
OCP2XI Bridge: An OCP to AXI Protocol

Bridge

Zdravko Panjkov1, Juergen Haas1, Martin Aigner1, Herbert Rosmanith1,2,
Tianlun Liu1, Roland Poppenreiter1, Andreas Wasserbauer1,

and Richard Hagelauer1,2

1 Intel Mobile Communication (IMC), Danube Mobile Communications Engineering
Zdravko.Panjkov@intel.com

2 Institute for Integrated Circuits, Johannes Kepler University Linz

Abstract. The modern SOC design contains many IP cores with differ-
ent communication protocols. Improving the bridging and signal transla-
tion between these protocols has become a critical factor for the
performance of the whole system. In this paper we will address the
bridging of two well defined protocols, the Advanced Extensible Inter-
face (AXI) and the Open Core Protocol (OCP). This bridge supports
pipelined and multiplied transactions from both AXI and OCP interface.
In comparison to related work our bridge offers simpler implementation
and handling while containing full protocol functionality. The bridge is
implemented and verified in a modern SystemC regression environment
with large functional coverage. FPGA emulation is done on Versatile Ex-
press board using the CPU board as a main emulation controller. The
result shows that the bridge is covering full protocol functionality and
that maximal FPGA frequency is acceptable for a wide range of appli-
cations.

Keywords: AXI, OCP, FPGA.

1 Introduction

With the increase in process integrity and frequency, the amount of different
protocols used in SOC increased substantially. The result is that the configura-
bility and reusability of the chip protocol to the different bus types has become
a dominant factor.

In the past, the widely accepted bus protocol was AMBA AHB [1], which
facilitates single and burst transactions by using shared multiplexer architecture.
The multiplexer architecture performs well with a limited number of IP cores,
but with the increase number of cores the amount of transactions increased to
more than one transaction at the time which is not supported by the shared
architecture. Precisely for this reason two new protocols have been developed:
the first is an Advanced extensible Interface (AXI) protocol, and the second is
an Open Source Protocol (OCP).

The Open Core Protocol organization (OC-IP) started work in 2001 on some-
thing that would eventually become an OCP protocol [2]. OCP-IP aim was to

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 179–190, 2014.
c© Springer International Publishing Switzerland 2014



180 Z. Panjkov et al.

create a standardized interface and thus simplify the SOC’s integration problems.
The most important benefit of the OCP is its flexibility and configurability. OCP
can be configured as a simple peripheral core, a high performance microprocessor
or a chip subsystem.

AXI was first launched in 2003 with AMBA 3 architecture [3]. A protocol
defines five separated channels with a separate set of signals for each channel.
The interface is not restricted by the internal bus architecture so the designer
can integrate different IP’s by direct connection or by bus infrastructure between
them.

This paper presents our experience and methodology with designing, verifying
and emulating the bridge between OCP and AXI protocols. Verification is done
in a state of the art SystemC verification environment with a wide range of cases
and with high functional coverage. For emulation, the bridge is synthesized for
Xilinx Virtex6 FPGA, which is part of the Versatile Express board. The entire
verification environment is ported and implemented on Versatile Express board
which gave a significant increase in verification speed. We showed that this bridge
can handle many real time applications such as high definition images, different
types of data or even a slow stream transmission.

The key contributions of this paper are:

– The paper presents the design of a full-featured OCP to AXI bus bridge,
which is verified in the SystemC verification environment.

– The paper presents our FPGA synthesis methodology for OCP to AXI bus
bridge and the porting of whole SystemC verification environment to an
emulation board.

– The paper demonstrates how the above bridge can handle real time applica-
tion directly on FPGA emulation board.

The remainder of the paper is organized as follows. Section 2 reviews related
work and provides backward information on the bus bridge. Section 3 describes
our experience in designing the bridge. Section 4 describes the verification en-
vironment used to verify protocol bridge. Section 5 presents emulation board
and procedure to create an emulation environment. Section 6 present results,
functionality and performance of the synthesized bridge. Section 7 concludes.

2 Related Work

There are commercially available software tools and solutions for protocol
bridging.

