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Abstract Road vehicle travel at a reasonable speed involves some risk, even 
when using computer-controlled driving with failure-free hardware and perfect 
sensing. A fully-automated vehicle must continuously decide how to allocate this 
risk without a human driver’s oversight. These are ethical decisions, particularly 
in instances where an automated vehicle cannot avoid crashing. In this chapter, I 
introduce the concept of moral behavior for an automated vehicle, argue the need 
for research in this area through responses to anticipated critiques, and discuss rel-
evant applications from machine ethics and moral modeling research.
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1  Ethical Decision Making for Automated Vehicles

Vehicle automation has progressed rapidly this millennium, mirroring improve-
ments in machine learning, sensing, and processing. Media coverage often focuses 
on the anticipated safety benefits from automation, as computers are expected to 
be  more  attentive,  precise,  and  predictable  than  human  drivers.  Mentioned  less 
often are the novel problems from automated vehicle crash. The first problem is 
liability, as it is currently unclear who would be at fault if a vehicle crashed while 
self-driving. The second problem is the ability of an automated vehicle to make 
ethically-complex decisions when driving, particularly prior to a crash. This chap-
ter focuses on the second problem, and the application of machine ethics to vehi-
cle automation.
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Driving at any significant speed can never be completely safe. A loaded trac-
tor trailer at 100 km/h requires 8 s to come to a complete stop, and a passenger 
car requires 3 s [1]. Truly safe travel requires accurate predictions of other vehi-
cle behavior over this time frame, something that is simply not possible given the 
close proximities of road vehicles.

To ensure its own safety, an automated vehicle must continually assess risk: the 
risk of traveling a certain speed on a certain curve, of crossing the centerline to 
pass a cyclist, of side-swiping an adjacent vehicle to avoid a runaway truck clos-
ing in from behind. The vehicle (or the programmer in advance) must decide how 
much risk to accept for itself and for the adjacent vehicles. If the risk is deemed 
acceptable, it must decide how to apportion this risk among affected parties. These 
are ethical questions that, due to time constraints during a crash, must be decided 
by the vehicle autonomously.

The remainder of the chapter is organized into the parts. In Sect. 2, responses 
are provided to nine criticisms of the need for ethics research in automated vehicle 
decision systems. Section 3 contains reviews of relevant ethical theories and moral 
modeling research. The chapter is summarized in Sect. 4.

2  Criticisms of the Need for Automated Vehicle Ethics 
Systems, and Responses

Future automated vehicles will encounter situations where the “right” action is 
morally or legally ambiguous. In these situations, vehicles need a method to deter-
mine an ethical action. However, there is disagreement among experts on both of 
these points. This section lists nine criticisms of the importance of ethics in vehi-
cle automation, with responses to each.

Criticism 1: Automated vehicles will never (or rarely) crash. If an auto-
mated vehicle never crashes, then there is no need to assess or assign risk because 
driving no longer contains risk. Industry experts are mostly cautious regarding 
whether vehicle automation can ever ultimately eliminate all crashes. Claims of 
complete safety are often based on assumptions about the capabilities of auto-
mated vehicles and their interactions with their environments. These assumptions 
can be grouped into three scenarios: automated vehicles with imperfect systems, 
automated vehicles with perfect systems driving in mixed traffic with human driv-
ers, and automated vehicles with perfect systems driving exclusively with other 
automated vehicles. Crashes are possible in each scenario, as described in the fol-
lowing paragraphs.

•	 Imperfect systems. Any system ever engineered has occasionally failed. In the 
realm of automated vehicles, Fraichard and Kuffner [2] list four reasons for a 
collision: hardware failures, software bugs, perceptual errors, and reasoning 
errors. While hardware failures may be somewhat predictable and often grad-
ual, software failures are unexpected and sudden, and may prove riskier at high 
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speeds. Perceptual errors may result in misclassifying an object on the roadway. 
Even  if  a  pedestrian  is  correctly  classified,  an  automated  vehicle  would  need 
some way to perceive her intent, e.g. whether she is about to step into the road 
or is merely standing on the sidewalk. A mistake in this calculation could lead 
to a crash, especially considering the close proximity and high speed differen-
tials on roadways.

