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Abstract. Biological pathways typically consist of upto hundreds of
reacting chemical species and reactions within a biological system. Mod-
eling and simulation of biological pathways in explicit process space is a
computationally intensive, both due to the number of interactions and
time-scale of processes. Traditional stochastic or ODE based simulation
of chemical processes ignore spatial and biological information. Hence
there is a need for new underlying simulation algorithms as well as need
for newer computing systems, platforms and techniques. Such pathways
describe exhibit considerable behavioral complexity in multiple funda-
mental cellular processes. In this work we present a new heterogeneous
computing platform to accelerate the simulation study of such complex
biochemical pathways in 3D reaction process space. Several tasks in-
volved in the simulation study has been carefully partitioned to run on
a combination of reconfigurable hardware and massively parallel proces-
sor such as the GPU. This paper also presents an implementation to
accelerate one of the most compute intensive tasks - sifting through the
reaction space to determine reacting particles. Finally, we present the
new heterogeneous computing framework integrating a FPGA and GPU
to accelerate the computation over the use of a any single platform. This
framework can achieve 10-times speedup over a single GPU-only plat-
form. Besides, the extensible architecture is general enough to be used
to study a variety of biological pathways in order to gain deeper insights
into biomolecular systems.

Keywords: GPU+FPGA, Process Simulation in 3D space, Heteroge-
neous Computing, Complex Biochemical Pathways, Stochastic
Simulation.

1 Introduction

Simulation and study of such biochemical pathways will lead to deeper insights
and understanding of functions of proteins, kinases and phosphotases that acti-
vate and de-activate reagents, sensitivity of various chemical species etc. There
are several modeling and simulation tools that are used to study biological path-
ways, including but not limited to Ordinary Differential Equations(ODEs), graph
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theoretical analysis of reaction networks, boolean networks and explicit model-
ing in reactive process space, with each having its own scientific, computational
and implementation merits and disadvantages. Although, ODEs are a popular
modeling framework and computationally very efficient, they only represent ag-
gregate concentration of the species, and fail to capture many intricacies and
local behavior mechanisms within the cell. On the other hand, reaction mod-
eling in 3D process space is the most computationally intensive and serves as
a virtual computational microscope into biological systems. Typically, model-
ing such biological pathways in reaction space requires millions of reagents and
beyond and it is imperative to consider all-particle interactions simultaneously
within the system. In this paper, we present a new heterogeneous computational
framework to study the interactions enabled by the massively parallel process-
ing capability of the GPUs and FPGAs. The computational framework will take
the simulation and study of large biological systems to the next level, where
in macro-biological systems such as cells, and interaction between multiple cells
can be studied to gain valuable insights into real biological processes.

2 Algorithm and Implementation

Sequential Algorithm. Algorithms such as the Kinetic-Monte Carlo[1,2] and
Gillespi Algorithm[3] have been used for stochastic simulation of chemical sys-
tems, on a sequential execution platform. The algorithm proceeds by listing all
possible reactions and choosing to execute one of them based on the stoichiomet-
ric rate and the population of reagents. The time counter is then incremented
appropriately. However, the procedure (a) doesn’t capture spatial and local in-
formation and (b) is inherently sequential to be suitable for studying behavior
of large number of reagents due to rapid growth of possible interactions between
reagents. The number of feasible reactions grows with growing number of species
as well as the the number of individual reagents. In general, the growth in the set
of all possible interactions grows proportional to O(N2), for a set of N reagents
and O(M2) for M different chemical species. In the above algorithm, the se-
quential nature of the enumeration of all possible reactions as required by the
algorithm, which overwhelms the computation required to accurately simulate
the process behavior. Hence the traditional algorithm above faces fundamental
bottlenecks from a computational standpoint and is not scalable to simulation
study of large biochemical systems within a reactive 3D space.