The most used software tools are the Sonics Express [4] and Arteries FlexNoC
[5]. Sonic Express provides a high bandwidth bridge between AXI and OCP
protocols with the capability of crossing clock, power and physical boundaries.
Arteries FlexNoC can implement a bridge between any combination of AMBA,
AXI, AHB, APB and OCP protocols. The only problem of these tools is their
price and usually quite complicated GUI which adds additional complexity.

Beside software tools there are also commercial IP solutions.MIPS-Imagination
offers OCP to AXI Bridge [6]. The MIPS IP is relatively specialized as it only



OCP2XI Bridge: An OCP to AXI Protocol Bridge 181

allows the connection of OCP 32 bit width interface to AXI bus. This makes sense
because the bridge was developed for MIPS32 processor but it is not applicable in
any different solution. Xilinx offers many different protocol bridges as part of the
Xilinx Platform studio [7], including AHB2AXI, AXI2APB, AXI2PLB. However,
the OCP2AXI bridge is not supported.

There are many applications where protocol bridging plays an important role.
In applications such as sound, graphic and network the peripheral component
interconnect (PCI) has to be connected to the AMBA bus throw AHB-PCI
bridge/adapter [8][9][10]. In the SoC test techniques the AHB-APB bridge is
extensively adopted to adjust different protocol speeds [11][12][13].

It is true that commercial tools offer a form of bridging but additional com-
plexity and the introduction of a new tool is not always desirable in modern
design. However solutions both scientific and commercial do not offer a func-
tional OCP to AXI Bridge.

3 Hardware Design of the On-chip Bridge

The OCP to AXI bridge connects two protocols with different functionality. The
bridging involves mapping the inputs and outputs of the OCP slave to the inputs
and outputs of AXI master. The signals coming from OCP master are inputs
to OCP2AXI bridge which are then converted into AXI signals and delivered to
AXI master.

Figure 1 shows the block scheme of OCP2AXI bridge, with key components
highlighted. The bridge consists of:

– OCP slave
– OCP to AXI kernel
– AXI master
– AXI Downsizer

Because we can’t directly connect AXI and OCP interfaces we developed our
own intermediate interface which can be easily translated to both OCP and AXI

Fig. 1. Block scheme of OCP to AXI bridge



182 Z. Panjkov et al.

interfaces. The interface preserves all key features of both protocols but without
specialized optimization of one particular protocol.

The intermediate interface consists of read and write channels with one com-
mon address channel (see Figure 2). Both read and data channels have similar
interface with one FIFO’s input for better handling of different protocol timing.
Address channel covers all other protocol functionality, including out-of-order
transaction, multiple transactions, and burst size. The interface is designed to
provide a quick way to implement a lightweight interface between OCP and AXI
interface. Finite state machine (intermediate FSM) is developed to implement
functionality of intermediate interface and to serve as slaves for OCP/AXI pro-
tocol. The intermediate interface does not support specific optimizations such
as separate read/write transaction for AXI protocol or configurable interface of
OCP protocol.

Fig. 2. Block diagram of intermediate interface

The OCP slave design applies a translation of the OCP interface signals to
intermediate interface signals. The intermediate FSM is capable of executing
translation but we still needed to generate handshake signals for OCP side of
the bridge. Simple OCP FSM is implemented to control the flow of each OCP
transaction and to generate signals as OCP slave interface (MCmd, MAddr,
MData). The OCP FSM supports burst, pipelined, out-of-order transaction and
its output is delivered to intermediate FSM.

The AXI master design is responsible for the reverse translation form the
intermediate interface to the AXI interface. Again the intermediate FSM is im-
plemented to execute translation and AXI FSM is created to handle hand shake
between AXI interface and OCP2AXI bridge.

The AXI FSM is created with two subs FSMs, one FSM for reading and one
FSM for writing. This preserves AXI ability to read and write independently of
channels. Each new address initiates new AXI transaction and AXI FSM expect
a response from the AXI interface to proceed with a next transaction.

OCP to AXI kernel is a time multiplexer between two intermediate FSM.
Because there is usually differences in OCP and AXI timing it is necessary to
synchronize two protocols. The kernel is monitoring the status signal of both
intermediate interfaces and depending on the current state it gives permission
for the next read/write transmission.



