bruschi et al. ( 1978 , 459–484) and Thoenes ( 1986 ).   
   4.    Günther ( 1984 , 234–239).   
   5.    Frommel and Adams ( 1994–2000 , vol. 1, 128–30), where the drawings (UA 

771r and v, 772r, 773r, 774r) are tentatively dated to 1526.   
   6.    From a manuscript prepared in fi nal form in the early 1630s, and published as 

Aleotti ( 2000 , 539 (154r)). For the dating, see Rossi ( 1998 , 164).   
   7.    De Toni ( 1974 , 137 and Figure 41).   
   8.    Ehrle ( 1911 ). Also see Friedman and Schlapobersky ( 2005 ) and Maier ( 2007 ).   
   9.    Tartaglia ( 1606  [1546], 129–131).   
   10.    The upper left, or northeast, corner of the drawing contains two scales. Both 

measure 100 units. The one closest to the edge of the paper, corresponding to 
the fi rst attempt to lay out the plan, measures 8.6 cm, the other 12.9 cm. This 
relationship is consistent for all measurable dimensions of the two plans. There 
is also a 100 unit scale at the base of the drawing that measures 12.9 cm. 
Another drawing in the Uffi zi collection, UA1900, offers a reduced project for 
the Marchese della Tolfa site. The convent is smaller and the drawing presents 
only the property directly affected by the architectural project, with no urban 
context and no reference to the new street proposed in UA4180. That plan is 
drawn at the scale of 15.4 cm to 100 palmi, that is, 19 % larger than the plan of 
UA4180. It presents a simplifi ed version of the site and includes some details 
not registered in UA 4180 (e.g. a door between the fi rst and second projection 
on the western face of the property). There are enough discrepancies between 
that plan and the one registered on UA4180 to conclude that they were con-
structed separately. Both, however, were made on site.   

   11.    The erasures modify the south face of the convent block, the face that defi nes one 
side of the present-day Piazza del Collegio Romano. They are visible at both the 
top and bottom of that face, a few centimeters to the left of the line that makes the 
fi nal defi nition of this side of the block. It is probable that the corner of the block 
on the western street, the present day via di Sant’ Ignazio, had been established 
early in the projection of the plan. This was an important point in the project and 
one whose relationship to the area of the convent, and especially to the door of the 
church, was relatively easy to measure. The faces of the south side of the block, 
generated in a series that began in the east at the end of a long compass traverse, 
apparently landed on a point too far to the north and had to be corrected.   
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   12.    The drawings for architectural projects of the period had a similar relationship 
to execution. Those that survive are mostly detail sketches and the plans that we 
know are often quite different from what was built. Nothing like a full set of 
working drawings ever existed. See Ackerman ( 1954 ). Nor were the architec-
tural projects of Phillip II of Spain, spread across widely scattered sites and 
centrally controlled by the king himself, recorded in more than a bare minimum 
of drawings. For the lists of drawings sent to building sites, see Wilkinson- 
Zerner ( 1993 , 46–62, esp. 58–59). In these cases, as in Renaissance Rome, we 
must assume that verbal instruction supplemented the drawings.   

   13.    See note 4, above.   
   14.    UA 843 r, dated after 1539. See Frommel and Adams ( 1994–2000 , vol. 1, 151–

152). The drawing is inscribed on the verso: “Pratica di me[sser] luca di 
maximo”.   

   15.    Tartaglia ( 1606  [1546], 69r). For Tartaglia, design, not materials, is the essence 
of military architecture and design is produced and shared through drawing: 
“Lo ingegno del huomo, nel fortifi care una citta (secondo mio parere) si 
conosce per la forma, e non per la materia.” He tells his interlocutor that he 
could improve the defenses of Turin in six different ways. To explain them, he 
states, “a me saria necessario (a volere a soffi cientia ben dechiarire, e con 
ragione dimostrare di cadauno di quelle particularmente sua valuta) a designare 
varie e diverse piante” (70v). One of the qualities of a good defense is to ensure 
that the enemy is never closer to the curtain he intends to attack than from a 
bastion from which he can be attacked. This is a geometric issue and Tartaglia 
promises to show his interlocutor how it is done with a drawing: “faro fi gural-
mente vedere” (71r). His interlocutor says he will show that he has understood 
the lesson by making “una pianta designata de mia mano” (71v).   

   16.    The war offi ces of Italian states collected towns plans of both friend and foe. 
Concerned exclusively with fortifi cations, they generally leave the area inside 
the walls blank. See van den Heuvel ( 1991 , 53–61), citing Biblioteca Nazionale 
Turin, Ms. q. II. 57 (old signature Serie Atlas C N 5 [Bc. Atl Sala XV]). Also 
see Lamberini ( 1988 ) and Warmoes et al. ( 2003 ).   

   17.    See Battaglini ( 1978 , 89–91) and Fara ( 1997 , 3–24). In a letter of 19 June 1549, 
Cosimo’s architect Giovanni Camerini speaks of two plans for the layout of 
the city’s streets and defenses that he has sent to the duke. Fara identifi es a 
drawing of 1553 as refl ecting one of those plans (Fara ( 1997 , Figure 33)). It is 
substantially the same as the plan that Vasari places in Cosimo’s hand in the 
Palazzo Vecchio painting.   

   18.    “…potrà vedre le proportioni e le corrispondetie che hanno tutte le strade et 
borghi fra loro et ciascuna a tutto il corpo di quella et volendola ridurre al suo 
vero decoro, chiaramente conoscerà i luoghi che rimuovere si dovrebbono per 
ridurrla a perfetione…” Adorni ( 1980 , 34). Also see, Uluhogian ( 1983 ).   

   19.    The plan measures 372 mm by 428. It is preserved in Raccolta mappe e disegni, 
volume 48, plan 76 (previous catalogued as volume 70), Archivio di Stato di 
Parma. Also see Soldini ( 1992–3 ) and Storchi ( 1999 ).   
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   20.    This represented a considerable improvement over the uncertainty about bound-
aries that reigned in the era of purely verbal description. When land was cleared 
for the Piazza Maggiore in Bologna at the beginning of the thirteenth century, 
not all of the properties within the perimeter of the project were identifi ed 
before demolition began. A second set of purchases was necessary to gain con-
trol of the site and to regularize its perimeter. See Bocchi ( 1995–1998 , vol. 2, 
11–16, esp. 16). For late medieval urban design systems see Friedman ( 2009 ).   

   21.    Fondo Mascarino 2363, plan 1, Accademia nazionale di San Luca, Archivio 
storico. The drawing measures 58 by 44 cm. It carries the inscription, pre-
sumably of a later date: “Casa del Colegio de Gesuiti alla Guglia di S. Mauto”. 
See Marconi et al. ([ 1974 ], 16).   

   22.    The land was expropriated by Gregory with a  Motu Proprio  of 13 July 1581. 
Cerchiai ( 2003 , 63).   

   23.    Bösel and Karner ( 1986–2007 , vol. 1, 181).   
   24.    The Collegio Romano drawings are held in Armadio 5, Archivium Romanum 

Societatis Iesu, Rome. They have been published in Lucas ( 1990 , 164–65, cat. 
no. 96). For the Rome plans, see Frutaz ( 1962 ), Plate 244 for the relevant detail 
of the Cartaro plan, Plate 250 for the detail of the DuPérac-Lafréry plan.   

   25.    The surviving eighteenth century plan of the piazza was produced in 1731 for 
the  Maestri di Strade , the agency in charge of the physical city, as one of a 
series of plans of public spaces. Disegni e piante, c. 80, no. 240, Archivio di 
Stato di Roma It is illustrated in Habel ( 1981 , Figure 16). Also see Connors 
( 1989 , 279–294).      
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             Our next two essays look at the new religious orders of the Catholic Reformation 
and the institutional settings they established for architectural teaching and practice. 
As Susan Klaiber shows, orders such as the Jesuits, Theatines, and Barnabites 
founded a durable, twofold rationale for linking architecture and mathematics. This 
bond was, in the fi rst place, pedagogical. Beginning with the Jesuits’ infl uential 
 Ratio Studiorum , the orders routinely offered special instruction in geometry within 
the Aristotelian framework of mixed mathematics. Architecture—like surveying, 
navigation, hydraulic engineering, and fortifi cation—was suited to the active, 
“apostolic” spirituality of Catholic reform, which valued utility and worldly experi-
ence in the training of novices and missionaries. The orders also promoted this link 
on an administrative level, by recruiting their own members—often mathemati-
cians—to offi cial posts as building supervisors, responsible for the construction of 
new churches and mission houses throughout Europe. This twin program of math-
ematical education and new building provided a fi rm disciplinary foundation for the 
art, while also giving rise to a new class of building practitioners. Unlike their secu-
lar counterparts, the orders’ architects were equally trained in both the classroom 
and at the construction site. As Klaiber demonstrates, this intellectual and institu-
tional entwining helps to explain the novel approaches to structural design, iconog-
raphy, and architectural theory that we see in the work of Guarino Guarini and many 
analogous fi gures. 

 This Baroque intellectual culture had a truly global reach, spreading as far and as 
widely as the orders themselves. Kirsti Andersen’s article takes an in-depth look at 
one Jesuit scholar-practitioner. Andrea Pozzo was not an architect, but his chosen 
craft was inextricably tied to building.  Quadratura —the art of illusionistic ceiling 
painting—drew upon real spaces to produce fanciful and dizzying visual allegories. 
A prolifi c artist, Pozzo was also one of the most infl uential in his fi eld. Andersen 
considers his renowned  Perspectiva pictorum et architectorum  (1693–1700), suc-
cessor to a long line of similar  trattati . This hybrid book refl ects Pozzo’s own back-
ground, shaped both by Jesuit mathematical pedagogy and extensive practical 
experience. Although conceived as a basic instructional text and as a showcase for 
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the author’s own paintings, the book is nonetheless written in a forbidding Latin and 
its content expressed in complicated geometrical constructions. It is clear that Pozzo 
saw his own artistic virtuosity as inherently geometrical. In this sense, he followed 
in the footsteps of many earlier writers. While the  Perspectiva  recalls similar 
instructional texts by painters and architects such as Alberti, Piero della Francesca, 
and Vignola, it also revels in a formal and visual complexity that would have 
appealed to mathematicians like Guidobaldo del Monte and Girard Desargues.      

 III The Baroque Institutional Context



137A. Gerbino (ed.), Geometrical Objects: Architecture and the Mathematical 
Sciences 1400-1800, Archimedes 38, DOI 10.1007/978-3-319-05998-3_6,
© Springer International Publishing Switzerland 2014

      For most of us, a familiar image from Raphael’s  School of Athens  serves to illustrate 
our intuitive notions about the links between early modern architecture and mathe-
matics. The artist’s portrait of the great Renaissance architect Bramante as the 
geometer Euclid recalls the medieval traditions of Gothic architects and master 
masons using geometry (Fig.  1 ). Moreover, the inclusion of Zoroaster and Ptolemy—
identifi ed by celestial and terrestrial globes—in the group huddled around Euclid/
Bramante further seems to associate geometry and architecture with astronomy, 
vaguely echoing the medieval quadrivium of arithmetic, music, geometry, and 
astronomy. In short, the architect as mathematician (or mathematician as architect) 
operating within a larger group of quantifi able crafts and sciences seems obvious, 
and not particular to the early modern world. Yet a closer look at a well-defi ned 
culture which produced such individuals illuminates much about the period’s under-
standing of both architecture and mathematics.

   The religious orders traditionally associated with the Counter Reformation, such 
as the Jesuits, Theatines, and Barnabites, provide rich material for investigating the 
relationship between architecture and mathematics, and they nurtured a specifi c 
type of priest-architect. In 1595, the architect Vincenzo Scamozzi remarked about 
the Venetian Theatines: “these fathers… are both good mathematicians and they 
understand architecture…,” implicitly linking the priests’ ability in these two fi elds.  1   
This paper considers why this relationship fl ourished in the Italian Seicento and 
how the intellectual culture of these orders promoted architectural activity. 

      Architecture and Mathematics in Early 
Modern Religious Orders 

                Susan     Klaiber    
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    The Orders 

 Two major factors account for the centrality of this phenomenon in the seventeenth 
century. First, the Seicento witnessed a dramatic expansion of the counter- 
reformational orders all across Europe, but particularly in Italy. This expansion cre-
ated a pressing need for new churches and for designers or construction supervisors.  2   
Second, as the century progressed, the gradual organization (and reorganization) of 
knowledge in the wake of the new sciences infl uenced these orders as they consoli-
dated their educational programs for their members. In these curricula, architecture 
became systematized as a discipline related to applied mathematics. The orders 
maintained ambivalent—not entirely hostile—relationships to the new sciences, 
which to a great extent had their center in Italy with Galileo.  3   While the relationship 
between mathematics and architecture also developed in the secular world, in other 
religious orders, and outside of Italy—fi gures like Christopher Wren, Ignazio Danti, 
or the Belgian Jesuit François d’Aiguillon spring to mind—the new orders’ institu-
tional qualities as signifi cant centers of mathematical learning and architectural 
patronage made them crucibles for the development of a mathematical approach to 
architecture, especially in Italy.  4   

  Fig. 1    Raphael,  School of Athens , Vatican, Stanza della Segnatura, c. 1510–1511, detail with 
Euclid/Bramante       
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 How were the Jesuits, Theatines, and Barnabites trained in mathematics and the 
sciences? The Jesuits’  Ratio studiorum  (fi rst edition 1586) outlined the course of 
study pursued by the order’s aspiring priests.  5   The Theatines and Barnabites at fi rst 
summarized their curricula in their constitutions; the Barnabites followed with a 
document similar to the  Ratio studiorum  in 1666.  6   In all three orders, the basic 
seven-year curriculum covered three years of philosophy and four (or sometimes 
fi ve) of theology.  7   For the Jesuits and Theatines, the fi rst year of philosophy dealt 
with logic; the second year with natural philosophy (via Aristotle’s  Physics  and  De 
caelo ) as well as Euclid’s  Elements ; the third year with metaphysics. The four years 
of theology were chiefl y based on Aquinas. 

 Beyond the  Elements , which comprised the basic mathematical education for 
most future priests, aspects of astronomy, perspective, optics, music, and mechanics 
were also treated in what was essentially an updated version of the medieval qua-
drivium   .  8   For talented students, however, the Jesuits offered supplemental tutoring, 
exploring these topics in depth as well as other “mixed” or applied mathematics 
topics, such as surveying, navigation, instrument making, hydraulic engineering, 
and both civil and military architecture.  9   The term refers to the “mix” of abstract 
mathematical concepts with quantifi able, empirical properties of the real world. 
Christoph Clavius, professor of mathematics at the Collegio Romano, promoted this 
concept from the very beginning of his tenure as an integral part of the Jesuit 
curriculum.  10   

 The second edition of the  Ratio studiorum  (1591) prescribed a kind of occasional 
mathematical forum to be held at the Collegio Romano that would present material 
related to the private lessons of individual students. Michael John Gorman has 
recently studied the  problemata  presented in this forum under the guidance (and 
disguised authorship) of Christoph Grienberger, professor of mathematics at the 
Collegio Romano off and on between 1595 and 1633.  11   Among the thirteen prob-
lems published and analyzed by Gorman, two treat broadly architectural topics: one 
on geometry and architectural design with specifi c reference to the Jesuits’ 
Collegium nobilium in Bologna (1588–1601), the other speculating on the dimen-
sions of Egyptian pyramids (based on descriptions of the Seven Wonders of the 
Ancient World) in the manner of Juan Bautista Villalpando. In the fi rst, Grienberger 
also comments on a structural curiosity like the leaning Torre degli Asinelli in 
Bologna: “Without doubt that Bolognese structure had an outstanding mathemati-
cian as its architect by whose vigilance Geometry has come to inhabit that tower.”  12   
These  problemata  seem to confi rm the place of architecture in the advanced math-
ematical tutoring offered at the Collegio, an innovation in architectural education 
that produced a new type of architect, emerging not from a background in crafts or 
the building trades, but rather from a scholarly approach supplemented by practical 
experience at the order’s construction sites. 

 The Jesuit Antonio Possevino’s  Bibliotheca Selecta  (fi rst edition Rome, 1593) 
marks the fi rst written record of architecture’s place within the order’s mathematical 
world. Possevino’s monumental study, closely related to the discussions surround-
ing the early versions of the  Ratio studiorum , offers summaries of virtually all fi elds 
of knowledge, with suggestions for further reading.  13   Book XV deals with 

Architecture and Mathematics in Early Modern Religious Orders



140

mathematics, and within this mathematical section Possevino devoted three chapters 
to architecture, declaring at the outset that architecture is discussed immediately 
after the chief mathematical disciplines, since it depends on these, and in    fact is 
perfected through their leadership.  14   In his encyclopedic ambition to present the 
knowledge necessary for Jesuits, Possevino concentrates on critical discussions of 
the architectural texts of antiquity, including both Vitruvius and the Bible, with its 
description of the Temple of Solomon. Possevino supplements these sources with 
references to Alberti, Palladio, and Barbaro’s commentary on Vitruvius. The rele-
vant booklist also cites the perspective works of Barbaro, Dürer, and Ignazio Danti. 
These treatises form the basic literature for early Jesuit architects. 

 Early inventories of Theatine and Barnabite libraries dating to around 1600—
just a few years after Possevino—indicate that architectural and perspective trea-
tises also played a role in the intellectual life of other counter-reformational orders. 
The larger Theatine libraries, such as Sant’Andrea della Valle and San Silvestro al 
Quirinale, both in Rome, San Paolo Maggiore in Naples, Santa Maria della Ghiara 
in Verona, or San Siro in Genoa, each possessed several of the standard architectural 
books in various editions, including those of Palladio, Serlio, Vitruvius (including 
Barbaro’s edition), Alberti, and Labacco. The same works are listed in the 
Barnabites’ libraries at San Paolo at Piazza Colonna in Rome, Santa Maria della 
Corona in Pavia, and San Paolo in Casale Monferrato. Other books, such as Alberti’s 
 Della pittura , Martino Bassi’s  Dispareri in materia di architettura et perspettiva  
(Brescia, 1572), Dürer’s  Unterweysung der Messung  (Nuremberg, 1525), and 
Vignola’s  Regola delli cinque ordini d’architettura  (Rome, 1562) also appear in 
single libraries of both orders.  15   

 The Jesuits ultimately institutionalized the link between mathematics and archi-
tecture. From the early Seicento, a centralized architectural policy generally cast the 
professor of mathematics at the Collegio Romano as the order’s  consiliarus aedifi -
ciorum . The  consiliarus  reviewed designs for all Jesuit churches and houses across 
Europe before presenting them to the order’s general for fi nal approval. Beginning 
in 1613, the general required submission of plans in duplicate, so that one copy 
could be kept in the order’s central archive in Rome; this is the source of the Jesuit 
plan collection now at the Bibliothèque Nationale, Paris. The  consiliarus  usually 
edited plans for structural fl aws and budgetary extravagance rather than aesthetic 
concerns. As Vallery-Radot points out, editing the designs for style was uncommon 
since the plans sent to Rome for approval were rarely accompanied by sections and 
elevations. Typical reasons given for the rejection of a design were “inconvenience”, 
“crowding”, and “errors”. Suggestions for revisions included adding windows or 
replacing a vault with a lighter, less expensive wooden ceiling.  16   The Barnabites, 
though not the Theatines, also had a similar offi ce, the  prefetto delle fabriche .  17   

 As Steven Harris has shown, the Jesuits’ involvement with the sciences must be 
seen in a specifi c theological, vocational, and ideological context. Rejecting the 
apparent contradiction between these pursuits, Harris links Jesuit scientifi c work 
with the order’s ideology of “apostolic spirituality,” an active engagement in 
“worldly labor, performed in service to their fellow-men and for the honor and 
greater glory of God.”  18   Harris classifi es six major categories of Jesuit scientifi c 
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publications: (1) Aristotle’s natural philosophical books; (2) Euclidean geometry 
and “mixed” mathematics; (3) astronomy; (4) experimental and natural philosophy; 
(5) natural history; and (6) medical and pharmaceutical topics.  19   Noting a combina-
tion of classical Aristotelianism and a new empiricism in these works, Harris sug-
gests the empirical aspects stemmed from the order’s active experience in the world. 
Although such empiricism characterized much seventeenth-century science, Harris 
argues that the order enthusiastically adopted only those forms of scientifi c endeavor 
that also proved useful in the Jesuits’ three major “apostolates” or spheres of activity: 
education, European courts, and foreign missions. He concludes that for the Jesuits 
a “…supraconfessional doctrine of the sanctity of mundane labor, in conjunction 
with a high esteem for learning and reason, provided fertile ground for the accep-
tance and development of active-empirical forms of early modern science.”  20   The 
consequence of this was that “…those forms of scientifi c activity that Catholic 
princes found either useful (e.g. navigation, surveying, hydraulics, military archi-
tecture) or entertaining (the ‘virtuoso’ sciences, curiosity cabinets, and telescopic 
astronomy) became part of the Jesuit scientifi c repertoire.”  21   Of course, civil archi-
tecture also counted among the activities useful for Catholic princes, so it is no 
surprise to fi nd it within the purview of Jesuit science.  

    The Architects 

 Who were these early modern priest-mathematician-architects? We now survey six 
careers, exemplary for the range of activities in which these men operated. The 
phenomenon, however, includes dozens of other fi gures, a few of whom are briefl y 
mentioned in notes below.  22   Their work covers the spectrum of higher, “mixed”, and 
practical mathematics in which architecture was embedded. Some priests excelled 
more in one area than others—perhaps geometry, astronomy, perspective, or indeed 
architecture—while others worked across the entire spectrum. Well-known fi gures 
such as Orazio Grassi or Guarino Guarini have entered history as notable astrono-
mers or architects, with only cursory mention of their other work in the broader 
world of seventeenth-century mathematics. Contemporaries, however, seem to have 
perceived all their efforts as various parts of a single discipline.  23   

 The fi rst generation of Jesuit architects—Giuseppe Valeriano (1542–1596), 
Giovanni Tristano (c. 1505–1575), and Giovanni De Rosis (1538–1610)—received 
architectural training and experience before entering the order.  24   Although Valeriano 
assisted Possevino in composing the architectural chapters of the  Bibliotheca 
Selecta,  there is little further evidence to suggest that these men viewed architecture 
as a primarily intellectual or mathematical undertaking. The fi rst accomplished 
Theatine architect, Francesco Grimaldi (1543–1613), also came from a background 
in the crafts.  25   It seems the immediate needs of the orders for churches in these early 
years outweighed any impulses to enhance the status of architecture. Yet the ground-
work laid by the fi rst generation of Jesuit architects was instrumental. Actively run-
ning a number of construction sites, they provided the hands-on training required to 
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turn academically-trained priests into practicing architects. Although the tradition 
of priest- or lay brother-architects from a crafts background continued through the 
seventeenth and on into the eighteenth century, it gradually waned as the numbers 
of scholar-architects increased. The systematization of architecture as a mathemati-
cal discipline became consolidated throughout the course of the Seicento. 

 Orazio Grassi (1583–1654) illustrates virtually all aspects of a mathematical- 
architectural career within the Jesuit order.  26   He was an advanced student who 
devoted an entire supplemental year to mathematics during his studies at the 
Collegio Romano (1605–1606). In 1612, he led an unsuccessful attempt to found a 
Jesuit architectural academy there, perhaps even offering courses under its auspices 
for a short time. He was professor of mathematics at the Collegio Romano from 
1616 to 1624 and 1626 to 1628, serving thus for 10 years as  consiliarus aedifi cio-
rum . During the latter period he designed the Jesuits’ Sant’Ignazio (Fig.  2 ) in Rome 
and an adjacent wing of the Collegio Romano. His other major church for the order 
was San Vigilio in Siena. His manuscript Vitruvius commentary survives in Milan, 
and an album in Rome of his (mostly autograph) drawings mixes architectural and 
perspectival studies with further scientifi c material in cartography, instruments, and 
natural history. Grassi worked in other areas of mathematics as well, notably astron-
omy. Writing under the pseudonym Lotario Sarsi, he gained particular notoriety as 
Galileo’s adversary in their dispute over the nature of comets, culminating in the 
latter’s publication of  Il Saggiatore  (Rome, 1623).  27  

   Another such fi gure, of a generation or two later, was Francesco Eschinardi 
(1623–1703), a professor of mathematics at the Collegio Romano and thus the  con-
siliarus aedifi ciorum  during his tenure. Historians of science today emphasize the 
importance of Eschinardi’s work in optics or in the development of the thermome-
ter. Yet he published two architectural treatises:  Architettura civile  (Terni, 1675) and 
 Architettura militare  (Rome,  1684 ), both under the pseudonym Costanzo Amichevoli 
(Fig.  3 ). He also produced, under his own name, a learned commentary on Giovanni 
Battista Cingolani’s map of the Roman countryside,  Topografi a geometrica 
dell’agro romano  (Rome, 1692), which included a concise guide to the city.  28  

   In contrast to Grassi, Eschinardi seems to have had little impact on actual build-
ing within the Jesuit order—as  consiliarus aedifi ciorum , he is known only for his 
work overseeing the early planning stages of the Jesuit church in Vercelli—but his 
involvement in the art took place in the same context of contemporary mathematical 
science. Eschinardi’s architectural treatises were apparently written in connection 
with the Roman Accademia Fisico-Matematica, sponsored by Monsignor Giovanni 
Giustino Ciampini in his palace near Piazza Navona; Costanzo Amichevoli was 
Eschinardi’s academic pseudonym.  29   The scope of the academy’s activities was 
defi ned as philosophical, medical, mathematical, and mechanical, all subsumed 
under the heading “Fisico-Matematica”. Here the category “mechanical” included 
the “mixed mathematical” disciplines such as optics, horology, civil and military 
architecture, and the use of perspective in painting, sculpture, and theater. 
Eschinardi’s treatises are unremarkable in content—his treatment of the orders 
relies chiefl y on Vignola—but the context of their origins sheds further light on 
architecture’s systematization within the intellectual culture of the Jesuit order. 
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  Fig. 2    Orazio Grassi, Sant’Ignazio, Rome, 1626–1628, plan (From Pozzo ( 1707 , repr. 1989, 200))       
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 Perhaps the most famous Jesuit architect of the Seicento was Andrea Pozzo 
(1642–1709), who came to architecture via another mathematical discipline, per-
spective painting.  30   His built works consist mainly of altars and other church fur-
nishings, though he also designed or remodelled several provincial churches for the 

  Fig. 3    Title page, Eschinardi [Costanzo Amichevoli] ( 1675 )       

 

S. Klaiber



145

Jesuits such as the Gesù in Montepulciano or Sant’Ignazio in Dubrovnik. Having 
risen from a background as a craftsman and as a lay brother, Pozzo lacked a priest’s 
scholarly education. Yet his theoretical aspirations demonstrate how much the aca-
demic culture of mathematics had permeated the Jesuit order by the late seventeenth 
century. His two-volume treatise  Perspectiva pictorum et architectorum , (Rome, 
1693–1700) was published in a parallel Latin-Italian text, presumably aimed at a 
dual audience of erudite scholars and vernacular practitioners. The treatise chiefl y 
addresses the problems of painting fi ctive architectural settings in perspective. 
Although not a work of architectural theory  per se , Pozzo repeatedly emphasizes 
the similarities and connections between perspectival painting and architectural 
design. Both, for instance, utilize the same drawing skills: “The Geometrical Plan…
is no less necessary for painting a Design in Perspective, than it is for raising a 
Structure with Solid Materials.”  31   The accompanying plates demonstrate how such 
plans are transformed geometrically into perspectival constructions and how Pozzo 
relied on geometry for both perspective painting and architectural designs (Fig.  4 ).

   Among the Barnabites, the two most prominent priest-architects were Lorenzo 
Binago (1554–1629) and Giovanni Ambrogio Mazenta (1565–1635). Binago served 
for many years as  prefetto delle fabriche , but Mazenta more clearly refl ects the intel-
lectual culture of the counter-reformational orders. The patrician Mazenta joined the 
Barnabites at the relatively late age of 25, ultimately rising to become the order’s 
father general from 1612 to 1618. He and his two brothers Guido and Alessandro all 
demonstrated an early interest in architecture, and Giovanni Ambrogio was appar-
ently encouraged by his early patron Federico Borromeo and the latter’s Accademia 
degli Accurati, devoted to the “exact sciences and architecture.” This academic expe-
rience thus recalls the case of Eschinardi, but unlike the Jesuit, Mazenta was a prolifi c 
designer and builder. His works stand chiefl y in Bologna. The innovative designs for 
the Barnabites’ San Paolo, San Salvatore (Fig.  5 ), and the nave of the cathedral of San 
Pietro confi rm his standing as one of the leading priest-architects of the century.

   The erudite and wide-ranging Mazenta studied Leonardo manuscripts, corre-
sponded with Cassiano dal Pozzo, and directed Barnabite colleges in Pisa and Bologna. 
He also wrote  pareri  on the restoration of the Pantheon and the Lateran basilica. 
Mazenta cannot be considered a full-blooded mathematician as Grassi or Guarini. 
None of his scholarly works deal specifi cally with mathematics and architecture, nor 
does he seem to have taught mathematics within the order. Yet when we look carefully 
at his entire career, we see telltale signs of an architect trained in mixed mathematics. 
He designed and supervised construction of bridges, barracks, fortifi cations, as well as 
the harbor mole at Livorno for Grandduke Ferdinando I Medici in 1600–1602. He was 
an expert consultant during a dispute between Bologna and Ferrara regarding a tribu-
tary of the Po. Hydraulics also played a role in his unexecuted designs for enormous 
columns crowned with crosses to be placed at major intersections in Milan. These 
crossroad monuments would have continued Carlo Borromeo’s post-Tridentine proj-
ect of punctuating Milan’s urban fabric with crosses erected throughout the city, while 
also serving practical functions as reservoirs and clepsydrae.  32   

 The Theatine Guarino Guarini (1624–1683) emerged as the greatest architectural 
talent in this group of seicento mathematical priests, and he is best known today for 
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his works in Turin: the church of San Lorenzo, the chapel of the Holy Shroud, and 
the Palazzo Carignano.  33   Although he was never as prominent a scholar as Grassi, 
the early modern age nonetheless considered him primarily as a mathematician. 
One eighteenth-century biography described Guarini and fellow Theatine Gaetano 
Fontana in just such terms: “they were formed by nature to adorn sanctity, the sci-
ences, and particularly the mathematical disciplines….”  34   The accompanying 
engraving reinforces the point, showing his colleague taking measurements from a 
celestial globe, while Guarini applies a set square to the design of a building (Fig.  6 ). 

  Fig. 6    Engraving of Guarino Guarini and Gaetano Fontana (From Bianchi  1768 , 108)       
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Here, astronomy and architecture illustrate different aspects of “the mathematical 
disciplines” within the Theatine intellectual world.

   Like other priest-architects, Guarini received practical training at his order’s 
various building sites, but extensive travel within Italy (including Sicily) and France 
greatly augmented this experience. Paris, in particular, offered Guarini direct con-
tact with the architecture of Louis Le Vau and François Mansart, as well as the great 
French mathematical and constructive tradition of stereotomy. During his entire 
career, Guarini was producing architecture for the order and court patrons, as well 
as learned treatises on philosophy and mathematics. 

 Most of Guarini’s writings can be understood as textbooks for the various sub-
jects within the Theatine curriculum. In 1665, he published the  Placita Philosophica , 
a compendium of Aristotelian logic, physics, astronomy, and metaphysics. In the 
broad fi eld of mathematics, both pure and “mixed”, we fi nd three astronomical pub-
lications, as well as the  Euclides adauctus  (Turin, 1671), an encyclopedic treatment 
of the  Elements  studied in the second year of the Theatine curriculum, supplemented 
with further material. 

 Guarini’s three architectural publications, however, belong to a different cate-
gory. The  Modo di misurare le fabriche  (Turin, 1674), the  Trattato di fortifi catione  
(Turin, 1676), and the posthumous  Architettura civile  (Turin, 1737) are also works 
of “mixed” mathematics, yet they clearly sought a larger audience than his scholarly 
books, since they were written in the vernacular. Like Pozzo’s perspective treatise, 
they straddle academic and practical genres. The  Modo di misurare  (a handbook for 
 stimatori  or construction surveyors) includes a mini-odometer for measuring irregu-
lar surfaces such as those of vaults (Fig.  7 ), demonstrating Guarini’s interest in 
mathematical instruments and their applications. Although the principle can be 
traced back to Vitruvius, and larger odometers were commonly used for surveying 
land, Guarini apparently thought this application deserved wider dissemination.

   Of the fi ve  trattati  comprising Guarini’s  Architettura civile , only the third con-
forms more or less to the traditional structure and content of architectural treatises 
on the orders. The other four sections are overwhelmingly mathematical in charac-
ter, presenting geometric axioms, surveying principles, mensuration, instructions 
for constructing geometric fi gures with straightedge and compass, and the basics of 
stereotomy. Indeed, if Guarini’s mathematical understanding of architecture is intu-
itively visible in his domes, and explicitly stated in his treatise, it is almost palpable 
in his drawings. A plan for the Palazzo Carignano in Turin—pitted with scoring, 
compass pricks, and construction lines—captures him in the process of design, 
“thinking” with straightedge and compass (Fig.  8 ).

   Guarini’s Theatine colleague Girolamo Vitale (1624–1698) is the last of our six 
examples. A friend of Guarini’s since 1640—they were novices together at San 
Silvestro al Quirinale in Rome—Vitale was not a practitioner and played little or no 
role in the construction of any buildings for the order. Nonetheless, Vitale arrived at 
architectural theory through mathematics, conceiving the second edition of his 
 Lexicon mathematicum  (Rome, 1690) as a dictionary of pure and applied mathemat-
ics.  35   Approximately a third of the entries treat the vocabulary of civil and military 
architecture, and several of these are illustrated with plates (Fig.  9 ). The  Lexicon  
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presents an updated treatment of common architectural topics for readers, citing 
standard architectural writers like Vitruvius, Alberti, Barbaro, Palladio, Serlio, and 
Vignola as well as more recent authors such as Bernardino Baldi and Gioseffe 
Viola-Zanini. In addition to examples from antiquity, Vitale uses contemporary 
buildings to illustrate his points. St. Peter’s and Bernini’s colonnade in Rome make 
appearances, as do many churches from the counter-reformational orders: 
Sant’Andrea della Valle, Santa Maria in Vallicella, the Gesù, Sant’ Ignazio and 
Sant’Andrea al Quirinale, all in Rome, and Santi Apostoli and San Paolo Maggiore 
in Naples.  36   The prominent position of architecture in Vitale’s  Lexicon  demonstrates 
the broad defi nition of mathematics supported by the counter-reformational orders, 
a defi nition that included both architectural theory and practice.

       Architecture, Science, and Vocation 

 As Steven Harris has argued, for these priest-architects, the intellectual and the 
spiritual were inseparable. Architecture, too, was part of this mix. An example 
involving both Guarini and Vitale illuminates this interplay. Vitale’s  Viaggio al cielo 
di S. Gaetano Thiene  (Rome, 1671) documents a novena marking the 1671 canon-
ization of San Gaetano, cofounder of the Theatine order. Each day of the novena—a 
nine-day cycle of prayers and devotions—was named after a heavenly body, and traced 
events in Gaetano’s saintly life as stages on his way to heaven and canonization. 

  Fig. 7    Handheld odometer 
(From Guarini  1674 , 48)       
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The frontispiece visualizes this process: San Gaetano rises toward heaven, indicated 
by a Ptolemaic diagram of planetary orbits above (Fig.  10 ). The novena and this 
image seem to have inspired Guarini’s design for the unexecuted church of San 
Gaetano in Vicenza (1675), in which the angel-borne saint rises from the altarpiece 
to a frescoed representation of heaven in the dome (Fig.  11 ). Vitale may have 

  Fig. 9    Plate illustrating entry “Epistilium,” (From Vitale  1690 , 262)       
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intended the connection between the devotion and this iconography. He claimed that 
his novena presented a view of San Gaetano that was “foreshortened and in perspec-
tive,” much in the same way that the saint would appear in the altarpiece and the 
frescoed dome of Guarini’s church, and probably to be surrounded by the same 
astronomical references. Here, devotion is inextricably intertwined with astronomy, 
perspective and architecture, central aspects of the priests’ work in mathematics and 
mathematical natural philosophy.  37  

    Such references were by no means unusual. Vitale and Guarini were building on 
a deeply ingrained tradition of visual and spiritual allegory coupled with mathemat-
ical practice. A half century earlier, Mazenta’s Milanese water column designs 
united architecture, mechanics, and hydraulics with the iconography of the Holy 
Cross and Moses’ staff. Orazio Grassi had used a similar metaphor to link the use of 
mathematical instruments with religious belief, when he compared the salvation of 
the soul entrusted to the Virgin Mary (here in the roll of  Stella Maris ) with the salva-
tion of the navigator who relies on his measurement of the heavens.  38   Although this 
particular example does not involve architecture, the metaphor reveals the mentality 
of the priest-mathematicians who sought to reconcile the methods and results of 
their scientifi c pursuits with their religious vocations. Pozzo, too, employed such 
rhetoric in the preface of his perspective treatise. “My Advice,” he addressed his 
readers, “is that you chearfully begin your Work with a Resolution to draw all the 
Points thereof to that true Point, the Glory of GOD….”  39   

  Fig. 10    Teresa del Po, 
engraved frontispiece of 
Vitale ( 1671 )       
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 The work of both Grassi and Pozzo spanning the Seicento in Rome focuses our 
attention on the incubator of the priest-mathematician-architect phenomenon: the 
Collegio Romano, with its associated church of Sant’Ignazio, stood at the center of 
this development throughout the century. They—along with the activities pursued 
inside the complex—form a “unifi ed cultural fi eld,” as Joseph Connors has termed 
it (adapting Bourdieu), asking: “Will we be able one day to look at Pozzo’s frescoes, 
Kircher’s museum, the distillery, and the mathematics classes and see their interac-
tion? Will Grassi’s architecture and his astronomy ever be studied together?”  40   The 
understanding of architecture as a part of mathematics arose from this cultural fi eld. 
Embodied in the  consiliarus aedifi ciorum  and combined with the recognition of the 
utility of architecture in realizing the order’s aims, it permeated not only the entire 
Jesuit order, but also most other counter-reformational orders during the course of 
the seventeenth century. 

