
Diana Goehringer
Marco Domenico Santambrogio
João M.P. Cardoso
Koen Bertels (Eds.)

 123

LN
CS

 8
40

5

10th International Symposium, ARC 2014
Vilamoura, Portugal, April 14–16, 2014
Proceedings

Reconfigurable Computing: 
Architectures, Tools,
and Applications



Lecture Notes in Computer Science 8405
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Diana Goehringer
Marco Domenico Santambrogio
João M.P. Cardoso Koen Bertels (Eds.)

Reconfigurable Computing:
Architectures, Tools,
and Applications

10th International Symposium, ARC 2014
Vilamoura, Portugal, April 14-16, 2014
Proceedings

13



Volume Editors

Diana Goehringer
Ruhr-Universität Bochum
Universitätsstr. 150, 44801 Bochum, Germany
E-mail: diana.goehringer@rub.de

Marco Domenico Santambrogio
Politecnico di Milano, DEIB
Via Ponzio 34/5, 20133 Milano, Italy
E-mail: marco.santambrogio@polimi.it

João M.P. Cardoso
University of Porto, Faculty of Engineering (FEUP)
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
E-mail: jmpc@acm.org

Koen Bertels
Delft University of Technology, Computer Engineering Laboratory
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: k.l.m.bertels@tudelft.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-05959-4 e-ISBN 978-3-319-05960-0
DOI 10.1007/978-3-319-05960-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934369

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Reconfigurable computing technologies offer the promise of substantial perfor-
mance gains over traditional architectures via customizing, even at runtime, the
topology of the underlying architecture to match the specific needs of a given
application. Contemporary configurable architectures allow for the definition of
architectures with functional and storage units that match in function, bit-width
and control structures the specific needs of a given computation. The flexibil-
ity enabled by reconfiguration is also seen as a basic technique for overcoming
transient failures in emerging device structures.

The International Symposium on Applied Reconfigurable Computing (ARC,
http://www.arc-symposium.org/) aims to bring together researchers and prac-
titioners of reconfigurable computing with an emphasis on practical applications
of this promising technology. ARC 2014 is the 10th edition of the symposium and
takes place during April 14–16, 2014, in Vilamoura, Algarve, Portugal. The pre-
vious editions of ARC took place in Carvoeiro, Algarve, Portugal (ARC 2005),
Delft, The Netherlands (ARC 2006), Mangaratiba. Rio de Janeiro, Brazil (ARC
2007), London, UK (ARC 2008), Karlsruhe, Germany (ARC 2009), Bangkok,
Thailand (ARC 2010), Belfast, UK (ARC 2011), Hong Kong, People’s Republic
of China (ARC 2012), and Marina del Rey, California, USA (ARC 2013). ARC
2014 is being organized by the Faculty of Engineering of the University of Porto
with the collaboration of the University of Algarve.

Similarly to the first edition of ARC, this year the Portuguese event on Re-
configurable Systems (REC) takes place in Algarve in the day before ARC. We
hope that having the two events co-located allows the Portuguese community
with interests in reconfigurable hardware to network and discuss ideas with the
ARC participants.

We received 57 paper submissions for ARC 2014. The submissions came
from 27 countries: USA, UK, Slovakia, Spain, Sweden, The Netherlands, Nor-
way, Pakistan, Poland, Portugal, Qatar, Japan, Republic of Korea, India, Ire-
land, Australia, Austria, Belgium, Brazil, Canada, People’s Republic of China,
Cyprus, Denmark, Egypt, Finland, France, and Germany. Each paper was re-
viewed by at least three members of the Program Committee. Nine papers had
three reviews, forty seven had four reviews, and one paper had five reviews. As
a result of the reviewing process, we accepted 16 as regular papers (28.07% of
acceptance rate) and 18 as short papers (a global acceptance rate of 59.65%). Se-
lected papers will be invited to submit an extended version for consideration for
a special issue of the ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS) journal. We would like to acknowledge Steve Wilton and David
Thomas for their support.

In addition to the oral and poster presentations of the 34 papers, the sympo-
sium program includes invited presentations from prestigious speakers, as well



VI Preface

as three special sessions focusing on: EU funded projects related to reconfig-
urable technology, the FP7 EU-funded ALMA project, and on remote FPGA
lab environments.