OCP2XI Bridge: An OCP to AXI Protocol Bridge 183

The AXI Downsizer is responsible for the downsizing data width of 256, 128,
64 to 32. This is a design from Xilinx [14] and it is offered as part of their
ISE tool. Reason for implementing AXI Downsizer is necessity to simulate and
emulate 32 data width within our verification/emulation environment while DSP
design used as driver is designed with configurable OCP data width.

4 RTL Simulation of the Bridge

We used RTL simulation as the primary approach to debug RTL modifications
until the whole design became stable enough. Once the design became stable to
allow basic transactions we proceeded to more sophisticated levels of verification.

For sophisticated verification we developed SystemC verification environment.
The environment contains a large number of high quality regression tests with
high coverage over a large functional domain. Figure 3 shows the block design
of the verification environment. The environment consists of four parts:

– OCP driver/monitor
– AXI random access memory (RAM)
– OCP2AXI Bridge
– System C environment

Fig. 3. Block design of the verification environment

The OCP driver/monitor is essentially an IMC DSP processor. The DSP was
developed in our group during previous project and it has an OCP interface with
adjustable bit data width (from 32 to 256 data bit width). With a limited inter-
face optimization the DSP becomes precisely what we needed for this verification
procedure. The DSP gives great controllability and visibility which can be easily
combined with verification environment. It is relatively easy to create a wide range
of input vectors and to cover almost all functionality of the OCP interface.

AXI random access memory is developed to support the AXI side of the bridge
and it consists of two designs. The first design is the Xilinx AXI BRAMController
which is a soft IP core designed as an AXI endpoint slave and the master device to
local RAM [15]. The second design is a RAM with a regular interface, the RAM
is a simple concurrent design with variable matrix as its basis.



184 Z. Panjkov et al.

The verification environment is a state of the art environment developed us-
ing the SystemC language. The SystemC language is an advanced set of C++
libraries that provides an event driven simulation [16]. The environment is suc-
cessfully used in many different projects including previously mentioned DSP
project. The environment has complete control over DSP which allows a wide
variety of different OCP regression tests. These regression tests could be run
over a couple of days in our ModelSim batch mode transaction pool.

During designing even after small changes it was necessary to rerun the whole
regression pool to be sure that change did not affect any other bridge functional-
ity. In case of new functionality it was necessary to develop a new test case which
would cover new functionality. Until the whole design was not working properly
we did not start the next step (synthesis). Even when everything was working
correctly in simulation, we still continued to use simulation flows to ensure that
the synthesis tool chain performs correctly.

5 FPGA Emulation of the OP2XI Bridge

RTL simulation is a basic methodology for verifying and debugging RTL design.
The main problem of RTL simulation is its limited speed, one second of real time
is usually around a couple of days in the simulator. To improve verification of real
time situations we used the Versatile Express board as emulation environment.

5.1 Versatile Express Board

The Versatile Express platform provides a quality solution for rapid prototyping
and hardware verification of the next generation of digital designs [17]. Versatile
board is a highly configurable solution with high speed interfaces and the ability
to develop and verify both software and hardware applications. Figure 4 gives a
block description of the board components. The board consists of three parts:

– Versatile Express Motherboard
– Versatile Express CoreTile
– Versatile Express LogicTiles

Fig. 4. Versatile Express board, block description



OCP2XI Bridge: An OCP to AXI Protocol Bridge 185

The motherboard has been specially designed to support future generations
of software development. The board envelops all the necessary interfaces and
peripherals for development of any new digital designs or graphic engine.

The CoreTile is delivered with different types of processor cores (Cortex-A15,
Cortex-A9, Cortex-A7 and Cortex-A5) and it is mainly used as a CPU for the
whole environment.

The LogiTile is delivered with a choice of different types of FPGAs and with
capabilities to stack up to four boards one on top of each other. The board en-
ables rapid prototyping, software/hardware codesign, verification and hardware
driver development alongside a CoreTile CPU. This greatly reduces bring-up
time and testing of IP design in parallel with software driver.

5.2 Synthesis Tool Flow

Most of our RTL design is coded in Verilog language so at the beginning we chose
Xilinx Ise [18] as main synthesis tools. Xilinx Ise is relatively cheap and easy to
use but does not support all features and languages available on the market.
Unfortunately some part of our design is written in System Verilog which is not
supported in XILINX Ise so it was necessary to find a different solution.