  Fig. 11    Section and 
half-plan of San Gaetano, 
Vicenza (From Guarini  1686 , 
Plate 26)       
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 Most priests who benefi ted from the orders’ architectural-mathematical educa-
tion had undistinguished careers and thus remain largely unknown. Serving as 
building superintendents, local consultants, or occasional designers, their individual 
contributions may have been modest, but their cumulative effect was nonetheless 
important. Consider, for example, the Theatine Antonio Spinelli (1630–1706), pro-
vost of the order’s Munich house, who discovered a serious error during the con-
struction of the Munich Theatinerkirche. Spinelli replaced the secular architect 
Agostino Barelli as construction supervisor and went on to design the Theatine 
library in Munich.  41   On the other hand, the mathematical culture of the orders also 
produced authors like Eschinardi or Vitale, who apparently considered themselves 
qualifi ed to publish works of architectural theory despite little or no practical expe-
rience as architects. Such scholars remain relatively unknown in the history of 
architecture, as does the impact of their writings on the wider reception of the art, 
defi ned no longer as a trade but as an object of formal study and quasi-scholarly 
discipline. The Savoyard Jesuit Claude-François Milliet Dechales (1621–1678), for 
example, was a prolifi c and widely translated author on mathematical topics. His 
encyclopedic  Cursus seu mundus mathematicus  (Lyon, 1674) aimed to provide a 
complete mathematical course of instruction, eliminating, in the process, the confu-
sion caused by reliance on many different authors.  42   The 31 chapters of the work 
cover all aspects of mathematics, from Euclid and trigonometry to pyrotechnics and 
astronomy. Four are devoted to architecture, pointing again to the subject’s consoli-
dation within the Jesuit mathematical curriculum by the second half of the century. 

 But what separated a major priest-architect like Guarini from a competent priest 
serving as a local building superintendent, apart from the elusive quality “talent”? In 
his treatise, Guarini affi rms that architecture, “as a discipline which utilizes measure-
ments in all of its operations, depends on geometry.” But the statement is quickly 
qualifi ed: “architecture, even if it depends on mathematics, nonetheless is a fl attering 
art, which does not offend the senses in order to satisfy reason.” For Guarini, architec-
ture’s reliance on mathematics is interdependent with the pleasure it gives the senses. 
He thus qualifi es it as both an art as well as a branch of mathematical science.  43   Here 
we reach the limits of what “mixed mathematics” could offer seicento architects. 

 It was perhaps inevitable that the tradition, as it continued into the next century, 
would be transformed. The orders continued to produce priest-practitioners in the mold 
of a Grassi or Guarini. The Somaschan priest Francesco Vecelli (1695–1759) provides 
a case in point. As the librarian at Santa Maria della Salute in Venice and later 
 preposito generale  of his order, he designed two Somaschan churches: Sant’Agostino, 
Treviso and Santa Croce, Padova, as well as the libraries of the Salute and the 
Camaldolesi on Mattia near Murano.  44   But over the course of the eighteenth century, 
the relationship between architecture and mathematics within the orders gradually 
merged with a modern understanding of engineering. The Jesuit scientist and polymath 
Roger Boscovich (1711–1787), professor of mathematics at the Collegio Romano was 
brought in to consult on structural problems at the dome of St. Peter’s. The Barnabites 
Francesco De Regi (1720–1794) and Paolo Frisi (1728–1784) similarly advised on 
engineering questions at Milan Cathedral and the sanctuary at Rho. They published on 
mathematics and engineering education, statics, and Gothic architecture.  45   

Architecture and Mathematics in Early Modern Religious Orders



156

 A distinct architectural culture emerges from this survey. It was, in the fi rst place, 
international, the European and global expansion of the orders acting to spread this 
culture far and wide. It was also comprehensive, addressing both theory and practice 
within the orders’ programs of mathematical education. On both levels, the histori-
cal consequences of this culture were profound. Although the orders were not 
“schools of architecture” in any strict sense, the training they offered their members 
can nonetheless be viewed as an early kind of professional architectural education. 
Oriented to lecture hall rather than the building site, this form of instruction pre-
dated the foundation of various architectural academies in the late Seicento. On a 
physical level, too, the orders’ architectural impact was considerable. Priest- 
architects provided designs for churches and houses for their orders all across 
Europe, particularly in smaller provincial towns. Like the Jesuit complex of San 
Vigilio in Siena—built by a succession of Jesuit architects including Grassi and 
Pozzo—such buildings shaped substantial portions of the fabric of early modern 
cities. Priest architects attracted noble patronage as well. Working in the “court 
apostolate,” gifted architects like Mazenta or Guarini built churches outside of their 
orders as well as secular buildings and even fortifi cations. The orders’ mathematical- 
architectural culture thus nurtured a rich variety of architects ranging from pure 
theoreticians through competent builders in the early modern vernacular idiom all 
the way to—in the exceptional case of Guarini—a master of the Baroque.  

                                                 Notes 

 An early version of this paper appeared as part of Chapter Two in my dissertation, 
“Guarino Guarini’s Theatine Architecture,” Columbia University, 1993. Further 
research on the topic was supported by a J. Paul Getty Postdoctoral Fellowship in 
the History of Art and the Humanities in 1994–95.  

    1.    “essi Padri…sono anche buoni Mathematici et intendono anche l’Architettura…,” 
Quoted in Gallo ( 1958–59 , 120).   

   2.    For a survey of architecture in the counter-reformational orders in Italy, see 
Bösel ( 2003 ).   

   3.    The literature on seventeenth-century Jesuit science and education is extensive. 
See for example the following recent contributions for further bibliography: 
Harris ( 1996 ); O’Malley et al. ( 1999 –2006); and Feingold ( 2003a ). The litera-
ture on Theatine and Barnabite science is paltry by comparison, but see Masetti- 
Zannini ( 1967 ) and Bianchi ( 1993 ). On early modern science in Rome, see now 
Romano ( 2008 ).   

   4.    This phenomenon was by no means an invention of the seventeenth century. 
Renaissance priest-architects with mathematical or engineering backgrounds 
include the Franciscan Fra Giovanni Giocondo (1433–1515) and the 
Dominicans Danti (1536–1586), and Giuseppe Donzelli. The latter, known as 
“Fra Nuvolo”, was active in Naples from c.1600 to 1630. The Augustinian 
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Giovanni Maria da Bitonto (1586-?) excelled at perspective constructions, such 
as the high altar tabernacle of the Barnabites’ San Paolo in Bologna or the per-
spective colonnade at Palazzo Spada in Rome, where he worked with Borromini. 
For further details and bibliography on these and other fi gures, see Klaiber 
( 1993 , 43–46).   

   5.    The 1586 edition was solely for internal use in the order; the fi rst public edition 
dates from 1599. All editions also outlined the order’s educational programs for 
secular students. On the  Ratio studiorum , see Pachtler ( 1887 –1894) and Lukács 
( 1965 –1992, esp. vol. 5,  Ratio atque institutio studiorum Societatis Iesu ).   

   6.    See the Theatines’  Constitutiones congregationis clericorum regularium  ( 1604 ) 
with many subsequent editions; the Barnabites’  Constitutiones clericorum reg-
ularium S. Pauli decollati  ( 1617 ), and Gorini ( 1666 ).   

   7.    To some extent the comments here on the Theatines and Barnabites proceed by 
analogy with the Jesuits, given the relative lack of research on their educational 
systems and scientifi c enterprises in comparison with the larger order. When 
appropriate material for comparison is available, however, the similarities 
between the three orders are confi rmed (perhaps also due to the Theatines and 
Barnabites modelling themselves on the successful Jesuits).   

   8.    Pachtler ( 1887 –1894, vol. 2, 256, 348). For an exhaustive account of the early 
evolution of the Jesuit mathematical curriculum, see Romano ( 1999 ). On the 
practice of Jesuit mathematical education, see de Dainville ( 1954 ); Cosentino 
( 1970 ,  1971) ; and Baroncini ( 1981 ). Compare also Dear ( 1995 , ch. 2).   

   9.    On the Jesuits and military architecture, see now De Lucca ( 2012 ).   
   10.    Harris ( 1989 , 42, note 23).   
   11.    Gorman ( 2003 ). Grienberger was the fi rst professor of mathematics at the 

Collegio Romano to serve as  consiliarus aedifi ciorum , and he himself designed 
a few buildings for the order: the college at Aurillac and Santo Spirito in Sora, 
see ibid., p.70. For the attribution of the latter church, see Bösel and Karner 
( 1986–2007 , vol. 1, 294–295).   

   12.    Cited in Gorman ( 2003 , 23, 71, and 109, n. 96).   
   13.    Possevino ( 1593 ). On Possevino and mathematics, see Romano ( 1999 , 146–

153). On Possevino and architecture, see Tessari ( 1983 ); Balestreri ( 1990 ); 
McQuillan ( 1992 ); Kiene ( 1996 ); Oechslin ( 1999 , 213–214); and Carpo ( 2001 , 
113–118).   

   14.    “De Architectura, post principes Mathematicas disciplinas dicen dum est, 
quandoquidem illę ab his pendent, earumq. ductu perfi ciuntur,” Possevino 
( 1593 , vol. 2, 207). Possevino’s architectural chapters are titled: “Architecturae 
origo. Cap. XVI”, “An Aedifi candi ratio peti debeat ex uno Vitruvio. Num item 
ex Salomonici Templi, quae olim extabat structura. Cap. XVII”, and 
“Architecturae partes, atque divisio: Quaenam spectanda priusquàm aedifi cia 
inchoëntur, praesertim ea quae ad viros religiosos attinent. Cap. XVIII”   

   15.    The inventories are found in Vat. Lat. 11267 (Theatines) and 11300 (Barnabites), 
Biblioteca Apostolica Vaticana, Rome. They belong to a group of such invento-
ries catalogued (but not transcribed) in Lebreton and Fiorani ( 1985 ). Janis Bell 
kindly informed me of the existence of these MSS. Jesuit libraries were not 
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included in the group of inventories, and other orders (for instance the Padri 
Somaschi and the Cappuccini, Vat. Lat. 11275 and 11326 respectively) had no 
notable holdings of architectural books at the time. For the books listed here, 
see Vat. Lat. 11267, fols. 25v, 134r, 167r, 183r, 412r, 489r and Vat. Lat. 11300, 
fols. 89v, 95v, 109v, 113r, 120v, 133v, 134r, 136v, 157v, 165r, 166r.   

   16.    On the  consiliarus aedifi ciorum  and for the Jesuit plan collection, see 
 Vallery- Radot ( 1960 , 8*–11*). For a list of the mathematics professors at the 
Collegio Romano see Villoslada ( 1954 , 335). According to my own count, 
identifi able architectural activity—architectural designs, signifi cant work as a 
consultant or building superintendent, or authorship of architectural publica-
tions—can be attributed to approximately 8 out of these 34 professors of 
mathematics at the Collegio Romano between 1553 and 1773, beyond their 
usual responsibilities as  consiliarus aedifi ciorum . Finally, the work of Richard 
Bösel is fundamental for any consideration of Jesuit architecture: Bösel and 
Karner ( 1986–2007 ).   

   17.    On the Barnabite offi ce of the  prefetto delle fabriche  and the practice of archi-
tecture within the Barnabite order, see Repishti ( 1991 ), Gauk-Roger ([ 1991 ]); 
and Gatti Perer and Mezzanotte ( 2002 ).   

   18.    Harris ( 1989 , 48–49).   
   19.    Harris ( 1989 , 42 and n. 23).   
   20.    Harris ( 1989 , 60).   
   21.    Harris ( 1989 , 56).   
   22.    For the Cinquecento, see note 4, above. Important seventeenth-century fi gures 

not mentioned in this study include the Jesuits Étienne Martellange (1569?–
1641), a lay brother, the priest François Derand (1588–1644), and the Belgian 
François d’Aiguillon (1567–1617). For further information and bibliography on 
these men, see Klaiber ( 1993 , 40–42, 67, notes 72–75). Among the Italian 
Theatines, Bernardo Castagnini ( ca . 1603–1658) was one of Guarini’s architec-
tural mentors; the two men worked together at San Vincenzo, Modena in the 
early 1650s. Castagnini presented a design for the  casa  at San Vincenzo in 
1646; at least one corridor and the library seem to have been completed to his 
design. He had earlier worked on a remodelling at San Bartolomeo, Bologna, 
begun in 1632. Documents describing this campaign refer to the priest and 
another Theatine involved with the project as “assai intendente delle 
matematiche,” again stressing the connection between mathematical knowledge 
and architectural or engineering skill. See Sandonnini ( 1890 ). On Castagnini’s 
work in Bologna, see Ravaglia ( 1909 ). The early Barnabite Pier Paolo 
D’Alessandro (1514–1591) built the cupola and upper loggia at Santa Maria di 
Canepanova, Pavia, and left manuscripts on painting, architecture, “poesia,” and 
mathematics. See Boffi to ( 1933–1937 , vol. 1, 19–20), and Scotti ( 1985 ). 

 Spanish priest-mathematician-architects include the Cistercians Juan 
Caramuel de Lobkowitz (1606–1682) and his teacher, Angel Manrique 
(1577–1649), Bishop of Badajoz. On Caramuel, see Filippo Camerota in the 
present volume (  A Scientifi c Concept of Beauty in Architecture: Vitruvius 
Meets Descartes, Galileo, and Newton    ). A Spanish Augustinian, Fray Lorenzo 
de San Nicolás (1595–1679), wrote  Arte y uso de architectura , 2 vols., 
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(Madrid, 1639–1664), a treatise which emphasized the role of arithmetic and 
geometry in architecture and, signifi cantly, contained Spanish translations of 
Euclid’s fi fth and seventh books. A second edition of Fray Lorenzo’s fi rst volume, 
published in 1667, added a translation of Euclid’s fi rst book, which then 
appeared in all subsequent editions. Fray Lorenzo also enjoyed a prolifi c career 
as an architect, building  several churches throughout Spain. See Thieme and 
Becker (1929, vol. 23, 393); and de Llaguno y Amirola ( 1829 , vol. 4, 20–26).   

   23.    See, for example, the contemporary descriptions of Guarini’s career in Klaiber 
( 1993 , 1–3).   

   24.    On Tristano, see Pirri ( 1955 ); Bösel and Karner ( 1986–2007 , vol. 1, 129–133, 
164–165, 181–182, 212–213). On De Rosis: Pirri and Di Rosa ( 1975 ); Bösel 
( 1991 ). On Valeriano, see Pirri ( 1970 ); and Bösel ( 1996 ).   

   25.    Grimaldi is best known for the order’s Sant’Andrea della Valle, Rome (begun 
1591) where he worked with Giacomo della Porta under the patronage of 
Cardinal Alfonso Gesualdo. Most of Grimaldi’s works survive in Naples how-
ever, including three Theatine churches and the Cappella del Tesoro di San 
Gennaro in the cathedral. Unfortunately, the details of Grimaldi’s architectural 
training remain obscure, and no publications by him are known. On Grimaldi, 
see Savarese ( 1986 ) and Hibbard ( 1961 ).   

   26.    On Grassi, see Bösel ( 2004 ), with complete further bibliography.   
   27.    For an illustrated catalogue of Grassi’s Roman album, see Bösel ( 2004 , 59–310). 

On Grassi and Galileo, see for instance P. Redondi ( 1987 ) and the recent reas-
sessment in Feingold ( 2003b ).   

   28.    This work appeared under the title  Espositione della carte topographica 
Cingolana dell’agro romano  (Rome, 1696). Eschinardi also taught at the Collegio 
Inglese and was therefore well-known to English travelers in Rome, including 
early members of the Royal Society. On Eschinardi, see Middleton ( 1966 , 54–55); 
Muccillo ( 1993 ); Payne ( 1999 , 157, 167); Cook ( 1999 , esp. 180); and Cook ( 2004 ). 
On Eschinardi’s  Cursus physicomathematicus  see Feldhay and Heyd ( 1989 ). For 
Eschinardi and the Jesuit church at Vercelli, see Bösel and Karner ( 1986–2007 , 
vol. 2, 411–424); for a further example of his work as a consultant (at Pozzo’s 
Cappella di Sant’Ignazio in the Gesù, Rome) see Levy ( 2004 , 235 n.21).   

   29.    On this academy, see Middleton ( 1975 ).   
   30.    On Pozzo, see the following recent works, including older bibliography: De 

Feo and Martinelli ( 1996 ); Battisti ( 1996 ). A convenient summary of Pozzo’s 
architectural work is provided by Kelly ( 1982 ). Also see Andersen’s contribution 
in this volume (  The Master of Painted Architecture: Andrea Pozzo, S. J. and His 
Treatise on Perspective    ).   

   31.    Here quoted from the fi rst English edition, Pozzo ( 1707 ; reprint 1989, 206).   
   32.    On the Accademia degli Accurati, see Grammatica ( 1919 , 14). Further on 

Mazenta, see. Mezzanotte ( 1961 ); Gatti Perer and Mezzanotte ( 2002 ) both with 
earlier bibliography, and now Stabenow ( 2011 ). On Mazenta’s writings, see 
Boffi to ( 1933–1937 , vol. 2, 451–463). On the monumental columns for Milan, 
see Schofi eld ( 2004 , 79–120, esp. 92–94).   

   33.    For the most recent overview of Guarini’s career, see Dardanello et al. ( 2006 ), 
with a complete bibliography of earlier studies.   
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   34.    Bianchi ( 1768 , 108).   
   35.    On Vitale and his  Lexicon  see Vezzosi ( 1780 , vol. 2, 481–484); Masetti-Zannini 

( 1967 ); and now Rabassini ( 2012 ). In the preface to the second edition Vitale 
himself criticized the much shorter fi rst edition of his work (Paris: Ludovic. 
Billaine, 1668).   

   36.    Vitale also mentions the Roman churches Sant’Agnese, Santa Maria della Pace, 
Santa Maria degli Angeli, and San Pietro in Montorio; villas at Frascati and 
Caprarola; and a prominent non-Italian example, Hagia Sophia.   

   37.    See Klaiber ( 2006 ).   
   38.    Bösel ( 2004 , 24–25).   
   39.    [ sic ]: the Latin gives “lineas” for “point”. See Pozzo ( 1707 ; reprint 1989, 12).   
   40.    Connors ( 1999 –2006).   
   41.    On Spinelli, see Dischinger ( 1988 , vol. 1, 141–42, 145–46); and Klaiber ( 1993 , 

36, 64 n. 60).   
   42.    Claretta ( 1878 , vol. 2, 585), referring to a 1674 letter from Dechales to the 

duke. On Dechales, see Dainville ( 1947–1948 ); De Backer et al. ( 1890 –1932, 
vol. 2, cols. 1040–44).   

   43.    Guarini ( 1737 , I.ii, I.iii.intro, 3).   
   44.    See Pilo ( 1964 ). Vecelli’s manuscript “Problemi di geometria pratica,” dealing 

with geometry and fortifi cations, survives in a posthumous copy (1767) at the 
University of Pennsylvania.   

   45.    For Boscovich, see the article by Pascal Dubourg Glatigny in this volume 
(  Epistemological Obstacles to the Analysis of Structures: Giovanni Bottari’s 
Aversion to a Mathematical Assessment of Saint-Peter’s Dome (1743)    ). For De 
Regi and Frisi, see Boffi to ( 1933–1937 , on De Regi: vol. 1, 640–644; on Frisi, 
vol. 2, 72–98). Also see Baldini ( 1998 ) and A. Bianchi ( 1993 , 143–164).      
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       Andrea Pozzo’s illusionistic work is well-known among historians of architecture 
and art, as is his  Perspectiva pictorum et architectorum , published in the last decade 
of the seventeenth century.  2   Historians have presented the general outline of the 
treatise and have discussed its valuable descriptions of the author’s own designs.  3   
The book’s place, however, in the history of the literature on perspective has received 
far less attention. This article examines the style and content of the  Perspectiva  in 
relation to the broader tradition of perspective writings in Italy. Being a Jesuit 
played an essential role for Pozzo’s self-understanding; hence it is also natural to 
ask how common it was for men in holy orders to write on the subject. 

    Life and Work 

 Pozzo’s background is notable in that it was both intellectual and practical. At the 
age of 17 he was apprenticed to a painter in his native town Trento, but unlike most 
young painters of the time he had studied before, having attended the Jesuit School 
in the same town, where he became profi cient in Latin. He continued his training 
as a painter in Como and Milan, where, after a brief period as a novice in the 
Discalced Carmelites (1661–1662), he joined the Society of Jesus in December 1665. 

      The Master of Painted Architecture: Andrea 
Pozzo, S. J. and His Treatise on Perspective 

                Kirsti     Andersen    

        K.   Andersen      (*) 
  Emerita, Centre for Science Studies ,  Aarhus University ,   van Reigersbergstraat 232 , 
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  The Art of Perspective does,  
 with wonderful Pleasure, deceive the Eye,  
 the most subtle of our outward Senses.   1   
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Thereafter, Pozzo’s life and work would be directed to the glory of the Jesuits, 
especially that of its founder, Ignatius of Loyola. He would remain a lay brother of 
the order to his death.  4   

 Pozzo showed an early aptitude for the illusionistic decoration of architectural 
interiors. A commission of 1676 to decorate the interior of San Francesco Saverio 
in Mondovi featured a  trompe l’oeil  cupola, painted on a canvas stretched across the 
vault of the crossing. His abilities in this particular genre, known as  quadratura , 
were quickly recognized. In 1681, the Jesuit Father-General called him to Rome, 
where he would be engaged in the decoration of the order’s principal churches: Il 
Gesù and Sant’Ignazio. It was in this early Roman period that Pozzo was commis-
sioned to provide a self-portrait for Cosimo III de’Medici’s ducal collection, another 
indication of the painter’s rising status.  5   Pozzo was also employed in creating 
ephemeral decorations to be used at ecclesiastical festivals in Il Gesù, one of which 
he later included in the  Perspectiva  (Fig.  1 ). Another early Roman project involved 
the restoration of the corridor linking the Gesù to the rooms in which Ignatius had 
lived at the end of his life. Pozzo supplemented the architecture of the gallery—a 
small staircase and some diminutive windows—with a rich painted decoration of 
architectural ornaments, paintings, and textiles. Among the many playful elements 
in the gallery are painted legs hanging from feigned architecture. Richard Bösel 
has described Pozzo’s composition as “a  tour de force  of illusionism in which the 
deception and its disclosure are complementary parts of the artistic concept.”  6  

   From 1684, Pozzo’s primary responsibility was the decoration of Sant’Ignazio, 
adjacent to the Collegio Romano. Although begun in 1626 and opened for worship in 
1650, the church never received its dome. Mounting fi nancial concerns, changes of 
the original design, and worries about the potentially dominating exterior profi le of 
the planned dome all contributed to interrupt the project. Pozzo solved the problem of 
the missing element in a manner reminiscent of his early expedient at Mondovi, that 
is, with a “virtual” cupola surmounted by a lantern, painted on an 18-m wide canvas 
stretched over the crossing of the nave (Fig.  2 ). This success was awarded with further 
prestigious commissions, particularly for the nave ceiling in the same church (Fig.  3 ) 
and, in 1695, for the main altarpiece of il Gesù. Pozzo’s involvement with Sant’Ignazio 
also extended to a number of minor projects for altar designs and frescos.

    During this period, Pozzo found the time to lecture on painting and architecture 
at the Collegio Romano. Some of the material from his course is likely included 
in the  Perspectiva .  7   His workshop also appears to have been responsible for the 
imaginative frescos in the refectory of the then-Minim convent on the Trinità dei 
Monti in Rome, dating to the 1690s.  8   

 From the end of the seventeenth century, Pozzo was increasingly engaged in 
Jesuit churches outside Rome. He redecorated old buildings and provided proposals 
for new ones, like San Francesco Saverio in Trento, which was rebuilt according to 
his designs. By 1702, he had acquired a name throughout the Catholic world. In that 
year, he was invited to Vienna by Emperor Leopold I, to whom he had dedicated the 
fi rst volume of his  Perspectiva . 
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 In Vienna, he was engaged in several projects, the most important of which was 
the renovation of the  Jesuitenkirche  also called the  Universitätskirche . Completely 
transforming the interior, he provided it with what was by now his characteristic 
device: a painted dome. Although he planned to return to Italy to take part in a 
reconstruction of the Jesuit church in Venice, Pozzo died in Vienna, where he was 
buried in the newly redecorated  Jesuitenkirche .  9   

  Fig. 1    A  teatra sacra  designed by Pozzo for Il Gesù in 1685 showing the wedding at Cana, “for 
the Solemnity of exposing the Holy Sacrament”. It consisted of several stage fl ats (see Fig.  8 ) and 
was lit by candles (From Pozzo  1707 , Figure 71)       
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 Pozzo’s art constitutes a symbiosis of painting and architecture, characterized by 
the continuation and elaboration of real spaces into fi ctive ones. Helen Hills has 
aptly characterized his style.

Despite its geographical dispersion and variety, certain themes unite his work. 
Illusionism, perspective, drama, manipulating light and creating impressions of for-
bidding majesty were his perennial concerns, mustered in support of Catholic faith 
and of the Jesuits in particular. He was indebted to the theatre: much of his painting 
exploits theatrical devices and stage requisites, such as the proscenium arch, the 
curtain, the  quadratura  backdrop, and painted “actors” stepping out from the 
painted wings.  10  

In Pozzo’s brand of  quadratura , the physical building serves to lend structural 
and decorative features to the virtual one, which, in turn, elevates, expands, and 
allegorizes the prosaic, material form of the physical structure. This reciprocal 
relationship is guaranteed by the elaborate geometry of the perspective construction.  11    

  Fig. 2    Andrea Pozzo, the painted dome of Sant’Ignazio, Rome, 1685. The canvas has a diameter 
of about 18 m       
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  Fig. 3    Andrea Pozzo,  The Apotheosis of St. Ignatius , c. 1690–1694. Sant’Ignazio, Rome       
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    Authors and Approaches in the Literature on Perspective 

 The technique of geometrical perspective emerged among a circle of Florentine 
artists in the Quattrocento, to become a much-applied method of representation in 
painting, graphic art, and decoration during the fi fteenth and sixteenth centuries. 
All sorts of practitioners—from architects and painters to engineers, furniture 
and stage designers, sculptors, goldsmiths, stonecutters, woodcarvers, etchers, and 
engravers—used some form of perspective. Apprentices in these disciplines would 
have learned the rudiments of the technique as a matter of course, presumably from 
their masters. 

 Besides learning by doing, it was possible to become acquainted with perspec-
tive through textbooks. These books were produced by a signifi cantly narrower 
range of practitioners, dominated by architects and painters. The group of authors 
also included mathematicians, at fi rst very few, but with their number increasing 
markedly from about 1600. From the very beginning, the literary styles and intended 
audiences of the theoreticians and the practitioners differed considerably. This 
difference is well illustrated by two earliest important quattrocento texts on the 
subject, by Leon Battista Alberti and Piero della Francesca. Both authors were 
clearly inspired by the painters and architects with whom they were in close contact, 
but their approaches had little in common. 

 In  De pictura  ( On Painting , 1435, fi rst printed in 1540), Alberti described for the 
fi rst time geometrical perspective—without using the word perspective—and also 
instructed his readers on how to construct the perspectival image of a grid of squares. 
His idea was that the grid could serve as a sort of coordinate system in the picture 
plane to help painters organize their compositions. His main concern, however, was 
to show that painting was an academic activity on a par with the  artes liberales , and 
despite claiming to speak “as a painter… to painters,” he presumably wrote the book 
more for the sake of potential patrons.  12   

 The major part of  De pictura  discusses painting in antiquity and advocates 
classical themes as appropriate subjects, leaving only a few pages for the technique 
of painting. To these, Alberti devoted a couple of applications of the grid, but not 
enough to fully train the reader to represent various forms in perspective. Nor did 
Alberti provide any mathematical proofs or explanation of why his proposed 
construction led to the claimed result. 

 Piero, who was both a painter and a mathematician, aimed to expose both the 
technique and the geometrical secrets of perspective to his readers. In his  De 
prospectiva pingendi —written in Italian despite its Latin title—he carefully guided 
his readers through all the steps of his constructions and provided many different 
examples of perspectival shapes. His attempt to explain not only the  why  of per-
spective but also the  how  was less successful, but interesting because he initiated 
a development which eventually made the theory of perspective a subdiscipline 
of geometry.  13   

 Most of the other non-academic authors had intentions closer to Piero’s than 
to Alberti’s, though without the same level of detail and using fewer examples. 
Nor did they typically attempt to provide geometrical proofs or justifi cations for the 
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constructions they presented. These authors usually followed a scheme that included 
some, and sometimes all, of the following items: one or more methods of perspective 
construction, a number of examples of shapes and forms in perspective, perspective 
instruments, examples of scenography (constructions for perspectival stage sets), and 
anamorphoses. The favourite objects for exercises were polygons, circles, polyhedra, 
crosses, columns, arches, vaults, and simple rooms with a few windows. 

 Although most authors took the time to explain their perspective constructions, 
one wonders how well they were understood by the uninitiated. It seems unlikely 
that many early modern practitioners would have picked up the technique solely by 
following the text. It is more probable that they would have mastered it partly by 
consulting the explanatory diagrams, and partly by adapting the book’s contents to 
their own workshop practice. In other words, most of the books were only useful for 
those already familiar with perspective constructions. 

 As an ecclesiastic writing on perspective, Pozzo was by no means alone. We 
know of at least twelve other authors among his fellow Jesuits, a refl ection, no 
doubt, of the order’s great interest in integrating practical mathematics into its 
curriculum.  14   One writer, Jean Dubreuil, was particularly successful. His most 
popular book—the fi rst of three he would publish on this and related subjects—was 
known simply as the  Jesuit’s Perspective . Written in French and reissued often, it 
was translated into English twice and once into German.  15   Pozzo would achieve even 
more success with his  Perspectiva , but Dubreuil’s example must have shown him 
the potential audience for such books. Of the other religious orders, the Theatines  16   
and the Minims  17   each could count two authors on perspective, and the Dominicans, 
the Augustinians, and the Camillians each one.  18   

 Among the authors of perspectival manuals, architects comprised a surprisingly 
large group. Before Pozzo’s  Perspectiva , eight books entirely devoted to perspective 
had been published in Italy, and it is remarkable that fi ve of those were written by 
architects.  19   That is not to mention the architects who touched on perspective in 
their architectural treatises. Pozzo could have known at least fi ve examples of 
printed works in this genre.  20   It is also surprising that these authors did not substan-
tially distinguish themselves from other practitioners. Although they may have 
included more architectural examples—Sebastiano Serlio for one—architects as a 
whole took no identifi able approach to explaining how to proceed with perspective 
constructions. That is not to say that professional differences did not sometimes 
arise. One fairly well-known painter, Pierre-Henri Valenciennes, writing around 
1800, declared himself unsatisfi ed with the architects’ textbooks, lumping them 
with those of mathematicians. This group, he claimed, did not understand the needs 
of young painters.  21   Judging from the contents of his own rather wordy manual on 
perspective, he apparently believed that students of painting were less familiar with 
geometrical forms than students of architecture and mathematics, but in other 
respects, his techniques were not unfamiliar. 

 Mathematicians, on the other hand, did treat perspective differently. Although 
many of these authors claimed to write for painters and other practitioners, they 
typically presented the subject in forbidding style of formal geometry—that is, with 
theorems and proofs. 
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 Among the mathematicians, Guidobaldo, Marchese del Monte stands out as the 
only important contributor to the geometrical theory of perspective to address his 
fellow scholars. His work,  Perspectivae libri sex , published in 1600, was inspired 
by those perspective authors, like Piero, who had attempted to penetrate the 
geometry behind the technique. Guidobaldo is mostly known as the patron, 
collaborator, and friend of Galileo Galilei, but his own work on perspective was 
revolutionary. Not only did  Perspectivae libri sex  establish the precedent for 
treating the subject in purely formal terms, in it Guidobaldo coined the concept of 
a general vanishing point, which became the basis for all further geometrical 
developments in the fi eld.  22   

 Guidobaldo’s achievement represented a high point in the Italian literature on 
perspective. In other parts of Europe, interest in and understanding of the subject 
increased throughout the seventeenth century, reaching its highpoint in the eighteenth. 
However, in Italy fascination waned. The Italian tradition of perspective treatises was 
mainly kept alive by stage designers and painters, who specialized in illusionistic 
paintings. In addition, a few architects, such as Giuseppe Galli-Bibiena and Giovanni 
Battista Piranesi, published collections of impressive perspective architectural 
engravings, accompanied by very little or no text at all.  23   Their didactic function is 
fulfi lled primarily by the images themselves, which are distinguished by their 
complexity and virtuosity.  

    Pozzo’s  Perspectiva  

  Perspectiva pictorum et architectorum  was published in two volumes of which the 
fi rst appeared in 1693 and the second in 1700. The books were printed with parallel 
Latin and Italian texts, presumably to add a quasi-scholarly appeal. The fi rst volume 
immediately attracted widespread attention. Translated into English as early as 
1707, it appeared over the years in more than thirty editions and in at least nine 
languages.  24   The book was even translated into Chinese in the period when the 
Jesuits brought western science and art to China. The Chinese did not show much 
interest in the  Perspectiva , but for architects and other practitioners elsewhere it 
became a standard work. 

 The style of the  Perspectiva  is distinctive. Pozzo had all his explanations 
printed as fi gure captions, which contain virtually no mathematics, nor much, if 
any, guidance for constructing the fi gures.  25   His diagrams, on the other hand, are 
more numerous, better drawn, more illustrative, and in general far more impressive 
than usual. 

 The lack of direct instruction makes the  Perspectiva  a diffi cult text, an aspect that 
Pozzo’s English translator, John James, commented on: “… the Brevity or Silence 
of our Author,” he explained, “writing in a Country where the Principles of this Art 
are more generally known than with Us, had no need to insist so long on some things, 
as may be thought necessary to  Beginners .”  26   Not only were most of Pozzo’s 
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examples extremely elaborate, he typically left out the construction lines. Nor did 
he always provide all the information required to replicate his constructions. Two of 
the book’s illustrations, concerning the perspective construction of an elaborate 
domed tabernacle, are characteristic of this approach. The intervening steps 
between the plan (Fig.  4 ) and the perspective elevation (Fig.  5 ) are only alluded to. 
Although Pozzo may have been overly optimistic about what some of his readers 

  Fig. 4    “Plan of a Square Design” and its perspective image (From Pozzo  1707 , Figure 63)       
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  Fig. 5    “Square Design in Perspective,” (From Pozzo  1707 , Figure 64)       

could achieve, his aim was to challenge them to replicate the constructions for 
themselves: “If you long to profi t from this art quickly, do not waste time on mere 
speculations … but seize the compass and the ruler and work, and in this way you 
will feel spurred to proceed further and further, not only to draw the fi gures in this 
book, but to invent some even better.”  27  

    Apart from basic geometrical forms, Pozzo’s examples of perspectival drawings 
are all architectural, proceeding from columns, column bases, capitals, entablatures, 
and cornices to larger architectural ensembles for the fi ve orders. Although these 
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forms belonged to the standard repertoire of the  quadratura  painter, they also 
served to satisfy the book’s second principal aim: to showcase Pozzo’s own work. 
A tabernacle, for example, designed in the form of a theatrical set piece—what 
Pozzo called a “machine”—recalls an altar he designed for San Francesco Saverio 
in Mondovi (Fig.  6 ). A pronounced interest in sacred theatre and stage sets in general 
recurs throughout the book.  28   His two major commissions for Sant’Ignazio—the 
 trompe l’œil  dome and nave ceiling—also receive in-depth treatment, as does an 
octagonal cupola (Fig.  7 ), a reminder perhaps of his early work for San Francesco 
Saverio in Mondovi.

    The second volume of the  Perspectiva  continues along the same lines, with per-
spectival constructions relating to the author’s more recent activities. A long section 
on altars, for example, includes specimens that Pozzo had recently completed or 
was still working on, including a commission for an altar in Sant’Ignazio dedicated 
to the titular saint. This section is supplemented by further proposals of increasing 
variety. Among other designs, Pozzo also included proposals for a decorative urn and 
for new church facades—in particular for San Giovanni Laterano in Rome. He even 
provided drawings for an entire church. As for secular architecture, the design of a 
triumphal arch and a number of fortifi cations stand out. 

  Fig. 6    A “machine” consisting of two “ranges of frames,” (From Pozzo  1707 , Figure 61)       
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  Fig. 7    An octagonal cupola in perspective (From Pozzo  1707 , Figure 92)       

 The title page of the  Perspectiva  is addressed to painters and architects, in that 
order. The combination is in one sense curious, since the role of perspective in the 
two crafts was very different. It was in the art of  quadratura , however, that they 
were combined. The book was not primarily intended for beginners in the craft, but 
for a specialist audience dedicated to architectural painting. Pozzo’s foremost aim 
was to stress the skill and care required for this genre. To properly draw architecture 
in perspective, he held, painters had to have knowledge of architecture itself: 
“Whence you may perceive, that for designing things of this kind, the Painter 
ought to have no less Skill in Architecture, than is requir’d for the Execution of 
solid Works.”  29    

    The Two Methods 

 In principle, there is no limit to the number of possible methods for constructing 
the perspective image of a point, and throughout history an impressive number have 
been proposed. Only two, however, became really popular: the so-called distance 
point construction (Fig.  8 ), and one based on a plan and elevation of the object 
to be cast into perspective, incorporating the picture plane and the eye point for 
the composition.  30  

   These methods had long been known and their comparative benefi ts debated. 
The contrast proved to be important, for it stimulated questions about the content 
and character of perspective as a mathematical subject. Piero had included both 
techniques in his  De prospectiva pingendi . Although he found that the easiest way 
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  Fig. 8    A distance-point construction on the end wall of a church. The longitudinal section in the 
middle shows the viewer’s eye point at  B  and the picture plane  ZF . The plan of the church at bottom 
shows the eye point  A  and the picture plane as  ED . The lateral section at the top shows the elevation 
of the picture plane, with the principal elements of the distance point construction. The point O is 
the orthogonal projection of the eye point upon the picture plane, later termed the principal vanish-
ing point, whereas the points N are the two so-called distance points. They lie on the horizontal line 
through O—the horizon—at a distance from O, equalling the distance from the eye point to the 
picture plane (Pozzo  1707 , Figure 1)       
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to construct perspective images of simple two-dimensional forms was to apply a 
distance point construction, he considered the plan-and-elevation method more 
concrete and more powerful than other constructions, especially for involved 
three- dimensional compositions.  31   

 Giacomo Barozzi da Vignola’s  Due regole della prospettiva  ( 1583 ) represented 
the next stage in the assessment of the two methods. As suggested by the title, the 
work was composed to present the two techniques. Like Piero, Vignola considered 
the distance point method more diffi cult to grasp but easier to carry out, because the 
plan-and-elevation typically involved longer and more tedious operations. To his 
comparison of advantages and disadvantages, Vignola added a noteworthy remark 
which had not occurred in earlier textbooks, namely “many have said there is only 
one true method.” This remark suggests that in Vignola’s time there was some doubt 
about whether both methods were correct, that is, that they resulted in a fi gure 
conforming to the defi nition of a perspective image. 