•	 Perfect systems with mixed human-driven traffic. A perfectly automated 
vehicle with complete awareness of its surroundings should be able to safely 
avoid static objects. Dynamic objects with unpredictable behavior pose a greater 
challenge. The best way to avoid a collision is to avoid any place, time, and 
trajectory on  the roadway (referred  to as a state) which could possibly  lead  to 
a crash. In robotics, a state where all possible movement result in a crash is 
referred to as an inevitable collision state [3]. Researchers have acknowledged 
that with road vehicles, there is no way to completely avoid inevitable collision 
states [4], only to minimize the probability of entering one [5]. The only reason-
able strategy is to construct a model of the expected behavior of nearby vehicles 
and try to avoid likely collisions-based on patent filings, this appears to be a 
component of Google’s self-driving car [6]. Without a sophisticated model of 
expected vehicle behavior, a “safe” automated vehicle would be forced to over-
react to perceived threats. For example, a “flying pass” maneuver, where a vehi-
cle approaches a stopped queue at high speed only to move into a dedicated turn 
lane at the last moment, appears identical to a pre-crash rear-end collision [7, 
p. 140]. To guarantee safety, an automated vehicle would have  to evade many 
similar maneuvers each day. This is both impractical and dangerous.

•	 Perfect systems without human-driven traffic. Perfect vehicles traveling on a 
freeway with other perfect vehicles should be able to safely predict each other’s 
behavior and even communicate wirelessly to avoid collisions. Yet these vehi-
cles would still face threats from wildlife (256,000 crashes in the U.S. in 2000), 
pedestrians  (73,000  crashes),  and  bicyclists  (51,000  crashes)  [8]. Although 
a sophisticated automated vehicle would be safer than a human driver, some 
crashes may be unavoidable. Furthermore, the perfect systems described in this 
scenario are neither likely nor near-term.

Criticism 2: Crashes requiring complex ethical decisions are extremely unlikely. 
In order to demonstrate the difficulty of some ethical decisions, philosophers will use 
examples that seem unrealistic. The trolley problem [9], where a person must decide 
whether to switch the path of a trolley onto a track that will kill one person in order 
to spare five passengers, is a common example [10]. The trolley problem is popular 
because it is both a difficult problem and one where people’s reactions are sensitive to 
context, e.g. pushing a person onto the track instead of throwing a switch produces dif-
ferent responses, even though the overall outcome is the same.

The use of hypothetical examples may suggest that ethics are only needed in 
incredibly rare circumstances. However, a recent profile of Google’s self-driving 
car team suggests that ethics are already being considered in debris avoidance: 
“What if a cat runs into the road? A deer? A child? There were moral questions 
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as well as mechanical ones, and engineers had never had to answer them before” 
[11]. Morally ambiguous situations can occur whenever  there  is  risk, and  risk  is 
always present when driving.

One can argue that these are simple problems, e.g. avoid the child at all costs 
and avoid the cat if it is safe to do so. By comparison, however, the trolley prob-
lem is actually fairly straight-forward—it has only one decision, with known con-
sequences for each alternative. This is highly unrealistic. A vehicle faces decisions 
with unknown consequences, uncertain probabilities of future actions, even uncer-
tainty of its own environment. With these uncertainties, common ethical problems 
will become “complex” very quickly.

Criticism 3: Automated vehicles will never (or rarely) be responsible for 
a crash. This assumes that absence of liability is equivalent to ethical behavior. 
Regardless of fault, an automated vehicle should behave ethically to protect not 
only its own occupants, but also those at fault.

Criticism 4: Automated vehicles will never collide with another automated 
vehicle. This assumes that an automated vehicle’s only interactions will be with 
other automated vehicles. This is unlikely to happen in the near future for two rea-
sons. First, the vehicle fleet is slow to turn over. Even if every new vehicle sold in 
the U.S. was fully-automated, it would be 30 years before 90 % of vehicles were 
replaced [12]. Second, unless automated vehicle-only zones are established, every 
fully-automated vehicle will have to interact with human drivers, pedestrians, 
bicyclists, motorcyclists, and trains. Even an automated-only zone would encoun-
ter debris, wildlife, and inclement weather. These are all in addition to a vehicle’s 
own hardware, software, perceptual, and reasoning failures. Any of these factors 
can contribute to or independently cause a crash.