We had two solutions to either use Synplify Pro [19], or to use new Xilinx
Vivado [20] suit. Both tools are high performance, cost effective FPGA synthesis
tool with the ability to interpret System Verilog syntax.

The Vivado Design Suite implements all steps necessary for the FPGA bit
generation (synthesis, mapping and placement) in one tool. Synplify Pro syn-
thesis software is the industry standard FPGA tool and its unique Behavioral
Technology performs optimization at a highest level. It is important to notice
that in the case of Synplify Pro we still needed to use Xilinx Ise for mapping
and placement.

In this case we have chosen a Synplify Pro not just for its optimization abil-
ities but also because of good customer and time proven reviews. Compared to
Synplify Pro Vivado Design Suit is a relatively a newcomer to the field and it is
still necessary to pass the test of time.

Cshel scripts are created to control synthesis procedure. Synplify Pro inter-
prets the RTL files and creates the edf file. Xilinx ISE collects the edf files and
implements mapping and placement. In Table 1 you can see the synthesis results.

Table 1. Synthesis results

Device Xlinx Virtex 6 xc6vlx760 %

Slices: 79.940 out of 948,480 8
LUTs: 82,027 out of 474,240 17
RAM36: 122 out of 720 16
RAM18: 17 out of 1440 1
IOB: 635 out of 1200 52
MAX. FREQ: 27.083 MHz



186 Z. Panjkov et al.

5.3 Emulation on Versatile Express Board

The whole Versatile Express board is connected by an AXI interface [21] so the
only way to send data between LogicTile board and CoreTile board is through
the AXI bus.

LogicTile environment. The AXI bus was delivered as a basic driver for the
LogicTile board. The problem was that the basic driver has only one AXI master
for the emulation environment while in our case we needed at least two masters
and one slave. For the generation of additional interfaces we used Xilinx Platform
Studio [22] which enables easy generating of additional AXI interfaces. Figure 5
(a) presents a LogicTile environment which consists of AXI bus with connections
to Logic Tile Fash DRAM memory, processor and emulation environment.

Fig. 5. Top system design (a) LogicTile environment (b) Emulation environment

Emulation environment (DSP, OCP2AXI...). During emulation development
we tried to reuse as much of RTL simulation as possible knowing that we can
greatly improve functional coverage and also simplify our development process.
Figure 5 (b) shows the block design of the emulation environment. The environ-
ment consists of:

– DSP processor
– OCP2AXI bridge
– Emulation environment

Both DSP and OCP2XI bridge are described in previous chapters.
The emulation environment consists of two AXI master interfaces and one AXI

slave interface. The first AXI master is connecting the OCP2AXI bridge with
flash DRAM memory (see Figure 4) enabling collecting data from the bride out-
put. The second master interface transfers data between DSP and flash DRAM
memory delivering input date to the DSP. The AXI slave is giving the CPU full
control over DSP design.

During emulation individual functionality or even entire blocks can be sep-
arately verified. This was enabled by DSP design which has nearly the same



OCP2XI Bridge: An OCP to AXI Protocol Bridge 187

functionality as in RTL simulation. The CPU is used to control the DSP from
outside of FPGA using Linux drivers and partially ported SystemC verification
environment.

Drivers for CPU core. The Core Tile board is delivered with Boot Monitor
which is a standard application built on CPU platform library. The library han-
dles the system initialization and provides basic I/O subsystem that supports
simple drivers [23]. Unfortunately this was not enough to enable communication
between CPU AXI interface and FPGA environment design on LogicTile boards.

In order to run the bridge core in the FPGA emulation board, we installed Linux
image and developed two Linux drivers to enable delivering and collecting data
from the design. Figure 6 presents Linux driver which consists of two components.

– Direct memory driver
– DSP driver

Fig. 6. CPU Linux driver design

The direct memory driver is responsible for delivering data to the flash DRAM
memory located on the LogicTile board Figure 4. Its function is to provide
necessary service to direct memory access so that data can be sent without any
problems. This data will be used during a transaction as input/output data to
the AXI interface of the bridge.

DSP driver is partly redesigned DSP control from SystemC environment. The
driver controls the DSP AXI interfaces from CPU giving similar DSP controlla-
bility as in RTL simulation.