 Vignola showed that the two methods lead to identical results in the special 
case of the perspective image of a square. He seems to have believed that this 
outcome implies that the two methods in general provide identical perspective 
images—a conclusion that requires an argument. Most likely, Vignola thought it 
was evident that the plan and elevation construction was correct and that the 
equivalence of the results of the two methods guarantees that also the distance 
point construction is correct. Despite some logical shortcoming in Vignola’s proof 
and further reasoning, his remark and contemplations are from a historical point 
of view extremely interesting because they document that some practitioners 
of perspective wondered whether commonly applied methods of perspective 
constructions were geometrically correct. After Guidobaldo had presented his 
general theory of vanishing points it became easy to prove that both methods are 
indeed correct. 

 Vignola’s  Due regole  appears to be the most likely inspiration for Pozzo’s 
 Perspectiva . Vignola was, in the fi rst place, an authority on building. Pozzo referred 
explicitly to the architect’s  Regola delli cinque ordini d’architettura  (1562) as a 
standard work on the fi ve orders.  32   Moreover, the two authors’ treatment of perspec-
tive was largely similar, in that they both tended to use drawings rather than words 
to explain construction techniques. Like Piero and Vignola, Pozzo preferred the 
distance point construction, which was, in his opinion, a “common and easy rule.”  33   
Although he waited until the publication of the second volume of the  Perspectiva  
before introducing the plan-and-elevation method, he recognized the value of 
both techniques:

  Thus, the rules [the distance point and the plan-and-elevation methods] while being good, 
can nevertheless at times be different, but never contradictory. On the contrary, the one 
throws light upon the other, as in arithmetic multiplication serves as test for division and 
vice versa.  34   

 Pozzo also took up the question of “correctness.” Like Vignola, he presented two 
perspective images—not of a square—but of a cupola similar to that of Sant’Ignazio, 
constructed by the two different techniques. He then encouraged his readers to 
verify that similar line segments in the two images were equal in length. His choice 
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could indicate that he was unaware of Guidobaldo’s theory of perspective, 
although it is also possible that he thought measuring was more convincing for his 
intended audience.  

    The Cupola of Sant’Ignazio 

 Although Pozzo avoided formal mathematics, his treatise nonetheless demonstrated 
a good grasp of the geometrical possibilities offered by the distance point technique. 
His construction of the cupola of Sant’Ignazio, in particular, must rank among 
the most elegant pre-nineteenth-century applications of perspective by a non- 
mathematician (Fig.  9 ). A design like this—involving an image projected on a 
horizontal plane seen from below—confronted Pozzo with a different set of 

  Fig. 9    Illustration of the feigned dome of Sant’Ignazio. In the fi gure text, Pozzo remarked that this 
cupola would probably last longer than the painted version (Pozzo  1707 , Figure 91)       
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perspectival rules and an unusual challenge. On a vertical plane, vertical lines are 
depicted as vertical, whereas parallel horizontals (apart from those parallel to the 
picture plane) are depicted as converging. Contrariwise, in a horizontal plane seen 
from below or above, it is the vertical lines of the depicted volume that converge. 
The point of convergence—the principal vanishing point—is the orthogonal pro-
jection upon the ceiling of a fi xed, ideal viewing point. As in the case with a vertical 
image, the viewer’s impression of converging lines is dependent on his or her 
position in relation to the eye point. Viewed at some distance from that spot, the 
converging lines no longer look vertical. The horizontal picture plane also produces 
one simplifi cation. As Pozzo himself pointed out, horizontal circles—that is, those 
parallel to the picture plane—are depicted as circles, not as ellipses.  35   This fact has 
important implications for the depiction of domes.

   The perspective construction of the virtual dome of Sant’Ignazio—reproduced in 
the  Perspectiva —exemplifi es Pozzo’s technical and graphical capability (Fig.  10 ). 
The virtual dome rises from the picture plane inside the outer circle centered on 
point  I . The footings of the outer columns and window embrasures, hatched in grey, 
are meant to stand on the pendentives and arches of the crossing. The point  O  is the 
principal vanishing point.    One might have expected Pozzo to have chosen point  I  as 
the principal vanishing point, which would have placed the viewing point directly 
under the center of the cupola. However, Pozzo was looking for a more spectacular 
solution. He let the principal vanishing point be the point  O , which lies just outside 
the dome’s base, over the vault of the nave. The effect is that Pozzo’s painted cupola 
looks more and more convincing as one walks toward it from the entrance of the 
church. Viewed from a point directly under  O , it gives an amazing impression of 
reality, whereas seen from other locations, it has an anamorphic effect. Part of 
Pozzo’s fascination with virtual cupolas may have been that the viewer could place 
themselves in positions where the illusion could no longer be maintained. He might 
even have had something like this in mind when he wrote: “Perspective is but a 
Counterfeiting of the Truth.”  36   Pozzo’s own explanation for the placement of the 
principal vanishing point at  O  was so “that the Eye might be less weary’d in viewing 
the Work, and take in more of the Architecture, than it could have done, had … [it] 
be in the midst.”  37   One could add that it is also less strenuous for the neck. 

 Pozzo’s technique for obtaining the perspective image of the dome seems 
complicated because it involves many lines, and like most of his perspectival 
compositions, it requires some consideration in order to understand how he 
achieved his result. However, the mathematical principle behind it is not that diffi cult. 
The geometrical knowledge needed is essentially that of a distance point construction, 
which Pozzo had introduced beforehand.  

    A Curved Vault as Picture Plane 

 Pozzo had planned to end the fi rst book of the  Perspectiva  with the engraving of the 
octagonal dome (Fig.  7 ), when he was subsequently asked by some friends to 
explain an additional problem: the “Perspective Net-Work for irregular Surfaces.”  38   
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This theme relates to another decoration in Sant’Ignazio, namely the fresco on the 
barrel vaulted nave next to the virtual cupola (Figs.  3 ,  11 , and  12 ). For this commis-
sion, Pozzo designed and executed a truly impressive work.  The Apotheosis of 
St. Ignatius , painted between 1690 and 1694, celebrated the founder of the Jesuits 
and the order’s missionary activities on the four continents.

  Fig. 11    Plan of the church of Sant’Ignazio, Rome (Note the plan of his feigned dome over the 
crossing, from Pozzo ( 1707 , Figure 93), turned 90° so it corresponds to the elevation in Fig.  12 )       

  Fig. 12    Pozzo’s interior elevation of Sant’Ignazio, in which he depicted his virtual dome as a real 
one (Pozzo  1707 , Figure 94)       
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    When Pozzo received the commission to decorate this vault, his patrons restricted 
the placement of the principal vanishing point. Although he was allowed to select 
the subject matter, they did not want another eccentric eye point like the one for 
the cupola.  39   Instead, he placed the vanishing point centrally, organizing the entire 
composition around the vertical axis of the vault. Because the surface is long, the 
impression is very sensitive to the viewer’s position and distorts easily when seen 
from anywhere but the eye point. From that spot, however, the viewer is rewarded 
with a spectacular and realistic vision of clustered columns and vast arches, rising 
up from the real windows of the church to frame the open sky. Airborne fi gures fl oat 
above, scaled to the rising stages of the fi ctive architecture, leading the eye toward 
Saint Ignatius at the center of the composition. 

 The perspectival challenge here was the opposite to that posed by the painted 
dome. Where the latter required Pozzo to make a fl at surface over the crossing look 
curved, this design required him to treat the semi-cylindrical surface of the vault as 
a plane. In order to work correctly as a perspectival image, in other words, the con-
struction had to compensate for and disguise the pronounced curvature of the vault. 
This problem was too complicated for geometrical constructions. Instead, Pozzo 
used a mechanical transfer technique well-known at the time. First he set out the 
perspective composition on a plane surface at the full scale of a horizontal section 
in the vault and overlaid this drawing with a grid of squares. He then projected the 
vertices of this grid from the eye point to the semi-cylindrical surface (Fig.  13 ). The 
images of the vertices were then connected with curved lines, so that they formed a 
kind of coordinate system on the vaulted ceiling to which the fl at drawing could be 

  Fig. 13    Pozzo’s 
demonstration of how to map 
a fl at grid of squares onto a 
cylindrical vault. The 
principle of the projection is 
shown in perspective: The 
eye point is  O  and the 
horizontal grid of squares  N  
is projected on the vault from 
 O . The illustration shows 
projections for two points 
(From Pozzo ( 1707 , Figure 
100), detail)       
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transferred. The practical diffi culty of this task must have been considerable, given 
the height and dimensions of the nave. In theory a lamp placed at the eye point could 
be used to project a shadow of the square grid on the ceiling. As Pozzo pointed out, 
however, it would have been impossible to fi nd a light strong enough to cast 
shadows suffi ciently distinct. Instead, he claimed to have projected the vertices with 
string, pulled tight between the ceiling and the viewpoint, although this method, too, 
seems diffi cult to imagine in practice.  40  

       Reception and Afterlife 

 Among pre-1800 authors on perspective, Pozzo stands out, both for his experi-
ence as a practitioner and for the spectacular, public, and large-scale character of 
his work. The examples mentioned here represent but a sample of his entire out-
put. Pozzo also seems to be the most experimental and playful of the authors on 
perspective. In this respect, one of the few writers comparable to him was the 
mathematician Johann Heinrich Lambert. Lambert was not much of a painter, but 
he was interested in investigating how all kinds of geometrical problems in nor-
mal three- dimensional space could be solved if they were transferred to a picture 
plane. Some of these questions were quite advanced and esoteric: for instance, 
how to draw the perspective image of a painting which itself is in perspective, the 
perspective image of a rainbow, or that of a doubly refl ected object. If Pozzo was 
the expert practitioner of perspective, Lambert was the expert geometrician.  41   In 
the second, 1774 edition of his important work on perspective, Lambert added a 
short survey of the literature of the fi eld, in which he recognized the contribution 
by his more practical predecessor: “due to its many neat architectonic drawings 
for painters and architects, the work by Andrea Pozzo has always much 
excellence.”  42   

 Other readers also found the  Perspectiva  of great interest. Indeed, the fi rst vol-
ume stayed in print throughout the eighteenth century. Pozzo’s particular brand of 
 quadratura , disseminated by the Jesuits and other Counter-reformation orders, 
became widely imitated. His designs for feigned domes, in particular, inspired cre-
ations in Italy as well as in Austria, Bohemia, Germany, Poland, and Silesia. Pozzo’s 
infl uence was particularly strong among Jesuit artists.  43   Although the  Perspectiva  
found many readers, it had no noticeable impact on the literature of perspective. Nor 
did Pozzo’s showpiece, the distance-point construction of the virtual cupola, fi nd its 
way into later books on the subject. Yet, this construction represents an important 
median between the mathematical and practical literatures on perspective. Although 
Pozzo showed little explicit interest in its geometrical content, his knowledge of the 
technique was both thorough and subtle.  
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                                               Notes 

 I am grateful to Henk Bos, Henrik Kragh Sørensen, and Anthony Gerbino for very 
valuable comments on the content of the paper and to Claire Neesham and Anthony 
Gerbino for substantial linguistic improvements. I also want to express my gratitude 
to L’Accademia di Danimarca, Rome and the Max Planck Institute for the History 
of Science, Berlin, for housing me while, among other things, I worked on this 
article. 

     1.    Pozzo ( 1707 ; repr. New York: Dover 1989), quoted from the section,  To the 
Lovers of Perspective . This edition also appeared in an undated printing by 
J. Senex and J. Osborn. The original appeared as Pozzo ( 1693 –1700, 2nd ed. 
1702–1723). A German translation also appeared: Pozzo ( 1719 ).   

   2.    For Pozzo’s decorations see De Feo ( 1988 ) and the various contributions in 
Battisti ( 1998 ). For earlier biography, see the ample list of references in 
Frangenberg ( 2000 , 93, n. 2).   

   3.    General descriptions of the  Perspectiva  are found in Bösel ( 1996 ); Salviucci 
Insolera ( 1998 ); and Oechslin ( 1998 ). The fi rst two editions of volume one and 
the fi rst edition of volume two are used as a source material by Frangenberg 
( 2000 ) and Wilberg ( 1970 ).   

   4.    For a detailed description of Pozzo’s life and  oeuvre , see Kerber ( 1971 ). For an 
overview, see Hills ( 1993 ) and Kerber ( 1998 ). For a description of some of his 
compositions see Milman ( 1983 , 26–27,  1986 , 52–55).   
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For his other Viennese projects, see    Bösel ( 1998 ).   
   10.    Hills ( 1993 ).   
   11.    My thanks to Anthony Gerbino for this observation.   
   12.    Alberti ( 1972 , parag. 23, 59). See Andersen ( 2007 , 18).   
   13.    Andersen ( 2007 , 34–79). Piero’s manuscript was presumably written in the 

1470s. It was fi rst published together with a German translation in della Francesca 
( 1899 ) and again in della Francesca ( 1942  [1974]). I have used the 1974 reprint.   

   14.    Aguilon ( 1613 , 637–681); Scheiner ( 1631 ); Bettini ( 1642 ,  Apiarium V ); 
Bourdin ( 1661 , text to Plate 172); Kircher ( 1646 , 161–196); Dubreuil ( 1642 ); 
Schott ( 1657 , 99–169); Tacquet ( 1669 , 158–177); Dechales ( 1674 , vol. 2, 465–
532); Deidier ( 1744 ); Rivoire ( 1759 ); Scherffer ( 1781 , 191–225). For more on 
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   17.    Maignan ( 1648 ) and Niceron ( 1638 ).   
   18.    The Dominicans were represented by Egnazio Danti’s substantial reworking of 

Vignola ( 1583 ); the Augustinians by Bourgoing ( 1661 ), a stencilled edition of 
a handwritten manuscript; and the Camillians by Amato ( 1736 ).   

   19.    Serlio ( 1547 ); Contino ( 1645 ); Sirigatti ( 1596 ); Vignola ( 1583 ); and Accolti ( 1625 ).   
   20.    Cataneo ( 1567 ); Barca ( 1620 , 25–27); and Viola-Zanini ( 1629 ).   
   21.    Valenciennes (An VIII [ 1799 /1800],  Introduction , iv).   
   22.    On the rising number of books by mathematicians, see Andersen ( 2007 , 30), on 

the character of these texts, see pages 359–360. On Guidobaldo, see Andersen 
and Gamba ( 2008 ).   

   23.    Galli-Bibiena ( 1740 ) and Piranesi ( 1750 ).   
   24.    Kerber ( 1971 , 267–270).   
   25.    On this point, see also Marry ( 1998 , [plates: 408–411], 317).   
   26.    Pozzo ( 1707 , 8).   
   27.    Pozzo ( 1693 –1700, vol. 2, Introduction), translated from 1723 edition.   
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Bjurström ( 1972 , 103 and 108–110) and Marry ( 1998 ).   
   29.    Pozzo ( 1707 ), quoted from text to Figure 68. For a similar opinion of Pozzo’s 

aims, see Marry ( 2002 , 314–316).   
   30.    The distance point is the vanishing point of horizontal lines forming an angle of 

45° with a vertical picture plane.   
   31.    della Francesca ( 1942  [1974], 129).   
   32.    Pozzo ( 1707 ), from the comment to Figure 9 in the section “For the greater 

Help to Beginners.”   
   33.    Pozzo ( 1707 ), quoted from the section  To the Lovers of Perspective , c v .   
   34.    Pozzo ( 1693 –1700, vol. 2, Fig. 52), translated from 1723 edition.   
   35.    Pozzo ( 1693 –1700, vol. 2, Fig. 78), translated from 1723 edition.   
   36.    Pozzo ( 1707 ), quoted from the section “An Answer to the Objection made 

about the Point of Sight in Perspective”.   
   37.    Pozzo ( 1707 ), quoted from text to Figure 90.   
   38.    Pozzo ( 1707 ), quoted from text to Figure 93.   
   39.    For details of the commission, see Frangenberg ( 2000 , 99).   
   40.    Pozzo ( 1693 –1700, vol. 2, Fig. 100), translated from 1723 edition.   
   41.    Andersen ( 2007 , 635, 686–89 and 664–71).   
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Zeichnungen für Maler und Baumeister immer viel Vorzügliches.” Lambert 
( 1774  [1st ed. 1759], vol. 2, 28–29). Reprinted in Lambert ( 1943 , 309–380).   

   43.    See Dziurla ( 1998 ); Kowalczyk ( 1998 ); Preiss ( 1998 ); and Wilberg ( 1998 ). For 
the Jesuit artists who continued Pozzo’s style, see Bösel ( 1996 ).      
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             The three contributions in Part IV consider the origin of modern structural mechan-
ics from the late seventeenth to the mid-eighteenth century. This subject was one of 
the most technically diffi cult for practitioners to adopt, but also the one that would 
have the greatest future impact on architecture. Indeed, the appearance of this “new 
science”—as Galileo called it—was momentous, for it portended a new way of 
using mathematics in the design process, one that would introduce a sharp separa-
tion between architecture and engineering that persists to the present day. 

 Although the essays in this section cohere chronologically and thematically, they 
also offer contrasting historiographical perspectives. More than our earlier sections, 
this one may be read as something of a conversation or debate, to some extent mir-
roring disciplinary divisions within the fi eld itself. Jacques Heyman’s essay, sum-
marizing many years of research, compares the mason’s traditional rules of design 
with the basic mathematical tools that underlie the modern science of structures, 
namely geometry, mechanics and analysis. His approach is that of an engineering 
scientist with a particular commitment to plastic, or limit-state, theory, a method of 
structural analysis and design that he helped to establish. Developed in the 1950s, 
this method proceeded from the recognition that most physical structures are, in 
essence, statically indeterminate. Subtle changes in settlement, imperfections in 
materials and in the construction process profoundly affect the internal forces of the 
structure and will always preclude a “true” evaluation of its conditions under 
loading. Elastic analysis, which seeks to model the deformation of a structure, is 
therefore highly sensitive to small changes in support conditions and states of 
self-stress. In contrast, the plastic method seeks to model the structure’s behavior at 
the ultimate points of yield and collapse. The latter method is more structurally 
effi cient—material is minimized—and arguably more accurate, as it does not pur-
port to account for the actual internal stresses of the structure. It is also simpler. 
Whereas the elastic method relies on complex differential equations to describe 
the structure’s deformation, plasticity theory returns to “mechanical” equations of 
equilibrium. 

   Part IV 
   Narratives for the Birth of Structural 

Mechanics 
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 Heyman’s background as an engineering scientist informs his historical perspec-
tive. Indeed, he sees the development of structural analysis in terms of its advance 
towards—and its detours from—the present state of knowledge. “The historian of 
science,” Heyman has recently written, “is a fully qualifi ed Whig historian.”  1   His 
landmark book,  Structural Analysis: A Historical Approach  (1998), brought this 
avowedly “internalist” approach to bear on the history of the theory of structures, 
providing the fi rst comprehensive account of the contributions of the plastic method. 
As Heyman shows in that book and in his contribution here, mathematicians were 
at the forefront of this development, which unfolded for the most part in the pages 
of learned journals. 

 In contrast to Heyman’s approach, our next two contributors take what might be 
called a synchronic view of the same phenomena. Rather than trace the develop-
ment of the subject from a known vantage in the present, Pascal Dubourg Glatigny 
and Filippo Camerota concentrate on the  reception  of structural mechanics in spe-
cifi c historical contexts. Mathematicians play a central role in their accounts, too, 
but Dubourg Glatigny and Camerota are concerned to see them as merely one set of 
actors in a wider—and often fractured—community of interest. Both authors try to 
recapture a sense of the novelty of this new building science, when structural 
mechanics did not yet have the epistemic authority it enjoyed by the mid-nineteenth 
century. By concentrating on the intersection of structural theory with “real world” 
problems of building, they show that the reception of this new building science was, 
in fact, messy and contentious, particularly among builders and administrators. In 
contrast to mathematicians, these groups worked with physical structures daily and 
bore ultimate responsibility for them. 

 Dubourg Glatigny’s essay, the second in this section, looks at the expertise con-
vened in 1742 to examine the stability of the dome of St Peter’s basilica. Like the 
controversy over the design of the Paris Pantheon in the 1770s, the St Peter’s exper-
tise is well known, largely because of the mathematicians who were called in to 
provide an analysis of the structure and recommendations for repair. Their work 
helped to spur public engagement with the new science of structural mechanics. 
Dubourg Glatigny focuses on an early moment of this episode, in particular, the 
dispute between the ecclesiastic and humanist Giovanni Bottari and the mathemati-
cians who were initially asked to provide advice on the restoration of dome: the 
Jesuit Roger Boscovich and his two Minim colleagues, François Jacquier and 
Thomas Le Seur, all three self-confessed Newtonians. Bottari, acting as a consultant 
of the Reverenda Fabbrica di San Pietro, was by no means unfamiliar with contem-
porary mathematics or large-scale engineering. Yet he proved to be the mathemati-
cians’ most outspoken and implacable opponent, the only participant of the congress 
to reject out-of-hand their analysis and recommendations. What he objected to was 
the process of abstraction by which the mathematicians claimed to be able to repre-
sent the physical structure of the dome as a purely geometrical object. Dubourg- 
Glatigny looks at this debate as contest of legitimacy and authority, exacerbated by 
a disciplinary and epistemological gulf between the two parties. 

 Filippo Camerota takes a different approach to the same theme. In the third part 
of his essay, he describes the infl uence of Galileo and his  Discorsi intorno a due 
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nuove scienze  (1638) on the overlapping worlds of architecture, mechanical science, 
and engineering. The book’s impact was immediate and profound. The new science 
of the “resistance of solids” served to undermine the Vitruvian doctrine of propor-
tion, while that of “local”, or projectile, motion called attention to the variety of 
mathematically defi nable curves that might fi nd an application in building. In both 
cases, Galileo’s treatise led to a re-evaluation of  fi rmitas  as  the  primary principle of 
building, elevating structural solidity over the other two Vitruvian concepts of 
beauty and convenience. As Camerota shows, these insights quickly shook up rela-
tions between the various professional communities of the building world. The 
reverberations are evident both in the discussions of Florentine academies in the 
1660s and in the 1697 expertise to look into the cracks in the dome of Florence 
cathedral. In both cases, we see the theory of structures—backed by Galileo’s 
authority—becoming a common source of reference in all matters of building. The 
charismatic Venetian monk Carlo Lodoli took this process to its logical conclusion. 
His teachings raised solidity from a structural value to a visual and aesthetic one. 

 In fact, the transformation that Camerota describes went beyond structural 
mechanics. As he shows in the fi rst and second parts of his essay, Galileo was only 
one representative of the “new science” to alter architectural culture during the 
period. The work of Juan Caramuel de Lobkowitz reveals the analogous infl uence 
of Descartes. The latter’s deductive method of reasoning and his conception of geo-
metric space provided models for Lobkowitz’s novel, “oblique” architectural the-
ory. Bernardo Vittone offers a third case study. This Piedmontese architect was 
profoundly affected by Newtonian optics, in particular, by the idea the eye itself 
changes shape in viewing distant objects. For him, the perception of architecture 
was to be defi ned not by perspective geometry, but by the physiology of vision. 
These three cases reveal the powerful appeal of a “philosophical” mathematics for 
seventeenth- and eighteenth century architects. 

     Note 

     1.    Heyman ( 2005 , 3).           

     Reference 

       Heyman, Jacques. 2005. The history of the theory of structures. In  Essays in the history of the 
theory of structures: In honour of Jacques Heyman , ed. Santiago Huerta, 1–8. Madrid: Instituto 
Juan de Herrera.     
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        Mathematics, in the form of rules of proportion, was used in architecture from very 
early times. However, it was not until the mid-seventeenth century that the three 
disciplines in the title of this paper came to be gradually introduced. Their use was 
crystallised into modern codes of practice for elastic design, which claim to evaluate 
the state of a given structure under given loading. In fact, these states cannot be 
observed: a real structure is subject to unknown and unknowable imperfections, 
which profoundly alter its behavior. Safe designs may still be made: the way for-
ward is to use so-called plastic methods (or limit design in the US). The now estab-
lished use of the word “plastic” is misleading and could be replaced more 
meaningfully by “equilibrium”. The equations of statics, which preceded those of 
analysis, turn out to be the key to structural design. 

    The Mathematical Tools 

    Geometry, mechanics and analysis are three recognized mathematical disciplines, 
which may overlap to some extent when they are applied to the study of the infl uence 
of mathematics on architecture. The word “geometry” will cover attempts to devise 
shapes, rational or not, either structural (as the profi le of an arch) or not (as the 
 entasis  of columns). “Mechanics” will be applied to investigations where values are 
sought for the internal forces in a structure, which could be used to assess the strength 
and deformation of the structure, or to compute the forces that it exerts on its environ-
ment. Finally “analysis” will be used in the technical sense to imply the use of alge-
braic methods, and in particular the use of calculus. For example, analytical geometry 
applies algebra and calculus to problems of classical, Euclidean, geometry. 
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 Hooke’s master statement of 1675, concerning “The true Mathematical and 
Mechanichal form of all manner of Arches for Building, with the true butment nec-
essary to each of them,” evokes, implicitly or explicitly, all three of the terms. The 
(Latin) anagram, deciphered after Hooke’s death, yields: “As hangs the fl exible line, 
so but inverted will stand the rigid arch.” The statement solves the  geometrical  prob-
lem; if a set of (arbitrary) weights is attached to a light chain, then the shape of that 
chain, inverted, will give the shape of the perfect (masonry) arch to carry those same 
loads. Moreover the  mechanics  of the hanging chain (that is, the determination of 
forces, not easy but possible in 1675) will yield the value of the horizontal pull nec-
essarily applied at the ends of the chain, and so the value of the horizontal thrust of 
the corresponding arch. Thus the “butments” may be designed to resist that thrust. 

 In 1670, Hooke had stated to the Royal Society that he had solved the problem 
posed by his “master statement” of 1675, and he was pressed, then and later, to 
provide his “demonstration” (that is, the mathematical proof). He never did this, 
and he was in fact unable to do the  analysis— he could not determine mathemati-
cally, by the use of classical geometry or the new calculus, the equation for the 
shape of the hanging chain. It was for this reason that he hid, for the time being 
and indeed until he died, behind the Latin anagram. He wished to fi nd the solu-
tion himself before some more learned geometer profi ted from his insight. 
(Hooke would later be hurt, unforgivably, in this way. He had published openly 
his revolutionary idea that celestial bodies might somehow exert a mutual attrac-
tion, but could make no use of this mathematically. The idea was novel to 
Newton—once he had grasped the idea, Newton had no diffi culty in deducing the 
inverse square law, using the language of classical geometry rather than that of 
calculus. Hooke was outraged that he was given no credit when the  Principia  was 
published in 1687.) 

 The three mathematical giants, James Bernoulli, Leibniz, and Huygens, were 
engaged in 1690, competitively and successfully, on the analytical solution to the 
catenary problem; they too were wary of revealing to each other the full details of 
their discoveries. Hooke had solved the  engineering  problem of the design of arches 
to carry given loads, and for this purpose the search by the three mathematicians for 
the equation of the catenary was irrelevant. The solution was sought for the rather 
limited case of uniform loading, a poor representation for many practical designs. 
An arch bridge, for example, is required to carry its own non-uniform weight as well 
as live loads. (Curiously, a parabolic distribution of load gives a reasonable basis for 
the calculation of an arch bridge.) 

 A modern example of engineering design which involves all three of the terms 
in the title of this paper lies in the calculation of thin reinforced-concrete shells—a 
structural form now somewhat out of fashion. The differential equations of the so- 
called membrane theory are of course analytical, and are equations of equilibrium 
(mechanics) written in terms of internal stress resultants; the geometry may be 
prescribed (for example, a hyperbolic paraboloid) or may be allowed to emerge 
from the mathematics. Such shells are often of constant thickness (except perhaps 
near the edges). It is of interest that Hooke, having determined (to his own satisfac-
tion) the proper shape of the two-dimensional arch, sought also the shape of the 

J. Heyman



195

perfect dome (assumed tacitly to be of constant thickness, as in the innermost of 
the three domes of St Paul’s Cathedral). He declared it to be, again without proof, 
that of the cubico-parabolical conoid (that is,  y = ax  3  rotated about the  y -axis). The 
true shape (on the basis of certain assumptions) is very much more complex, but 
differs only minutely from Hooke’s profi le. Hooke and Wren worked closely 
together, and one of Wren’s sketches for St Paul’s shows a plot, explicitly, of 
Hooke’s Equation.  

    A Historical Perspective 

 The rules of architecture, from before Ezekiel (600 BC) through Vitruvius and the 
Gothic and up to and partly including the Renaissance, were essentially rules of 
proportion, and thus geometrical. Notions of mechanics and analysis are entirely 
absent, although builders must have been well aware that structural forces perhaps 
required the presence of buttresses, and certainly demanded (but did not always 
receive) good foundations. 

 It seems strange to a modern engineer, used to considering problems of strength, 
that rules of proportion alone should lead to viable structures. In fact, the knowledge 
of material properties was not necessary for most masonry construction; the mate-
rial used for Greek temples and Gothic cathedrals is very lightly stressed. Important 
elements (fl ying buttresses, say) are subject to about one hundredth of the crushing 
strength of the stone. Modern engineers work modern materials (steel or reinforced 
concrete) much closer to their limits. The ancient rules were directed to ensuring the 
overall stability of the structure. For Greek and Roman temples, for example, a 
limiting ratio on the height to diameter of a column ensured the stability of that 
column, while the restriction on the width of intercolumniation ensured that mono-
liths of reasonable size could be used as architraves. The ancient rules were, in 
general, satisfactory. 

 To be sure, there were anomalies. A variation of design might result in a shape of 
fl ying buttress that could not contain the required compressive forces (as at Amiens 
c. 1260), with resultant distress, or the overall geometry of a cathedral might be 
such that any small deformations imposed by a (hostile) environment could destabi-
lize the structure (as probably at Beauvais 1284). However, a building that basically 
conformed to the established geometrical rules would be safe. An artist/craftsman 
like Inigo Jones, who had mastered Italian styles (above all, those of Palladio) and 
had become noted as a theatrical designer, could move on to the design of real build-
ings with little diffi culty. 

 There was, of course, room for interpretation of the rules, and masons’ lodges 
each had their own design manual. The expertises of 1399/1400 at Milan show mas-
ters from all over Europe arguing about the best way to resume the intermitted 
building of the cathedral. The rules under discussion were largely numerical, but 
there are glimpses in the recorded minutes of questions of arch thrust and of neces-
sary buttressing. As a matter of great fascination, but of no practical consequence, 
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the question of irrational numbers (such as the square root of 3), which had been 
latent since Greek times, surfaced again at Milan. Ancient and medieval building 
work was laid out by use of the great measure, that is, a physical rod (in England the 
rod, pole, or perch) on which were marked the units of length, subdivided as neces-
sary in accordance with the prescribed rules of proportion. It was appreciated that, 
no matter how fi nely the units were subdivided, no mark could be made on the great 
measure to represent an irrational number. By defi nition (and proof by Pythagoras) 
an irrational number could not be expressed as a ratio, that is, proportionately. 
Masons’ rules-of-thumb were largely formulated to avoid them. 

 By the middle of the seventeenth century the rules of architecture had begun to 
include concepts other than those of geometry, and the profession started to embrace 
ideas of what would now be called structural engineering. Considerations of statics 
were added to the geometrical rules. For example, François Blondel, in 1673, dis-
cussed the four principal problems of architecture, and these may be assigned to the 
fi rst two categories in the title of this paper. The problems concerned:

    1.    Entasis (geometry)   
   2.    The shape of arches (geometry)   
   3.    Joints between voussoirs in arches (geometry, mechanics?)   
   4.    The strength of cantilever beams (mechanics)    

The creation of entasis is important visually, but has little effect on the structural 
behaviour of a column. The fourth problem was fi rst studied by Galileo in 1638, and 
is mentioned again below. 

 Blondel’s second and third problems relate to important “engineering” concerns 
in the design of arches. The masonry arch (and its three-dimensional derivatives, the 
cross-vault and the dome) was one of the major structural forms, and gave rise to 
much activity in the Académie and the Royal Society (both were founded around the 
time Blondel was posing his problems). In 1717, for example, Gautier (in a book on 
bridges) listed fi ve questions for those “sçavans” to resolve:

    1.    The thickness of abutment piers for all kinds of bridges (geometry?, mechanics?)   
   2.    The dimensions of internal piers for multi-span bridges (mechanics?, geometry?)   
   3.    The thickness of the arch rib (geometry)   
   4.    The shape of arches (geometry, mechanics?)   
   5.    The dimensions of retaining walls to hold back soil (mechanics)    

The problems were worked at throughout the century, and advances made without 
yet reaching fi nal solutions.  

    Arches 

 Stereotomy is usually taken to denote the specifi cation, by geometry, of the way 
stones are cut, so that they may fi t into a coherent structural form. For the two- 
dimensional arch, with prescribed extrados and intrados, the voussoirs are wedge 
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shaped, with two faces conforming to the profi le of the arch, and two defi ning the 
joints between stones. Vitruvius states clearly that the joints for a circular Roman 
arch should be radial, directed to the centre of the circle—and the prescription sur-
vives in the term “centering” which denotes the falsework necessary to support the 
masonry until the keystone is in place. (The geometrical problems involved in 
describing voussoirs are not easy, and they become formidable when the structure is 
fully three-dimensional, as say a rampant skew arch.) 

 However, stereotomy also had implications for engineering. Radial joints may be 
“obvious” for a circular arch (although slightly different jointing may in fact be 
more rational), but how should joints be made between the voussoirs of a non- 
circular or pointed arch and for which the extrados and intrados are not necessarily 
“parallel”? A full stereotomical statement must involve something more than 
geometry. 

 La Hire addressed the problem in 1695 by using mechanics to investigate the 
internal forces in an arch. It was clear to La Hire that if there were no friction 
between two adjacent stones (that is, they were perfectly smooth) then a (compres-
sive) force could only be passed from one stone to another if the joint between them 
were at right angles to that force (tensile forces were not possible—the stones would 
pull apart). He attacked the mechanics by constructing a force polygon (involving 
the weights of the voussoirs), and then the corresponding funicular polygon (that is, 
Hooke’s inverted hanging chain) for the arch. For an arch of given shape with 
smooth voussoirs the funicular polygon is fi xed, so that, working backwards, the 
force polygon can be deduced and fi nally the weights of the voussoirs found. Now 
if the springing lines are horizontal then the weights of the springing voussoirs must 
be infi nite (Hooke’s chain can never become vertical under fi nite loading). 

 La Hire realised that the assumption of frictionless joints was unproductive, and 
he abandoned the work until 1712. His new attack allowed for friction so that slid-
ing at the joints was inhibited, and his analysis was directed to a more meaningful 
solution of the mechanics of the arch, and in particular to determining the value of 
the abutment thrust. He is at this point not interested in geometry, but rather solely 
in mechanics; he sketches a semicircular arch of constant thickness, but his method 
may be applied to an arch of general shape. He unlocks the statics of the arch by 
considering the mechanism of failure, involving hinging cracks, thus “pinning” the 
internal forces at a few known locations, from which the necessary equilibrium 
equations can be written.  

    Structural Design 

 There are many criteria that must be satisfi ed by a successful structure, but three are 
pre-eminent, and may be labelled strength, stiffness, and stability. A Greek temple, 
a Gothic cathedral, and a masonry arch bridge are all clearly strong—there is no 
failure of the material; equally, their members do not defl ect in any appreciable way 
under the action of their own weights or of high winds—they are adequately stiff. 
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Their stability was assured by correct geometries—the proportional rules had been 
proved empirically to be correct. La Hire’s work was also concerned with stability, 
and the introduction of mechanics yielded new information—for example, the 
calculation of abutment thrust for an arch. 

 Galileo (1638) had spotted the weakness of rules of proportion. For a material of 
fi nite strength, a limit would be reached as a structure was progressively increased 
in size (Galileo, before knowledge of dinosaurs, imagines the elephant to be the 
largest animal able to sustain its own weight). In fact, builders rarely approached the 
limits of their materials, but Galileo saw the value of exploring the breaking strength 
of a structure (implicitly made of wood, although he discusses also the behaviour of 
stone). Galileo’s structure, a cantilever beam, is actually a device for examining the 
strength in bending of a prismatic rod, and his analysis should really be classifi ed 
under the heading “strength of materials” rather than “theory of structures.” To use 
modern terms, he had determined the breaking stress in tension of the rod, and 
wished to apply this value to the fracture in bending of the same rod. The resolution 
of the problem is of course brilliant, although a numerical constant that emerges was 
subject to much discussion over the next two centuries. 

 Galileo uses very little of what we think of as mathematics. Although algebraic 
equations were acquiring modern form, they had not yet been applied to problems of 
mechanics. Instead, he used the classical theory of ratios to be found in Euclid. He 
did not write in full the equations of equilibrium, but his results are essentially cor-
rect, and academic mathematicians continued to explore the cantilever beam for the 
next century along much the same lines. Confl ating the beam’s structural and mate-
rial properties, they determined its shape not as prismatic but curved, that is, designed 
to fail at every section along its length (Galileo himself started this enquiry). 

 Parent corrected Galileo’s mechanics in 1713. Implicitly (since such ideas were 
slow in being formulated), he assumed that bending strains would be linearly elastic 
through the depth of the beam and so determined a different value from Galileo’s for 
the constant in the expression for the breaking strength. Thus began the science of 
the strength of materials, culminating in Navier’s 1826 formulation of an elastic 
“philosophy” of design applied to the theory of structures as a whole. From this 
point, the elasticity of structures themselves was to remain explicit. Galileo had no 
such notion. His work was directed to the determination of fracture strength, rather 
than to the actual behaviour of a structure under load.  

    The French Panthéon 

 Parent’s work was ignored, but the subject slowly gained ground. By 1760, the con-
tributions of Galileo and La Hire (and others, including Euler, Musschenbroek, 
James Bernoulli, Vauban, and Bélidor) were included in the syllabus of the two-year 
course at the “university” of Mézières. Calculus was by now well established and 
was taught in the mathematics classes. Mézières was the school for offi cers of the 
Corps Royale du Génie, to which Coulomb was admitted in 1760; he graduated just 
under two years later. In 1764, he was posted to Martinique, where he stayed for 
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nine years, engaged in the design and construction of the island’s defenses. Coulomb 
found that what he had learned at Mézières was not suffi cient to resolve the four 
great problems of civil engineering in the eighteenth century, all of which presented 
in his work in Martinique. He described the theoretical advances made during his 
nine years’ stay to the  Académie  in 1773, on his return to Paris. 

 The title of his  Essai  was “On the application of rules of maximum and minimum 
to some statical problems, relevant to Architecture.” The four topics were:

    1.    The strength of columns   
   2.    The strength of beams   
   3.    The thrust of arches   
   4.    The thrust of soil    

These echo the lists of Blondel and Gautier, but notions of geometry have almost 
entirely disappeared. Coulomb’s tools are those of mechanics (equations of statics) 
and of analysis (maxima and minima determined by the use of calculus). This seems 
to be one of the fi rst occasions when analysis is applied by an engineer to problems 
of civil engineering. 