Criticism 5: In level 2 and 3 vehicles, a human will always be avail-
able to take control, and therefore the human driver will be responsible for 
ethical decision making.  Although  the  National  Highway  Traffic  and  Safety 
Administration  (NHTSA)  definitions  require  that  a  person  be  available  to  take 
control of a vehicle with no notice in a level 2 automated vehicle and within a rea-
sonable amount of time in a level 3 automated vehicle [13], this may be an unreal-
istic expectation for most drivers.

In  a  level  2  vehicle,  this  would  require  a  driver  to  pay  constant  attention  to 
the roadway, similar to when using cruise control. Drivers in semi-autonomous 
vehicles with lane-keeping abilities on an empty test track exhibited significant 
increases in eccentric head turns and secondary tasks during automated driving, 
even in the presence of a researcher [14]. Twenty-five percent of test subjects were 
observed reading while the vehicle was in autonomous mode. Similar results have 
been found in simulator driving studies [15]. The effect of automation on a driv-
er’s attention level remains an open question, but early research suggests that a 
driver cannot immediately take over control of the vehicle safely. Most drivers will 
require some type of warning time.

Level 3 vehicles provide this warning time, but the precise amount of time 
needed is unknown. The NHTSA guidance does not specify an appropriate warn-
ing time [13], although some guidance can be found in highway design standards. 
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The  American  Association  of  State  Highway  and  Transportation  Officials 
(AASHTO)  recommends  highway  designers  allow  200–400  m  for  a  driver  to 
perceive and react to an unusual situation at 100 km/h [16]. This corresponds to 
7–14 s, much of which is beyond the range of today’s radar at 9 s [17]. In an emer-
gency, a driver may be unable (or unwilling) to assess the situation and make an 
ethical decision within the available time frame. In these situations, the automated 
vehicle would maintain control of the vehicle, and by default be responsible for 
ethical decision making.

Criticism 6: Humans rarely make ethical decisions when driving or in 
crashes, and automated vehicles should not be held to the same standard. 
Drivers may not believe themselves to be making ethical decisions while driving, 
but they actually make these decisions often. The decision to speed or to cross a 
yellow line to provide a cyclist additional room are examples of ethical decisions. 
Any activity that transfers risk from one person to another involves ethics, and 
automated vehicles should be able to make acceptable decisions in similar envi-
ronments. Considering that Americans drive 4.8 trillion kilometers each year [18], 
novel situations requiring ethics should emerge steadily.

Criticism 7: An automated vehicle can be programmed to follow the law, 
which will cover ethical situations. Existing laws are not nearly comprehensive 
or specific enough to produce reasonable actions in a computer. Lin provides an 
example of an automated vehicle coming across a tree branch in the road. If there 
was no oncoming traffic, a reasonable person would cross the double yellow line 
to get around the tree, but an automated vehicle programmed to follow the law 
would be forced to wait until the branch was cleared [19].

Of course, laws could be added for these types of situations. This can quickly 
become a massive undertaking—one would need computer-understandable defi-
nitions of terms like “obstruction” and “safe” for an automated vehicle whose 
perception system is never completely certain of anything. If enough laws were 
written to cover the vast majority of ethical situations, and they were written in 
such a way as to be understood by computers, then the automated vehicle ethics 
problem would be solved. Current law is not closed to these standards.

Criticism 8: An automated vehicle should simply try to minimize dam-
age at all times. This proposes a utilitarian ethics system, which is addressed in 
Sect. 3.1 and in previous work [20]. Briefly, utilitarianism’s main obstacle is that it 
does not recognize the rights of individuals. A utilitarian automated vehicle given 
the choice between colliding with two different vehicles would select the one with 
the higher safety rating. Although this would maximize overall safety, most would 
consider it unfair.

Criticism 9: Overall benefits outweigh any risks from an unethical vehicle. 
This is perhaps the strongest argument against automated vehicle ethics research, 
that any effort which may impede the progress of automation indirectly harms 
those who die in the interim between immediate and actual deployment.