This year we have the pleasure and honor to host Giovanni De Micheli, from
EPFL, Switzerland, as our keynote speaker, and David Thomas, from Imperial
College, UK, and Giulio Corradi, from Xilinx Inc., Munich, Germany, as our
invited presenters from academia and industry, respectively. We would like to
express our gratitude for their presence.

We appreciate the support given by Alfred Hofmann, Vice-President Publish-
ing Computer Science, from Springer International Publishing AG, and Anna
Kramer, from Springer Computer Science Editorial.

We also would like to acknowledge, the authors, the ARC 2014 steering and
Program Committee members, the external reviewers, and all the colleagues par-
ticipating in the organization of the symposium. Special thanks go to Gabriel
Coutinho for his hard work and dedication as proceedings chair. Gabriel exten-
sively reviewed all the papers regarding the LNCS style and worked with the
authors on the required modifications.

We hope you enjoy the symposium, have fruitful and inspiring discussions,
have time to network, and have some moments to relax.

Welcome to ARC 2014, the 10th Anniversary of the International Symposium
on Applied Reconfigurable Computing, and to Vilamoura in Algarve, Portugal.
“Algarve. Europe’s most famous secret!”

April 2014 Diana Goehringer
Marco Santambrogio
João M.P. Cardoso

Koen Bertels



Organization

Organizing Committee

General Chairs

João M.P. Cardoso University of Porto, Portugal
Koen Bertels Delft University of Technology,

The Netherlands

Program Chairs

Diana Goehringer Ruhr-Universität Bochum, Germany
Marco Santambrogio Politecnico di Milano, Italy

Finance Chair

João Canas Ferreira University of Porto, Portugal

Proceedings Chair

José G. Coutinho Imperial College London, UK

Sponsorship Chair

Horácio Neto INESC-ID/IST, Lisbon, Portugal

Publicity Chairs

Ray Cheung City University of Hong Kong, Hong Kong
Eduardo Marques University of São Paulo, Brazil
Jason H. Anderson University of Toronto, Canada

Web Chair

João Bispo University of Porto, Portugal

Local Arrangements

João Lima University of Algarve, Portugal
Rui Marcelino University of Algarve, Portugal
José Mariano University of Algarve, Portugal



VIII Organization

Steering Committee

Hideharu Amano Keio University, Japan
Juergen Becker Universität Karlsruhe (TH), Germany
Mladen Berekovic Braunschweig University of Technology,

Germany
Koen Bertels Delft University of Technology,

The Netherlands
João M.P. Cardoso University of Porto, Portugal
Katherine (Compton) Morrow University of Wisconsin-Madison, USA
George Constantinides Imperial College of Science, Technology

and Medicine, UK
Pedro C. Diniz USC Information Sciences Institute, USA
Philip H.W. Leong University of Sydney, Australia
Walid Najjar University of California Riverside, USA
Roger Woods The Queen’s University of Belfast, UK

In memory of Stamatis Vassiliadis [1951-2007], ARC 2006-2007 Steering
Committee member

Program Committee

Andreas Koch TU Darmstadt, Germany
António Ferrari University of Aveiro, Portugal
Antonio Miele Politecnico di Milano, Italy
Carlo Galuzzi Delft University of Technology,

The Netherlands
Chao Wang University of Science and Technology of China,

People’s Republic of China
Christian Hochberger TU Dresden, Germany
Christian Pilato Politecnico di Milano, Italy
Christos-Savvas Bouganis Imperial College London, UK
Cyrille Chavet Université de Bretagne-Sud, France
David Thomas Imperial College London, UK
Diana Göhringer Ruhr-Universität Bochum, Germany
Dominic Hillenbrand Waseda University, Japan
Eduardo Marques University of São Paulo, Brazil
Erkay Savas Sabanci University, Turkey
Fearghal Morgan National University of Ireland Galway, Ireland
Florent de Dinechin Ecole Normale Superieure de Lyon, France
Frank Hannig University of Erlangen-Nuremberg, Germany
Gabriel Almeida Leica Biosystems, Germany
Guy Gogniat Université de Bretagne-Sud, France
Hayden So University of Hong Kong, Hong Kong
Horácio Neto INESC-ID/IST, Portugal