 Coulomb’s paper was published in the middle of the 50-year dispute over the 
design of the church of Sainte-Geneviève (later the Panthéon). The episode is one 
of the earliest instances in which the new conceptual tools were “applied” to an 
actual building. Although Souffl ot had begun work in 1756, the project progressed 
slowly. By 1770, he had ceded oversight of construction to the architect Rondelet. 
It was in that year that Patte, another architect, wrote a  Mémoire  criticizing the 
design of the crossing piers on geometrical grounds. A year later, Gauthey, an engi-
neer, refuted Patte’s views, using his knowledge of mechanics to argue for the piers’ 
soundness. These “engineering” judgments, based on considerations of statics, were 
clearly superior to Patte’s proportion-based arguments, but they did not gain many 
adherents. The situation was further compounded in 1776, when defects appeared in 
the “inadequate” piers. As Rondelet appreciated (his views were published in a late 
 Mémoire  of 1798), the piers were defective because of poor construction, not poor 
design. However, he lacked the insights of mechanics to support his case. The 
 Académie  (by then the  Institut ), of which Coulomb was a member (although he 
appears to have played no part in the discussions), appointed several committees—
of architects, of architects afforced by engineers, and again afforced by mathemati-
cians—to look at the issue, but there was no immediate resolution of the dispute. It 
was not until the early nineteenth century that restoration work was put in hand, and 
Rondelet enlarged somewhat the four crossing piers.  

    Stiffness 

 Galileo did not discuss the deformation of his cantilever beam, and indeed, before 
the invention of calculus, this was hardly possible. However James Bernoulli had 
mastered the use of this new tool, and in 1691 he used it to hit upon an important 
hypothesis (which he too published in a Latin logogriph for fear of piracy), that the 
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curvature of a uniform (elastic) strip, would be proportional at each section to the 
bending moment at that section. Starting from a (hypothetical) problem in mechan-
ics, Bernoulli thus transformed the whole question of the “elastica” into a purely 
mathematical investigation, which culminated in the defi nitive analysis by Euler in 
1744. The mathematics was diffi cult and complex, involving closed-form solutions 
of fourth-order differential equations in terms of new mathematical functions, and 
the derived shapes were clearly not representative of anything that might be useful 
in architecture. However, Euler reintroduced some equations of mechanics into the 
work, where he saw that the very smallest deformation of an initially straight strip 
could be maintained only in the presence of specifi ed loading. Effectively, a straight 
column would stay straight under axial load until that load reached a certain limiting 
value, the “Euler” buckling load. This concept is of fundamental importance in all 
structural design that involves the possibility of buckling.  

    Scholium 

 By the middle of the eighteenth century the tool of analysis had been added to those 
of geometry and mechanics, and the stage was set for the development of a recog-
nizably modern theory of structures. The description of deformation became, in 
Navier’s hands, one of the three essential ingredients of an (elastic) theory, the other 
two being the equations of statics, and the specifi cation of material properties—for 
example, Hooke’s Law. 

 A statically-determinate structure may be “solved”—that is, the internal stress 
resultants may be found—by the use only of equations of statics. Euler had realized 
that there were structures (and this is the usual case) for which the equilibrium equa-
tions did not suffi ce: those structures that are statically indeterminate or hyperstatic. 
Euler anticipated Navier’s schema in presenting a simple particular example (a four- 
legged table). Even in these cases, however, equations of equilibrium, deformation, 
and material properties will together provide enough information for the solution of 
a hyperstatic structure. 

 Navier presented his scheme of “indeterminate” computation by placing a rigid 
prop under the free end of Galileo’s cantilever. When the beam is subjected to a 
specifi ed transverse loading, a force is induced in the prop, but the equations of stat-
ics ( mechanics ) do not enable its value to be determined. However, the internal 
stress resultants (bending moments) can be calculated in terms of the unknown 
force. From the second-order differential equation of bending ( analysis ), the 
deformed shape of the beam can be found ( geometry ) still in terms of the unknown 
force. Finally, those calculated deformations must be such that the boundary condi-
tions are satisfi ed—the defl ection of the beam must be zero at the rigid prop. This 
condition completes the solution. 

 It took over a century—and arguments continue—to appreciate that the “Navier” 
solution is not one that can be observed in a real structure. The fault lies in the 
assumption of boundary conditions. In reality, the prop under Galileo’s beam is not 
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absolutely rigid: the footings under a framed building will settle slightly, the abut-
ments of a bridge will move under the action of arch thrust. Tiny displacements of 
these kinds have a very large effect on the internal state of a structure. Moreover, it 
is impossible to specify the small movements imposed by the environment, and it is 
therefore impossible, as a matter of fact, to make calculations describing the “actual” 
state of a structure. 

 It is of extraordinary interest that Coulomb, in his discussion of the behaviour of 
the arch, does not attempt to describe the actual state. Instead, his application of the 
“rules of maximum and minimum” enable him to place upper and lower limits on 
the structural quantities—for example, on the value of the abutment thrust. 

 In the same way, the structural engineer may make a safe design of Galileo’s 
propped beam, even if it is impossible to determine its actual behavior. For this 
simple example, modern plastic theory may be used instead of “elastic” analysis. To 
do this, equations describing the static state of the structure are written. For a hyper-
static structure, that is, one which cannot be described by the laws of statics alone, 
there is more than one possible distribution of internal stresses. However, these may 
be manipulated so that the maximum stress the material is capable of sustaining is 
nowhere exceeded. No reference need be made to the deformation of the structure 
or the boundary conditions. All that is needed is the use of mechanics, considering 
the equations of equilibrium and the limiting material properties. This gives a pow-
erful method for the safe design of a large class of structures.     
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        Visible faults in the dome of Saint Peter’s basilica in Rome had raised fears about 
the structure’s stability ever since its completion in 1593. The most extensively 
documented episode of this long history erupted in the early 1740s, a few years 
after Prospero Lambertini was elected Pope Benedict XIV. The debates over the 
causes of the cracks, the ensuing scientifi c analyses, and the adopted solutions are 
well known, due to the  Memorie istoriche della gran cupola del Tempio vaticano , 
the magisterial treatise published in 1748 by Giovanni Poleni (1685–1761), the 
mathematician entrusted with the supervision of the restoration work.  1   One of 
the great points of interest of this episode was the involvement of competing 
protagonists and factions, including architects, master carpenters, and natural 
philosophers. Each of these groups benefi ted from varying degrees of credibility. 
Beyond the technical issues concerning the dome’s structure, the debate raised 
important questions about the social and intellectual legitimacy conferred by 
different forms of expertise. 

 Church offi cials also took part, both as consultants to and members of the 
Reverenda Fabbrica di San Pietro, the administrative body in charge of building, 
decorating, and maintaining the holy temple.  2   Among this group was Giovanni 
Bottari (1689–1775), one of the few fi gures involved in the discussions who was 
neither a scientist nor a builder or architect. Although he had no offi cial position in 
the curia, Bottari was an infl uential fi gure of the Roman intellectual scene.  3   A man-
of- letters and connoisseur, Bottari took part in the controversy from its earliest days 
as a member of the  congresso , the special commission convened by the pope to 
explore the problem in January 1743. In his  Memorie istoriche , Poleni mentions 
Bottari’s name infrequently and only incidentally, reporting neither his statements 
nor his position. Bottari, however, claimed to speak with the voice of public opinion 
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( la voce commune ), and he was the only participant who publicly opposed any form 
of restoration. Indeed, he regarded the building improvement as unnecessary and 
extremely risky. 

 A series of offi cial documents and private letters, preserved in Venice, Rome, 
and the Vatican, provides evidence of the peculiar outsider’s role that Monsignor 
Bottari played in this story. He greatly distrusted both architects and mathemati-
cians, regarding both groups as opportunists. According to him, the architects were 
motivated primarily by the prospect of gaining new work—indeed, a prominent 
commission in the most important church of the Christendom—while the scientists 
seemed eager to grasp any opportunity to strengthen their infl uence on society. 
Paradoxically, it was the mathematicians to whom Bottari objected most vigorously. 
Their approach served to reduce the Vatican Temple to a mere mathematical object, 
denying its historical, spiritual, and aesthetic signifi cance. 

    The  Parere di tre mattematici : The Building 
as a Mathematical Object 

 The controversy developed very quickly toward the end of summer 1742, when 
rumors about a possible collapse of the dome fi rst began circulating. In October, the 
papal physician ( archiatra pontifi cio ) Antonio Leprotti wrote to his friend Bottari to 
learn more about the worrying gossip ( le strepitose ciarle)  spreading through town.  4   
The chatter must have been widespread and at least partly credible. On 21 November 
1742, following a site visit in late September, the Pope decided to commission an 
expertise by “the most eminent mathematicians,” fathers François Jacquier (1711–
1788) and Thomas Le Seur (1703–1770) of the Minim order. The Jesuit Roger 
Boscovich (1711–1787) joined the two monks soon after. The French mathemati-
cians had a peculiar position in the Roman scientifi c landscape. As editors of the 
most recent edition of the  Principia , published in Geneva, they were well-known 
Newtonians.  5   

 This “external” consultation was supposed to put an end to growing uncertainty, 
the result of several inconclusive investigations conducted over the years by the 
Fabbrica’s own architects. The papal commission strived to be clear therefore about 
the subject, scope, and limits of the review, which was intended to be defi nitive. The 
document underlines the need to establish an opinion “not so much on the present 
state of the damage observed on the dome, but rather on its restoration, so that the 
architects can implement the solutions considered to be the most necessary.”  6   Faced 
with a great diversity of opinion among the architects and the master builders, the 
Fabbrica called on the mathematicians with the hope of settling the argument. 

 To publicize its results, the commission published an offi cial report in early 
1743. The  Parere di tre mattematici  is a short booklet organized into three parts.  7   
After a brief description of the dome, the fi rst part presents the damage observed by 
the mathematicians themselves. It lists meticulously the various cracks and attempts 
to establish, as far as possible, when they appeared by comparing “the present state 
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of the dome with an earlier one.” The latter effort was only partially successful, due 
to the lack of archival evidence. The second part tries to determine if the cracks were 
due to a structural instability or to accidental causes, such as wind loading or ground 
settlement. The last part is dedicated to the presentation of the “system”, a theo-
retical model of the structure used to elaborate the proposed solution. The authors 
carefully correlate the system to the present state of the building and calculate 
the interaction of weights and forces occurring within it. In conclusion, they recom-
mended the placement of iron rings around the dome and the buttresses of the 
drum. Despite the scientifi c analysis and extensive calculations, the solution was 
traditional. Iron chains and rings were used widely to ensure the stability of 
domes. In fact, two such devices had already been incorporated into the dome of 
St Peter’s during its construction. 

 The explanation of the “general system” is accompanied by certain hypotheses, 
with the restrictions Newton gave to this word.  8   They serve to determine the centre 
of gravity and its practical consequences, as well as the method of calculating the 
thickness of the pillars. Architects were used to treating these issues with practical 
rules-of-thumb, but here they are treated in a novel way. The system conceives 
the dome as an organic complex of abstract elements, while eliminating indetermi-
nate causes, that is, factors that cannot be calculated. Such unknowns might include 
the state of the foundations, the fi rmness of the ground, or the effects of natural 
phenomena, including wind, lightning, or earthquakes. To elaborate a solution 
grounded on reason, the mathematicians try to isolate their object, as a natural 
philosopher working in his cabinet would isolate a phenomenon in an experiment. 
In this connection, their use of Musschenbroek’s conclusions on the resistance of 
materials is particularly relevant.  9   Excerpting his value for the resistance of iron, 
they applied it directly to the existing iron ring around the dome. Possible variables, 
however, that might infl uence this force—the regularity of the ring’s dimensions, 
the quality of the screws fi xing the different elements together, or its present state of 
conservation—are not considered. In this analysis, the dome is transformed into an 
object of purely theoretical knowledge. Indeed, most of the authors’ supporting 
references are to recent work by the French Academy of Sciences, in particular to 
the essays of Philippe de La Hire.     10   The publication’s sole engraving illustrates the 
damaged cupola in elevation and section, juxtaposed with force diagrams of the 
different theories discussed in the text (Fig.  1 ). Architects were no strangers to prob-
lems of stability, but the authors were clear that their approach would be different. 
In the preamble to their study, the mathematicians affi rmed that this “special situa-
tion is one that requires the theories of mathematicians more than practice.”  11   
Architects’ expertise, in particular, was implicitly excluded from the demonstration.

   The mathematicians’ conclusions were printed in early January 1743 and distrib-
uted widely among scholars and amateurs. On 22 January, the Pope convened a 
congress at the Quirinal to agree on a defi nitive solution. During this meeting, 
Boscovich demonstrated the system, showing the audience the network of cracks 
then visible. For this, he used the model of the dome constructed by Michelangelo 
between 1558 and 1561, on which Luigi Vanvitelli (1700–1773), offi cial architect 
of the Fabbrica, had drawn the positions and shapes of the faults (Figs.  2  and  3 ). 
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  Fig. 1    Elevation and section of the damaged cupola of St Peter’s, juxtaposed with force diagrams 
(From Jacquier et al. [ 1742 ])       
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The audience was selected by the administrator of the Fabbrica, Francesco Olivieri.  12   
The participants were composed of three different groups. First were the architects 
and builders from inside and outside the Fabbrica, including Luigi Vanvitelli, 
Ferdinando Fuga (1699–1782), and Nicola Salvi (1697–1751). The second group 
consisted of other mathematicians like our three authors. They included Diego 
Revillas (1690–1746) and Michelangelo Giacomelli (1695–1774). There were, 
fi nally, two amateur non-specialists, the marquis Girolamo Theodoli (1677–1766) 
and Giovanni Bottari. Curiously, other than Olivieri, none of the cardinals of the 

  Fig. 2    Wooden model of Michelangelo’s dome of St Peter’s basilica, 1558–61, with later 
additions by Giacomo della Porta       
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Fabbrica was present. This was contrary to the normal custom of the institution, 
which required any work in or on the Basilica to be approved by a committee of its 
members.

    “Everyone acknowledges the damage” was the offi cial conclusion of the con-
gress. The few expressed reservations were mostly trivial. Revillas, for one, doubted 
whether the cracks in the crossing piers were related to those observed in the dome. 
The former had given rise to a controversy in 1680 over Bernini’s intervention in the 
crossing.  13   Likewise, concerning the prescribed solution, all architects agreed with 
the three mathematicians: that new rings should be installed. Among the architects, 
only Filippo Barigioni claimed to have diffi culties with the proposed solution, but 
only “from the attic and above.” His reservations appear to contest the placement of 
rings, rather than the solution itself. The relative unanimity among the participants, 
however, was more apparent than real. Bottari was the sole member of the commis-
sion to take the unusual step of withholding his opinion. He announced that he 
would offer one only after a site visit and would let it be known in written form.  

    Giovanni Bottari and the Nature of Architecture 

 How and why Bottari was included in the commission is hard to establish. Bottari 
was a scholar from Florence, famous for his work on grammar and literature. Also 
trained in geometry, he had edited an edition of Galileo’s works, as well as a 

  Fig. 3    Detail of the wooden model of Michelangelo’s dome, showing painted “cracks” in the 
structure by Luigi Vanvitelli       
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compendium of Apollonius’  Conics  by the Pisan professor Guido Grandi.  14   Close to 
Bartolomeo Corsini, nephew of then-pope Clement XII, Bottari followed his patron 
to Rome in 1730. In the early 1730s, he was asked to consult on several hydraulic 
projects, particularly in the river Po area. It was during this period that Bottari may 
have met the Bolognese mathematician Eustachio Manfredi, who would also later 
be involved in the dome controversy. In 1732, Bottari accompanied Manfredi to the 
Tiber in Perugia to examine the possibility of making a portion of the river navi-
gable.  15   This experience may have given Bottari some legitimacy in the fi elds of 
engineering and architecture. The election of Benedict XIV furthered Bottari’s 
opportunities for patronage. He was nominated to several academies, in particular, 
that of Saint Luke, becoming an “academician of honour” in 1738.  16   

 Bottari had a polemical mind, involving himself continuously in cultural, doctri-
nal, and theological controversies. He had a great interest in the arts, Tuscan artists, 
in particular; his name is still famous for his edited collections of artists’ letters and 
unpublished documents.  17   His own views on art were transmitted mainly through 
the  Dialoghi sopra le tre arti del disegno  published in  1754 , in which he proposed a 
fi ctitious dialogue between the biographer Giovanni Pietro Bellori and the painter 
Carlo Maratta. Bottari apparently started it when he arrived in Rome in the 1730s, 
intending to defend the prestige of Tuscan artistic values in the Holy City. A hyper-
critical book, fi rst published anonymously, it is tinged with a strong feeling of 
 campanilismo  and disparages many contemporary Roman painters. It also remains 
a cornerstone of the historiography of painting conservation.  18   More important 
for our purpose, however, is the large part of the second dialogue dedicated to archi-
tecture, specifi cally to the question of domes and vaults. It is here that Bottari makes 
precise reference to Saint Peter’s dome. 

 The discussion concerns Michelangelo’s intervention in the design following the 
death of Antonio Sangallo the Younger and focuses, in particular, on the sculptor’s 
battles with the “Sangallo sect”, who accused him of having ruined the building. 
To this charge—evidently still a live issue in the early eighteenth century—Bottari 
countered vigorously: “Michelangelo surpassed all the Greeks and made something 
look rather like a divine miracle than any human artifact.”  19   In the mouth of Maratta, 
Bottari later qualifi es the dome as “an admirable machine whose excellence is quite 
obvious to anybody.”  20   This conception of the dome contrasts emphatically with that 
of the three mathematicians. Bottari saw the work primarily as the product of human 
art and ingenuity and as the legacy of a “divine”—not to mention Tuscan—artist. 
It was the pre-eminent building of the modern age, surpassing not only the architec-
ture of contemporaries like Sangallo but that of the ancients themselves. Bottari’s 
humanist notion of excellence as a criterion of quality in the arts extends even to its 
structural character. The dome is emphatically not a  sistema , but a  macchina —in 
the ancient sense of a structure excelling by its size and stability. 

 Bottari’s defense of Michelangelo also reveals a general suspicion of the profes-
sional ambition of Roman architects, an admonition he would later make repeatedly 
in his assessment of the various proposals to restore the dome. In the  Dialoghi , this 
sentiment is particularly apparent in his criticism of Luigi Vanvitelli, whom the 
author chastised for having spoiled Michelangelo’s work at Santa Maria degli Angeli. 
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To Bottari, Vanvitelli’s work manifested nothing less than “the depravity in which 
this century has fallen in architecture.”  21   Vanvitelli was, of course, the acting archi-
tect of the Fabbrica of Saint Peter’s, responsible for the restoration work on the 
dome in the 1740s. 

 Bottari’s position here must not be misunderstood. In no sense was he rejecting 
the role of mathematics in architecture. In the  Dialoghi  themselves, he emphasized 
the necessity of “universal rules… to teach how to calculate the strength of the 
arches and of the vaults, the resistance of the wall structure, how to balance the 
forces, which can be only learned from geometrical doctrine, mechanics, and simi-
lar learning.”  22   Nor did Bottari have diffi culty with mathematicians. He was particu-
larly friendly with Poleni, with whom he corresponded both before the controversy 
broke out and after.  23   Bottari’s position, rather, is that mathematics—indeed, science 
in general—must be absorbed by  ingegnium . This intellectual capacity is not only 
linked with grace and beauty, it also relies on historical knowledge. In the same way 
that an architect chooses a particular element according to a detailed knowledge of 
its historical use and from the analysis of a particular situation, a suitable mathemat-
ical analysis must respond to the history and use of its object. Indeed, this was a case 
where the analysis had to be particularly sensitive, given the building’s symbolic 
importance and institutional context. 

 After the meeting of 22 January 1743, Bottari reserved the right to express his 
views in a written statement. His declaration is known to us through a manuscript 
copy kept in the Vatican library.  24   In this document, he fi rst described the  Parere  
of the three mathematicians. He characterized it as consisting not of three parts, 
but of four: “two of facts and two of speculation, the last two based on the founda-
tions of the fi rst.” Where the authors had described the visible damage to the dome 
in one section, Bottari was careful to distinguish the more recent cracks from the 
older, historically verifi ed ones. He insisted that “the system of damages” suggested 
in the last part constituted a construction logically based on the facts established in 
the fi rst. His main criticism was that this part of the work was imprecise and incom-
plete, rendering the conclusions false. The description of the cracks had not been 
elucidated in enough detail, nor did it provide a comprehensive picture of the situa-
tion. Furthermore, the vocabulary used by the three mathematicians was vague and 
unspecifi c. Bottari acknowledged that the mathematician’s statement had been care-
fully established after many visits on the scene, but he still considered the results far 
from satisfying. The investigators, he pointed out, had measured only the length of 
the cracks, not their width or depth. Some facts, moreover, had been taken from 
another report, without verifying them or quoting the source. The authors had relied 
on this account for the measured incline of the leaning walls and piers of the drum. 
“Blind belief is the enemy of geometry,” wrote Bottari, castigating the authors for 
failing to make their own direct visual investigation. A particularly important indi-
cator was the dovetailed marble revetments ( marmi a coda di rondine ) placed in 
different places on the most visible cracks. These had been recently installed only 
to be broken by continued movement of the structure and therefore constituted one 
of the mathematicians’ main arguments for an urgent intervention. Bottari, however, 
considered it impossible to deduce anything from their assertions. The authors had 
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failed to report the dates when the marble plates were fi tted, nor the exact variation 
between broken and unbroken pieces, or the number of the plates involved. 

 Bottari’s Jansenist sympathies may have prejudiced him against the three math-
ematicians—members of both the Minims and the Jesuits—but religious differ-
ences are not suffi cient to explain his position. Nor was it simply a question of 
method and insuffi cient precision. His reticence was also linked to the idea of the 
“system” and to a lack of diachronic and historical perspective in the analysis of the 
building. He recognized the system as an ingenuous proposition, but was very 
severe on its content. The principal diffi culty was the lack of fi rm historical data 
about the state of the dome in the seventeenth century. Earlier site reports, for 
instance, those made by Mattia dei Rossi or others from 1680, were insuffi ciently 
precise to allow any conclusions to be drawn about subsequent deterioration. Nor 
did the commission’s apparent unanimity deter him. As the three authors had them-
selves admitted, the solutions proposed were traditional: “more from architects than 
from geometers.” As Bottari suggested in his discourse about the restoration of the 
works of art, architects and artists remain on the side of the project, while scholars 
control the reception and the  a posteriori  judgment. This demarcation was to be 
even more carefully observed in such a highly symbolic historic monument. The 
judgment of the committee’s technical experts therefore meant little to him. 

 The mathematicians realized immediately that they faced a dangerous enemy. 
They even had to apologize to the physician Leprotti, promising him that they would 
do nothing to offend Bottari.  25   He made the mathematicians all the more defensive 
by spreading rumors that their calculations were false. As Boscovich complained to 
Poleni three days after the meeting, “a voice is increasing in Rome that all of our 
calculations are wrong, that everything relies on false suppositions.”  26   Boscovich 
hoped to gain Poleni’s support as an undisputed authority, far from the curia with its 
scheming and back-stabbing. He defended his work in a series of letters: “We have 
made the calculations several times,” he wrote just after the congress, “and verifi ed 
the data by numerous measures because we found many inaccuracies in the previ-
ous drawings.” Boscovich also defended the principles followed in the redaction of 
the booklet, saying “we could only allude to the more diffi cult things and had to 
summarize even the most elementary ones in order to be understood in a country 
where very few people are acquainted with geometry and even fewer with calcula-
tion.”  27   Such an excuse would hardly have satisfi ed his Roman audience. 

 Bottari was the only participant of the congress to reject the presentation of the 
three mathematicians in its entirety. This refusal was aimed not only at their intel-
lectual background, their “Newtonianism”. Bottari’s criticism on the quality and 
reliability of their inquiry disguised a deeper opposition. That is to say, he used their 
own tools and arguments to contest their entire approach to the question. As we 
have seen in the  Dialoghi  and in his statement following the congress, Bottari pre-
ferred to qualify the dome with the word “machine”. He understood this term in its 
Renaissance sense as a complex of material elements connected one with the other 
in order to serve a specifi c function, whether structural, productive, or demonstra-
tive.  28   This “machine”, moreover, had a history. The design and construction of 
the dome belonged to a long tradition of handicraft and erudition brought to a 
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culmination by Michelangelo. A product of his  ingegnium , it surpassed the works of 
both the Greeks and the moderns, to become something like a “divine, almighty 
miracle.” The word machine subsumes all of these meanings. “System”, on the 
other hand, is the word the three mathematicians endorse. They use “system” both 
for the dome and equally for the analysis of its present state. A system is a complex 
of  abstract  elements, not necessarily linked to a material structure. A system can be 
studied independently from its context, its historicity, its function. 

 In the end, Bottari was not able to prevent the Fabbrica from engaging restoration 
work. The dome, it was believed, could collapse at anytime. This fear was not 
ungrounded; some of the cracks were wide enough to step through. Nor was Bottari 
able to impose an alternative solution to the abhorred metal rings. Although he 
claimed Michelangelo rejected their use, he was perfectly aware that a couple of 
rings had already been incorporated into the structure. Bottari, however, did achieve 
two of his goals. The fi rst was to exclude the three mathematicians from the supervi-
sion of the restoration work; they were soon replaced by Giovanni Poleni. The 
second was to compel Poleni and the Fabbrica to gather a special team of collabora-
tors, responsible for compiling documentation about the dome for the offi cial 
history, published in 1748. The enormous amount of technical and historical mate-
rial that they gathered became the basis of Poleni’s  Memorie istoriche della gran 
cupola , still the major source for this controversy. Although Poleni’s analysis—and 
proposed solution—were similar to those of the three mathematicians, he presented 
them in a way that did not neglect, but rather complemented the demonstrative 
historical method that Bottari advocated. Poleni, too, recognized the very peculiar 
character of the “Vatican Temple”—in both its symbolic role and as the product of 
a very protracted and unusual decision-making process—and adapted his analysis 
to it. Subsequent studies have downplayed the broader scholarly context of Poleni’s 
mathematical analysis, but it was integral to the conception of the treatise and points 
to a hitherto unknown aspect of its background and origin.  

                                Notes 

     1.    Poleni ( 1748 ).   
   2.    On the Reverenda Fabbrica di San Pietro, see Marconi ( 2004 , 19–36); Basso 

( 1987 ) and Sabene ( 2012 ).   
   3.    The bibliography on Bottari is very scarce. No monograph has yet been dedi-

cated to this important fi gure of the roman  Settecento . In the meantime, see 
Pignatelli and Petrucci ( 1971 ) and Consoli ( 2004 , 143–50).   

   4.    Letter from Leprotti to Bottari (20/10/1742), Carteggio Bottari 1660 (32E21), 
Biblioteca Corsiniana, Rome, fol. 62r–63r.   

   5.    Newton ( 1739–1742 ).   
   6.    Arm. 50, B, 17, Archivio della Reverenda Fabbrica di San Pietro (ARFSP), 

Vatican City, fol 997r.   
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Dubourg Glatigny and Le Blanc ( 2005 ), 189–218.   
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   9.    Jacquier, Le Seur, and Boscovich ( 1742 , 27–28).   
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   11.    Jacquier, Le Seur, and Boscovich ( 1742 , 4).   
   12.    The manuscript of Olivieri’s notifi cation to participants is kept in Cicognara 

V-3849, int. 2, #1, Biblioteca Apostolica Vaticana. The list of invited speakers 
is in Arm. 50, B, 17, ARFSP, fol. 998r.   

   13.    On this episode, see Dubourg Glatigny ( 2009 ) and Marder ( 2008 ).   
   14.    See Galileo ( 1718 ) and Apollonius ( 1722 ).   
   15.    Bottari’s account was later published in Gambarini ( 1746 ).   
   16.    Libro dei decreti dell’insigne Accademia di S. Luca dalli 22 luglio 1726 a li 12 

Maggio 1738 (vol. 49), Archive of the Accademia di San Luca, Rome, fol. 183 v.   
   17.    Bottari ( 1754–1773 ).   
   18.    See also Bottari’s important re-edition, in  1730 , of Raffaello Borghini’s  Il 

Riposo . On this work, see Procacci ( 1955 , 229–49).   
   19.    Bottari ( 1865 , 31).   
   20.    Bottari ( 1865 , 60).   
   21.    Bottari ( 1865 , 35).   
   22.    Bottari ( 1865 , 84–85).   
   23.    Bottari wrote to Polieni about Vitruvius in 1741 and kept him posted on the 

dome controversy, at least until 1744. Several letters from Poleni to Bottari are 
kept in Carteggio Bottari, 32G33, Biblioteca Corsiniana, Rome, fol. 4r, 8r, 10r, 24r.   

   24.    Cicognara V-3849, int. 2, #3, Biblioteca Apostolica Vaticana.   
   25.    Carteggio Bottari, 1660 (32E21), Biblioteca Corsiniana, Rome, fol. 66r.   
   26.    Boscovich to Poleni, 25 January 1743, Mss. Italiani, cl. 10, n° 304 (6544), 

Biblioteca Marciana, Venice.   
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        The artistic and architectural theories of the seventeenth and eighteenth centuries 
were strongly marked by a critical comparison between the greatness of the ancients 
and the inventions of the moderns. In some cases, the parallel assumed the sterile 
form of a purely academic debate, but in others it gave rise to entirely original 
reasoning and theoretical elaboration. This is the case, for example, of the critical 
revision of Vitruvius’s concepts in light of the extraordinary developments in 
modern science. A number of architects and architectural theorists believed they 
could reinvigorate architecture by re-elaborating the ancient theory of proportions 
in light of the recent achievements in optics, mechanics and projective geometry. 
Three cases are, I believe, particularly eloquent: the oblique architecture of Juan 
Caramuel de Lobkowitz in relation to Descartes’ philosophical thought, the optical-
perceptivity theory of Bernardo Vittone in relation to Newton’s optical discoveries, 
and the rationalism, or functionalism, of Carlo Lodoli in relation to Galileo’s studies 
in mechanics. 

    Caramuel and Descartes 

 Caramuel’s theoretical contribution to architecture consists of the presentation of an 
 ars nova , a branch of mathematics, which he termed  architectura obliqua  (Fig.  1 ).  1   
He presented his theory in two publications: his fundamental mathematical work, 
the  Mathesis biceps  and his more specifi c  Architectura civil recta y obliqua. Recta  
and  obliqua , Caramuel explains, do not stand in the Ciceronian sense for “good” 
and “bad”, “right” and “wrong”, but for “done according to the authority of the 
learned” and “done according to what is dictated from time to time by reason.” 

      A Scientifi c    Concept of Beauty 
in Architecture: Vitruvius Meets 
Descartes, Galileo, and Newton 

             Filippo     Camerota    

        F.   Camerota      (*) 
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  Fig. 1    Oblique deformation of a Corinthian column (From Lobkowitz  1678 , Part III, plate XLV)       
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Thus, in treating of architecture, he specifi es, we can either follow the authority of 
Vitruvius or, instead, “positively ignore what others say and follow only what is 
dictated to us by reason.”  2  

   The reason appealed to by Caramuel is mathematical reason, founded on geom-
etry and on the exterior senses, in particular, sight. The space in which architecture 
takes shape is, in fact, a geometric space, empirically conceived in the Cartesian 
sense as a measurable entity in its three dimensions and defi ned by the presence of 
a body. Adopting for his own purposes the concept expounded by Descartes in his 
 Principles of Philosophy , Caramuel argues that without body there is no space, and 
that both are indissolubly linked because the one manifests the other.  3   “Intrinsic 
space”, as Descartes defi ned his concept of material space, was particularly well 
suited to the idea of architecture as materialized geometry. And this theoretical suit-
ability was favoured by an illuminating, practical corroboration found on building 
sites and in particular in stonecutters’ yards. Caramuel, in fact, saw his theoretical 
hypothesis confi rmed not in the abstract world of geometry, but in the art of stone-
cutting (Fig.  2 ).  4  

   The geometric identity between space and body prevents the form from being 
conceived outside its geometrical structure. Architecture for Caramuel is therefore 
“materialized geometry”. The genesis of the form conforms to a series of principles 
that may be summed up as follows. According to Caramuel’s philosophic probabi-
lism, nothing can be taken for granted, or assumed to be immutable, and therefore 
the authority of the ancients can be challenged. Second, everything must be consis-
tent with logical reasoning, even at the cost of deforming the morphological struc-
ture of the architectural elements; architecture must be the visual expression of 
geometric reasoning, and all the stages of this reasoning must be perceived. Third, 
each line that intervenes in the resolution of the geometric problem must be visual-
ised in architectonic form. So, if the plane is inclined, as in staircases, and the 
vertical lines intersect only with oblique lines, the “straight” (Vitruvian) order must 
give way to the “oblique” order. Obliquity is thus understood as the inescapable 
transformation from a “straight” initial state (Fig.  3 ).

   The concept of geometric transformation, after the great period of Renaissance 
perspective, had been further refi ned by the more recent developments of anamor-
phosis and the projective geometry of Desargues. Following the same process of 
transformation undergone by painted objects in passing from the “straight” form of 
the orthogonal projection to the “oblique” form of the perspective projection, 
Caramuel explains how the oblique delineations are derived from the straight ones 
(Fig.  4 ).  5   The cases in which oblique transformation was necessary were all those in 
which the initial condition of “orthogonality” was lacking. These cases were espe-
cially encountered in octagonal, circular and elliptical plans, and in the ornament of 
staircases. Many examples cited by Caramuel are buildings in Rome: the baptistery 
of San Giovanni in Laterano, the colonnade of the Piazza San Pietro and the Scala 
Regia in the Vatican, and the church of Sant’Andrea al Quirinale.  6   Caramuel’s brief 
sojourn in Rome during the very years in which work was beginning on the Piazza 
San Pietro, from 1655 to 1657, was undoubtedly a crucial experience for the devel-
opment of his concept of architectural obliquity (Fig.  5 ).
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  Fig. 2    Oblique arches (From Lobkowitz  1678 , Part IV, Plate II)       
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    In Rome, Caramuel had occasion to enter into contact with artists and scientists 
who had long been trying to fuse together their respective skills. Rome was the 
capital of the Baroque, but it was also the capital of science, and the activity of 
several artists was strongly related with that of the three important scientifi c centers 

  Fig. 3    Oblique deformation of a fl uted column shaft (From Lobkowitz  1678 , Part IV, Plate XXII)       
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of the city: the Accademia dei Lincei, the convent of the Minims at Trinità dei 
Monti, and the Collegio Romano of the Jesuits. 

 In a chapter on “astronomical architecture”, Caramuel expounded the idea of a 
building as a mathematical instrument (Fig.  6 ). This overlap between architecture 
and science was inspired not only by the famous Danish observatory of Ticho Brahe, 
but also by a number of Roman corollaries.  7   At least two cases can be considered in 
connection with Caramuel’s astronomical architecture: the allegorical engraving 
dedicated by Orazio Busini to Urban VIII, with a cosmological version of Palazzo 
Barberini (Fig.  7 ), and the project for Villa Pamphilj, as visual expression of the 
mathematical sciences that sprang from the extraordinary collaboration between 
Francesco Borromini and Emmanuel Maignan.  8   Aside from astronomy, the new 
inventions of baroque architecture offered extraordinary occasions for experi-
menting with the principles of obliquity. Bernini’s elliptical church of Sant’Andrea 
al Quirinale (begun in 1658) is praised by Caramuel as an exemplary case of  archi-
tectura obliqua .  9   By contrast, the colonnade of the Piazza San Pietro was, in his 
view, a shockingly squandered opportunity.  10  

    Caramuel’s ideas were supported by the creativity of many baroque architects, 
fi rst among them Borromini who, in his own way, adopted obliquity as a stylistic 
mark. But criticism was not lacking, and it did not come from the classicists alone. 
The most clearly articulated attack on Caramuel’s theory came from the only 

  Fig. 4    Oblique deformation of the ornaments on a staircase (From Lobkowitz  1678 , Part IV, 
Plate XX)       
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  Fig. 5    Elliptical tetrastyle portico (From Lobkowitz  1678 , Part IV, Plate XXIV)       

Baroque architect with a comparable mastery not only in scientifi c theory, but also 
in construction and on-site practice, namely Guarino Guarini. 

 On the scientifi c level, Guarini compared Caramuel’s treatise to the similarly 
encyclopedic  Cursus  of Milliet de Chales, but on the practical level he denounced 
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  Fig. 6    Astronomical building (From Lobkowitz  1678 , Part IV, Plate XXXVIII)       

the total absence of building experience in it.  11   Guarini could not see how the oblique 
logic could be reconciled with any proportional system, nor could he see how 
oblique elements resting on inclined planes could guarantee static strength. He was 
willing to admit obliquity only as ornamentation for stairways. Guarini also criti-
cized Caramuel’s use of perspective for the optical correction of proportional ratios. 
For Guarini, it was not enough to adopt schemes of geometric transformation. More 
important was to consider problems of perception. Subtle apparent deformities 
depended basically on two factors: “the force of our imagination,” which sometimes 
judges proportional ratios erroneously and “the site”, that is, the distance of the 
observation point   .  12   The novel aspect of Guarini’s ‘optical’ theory was its recogni-
tion of the psychological component. Elaborating on Vitruvius’s discussion of the 
phenomenon, he believed that corrections could sometimes be avoided because our 
imagination, in the same way in which it can itself be deceived, manages to correct 
the deception of the eye.  13    
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  Fig. 7    Orazio Busini,  Allegorical design of Palazzo Barberini , engraving by Daniel Widman, 
Rome, 1631       
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    Vittone and Newton 

 These premises form the basis for the optical-perceptivity theory of Bernardo 
Vittone, architect, editor of Guarini’s treatise on civil architecture, and author him-
self of two treatises on architecture. His approach to architecture was powerfully 
sensorial. Guarini’s dictate that architecture had fi rst of all to satisfy the senses 
was taken literally by Vittone, who developed his master’s theory of optical correc-
tions still further, singularly superimposing on Euclidean geometry the nature, at 
times inexplicable, of appearances. Inspired by the recent discoveries of Isaac 
Newton, Vittone explained in new terms the ancient Vitruvian question of visual 
appearances and the relevant proportional corrections. The optical effect became so 
predominant in his architecture as to lead him to an unexpected fusion of classicist 
control over proportions with the Baroque spectacle of illusionism. Appearance 
became for him an aspect as important as statics, and with felicitous results he 
managed to transform the stereotomic structure and geometric nature of Guarini’s 
architecture into a visual spectacle (Fig.  8 ).

