
Towards Dynamic Cache and Bandwidth

Invasion

Carsten Tradowsky1, Martin Schreiber2, Malte Vesper1, Ivan Domladovec1,
Maximilian Braun1, Hans-Joachim Bungartz2, and Jürgen Becker1

1 Institute for Information Processing Technology, Karlsruhe Institute of Technology
{tradowsky,becker}@kit.edu,

{malte.vesper,ivan.domladovec,maximilian.braun}@student.kit.edu
2 Scientific Computing in Computer Science, Technische Universität München (TUM)

{martin.schreiber,bungartz}@in.tum.de

Abstract. State-of-the-art optimizations for high performance are fre-
quently related to particular hardware parameters and features. This
typically leads to optimized software for execution on particular hard-
ware configurations. However, so far, the applications lack the ability
to modify hardware parameters either statically before execution of a
program or dynamically during run-time.

In this paper, we first propose to utilize the flexibility of underlying
invasive hardware to adapt to the needs of the software. This enables us
to ask for more than just processing power by, e. g., requesting particular
cache parameters that correspond to certain application properties. The
adaptive hardware architecture therefore is able to dynamically reconfig-
ure itself dependent on the availability of the resources in order to achieve
an optimized working point for each application scenario. Secondly, we
present requirements for dynamical scheduling of computing resources
to resource-competing applications. This becomes mandatory to account
for memory-access characteristics of concurrently executed applications.
We propose consideration of such characteristics with bandwidth-aware
invasion.

With this novel approach, we are able to show that dynamic hardware
and software co-design leads to improved utilization of the underlying
hardware resulting in higher throughput in means of efficiency such as
application-throughput per time-unit.

Keywords: invasive computing, adaptive, application-specific microar-
chitecture, reconfigurable cache, compute-bound, memory-bound, HPC.

1 Introduction

Invasive computing is regarded as the paradigm of building a platform that has
a multitude of heterogeneous resources. It allows for dynamic allocation and
utilization depending on the resources’ availability to solve various computing
problems. Due to additional and changing demands of both hardware and soft-
ware requirements, respective changes have to be considered for each of those

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 97–107, 2014.
c© Springer International Publishing Switzerland 2014



98 C. Tradowsky et al.

building blocks of the invasive hardware and software architecture. Both up-
coming sections discuss the different views on dynamic adaptive hardware and
software.

1.1 Dynamic Adaptive Software

Following the trend towards many-core systems and extrapolating the number
of cores exceeding one thousand during the next decades, dynamically chang-
ing resources get mandatory for energy-efficiency, throughput optimizations and
further upcoming requirements like reliability or security. This leads to several
new demands to the application developer to be able to express this changing
resource demands.

Applications should provide information on their requirements, targeting at
improved application- and memory-throughput, real-time requirements, energy
efficiency, etc. Different application scenarios such as multi-resolution image pro-
cessing and dynamic adaptive hyperbolic simulations [1,6] set up the require-
ments from static resource requirements towards dynamic resource scheduling.
With such dynamically changing requirements of applications, further referred
as different phases, it would be beneficial for applications making particular
hardware sets available to other applications or deactivating them for energy
efficiency reasons. With memory expected to be one of the main bottlenecks in
a few years, dynamic reconfigurable memory related components such as caches
and memory bandwidth is our main focus for this work.

Running only a single program on a particular number of cores, numerical
applications such as a matrix-matrix multiplication (MMul) are typically (a)
optimized to a particular cache-line size during compile time, (b) are not able to
consider changing cache-line sizes and (c) are not able to adapt the hardware to
their requirements. To our knowledge, those dynamic optimizations so far target
only non-adaptive hardware resources in current HPC studies[1].

1.2 Dynamic Adaptive Hardware

Adaptive application-specific processors lead to higher efficiency by dedicated
support of applications [9]. E. g., i-Core provides enhanced flexibility within the
microarchitecture itself by enabling the application developer’s interaction with
the microarchitecture [19].

In addition to the standard setting of the hardware, the software developer
should provide extra input to further parametrize the i-Core. This enables the
application developer to pass on its knowledge about the application to the i-
Core in order to achieve an optimized processor configuration. We refer to this as
resource aware programming, which can as well include configurations oo caches.