Scalable Concurrent Algorithm. In our previous work, we have designed
and applied the following algorithm to study the growth of biofilms[4] which
was implemented on on massively parallel processors such as GPUs. We have
also used GPUs for simulation study of spatial molecular dynamics and their
conformation[5]. However, in contrast to purely physical interactions, general
chemical interactions will result in creation of new particles and consumption of
others in a consistent pattern and in predefined quantities, as described by the
chemical equations. Furthermore, in contrast to molecular dynamics problem,
where fixed persistent agents interact with all the neighboring agents, chemical
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reagents interact only with select neighbors while producing new products. In
order to leverage the parallel and concurrent framework, each interacting entity
or particle is treated as a “autonomous agent” that interacts with other such
agents of different type in an independent and autonomous fashion. This helps
overcome the sequential limitations imposed by traditional algorithms. The con-
current reactions at each time step is updated to reflect the consumption of
old reagent particles and production of newer agents. One of the crucial tasks
in transitioning from traditional algorithms to an explicitly defined 3D process
space populated by individual particles is conversion of reaction rates to equiv-
alent interaction radii. A pair of particles within the specified interaction radius
on a collision course, will react together always or with a probability that is set
by their velocities in order to produce the product of the specified reaction. It
is very-well possible that each particle is within the interaction radius of several
other particles capable of reacting with each other, in such case, efficient parallel
techniques to select a set of mutually consistent reactions to carry out, must be
formulated. The concurrent algorithm can be stated as follows,
(1) Initialize: The particles positions, drift velocities. (2) Initialize Reaction
Radii: Enumerate the set of reactions between different types along with the
interaction radius of the reaction. For first order reactions of type A → φ or
A → B + C, each particle of type A is assigned a life-span by sampling from
an exponential distribution parametrized by its decay rate. For reactions of type
A+B → C +D, the reaction radius is set based on the rate-constant and drift
rate of particles[6].(3) Build Neighbor List: Divide the simulation volume
into disjoint cubic cells of dimensions equal to the largest radius of interaction.
In order to identify the neighbors of each particle only the current cell and the
26 adjacent cells in 3D need to be examined. For each particle, build a list of par-
ticles of compatible types that could react. This is done efficiently with the help
of a stoichiometric bit-vector. In the stoichiometric bit-vector the jth element
of ith bit-vector is set to 1 if type i can react with j. A separate lookup table
stores the product each corresponding reaction between types i and j. (4) Start
the Simulation: Sift through the 3D process space of each particle in parallel,
scanning for reacting particles and carefully selecting the pairs of particles in a
mutually consistent manner for reaction. Increment global time and repeat steps
(1) - (4) until simulation time.

2.1 Heterogeneous Computing Framework

The high-throughput and similar nature computation required to process each
agent makes any massively parallel processor such as the GPU a good initial
choice. However, as we outline below, the reconfigurable hardware co-processor
is extremely beneficial in handling tasks that would otherwise strain the memory
bandwidth and instruction throughput of the GPU. In this work we demonstrate
the power of heterogeneous computational framework in accelerating an appli-
cation that is not amenable to massively parallel processor alone. In the original
GPU implementation of the NeighborList build kernel, each thread-block is
responsible for building the neighbor list of all the particles within a specific cell
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Fig. 1. Heterogeneous system framework

Fig. 2. processing unit architecture

with in the reaction space. To this effect each thread block sifts through the
particles in 26-adjacent cells in addition to its own cell to determine the neigh-
bors of each particle within the cell. Among all kernel functions in the table,
NeighborBuild function consumes 97% of the total execution time. This is due
to fact that any parallel implementation that sifts through adjacent cells will
require 27x bandwidth to the off-chip global memory, as each cell performs the
same task to its neighboring cells. The problem is further amplified by the fact
that the NeighborBuild kernel is called far more often here than in an appli-
cation such as molecular dynamics. The faster the movement of particles more
often the NeighborBuild kernel needs to be called. This places undue strain on
the global memory bandwidth even on a high-throughput device and throws off
the instruction-to-memory ratio far from the optimal value. In order to over-
come this bottleneck, we implement the NeighborBuild task on the FPGA and
leverage the capability of the heterogeneous computational platform.

Hardware Design. Although the presented application is unique and the appli-
cation domains are different, previous work on accelerating molecular dynamics
on reconfigurable platform[7,8], is most related to the current implementation.
We present the hardware design for the task to compute NeighborList and a
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Device XC6VLX240T

Logic Cells 241,152

Conf.Logic Blocks 37,680

DSP48E1 3,650

Block RAM Blocks 768

(a) Device Capability

Resource quantities

SliceRegisters 54

Memory 40

DSP48Es 8

Maximumspeed 300M

(b) Device utilization

unified heterogeneous computing framework for large scale process simulations
in 3D space. Target hardware: a generic PC and GPU GTX 580 and a PCIe
plug-in board ML605 with Xilinx XC6VLX240T. It is possible to leverage the
capabilities of each device via a task-level partition of the kernels as shown in
Figure (1). The FPGA processes one central cell at a time. Each processing unit
(figure 2)needs to compute the distance between all pairs of particles i and j,
where i must be in the central cell but j can be in any of the 26 neighborhood
cells or in the central cell. In order to fully parallelize each cell, the system
needs as many processing units as the particles in the central cell. One parti-
cle in the neighboring cell is processed per time cycle. So, the total execution
time of one central cell is 27 x the maximum number of particles in any cell.