   In his preface to the second book of the  Istruzioni elementari , published in 
Lugano in 1760, Vittone specifi ed the role of perspective and of the projection of 
shadows as regulating principles of the architectural concept. To this aspect of 
architecture, Vittone dedicated a specifi c theoretical category, calling it  adaptation , 

  Fig. 8    Bernardo Vittone, dome of the Capella della Visitazione, Vallinotto, Carignano, 1738–39       

 

F. Camerota



225

which served to identify the elements that concurred in the perception of a building 
in relation to two basic factors: “the temperament of the light, and the state of the 
eye.”  14   Light was a basic element of architecture. Spectacular baroque decorative 
schemes continued to inspire the creativity of architects, but the scenographic effect 
had to be controlled, Vittone believed, “in light of the Physical and Mathematical 
principles” recently established by Newton with his discovery of the prismatic 
colors of light. The importance of Newton for Vittone lay in his having “perfected 
our senses,” allowing a more direct, almost corporeal, relationship with this impal-
pable “substance”.  15   

 In the architecture of Vittone, light is fi ltered, refl ected, and even refracted, as in 
the case of San Gaetano in Nice, where mirrors and glass prisms are inserted in the 
furnishings of the church, perhaps in the attempt to enrich with elusive prismatic 
colors the already opulent decoration in colored stucco (Fig.  9 ). The most surprising 
aspect is that the architectural form seems actually modeled in such a way as to 
exalt the qualities of the light. The curved surfaces (concave, convex, and spheroid) 
display baroque spatiality as a visual manifestation of the wave-like nature of light 
and sound, almost as if to confi rm a vision of architecture as a material expression 
of the physical and mathematical principles of space.  16  

   Consideration of the “state of the eye” was also vitally important. Vittone showed 
himself well versed in recent optical research when he described the eye as “change-
able in fi gure, and in position.”  17   The changeability to which he referred was that of 
the crystalline lens, which in relation to the distance of an object, as Newton had 
explained, changes  shape , becoming more or less convex, and  position , 

  Fig. 9    Bernardo Vittone, dome with mirrors and prisms at San Gaetano in Nice, France       
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approaching or moving away from the retina. Vittone’s knowledge of Newton’s 
optics may have derived from the explanatory work of Francesco Algarotti,  Il new-
tonianismo per le dame , a book Vittone had in his own library. Algarotti had stated, 
in regard to the crystalline lens: “Some others said that the retina being immobile, 

  Fig. 10    Geometrical scheme for optical refi nements in architecture (From Vittone  1760 , Plate 50)       
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the crystalline humour approaches it, and moves away from it, or that the crystalline 
humour only changes in shape, becoming more convex for nearby objects and less 
so for more distant ones, and there were even those who claimed that both things 
occurred at the same time.”  18   

 The attention dedicated to the incidence of light and to the shape and position of 
the crystalline lens reveals a laudable attempt to update the timeworn Vitruvian 
precepts. With Vittone, the optical science of architecture acquired a quality that was 
truly optical and not mixed with perspective geometry. The geometric- proportional 
relationship between the distance to an object and its apparent diminution, as con-
strued by the theorists of perspective, was no longer admissible. By changing shape 
and position, the crystalline lens could by itself change the amplitude of the visual 
angle and with it the object’s apparent size. Vittone thus admitted that the perception 
of distant objects was determined in nature by other rules, different from those 
elaborated by geometric perspective (Fig.  10 ).  19  

   Vittone fully grasped the scientifi c developments of his century and even per-
ceived in them a logic that would ultimately lead to neo-classicism. For him how-
ever, “rationalism” did not mean deprivation of ornamentation and austerity of 
forms, but a logical process combining theoretical knowledge and practical experi-
mentation, open to any possible innovation. Vittone may have become familiar with 
the rationalist hypothesis of architecture through the same “vulgarizer” who had 
introduced him to Newton’s principles. In 1757, Francesco Algarotti had published 
the  Saggio sopra l’architettura , in which he expounded the theoretical principles of 
the Franciscan monk Carlo Lodoli.  

    Lodoli and Galileo 

 The theoretical concepts of Carlo Lodoli were disseminated by two of his pupils, 
Francesco Algarotti and Andrea Memmo. Lodoli was a  maestro , in the ancient 
sense of the term. He handed down his ideas orally, and was known, with some 
justifi cation, as the “architect Socrates”. Lodoli professed a concept of architecture 
“founded on the true reason of things,” that is, on knowledge of the properties of 
the materials that determined the function and, consequently, the form of any archi-
tectural element. These principles are explicitly evoked in the motto surrounding the 
engraved portrait by Antonio Longhi (Fig.  11 ): “Experience and reason must be 
conjoined, and let function be the representation,” a motto that stressed the 
supremacy of function over ornamentation.  20   This emphasis on the properties of 
materials and on the fi gure of the architect as philosopher shows a clear Galilean 
derivation. Lodoli taught in Venice, in the monastery of San Francesco della Vigna, 
only a few steps from the Arsenal, the naval boatyard that had inspired Galileo’s 
famous  Discorsi intorno a due nuove scienze attinenti alla meccanica e ai movi-
menti locali  ( 1638 ).

   For architects and theorists, Galileo’s  Discorsi  called attention to the Vitruvian 
category least dependent on the trends of fashion and culture, that is,  fi rmitas . The 
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  Fig. 11    Antonio Longhi,  Portrait of Fra Carlo Lodoli  (From Andrea Memmo  1786 , title-page)       
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static strength of buildings and the construction of worksite machines became the 
subjects of “speculative intellects” which, while fi nding nourishment in the techni-
cal culture of craftsmen, sought the reason for things in the truths of mathematics. 
In particular, the  Discorsi  rendered ineffective the ancient theory of proportions, 
which had dominated Vitruvian mechanics throughout the Renaissance.  21   A large 
machine, for instance, could not simply be composed of elements proportionately 
larger than those of a small machine, but had to be constructed of stronger materi-
als. The “resistance of solid bodies to being broken” was one of Galileo’s “two 
new sciences” (Fig.  12 ).  22   The theory of proportions that governed every other 
aspect of the architectural project,  venustas  in particular, was no longer applicable 
to the statics of buildings, because each material had its own degree of strength. 

  Fig. 12    Cantilever beam (From Galilei  1638 , 114)       
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Accordingly, the form and dimensions of a structural element had to be determined 
on the basis of its material properties. The need to reduce the weight of a cantilever 
beam without impairing its strength had led Galileo to hypothesize an optimal 
section of parabolic shape. François Blondel would make “Galileo’s problem” 
( Galileus promotus de resistentia solidorum ) central to architectural debate in the 
Parisian royal academies.  23  

   The parabola, which Galileo improperly identifi ed as the curve formed by a 
hanging chain, was a subject of discussion also for the other “new science”, the one 
that dealt with the study of local movements (Fig.  13 ). The law of the acceleration 
of free-falling objects bore implications of great importance, especially in the 
 military fi eld, where ballistics had for nearly a century been included among the 
mathematical sciences. The parabola was an “ancient” curve. However, when 
 associated with the movement of a body, it fell within the context of other new 
curves elaborated by seventeenth-century mathematicians: the “cycloid” and the 
“sinusoid” (Fig.  14 ).

    The architectural implications of these studies in geometry were immediate. 
According to Carlo Dati, Galileo had invented the cycloidal curve to adapt it to 
the design of arches for bridges, “and in particular to the design of the new 
bridge in Pisa, when it was proposed that it be made of one arch alone, [Galileo] 
saying, that this line provided a curve for a bridge of most beautiful form.”  24   It 
was not long before these curves began to infl uence architects. The sinusoid 
curve made its fi rst appearance in simplifi ed form in some works by Francesco 
Borromini, such as the Filomarino altar in Naples and the façade of S. Carlino 
alle Quattro Fontane in Rome. Blondel proposed the ellipse and the parabola for 
the section of beams, the entasis of columns, the shape of rampant arches, and 
the design of the joints of these arches. Later on, Robert Hooke was to deem the 
catenary curve the ideal one for the statics of cupolas, a suggestion taken up by 
Giovanni Poleni (Fig.  15 ).

   Around 1660, Galileo’s discoveries were subjected to rigorous examination by 
two scientifi c academies in Florence. The fi rst and most famous was the Accademia 
del Cimento founded by Leopoldo de’Medici. The second, almost unknown, was a 
private academy founded by Abbot Ottavio della Vacchia with the aim of mathemat-
ically solving and experimentally verifying problems relevant to technology, archi-
tecture, and the fi gurative arts. In the records of the sessions of this Academy, whose 
activity lasted only two years, we fi nd problems of statuary, theatrical scenography, 
perspective, architectural technology (such as the construction of vaults, bridges 
and trusses), problems of hydrostatics relevant to the channeling of rivers, problems 
of gnomonics, and of military architecture (Fig.  16 ).  25  

   Outstanding among its members was Cosimo Noferi, a disciple of Galileo 
and author of twelve mathematical treatises, one of them entirely dedicated to 
architecture. To his readers, Noferi declared himself to be nothing less than an 
architect- philosopher: “I do not merely give the rule for what I propose to make, but 
in regard to it I hold a session, and a discussion, and I prove it either by geometrical 
reasons or natural reasons, and so these discussions are not those of a simple prac-
titioner but of a speculative philosopher, such as I will prove that the expert Architect 
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should be.”  26   The foremost quality of the architect, according to Noferi, was a 
 perfect knowledge of the “science of quantities,” that is, the “Mathematical profes-
sions.”  27   For Noferi, the architect had to don the guise of the philosopher, to hold 
“sessions and discourse,” to demonstrate “by geometrical reasons or natural rea-
sons,” and to give proof of his own “speculative” capacity. In Florence, Noferi 
found an exemplary historical example of the architect’s speculative mind: the 

  Fig. 15    Section of Saint Peter’s dome with inscribed catenary curve (From Poleni  1748 , Fig. XIV)       
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dome of Santa Maria del Fiore: “after many opinions given by expert Architects, 
only Filippo [Brunelleschi] was the one who could boast of it.” Brunelleschi 
alone had been able to:

  understand and penetrate with true and demonstrative reasons what force is exerted and 
where by an arch vaulted in that manner, how it should be fastened, how connected, what 
order should be observed in joining the tiles, in making the necessary vents as defense 
against the insults of the winds, how to load it reasonably, to arrange the channels, the 
drains for rainwater, having in mind the manner of the scaffolding, of the reinforcement, of 
how the work should be carried out.  28   

 All these things, Noferi continued, “would make any speculative and philoso-
phizing mathematician, or any simple builder, sweat.” To be sure, Brunelleschi 
was hardly the kind of philosopher that Noferi described. Yet, his description 
nonetheless reveals the kinds of problems that architecture was beginning to open 
up to scholars. 

 These problems became all too real toward the end of the century, when the 
cracks in the dome of Florence cathedral made “philosophizing mathematicians” 
sweat indeed. The project for consolidating the great mass of brickwork was 
assigned to a number of mathematicians of the Galilean school, among them 
Vincenzo Viviani, and a group of architects, including Giovanni Battista Foggini 
and Giovanni Battista Nelli (Fig.  17 ).  29   The problem at stake was one of statics. The 
general opinion was that the cracks were caused by insuffi cient buttressing and that 
installation of chains around the drum was necessary to contain the external thrust. 
In this respect, Viviani and the other members of the commission were backed 
up by the authoritative judgment of the papal architect Carlo Fontana, who had 
recommended a similar expedient for the Vatican dome. Viviani had even found a 
mathematical demonstration of the function of the chains in a text by Evangelista 
Torricelli on the effects of ring-braces on the columns of the Uffi zi and of the 
Palazzo Medici-Riccardi.  30  

   This unanimity, however, collapsed when the architect Alessandro Cecchini cast 
doubt on the proposed solution, suggesting that the effect might even be harmful. 
Cecchini maintained that the cracks were not caused by the excessive weight of the 
lantern, but by the yielding of the foundations, which had in the meantime fully 
settled. Cecchini also held that the natural action of domes was not to spread out-
ward, but rather to collapse inward from the center. Chains were thus not only 
useless, but constituted an additional weight that would only complicate things still 
further. Cecchini also discounted the experience acquired with reinforcement rings 
applied to smaller domes, since the ratio between forces and resistance would vary 
in proportion to the dome’s size and was therefore not applicable to Brunelleschi’s 
much larger work: “and anyone who does not believe this proposition with me,” 
concluded Cecchini, “is obliged to believe it with Galileo.”  31   By calling into cause 
Galileo, Cecchini had practically ended the dispute. The installation of the chains 
was interrupted in 1697, and the members of the commission postponed a fi nal 
decision to the results of further investigation. Apart from intriguing mathematical 
questions raised on both sides, this debate had a number of important consequences. 
In the fi rst place, it exposed the limitations of practical experience, which could no 
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  Fig. 17    Vicenzo Viviani, “Diligenze da farsi di nuovo intorno agli screpoli maggiori della Cupola,” 
Biblioteca Nazionale Centrale di Firenze, Ms. Gal. 222, c. 120r       
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longer count on the universality of the proportional laws. The fact that mathemati-
cians like Viviani were included on the commission may be taken as an implicit 
 recognition of the new situation. However, the episode also severely tested the 
technical expertise and credibility of the “philosophizing” architects. The con-
frontation with a real object—especially one as complex as the dome of Florence 
cathedral—highlighted the distance between the new theory and the traditional 
world of practice. 

 The “new science” of the  resistentia solidorum  called then for a true science of 
building that would make it possible to control every aspect of architecture, espe-
cially “the construction of Arches, and of Cupolas.” According to Giovanni Poleni, 
the Paduan mathematician who directed the restoration of the dome of St. Peter’s in 
the mid-eighteenth century, these structural elements “must without doubt be 
deemed the most diffi cult thing in the particular Mechanics of Architecture.”  32   This 
science had produced important theoretical results, such as the  Exercitationes  of 
Bernardino Baldi ( 1621 ) on the “mechanical problems” of Aristotle, the  De resis-
tentia solidorum  by Alessandro Marchetti (1669), and the  Trattato delle resistenze  
by Vincenzo Viviani ( 1718 ), but it also begat important practical results, expounded 
mainly by the French academicians. After François Blondel, it was Philippe de La 
Hire who took up this baton with his  Traité de Méchanique  (1695), a book dedicated 
expressly to problems of construction. La Hire would later publish an important 
advance, “Sur la construction des voûtes,” in which he proposed a real model of 
calculation to determine the dynamics of failure in arches and vaults.  33   

 As the “new science” progressed, it is not surprising that it also began to infl u-
ence the Vitruvian category most dependent on questions of taste, that is,  venustas . 
Carlo Lodoli exemplifi ed the new fi gure of the architect-philosopher and represents 
the most extreme attempt to re-establish the canons of beauty in Galilean terms.  

                                     Notes 

     1.    The principles of this “ Arte Nueva ” are expounded by de Lobkowitz ( 1678 ). 
See Ferrero ( 1965 ); Oechslin ( 1970 ); and Marino ( 1973 ).   

   2.    “Dos caminos tenemos de hallar la verdad en questiones oscuras; El uno, que es 
mas trillado y conocido sigue la autoridad de gente docta; y el otro que es mas 
subtil y delicato haze lo que le dicta la razon […] Luego estos dos caminos son 
los que podremos seguir trattando de Architectura. Pero (valgame Dios!) que 
podre revolver si sigo la autoridad de gente docta. Vitruvio no se ajusta en todo a 
lo que dixeron los Antiguos, de los Modernos unos le alaban, otros le corrigen, 
otros le vituperan […] Luego sera mejor ignorar positivamente lo que dixeron 
otros, y seguir solo lo que nos dicta la razon. Y que razon es esta? Se funda en los 
sentidos exteriores y principalmente en la vista, potenzia que se halucina facil-
mente, lo que haze buena vista en los ojos de uno, parece mal en los de otro, de 
donde viene a ser, que es tan dudoso lo que resuelve la razon como lo que defi nio 
la autoridad.” de Lobkowitz ( 1678 , vol. 2, 43–44): Trat. V, Art. IV, Nota II.   
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   3.    “Digo pues, que el lugar Intrinseco o el espacio es una extension, que tiene 
longitud, latitud, y profundidad.” de Lobkowitz ( 1678 , vol. 3, 66): (Trat. IX, 
Art. II: “De el Espacio o Lugar Intrinseco”. See also Descartes ( 1974 , vol. 8, 45).   

   4.    de Lobkowitz ( 1678 , vol. 2, 17–18): Trat. VI, Art. XI: “De las Escaleras”. Also 
see Trat. IX, Art. IV, Lamina I: “Saca Ellipses de Circulos, y Cuerpos Ovales de 
Globos. Propone los primeros Fundamentos de la Dotrina Obliqua; y enseña, 
como se han de hazer rexas y ventanas en lugares inclinados, que se llaman 
 viajes  en nuestra Lengua Castellana.” On Caramuel’s architectural training, see 
Correa ( 1984  [facsimile reprint]).   

   5.    de Lobkowitz ( 1678 , vol. 2, 6): Trat. VI, Art. IV: “Como de las Rectas nacen las 
Delineaciones Obliquas”.   

   6.    de Lobkowitz ( 1678 ). On the Lateran baptistery, see Trat. VI, Art. V, “De los 
yerros, que tienen las Colunas de la Capilla, en que se bautizo Constantino,” 2: 
8–9. On the Scala Regia, see Trat. VI, Art. XII, “De los Balaustres y Colunas 
Obliquas, con que se suelen adornar las Escaleras,” 2: 19. For Bernini’s piazza, 
see Trat. VIII, Art. III, “De algunos Edifi cios de Roma”, Seccion VIII, “De el 
Templo de San Pedro de Roma,” 2: 51. Again on Bernini’s elliptical piazza, the 
equestrian statue of Constantine, the façade of the basilica, and other interven-
tions, see Seccion X, “De los errores que en el Templo de S. Pedro han cometido 
los Ingenieros y Architectos,” 2: 52–53. Again on the Lateran Baptistery, see 
Trat. IX, Art. III, Lamina LVII, “De la Capilla, en que S. Sylvestro Papa bautizo 
al Emperador Constantino,” 2: 102. On the Piazza San Pietro and Sant’Andrea 
al Quirinale, see Trat. IX, Art. IV, Lamina XXIV, “De como han de ser estas 
mismas colunas, si formaren un Portal de tres Naves,” 2: 108.   

   7.    de Lobkowitz ( 1678 , vol. 2, 64–65): Trat. VII, “De algunas Artes y Ciencias, 
que accompañan y adornan a la Architectura,” and Art. IV, “De la Astronomia”; 
de Lobkowitz ( 1678 , vol. 2, 109): Trat. IX, Art. IV, Lamina XXXVIII–XXXIX, 
“De la Architectura Astronomica”.   

   8.    On Busini’s engraving, see Scott ( 1995 ) and Fagiolo ( 2000 , 222–27). On the 
Villa Pamphilj, see Camerota ( 2000a ,  b ).   

   9.    de Lobkowitz ( 1678 , vol. 2, 108): Trat. IX, Art. IV, Lamina XXIV: “y en voz 
tacita alabando a quien las delineo y labro”.   

   10.    “… la Ellipse Tetrastylia, que en Roma delante de S. Pedro erigio Alexandro VII, 
… Tiene tantos errores, como piedras.” de Lobkowitz ( 1678 , vol. 2, 108): Trat. 
IX, Lam. XXIV. Also see Trat. VI: “Architectura obliqua,” Trat. VIII: “Architectura 
pratica,” Art. III: “De algunos edifi cios de Roma,” and Sect. X: “De los errores 
que en el Templo de S. Pedro han comettido los Ingenieros y Architectos.”   

   11.    Guarini ( 1737 , 71): Trat. II, Cap. VIII. See Ferrero ( 1966 , 37–53). Also see 
Oechslin ( 1970 ).   

   12.    Guarini ( 1737 , 157: Trat. III, Cap. XXI).   
   13.    On this subject, see Robison ( 1991 ).   
   14.    Vittone ( 1760 , vol. 2, 242). On Vittone’s work, see Portoghesi ( 1966 ) and 

Accademia delle scienze di Torino ( 1972 ).   
   15.    Vittone ( 1760 , vol. 2, 243).   
   16.    On the “scientitic” interest in light informing the illumination of Baroque 

churches, see Connors ( 1992 ).   
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   17.    Vittone ( 1760 , vol. 2, 243).   
   18.    Algarotti ( 1737 , 103). The book is registered with the number 701 in the inven-

tory compiled in Vittone’s house immediately after his death. See Portoghesi 
( 1966 , 250).   

   19.    Vittone ( 1760 , vol. 2, 398).   
   20.    “Devonsi unir e fabbrica e ragione e sia funzion la rappresentazione.” Memmo 

( 1786 , title-page). See Cellauro ( 2006 ).   
   21.    See di Pasquale ( 1996 ).   
   22.    See Camerota ( 2004 , 544–560).   
   23.    Blondel ( 1673 ). See also Becchi ( 2004 ) and Gerbino ( 2010 ).   
   24.    ([Dati],  1663 , 4). Also see Pascal ([ 1658 ]).   
   25.    “La risoluzione di più problemi stati proposti nel Accademia del Sig.r Abate 

Ottavio della Vacchia l’anno 1662 con i nomi di chi propose et di chi ha riso-
luto,” Fondo Nazionale II-46, Biblioteca Nazionale Centrale, Florence. The 
manuscript has been recently published in Schlimme ( 2006 , 155–263).   

   26.    Cosimo Noferi, “Tomo primo della travagliata architettura,” Ms. Gal. 122, 
Biblioteca Nazionale Centrale, Florence, “Proemio,” fol. 2r. On this treatise, 
see also Pellicanò ( 2004 ).   

   27.    Noferi, “Tomo primo,” fol. 6r.   
   28.    Noferi, “Tomo primo,” fol. 4r.   
   29.    On this topic, see Galluzzi ( 1977 ); Righini ( 1978 ); Barbo and Teodoro ( 1983 ); 

and Fanelli ( 2004 ).   
   30.    See Torricelli ( 1919 , vol. 2, 243–46), cited in Galluzzi ( 1977 , 95).   
   31.    See Nelli ( 1753 , 88).   
   32.    Poleni ( 1748 , cols. 30–31).   
   33.    de La Hire ( 1712 ).      
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             Part V rounds out the volume with two essays on new forms of mathematical prac-
tice in eighteenth-century architecture. The period represents both a watershed in 
the evolution of the subject and, for that reason, a fi tting endpoint for the volume. 
We see in the late eighteenth century a weakening of the issues that animated early 
modern architects—the authority of Vitruvius, in particular. At the same time, new 
themes appeared that point to a transformation of architectural practice itself in light 
of contemporary science. The previous essays, in Part IV, showed both of these 
processes at work in the early history of structural mechanics. To take one example: 
Galileo’s theories on the resistance of solids—that the strength of a form was depen-
dent on its own size and weight—had immediate and irreversible effects on the 
Vitruvian doctrine of proportions. The two essays that follow explore similar trans-
formations in different areas of architectural thought and practice. 

 Jeanne Kisacky reports on the efforts of Enlightenment medics and health 
reformers to improve the design of hospitals and prisons by exhausting “unhealthy” 
air. In some respects, the subject is well-known to historians. It formed part of 
Michel Foucault’s interest in the modern disciplinary society and the basis of many 
subsequent studies inspired by his work. Kisacky, however, concentrates on a spe-
cifi c and relatively obscure aspect of this phenomenon: the associated attempts to 
quantify both the amount of air “consumed” by bodies and its subsequent move-
ment through physical spaces. The behavior and properties of air, in this view, were 
mathematically defi nable. Subject to measurement by volume and by rate of fl ow or 
chemical transformation, these intangible properties could then be used to deter-
mine the form and dimensions of the ideal hospital. Both medical men and archi-
tects—in various degrees of collaboration—responded to this theory with a number 
of imaginative schemes. Although few of these projects were realized, they never-
theless represented something new: an architecture that refl ected a mathematical-
chemical- medical understanding of the building’s “use”. In redefi ning the building 
as an instrument or a “machine” of medical reform, they were also changing the 
nature of architecture itself. 

   Part V 
   Architecture and Mathematical Practice 

in the Enlightenment 
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 A similar transformation is at work in the volume’s fi nal essay. David Yeomans, 
Jason Kelly, and Frank Salmon delve into the sketches and fi eld notes compiled by 
James Stuart and Nicholas Revet as they prepared their groundbreaking serial pub-
lication,  The Antiquities of Athens  (1762–1830). In many ways, this project was 
traditional. Architects since the early Renaissance had sought to measure accurately 
the remains of ancient buildings. The qualities that made Stuart and Revet’s approach 
novel were the same ones that tied it to the intellectual culture of the Enlightenment. 
In the fi rst place, they insisted on the primacy of Greek as opposed to Roman archi-
tecture, thereby framing their work as part of a broader “philosophical” discourse of 
travel and discovery. Moreover, they sought an unprecedented level of precision in 
their measurements. The direct encounter with unfamiliar ancient monuments and 
at such a level of detail had unforeseen consequences. It revealed lapses and incon-
sistencies in Vitruvius’s account of ancient design methods, while highlighting the 
diffi culty of reconstructing those methods from the buildings themselves. 

 The authors’ emphasis on Vitruvius brings us full circle. Bernard Cache’s essay  
(  Proportion and Continuous Variation in Vitruvius’s  De Architectura     ) served to 
place the ancient author at the beginning of a “mathematical” tradition of architec-
ture that survived—on and off—for almost two millennia. Stuart and Revet, too, 
saw Vitruvius as central to their own practice. Despite protestations to the contrary, 
they continually sought to interpret, and in some cases complete, their fi ndings in 
light of the ancient author’s prescriptions. Yet, those attempts were mostly unsuc-
cessful. If anything, their work revealed a fundamental incompatibility between the 
actual dimensions of ancient monuments and Vitruvius’s written instructions. It was 
paradoxically the mathematical culture of the time that did the most to undermine 
the authority of the ancient text. The values of minute precision and strict empirical 
observation that Stuart and Revet brought to their work revealed—above all—
Vitruvius’s contingency: his was not the “true” voice of ancient architecture, but 
merely an incidental and fortuitous survival. 

 Stuart and Revet’s work also signaled a change in the relationship between archi-
tecture and mathematics and, in some ways, an end to the tradition that our contribu-
tors have been exploring. A complete account of this phenomenon would go beyond 
the scope of this volume, but it may be worthwhile to mention some of the factors 
that likely contributed to it. The fi rst would include a decline in the persuasive and 
pedagogical power of “mixed” mathematics: the idea that the various mathematical 
sciences were linked not only by the study of geometrical quantity but by their 
potential practical application. Architecture could be a form of mathematical prac-
tice and mathematics could be architectural as long as both disciplines saw them-
selves as part of a shared disciplinary culture, with similar methods and aims. A 
second, related transformation involved the rise of a new concept: technology. The 
early modern period had privileged the notion of “art” as a form of practical ratio-
nality, simultaneously linked to both nature and science. This role would slowly be 
supplanted by “technology”, a term more closely linked to the values of industrial 
and scientifi c progress. Although structural engineering might play a valuable role 
in a truly technological endeavor, design, not to mention other more mundane 
aspects of architectural practice, would not. A third blow—perhaps more clearly 
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evident in Stuart and Revet’s case—was the increasing separation of contemporary 
mathematics from antiquarian and classical scholarship. For much of the early mod-
ern period, architecture and mathematics were joined not only as mathematical dis-
ciplines, but as privileged—and eminently recoverable—areas of ancient knowledge 
and culture. Indeed, both fi elds were emblematic of Greek and Roman civilization 
and, perforce, of Renaissance humanism itself. Stuart and Revet’s work showed 
how these two disciplines, if not yet separate, might come into confl ict. 

 For much of the early modern period, these overlapping intellectual frameworks 
acted as a bridge not only between two different disciplines, but different profes-
sions. They helped to link the work of scholars and practitioners, the world of the 
library with the building site, theory with practice. Although architecture and math-
ematics remained closely conjoined into the nineteenth century, their relationship 
would no longer be defi ned in the same way.      
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        How do the fi ndings of science—the precise mathematical measurements and cal-
culations of phenomena that reveal the deep truths of the natural world—get trans-
lated into real life, into real practices, and, for the purposes of this paper, into 
architectural theory and practice? The answer, far from straightforward now in an 
era of rapid change, was equally diffi cult at a time when architects were concerned 
about tradition as much as innovation. 

 By correlating pneumatic research in the 1700s to architectural designs specifi -
cally intended to promote a healthier internal air, this paper tries to trace how scien-
tifi c fi ndings became practical knowledge. The pneumatic research sought to 
quantify internal volumetric requirements and to outline ideal patterns of air move-
ment in the creation of healthy spaces. Its practical application, however, posed a 
particular challenge for architects, who typically paid little attention to room occu-
pancy and air fl ow. How architects dealt with (or ignored) this challenge illuminates 
the larger historical issue of how innovation is disseminated from initial laboratory- 
based mathematical fi ndings to later empirically-processed practical changes.  1   This 
work focuses on prison and hospital design. Those building types were the subject 
of intense discussion and experimentation, particularly over their air quality. They 
have, moreover, received considerable historical scrutiny.  2   

    Architecture and Air 

 In the late 1600s, Robert Boyle put living creatures into a pneumatic engine (an 
airtight metal sphere), pumped the air out of the sphere to create a vacuum, and then 
measured the time it took for them to die.  3   For architecture, which in essence 
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enclosed spaces, these experiments generated a pressing question: what did the 
enclosure have to do with the deaths? The question was particularly resonant in a 
period that associated increased incidence of certain diseases with foul environ-
ments, particularly foul air. Deadly plagues had troubled several European cities for 
centuries. Incidents in London in 1666 and Marseilles in 1720 were particularly seri-
ous. These plagues were frequently blamed on the pestilential atmosphere that devel-
oped in the congested and fetid cities. The tendency of ladies to faint at the theatre 
and other places of congregation was likewise blamed on their poor internal air.  4   

 A longer-lived and more concentrated malaise seemed to plague the habitants of 
specifi c kinds of environments. The everyday prevalence of “ship”, “jail”, and 
“hospital” fevers in their eponymous environments revealed that specifi c kinds of 
buildings created specifi c kinds of disease. So-called Black Assizes (when whole 
courtrooms full of magistrates and spectators grew ill after the trials, most notori-
ously in 1577 at Oxford and 1750 at Newgate), caused intense concern about the 
danger of jails as breeding grounds for diseases that could escape into the larger 
environment. These episodes suggested there was a connection between building 
form and illness; examining and remedying that connection would involve both 
architects and doctors. 

 To study this connection, doctors and researchers examined rates of disease 
incidence. Early mortality and morbidity statistics, which counted the ratio of 
deaths or illness within a given localized population group, typically correlated 
disease incidence or death to physical surroundings, not medical practice or inter-
personal interaction.  5   This correlation proved signifi cant at both the scale of the city 
and at the scale of individual buildings. Urban areas had higher mortality than rural 
areas. Dark, dank, close rooms (usually corresponding with impoverished residents) 
consistently registered higher mortality rates than bright, airy rooms (usually cor-
related to privileged inhabitants). 

 Doctors since Hippocrates had focused on air as a vehicle for the spread, if not 
the cause, of disease. Their inferences from these statistics were straightforward. 
Buildings contained bad air; that bad air could cause disease. This connection was 
particularly noticeable in cities, where numerous densely occupied buildings were 
presumed to affect air fl ow and quality. The mathematically inclined physician and 
polymath Dr. John Arbuthnot believed that “the Air of Cities is unfriendly to Infants 
and Children,” because it took animals time to develop a tolerance of the “artifi cial 
air” of urban areas.  6   

 With life and death literally at stake, the aerial performance of a building thus 
held potentially drastic consequences for the architects and their clientele. 
Unfortunately, even basic questions of air fl ow and quality within enclosed spaces 
were not answered by traditional architectural expertise. Architectural treatises and 
works to the 1800s typically did include at least some discussion of air, but that 
knowledge was still largely based on Vitruvius (Books 1 and 5). At best, these 
works linked the layout of towns to winds, vapors, and air quality. They included 
no discussion of how much interior air space a person needed to subsist, how 
to induce specifi c patterns of air fl ow in rooms, or even how to ventilate rooms. 
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With smoky chimneys and cold drafts topping the list of building user complaints in 
Northern Europe, the most common air-related topic of architectural concern in the 
eighteenth- century was chimney and fi replace design.  7   This literature, too, was far 
from adequate: chimneys continued to smoke. 

 A healthy architecture thus needed answers to two questions: how enclosed air 
became corrupted and how buildings could mitigate those corruptive effects. 
Science could answer the fi rst question; whether architects or doctors could answer 
the second was less clear.  

    The Science 

 Air was a hot topic of study in the 1700s. This research, however, often relied on 
mathematical calculations and experimental procedures unfamiliar to architects. Its 
results were disseminated in formulas and fi gures: the weight of the air, the propor-
tional composition of different gases, the proportional effects of respiration on 
atmospheric air, and the physical behavior of air in motion. It was unclear how to 
apply the new laboratory knowledge to architecture. 

 Pneumatic research made graphically clear that the root cause of bad air in 
enclosed spaces was the breath of the occupants. The reason for this effect, however, 
was unknown. Did people add poisons to the air when they breathed, or did they use 
up some vital substance? This question had long been debated, and in the eighteenth 
century it spurred a number of experiments. The most signifi cant of these attempted 
to quantify either the typical tidal volume of a breath or the proportional alteration 
of the composition of air before and after breathing. In the 1720s, for example, 
Stephen Hales breathed into a sealed bladder until he could barely inhale or exhale 
and nearly passed out (Fig.  1 ). He calculated a 1/13th reduction of air volume in the 
bladder after less than a minute. He also surmised that exhaling added quantities of 
unknown, and so unmeasurable, deleterious and potentially deadly substances to the 
air. Believing that all scientifi c knowledge was the result of measurement, Hales 
used complicated calculations of the surface area of the alveoli to estimate average 
volumetric lung capacity. He then multiplied that volume by the normal number of 
inhalations per minute (20), to get the total amount of air exposed to one person’s 
lungs in a given time.  8   Every person, every minute of the day, spoiled roughly a 
gallon of air. This fi gure stood as an authoritative measure for decades.

   Both Boyle and Hales had considered air a uniform fl uid. The problem grew 
more complicated in the last third of the eighteenth century. The chemical and phys-
ical experiments of Joseph Black, Joseph Priestley, and Antoine Lavoisier, among 
others, revealed air to be a compound mixture of different gases, each with different 
effects and behaviors (Fig.  2 ). Their work shifted attention away from total respired 
air volume, focusing it instead on the individual gases—their effects on life and the 
effects of life upon them. Oxygen clearly supported life, nitrogen did not. Carbon 
dioxide actively harmed life. Respired air held an increased proportion of carbon 
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  Fig. 1    Breathing experiment with sealed bladder ( top illustration ) (From Hales  1727 )       
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dioxide and a reduced proportion of oxygen. People literally created ‘bad’ air.  9   This 
also implied that breathing in the air another person exhaled was inadvisable. Steady 
refi nements in the scientifi c understanding of air’s composition, however, did not 
alter the main question: if living beings were constantly using up the good air and 
increasing the bad air, how did they not suffocate en masse, whether inside or out?

   This question was answered, in part, by the discovery of the benefi cial effects of 
“nature” on air. If researchers were in agreement that breathing made air impure, 
they were in equal agreement that natural air circulation made it pure   .  10   By the late 
1700s, Joseph Priestley and Jan van Ingenhousz proved that plants consumed bad 
air (CO 2 ) and generated dephlogisticated air (oxygen). Enclosed spaces, which cut 
off the interior air from the larger atmosphere and its purifying forces, were the 
trouble. The best answer to noxious vapours and already-breathed air in enclosed 
spaces was thus ventilation—moving air between outside and inside. 

 Pneumatic science, however, tended to complicate this seemingly straightfor-
ward solution. The physical and chemical properties of air seemed to contradict 
each other in explaining its movement after it left the mouth. Physically, a by- 
product of respiration was heat, and warmed air inevitably rose. Chemically, the 
specifi c gravity of nitrogen was lighter than oxygen, while carbon dioxide was 
much heavier; theoretically this would create vertically stratifi ed layers of gases. 
Respired nitrogen, by both its lightness and warmth would rise to the ceiling. 
Oxygen might remain in the middle or, if heated, rise. It was unclear if the heavier 
carbon dioxide would fall to the fl oor or rise because of its added heat.  11    

  Fig. 2    Breathing experiment on respiration and transpiration (Reconstructed by Grimaux  1888 )       
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    Architects or Physician-Architects? 

 These pneumatic researches put air circulation theoretically at the heart of architectural 
design, but left uncertain exactly who—whether architects or physicians—were 
to translate the science into practical architecture. As learned gentlemen, many 
architects were likely aware of the revolutionary results of pneumatic science. In 
1798, Benjamin Henry Latrobe, trained in Europe but practicing in America, mused 
on the cause of yellow fever. His journal includes details of some of Joseph Priestley’s 
experiments and the use of the word “azot” (coined by Lavoisier) to refer to one of 
the atmospheric gases.  12   Latrobe, however, is an exception. There is a relative silence 
on the matter of air and ventilation from the vast majority of non- specialist architects. 
Few mention individual researchers or experiments, nor are there any pneumatically 
inspired architectural treatises. Retranslations of canonical texts did not incorporate 
the new pneumatic fi ndings. Although some do reveal some of the eighteenth-
century fervor for air, they do not pose new solutions to the problem.  13   

 In this relative architectural silence, the main promoters of a new practical pneu-
matic approach to architecture consisted of doctors, researchers, and inventors. 
They were not just fi lling a void; some physicians and inventors saw it as an oppor-
tunity to expand already fl uid professional boundaries. They did so by discrediting 
architects as well as by establishing counter-expertise. Many aggressively denounced 
the positively destructive effects of traditional architectural design on the health of 
its occupants. Hospitals were seen to be the most egregious offenders. Even archi-
tectural critics such as Antoine Laugier decried their “misplaced splendor”. The 
doctors and researchers were even more critical. In 1759, the agronomist, researcher- 
engineer, and naval offi cial, Henri Louis Duhamel du Monceau, stated that in the 
majority of hospitals “the design of architects has not been to procure the renewal 
of air.” Given his numerous preceding statements of the importance of fresh air to 
health, that was an indictment. In 1774, the physician, Antoine Petit stated that 
architectural knowledge alone was not suffi cient for the design of a building as dif-
fi cult as a hospital, which required some knowledge of the effect of exterior agents 
(air, water, exhalations) on the health of the patients. By 1787 Jean-Baptiste Leroy 
commented caustically that the prevalence of architectural books on palaces and 
theaters and the paucity of books on hospital construction showed “that men always 
preferred things of beauty and even of frivolity to those which offer only a sad 
object of utility.” The design of hospitals, he insisted, required knowledge of medi-
cine and physics as well as of building design and construction.  14   

 While challenging the architects’ traditional knowledge base for designing hospi-
tals, the doctors also invariably promoted new medical and scientifi c grounds for 
hospital design. These physicians did not intend to take over all aspects of architec-
ture, but only to determine rules for “healthy” buildings. They clearly expected that 
future rules of hospital architectural design, if promoted by doctors, would be imple-
mented by architects.  15   These competing experts—researchers, doctors, architects—
waged their war over the theory and practice of ventilation. For any building design, 
there were four possible ventilation strategies in the late eighteenth century—what 
I will call  chemical  (altering the composition of the air),  spatial  (sizing a room in 
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proportion to the number of its occupants),  architectural  (making a room porous 
enough with numerous windows and doors not to count as confi ned), and  mechani-
cal  (installing ducts and blowers or heat sources to induce air movement regardless 
of room size, shape, and features). Each came with its adherents and detractors; 
each promised to solve the problem of bad interior air.  