To our best knowledge, a parametrizable cache was not considered so far. This
constraints the degree of freedom when defining the sizes of, e. g., the dedicated
level one caches in an optimized manner.



Towards Dynamic Cache and Bandwidth Invasion 99

2 Related Work

2.1 Dynamic Adaptive Memory

In the classical model of an n-way associative cache, parameters such as line
length, degree of associativity and number of sets exist. These parameters are
coupled by the total cache size and thus constrained by available chip resources.
Until now, most evaluations on memories have only been done using special
simulators and models neither considering silicon implementation possibilities
nor overhead. This is necessary for invasive computing since one of the key
points is resource sharing between several concurrent independent computational
problems.

For this work, the approach presented in [10] and [13], to tune the cache for
inner loops before the start of each run seems appealing and will be used to get
an overview of the benefits of adaptation. At first glance, it seems obvious that
the highest associativity (fully associative cache) would yield best performance
since the forced cache misses can be minimized. However, the gain by increasing
associativity diminishes vastly after four or eight while the hardware expendi-
ture keeps rising [5,20]. Another side effect of increasing the set size is mapping
larger memory area to the set. This reduces the benefit of having more possible
locations for element storage. With a variable fixed cache size, decreasing this
cache size by deactivating particular sets is expected to yield power benefits but
should only be considered with negligible impact on application’s performance.

In this work, we consider a fixed cache size as a given number of sets be-
ing defined by line length and associativity. The three performance related keys
compensating reduced cache size are prefetching, dense storage and temporal lo-
cality. While prefetching exploits local spatiality by pre-emptive loading of data,
dense storage refers to storing a particular amount of data in a small memory
area. A third effect to be exploited is temporal locality, which refers to data
usually being accessed multiple times in a short time frame. On the one hand,
cache-oblivious algorithms (e. g., matrix multiplication [8] and dynamic adaptive
simulations [3,18]) are likely to benefit of dynamic adaptive caches optimized to
their particular demands. On the other hand, algorithms not being able to ex-
ploit the access locality (e. g., dot product), would improve the performance of
cache-oblivious algorithms by sharing the cache resources with them.

Existing work on reconfigurable caches [14,7] uses only simulation models so
far and thus stays on the hypothetical side from the hardware point of view.
Besides these parameters, there are further additions to a cache that leverage
the same effects introduced above. They include cache-assists (prefetch buffer,
victim cache) and way management.

Prefetch Buffer: A prefetch buffer[10] is a FIFO, into which data following the
location of the last miss is loaded. On the next miss the prefetch buffer will be
queried before the request goes to a lower memory hierarchy level.



100 C. Tradowsky et al.

Victim Cache: In case of replacement, the data being replaced is stored in
a small fully associative cache, which is searched in case of a miss. This is a
mixture of temporal and spatial locality and works by increasing the virtual
cache density. An evaluation of reconfigurable combinations of a victim cache
and prefetch buffer is given in [10].

Way Management:Way management [11] introduces control bits for every line
and assumes a mixed instruction and data cache. The control bits decide whether
a way is writable for data or for instructions. Thus the size of the instruction and
data cache can be changed and parts of the memory can be shared. Furthermore,
some data can be frozen in cache by locking the line completely.

Replacement Strategies: Different replacement strategies [12] appear to be
almost orthogonal to the parameters of line length and associativity. However,
there are corner cases where different replacement strategies yield better results.

2.2 Application Requirements for Dynamic Memory

Without knowledge of applications and their performance, no appropriate run-
time decisions can be undertaken to optimize the hardware resources towards
software requirements. In order to differentiate between particular requirements
of applications, we start with taxonomy of representative state-of-the art algo-
rithms with respect to the memory-related requirements.