510

Fig. 3. Performance of the kernel with re-
spect to the total number of particles (inde-
pendent agents). The FPGA performance is
shown in blue bars while the GPU perfor-
mance is shown in red.

In order to preserve the accuracy
of distance calculation, floating point
precision is necessary. Fortunately,
modern FPGAs are equipped with
ample DSP units that make floating
point distance calculation within each
processing element possible. With
the available resources, it is usually
advantageous to use the existing float-
ing point units instead of synthesiz-
ing custom fixed precision units. In
our implementation particles coordi-
nates and reagent types are copied
from GPU to FPGA. We also main-
tain a reaction radius lookup table on
FPGA, as each reaction may have dif-
ferent effective reaction radius. In or-
der to process a million particles, the
total amount of data transferred to
the FPGA for coordinates array is
1Million x 3 channel x 32 bits ≈ 12MB
and for particle types array is 1Mil-
lion x 32 bit ≈ 4MB. However, the
copy-back of the FeasibleList can be overlapped with computation. The tasks
partitioned among the FPGA and GPU such that the NeighborList build is
performed on the FPGA and the other remaining functions on the GPU. Once
the computation is initiated, data transfer between GPU and FPGA would take
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place once per iteration. The critical resources on the FPGA are the hard mul-
tipliers, the registers and the block RAMs as shown in table (2).

2.2 Experiments and Performance

The computational framework presented here especially suitable to simulate
large and complex biological pathways serving as a macro-molecular visual scope
and helps observe key biochemical reactions, as the events unfold in space and
time. For performance comparisons, the JAK-STAT signaling pathways was ini-
tialized with 1.23 million particles or independent reacting agents, within a sim-
ulation space of 200×200×200 distance units. For performance comparisons, we
set different initial number of particles for this system from 10k to 2,000K in
order to measure the average time-per-step. In figure (3), we compare the per-
formance of GPU and FPGA implementation of the compute intensive task of
calculating the FeasibleList. The FPGA achieves approximately 10 x speedup
over GPU-only implementation for all system sizes while using the 32 bit floating
point to maintain simulation quality.

Acknowledgements. The authors would like to thank the Xilinx University
Program(XUP) and the NVIDIA-Professor partnership for their generous sup-
port and donation helpful in carrying out the research.

References

1. Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Methuen, London
(1965)

2. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the
stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI),
vol. 4695, pp. 184–199. Springer, Heidelberg (2007)

3. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Jour-
nal of Physical Chemistry 81(25), 2340–2361 (1977)

4. Li, J., Sharma, V., Ganesan, N., Compagnoni, A.: Simulation and study of large-
scale bacteria-materials interactions via bioscape enabled GPUs. In: Proceedings of
ACM-BCB 2012 (2012)

5. Taufer, M., Ganesan, N., Patel, S.: GPU enabled macromolecular simulations: Chal-
lenges and opportunities. IEEE Computing in Science and Engineering 15(1) (Jan-
uary 2012)

6. Erban, R., Chapman, S.J.: Stochastic modelling of reaction-diffusion processes: al-
gorithms for bimolecular reactions. Physical Biology 6(046001) (2009)

7. Chiu, M., Herbordt, M.C.: Molecular dynamics simulations on high-performance
reconfigurable computing systems. ACM Trans. Reconfigurable Technol. Syst. 3(4),
23:1–23:37 (2010)

8. Gu, Y., VanCourt, T., Herbordt, M.C.: Explicit design of fpga-based coprocessors for
short-range force computations in molecular dynamics simulations. Parallel Com-
puting 34(4-5), 261–277 (2008)


	Simulation of Complex Biochemical Pathwaysin 3D Process Space via HeterogeneousComputing Platform: Preliminary Results
	1 Introduction
	2 Algorithm and Implementation
	2.1 Heterogeneous Computing Framework
	2.2 Experiments and Performance

	References