Organization IX

Jason H. Anderson University of Toronto, Canada
Jim Harkin University of Ulster, UK
João Bispo University of Porto, Portugal
João Canas Ferreira University of Porto, Portugal
João M.P. Cardoso University of Porto, Portugal
Jongeun Lee UNIST, Republic of Korea
José C. Alves University of Porto, Portugal
Jürgen Becker Karlsruhe Institute of Technology,

Germany
Kentaro Sano Tohoku University, Japan
Kiyoung Choi Seoul National University, Republic of Korea
Koen Bertels Delft University of Technology,

The Netherlands
Kostas Masselos University of Peloponnese, Greece
Krzysztof Kepa Virginia Tech, USA
Kyle Rupnow Advanced Digital Sciences Center, Singapore
Marco Platzner University of Paderborn, Germany
Marco Santambrogio Politecnico di Milano, Italy
Markus Weinhardt Osnabrück University of Applied Sciences,

Germany
Matthias Birk Karlsruhe Institute of Technology, Germany
Michael Hübner Ruhr-Universität Bochum, Germany
Mladen Berekovic Braunschweig University of Technology,

Germany
Monica Magalhães Pereira Universidade Federal do Rio Grande do Norte,

Brazil
Neil Bergmann University of Queensland, Australia
Paul Chow University of Toronto, Canada
Pedro C. Diniz USC Information Sciences Institute, USA
Pedro Trancoso University of Cyprus, Cyprus
Pete Sedcole Celoxica Ltd., UK
Peter Athanas Virginia Tech, USA
Peter Zipf University of Kassel, Germany
Philip Leong University of Sydney, Australia
Ray Cheung City University of Hong Kong, Hong Kong
Reiner Hartenstein University of Kaiserslautern, Germany
René Cumplido National Institute for Astrophysics, Optics,

and Electronics (INAOE), Mexico
Ricardo Jacobi Universidade de Braśılia, Brazil
Robert Esser Apple Inc., USA
Roman Hermida Universidad Complutense, Madrid, Spain
Sanjay Rajopadhye Colorado State University, USA
Seda Ogrenci Memik Northwestern University, USA



X Organization

Smail Niar University of Valenciennes and
Hainaut-Cambresis, France

Stephan Wong Delft University of Technology,
The Netherlands

Stephen Brown Altera Corp., University of Toronto, Canada
Steve Casselman Altera Corp., USA
Steven Derrien IRISA, France
Taemin Kim Intel Corp., USA
Takefumi Miyoshi The University of Electro-Communications,

Japan
Theerayod Wiangtong MUT, Thailand
Thilo Pionteck University of Lübeck, Germany
Tim Todman Imperial College London, UK
Tomonori Izumi Ritsumeikan University, Japan
Tsutomu Sasao Meiji University, Japan

Vincenzo Rana École Polytechnique Fédérale de Lausanne,
Switzerland

Waqar Hussain Tampere University of Technology, Finland
William Marnane University College Cork, Ireland
Yasushi Inoguchi Japan Advanced Institute of Science and

Technology, Japan
Yoshiki Yamaguchi Tsukuba University, Japan
Yuchiro Shibata Nagasaki University, Japan
Yukinori Sato Japan Advanced Institute of Science and

Technology, Japan
Zachary Baker Los Alamos National Laboratory, USA

Additional Reviewers

Alba Lopes Universidade Federal do Rio Grande do Norte,
Brazil

Alessandro Nacci Politecnico di Milano, Italy
Andrew Love Virginia Tech, USA
Anh H. Du Nguyen Delft University of Technology,

The Netherlands
Anthony Brandon Delft University of Technology,

The Netherlands
Alexander Klimm Karlsruhe Institute of Technology,

Germany
Arda Yurdakul Boğaziçi University, Turkey
Carsten Tradowsky Karlsruhe Institute of Technology,

Germany
Cuong Pham-Quoc Delft University of Technology,

The Netherlands



Organization XI

Eduardo Cuevas-Farfan INAOE, Mexico
Florian Stock TU Darmstadt, Germany
Gerald Hempel TU Dresden, Germany
Hanmin Park Seoul National University, Republic of Korea
Hamid Mushtaq Delft University of Technology,