    Chemical Ventilation 

 Chemical ventilation sidestepped the problem of architecture’s role in ventilation 
and placed doctors and researchers in the catbird’s seat. It operated on the simple 
expectation that deleterious substances in air (which smelled rotten or foul) might 
be chemically corrected by strong-smelling, typically antiseptic substances. 
Smelling salts, nosegays and fumigants had been in use for centuries; most simply 
covered one smell with another less offensive one. 

 Personal ventilators promised to allow individuals to exist briefl y in deathly 
gases and airs. In the 1660s, Sir Christopher Wren proposed an instrument “for 
straining the Breath from fuliginous Vapours.” In 1727, Stephen Hales proposed a 
cloth fi lter and later a four-compartmented bladder impregnated with vinegar or sal 
tartar as a means of removing noxious vapours from air before breathing. Hales sug-
gested their effi cacy for miners in combating the mine damps. By 1759, in a curious 
parody of modern surgery, Duhamel du Monceau suggested surgeons wear a cloth 
mask to keep from breathing the bad air in a ship’s ward, while in 1777 John Howard 
sniffed vinegar as a preventive before his visits to the jails.  16   Personal ventilators did 
not, of course, solve the larger problem of meliorating the air for large numbers of 
people in a given space. 

 Room-scale fumigations were also common. In 1742, the physician John Huxham 
suggested camphor and vinegar vapours. Hales proposed burning brimstone and 
hanging cloths dipped in vinegar between the decks of a ship. Duhamel du Monceau 
suggested fumigation by saltpeter, gunpowder, sulfur, or even perfumes. The 
 Gentleman’s Magazine  recorded a letter promoting a specifi c commercial composi-
tion developed by a painter that would “destroy any noxious, pestiferous quality, 
either in the air or goods.” In 1784, Dr. Thomas Day suggested that a fumigant should 
target only the infectious quality of the air. He believed it was fi xed air (nitrogen) that 
was the culprit, and suggested lime water as a fumigant since he believed it absorbed 
the fi xed air out of the atmosphere. He even developed an interior ‘rain machine’ to 
shower the lime water across every inch of air space in a compromised room and so 
purify all parts of the air (Fig.  3 ). The main problem with fumigation, however, was 
that most substances required evacuation of the room of its occupants. This was not 
possible in the most problematic environments such as ships, jails, and hospitals.  17  

   Some commentators suggested simply increasing the supply of oxygen in rooms. 
Joseph Priestley speculated that in crowded rooms oxygen “might be brought into a 
room in casks; or a laboratory might be constructed for generating the air, and throw-
ing it into the room as fast as it should be produced.” This expedient would have 
reduced “breathing room” to a commodity, measured in casks of oxygen delivered per 
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hour, but it was never tried. Jan von Ingenhousz took a simpler approach: he recom-
mended putting oxygen-generating plants inside and around houses as air purifi ers.  18   

 All of these solutions were independent of architecture. Most were merely cor-
rectives designed for sporadic use. Chemical ventilation was principally the pur-
view of researchers and perhaps some physicians. It had little to do with building 
design and architects had little to add to such suggestions.  

    Spatial Ventilation 

 Spatial and architectural ventilation, on the other hand, resulted directly from the 
physical building; the former type was dependent on the size of rooms, the latter on 
the openings in and the shape of rooms to permit air fl ow. The two approaches were 

  Fig. 3    Air-purifying 
machine (From Day  1784 )       
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interdependent; spatial ventilation relied on at least some air fl ow for air exchange, 
and architectural ventilation relied on having enough open space within a room to 
allow air fl ow. The pneumatic researches into air revolutionized both aspects of ven-
tilation, particularly in terms of quantifying how much air space and fl ow was needed. 

 Stephen Hales’ early estimate that a person “spoiled” a gallon of air every minute 
of their life stood as the fi rst and longest-lasting scientifi c estimate. In simplistic 
terms, this implied each person required a gallon of fresh air every minute to main-
tain their existence. Other cubic estimates followed. In 1733, John Arbuthnot esti-
mated that a person could not survive for 20 min in a tun (40 cubic feet) of air 
without air exchange. Based on normal breathing rates by an average person, 
Lavoisier calculated that fi ve gallons of air per person per hour were needed. The 
infl uential 1786 Hospital Commission Report of the Parisian Academy of Science 
used Lavoisier’s calculations to estimate that a man consumed 108 cubic Feet of air 
in one and a half hours   .  19   

 Although these rates were typically measured in spatial terms—cubic feet—how 
they related to room size was unclear. According to traditional architectural knowl-
edge, room size was the product of harmonious mathematical proportions. In plan, 
Vitruvius allowed any rectangular proportion from a square to a double square to be 
pleasing. Beyond that, a room became a mere gallery. Laugier stressed room pro-
portions in plan that resolved into whole number relations (1:1, 1:2, etc.) as the most 
pleasing. Rooms with proportions based on geometrical and arithmetical series 
were also admirable. With some allowance for the client’s social standing (lower 
ceilings for the middling classes and higher ceilings for the wealthy) and the require-
ments of varying climates (higher ceilings in warmer climes, lower ceilings in 
colder climes), room heights were determined in harmonious proportions to the 
dimensions of the room’s breadth and width. The height was typically not to exceed 
the breadth. The longer and narrower the room, the more displeasing a very high 
ceiling would be.  20   

 This proportional system for room design left out considerations of occupancy 
(how many people would be in a given space) and cubic volume (how much air 
space would be available to each person in a given space). Eighteenth-century medi-
cine and science pushed for spatial proportions based on these latter requirements. 
Doctors were the earliest to try to interpret how the volumetric fi gures of air usage 
in breathing would be best arranged into rooms. Their fi rst approach was simply to 
translate these fi gures directly into architectural dimensions, establishing a mini-
mum air volume per person. 

 With each inhabitant of a room understood as a point source of aerial corruption, 
the necessary volumetric air “space” around a person required specifi c shapes. 
Clearly, a very tall ceiling would provide a large air volume, but would also crowd 
occupants together at fl oor level. With medical opinions suggesting that the infected 
air from a patient spread anywhere from a couple feet to ten or more feet, crowding 
was dangerous. The literary physician, John Aikin pointed out the fl aws of such 
room shapes in hospital wards: “If we conceive for a moment in imagination, that 
[a large ward] was partitioned into as many separate divisions as there are patients, 
we shall be sensible how narrow a space is allotted to each.”  21   What mattered was 
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the placement of enough air “space” between people to minimize the interaction of 
their breath. In this approach, a large room was really a number of smaller aerial 
compartments, each centered on an occupant. Floor area per person was as impor-
tant as room height. 

 This consideration entailed an architectural system that dictated where people 
and objects were placed within a space. Room proportions, in other words, had to 
relate to both the number and dispersal of people in a room. The Academy of 
Sciences’ 1786 Report on Hospitals, for example, explained the need for a clear 
aisle 3 feet wide on each side of a patient. The precise amount of space would meet 
three requirements: utility (access to care for the patient from either side); freedom 
of air fl ow; and disease prevention through distancing one focus of infection from 
another. Making the shift in architectural knowledge even clearer, the hospital 
physician and reformer, Jacques Tenon proposed that a ward’s ceiling height be 
proportioned to the inhabiting patients’ malady. Feverish patients, who breathed 
more quickly and gave off more heat and effl uvia, needed more than the minimum 
air volume. Fever wards were thus to receive higher ceilings.  22   In Tenon’s view, 
room size and shape were ideally related to the placement, number, and physiological 
characteristics of its intended occupants. 

 These requirements suggested a new system for determining room size, one that 
could not easily be worked into the existing aesthetic proportional system. Laugier, 
for example, appeared to be aware of these current medical discussions, but without 
knowing exactly what to do with them. Separately from his discussion of pleasing 
room proportions, he admitted that ceilings should be at least 6 feet in height, so that 
the inhabitants could breathe freely and maintain a considerable volume of air 
around themselves. Double that minimum would give a more suffi cient air volume 
for health; triple would be even better.  23   He did not, however, attempt to integrate the 
varying spatial requirements of health and aesthetics. Laugier might have felt out of 
his depth here. While architects were capable of calculating a room’s spatial volume 
based on expectations of occupancy, they could not authoritatively calculate the 
volumetric requirements of breathing, nor could they overtly control occupancy. 

 With little engagement on the level of design, spatial ventilation strategies fi rst 
manifested not in new building forms but in new—typically unenforceable—
regulatory requirements for room sizes and shapes, which promoted fewer people in 
larger rooms. It also made room size the product of room occupancy. Lavoisier, for 
example, calculated the maximum occupancy of a theater based not on the number 
of seats, but on the ratio of air-consuming spectators to total spatial volume. John 
Aikin stated that large, crowded hospital wards were impossible to make healthy 
and suggested that every hospital should as much as possible remove the convalescent 
patients from the wards to minimize the aerial load on the spaces. The regulations 
of Haslar Hospital required a few empty wards in the fever wing to allow all the 
wards to be emptied and aerated in rotation.  24   

 Along these lines, Joseph Priestley added yet another extra-architectural wrinkle 
to spatial ventilation: time of occupancy. According to Priestley large, lofty dining 
rooms were preferable to small and low ones, but no matter how large, if enough 
people stayed long enough in the room they would contaminate the air. Smaller 
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dining rooms, although containing less air, would be healthier, because they would 
get stuffy sooner and be opened to allow a fl ow of air. The doors and windows, 
being proportionally larger compared to the rest of the room size, would more effec-
tually ventilate the space. In the end, Priestley advised the best recourse for the 
problems of large dining rooms was to have a provision for exhaust ventilation in 
the ceiling, or to vacate the room after a certain length of time, “to have the dinner 
in one room, and the dessert in another.”  25    

    Architectural Ventilation: Studying Air Flow 

 Architects proved largely immune to spatial ventilation strategies that placed occu-
pancy and temporal limits on architectural design. They were more receptive to new 
ideas about architectural ventilation. As French architect Bernard Poyet pointed out, 
“even the largest and best held apartments contract a foul and infectious odor when 
one neglects to open them.”  26   Air space without air fl ow was insuffi cient. 

 Windows and doors were traditionally located not for air fl ow, but for utility or 
aesthetics. Vitruvius, for example, prompted the placement of windows and doors 
for the effi cient circulation of people and goods and as architectural embellishments 
that enhanced the beauty of the façade. Other architectural treatises also considered 
window and door placement and sizing in relationship to a pleasing exterior façade. 
Soane, for example, felt it necessary to point out that all the windows on one fl oor 
should be the same height and width.  27   Windows were often placed not with refer-
ence to an individual room’s interior needs, but to the symmetrical requirements of 
the entire façade. This practice often left rooms with irregular window locations and 
compromised air fl ow. 

 The size of openings was also aesthetically, not pneumatically, determined. 
Proportional maximums stated that windows were not to be wider, say, than one- 
quarter of the breadth of the room or narrower than one fi fth of its breadth. Local 
deviations were common. In England, windows were thought better not to extend to 
the fl oor; in France, they often did so. An architect’s basic understanding of air fl ow 
was simple: smaller, fewer openings reduced air fl ow and larger, more numerous 
openings increased it. William Chambers recommended smaller, fewer openings in 
colder climates, where the preservation of heat was critical in the winter months. 
The actual pattern of air movement inside a room was a consequence, not a deter-
minant of form. As Lavoisier put it, air “circulation exists more or less in all rooms, 
often even despite the architect who has directed the construction.”  28   

 In contrast, late eighteenth-century doctors and researchers wanted to prevent 
one person breathing in air another person had exhaled. In theory, this required 
moving a specifi c quantity of air in controlled, often complicated patterns within a 
room. In 1780, in a report on prisons, Lavoisier described a building design to 
induce different atmospheric gases to move in different patterns. Large openings at 
the highest point of the ceiling would remove the great quantity of nitrogen and the 
warmed carbon dioxide exhaled by the inhabitants. Smaller, lower openings would 
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allow any carbon dioxide that had fallen to the fl oor to escape but would also supply 
the incoming cooler, oxygen-rich fresh air.  29   Extending the windows to the ceiling 
prevented the buildup of foul air, while shaping the ceiling like a funnel promoted 
exhaust fl ow. Aesthetics were not considered. This was an architecture designed 
around air, but it remained speculation. 

 As this example suggests, practical advances in architectural ventilation were 
impeded to a certain extent by a rudimentary understanding of air fl ow. After under-
taking experiments on air fl ow and designing a wind device to siphon air through 
chimneys, researcher and physician Jean-Baptiste Leroy promoted the placement of 
windows on opposite walls simply because “[air] entered on one side and left by the 
other” (Fig.  4 ). Similarly, Jacques Tenon pointed out that any intermediate partition 
in a room obstructed air.  30   Both facts were well known in architectural practice on 
equally basic terms.

   Invisibility made conclusions about air fl ow particularly diffi cult. Early ane-
mometers could provide the measurements of relative air velocity at a given point 
but could not reveal the overall pattern of fl ow in a room. In the late 1700s, there was 
a brief hope that eudiometers—chemical devices believed to reveal the purity or 
impurity of air—could be used to correlate architectural details to air quality and 
thus create an architectural primer for healthy design.  31   However, the early eudiom-
eters were not sensitive enough to register the fi ne differences in air composition in 
most locations. Doctors in hospital wards and sick rooms had the advantage of regu-
lar experience with fumigations, which often used smoke or visible vapors—the 
dissipation could reveal air circulation in a room. There were, however, too many 
variables between sites—the effect of exterior wind and weather, fi replaces, and 
open or shut windows—to establish sure conclusions from this procedure. 

 Empirical research into building environmental performance was spotty and 
often fl awed, but the eighteenth century did see several notable attempts to answer 
some basic questions about air fl ow: did specifi c existing building forms promote 
air fl ow? Should bad air be exhausted from the ceiling or from the fl oor, and could 
specifi c building forms be correlated to better or worse health? 

 The Hôtel Dieu of Lyon was the site of one attempt to answer these questions. 
This grand building had an even grander dome. The architect, Jacques Germain 
Souffl ot, justifi ed this feature as more than an opulent marker of the hospital’s cen-
tral altar. It was designed and built for ventilation. Souffl ot had visited hospitals in 
Italy and had come to his conclusions for how to make a healthier infi rmary based 
on his observations there. In Souffl ot’s design, the heated, contaminated air from the 
patients was to rise and be sucked out of the dome’s heights. Indeed, Souffl ot, 
among others, believed that the volume of foul air coming through the dome would 
be enough to kill birds.  32   

 In 1782, Dr. Maret of Dijon decided to test this thesis. A partisan of the down-
ward fl ow of vitiated air, he hung some bird cages in the dome. The birds were still 
doing fi ne after 40 days. He hung several pieces of meat in the dome and at the 
patient’s bed level. The meat at the fl oor level corrupted in less than a day, while the 
meat in the dome was still unpolluted after 5 days of exposure.  33   Maret took this as 
proof that the air at ground level was much more contaminated than the air in the 
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height of the dome. Souffl ot defended his position and continued to hold that the 
dome was favorable to the salubrity of the wards, but there were no further experi-
ments to support either position. 

 In 1785, Lavoisier initiated a similar attempt to end the uncertainty over whether 
air fl owed upwards or downwards. He took samples of air from ceiling and fl oor 

  Fig. 4    View of Jean-Baptiste Leroy’s siphon ventilator (From Leroy  1780 )       
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level of a notoriously foul hospital ward and of a theater. He then tested the proportional 
mixture of gases in the samples. The nitrogen content in all samples remained the 
same. All samples registered a reduction of oxygen, but the ceiling air experienced a 
greater loss than the fl oor. Similarly, all samples registered an increase in carbon 
dioxide, but the ceiling air registered the greatest. Despite Maret’s more graphic 
experiments, Lavoisier gave more credence to the partisans of upward fl ow.  34   

 Jacques Tenon took a different approach to the same problem. He calculated 
detailed mortality rates for every ward in the Hotel-Dieu and then correlated those 
rates to the architecture of the wards.  35   He recorded the location of windows, the 
proximity of service spaces, the placement, number, and size of beds, the ceiling 
height, and the room’s total spatial volume. The conclusion—rooms with windows 
in only one wall, with low ceilings, with little fl oor space between beds (or between 
patients), and rooms adjacent to noxious facilities—had higher mortality rates than 
those with windows in more than one wall, higher ceilings, more open fl oor space, 
and windows onto open areas. This was like a new architectural primer, unlike and 
unrelated to Vitruvius, but equally capable of serving as the basis of building form.  

    Architectural Ventilation: Projects 

 These methods of studying air fl ow were supplemented by another, more frequent 
source of experience: remedial small-scale alterations to existing rooms with poor 
ventilation. Such interventions were the closest thing to effective practical experi-
ments on air fl ow in interiors. They were also often where scientifi c and architec-
tural knowledge interacted. Sir Christopher Wren’s late-seventeenth-century 
insertion of pyramidal air exhaust ducts into the ceiling of the House of Commons, 
where speakers had been known to faint during speeches, was an early example.  36   
In this case, Wren stood as both experimental researcher and architect, whereas 
these alterations were more commonly collaborations between the two groups. The 
doctors explained what was wrong, and the architects decided what could or could 
not be feasibly altered. Duhamel du Monceau was involved in just such a project. In 
1759, he recommended carving several new exhaust holes in the ceiling of the St. 
Landry ward of the Hôtel-Dieu in Paris. The hospital architect, M. Ducret, con-
fi rmed it was structurally feasible and oversaw the work.  37   

 Conjectural building designs organized around architectural ventilation also 
appeared in the late 1700s. Some were designed entirely by doctors or researchers, 
while others were designed by doctors but drawn up and embellished by architects 
in working collaborations. A few, however, were architect-driven, and it is this latter 
category which reveals that the new scientifi c knowledge was exerting some infl u-
ence on the profession. In this interaction, confl icting sources of knowledge about 
good building design began to blur the lines between the two professions, but the 
two groups still appeared to need each other. Doctors and researchers were reluctant 
to propound on details of architectural construction or management, while archi-
tects were reluctant to express positive fi gures for air space or wind fl ow. 
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 A number of ideal hospital projects appeared after the devastating fi re at the 
Hotel-Dieu in 1772. They provide unique perspective, not only onto the perceived 
importance of air in health, but also onto the relations between architectural and 
scientifi c practitioners in the period.  38   Dr Maret’s  1782  project for an ideal hospital 
ward was a building designed around a complete (if inaccurate) expectation of how 
air moved and acted. According to Maret, bad air lingered near the patients’ bodies; 
this made fl oor-level ventilation critical and reduced the value of high ceilings. To 
prevent the bad air from contaminating the fresh, hospitals needed a complete 
exchange of air. Maret also believed air fl ow to be linear and to be constantly 
refl ected perpendicularly from the surfaces it encountered. His resultant ward design 
was geometrically structured to permit the complete exchange of air (Fig.  5 ). The 
ward was elliptical in plan and in ceiling section so that the moving cones of air 
would all eventually bounce back to the center axis. The two truncated ends of the 
plan were set with wide portals. Whenever the air seemed tainted, the doors could 
be opened and a fl ow of fresh air would sweep along the axis from one end to the 
other, completely fl ushing the bad air with it, thus “guaranteeing” a complete, con-
trollable exchange of air. This egg-shaped building was completely outside of 

  Fig. 5    Ideal hospital design (From M. Maret  1782 )       
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architectural tradition, with no precedent. Maret aptly observed that it would require 
an architect to design in the missing services and to fi gure out how to build it.  39  

   Jean-Baptiste Leroy’s 1773 project, presented to the Academy of Sciences, was 
similarly novel, but, unlike Maret, he had a collaborator. The architect Charles- 
Francois Viel drew the plans, sections, and details for the design (Fig.  6 ). In Leroy’s 
scheme, the fresh air fl owed in to the ward through ‘wells’ in the raised fl oor, pass-
ing to the patients in their beds. Their warmed, respired air then rose to the ceiling, 
which was shaped to direct the air upwards to an exhaust duct. Wind ventilators 
aided the upward fl ow by sucking the air out at the ceiling high point. The Academy 
of Sciences committee on Hospitals criticized the length of his wards, but this was 
a misreading.  40   Leroy thought of the ward as a series of contiguous small rooms—
vertical ‘tents’ of air placed side by side for utility. In essence, the patients were 
housed in a connected series of “chimneys”. Viel clothed the untraditional interior 
as a peripteral temple, perhaps as an attempt to lend architectural credibility to the 
novel design.

   Two similar projects by the physician Antoine Petit and the architect Bernard 
Poyet make a useful comparison. Both took the form of circular buildings with 
radial wards and permeable outer rings, but each promoted a different course of air 
fl ow (Figs.  7  and  8 ). Petit believed that air fl ow was linear and that lines of sight 
were sympathetic with lines of air fl ow. He also believed that the corrupted air 
fl owed upwards. His wards were long, four-story-high spaces. Niches for beds lined 
the walls, accessed by metal grillework walkways on each level. This effectively 
stacked several stories of beds into one tall space, with the bad air rising to the ceil-
ing (Fig.  9 ). The outer end walls of each wing were closed; the interior end walls 
opened to the large funnel-shaped central dome, which encouraged the upward air 
fl ow. Petit expected the air to enter through the numerous windows placed along the 
long sides of each wing and then be sucked down the length of the ward to the fun-
nel dome. Since there were windows between each bed, this placed moving ‘walls’ 
of infl owing fresh air between each patient. Petit even channeled the building’s 
chimney fl ues through the walls of the funnel dome to provide extra heat and extra 
updraft. The air would be continually pulled through the wards, regardless of the 
external wind force.  41  

     Wind fl ow also determined the layout of Bernard Poyet’s proposed hospital. 
Each ward was to be 26 ft high and 30 ft wide, with an open middle aisle of 12 ft 
(Fig.  10 ). While the fl oor area was generous, it was determined as much by utilitar-
ian needs (bed size, aisle width) as by cubic volume. Poyet simply doubled the fl oor 
area per patient available in the existing Hôtel-Dieu.  42   His expectation of air fl ow 
was vastly different than Petit’s. According to Poyet, the fl ow of water along the 
river encouraged the fl ow of air. The old Hôtel-Dieu straddled the Seine, and, just as 
the water fl owed past the building without entering, so, theoretically, did the air. In 
contrast, Poyet sited his hospital on an island in the middle of the river, maximizing 
its participation in the downstream air current. The long, fi nger-like wards were 
open at the short ends to allow these winds to fl ow the length of the wards and into 
the open central court. As winds traveled along the river for hundreds of miles, 
Poyet reasoned, there was reason to believe they would also do so inside a building 
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if given a path. He even speculated that the different orientations of the radial wings 
with respect to the downstream winds would give each ward its own climatic attri-
butes, allowing them to be tailored to the environmental needs of different kinds of 
patients. Poyet assumed the open central court would encourage the wind fl ow.  43   In 
essence, he considered the building, seemingly so solid in the drawings, to be almost 
completely porous to the air.

   The architectural qualities of Poyet’s design—including the allusions to Roman 
monuments such as the Coliseum—were obvious, but its potential functionality was 
less clear. The opposition criticized Poyet’s expectation of wind fl ow along the river. 
Critics countered that air had indeed fl owed into the Hotel-Dieu’s windows, despite 
its site on the banks of the Seine. They also saw the central court not as a funnel for 
vitiated air, but as a dangerous, stagnant space.  44   The revolutionary quality of the 
design, however, did not lie in its pneumatic performance. The revolution was that 
the design required pneumatic premises to be completely understood.  

  Fig. 7    Ideal hospital plan (From Petit  1774 )       
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  Fig. 8    Ideal hospital plan (From Poyet  1785 )       

    Mechanical Ventilation 

 Architectural ventilation had a fatal fl aw—all air fl ow was at the mercy of the winds. 
Mechanical ventilation, by providing its own motive force, promised complete con-
trol of both rate and pattern of air fl ow. Jean-Baptiste Leroy even noted that mechan-
ical ventilation could end the argument over whether air naturally fl owed upwards 
or downwards. Such a contrivance could make air move either direction, depending 
on what was needed. There were two serious drawbacks to mechanical ventilation: 
it was expensive, both to install and to keep running, and it was “unnatural”.  45   
Suspicions that mechanical ventilation somehow adversely affected the vital prin-
ciple of air were powerful and lingering. Passing air through ducts was believed to 
remove the vital principle or to add a deleterious substance to the air. Worries about 
closed stoves, which were thought to expel a bad, overheated air through ducts, 
were particularly hard to dispel. 

 In 1715, John Theophilus Desaguliers, designer of an early centrifugal fan, 
undertook some experiments to prove that mechanically-propelled air, including air 
that had traveled through warmed fi replace ducts, was safe and would support life. 
He ran air to a bird through red-hot tubes, through cubes of heated metal, and 
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through charcoal. The bird survived many of these experiments, but not all. In one, 
the bird died almost instantaneously.  46   This strengthened expectations that air did 
indeed contain a vital principle, and that mechanical ventilation destroyed it. 

 The need for a power source also complicated the adoption of mechanical venti-
lation. The earliest ventilators relied largely on human power to pump or crank a 
device that moved air. Ventilators of this kind fi rst appeared where there was desper-
ate need and where the inhabitants were motivated (by choice or by force) to power 
the machines, namely in mines, ships, and prisons. 

 The fi rst air movement machines were quite simple. As early as 1727, Desaguliers 
designed a rotary centrifugal fan to draw the foul air out of mines (Fig.  11 ). By 1735, 
he had perfected the instrument for use in sick rooms and recommended its fl exible 
use either to draw air into a room or expel it. The year 1741 saw three more ship 
ventilators vie for priority: Stephen Hales’ simple bellows box ventilator (Fig.  12 ), 
Martin Triewald’s similar ventilator, and Samuel Sutton’s system of well- placed 

  Fig. 11    Centrifugal fan (From Desaguliers  1753 )       
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fi res and ventilation tubes.  47   The competition was judged not only in terms of priority, 
but also in terms of effectiveness, measured as rate of fl ow and ease of use.

    The various calculations offered by different inventors for the fl ow, speed, and 
volume of air moved by mechanical ventilators were far from exact, but the degree 
to which they sought to quantify these factors, is nonetheless striking. Martin 
Triewald calculated his ventilator capacity on the volume of air it could move: 36,172 
cubic feet of air in an hour or 21,372 tuns in 24 h. Desaguliers performed complex 
calculations to show that the air from his fans reached a speed of nearly 45 miles per 
hour (the advantages of such speeds for ventilation were left unstated).  48   Hales coun-
tered that Desaguliers’ calculations were incorrect—that his fan’s air speed was not 
the product of centrifugal velocity as Desaguliers had calculated but of direct pres-
sure. Hales also provided calculations of his own ventilator’s capacity. Based on a 
12-foot lever, worked by two men, the machine would move a tun of air with each 
stroke. At 60 strokes per minute, Hales estimated an output of 3,600 tuns per hour 
and 86,400 tuns per 24 h. These were large numbers. Hales calculated that his air 
would be supplied through a 1-foot square duct at 25 miles per hour. His ventilators 
could be sized to deliver air at different velocities and in different amounts, accord-
ing to the cubic volume of the room (or building) they serviced, to the desired rate of 
fl ow (perceptible or imperceptible), to the number of occupants of the room, and to 
the calculated total volume of air required by those occupants.  49   

 The inventors also sought to measure effectiveness experimentally. In demon-
strations, rooms were fi lled with smoke or visible gases and the ventilator then used 
to clear the space. Hales described an experiment where his ventilator removed the 
smoke from a hospital ward of 278 tun capacity in 9 min.  50   All promoters of ventila-
tors commented—perhaps somewhat defensively—on the very noticeable change 
in the sweetness of air after ventilation. These attempts to quantify and to demon-
strate effectiveness in terms of volume and rate of fl ow would be hard to understand 
without the context provided by the medical debates over bodies and air. 

 Mechanical ventilation developed outside of architectural practice. In the eigh-
teenth century, it was typically a post-construction alteration, not an element incor-
porated from the initial design stages. It proved particularly appealing as a remedy 
for aerial diffi culties in existing problem buildings. The Houses of Parliament in 
London, in particular, were a test case for new ventilation ideas and equipment. The 
hot, stuffy air in the House of Commons was notorious; the summer sessions were 
unbearable as the chambers were said to become ovens. Later speakers were known 
to lose the audience’s attention, a phenomenon that Lavoisier attributed to “bad” 
air.  51   Attempts to render the chambers more habitable occurred regularly between 
the 1600s and 1800s; Christopher Wren’s pyramidal exhaust ducts had not solved 
the problem. In effect, these truncated pyramids acted as chimneys, and they suf-
fered from the same problem as many other chimneys of the era—they were too 
large. According to Desaguliers, the updraft of heated air and smoke was often 
defeated by a downrush of colder (heavier) air.  52   

 By 1723, Desaguliers was hired to provide another solution for the House of 
Commons. He altered Wren’s pyramids by installing two small closets, connected 
to the pyramids by ducts. In the closets were fi re-grates. When the fi res were lit 
before the chamber was occupied, they started an updraft that continued to exhaust 
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the air from the room, even after it was fully occupied. The expedient was success-
ful but slow-working. The fi res had to be lit well beforehand. This latter problem 
occurred frequently enough that Desaguliers was asked in 1735–36 to install one of 
his centrifugal fans into a room above the House of Commons. The fan could be 
used either to exhaust the air outwards or to force fresh air in. The man who turned 
the crank was called a ventilator. The  Gentleman’s Magazine  suggested that the 
ventilator could draw out the longwindedness from the orators.  53   

 Shortly after the Black Assizes of 1750, Newgate Prison in London installed one 
of the fi rst whole-building mechanical ventilation systems. This system, designed 
by Hales himself, used ventilators to push air through an entire network of ducts. In 
1752, the authorities installed a windmill to power the system (Fig.  13 ). The air fl ow 
was then regulated by sliding panels in the ducts. Hales announced the effectiveness 
of the ventilation in familiar terms. He claimed reduced mortality after their instal-
lation, although his results were neither substantiated nor lasting (the ventilators 
were soon another source of foul air, feared by the workmen who had to fi x them). 
Nevertheless, numerous other jails also installed ventilators.  54   Each claimed success 
in sweeter smelling air and reduced mortality.

   These ducts, blowers, and gratings were largely outside of traditional architectural 
expertise. They were installed, operated, and designed by external specialists, but a 
few architects did try their hand at incorporating these systems into their designs. 
John Soane was among the most adventurous, creating new heating and ventilation 

  Fig. 13    Hales’ Windmill on 
top of Newgate Prison       
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systems for several of his buildings. In the 1790s, he designed a system of closed 
stoves and underfl oor smoke fl ues in the Bank of England’s stock offi ce that was a 
marvel of its time (Fig.  14 ). Unfortunately, the system was vulnerable to worries 
about a new ailment, “iron cough,” believed to result from breathing overheated and 
‘unventilated’ air. The closed stoves and ducts were soon replaced with open stoves.  55  

   Buildings designed with integral mechanical ventilation systems reached fruition 
only in the nineteenth century. With most architects still unschooled in ventilation 
systems and requirements, many of the earliest fully mechanically-ventilated build-
ings were collaborations. Like the doctor-architect partnerships of the eighteenth cen-
tury, they refused to settle into peaceful patterns. The most infamous example was the 
collaboration between the architect Charles Barry and the ventilation engineer David 
Boswell Reid for the new Houses of Parliament of the 1840s. Barry initially used 
Reid’s extensive demands for exhaust ducts as inspiration for adding a third gothic 
tower to his design. The collaboration, however, soon soured over confl icting claims 
of authority on the work site; it all ended in a venomous and career-altering lawsuit.  56   
The picture would grow brighter by the late nineteenth century, but even today venti-
lation design remains a less-considered aspect of architectural design.  

  Fig. 14    Interior view of John Soane’s Bank of England. The blue domed structure is the closed 
stove which is supplied and exhausted by underfl oor fl ues (From [Pyne and Combe]  1904 )       
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    Conclusion 

 In the eighteenth century discoveries about air made ventilation critical to successful 
building design for certain building types, but left professional “ownership” of the 
design unclear. While “breathing room” was provided by architectural dimensions, 
setting the guidelines for what constituted adequate air space was the realm of science 
and medicine, not architecture. In other words, if architecture itself became the mea-
sure of air, it was doctors and researchers who were doing most of the measuring. 

 Similarly, if the promotion of air fl ow by the placement of openings provided an 
architectural means of providing air, it did so only by a transformation of traditional 
architectural practice. Architects drew and built the solids—columns, entablatures, 
walls—not the voids. If, as Jean-Baptiste Leroy would state in 1787—“interior form 
can only be determined by the properties of the air”—architects would have to learn 
to see, draw, and build the invisible architecture as well as the visible.  57   They largely 
did not. Nor did they become experts in mechanical ventilation. Even as mechanical 
systems burgeoned in new building installations, the ducts and blowers typically 
remained the purview of an engineer or ventilation specialist working in collabora-
tion with the architect. 

 Before the pneumatic revolution of eighteenth-century science, air was clearly 
outside of architecture’s central concerns. If new research indicated that it should be 
otherwise, it was an external force. Architects were not driving the research or the 
change, but they did not reject it. If doctors and inventors were the fi rst to boil down 
the scientifi c fi ndings on air into programmatic spatial terms, architects were clearly 
willing to engage with them, as collaborators or competitors, in the creation of novel 
designs. This engagement kept architects involved in the early translations of scien-
tifi c fi ndings into potentially executable (if impracticable) pneumatically- determined 
designs. The examples of Poyet and Soane reveal something more—a willingness to 
interpret and apply the measurements of science directly to the design of buildings. 
Throughout the various levels of architectural involvement and designs, we see the 
profession asserting its relevance in the face of new scientifi c discoveries.  

                                                             Notes 

     1.    The study of air and ventilation provides a diffi cult test case for architecture; it 
was (and still largely remains) on the fringes of traditional architectural knowl-
edge and concerns. This fringe location, however, allows an examination of 
how architectural theorists and practitioners responded to external scientifi c 
discoveries that challenged rather than reinforced professional self-defi nitions. 
For an analogous examination of how experiments were incorporated into 
architectural knowledge and practice, see Gargiani ( 2003 ).   

   2.    For an orientation to the material, see Bruegmann ( 1976 ); Evans ( 1982 ); 
Foucault ( 1979 ); Forty ( 1980 ); Greenbaum ( 1974 ,  1975 ); Jetter ( 1986 ); Markus 
( 1993 ); Richardson ( 1998 ); Riley ( 1987 ); Rosenau ( 1970 ); Stevenson ( 2000 ); 
and Vidler ( 1987 , 51–82).   

Breathing Room: Calculating an Architecture of Air



274

   3.    Boyle ( 1660 , 326–82).   
   4.    On the fears of air, see Etlin ( 1977 ).   
   5.    Mortality rates in this time period were calculated less frequently than today. 

The Hotel-Dieu, for example, did not take cumulative daily statistics. Up until 
the mid-eighteenth century, the institution tended to calculate their rates of 
occupancy, deaths, sickness, and births on the fi rst day of every month. See 
Richmond ( 1961 ). Also see Wear ( 1992 ).   

   6.    Arbuthnot ( 1733 , 208–209).   
   7.    See, for example, Laugier ( 1765 , 224). The works of Benjamin Franklin, 

Nicolas Gauger, Count Rumford, and the Marquis de Chabannes head the list 
of those on improving chimney design and operation in this period.   

   8.    Hales ( 1727 , 134–7, 141).   
   9.    See, for example, Lavoisier ( 1785 , 685); Black ( 1777 ); and Priestley 

( 1774 –1777).   
   10.    Hales ( 1727 , 146); von Ingenhousz ( 1779 , 35–36); and Priestley ( 1790 , vol. 3: 

268–269, 329–330).   
   11.    See, for example, Antoine Lavoisier et al. ( 1780 ); Lavoisier ( 1785 , 683–688); 

and Tredgold ( 1824 , 69–75).   
   12.    2 October 1798, Latrobe ( 1977 , vol. 2: 437–38).   
   13.    Vitruvius ( 1791 , see esp. 16, 181).   
   14.    “…que les homes préfèrent toujours les choses d’éclat, et même frivoles, à 

celles qui n’offrent qu’un triste object d’utilité.” Leroy ( 1787 , 586). Leroy’s 
work was read to the Academy as early as 1773 but publication was suppressed. 
See Greenbaum ( 1974 ). Also see Laugier ( 1753 , 98); Duhamel du Monceau 
( 1759 , 220); Petit ( 1774 , 1).   

   15.    Aikin ( 1771 , 20); Maret ( 1782 , 50); Tenon ( 1996 , 181).   
   16.    Wren ( 1750 , 213, 226). Hales ( 1727 , 148–54); Duhamel du Monceau, ( 1759 , 144) 

Howard ( 1777 , 5, 14).   
   17.    Huxham ( 1767 , vol. 2: 119–120); Hales ( 1743 , ix); Duhamel du Monceau 

( 1759 , 129–144);  Gentleman’s Magazine , 41 (1771, 43); Day ( 1784 , 35–53); 
Maret ( 1782 , 57–58).   

   18.    Priestley ( 1774 –1777, vol. 2, 161); von Ingenhousz ( 1779 , xiv).   
   19.    Arbuthnot ( 1733 , 103); Lavoisier ( 1785 , 572); Académie des sciences ( 1787 ).   
   20.    Laugier ( 1765 , 17–21); Soane ( 1929 , 123).   
   21.    Howard ( 1791 , 34); Aikin ( 1771 , 17).   
   22.    Académie des Sciences ( 1786a ); Tenon ( 1996 , 179–180).   
   23.    Laugier ( 1765 , 16).   
   24.    Lavoisier ( 1785 , 685–86); Aikin ( 1771 , 16); Lind ( 1777 ), as quoted in Lloyd 

and Coulter ( 1961 , vol. 3: 219–20).   
   25.    Priestley ( 1774 –1777, vol. 2, 264–65).   
   26.    Poyet ( 1785 , 6).   
   27.    Soane ( 1929 , 139).   
   28.    Chambers ( 1759 , 69–70, 82); Soane ( 1929 , 141); Lavoisier ( 1785 , 685–86).   
   29.    Lavoisier et al. ( 1780 , 472–473). See also Duveen and Klickstein ( 1955 ).   
   30.    Leroy ( 1780 , 599). Also see Tenon ( 1996 , 141, 155–56, 213–14).   
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   31.    Based on nitrous oxide’s tendency to absorb oxygen, a simple test could reveal 
the proportion of ‘good’ air and ‘bad’ air in a given sample of air. See Priestley 
( 1774 –1777, vol. 1, 254–60). See also Schaffer ( 1990 ).   