Bandwidth Limited Applications: Typical memory access patterns for band-
width limited applications are streams, stencils and in general a relatively small
computation / memory access (CM) ratio for current architectures. Considering
a dot product [16] under the assumption that the sum is kept in a register, two
vector components have to be loaded followed by two computations of multi-
plication of both values and adding the result to the value in the register with
CM = 2 : 2 = 1. Stencil operations are frequently used in image processing for
border detection and scientific computing for iterative solvers [4]. Considering a
simplified sparse 2D stencil operation computing second order derivatives with a
stencil size 3x3, five values have to be loaded, each followed by a multiplication
with the stencil value assumed to be available in a register and an add oper-
ation. Using blocking techniques for cache-reutilization and assuming a single
boundary-data for blocks of size

√
S×√

S still stored in cache, this leads to CM
= 6 : 5 ≈ 1.2

Compute Bound Algorithms: We consider numerical quadrature of a com-
putational intensive function [2]. With frequent evaluation of such functions with
n >> 1 instructions with higher order quadrature formula, those computations
are clearly compute bound due to avoidance of data access assuming that all
instructions to evaluate the function fit into L1 instruction-cache.

Latency Bound Algorithms: Unpredictable access to memory occurs espe-
cially with interactively driven computations such as steering, image editing as
well as spatial-residual aware iterative solvers [17]. Since the access occurs ran-
domly, those algorithms are unlikely to fully exploit cache features. Those classes



Towards Dynamic Cache and Bandwidth Invasion 101

of unpredictable algorithms depend on the dynamically changing memory access
patterns itself. Therefore no clear statement on memory dependency can be given
and those algorithms are not further evaluated in this work.

3 Dynamic Scheduling and Adaptive Hardware

We propose a novel approach to reconfigure particular parts in hardware, which
so far was only statically exploitable to the software developers. Currently, the
concept involves a model of cache tiles. Depending on control signals, these tiles
either form larger memory sections for deeper ways or are used in parallel as
different ways. Each tile incorporates the control logic and can store tags. The
implementation of replacement strategies and the cache assistant is considered as
orthogonal.We consider it reasonable to store line associated management infor-
mation in the tiles, since this memory grows automatically with the addition of
tiles and its connections are managed more naturally if the tiles are dynamically
assigned to different cores in a later step.

Our partitioning of the cache puts the actual memory of data and management
information in one module and control logic like fetch on miss and replacement in
another. This hides the choice on reconfiguring the number of ways or size from
the control module and sets up new tasks: deciding where to put the reconfigu-
ration management, the logic ensuring that the data is in the right places after
changing the size or associativity. On the one hand, it should be fairly general.
On the other hand, detailed knowledge about the memory layout could help to
speed up the implementation. Cache coherency will have to be covered once we
cross the single-core boundary. This will open up new degrees of freedom, such
as partly shared caches or dynamical redistribution of cache, which is one of the
main reasons why we consider re-sizing.

Runtime reconfiguration leads to the issue of changing data layout in the
cache, introducing the need to reorder data before continuing. Reconfiguration is
shown to be a feasible process and provides a solution that flushes half the cache
and realigns the remaining entries in cache for a change in associativity [15]. It
is claimed that one would need a buffer of half the cache size to fully reorder
entries in the cache on an associativity increase [14]. We expect to circumvent
this with our tile approach.

We present an extension of the invasive programming constructs with support
of invadable memory hierarchy. This leads to modification of the cache within
the processor depending on application-specific requirements. With dynamically
changing number of resources for invasion, interfaces have to be provided by
the application developer for distributed memory and by an invasion-safe pro-
gramming style on shared memory systems to assure stability. For our invadable
memory hierarchy, changing resources do not change the reliability as long as
the cache-coherency among processors is guaranteed. The worst-case scenario is
a severe slowdown, but no stability issues. Due to optimizations on requested
hardware layouts, no multiplexing of the claimed resources is allowed.



102 C. Tradowsky et al.

4 Case Study on Potentials of Cache and
Bandwidth-Aware Invasions

We first present a case study of varying cache parameters on representative algo-
rithmic kernels. Secondly, we present required extensions of resource managers
for concurrently executed memory- and compute-bound applications.

4.1 Variation of Cache Parameters

For this case study, we use an inner-loop blocked matrix-matrix multiplication
(MMul). During the execution of the benchmark, the cache is invalidated after
each run of the outer loop. For evaluation, we use a Xilinx XUPV5-lx110t pro-
totyping board. We use the Gaisler Leon3, which has two sets of 8 kB (16 kB) of
instruction cache and four sets of 4 kB (16 kB) of data cache. This enables the
use of different cache parameters that can be defined at design time. Our baseline
for comparisons with parametrizable caches is given by this basic configuration.