The Netherlands
Hiroki Nakahara Kagoshima University, Japan
Jecel Assumpcao Jr. University of São Paulo, Brazil
Jose Arnaldo M. De Holanda University of São Paulo, Brazil
Junxiu Liu University of Ulster, UK
Kevin Zeng Virginia Tech, USA
Kyoung Hoon Kim Seoul National University, Republic of Korea
Luca Cassano University of Pisa, Italy
Leandro Martinez University of São Paulo, Brazil
Lukas Jung TU Darmstadt, Germany
Márcio Brandão Universidade de Braśılia, Brazil
Marcos Da Cruz Universidade Federal do Rio Grande do Norte,

Brazil
Martin Danek TU Darmstadt, Germany
Matteo Carminati Politecnico di Milano, Italy
Moritz Schmid University of Erlangen-Nuremberg, Germany
Oliver Oey Karlsruhe Institute of Technology,

Germany
Paul Kaufmann University of Paderborn, Germany
Philipp Wehner Ruhr-Universität Bochum, Germany
Rainer Höckmann Osnabrück University of Applied Sciences,

Germany
Thorsten Wink TU Darmstadt, Germany
Timo Stripf Karlsruhe Institute of Technology, Germany
Tomohiro Ueno Tohoku University, Japan
Vincent Mirian University of Toronto, Canada
Vlad Mihai Sima Delft University of Technology,

The Netherlands



Table of Contents

Regular Papers

Applications I

FPGA-Based Parallel DBSCAN Architecture . . . . . . . . . . . . . . . . . . . . . . . . 1
Neil Scicluna and Christos-Savvas Bouganis

FPGA-Based High Performance AES-GCM Using Efficient Karatsuba
Ofman Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

Efficient Elliptic-Curve Cryptography Using Curve25519
on Reconfigurable Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Pascal Sasdrich and Tim Güneysu

Accelerating Heap-Based Priority Queue in Image Coding Application
Using Parallel Index-Aware Tree Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Yuhui Bai, Syed Zahid Ahmed, and Bertrand Granado

Methods, Frameworks and OS for Debug,
Over-Clocking and Relocation

A Unified Framework for Over-Clocking Linear Projections on FPGAs
under PVT Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Rui Policarpo Duarte and Christos-Savvas Bouganis

Relocatable Hardware Threads in Run-Time Reconfigurable Systems . . . 61
Alexander Wold, Andreas Agne, and Jim Torresen

Faster FPGA Debug: Efficiently Coupling Trace Instruments with User
Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Eddie Hung, Jeffrey B. Goeders, and Steven J.E. Wilton

Memory Architectures

On the Impact of Replacing a Low-Speed Memory Bus on the Maxeler
Platform, Using the FPGA’s Configuration Infrastructure . . . . . . . . . . . . . 85

Karel Heyse, Dirk Stroobandt, Oliver Kadlcek, and Oliver Pell

Towards Dynamic Cache and Bandwidth Invasion . . . . . . . . . . . . . . . . . . . . 97
Carsten Tradowsky, Martin Schreiber, Malte Vesper,
Ivan Domladovec, Maximilian Braun, Hans-Joachim Bungartz, and
Jürgen Becker



XIV Table of Contents

Stand-Alone Memory Controller for Graphics System . . . . . . . . . . . . . . . . . 108
Tassadaq Hussain, Oscar Palomar, Osman S. Ünsal, Adrian Cristal,
Eduard Ayguadé, Mateo Valero, and Amna Haider

Methodologies and Tools I

Evaluating High-Level Program Invariants Using Reconfigurable
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Joonseok Park and Pedro C. Diniz

Automated Data Flow Graph Partitioning for a Hierarchical Approach
to Wordlength Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Enrique Sedano, Daniel Menard, and Juan A. López

Partitioning and Vectorizing Binary Applications for a Reconfigurable
Vector Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Tobias Kenter, Gavin Vaz, and Christian Plessl

Architectures I

Enhanced Radiation Tolerance of an Optically Reconfigurable Gate
Array by Exploiting an Inversion/Non-inversion Implementation . . . . . . . 156

Takashi Yoza and Minoru Watanabe

Hardware-Accelerated Data Compression in Low-Power Wireless Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Andreas Engel and Andreas Koch

OCP2XI Bridge: An OCP to AXI Protocol Bridge . . . . . . . . . . . . . . . . . . . 179
Zdravko Panjkov, Juergen Haas, Martin Aigner, Herbert Rosmanith,
Tianlun Liu, Roland Poppenreiter, Andreas Wasserbauer, and
Richard Hagelauer