   32.    Souffl ot to Maret in Maret ( 1782 , 62–63). Duhamel du Monceau admired 
the dome for its effect on air fl ow, but suspected that it had been built only as 
decoration: Duhamel du Monceau ( 1759 , 219).   

   33.    Maret ( 1782 , 30–31), and Souffl ot to Maret in Maret ( 1782 , 31).   
   34.    Lavoisier ( 1785 , 683–86).   
   35.    Tenon ( 1996 , 172–183).   
   36.    Port ( 1976 , 5–6).   
   37.    Duhamel du Monceau ( 1759 , 223).   
   38.    These designs have been the subject of considerable study. Robert Bruegmann, 

Helen Rosenau, Anthony Vidler, Robin Middleton, Louis Greenbaum, Michel 
Foucault, and Phyllis Richmond have elucidated the historical context of these 
projects, although without focusing on how the aerial expectations underpinned 
the designs. On this aspect, see Cheminade ( 1993 ).   

   39.    Maret ( 1782 , 17, 38–47, 53). He described air fl ow as similar to the ‘conical’ 
patterns water took when fl owing between the pilings of a bridge. Maret’s 
subsequent correspondence with Souffl ot and input from local engineers helped 
the doctor refi ne his design. See Lamarre ( 1986 ).   

   40.    Leroy ( 1787 ); Académie des Sciences ( 1787 , 8). See also Greenbaum ( 1974 ) 
and Vidler ( 1987 , 51–82).   

   41.    Petit ( 1774 , 10–15). Maret worried that Petit’s design multiplied windows but 
not true air exchange, and that the great funnel dome would be useless except 
as a generator of a large downward air current that would seep into the wards. 
Maret ( 1782 , 59–60).   

   42.    Poyet ( 1785 , 35); Acadèmie des Sciences ( 1786b ).   
   43.    Poyet ( 1785 , 1–5, 31–35).   
   44.    Anonymous ( 1785 , 4–5, 11); Coquéau ( 1786 , 52).   
   45.    Leroy ( 1780 , 600–602). The history of mechanical ventilation is largely 

untold. The most comprehensive source is Donaldson and Nagengast 
( 1994 ). Other works typically focus on the nineteenth century, see for 
example, Bruegmann ( 1978 ); Walbert ( 1971 ); Ferguson ( 1976 ); and Banham 
( 1969 ).   

   46.    Desaguliers ( 1763 , 557–58). Desaguliers tested iron, copper, brass, charcoal, 
and “spirit of wine”; brass, in particular, proved mortal. This result supported 
the preferred use of iron in hot-air ducts. See Cohen ( 1900 , 203).   

   47.    Hales ( 1743 ); Sutton ( 1844 ); Triewald ( 1928 ). See also Zuckerman ( 1976 ).   
   48.    Desaguliers ( 1735a ).   
   49.    See Hales ( 1743 , 12–14, 26–30,  1758 , 12–13).   
   50.    Hales ( 1758 , 16).   
   51.    Lavoisier ( 1785 , 686).   
   52.    Desaguliers ( 1763 , 560).   
   53.    Desaguliers ( 1763 , 560–561); Desaguliers ( 1735b , 47). On the ventilator quip, 

see  Gentleman’s Magazine  6 (March 1736), 132–133. The author even suggested 
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applying the pipe directly to the speaker’s mouth, to draw the words out directly 
or to add words and air to the silent, rational men.   

   54.    Hales ( 1758 , 29–40). An initial limited human-powered system was installed in 
Newgate in 1750 to exhaust the bad air from the women’s rooms. To inspire the 
laborers working the machine, Hales made the effects of their efforts visible by 
installing a small anemometer, a little windmill or tinkling bell to register air 
speed, at the duct opening. See Hales ( 1753 ) and Griffi ths ( 1884 , 1, 441). Ventilators 
were also installed at the Savoy Prison, Winchester, Durham, Shrewsberry, 
Northampton, Bristol, and Maidstone: Hales ( 1754 ,  1758 , 22–26).   

   55.    John Soane’s inclusion of mechanical ventilation systems is well docu-
mented in an article by Wilmert ( 1993 ) and  Gentleman’s Magazine  57 (1787): 
209. See also Bernan ( 1845 , vol. 2, 72). This complaint was likely the result of 
the cast iron cockles of the stove abstracting oxygen from the air as it grew hot. 
This led to an odor of ‘burnt air’ and the complaint of iron cough, see Egerton 
( 1968 , 80).   

   56.    Port ( 1976 , 102–06). Also see   http://www.hevac-heritage.org/victorian_
engineers/reid/reid.htm    .   

   57.    Leroy ( 1787 , 594).      

    Photographic Credits  

 Author: Figs.  1 ,  3 ,  13  
 Division of Rare and Manuscript Collections, Cornell University Library: Figs.  2 , 
 4–  6 ,  11 ,  12 ,  14  
 Courtesy of the National Library of Medicine, Bethesda, Maryland: Figs.  7–  10      

   References 

      Académie des Sciences. 1786a. Examen d’un project de translation de Hotel-Dieu de Paris… 
 Histoire et mémoires de l’Académie royale des sciences : 1–110.  

    Académie des Sciences. 1786b.  Rapport des commissaires chargés, par l’Académie, de l’examen 
du projet d’un nouvel Hôtel-Dieu . Paris: Imprimerie Royale.  

    Académie des Sciences. 1787. Deuxieme rapport des commissaires chargés des projets relatifs à 
l’établissement des quatre hôpitaux.  Histoire et mémoires de l’Académie royale des sciences  
(20 June): 1–12.  

     Aikin, John. 1771.  Thoughts on hospitals . [London].  
     Anonymous. 1785.  Relevé des principales erreurs contenues dans la Mémoire relatif a la transla-

tion de l’Hôtel-Dieu, et examen du project du Sieur Poyet, qui est à la suite . [Paris].  
     Arbuthnot, John. 1733.  An essay concerning the effects of air on human bodies . London: J. Tonson.  
    Banham, Reyner. 1969.  The architecture of the well-tempered environment . London: Architectural 

Press.  
   Bernan, Walter. 1845.  On the history of warming and ventilating rooms and buildings by open fi res, 

hypocausts, German, Dutch, Russian, and Swedish stoves, steam, hot water, heated air, heat of 

J. Kisacky

http://www.hevac-heritage.org/victorian_engineers/reid/reid.htm
http://www.hevac-heritage.org/victorian_engineers/reid/reid.htm


277

animals, and other methods, with notices of the progress of personal and fi reside comfort, and 
of the management of fuel . London: George Bell.  

   Black, Joseph. 1777.  Experiments upon magnesia alba, quick-lime, and other alcaline substances . 
Edinburgh/London: William Creech/J. Murray, and Wallis, and Stonehouse.  

    Boyle, Robert. 1660.  New experiments physico-mechanical… . Oxford: H. Hall for Tho. Robinson.  
   Bruegmann, Robert. 1976. Architecture of the hospital, 1770–1870: Design and technology. Ph.D. 

dissertation, University of Pennsylvania.  
    Bruegmann, Robert. 1978. Central heating and forced ventilation: Origins and effects on architec-

tural design.  Journal of the Society of Architectural Historians  37(3): 143–160.  
   Chambers, William. 1759.  A treatise on civil architecture: In which the principles of that art are 

laid down . London: for the author by J. Haberkorn.  
    Cheminade, Christian. 1993. Architecture et médecine à la fi n du XVIIIe siècle: La ventilation des 

hôpitaux, de l’ Encyclopédie  au débat sur l’Hôtel-Dieu de Paris.  Recherches sur Diderot et sur 
l’Encyclopédie  14: 85–109.  

    Cohen, I.B. 1900.  Benjamin Franklin’s science . Cambridge: Harvard University Press.  
    Coquéau, Claude-Philibert. 1786.  Supplément au mémoire sur la nécessité de transférer l’Hôtel- 

Dieu de Paris, ou Analyse du relevé des principales erreurs contenues dans cet ouvrage . 
London/Paris: Desenne, Bailly, Petit.  

    Day, Thomas. 1784.  Some considerations on the different ways of removing confi ned and infec-
tious air . Maidstone: J. Make and sold by G. & T. Wilkie.  

   Desaguliers, J.T. [John Theophilus]. 1735a. A calculation of the velocity of the air moved by the 
new-invented centrifugal bellows of 7 feet in diameter, and 1 foot thick within, which a man 
can keep in motion with very little labour, at the rate of two revolutions in one second. 
 Philosophical Transactions  39(437): 44–47.  

   Desaguliers, J.T. [John Theophilus]. 1735b. The uses of the foregoing machine, communicated in 
a letter to Cromwell Mortimer, M. D. R. S. Secr. Feb. 23, 1735/6, from the same.  Philosophical 
Transactions  39(437): 47–49.  

   Desaguliers, J.T. [John Theophilus]. 1753. An Account of an Instrument or Machine for changing 
the Aire of the Room of sick People in a little Time, by either drawing out the foul Air, or forc-
ing in fresh Air; or doing both successively, without opening Doors or Windows.  Philosophical 
Transactions  39(437): 41–43.  

     Desaguliers, J.T. [John Theophilus]. 1763.  A course of experimental philosophy . London: Printed 
for A. Millar, J. Rivington, R. Baldwin, L. Hawes, W. Clarke.  

    Donaldson, Barry, and Bernard Nagengast. 1994.  Heat and cold: Mastering the great indoors. A 
selective history of heating, ventilation, air-conditioning and refrigeration from the ancients to 
the 1930s . Atlanta: ASHRAE.  

    Duveen, Denis I., and Herbert S. Klickstein. 1955. Antoine Laurent Lavoisier’s contributions to 
medicine and public health.  Bulletin of the History of Medicine  29: 164–179.  

    Egerton, M.C. 1968. William Strutt and the application of convection to the heating of buildings. 
 Annals of Science  24(1): 73–87.  

    Etlin, Richard. 1977. L’Air dans l’urbanisme des lumieres.  Dix-Huitieme Siecle  9: 123–134.  
    Evans, Robin. 1982.  The fabrication of virtue: English prison architecture, 1750–1840 . Cambridge: 

Cambridge University Press.  
    Ferguson, Eugene S. 1976. An historical sketch of central heating: 1800–1860. In  Building early 

America: Contributions toward the history of a great industry , ed. Charles E. Peterson, 165–
185. Radnor: Chilton Book Company.  

    Forty, Adrian. 1980. The modern hospital in France and England. In  Buildings and society: Essays 
on the development of the built environment , ed. Anthony D. King, 61–93. Boston: Routledge 
& Kegan Paul.  

    Foucault, Michel (ed.). 1979.  Les máchines a guèrir: aux origines de l’hôpital moderne . Brussels: 
Pierre Mardaga.  

    Gargiani, Roberto. 2003. Vers une construction parfaite: Machines et calcul de résistance de maté-
riaux.  Matiéres  6: 99–115.  

Breathing Room: Calculating an Architecture of Air



278

     Greenbaum, Louis S. 1974. Tempest in the academy: Jean-Baptiste Leroy, The Paris Academy of 
Sciences and the project of a new Hotel-Dieu.  Archives Internationales d’Histoire des Sciences  
24: 122–140.  

    Greenbaum, Louis S. 1975. ‘Measure of Civilization’: The hospital thought of Jacques Tenon on 
the eve of the French Revolution.  Bulletin of the History of Medicine  49(1): 43–56.  

    Griffi ths, Arthur. 1884.  Chronicles of Newgate . London: Scribner and Welford.  
    Grimaux, Edouard. 1888.  Lavoisier: 1743–1794 . Paris: F. Alcan.  
       Hales, Stephen. 1727.  Vegetable staticks . London: W. and J. Innys, T. Woodward.  
      Hales, Stephen. 1743.  A description of ventilators: Whereby great quantities of fresh air may with 

ease be conveyed into mines, gaols, hospitals, work-houses and ships, in exchange for their 
noxious air . London: W. Innys, R. Manby and T. Woodward.  

    Hales, Stephen. 1753. An account of the good effect of ventilators, in Newgate and the Savoy 
Prison, by the Rev. Dr. Hales, clerk of the closet to her Royal Highness the Princess of Wales. 
 Gentleman’s Magazine  23: 70–71.  

    Hales, Stephen. 1754. A further account of the success of ventilators, &c.  Gentleman’s Magazine  
24: 115–116.  

        Hales, Stephen. 1758.  A treatise on ventilators: Wherein an account is given of the happy effects 
of the several trials that have been made of them, in different ways and for different purposes . 
London: Richard Manby.  

    Howard, John. 1777.  The state of the prisons in England and Wales, with preliminary observations, 
and an account of some foreign prisons . Warrington: William Eyres.  

   Howard, John. 1791.  An account of the principal Lazarettos in Europe , 2nd ed. London: J. Johnson, 
C. Dilly, and T. Cadell.  

   Huxham, John. 1767, orig. Latin ed. 1752.  Observations on the Air and Epidemic Diseases from 
the Beginning of the Year 1738, to the End of the Year 1748 . Trans. John Corham Huxham. 
London: J. Hinton and Henry Whitfi eld.  

    Jetter, Dieter. 1986.  Das europäische Hospital: Von der Spätantike bis 1800 . Cologne: DuMont.  
   Lamarre, Christine. 1986. Le médecin, l’architecte et le politique.  Bulletin du Centre Pierre Lèon  

(no. 3–4): 43–59.  
    Latrobe, Benjamin Henry. 1977.  The Virginia journals of Benjamin Henry Latrobe, 1795–1798 . 

New Haven/London: Yale University Press for the Maryland Historical Society.  
   Laugier, Marc-Antoine. 1753, repr. 1977.  An Essay on Architecture . Trans. Wolfgang and Anni 

Herrmann. Los Angeles: Hennessey & Ingalls.  
      Laugier, Marc-Antoine. 1765.  Observations sur l’Architecture . Paris: Desaint.  
          Lavoisier, Antoine. 1785. Alterations qu’eprouve l’air respire. In  Oeuvres . Paris: Ministre de 

l’Instruction Publique.  
    Lavoisier, Antoine, et al. 1780. Rapport sur les prisons.  Histoire et Mémoires de l’Académie royale 

des sciences : 409–424.  
     Leroy, Jean-Baptiste. 1780. Mémoire sur quelques moyens simples de renouveler l’air des endroits 

dans lesquels il ne circule pas, ou dans lesquels il ne circule qu très-diffi cilement; & sur les 
applications qu’on peut en faire.  Histoire de l’Académie royale des sciences : 598–603.  

      Leroy, Jean-Baptiste. 1787. Précis d’un ouvrage sur les hôpitaux.  Memoires de l’Acadèmie des 
Sciences : 585–600.  

    Lind, James. 1777.  Holograph Pharmacopoeia of Haslar Hospital: Regulations respecting the 
physical patients . London: Pharmaceutical Society of Great Britain.  

    Lloyd, Christopher, and Jack L.S. Coulter. 1961.  Medicine and the Navy: 1200–1900 . Edinburgh/
London: E. & S. Livingstone.  

           Maret, M. 1782. Mémoire sur la construction d’un hôpital, dans lequel on détermine quel est le 
meilleur moyen à employer pour entretenir dans les infi rmeries un air pur & salubre.  Nouveaux 
mémoires de l’Académie de Dijon pour la partie des sciences et arts : 25–67.  

    Markus, Thomas A. 1993.  Buildings & power: Freedom and control in the origin of modern build-
ing types . London/New York: Routledge.  

       Monceau, [Henri] Duhamel du. 1759.  Moyens de conserver la santé aux équipages des vaisseaux: 
avec la manière de purifi er l’air des salles des hôpitaux; et une courte description de l’Hôpital 
Saint Louis, à Paris . Paris: H. L. Guerin & L. F. Delatour.  

J. Kisacky



279

       Petit, Antoine. 1774.  Mémoire sur la meilleure manière de construire un hôpital de malades . Paris: 
Louis Cellot.  

     Port, M.H. (ed.). 1976.  The Houses of Parliament . New Haven/London: Yale University Press.  
     Poyet, Bernard. 1785.  Mémoire sur la nécessité de transférer et reconstruire l’Hôtel-Dieu de Paris 

suivi d’un projet de translation de cet hôpital .  
      Priestley, Joseph. 1774–1777.  Experiments and observations on different kinds of air . London: 

Printed for J. Johnson.  
    Priestley, Joseph. 1790.  Experiments and observations on different kinds of air, and other branches 

of natural philosophy, connected with the subject , 2nd ed. Birmingham: Thomas Pearson.  
   [Pyne, W.H.], and [Combe W.]. 1904.  The microcosm of London: Or London in miniature . London: 

Methuen.  
    Richardson, Harriet (ed.). 1998.  English hospitals, 1660–1948 . Swindon: Royal Commission on 

the Historical Monuments of England.  
       Richmond, Phyllis Allen. 1961. The Hotel-Dieu of Paris on the eve of the revolution.  Journal of 

the History of Medicine and Allied Sciences  16: 335–353.  
    Riley, James C. 1987.  The eighteenth-century campaign to avoid disease . New York: St. Martin’s 

Press.  
    Rosenau, Helen. 1970.  Social purpose in architecture: Paris and London compared, 1760–1800 . 

London: Studio Vista.  
    Schaffer, Simon. 1990. Measuring virtue: Eudiometry, enlightenment, and pneumatic medicine. In 

 The medical enlightenment of the eighteenth century , ed. Andrew Cunningham and Roger 
French, 280–318. Cambridge/New York: Cambridge University Press.  

      Soane, John. 1929.  Lectures on architecture: As delivered to the students of the Royal Academy 
from 1809 to 1836 in two courses of six lectures each . London: Sir John Soane’s Museum.  

    Stevenson, Christine. 2000.  Medicine and magnifi cence: British hospital and asylum architecture, 
1660–1815 . New Haven/London: Yale University Press.  

    Sutton, Samuel. 1844.  An historical account of a new method for extracting the foul air out of 
ships . London: J. Brindley.  

      Tenon, Jacques. 1996.  Memoirs on Paris Hospitals . Trans. of 1788 ed .  Canton: Science History 
Publications.  

    Tredgold, Thomas. 1824.  Principles of warming and ventilating public buildings, dwelling-houses, 
manufactories, hospitals, hot houses, conservatories, etc . London: J. Taylor.  

   Triewald, Marten. 1928, 1st ed. 1734.  Short Description of the Atmospheric Engine Published at 
Stockholm . Trans. Are Waetland. London: Newcomen Society.  

     Vidler, Anthony. 1987.  The writing of the walls . Princeton: Princeton Architectural Press.  
    Vitruvius. 1791.  The architecture of M. Vitruvius Pollio: Translated from the original Latin, by W. 

Newton, architect . London: James Newton.  
    von Ingenhousz, John. 1779.  Experiments upon vegetables: Discovering their great power of puri-

fying the common air in the sun-shine, and of injuring it in the shade and at night . London: 
Elmsly and H. Payne.  

    Walbert, Benjamin L. 1971. The infancy of central heating in the United States: 1803 to 1845. 
 Association for Preservation Technology  3(4): 76–87.  

    Wear, Andrew. 1992. Making sense of health and the environment in early modern England. In 
 Medicine in society: Historical essays , ed. Andrew Wear, 119–148. Cambridge/New York: 
Cambridge University Press.  

    Wilmert, Todd. 1993. Heating methods and their impact on Soane’s work: Lincoln’s Inn Fields and 
Dulwich Picture Gallery.  Journal of the Society of Architectural Historians  52(1): 26–58.  

    Wren Jr., Christopher. 1750.  Parentalia . London: T. Osborn and R. Dodsley.  
    Zuckerman, Arnold. 1976. Scurvy and the ventilation of ships in the Royal Navy: Samuel Sutton’s 

contribution.  Eighteenth-Century Studies  10(2): 222–234.    

Breathing Room: Calculating an Architecture of Air



281

      A characteristic feature of the neoclassical attitude to Greco-Roman architecture 
that ran from the middle of the eighteenth century to the middle of the nineteenth 
has long been held to be the minute surveys of ancient buildings that were under-
taken and published during that period. Ultimately inspired by Antoine Desgodetz’s 
 Les édifi ces antiques de Rome  (1682), measured surveys of antique buildings across 
the Mediterranean world became a staple part of architectural and antiquarian study 
from the 1750s, especially in relation to the growing interest in Greek architecture. 
The British were especially assiduous in framing these surveying activities as part 
of a discourse about “truth” (as Robert Wood put it in  1753 ) and “accuracy”, a term 
used by James Stuart in the preface to the fi rst volume of  The Antiquities of Athens  
in 1762.  1   Later eighteenth- and early nineteenth-century architects appear to have 
accepted that these surveys did indeed represent ever-more refi ned attempts to 
establish absolute sets of dimensions for the great monuments of Athens and Greece. 
In his eleventh lecture to Royal Academy students, for example, fi rst delivered in 
1815, John Soane spoke unquestioningly of “the accurate and laborious 
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representations of Stuart and [Nicholas] Revett, who measured those proud remains 
of ancient glory to the thousandth part of an inch.”  2   This tradition reached its culmi-
nation in the extremely fi ne measurements made in Athens in the 1840s by Francis 
Cranmer Penrose, who described the purpose of his 1851  Investigation of the 
Principles of Athenian Architecture  as having been “to fi ll up what had been left 
imperfect by Stuart and Revett.”  3   

 Since that time, architectural historians have tended to accept at face value the 
claims of protagonists from Stuart to Penrose that their surveys tended towards an 
ultimate goal of absolute accuracy of measurement, locating them within a frame-
work of Enlightenment scientifi c research that contrasts with broader and perhaps 
more Romantic contexts of coeval history and anthropology. However, in 1956, 
Jacob Landy, writing in the journal  Archaeology,  pointed out that while the mea-
surements in  The Antiquities of Athens  were indeed “more accurate than those of 
any previous publication,” Stuart and Revett were also “not concerned with as com-
plete a presentation of the facts as they pretended,” being “burdened with literary, 
mythological and historical allusions.”  4   While we should indeed now see  The 
Antiquities of Athens  as a work conditioned by the cultural circumstances of the 
later eighteenth century, there is another dimension to the question of accuracy that 
has not yet been studied and that this chapter explores. Recent research on the case 
of Stuart’s survey of the Tower of the Winds in Athens has shown, thanks to the 
fortuitous survival of a proof plate showing the plan of the roof, that at least one of 
the dimensions appearing on the version fi nally published was not measured at all 
but calculated trigonometrically.  5   It is possible that such an intervention amounts to 
no more than a pragmatic way of providing data that Stuart realized he had not col-
lected in Athens when he was working on the surveys in London many years later, 
but the same plate also suggests that Stuart was systematically double checking all 
measurements in order to ensure geometrical coherence. 

 We cannot be certain, then, that the fi gures offered in  The Antiquities of Athens  
by Stuart—and perhaps by others involved in the same type of pursuit—represent 
measurements physically made. The process Stuart followed in preparing this plate 
of the Tower of the Winds was not a simple one of transcribing dimensions taken in 
the fi eld onto the image but one that involved some computation, and this realization 
now presents the historian of neoclassical architecture with signifi cant problems. 
We know that architects in ancient Greece and Rome would have used geometrical 
rules to design their buildings, and we are now learning that men like Stuart, by 
measuring those early buildings that survived, sought to understand those rules, 
both to ensure the consistency of their reconstructions and to use them in their own 
designs.  6   However, the process of surveying an existing structure is by no means 
commensurate with that of setting it out in the fi rst place, since some dimensions are 
effectively concealed by the fabric of the building itself. Further still, methods 
appropriate for drawing on the smooth surface of a drawing board may be quite dif-
ferent from those appropriate for the staking out of the plan in the fi eld or the mark-
ing of stone by the mason. This situation raises a number of related conundra: How 
did Stuart take measurements in the fi eld? How did they get translated to published 
form? What assumptions did he make about Greek setting out, and how did these 
assumptions color his measurements and his reconstructions? 
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 This paper probes these questions by close consideration of cases taken from 
Stuart’s surviving papers. Of the large number of his fi eld notebooks in circulation 
in the early nineteenth century, only one integral version is now known: the 
“Edinburgh Notebook” in the Laing Collection of the University of Edinburgh.  7   
This source provides useful data in the form of Stuart’s fi eld notes and musings on 
two large classical buildings: the Temple of Rome and Augustus at Pola in Istria 
(early fi rst century) and the Theater “of Bacchus” (actually of Herodes Atticus, 
c.162) in Athens. We have also been able to examine problems of geometry at the 
smaller scale of a building component, the Ionic capital, thanks to the survival of a 
number of loose sheets on which Stuart analyzed the problem of the setting out of 
the volutes. 

 Whereas the surviving sheets on which Stuart studied the Ionic capital are loose 
and diffi cult to date, it seems reasonable to assume that the Edinburgh Notebook is 
typical of the way he kept his records whilst in the fi eld and resident in Athens. It 
was essentially a commonplace book, used to record a variety of notes on different 
subjects. There are descriptions of different parts of Athens and other places that he 
visited, a few drawings, and many calculations (Fig.  1 ). The notes usually begin on 
the right-hand page and only sometimes continue on the left. This doubtless refl ects 
Stuart’s method of working in the fi eld, holding the book in the left hand or resting 
it on the right knee, and using the right hand side of an opening.  8   It is not always 
clear what dimensions were measured nor how accurately. In his description of 
some buildings, he left gaps for the dimensions that he presumably intended to mea-
sure at a later date, or which he was content to delegate to Revett. We know some-
thing of their working practice, as Stuart mentions measurements with a chain 
(presumably with a trained assistant) that Revett would later check with a rod, 
which he specifi ed, “will be more accurate.”  9   The measurements Stuart recorded in 
his notebooks are by no means straightforward, as Joseph Woods found when edit-
ing the fourth volume of the  Antiquities  in 1816: “The following list of heights of 
these buildings are given by Stuart; they are not always consistent with the fi gures 
on the sketches, nor do I always understand the exact application.”  10   Whereas Woods 
thought “it would be best to give them just as I found them,” Stuart, as we have seen 
at least in the case of the Tower of the Winds, went to considerable effort to make 
them consistent when preparing his work for publication.

      The Temple of Rome and Augustus at Pola 

 The Edinburgh Notebook contains memoranda on the temple at Pola, the Roman 
city in Istria to which Stuart and Revett made an excursion from Venice in 1750 
while waiting to travel to Athens (which they did in 1751). Their work at Pola thus 
stands as something of a rehearsal for the methods they would deploy when in 
Greece. There is a small plan showing the general scheme of the temple and then 
two larger sketches (fol. 14), all of which can be combined for convenience into 
Fig.  2 . The arithmetic accompanying Stuart’s sketches is simply the addition of the 
various measurements that were made to obtain overall lengths and widths. 
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  Fig. 1    James Stuart’s “Edinburgh Notebook,” fol. 66v, Laing Collection, University of Edinburgh       
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Reproduced here are the measurements for the length of the temple, in which Stuart 
has made a division between the cella and the pronaos (Table  1 ).

    The fi gures are in English feet, inches, and decimals of an inch up to the hun-
dredth, the standard Stuart had adopted when surveying the Obelisk of Psammetichus 
II in Rome, probably in 1748, for his fi rst major archaeological publication  De 
Obelisco Caesaris Augusti  of 1750.  11   For the Athens expedition, the authors were 
able to achieve this level of accuracy with the aid of a brass yard rule engraved by 
the foremost mathematical instrument maker of mid-eighteenth century London, 
John Bird. Other than a chain and a compass, this was the only piece of surveying 
equipment we know them to have had. 

 The arithmetic for the parts of the Pola temple is correct, but changes were intro-
duced between the Notebook and the published version that appears in Chapter II, 
plate III of the fourth volume of the  Antiquities . This was published after Stuart’s 

  Fig. 2    Plan of the Temple of Rome and Augustus at Pola with inscribed measurements, based on 
sketches and fi eld notes in the Edinburgh notebook       

   Table 1    James Stuart’s arithmetic for the dimensions of the 
temple at Pola, from the Edinburgh Notebook (fol. 14)   

 4.  6 
 1.  4.  8 

 30.  11.  6 
 1.  5.  6 

 4.  10. 
 2.  7.  50 
 4.  10.  70  ++22  7.  05 
 2.  7.  20 
 5.  0.  15 
 2.  7.  50  /100 

 Entire length of the temple  56.  9.  65 
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death, and Woods’s introduction to the volume indicates that he was working from 
Stuart’s drawings. The value 1.4.8 for the thickness of the end wall of the cella in 
the Notebook was reduced by just over an inch to 1.3.6, while the overall length of 
the building was increased by just under an inch to 56 ft, 10.6 in. There is nothing 
to indicate why these changes were made. The most likely explanation is that Woods 
was working from more than one version of the plan and needed to make a choice 
between them. Whatever the reason, this maneuver certainly made the correct arith-
metic of the Notebook record incorrect on the published plate. Woods almost certainly 
noticed the discrepancy, but he evidently considered it more important—as he stated—
to maintain editorial neutrality than to try to reconcile the numbers. 

 A second area of Stuart’s concerns raised by his Notebook observations involves 
the issue of proportional relationships. Although Stuart was to make a clear state-
ment in the introduction to the fi rst volume of the  Antiquities  that he had avoided 
any system of design based on modules (and to imply that previous surveys had 
made errors because of the preconceptions that modules brought with them), that 
did not mean he never considered the possibility of proportional relationships. On 
the same page as the calculations above appears a set of other fi gures, where Stuart 
seems to be checking possible relationships that might have determined the actual 
dimensions. The following example, taken from folio 14, shows Stuart engaging 
with Vitruvius on this question. Disregarding the Roman author’s modular starting 
point (using the diameter of the column as the generator of the design), he concentrated 
instead on the relationship of length to width of the cella (Table  2 ).

   Stuart was checking that the Pola temple was in line with Vitruvius’s prescription 
(Book 4, Chapter 4) that “the cella itself will be longer by one fourth than its width, 
including the wall in which the doors are to be located.”  12   The dimensions evidently 
did not match Vitruvius’s recommendations, at least in terms of a common module. 
A presumed module of 6 ft 2.35 in. would produce wall dimensions about 5 % 
shorter than those built. A second set of calculations shows Stuart trying to relate 
the length of the cella to that of the whole, also presumably to compare the result 
with Vitruvius’s recommendation. Here, too, Stuart would have noticed a signifi cant 
deviation from the text. As built, the cella is closer to 4 parts of 9 than the 5 parts in 
8 that Vitruvius allows.  13   The notes and calculations made at Pola thus stand as 
evidence of the approach Stuart intended to adopt at Athens, which was, as he put it 
in the 1751 “Proposals” for the  Antiquities,  to analyze buildings “by pointing out the 
relation they may have to the Doctrine of Vitruvius.”  14    

   Table 2    James Stuart’s arithmetic for the dimen-sions of the temple 
at Pola, from the Edinburgh Notebook (fol. 14)   

 To the length of the cell  30  11.   6 
 Add the thickness of the wall at the front   1.   5.   6 

 32.   4.   2 
 Subtract the width of the cell including the walls  26.   1.  85 

 06.   2.  35 
  4 

 24   9.   4 
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    The Theater of Bacchus 

 The notes for the Theater of Bacchus are divided between the front and the back of 
the Edinburgh Notebook, probably refl ecting work done at different dates during 
Stuart and Revett’s stay in Athens, which lasted from 1751 to 1754. The plate with 
the plan of the theater was eventually published in volume two of the  Antiquities,  
which appeared in 1789–90 under the editorship of William Newton (Stuart having 
died in 1788). 

 In Athens, Stuart and Revett were confronted with a ruin. The remains of the 
 frons scaenae  and the fl anking  versurae —the tower-like buildings that provided 
access to the scene from the corners of the hemicycle—were all that remained of the 
structure. A grass-covered hollow lay where the seating had been cut into the hill-
side, but none of the tiers remained intact, almost certainly because the site had been 
quarried for building stone in the centuries since the classical era. The ensemble can 
be seen in Stuart’s perspective view, which also features Revett in the right fore-
ground at work drawing the masonry of the  frons scaenae  (Fig.  3 ). As an added 
diffi culty, the surveyors were unable to excavate inside the ruin because of its prox-
imity to an Ottoman garrison, though some digging behind the  versura  wall was 
permitted.  15   The Notebook records Stuart’s aim in surveying the site. He hoped to 
elucidate Vitruvius’s description of the setting out of Greek and Roman theaters, 
improving on the accounts of earlier editors, in particular Claude Perrault and 
Daniele Barbaro:

  The Theater of Bacchus is so ruined that only the front of the scene, the versurae & the 
exterior circuit appear above ground naked of ornament and the upper parts entirely ruined. 
The pulpitura above [lies more than] 16 feet below the present surface of the ground. Yet 
what remains may serve to explain Vitruvius better than all his commentators[.] Lett [sic] 
us see his words & comparing the designs of Barbaro[,] Perault & theatre of Bacchus 
observe which agrees best with his description and documents[.]  16   

 Of the Vitruvius commentators mentioned here, Stuart does not seem to have 
made further use of Barbaro. The published text makes reference to the Italian trans-
lation of Marchese Berardo Galiani, which superseded Barbaro when it appeared in 
1758. The Perrault translation, however, was much more important. It was on this 
French source that Stuart depended for his understanding of Vitruvius. The 
Notebook contains a transcription and translation of this section of the text (Book 5, 
Chapter 8) for quick reference. As Stuart reports, Vitruvius differentiates between 
the layout of Greek and Roman theaters. In his published comments, Stuart appeared 
to recognize that the date (actually second-century AD) and identity of the builders 
was open to question. Nevertheless, for the purposes of the reconstruction, he pro-
ceeded on the assumption that what Vitruvius “had said concerning the Greek 
Theaters [was] applicable to this building.”  17  

   Stuart’s fi rst task in describing the theater was to obtain true dimensions from the 
surfaces that he could directly measure. A schematic cross-section in the form of a 
sketched triangle shows two of these: the descending slope of the seating and 
its height at the back (Fig.  4 ). Neither of these measurements was easily obtained. 
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The slope was hardly constant, as is evident from the published view. Likewise, 
with the theater built into the hillside, the height of the seating could only be mea-
sured from the side. This was the area they had to excavate, which Stuart referred to 
in his notes as the “corridor going from the wings of the Theater to the Orchestra or 
gate of the Versura.”  18   With these two dimensions, Stuart was able to fi nd the hori-
zontal depth of the theater in plan from the  frons scaenae  to the back wall. For this, 
he simply used Pythagoras. The Notebook contains a clear calculation for that, 
where the squares of the two distances 162 ft 6 in. (the measurement along the 

  Fig. 4    Schematic cross- 
section of the Theater of 
Bacchus, based on Stuart’s 
fi eldnotes in the Edinburgh 
notebook       

  Fig. 3    Nicholas Revett drawing the  frons scaenae  of the Theater “of Bacchus” (Herodes Atticus) 
(From Stuart and Revett  1762 –1830)       
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slope) and 32 ft 6 in. (the height of the seating at the back wall) are reckoned and the 
second subtracted from the fi rst. The square root of the result is the horizontal dis-
tance to the wall. Stuart extracted this root by hand, a calculation that fi lls a consid-
erable portion of the page. This is the fi rst of several instances where it is evident 
that Stuart used derived dimensions rather than those directly measured.

   According to Vitruvius, the design of theaters was based on a semi-circle touch-
ing the far edges of the  versurae , but with a center some distance before the  frons 
scaenae . If Stuart was to demonstrate the use of this principle in the design of the 
Theater of Bacchus, it would be necessary to fi nd the centre of that circle. Figure  5  
simplifi es the plan that Stuart sketched in his notebook (Fig.  1 , fol. 66v) to fi nd the 
point  d  and the accompanying dimensions. His fi rst step was to measure the width 
of the theater from the far edges of the  versurae  and halve it to give  cb  as 123 ft 10 
in. He also measured the depth of the  versurae  from the  frons scaenae : 25 ft. These 
were the only directly measured values that Stuart used for this reconstruction. The 
rest were derived from trigonometric operations on the plan. The length of the per-
pendicular center line  ac  was established by subtracting the depth of the  versurae  
from the horizontal value determined in the previous calculation (Fig.  4 : 159 ft 
2.5 in.). Applying Pythagoras, Stuart could then calculate the length of the hypote-
nuse of the triangle  abc  and from this, the sine and the opening of the angle  bac . 
Because the hypotenuse was a chord of the large semi-circle formed by the back 
wall of the seating, a line bisecting that chord ( ed ) would pass through the required 

  Fig. 5    Schematic plan of the Theater of Bacchus, based on fol. 66v of the Edinburgh notebook 
(Fig.  1 )       
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point at the center of the circle. At this stage, Stuart had all he needed to calculate 
the distance  ad , thus fi nding the position of the setting-out point suggested by 
Vitruvius ( ad  =  bd  =  ae /sin  ade ).

   In carrying out his calculations, Stuart used a table of logsines, which allowed 
him to avoid tedious multiplication and to perform the calculations with simple 
addition. As it would have been simpler to do the calculations involved with a table 
of tangents, we must assume that he did not have one available. The other point to 
note here is that the table of logarithms that he was using provided seven fi gures in 
the mantissa, which would have given him more accuracy than he needed. 

 Armed with this information, we can check Stuart’s measurements against those 
generated by Vitruvius’s method. The most readily verifi able dimensions were the 
size of the orchestra circle, the width of the scene, and the depth of the  versurae . 
Stuart explained Vitruvius’s construction in the text accompanying the published 
plan of the theater (Fig.  6 ):

  On this we must observe, that the exterior wall is the portion of a circle, the centre of which 
being found, it will follow from the precepts of Vitruvius, if we suppose what he has said 
concerning the Greek Theater applicable to this building, that the extent of the Procenium, 
with the situation and dimension of the Orchestra, may be determined. For the distance  a.b.  
from the centre  a.  of the exterior circle, to the front of the Scene  C.B.D.  will be the radius of 
a lesser concentric circle, in which three squares being inscribed, after the manner he has 
directed, the side of the square  e.f.  [sic  g.f. ] nearest to the Scene and parallel to it, will then 
mark the limit of the Procenium, and the remaining part of the circle, if we do not mistake 
Vitruvius, will form the space assigned by him to the orchestra; within which space, I am 
persuaded, the Pulpitum or Logeum projected at least as far as to the centre  a.  for I cannot 
imagine, that the actors were confi ned to the narrow space assigned by this scheme to the 
Procenium.  19   

 Vitruvius’s instructions, interpreted here largely via Perrault, call for the radius of 
the orchestra circle to determine the other elements. The fi rst step, as shown in sim-
plifi ed form on the right side of Fig.  7 , is to inscribe a square into the orchestra circle. 
As Stuart relates, extending the side parallel and closest to the  frons scaenae  provides 
the forward edges of the proscenium, the raised platform for performers. The width 
of the scene is obtained by setting the radius of the orchestra circle at the outer edge 
 a′  and rotating it until it meets the line of the proscenium at  h . The depth, fi nally, of 
the  versurae  is determined by rotating the same radius around the upper corner of the 
inscribed square  e′  until it meets the orchestra circle at  c′ . It should be clear that the 
side of the square  a′h  =  ab /√2 and the total width of the  frons sceanae  =  ab (2+ √2). 
Likewise, the depth of the  versurae  (H in Fig.  7 ) will be  ab  –  ab .sin15° or 0.74 ab .