Beside these two drivers, the almost entire verification environment is ported
and translated from the SystemC language to CSHELL scripts. For porting
we extract SystemC functionality and optimized it for CSHELL scripts. It was
not possible to use the whole environment because in simulation we had full
visibility while in emulation only a small subset of signals was extracted by
Xilinx ChipScope [24].

6 Results

For emulation and verification we used images of different sizes and definition.
Besides images we also used many different types of data but images remain the



188 Z. Panjkov et al.

Fig. 7. Evaluation results

best and the simplest way to measure the quality of the bridge. Figure 7 presents
an execution time for different image sizes on FPGA emulation board. The Y-
presents size/resolution of images and the X-presents execution time.

We also tried to use the live stream for system emulation but unfortunately
the max frequency is too low to support this feature (see table 1). The system
can only process around 3 images per second, (this greatly depends on image
quality) and for live stream you need at least 20 images per second.

The benefits of the RTL simulation environment such as high functional cover-
age, large number of tests and relatively long regression run are implemented in
the emulation environment. Emulation still adds large speed increase so almost
all simulation tests are rerun in less than a couple of hours. Table 2 presents a
functional coverage results.

Table 2. Presents a functional coverage results

Design Branch % Conditions % STMT % Toggled %

OCP slave 91.176 94.737 96.00 96.585
OCP2AXI kernel 95.277 93.888 87.821 92.223
AXI master 90.887 96.551 90.221 98.002
AXI Downsizer 92.222 93.367 89.032 96.988



OCP2XI Bridge: An OCP to AXI Protocol Bridge 189

Our OCP2AXI bridge preserves all instructions and functionality of both
protocols. Table 3 (a) presents protocol specifications which are supported in
the bridge.

Table 3. Result tables: (a) Supported protocol specification (b) Synthesis report of
the stand alone OCP2AXI Bridge

AXI interface OCP interface Device Xlinx Virtex 6 %

Separate address and Small set of Slices: 79.940 of 948,480 1
data channel mandatory signals LUTs: 82,027 of 474,240 1
Unaligned data Configurable address RAM36: 122 of 720 0
transfers and data width RAM18: 17 of 1440 0
Limited burst transactions Burst transfers IOB: 635 of 1200 52
Separate read and Inclusion of sideband MAX. FREQ: 83.773 MHz
write channel signals
Multiple addresses Pipelined transfers
Out-of-order transac. Out-of-order transac.

As explained in synthesis section, the max frequency of the system on FPGA
is 27 MHZ (see table 1). This is a relatively low frequency, especially knowing
that the bridge is not a large design. The reason for low frequency is coming from
a complicated emulation environment. DSP is probably a synthesis overhead but
it would be rather complicated to create dedicated OCP driver with the same
emulation purpose and functional coverage. The synthesis results of the stand
alone bridge are presented in Table 3 (b). The results are extracted from the
bridge alone synthesis report and they represent the real capability of a bridge.
From this report it is obvious that a stand alone bridge can handle real time
applications like live streaming.

7 Conclusion

In this paper we presented our experience in designing, verifying and emulating
an OCP to AXI bridge. The described design technique provides an easier im-
plementation of the protocol bridge for modern digital design. Verification and
emulation is done using a modern regression environment with large coverage
and long test execution.

The proposed OCP to AXI bridge improves SOC integrations by allowing
connection and reuse of IP’s with different on-chip protocols. Furthermore it is
also possible to connect two different bus protocols with almost no functional
or bandwidth loss. Our FPGA emulation based on the Versatile Express board
demonstrates that the bridge can be successfully used in many different real time
situations such as live stream, high-definition images, and data transfer.

For future design we plan to optimize the emulation environment by designing
a specific OCP driver and monitor so that we do not need to use IMC DSP as



190 Z. Panjkov et al.

a driver. With this improvement the maximal frequency should increase from
27 MHz to approximately 50 MHz which would enable sending a high definition
live stream through an FPGA board.