Short Papers

Applications II

FPGA Implementation of a Video Based Abnormal Action Detection
System with Real-Time Cubic Higher Order Local Auto-Correlation
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Kaoru Hamasaki, Keisuke Dohi, Yuichiro Shibata, and Kiyoshi Oguri

A Synthesizable Multicore Platform for Microwave Imaging . . . . . . . . . . . 197
Pascal Schleuniger and Sven Karlsson



Table of Contents XV

An Efficient Implementation of the Adams-Hamilton’s Demosaicing
Algorithm in FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Jalal Khalifat, Ali Ebrahim, and Tughrul Arslan

FPGA Design of Delay-Based Digital Effects for Electric Guitar . . . . . . . 213
Pablo Calleja, Gabriel Caffarena, and Ana Iriarte

Design Space Exploration of a Particle Filter Using Higher-Order
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Rinse Wester and Jan Kuper

Simulation of Complex Biochemical Pathways in 3D Process Space
via Heterogeneous Computing Platform: Preliminary Results . . . . . . . . . . 227

Jie Li, Amin Salighehdar, and Narayan Ganesan

Architectures II

Efficient Buffer Design and Implementation for Wormhole Routers
on FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Taimour Wehbe and Xiaofang Wang

MicroACP - A Fast and Secure Reconfigurable Asymmetric Crypto-
Processor - Overhead Evaluation of Side-Channel Countermeasures . . . . . 240

Christopher Pöpper, Oliver Mischke, and Tim Güneysu

ARABICA: A Reconfigurable Arithmetic Block for ISA
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Ihsen Alouani, Mazen A.R. Saghir, and Smail Niar

Built-in 3-Dimensional Hamming Multiple-Error Correcting Scheme
to Mitigate Radiation Effects in SRAM-Based FPGAs . . . . . . . . . . . . . . . . 254

B. Chagun Basha, Stanis�law J. Piestrak, and Sébastien Pillement

Adapting Processor Grain via Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . 262
Jecel Mattos de Assumpção Jr., Merik Voswinkel, and
Eduardo Marques

Instruction Set Optimization for Application Specific Processors . . . . . . . 268
Max Ferger and Michael Hübner

Methodologies and Tools II

A Dataflow Inspired Programming Paradigm for Coarse-Grained
Reconfigurable Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

A. Niedermeier, Jan Kuper, and Gerard J.M. Smit

Thread Shadowing: Using Dynamic Redundancy on Hybrid Multi-cores
for Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Sebastian Meisner and Marco Platzner



XVI Table of Contents

Diffusion-Based Placement Algorithm for Reducing High Interconnect
Demand in Congested Regions of FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Ali Asghar and Husain Parvez

GPU vs FPGA: A Comparative Analysis for Non-standard Precision . . . 298
Umar Ibrahim Minhas, Samuel Bayliss, and
George A. Constantinides

Instruction Extension and Generation for Adaptive Processors . . . . . . . . . 306
Chao Wang, Xi Li, Huizhen Zhang, Liang Shi, and Xuehai Zhou

Special Session Papers

DeSyRe: On-Demand Adaptive and Reconfigurable Fault-Tolerant
SoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

I. Sourdis, C. Strydis, A. Armato,
Christos-Savvas Bouganis, B. Falsafi, G.N. Gaydadjiev,
S. Isaza, A. Malek, R. Mariani, S. Pagliarini,
D.N. Pnevmatikatos, D.K. Pradhan, G. Rauwerda, R.M. Seepers,
R.A. Shafik, G. Smaragdos, D. Theodoropoulos, S. Tzilis, and
M. Vavouras

Effective Reconfigurable Design: The FASTER Approach . . . . . . . . . . . . . 318
D.N. Pnevmatikatos, T. Becker, A. Brokalakis, G.N. Gaydadjiev,
W. Luk, K. Papadimitriou, I. Papaefstathiou, D. Pau, Oliver Pell,
C. Pilato, M.D. Santambrogio, D. Sciuto, and Dirk Stroobandt

HARNESS Project: Managing Heterogeneous Computing Resources
for a Cloud Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

J.G.F. Coutinho, Oliver Pell, E. O’Neill, P. Sanders, J. McGlone,
P. Grigoras, W. Luk, and C. Ragusa