Parametrizable Instruction-Cache: On the one hand, the program size of
numerical cores such as MMul and stencil operations is typically small while on
the other hand, the code binary of functions demanding many different computa-
tions integrated typically by numerical quadrature is by far larger. Consequently,
this underlines the potential of changing the cache sizes. As a case study, we dis-
able one set and halved the instruction cache and benchmarked the blocked
MMul. This had only minor impact to the program’s execution time with a
variance of less than 1% relative to the baseline. This provides us with addi-
tional memory resources that can be assigned to the data cache or deactivated
for energy efficiency.

Parametrizable Data-Cache: Applications optimized for spatial-local access
such as the blocked MMul and stencil operations target at exploiting data caches
in an optimal way. Efficiency for such algorithms is gained by cache-oblivious
access of the matrix-matrix multiplication data for particular cache-parameters.
Additionally to the complete execution time, we compare the performance of
every outer loop’s iteration to the baseline of the default configuration.

At first, the cache size is kept constant at 16 kB. This just leaves two options
for variation: the number of sets with respective adjustments of the set size.
Fig. 1 (left) shows halved number of sets (2) and doubled set size (8 kB). We see
a slight overall efficiency gain (approx. 3%), however, more importantly, we can
see that different input data to the MMul is handled very well. In Fig. 1 (right),
a single set with a 16 kB set results in increased efficiency (approx. 7%) relative
to the baseline. Especially the 40 block-size and 384 matrix-size input benefit
from the change in cache parameters.

Secondly, we half the size of the data cache. One option is to half the set size
to 2 kB per set (see Fig. 2, left) or the other option is to half the number of
sets down to two (see Fig. 2, right). As we compare the two results, almost the
same relative performance for the application is achieved in both settings. In
contrast to our first results, modifications of cache parameters did not affect the



Towards Dynamic Cache and Bandwidth Invasion 103

16
32

48
64 128

256
384

512

0.9

1

1.1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

16
32

48
64 128

256
384

512

0.9

1

1.1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

Fig. 1. Relative performance using a 16 kB data cache consisting of two sets with 8 kB
per set (left) and one set with 16 kB (right)

16
32

48
64 128

256
384

512

0.8

1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

16
32

48
64 128

256
384

512

0.8

1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

Fig. 2. Relative performance using a 8 kB data cache consisting of four sets with 2 kB
per set (left) and two sets with 4 kB (right)

16
32

48
64 128

256
384

512

1

1.2

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

16
32

48
64 128

256
384

512

1

1.2

1.4

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

Fig. 3. Relative performance using a 32 kB data cache consisting of four sets with 8 kB
per set (left) and a 64 kB data cache consisting of four sets with 16 kB per set (right)



104 C. Tradowsky et al.

efficiency of particular problem sizes, by the reduction of cache size. However,
the performance drops by less than 20% compared to a standard execution. We
expect that the information on performance change play a crucial role for the
dynamical resource management. It is very promising to be able to change the
cache set parameter for MatMul with larger problem sizes.

At last, we make potential additional cache resources available to the MatMul
application. Fig. 3 shows the benefits of this approach. Interestingly, the appli-
cation still benefits differently from the change in cache configuration. While the
relative performance is higher for the 24 & 32 block size by 256 matrix-size con-
figuration (left), MatMuls on larger matrices only benefit from a further increase
of the set size (right).

4.2 Intermixing Bandwidth- and Compute-Bound Applications

Concurrently executed applications with different characteristics with respect to
CM ratios have to be considered in an orthogonal way by the resource manager
on a software level. Therefore, our next test case is on the concurrent execution
of bandwidth- and compute-bound applications. Since these applications have
different demands on memory parameters, those parameters are expected to lead
to further efficiency gain once the dynamic adaptive hardware is available, e.g. by
deactivating cache or statically reassigning cache sets to applications.