While preliminary evidence does not prove automation is safer than human 
drivers [20], it seems likely that automation will eventually reduce the crash rate. 
Lin has argued, however, that a reduction in overall fatalities may be considered 
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unethical [21], as improved safety for one group may come at the expense of 
another. If vehicle fatalities are reduced, but cyclist fatalities increase, even an 
overall safety improvement might be unacceptable to society.

Second, this assumption uses a purely utilitarian view that maximizing lives saved 
is the preferred option. Society, however, often uses a different value system consid-
ering the context of a given situation. For example, the risk of death from nuclear 
meltdown is often over-valued, while traffic fatalities are under-valued. Society may 
disagree that a net gain in safety is worth a particularly frightening risk. If, in fact, the 
ultimate goal is to improve safety, then ensuring that automated vehicles behave in 
acceptable ways is critical to earning the public’s trust of these new technologies.

Finally, the safety benefits of automated vehicles are still speculative. To be 
considered safer than a human driver with 99 % confidence, an automated passen-
ger vehicle would need to travel—without human intervention—1.1 million kilo-
meters without crashing and 482 million kilometers without a fatal crash [20]. As 
of this writing, an automated vehicle has yet to safely reach these mileages.

3  Relevant Work in Machine Ethics and Moral Modeling

There are two main challenges when formulating an ethical response for an auto-
mated vehicle. The first is to articulate society’s values across a range of scenar-
ios. This is especially difficult given that most research into morality focuses on 
single  choices  with  known  outcomes  (one  person  will  always  die  if  the  trolley 
changes track), while in reality outcomes are uncertain and there are several layers 
of choices. The second challenge is to translate these morals into language that a 
computer can understand without a human’s ability to discern and analogize.

The recent field of machine ethics addresses these challenges through the 
development of artificial autonomous agents which can behave morally. While 
much of machine ethics work is theoretical, a few practical applications include 
computer modeling of human ethics in areas such as medicine, defense, and engi-
neering. This section provides background on ethical theories, and reviews exam-
ples of computational moral modeling.

3.1  Ethical Theories

Researchers have investigated the potential for various moral theories for use in 
machine ethics applications, including utilitarianism [22], Kantianism [23–25], 
Smithianism [26], and deontologicalism [27, 28]. Deontologicalism and utilitari-
anism have been discussed as potentials for automated vehicle ethics, with short-
comings found with both theories [20].

Deontological ethics consist of limits that are placed on a machine’s behav-
ior, or a set of rules that it cannot violate. Asimov’s three laws of robotics are a 
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well-known example of deontological ethics [29]. A shortcoming of deontological 
ethics appears when reducing complex human values into computer code. Similar 
to the traffic law example from this chapter’s seventh criticism, rules generally 
require some common sense in their application, yet computers are only capable 
of literal interpretations. These misinterpretations can lead to unexpected behav-
ior. In Asimov’s laws, an automated vehicle might avoid braking before a collision 
because this action would first give its occupants whiplash, thereby violating the 
first law prohibiting harm to humans. Rules can be added or clarified to cover dif-
ferent situations, but it is unclear if any set of rules could encompass all situations. 
Developing rules also requires that someone articulate human morals, an excep-
tionally difficult task given that there has never been complete agreement on the 
question of what is right and wrong.

Another useful moral theory is utilitarianism. This dictates that an action is 
moral if the outcome of that an action—or in the case of automated vehicles, the 
expected outcome—maximizes some utility. The advantage of this method is that 
it is easily computable. However, it is difficult to define a metric for the outcome. 
Property  damage  estimates  can  produce  unfair  outcomes,  as  they  would  recom-
mend colliding with a helmeted motorcyclist over a non-helmeted one, as the hel-
meted rider is less likely experience costly brain damage. This example illustrates 
another shortcoming of utilitarianism—it generally maximizes the collective ben-
efit rather than individuals’ benefits, and does not consider equity. One group may 
consistently benefit (un-helmeted riders) while another loses.