Profile-Guided Compilation of Scilab Algorithms for Multiprocessor
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Jürgen Becker, Thomas Bruckschloegl, Oliver Oey, Timo Stripf,
George Goulas, Nick Raptis, Christos Valouxis, Panayiotis Alefragis,
Nikolaos S. Voros, and Christos Gogos

SAVE: Towards Efficient Resource Management in Heterogeneous
System Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

G. Durelli, M. Coppola, K. Djafarian, G. Kornaros, A. Miele,
M. Paolino, Oliver Pell, Christian Plessl, M.D. Santambrogio, and
C. Bolchini



Table of Contents XVII

Data Parallel Application Adaptivity and System-Wide Resource
Management in Many-Core Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Giuseppe Massari, Edoardo Paone, Michele Scandale,
Patrick Bellasi, Gianluca Palermo, Vittorio Zaccaria,
Giovanni Agosta, William Fornaciari, and Cristina Silvano

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353



FPGA-Based Parallel DBSCAN Architecture

Neil Scicluna and Christos-Savvas Bouganis

Imperial College London, EEE Department
London SW7 2AZ, United Kingdom

scicluna.neil@gmail.com, christos-savvas.bouganis@imperial.ac.uk

Abstract. Clustering of a large number of data points is a computa-
tional demanding task that often needs the be accelerated in order to be
useful in practice. The focus of this work is on the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm, which is
one of the state-of-the-art clustering algorithms, targeting its accelera-
tion using an FPGA device. The paper presents a novel, optimised and
scalable architecture that takes advantage of the internal memory struc-
ture of modern FPGAs in order to deliver a high performance cluster-
ing system. Results show that the developed system can obtain average
speed-ups of 32x in real-world tests and 202x in synthetic tests when
compared to state-of-the-art software counterparts.

Keywords: Clustering, DBSCAN, FPGA, Parallel Hardware Architec-
tures.

1 Introduction

Clustering is the task of intelligently grouping data points into groups or clusters,
where the grouping of the points is based on a particular criterion, such as
distance. Clustering has many applications including data mining, statistical
data analysis, pattern recognition and image analysis [1–3]. Various clustering
algorithms have been developed so far, usually targeting a specific domain of
applications by defining suitably the notion of the cluster. With high complexity
and long computation times, sometimes even taking hours for large datasets [4],
the need to perform clustering as fast as possible is becoming more and more
prevalent.

The most widely used clustering algorithms are K-Means [5], Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [1] and Ordering Points
To Identify the Clustering Structure (OPTICS) [6]. While K-Means provides
a fast solution to the clustering problem, it has been shown to have certain
limitations. These include its inability to identify and reject noise in the data
and that fact that the achieved clustering of the points is without consideration
of the spatial density of the data points [1]. Additionally, the result of the K-
Means is heavily dependant on its initialisation and on the number of clusters
provided by the user [5]. DBSCAN and OPTICS clustering algorithms address
those limitations in exchange for higher complexity.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014



2 N. Scicluna and C.-S. Bouganis

DBSCAN and OPTICS algorithms perform clustering using the spatial den-
sity of the data. However, OPTICS does not perform cluster per se but it provides
an insight on how to do this, requiring additional processing for the actual clus-
tering to be achieved, making the whole process computationally demanding.
DBSCAN on the other hand is faster than OPTICS [1, 6] and serves as a good
middle-ground, making it one of the most popular and heavily cited clustering
algorithms.

With the increasing requirement of being able to perform clustering on large
datasets as fast as possible, running these on generic processors is proving to
be inadequate and specialised hardware is often utilised. Even though real-time
K-Means implementations have been developed for FPGAs [7], to the best of the
authors’ knowledge, FPGA implementations of the more complex, density-based
methods have not yet been developed. Thus, providing the ability to perform
density-based clustering in real-time could open a vast array of possibilities.

In this paper, the an FPGA-based hardware implementation of the DBSCAN
algorithm is described. The proposed hardware architecture takes advantage of
the dynamic and massively parallel nature of an FPGA device and computes in
parallel certain aspects of the algorithm targeting its acceleration. The proposed
architecture is highly scalable such that the performance gains are not limited
by dataset size, but only by the resources available on the FPGA utilised. Fur-
thermore, this is designed as a fully parametrisable IP core where aspects such
as the size and dimensions of the input data, internal precision, pipeline depths
and the level of parallelism, can be modified by simply altering the parameters
and re-synthesising. Finally, the system is also FPGA target independent, with
the only requirement being that the chip used has sufficient amounts of Block
Random Access Memory (BRAM). All these aspects make this the most flexible
hardware implementation of DBSCAN yet.