The experiments are conducted on a four-socket Intel(R) Xeon(R) CPU E7-
4850 running at 2GHz. For our test cases, we only use the physical cores on the
CPU on the first socket. Our benchmark is based on a representative applica-
tion for memory-bound problems, a streaming benchmark1, and a representative
application for compute-bound problems, a mandelbrot2 computation.

The scalability graphs of both applications are presented in Fig. 4. The scal-
ability of the representative memory-bound application almost reaches its peak
with six cores due to the overloadedmemory bus. For our representative compute-
bound application, the scalability is almost linear for all ten cores.

Next, we consider the concurrent execution of one memory- and one compute-
bound application. We pin each application to an exclusive set of cores. The
description and results for the concurrent execution of our considered applica-
tions are given in Fig. 4. They indicate, that the memory-bound application is
independent to the concurrently executed compute-bound application and vice
versa.

Considering the application’s optimal throughput being directly related to the
scalability, we find the optimal throughput by searching the extrema of the sum
of both scalability graphs, as shown in Fig. 5. For the optimal throughput in our
benchmark, two cores should be assigned to the memory-bound application and
the remaining eight cores to the mandelbrot for maximizing the throughput.

However, this optimal application throughput is only valid if at most one
bandwidth-bound application has to be considered. In case of two memory-bound

1 http://www.cs.virginia.edu/stream/ , C-ver., Add BW, N=50 mio, NITER=2.
2 http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/OpenMP/

mandelbrot-omp-by-rows.c, exec. with maxiter = 2048, (x, y) = (0, 0), size = 1.

http://www.cs.virginia.edu/stream/
http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/OpenMP/mandelbrot-omp-by-rows.c
http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/OpenMP/mandelbrot-omp-by-rows.c


Towards Dynamic Cache and Bandwidth Invasion 105

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

S
ca

la
bi

lit
y

Number of cores

Memory bound (Invasive)

Compute bound (Invasive)

Memory bound

Compute bound

Fig. 4. Scalability of memory-bound application (streaming benchmark) and compute-
bound application (mandelbrot). The invasive versions are executed concurrently: If n
cores are assigned to the memory-bound application, then 10−n cores are assigned to
the compute-bound application. Both applications almost do not influence each other.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 p

er
 th

re
ad

Number of cores

Memory bound (Invasive)
Compute bound (Invasive)
Throughput

Fig. 5. Searching optimal distribution of cores to applications. The theoretical optimal
throughput is given for assigning two cores to the bandwidth- and eight cores to the
compute-bound application.

applications, a concurrent execution of both applications would influence the
throughput and thus invalidate their scalability graphs. This yields requirements
for information on memory characteristics which can then be utilized on software
and hardware level for optimizations and is part of our ongoing research.

5 Conclusion and Future Work

We present an approach that exploits parameterization of cache parameters and
computing resource parameters on hardware and software level. In contrast to



106 C. Tradowsky et al.

the state-of-the-art HPC hardware, we are able to exploit this parameterization
to the application developer and offer an optimized application-specific hard-
ware and software realization. This moves away from today’s way of application
programming, as the developer needs to be aware of the underlying hardware
configuration and resources. Consequently, we are able to show a relative per-
formance increase on an adaptive prototyping system, on which we dynamically
change cache parameters. Furthermore, concurrently executed applications with
different bandwidth characteristics extend invasive scheduling parameters for
more efficient execution.

For future work, we plan to simulate and experimentally evaluate the pre-
sented concept. Also, further details of the hardware realization will be specified
and evaluated. Another complex task will be the demonstration and complete
integration into a single System-on-Chip.

Acknowledgement. This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center “In-
vasive Computing” (SFB/TR 89).