Hansson has noted that risk-taking in radiation exposure combines the three 
main ethical theories of virtue (referred to as justification), utilitarianism (optimi-
zation), and deontologicalism (individual dose limits) [30]. Automated vehicle eth-
ics will also likely require a combination of two or more ethical theories.

3.2  Practical Applications

There have been several attempts to develop software that can provide guidance 
in situations requiring ethics. One of the first examples was a utilitarian software 
tool called Jeremy [31]. This program measured the utility of any action’s outcome 
by using the straightforward product of the outcome’s utility intensity, duration, 
and probability, each of which were estimated by the user. In an automated vehicle 
environment, utility could be defined as safety or the inverse of damage costs, with 
intensity, duration, and probability estimated from crash models. A major short-
coming of this model is its exclusive use of utilitarianism, an ethical theory which 
disregards context, virtues, and limits on individual harm.

The team behind Jeremy later introduced two other software tools. The first 
was W.D. [31], which used a duty-based ethical theory influenced by Ross [32] 
and Rawls [33]. This was followed by a similar program MedEthEx [34], a tool 
meant  for  medical  applications  and  reflecting  the  duties  identified  in  Principles 
of  Biomedical  Ethics  [35].  Both  of  these  program  are  deontological,  and  are 
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trained using test cases that either violate or adhere to a formulated set of duties 
as indicated an integer score. The software uses machine learning to determine 
whether test cases of action are moral or immoral based on adherence to ethical 
principles, and calibrates these assessments using expert judgment. The output 
provides an absolute conclusion whether an action is right or wrong, and indicates 
which ethical principles were most important in the decision.

McLaren has developed  two  tools  to aid  in ethical decision making. The first 
tool is Truth-Teller,  a  program  that  analyzes  two  case  studies  where  the  subject 
must decide whether or not to tell the truth [36]. The program identifies simi-
larities and differences between the cases, and lists reasons for or against telling 
the truth in each situation. This is an example of casuistic reasoning, where one 
reaches a conclusion by comparing a problem with similar situations instead of 
using rules learned from a set of test cases. Case studies are inputted using sym-
bols rather than natural language processing to be more easily machine-readable. 
A similar program from McLaren, SIROCCO [36], uses casuistry to identify prin-
ciples from the National Society of Professional Engineers code of ethics relevant 
to an engineering ethics problem. Like Truth-Teller, SIROCCO avoids moral judg-
ments, and instead suggests ethically relevant information that can help a user 
make decisions.

The U.S. Army recently funded research into automated ethical decision mak-
ing as a support tool for commanders and eventual use in robotic systems. The first 
step in this effort is a computer model which attempts to assess the relative moral-
ity of two competing actions in a battlefield environment. This model, referred to 
by its developers as the Metric of Evil, attempts to “provide results that resem-
ble human reasoning about morality and evil” rather than replicate the process of 
human reasoning [37]. To calculate the Metric of Evil, the model sums the evil 
for each individual consequence of an action, taking into account high and low 
estimates of evil, confidence intervals, and intentionality. A panel of experts then 
rates a set of ethical test cases, and the weights of each type of consequence are 
adjusted so that the model output matches expert judgment. While the Metric of 
Evil provides decisions on which action is more ethical, it does not provide the 
user with evidence supporting its conclusion.

Computational moral modeling is in its infancy. The efforts described in this 
chapter, particularly MedEthEx and the Metric of Evil, show that it is possible to 
solve ethical problems automatically, although much work is needed, particularly 
in model calibration and incorporating uncertainty.

4  Summary

Automated vehicles, even sophisticated examples, will continue to crash. To mini-
mize damage, the vehicle must continually assess risk to itself and others. Even sim-
ple maneuvers will require the vehicle to determine if the risk to itself and other is 
acceptable. These calculations, the acceptance and apportionment of risk, are ethical 
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decisions, and human drivers will not be able to oversee these decisions. The vehi-
cle must at times make ethical choices autonomously, either via explicit pre-pro-
grammed instructions, a machine learning approach, or some combination of the 
two. The fields of moral modeling and machine ethics have made some progress, 
but much work remains. This chapter is meant as a guide for those first encountering 
ethical systems as applied in automated vehicles to help frame the problem, convey 
core concepts, and provide directions for useful research in related fields.
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