    Recognizing these relationships, we can check to see whether Stuart would have 
been able to confi rm Vitruvius’s method by a simple calculation. Using the pub-
lished fi gures, which differ slightly from those in the Notebook, Stuart and Revett 
record the distance  ab  as 35 ft 0.3 in. On that basis, the width of the scene should be 
about 119 ft 6 in. In fact, Stuart and Revett have it as only 117 ft 1.5. The depth of 
the  versurae  is marked as 25 ft 4.5 in. Calculated from  ab , however, it would be 7 in. 
longer. In both cases, the discrepancy is about 2 %. Although the published plan 
suggests a close correlation between the built remains and Vitruvius’s setting-out 
method, Stuart’s measurements do not bear it out. 
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 Had he carried them out, these calculations might have given Stuart some reason 
to doubt Vitruvius’s authority as a source, at least for the Theater of Bacchus. In 
fact, there are other reasons to discount Vitruvius’s suggested procedure. His 
approach, with whirling squares and many extraneous lines and found points, 
appears little more than a drawing board exercise. What is missing from Vitruvius 
(and hence from his commentators, including Stuart) is any consideration of the 
practical operations necessary to transform the geometry of design into setting out 
marks on site using stakes and string lines. In the fi rst place, it would be extremely 
diffi cult to set out the theater using the center of the circle as a starting point, and it 
is diffi cult to imagine that builders would have begun there. Not only is  a  itself a 
found point, it also requires several intermediate steps to inscribe the square before 
determining the location of the proscenium, the  frons scaenae , and the  versurae . 
Rather than unfolding the plan from a point, a builder would surely begin with the 
longest lines in order to ensure that the building fi t on the site. 

 Could Stuart have recognized the practical problems with Vitruvius’s method? 
Perhaps not: aside from the Roman author’s still-powerful authority both as a 
designer and a source for ancient design methods, Stuart was at this early point in 
his career still an inexperienced architect. The left side of the diagram in Fig.  7  sug-
gests a simpler alternative, with the more believable starting point  O . It assumes that 
the depth of the  versurae  ( A ) is derived, not from a complicated construction, but 
from the radius of the orchestra circle.  Ok  equals  Ob  and  ab  equals  kb , the diagonal 
of the square drawn on  Ob . The length  bl  is the same diagonal rotated towards the 
 frons scaenae . The point  m  is obtained by adding the length  Ob  to  l . This method 
produces almost the same layout that Vitruvius recommends. The width of the  frons 
scaenae ,  ab (2 + √2), is the same and the depth of the  versurae  very nearly so, but 
this operation is much simpler and also more workable at full scale.  

  Fig. 7    Setting out the Greek theater. The right side shows a simplifi ed version of Vitruvius’s 
 setting out method, which involves inscribing a square in the orchestra circle, and the left a simpler 
and more feasible method of achieving the same results       
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    The Ionic Volute 

 The volute of the Ionic capital presented Stuart and Revett with a series of problems 
that, for modern scholars, illuminate the complexities of Enlightenment measure-
ment. The problems stemmed from the fact that their aims as both architects and 
archaeologists were often at cross-purposes. The confl icting epistemologies that 
spurred their research provoked questions that, while distinct to the modern 
researcher, were complementary or even integrated in the minds of Enlightenment 
researchers. The fi rst question was methodological: how should one measure the 
Ionic volute? If the purpose of their research was simply the empirical description 
of classical architecture, then their approach would be quite different from that of 
Desgodetz, who sought to uncover the hidden language of classical architectural 
proportion. The second question was practical, with application both to archaeology 
and architecture. How could Stuart and Revett work back from their on-site mea-
surements and observations to deduce the working methods of ancient architects 
and masons? Their interest here was not purely academic. The reintroduction of the 
Greek Ionic order formed part of the “improvement” Stuart hoped to see in later 
eighteenth-century architecture and to which he himself was to make great contribu-
tions in his own designs of the 1770s and 1780s. In this sense, his studies of Greek 
Ionic capitals had greater relevance in the context of neoclassical design than did the 
public building types we have been able to study here. 

 On the subject of the Ionic order, Stuart and Revett found their predecessors’ 
works incomplete. While Vitruvius discussed the Doric and Ionic styles at some 
length, the moderns had virtually ignored them in favour of the Corinthian. The 
reason for this was the centrality of Rome to the mental landscape and travel itiner-
aries of early modern scholars, artists, and antiquarians. Palladio’s  I Quattro Libri , 
for example, the central text of British architectural classicism, was replete with 
examples of the Corinthian, but included only one description of an Ionic temple: 
the Temple of Manly Fortune, now known as the Temple of Portunus (Fig.  8 ). Even 
Desgodetz, to whom Stuart and Revett looked with nearly uncritical admiration, 
failed them here. Stuart dismissed all three of the examples that Desgodetz exam-
ined: the Temple of Manly Fortune, the Theater of Marcellus, and the Colosseum 
(Amphitheater of Vespasian). To Stuart, following Fréart, the Temple of Manly 
Fortune was “ill wrought” and “covered with Stucco.” Although it was the best 
surviving example of the Ionic order in Rome, its features were “not only incorrect, 
but they are likewise so decayed, that the original form and projection of these 
Mouldings cannot now be ascertained.”  20   In contrast, Greek examples of the Ionic, 
like the temple on the Illissos, were “simple”, “elegant”, “well executed”, and 
“among those Works of Antiquity which best deserve our Attention.”  21  

   Such statements provide important insight into the infl uence of Vitruvian ratio-
nalism that dominated many early modern architectural debates. Stuart and Revett 
worked from the assumption, then prevalent, that ancient Greek architects abided by 
the strict laws later transcribed by Vitruvius in  De Architectura . The Greco-Roman 
architects who followed the Greeks borrowed their proportional principles, corrupt-
ing them into the variations that could be seen in Rome, such as the “incorrect” Ionic 
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  Fig. 8    The Temple of “Fortuna Virilis” (Portunus), Rome (From Ware  1738 )       

capitals of the Temple of Manly Fortune. That said, Stuart and Revett were not 
entirely satisfi ed with rationalist dogma. True to the empiricism that then dominated 
British intellectual circles, both men recognized the need to survey the remaining 
examples of Ionic architecture in Athens. It is here that their assumptions and 
desires worked at cross-purposes. On the one hand, the architects-in-training sought 
an abstract system of beauty, preferably one based on Vitruvius’s system of modular 
proportion. Furthermore, their role as architects encouraged them to inquire 
into the practicalities of ancient architectural practice. There was, on the other 
hand, the physical evidence of the buildings themselves. These measurements, as it 
turned out, did not allow easy rationalization, much less conversion into convenient 
rules-of-thumb.  

    Measuring the Volute 

 The setting out of the volute was a problem that had engaged architects long before 
Stuart and Revett. A close approximation to an Archimedean volute—which uncoils 
at a constant width—can be obtained by unwinding a cord from a cylinder, but what 
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was more usually wanted was a logarithmic volute, which widens as it uncoils. 
Moreover, the volute had to be drawn inwards within a block of stone of known size. 
Once the centre of the volute and the size of the oculus have been found, the method 
usually involves drawing a series of arcs of diminishing radius, each subtending 90°. 
Vitruvius describes a method of this sort (Book 3, Chapter 5), with the point of the 
compasses stepped round a square inscribed inside the oculus. However, the fi gure 
that originally accompanied his account was lost, so subsequent architects had to 
imagine several unstated elements of his method. For example, if one were to draw 
ever-shorter radii from a fi xed centre for each arc, the diminution of the scroll would 
not be smooth and each new arc would create a noticeable break. Moreover, a literal 
translation of Vitruvius’s text resulted in an Archimedean volute of only two revolu-
tions (Fig.  9 ).  22  

   Renaissance architects were well aware of these defi ciencies, and using the 
Roman remains as guides, they created improved and often sophisticated systems 
for laying out volutes. The most important refi nement to Vitruvius’s method involved 
manipulating the centers of the arcs to give a smooth transition from one to the next. 
Sebastiano Serlio provided a simple solution in  1537 . His adaptation stayed very 
close to Vitruvius’s text, with semicircular arcs plotted from points set within the 
oculus and along the vertical axis of the volute.  23   Further refi nement came from a 

  Fig. 9    Vitruvius’s method for setting out the spiral of the Ionic Volute (From  De Architectura , 
Book 3, Chapter 5.5–6)       
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text by Giuseppi Salviati in  1552 . His technique—simplifi ed and popularized by 
Philibert de l’Orme, Giacomo Barozzi da Vignola, and Andrea Palladio—placed the 
centers of the arcs along diagonals at 45° to the vertical axis (Fig.  10 ). The points 
could be found geometrically, inscribing squares within the oculus and dividing the 
diagonals into thirds   .  24   Their approach remained popular into the eighteenth century, 
having the sanction of both Fréart and Perrault.  25   However, many practicing archi-
tects, especially in Britain, found Nicolaus Goldmann’s seventeenth- century solu-
tion preferable, as it minimized the breaks between the spiraling arcs (Fig.  11 ).  26   

  Fig. 10    Method for 
setting-out the compass 
points in the oculus of the 
Ionic volute (From Salviati 
 1552 )       

  Fig. 11    Method for 
setting-out oculus centers 
(From Goldmann  1649 )       
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According to William Chambers, Goldmann’s technique was the best, because the 
arcs “have their radii… in the same straight line; so that they meet, without forming 
an angle: whereas in that of De l’Orme, the radii never coincide; and consequently 
no two of the curves can join, without forming an angle.”  27   For Stuart, these 
researches must have created an almost unrealizable expectation of what the Ionic 
volute was or should be. If the Greeks did possess the secrets of ancient architecture, 
they too must have understood the volute not merely as a decorative form, but as a 
highly elaborated and coherent geometrical construction.

    The proper setting out the Ionic volute concerned architects both before and after 
Vitruvius. The two problems faced by Stuart and Revett were more specifi c. They 
had to determine how to measure particular examples  in situ  and how to draw them 
for the plates in their book. Fortunately, we know something of their methods in 
 confronting both of these tasks, thanks to the survival of several of Stuart’s prepara-
tory sketches, notes, and drawings in the British Library and in the Drawings 
Collection of the Royal Institute of British Architects.  28   The former group of papers 
includes fi eld notes of the measurements for the volutes they found in Athens, along 
with some accompanying calculations. The latter archive contains a number of dif-
ferent recipes for fi nding a series of centers from which curves could be drawn 
through their measured points. 

 The most practical method of measurement would entail climbing a ladder and 
measuring with calipers, while calling out the results to an assistant on the ground. 
This procedure is perhaps easier described than executed, for one, because it requires 
the two collaborators to agree beforehand on a set series of points to measure. The 
fi eld drawings suggest the use of just such a formula. What Stuart and Revett mea-
sured were the distances from the center at which the spiral intersected with the 
vertical and horizontal axes, as well as with diagonals struck at 45° intervals. In this 
respect, the fi eld notes provided the basis for the plates of the published work, which 
appear in much the same form. The method may have been inspired by the setting- 
out technique of Guillaume Philandrier ( 1544 ), whose construction called for pre- 
set lengths measured out along diagonals in the same manner (Fig.  12 ).  29  

   Four of the fi eld drawings can be associated with a single temple, that of Minerva 
Polias, corresponding to the western part of the Erechtheion and specifi cally its 
north-facing portico. The numbers recorded on the drawings match or nearly match 
the published plate (Vol. II, Ch. II, plate IX), with each of the sketches reporting 
slightly different data (Table  3 ). The published fi gures give the radii of the volute at 
successive points measured from the center, and two of the drawings (fols. 63 and 
65) almost exactly match these fi gures. However, a third drawing (fol. 64) accords 
with only some of the published values. It appears that the others are running dimen-
sions taken from the outside toward the center; these are not shown on the published 
plate but can be deduced from it. The change suggests that Stuart and Revett began 
their surveying with this drawing, but altered their method of measurement mid- 
course, shifting to the center of the volute only at the 135° mark. The fi gures on fol. 
68 also appear to be running dimensions from the outside, but with less general 
agreement with the published fi gures. These discrepancies may refl ect slightly 
different measurements of the same capital or—perhaps less likely given the minute 
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differences—another capital from the same set of columns. It is also worth pointing 
out the curious prevalence of dimensions with three decimal places, normally an 
impossible level of accuracy for direct measurement. Such fi gures could have been 
generated arithmetically, but the drawings do not suggest the use of any intermediate 
constructions or calculations. One possible explanation, in the absence of any other, is 
that the surveyors used calipers and a diagonal scale to obtain such fi ne readings.

   Stuart was interested here, as with the Pola Temple and the Theater of Bacchus, 
in reconciling his own measurements with the prescriptions of the  De Architectura . 
Although he published no attempt along these lines, at least one of Stuart’s surviving 
manuscripts shows him actively searching for correspondences. Fol. 61 of the British 

   Table 3    Comparison of the measurements for the Ionic Volute of the temple of Minerva Polias, 
(Vol. II, Ch. II, Plate IX) with Stuart’s fi eld notes in the British Library: Additional Manuscripts 
22153, fols. 63–65, and 68   

 Plate IX  Toward center  f.63  f.65  f.64  f.68 

 0°  11.8  5.734  11.8  11.8  6.034 
 6.066  8.024  6.06  6.066  9 
 3.776  10.375  3.1  3.1  10.501 
 1.425  11.8  no data?  no data?  no data? 

 45°  11.2   5.45   11.2  11.2   5.4   5.4 
 5.75   8.35   5.374  5.374   8.3   8.3 
 2.85   11.2   2.834  2.834   11.15   11.15 
 – 

 90°  9.725   4.615   9.725  9.725   4.15/4.612   4.615 
 5.11   7.484   5.11  5.11   7.234   7.234 
 2.241   8.341   2.4/2.491  2.404   8.3   8.3 
 1.384  9.725  9.725  9.725 

 135°  –  no data  no data  8.42 
 8.475  4.041  no data  no data  8.475  4.434 
 4.434  6.341  no data  no data  4.434  2.314 
 2.134  8.475  no data  no data  2.154  no data? 

 180°  7.35  3.7  7.35  7.35  3.7 
 3.65  5.925  3.65  3.65  5.8 
 1.425  7.35  1.35 

 225°  6.766  3.106  6.766  6.766  3.4 
 3.66  6.766  3.366  3.366  6.766 
 – 

 270°  6.4  3.134  6.4  6.4  3.134 
 3.266  5.016  3.266  3.266  4.925 
 1.384  6.4  no data?  no data?  6.4 

 315°  6.25  6.25  6.25  3.1/3.225 
 3.15  3.15  3.15  6.25 

  The fi gures given on the plate (column 1) are running dimensions  from  the center. Column 2 gives 
the running dimensions calculated  towards  the centre. The fi gures in  bold  very nearly match those 
from fol. 64, which suggests that Stuart and Revett began the survey with this drawing, before 
altering their method of measurement for the others  
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Library papers records the following calculations, which pertain to Vitruvius’s recipe 
for setting out the Ionic capital (Table  4 ).

   Here Stuart fi rst calculated the diameter of the base, making it—per 
Vitruvius—1/9 the height (Book 4, Chapter 1.8). He then calculated the length of 
the abacus, the uppermost slab of the capital. Although this particular column is 
shorter than 19 ft, he used the author’s prescription for a column taller than 25 ft, 
for which the abacus was to be “as wide as the bottom of the column with one 
eighth added on (Book 3, Chapter 5.7).”  30   He then checked the result (2 ft, 3.6 in.), 
dividing it by nine to produce a repeat of the Figure 3.07. The length of the abacus 
determines the distance between the centers of the two volutes, the latter shorter 
than the former by 2/9. 

 It is diffi cult to know what to make of these calculations. In the fi rst place, the 
fi gures do not correspond to the columns of the north porch of the Minerva Polias 
temple. They seem, rather, to match—but only partially—the dimensions of the 
engaged columns on its enclosed western fl ank (Vol. II, Ch. II, plates XI and XII). 
The lower column diameter is given there as 2 ft, 0.55 in. and the abacus length as 
2 ft, 3.6 in., that is, within .01 and .03 in. of the values in the calculations. The 
column height, however, is far greater than that recorded on the published plate, 
which registers at a mere 17 ft, 7.5 in., including the capital. Given these circum-
stances, it is possible that the calculation represents an attempt to determine a 
potential column height and its corresponding abacus by working backwards from 
some of its other dimensions. That might also explain Stuart’s departures from 
Vitruvius, not only for the length of the abacus, but also for the distance between 
the volute centers. The ratio for the latter of 7/9 the abacus length is not given by 
Vitruvius, but it does result in a value very close to the capital’s actual measure-
ments (1 ft, 9.49 in. versus 1 ft, 9.68 in., a difference of about .2 in.).  31   Stuart 
seems to have been applying a rough Vitruvian logic to see which dimensions 
were related and which not.  

   Table 4    James Stuart’s arithmetic for columns from the Minerva Polias temple (the 
Erechtheion), from the Edinburgh Notebook, fol. 61   

 18. 5.05  Height of the columns of Min. Polias 

  ..........12  
 9)  221050   (24.56 + 2.0.56 diameter at bottom of columns 

 8) 2456 
 3.07 

  2. 3.60  
 9)  27.63   Length of abacus 

 3.07  =1/9 
 6.14  =2/9 which subtracted from the number below it 

  27.63  
 21.49 

 Or feet 1.9.49  Distance by calculation from centre to centre of the eye of the volute. 
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    Reconstructing Greek Volutes 

 Measuring existing capitals was one problem. Reproducing those capitals in visual 
form was quite another. In essence, Stuart had to reconstruct the method that the 
original craftsman had used to set out each volute, fi nding in the process the correct 
centers for all the arcs and ensuring that they fi t the measured points. His aim here 
was not merely antiquarian. If Stuart had any hope of accurately reproducing the 
volutes for publication, so that the engraved curves actually corresponded to the 
recorded measurements, he had to fi nd the original setting out procedure. For this 
task, however, he faced a signifi cant obstacle: he was unaware of the techniques 
with which Greek architects worked and had, if anything, an overdeveloped view of 
their geometrical complexity. A brief review of what we know today about these 
techniques reveals two factors that may have aided Stuart in his own reconstruc-
tions. First, there were multiple ways that the ancients constructed the volute; some 
were very elaborate, but others were much simpler. Second, effi ciency in the build-
ing process was often just as or more important than geometrical coherence. 

 Classical architects were on site to provide direction to the craftsmen. In all 
cases, these architects would have negotiated budgets and general designs ( syno-
graphai ) with their patrons—often with the city-state itself. The lead architect 
determined the non-essential elements of design on site. He could determine the 
decorative details, such as the volute, only after constructing the base of the 
temple, most importantly the stylobate and intercolumniations. These dimen-
sions determined the proportions of the upper elements. Once the ground plan of 
the temple was established, the architect was responsible for overseeing specifi c 
elements of the design, providing  paradeigmata , or templates, for his craftsmen 
to copy. In the case of the Ionic capital, a craftsman under the supervision of the 
architect would have created a wood, clay, or possibly stone model of the volute. 
This prototype served as the basis from which all the capitals would then have 
been carved. Making it was a simple task of transferring its outline, via calipers, 
to new stone blocks.  32   The  paradeigmati  would have had much the same function 
as workshop drawings do today. For a repetitive element such as a volute, they 
had the advantage that the complex process of setting it out only had to be under-
taken once. 

 Modern archaeologists have discovered several examples of  paradeigmati . The 
Temple of Apollo at Didyma, for example, houses an extensive set of full-scale 
“blueprints,” as Lothar Haselberger has described them.  33   He identifi ed thin inscrip-
tions on the walls and fl oors as construction drawings for elements of the temple’s 
architecture. Other massive  paradeigmati  have been found in Pergamon, Priene, 
Baalbeck, and Rome, among other locations.  34   Likewise, prototype  paradeigmati  
for small details have also been uncovered, including examples of Ionic capitals. 
One exemplary specimen, now at the University Museum, Berne, comes from an 
unknown location in Greece and still includes the inscribed vertical axis, vertical 
and horizontal tangents, as well as 11 compass points within the oculus. Thomas 
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Loertscher has analyzed this example in detail, and his conclusions point to a 
setting- out system not described by early modern architectural writers.  35   

 In addition to  paradeigmati , surviving elements of ancient architecture also point 
to the working methods of ancient architects. Unfi nished capitals from Priene and 
Didyma suggest at least two of the ways that ancient architects designed their 
volutes. The fi rst method was used at the Temple of Apollo at Didyma (ca. 330 
BCE), designed by Paeonius of Miletus and Daphnis of Ephesus. Several of these 
examples include the craftsmen’s inscribed guidelines, including a series of inter-
secting lines to divide the oculus into eighths.  36   These capitals were likely the  para-
deigmati  for the other capitals at Didyma to which craftsmen could have turned as 
a reference. While a detailed investigation of the Didymaean volute is wanting, it is 
probable that the centers rest along the diagonals, as there would be little need to 
inscribe them otherwise. 

 Another surviving fragment is from the Temple of Athena Polias at Priene 
(ca. 350–330 BCE), studied by Gorham P. Stevens in 1931.  37   Although the volutes 
on this capital are fi nished and the method of laying out erased, Stevens was able to 
reconstruct 63 points along the spiral. Applying Euclid’s theorem that only one 
arc—with, of course, only one centre—can pass through any three points, he discov-
ered the system used for creating the volute, which was set out from 16 centers along 
the diagonals to the vertical axis. Similar to Vignola’s method, the Priene capital was 
laid out with a square inscribed within the oculus, the corners bisected by 45° radii. 
Each diagonal was divided into 16 units, with the centre of each arc steadily rotated 
towards the centre, in fact, partly following an Archimedean spiral. 

 Stuart’s task was the same as that later taken up by Stevens, namely to fi nd the 
centers from which an existing volute has been set out and to determine from these 
the sequence in which the arcs were drawn. For the fi rst of these tasks, he probably 
used the same method that Stevens did, by bisecting two or more chords in each arc 
and extending perpendiculars from them. This elementary procedure, known since 
Euclid, was also an implicit part of Guillaume Philandrier’s method of volute con-
struction. Once the centers were located, however, a recipe for connecting them still 
had to be found. This problem was not at all straightforward, and Stuart met it with 
only mixed success. The fi rst volute that he and Revett published was that of the 
unnamed Ionic temple on the Illissos river (destroyed in 1778), included in the fi rst 
volume of the  Antiquities  (Ch. II, plate VII). Their measurements must have been 
reasonably accurate, for they served as the basis of a convincing reconstruction by 
their friend and colleague Stephen Riou. Riou had travelled with the two men to 
Athens and, on his return, worked out a method for laying out the temple’s volute, 
transforming the published dimensions into a system of modular parts (Fig.  13 ). He 
published the reconstruction in 1768.  38  

   Riou’s achievement may have given Stuart an unjustifi ed confi dence. As he 
began preparing his notes for the second volume—which contained the volutes of 
the several temples in the Erechtheion—Stuart struggled to make sense of the mea-
surements they had taken. We are able to follow his attempts thanks to the survival 
of a number of his papers in the RIBA Drawings Collection. These diagrams are 
accompanied by written notes, consisting of numbered sequences of steps for laying 
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out the construction in the eye of the volute. The centers of the arcs are numbered, 
and corresponding numbers are to be found on the volutes themselves, indicating 
the limits of each arc. The latter are also found on some of the published plates, 
marked with a small asterisk. Their presence suggests that the engraver followed 
one or more of Stuart’s recipes to draw the volutes. However, it is not clear why he 
might have retained numbers on the arcs without the construction diagrams in the 
eye of the volute, for the former are meaningless without the latter. 

 What stands out about Stuart’s reconstruction attempts is how cumbersome, 
impractical, and hard to follow they are. The unidentifi ed construction reproduced 
in Fig.  14 , for example, requires 17 different steps with a compass and ruler, and 

  Fig. 13    Reconstruction of 
the volutes from the unnamed 
Ionic temple on the Illissos 
river (now destroyed) 
(From Riou  1768 )       
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even one with a protractor. The fi ne dotted lines are used to make the numerous 
divisions called for in the recipe. Even more curious is that the prescribed compass 
centers follow no obvious pattern for their sequence or placement in the eye. A second 
diagram for the volutes on the engaged columns of the western fl ank of the Erechtheion 
is only marginally more sensible. The construction takes the recognizable—if 
complicated—form of pentagons nestled in fi ve-pointed stars (Fig.  15 ). 

  Fig. 14    Stuart’s attempt to reconstruct the setting out of the volute of an unidentifi ed Ionic capital, 
from his papers in the RIBA Drawings Collection, SD 93/4/3       

  Fig. 15    Stuart’s attempt to 
reconstruct the volute of the 
engaged columns of the 
“Temple of Minerva Polias” 
(the western fl ank of the 
Erectheion), from his papers 
in the RIBA Drawings 
Collection, SD 93/4/3       
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In principle, such shapes could help to form arcs of 72° (360/5), diminishing from 
one pentagon to the next at a regular rate. Yet the construction does not follow this 
process. Instead, the compass centers leap randomly about the whole construction, 
from the outer points of the larger star and back and forth between the larger and 
smaller inscribed pentagons. In general, the prescribed radii diminish as they prog-
ress, which is what one would be looking for. The distance 2–3, for example, is 
shorter than the distance 1–2 and 3–4 is smaller than 2–3, but Stuart does not stick 
to this pattern. Moving the compass point from 4 to 5 produces no reduction in the 
radius of the curve. Moreover, the curious step that leads to point 6 appears to have 
no logic whatsoever, for it results in an  increased  radius. William Newton, the edi-
tor of this second volume of the  Antiquities , published the construction (Fig.  16 ), 
but it is unlikely that the engraver actually used it to produce the accompanying 
volute. A third method, for the capital of the “Temple of Erectheus”, or the eastern 
portico of the Erechtheion, is even more complex.  39   In the fi rst place, it requires the 
construction of a heptagon, which is not strictly possible with a ruler and compass 
alone. Even apart from this diffi culty, the recipe is so convoluted that it resists 
attempts to follow it, even with the aid of the corresponding sketch.

     How can we explain Stuart’s thinking here? None of these procedures is credible 
as the method by which the original volutes were set out, and it is diffi cult to 

  Fig. 16    Pentagonal diagram ( lower left ) based on Stuart’s attempted reconstruction in Fig.  15 , as 
published in Stuart and Revett ( 1762 –1830)       
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understand why Stuart felt it necessary to look for and propose such unlikely reci-
pes. One has the distinct impression that he was not able to fi t a curve to the mea-
sured points and was simply looking for any construction that would do so. In the 
end, none of the manuscript constructions for the volutes in the second volume was 
used. A simple measure of the spirals as engraved on the published plates shows that 
their proportions do not conform to the measurements given. The engraver appears, 
in other words, to have merely labeled the volutes with Stuart’s values after con-
structing them by other means.  40   

 Two explanations suggest themselves for this inability to square the data with 
a more plausible setting out method. One possibility is that the data itself was 
compromised. Indeed, it is diffi cult to imagine inaccuracies  not  creeping into such 
a fi ne measuring process taking place on a ladder 18 ft above the ground. Another 
contributing factor may have been that Stuart was expecting an unrealistic level of 
geometrical perfection in the volutes themselves. For the Greek craftsman, a 
mathematically precise curve was, of course, impossible, but also unnecessary. 
All the mason required was a number of points suffi ciently close that he could 
carve something between them that would satisfy the eye. Both Stevens’s and 
Lörtsch’s reconstructions suggest approximate spirals of just this sort. The use of 
models and templates— paradeigmata —introduces a further stage in which 
deviations from the strict mathematical form of a volute might have been intro-
duced: in the copying process. Even if Stuart’s measurements were accurate, in 
other words, they may have included too many variations—introduced between 
the original setting-out drawing and the process of carving—to allow them to be 
fi tted to a regular geometrical construct. Indeed, Stuart and Revett’s own fi gures 
suggest that they were not measuring perfect spirals. Four volutes are illustrated 
in the  Antiquities , and to check their “accuracy”, we can plot the radii of the 
volutes at successive points on a graph    (Fig.  17 ). A geometrically precise volute 
would produce a smooth curve, but this does not appear. The graph for each volute 
dips and rises unevenly.

   It is worth noting that Stuart could have easily avoided these diffi culties, both for 
himself and his engraver. Philandrier’s method showed how to draw a volute by fi rst 
determining the radials from the center toward a series of points set out at 45° inter-
vals along the spiral. The system was well-known and had recently been repub-
lished by Abraham Swan in a popular practical handbook.  41   Working backward 
from his own measurements, Stuart could have used Philandrier’s method to draw a 
volute composed of successive 45° arcs. This approach would have no doubt 
entailed signifi cant drawbacks. The arcs would not lie on a continuous curve, but 
would have been subtly “broken” from one to the other. More importantly, once the 
centers of the arcs were found, the method gave no recipe for connecting them. 
Philandrier’s method, in other words, would have been adequate for the engraver, 
but it gave no way of replicating the volutes at different scales for use in a practical 
design context. This seems to have been enough to dissuade Stuart.  
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    Conclusion 

 The original survey drawings that survive represent only a small proportion of the 
measurements that Stuart and Revett made during their sojourn in Greece, but they 
are enough to give us a good idea of their working method. Whereas the published 
dimensions are presented as polished, unproblematic, and absolute, we can now see 
that the reality was somewhat messier. The fi eld notes often show not only minor 
differences between the recorded measurements and those on the published plates, 
but also small variations between multiple repeated measurements. These variations 
suggest that a process of selection and correction took place both in the fi eld and 
while preparing the published work. It is now also clear that some calculation was 
involved in obtaining these fi gures. Indeed, measurements within one thousandth of 
an inch were usually possible in no other way. The “accuracy” that so impressed the 
architects of the nineteenth century in effect disguised a process marked by trial-
and-error, fi gures derived from others, and subjective judgment. 

 Stuart made it clear in his introduction to the fi rst volume of the  Antiquities  that 
his purpose was simply to record the dimensions of the monuments as accurately as 
possible and not to impose upon his measurements any preconceived theory of 
design. He took care to proceed by “purposely forbearing to mention Modules, as 
they necessarily imply a System.” On several occasions, however, he could not 
avoid making assumptions about the forms of the buildings and the way in which 
they were set out for construction. Indeed, the large number of Stuart’s notebook 
calculations rather suggests that he made strenuous attempts to check for such 

  Fig. 17    Graph of the radii of volutes, from Stuart and Revett ( 1762 –1830)       
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proportions. When faced with a structure as ruined as the Theater of Bacchus, for 
example, Stuart needed to know that the centre of the circle from which the  pulpitum  
was set out was not in line with the  versurae , as a naïve surveyor might have 
supposed, but in front of them. For this, he had Vitruvius and Perrault to guide him, 
so that he could immediately make the appropriate measurements and adopt a 
geometrical method to fi nd this center. It is also clear from his calculations accom-
panying the sketch of the Temple at Pola, his check on the capital of the Minerva 
Polias, and numerous other calculations that have not yet been completely explained, 
that he was making comparisons between his measured dimensions and theories of 
proportion. For the most part, these remained private experiments, but they were 
nonetheless essential steps in his understanding of the ruins. 

 One of the overarching results of this process was a perhaps inevitable lessening 
of Vitruvius’s authority. Few of the Roman author’s recommendations appeared to 
be borne out by their measurements, particularly those for Ionic volutes. Nor were 
modern methods from Serlio onwards satisfactory either. Worse, they appear to 
have misled Stuart toward an unrealistic expectation of the kinds of constructions 
that the Greeks actually used. Did he not see how improbable his own attempts were 
to fi nd a method that fi tted the measured points? Despite the occasional failure, 
Stuart and Revett’s work entailed important insights. Their intimate contact with 
and their scrupulous measuring of the architecture itself must have convinced them 
that not only could no modular system be strictly applied, but that architectural 
practice in ancient Greece was more varied than they and their contemporaries often 
assumed. This realization is best represented not by the dimensions in their fi nal, 
published form, but rather by the manuscript fi eld notes, which record how they 
measured and made sense of them.  

                                             Notes 

 Jason M. Kelly contributed to the section of this paper that deals with the Ionic 
volute. Frank Salmon wrote the introduction and edited the whole. David Yeomans 
wrote the remainder of the paper and produced most of the illustrations. We would 
like to thank Prof. Charles Goldie for his comments on the geometry of the Ionic 
volute and Anthony Gerbino for his advice and patience.   

   1.    See Wood ( 1753 , (a) r ): the “principal merit of works of this kind is truth” and 
James and Revett (1762–1830, vol. 1, vii): “we determined to avoid Haste, and 
System, those most dangerous enemies to accuracy and fi delity.”   

   2.    See Watkin ( 1996 , 641).   
   3.    Penrose ( 1851 , ix).   
   4.    Landy ( 1956 , 255, 258, and 259). For a more recent account of Stuart and 

Revett that locates the debate about “accuracy” in cultural terms see Kaufman 
( 1989 , 74).   

   5.    See Salmon ( 2006 , 107–17).   
   6.    Stuart’s Temple of Winds at Mount Stewart, Co. Down, of 1782–85, for exam-

ple, follows the principal dimensions of the Athenian original very closely.   
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   7.    Laing Mss., La.III.581, Edinburgh University Library. There is also a 
sketchbook in the collection of the Royal Institute of British Architects 
(SKB/336/2). Joseph Woods, who edited the fourth volume of  The 
Antiquities of Athens  (1816, ii), recorded that he had been handed 54 of 
Stuart’s manuscript notebooks.   

   8.    Much as we see in the Stuart’s drawing of himself studying the Erechtheion in 
Stuart and Revett,  The Antiquities of Athens,  2: plate II.   

   9.    Edinburgh notebook, fol. 73v. For further detail on their methods and equip-
ment see Salmon ( 2006 , 131–32).   

   10.    Stuart and Revett ( 1762 –1830, vol. 4 (1816), 29).   
   11.    Stuart and Revett ( 1762 –1830, vol. 1, vii). For a full account, see Salmon 

( 2006 ).   
   12.    Vitruvius ( 1999 ), 58.   
   13.    He began by dividing the total length of the building by 50. Taking the result of 

that calculation (13.6), he then divided the length of the cella by a fi gure close 
(but not exactly equal) to it (13.8), obtaining 27 as the result. Even aside from 
Stuart’s intentional fudging, the arithmetic here is incorrect. The answer should 
have been 28.1, but neither result would have agreed with Vitruvius’s recom-
mendation of 5/8.   

   14.    See Salmon ( 2006 , 124).   
   15.    This is explained in Stuart’s published account, Stuart and Revett ( 1762 –1830, 

vol. 2, 23). The break in the site notes possibly refl ects a period of failed nego-
tiations with the Turkish authorities.   

   16.    Edinburgh Notebook, fols.165v and 167r. The editions to which he refers are: 
Vitruvius ( 1556 ) and Vitruvius ( 1673 , 2nd ed. 1684). These pages of the note-
book also reproduce the French text of Perrault’s Vitruvius, which Stuart trans-
lated to obtain the section quoted here.   

   17.    Stuart and Revett ( 1762 –1830, vol. 2, 24).   
   18.    Edinburgh Notebook, fol. 65v. Stuart’s dimensions were also recorded in a 

cross-section of the theater: Additional MSS 21153, fol. 72, British Library.   
   19.    Stuart and Revett ( 1762 –1830, vol. 2, 24).   
   20.    Stuart and Revett ( 1762 –1830, vol. 1, ii, fn. A). Also see Fréart de Chambray 

( 2005 , orig. ed. 1650, 91–2) for a similar judgment.   
   21.    Stuart and Revett ( 1762 –1830, vol. 1, ii and 7).   
   22.    Carpenter ( 1926 , 253).   
   23.    Serlio ( 1537 ). On this subject, see Losito ( 1993 ) and Andrey and Galli ( 2004 , 

33–36).   
   24.    See Salviati ( 1552 ); Vignola ( 1572 , pl. 20,  1999 ).   
   25.    Fréart de Chambray ( 2005 , 110) and Perrault ( 1722 , 69–74, pl. IV).   
   26.    First published in Goldmann ( 1649 ).   
   27.    Chambers ( 1791 , 53).   
   28.    British Library, Additional Manuscripts 22153, fols. 61–68 and RIBA Drawings 

Collection, SD 93/4, fols. 1–7.   
   29.    See Andrey and Galli ( 2004 , 37–38).   
   30.    A sheet in the RIBA Drawings Collection, SD 93/4 reproduces this calculation 

in the form of a small sketch.   
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   31.    The latter fi gure does not appear on the published plates but can be deduced 
from them by subtracting from the whole capital width (36.834 in.) the dis-
tances from the centers to the outer edges of the volutes (7.575 on each side).   

   32.    See Coulton ( 1977 , 53–58); Petronōtēs ( 1972 ); and Coulton ( 1976 ).   
   33.    See the following articles by Lothar Haselberger ( 1980 ,  1983 ,  1985 ,  1991 ).   
   34.    See Haselberger ( 1994 ); Kalayan ( 1971 ); Koenigs ( 1983 ); and Schwandner 

( 1990 ). For a more extensive bibliography, see Wilson Jones ( 2000 , 249).   
   35.    Loertscher ( 1989 ). Also see Haselberger ( 1997 , 89–92).   
   36.    Haselberger ( 1985 ).   
   37.    Stevens ( 1931 ).   
   38.    Riou ( 1768 , 34–5, pl. 9).   
   39.    RIBA Drawings, SD 93/4/3   
   40.    The carefully drawn volute in Vol. III for the Ionic colonnade near the Lantern of 

Demosthenes (Ch. XI, Pt. 1) provides a similar case. The diagram, produced by 
Willey Reveley from Stuart’s surviving notes, depicts a logarithmic volute with 
the centers of the arcs based on diminishing squares. The dimensions given for 
the volute, however, correspond only fi tfully to the illustration, and several val-
ues are simply missing. We must conclude that Reveley was presented with 
poorly recorded fi eld notes that were ultimately impossible to interpret. He 
appeared to be aware of the discrepancies but decided to let them stand, on the 
justifi cation that “Mr Stuart has left no memorandum on the subject of these 
disagreements.” Stuart and Revett ( 1762 –1830, vol. 3 [ed. Willey Reveley], vii).   

   41.    Swan ([ 1745 ], pl. VIII).      
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