References

1. Bader, M., Bungartz, H.-J., Gerndt, M., Hollmann, A., Weidendorfer, J.: Invasive
programming as a concept for hpc. In: Proc. of the 10h IASTED Int. Conf. on Par.
and Dist. Comp. and Netw. (2011)

2. Brechmann, E.C., Schepsmeier, U.: Modeling dependence with c-and d-vine copu-
las: The r-package cdvine. Journal of Statistical Software 52 (2012)

3. Bungartz, H.-J., Mehl, M., Weinzierl, T.: A Parallel Adaptive Cartesian PDE
Solver Using Space–Filling Curves. In: Nagel, W.E., Walter, W.V., Lehner, W.
(eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1064–1074. Springer, Heidelberg (2006)

4. Bungartz, H.-J., Riesinger, C., Schreiber, M., Snelting, G., Zwinkau, A.: Invasive
Computing in HPC with X10. In: X10 Workshop, X10 2013 (2013)

5. Damien, G.: Study of different cache line replacement algorithms in embedded
systems. PhD thesis, KTH (2007)

6. Gerndt, M., Hollmann, A., Meyer, M., Schreiber, M., Weidendorfer, J.: Invasive
computing with iomp. In: Specification and Design Languages, FDL (2012)

7. Gordon-Ross, A., Vahid, F.: A self-tuning configurable cache. In: Proceedings of
the 44th Annual Conference on Design Automation, DAC (2007)

8. Heinecke, A., Trinitis, C.: Cache-oblivious matrix algorithms in the age of multi-
and many-cores. In: Concurrency and Computation: Practice and Experience
(2012)

9. Henkel, J., Bauer, L., Hübner, M., Grudnitsky, A.: i-Core: A run-time adaptive
processor for embedded multi-core systems. In: International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (2011)

10. Ji, X., Nicolaescu, D., Veidenbaum, A., Nicolau, A., Gupta, R.: Compiler Directed
Cache Assist Adaptivity. In: High Performance Computing (2000)

11. Malik, A., Moyer, B., Cermak, D.: A low power unified cache architecture providing
power and performance flexibility (poster session). In: Proceedings of the 2000
International Symposium on Low Power Electronics and Design (2000)



Towards Dynamic Cache and Bandwidth Invasion 107

12. Marty, M.R.: Cache Coherence Techniques for Multicore Proc. PhD thesis (2008)
13. Nicolaescu, D., Ji, X., Veidenbaum, A.V., Nicolau, A., Gupta, R.: Compiler-

directed cache line size adaptivity. In: Chong, F.T., Kozyrakis, C., Oskin, M. (eds.)
IMS 2000. LNCS, vol. 2107, p. 183. Springer, Heidelberg (2001)

14. Nowak, F., Buchty, R., Karl, W.: A Run-time Reconfigurable Cache Architecture.
In: International Conference on Parallel Computing: Architectures, Algorithms and
Applications (2007)

15. Nowak, F., Buchty, R., Karl, W.: Adaptive Cache Infrastructure: Supporting dy-
namic Program Changes following dynamic Program Behavior. In: Proceedings of
the 9th Workshop on Parallel Systems and Algorithms, PASA (2008)

16. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal
on Scientific Computing 26 (2005)

17. Rüde, U.: Mathematical and computational techniques for multilevel adaptive
methods. Society for Industrial and Applied Mathematics (1993)

18. Schreiber, M., Bungartz, H.-J., Bader, M.: Shared memory parallelization of fully-
adaptive simulations using a dynamic tree-split and -join approach. In: IEEE Int.
Conf. on High Performance Comp, HiPC (2012)

19. Tradowsky, C., Thoma, F., Hubner, M., Becker, J.: Lisparc: Using an architec-
ture description language approach for modelling an adaptive processor microar-
chitecture (best work-in-progress (wip) paper award). In: 7th IEEE International
Symposium on Industrial Embedded Systems, SIES (2012)

20. Zhang, C., Vahid, F., Najjar, W.: A Highly Configurable Cache Architecture for
Embedded Systems. In: 30th Annual Int. Symp. on Computer Architecture (2003)


	Towards Dynamic Cache and Bandwidth
Invasion

	1 Introduction
	1.1 Dynamic Adaptive Software
	1.2 Dynamic Adaptive Hardware

	2 Related Work
	2.1 Dynamic Adaptive Memory
	2.2 Application Requirements for Dynamic Memory

	3 Dynamic Scheduling and Adaptive Hardware
	4 Case Study on Potentials of Cache and Bandwidth-Aware Invasions
	4.1 Variation of Cache Parameters
	4.2 Intermixing Bandwidth- and Compute-Bound Applications

	5 Conclusion and Future Work
	References