References

1. AMBA AHB interface, http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0203f/I1054045.html

2. Open Core Protocol International Partnership (OCP-IP), http://www.ocpip.org/
3. AMBA Open Specifications, http://www.arm.com/products/system-ip/amba/

amba-open-specifications.php
4. Sonics Express, http://sonicsinc.com/products/
5. Arteris FlexNoC Interconnect IP, http://www.arteris.com/
6. MIPS-Imagination BusBridge3 Module,

http://www.imgtec.com/mips/mips-busbridge3.asp

7. Xilinx Platform studio, http://www.xilinx.com/ise/embedded/edk_ip.htm
8. Zhonghai, W., Yizheng, Y., Jinxiang, W., Mingyan, Y.: Designing AHB/PCI bridge

ASIC. In: Proceeding of the 4th International Conference on ASIC, pp. 578–580
(2001)

9. AMBA-AHB PCI Bridge IP Introductory Document PLDA Ltd.,
http://www.plda.com/

10. ARM PrimeCell External Bus Interface (PL220), ARM, ARM DDI 0249B (2002),
http://www.arm.com

11. Song, J., Yi, H., Han, J., Park, S.: An efficient SoC test technique by reusing
on/off-chip bus bridge. Journal IEEE Transactions on Circuits and Systems 56(3),
554–565 (2009)

12. Lin, C., Liang, H.: Bus-oriented DFT design for embedded cores. In: Proc. IEEE
Asia-Pacific Conf. on Circuits and Systems, pp. 561–563 (2004)

13. Song, J., Min, P., Yi, H., Park, S.: Design of Test Access Mechanism for AMBA-
Based System-on-a-Chip. In: IEEE VLSI Test Symmposium, pp. 375–380 (2007)

14. Xilinx data-width conversion Downsizer, http://www.xilinx.com/products/
intellectual-property/axi interconnect.htm

15. AXI BRAM Controller, http://www.xilinx.com/products/
intellectual-property/axi bram if ctlr.htm

16. SystemC, http://www.accellera.org/activities/
committees/systemc-language/

17. Versatile Express Product Family, http://www.arm.com/products/tools/
development-boards/versatile-express/index.php

18. ISE WebPACK Design Software, http://www.xilinx.com/products/
design-tools/ise-design-suite/ise-webpack.htm

19. Synplify Pro, http://www.synopsys.com/Tools/Implementation/
FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx

20. Vivado Design Suite, http://www.xilinx.com/products/design-tools/vivado/
21. Example LogicTile Express 13MG design for a CoreTile Express A15x2,

http://infocenter.arm.com/help/index.jsp?topic=/

com.arm.doc.dai0305a/index.html
22. Xilinx Platform Studio, http://www.xilinx.com/tools/xps.htm
23. Versatile Express Boot Monitor, http://infocenter.arm.com/help/topic/

com.arm.doc.dui0465f/DUI0465F boot monitor trm.pdf
24. Xilinx ChipScope, http://www.xilinx.com/tools/cspro.htm

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0203f/I1054045.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0203f/I1054045.html
http://www.ocpip.org/
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://sonicsinc.com/products/
http://www.arteris.com/
http://www.imgtec.com/mips/mips-busbridge3.asp
http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.plda.com/
http://www.arm.com
http://www.xilinx.com/products/intellectual-property/axi_interconnect.htm
http://www.xilinx.com/products/intellectual-property/axi_interconnect.htm
http://www.xilinx.com/products/intellectual-property/axi_bram_if_ctlr.htm
http://www.xilinx.com/products/intellectual-property/axi_bram_if_ctlr.htm
http://www.accellera.org/activities/committees/systemc-language/
http://www.accellera.org/activities/committees/systemc-language/
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://www.xilinx.com/products/design-tools/vivado/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0305a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0305a/index.html
http://www.xilinx.com/tools/xps.htm
http://infocenter.arm.com/help/topic/com.arm.doc.dui0465f/DUI0465F_boot_monitor_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0465f/DUI0465F_boot_monitor_trm.pdf
http://www.xilinx.com/tools/cspro.htm

	OCP2XI Bridge: An OCP to AXI Protocol
Bridge

	1 Introduction
	2 Related Work
	3 Hardware Design of the On-chip Bridge
	4 RTL Simulation of the Bridge
	5 FPGA Emulation of the OP2XI Bridge
	5.1 Versatile Express Board
	5.2 Synthesis Tool Flow
	5.3 Emulation on Versatile Express Board

	6 Results
	7 Conclusion
	References