2 Background

2.1 DBSCAN Algorithm

The DBSCAN algorithm performs clustering based on the spatial density of
the data points. This approach to clustering is intuitive, as the definition of a
cluster simply refers to a region where there is a typical density of points which
is considerably higher than the outside region of the cluster. Additionally, the
density in areas where points can be considered as noise is lower than those of
clusters.

The key concept is that in order to form a cluster, there must exist at least
MinPts data points that are all within the Eps radius of each other. The
MinPts and Eps are user specified parameters. Data points which contain at
least as many points in their Eps neighbourhood as MinPts, are considered as
core points. If a point contains fewer points than MinPts in its neighbourhood,
but contains at least one core point, it is considered as a border point. In [1],
this point is said to be directly density-reachable from a core point but not the
other way around. The cluster is then expanded by grouping all the directly



FPGA-Based Parallel DBSCAN Architecture 3

density-reachable core points and the respective border points. This is referred
to as density reachability and essentially means that there is a chain of directly
density-reachable points connecting two particular points. Finally, points which
are neither directly density-reachable, nor contain at least as many points as
MinPts in their neighbourhood, are considered as noise.

The algorithm itself works as follows. The first step is to retrieve all the
directly density-reachable points with respect to Eps for each point. If there are
less points than MinPts, the algorithm moves to the next point, otherwise, the
points are assigned to the current cluster (as defined by the cluster identification
number). The points obtained in this initial step are referred to as the immediate
neighbourhood points. The next step is to expand the cluster by pushing all the
points retrieved onto a queue. On each iteration, a point is dequeued and all the
density-reachable points with respect to Eps from that point are retrieved. If
the number of points is larger or equal to MinPts, then these points are added
to the cluster and pushed onto the queue. These are referred to as the extended
neighbourhood points. Subsequently as more density-reachable points are found,
they are added to the queue to find other points which form part of the cluster.
This is repeated until the queue is empty, which signifies that the cluster has
been formed completely. The cluster identification number is then incremented
and a new point is loaded to start compiling a new cluster. This whole process
is repeated until all the points in the dataset have been checked.

DBSCAN also works for multiple dimensions without changes to the core
algorithm. This is because the only operation performed on the data is dis-
tance measurement, which can be adapted to multiple dimensions. Furthermore,
interchanging distance functions such as Euclidean distance and Manhattan dis-
tance is also possible. Such change impacts on the shape and radius of points
considered in the neighbourhood.

2.2 Related Work

The time complexity of the standard DBSCAN algorithm is O(n2) (where n is
the number of points in the dataset) since a range query, which is done by calcu-
lating and checking the distance to all the other points, needs to be performed
for each point in the dataset. To improve this, tree data structures such as the
R*-Tree [8] used in [1], are adopted to accelerate region queries thereby reduc-
ing the time complexity to O(n ∗ log(n)). This however adds the requirement
of constructing the tree for the dataset, which is also O(n ∗ log(n)). Moreover,
spatial accesses using an R*-Tree are not always efficient [9].

The Parallel-DBSCAN (P-DBSCAN) algorithm described in [9], adopts a dif-
ferent spatial index called the Priority R-Tree (PR-Tree). Here a form of paral-
lelism is introduced where the database is first separated into several parts and
then the computational nodes build their own PR-Tree and carry out the cluster-
ing independently. Each node in this system is a desktop PC. Finally, the results
are aggregated. An alternative approach to parallelism but on the same platform
was taken in MapReduce-DBSCAN (MR-DBSCAN) [4] and Hierarchical-Based
DBSCAN (HDBSCAN) [10], where a map-reduce structure is implemented to



4 N. Scicluna and C.-S. Bouganis

spread the computation across multiple nodes that can work in parallel using
the Hadoop platform. These implementations all aim to solve the problem of
very large data clustering. Even though significant performance increases over
standard implementations are achieved for datasets with hundreds of thousands
of points and more, this is not true for smaller datasets due to the overhead
introduced. As a result these methods are suitable only for certain cases and are
still dependent on how fast each individual node can perform the clustering.

Thapa et al. [3] propose a Graphics Processing Unit (GPU) implementation of
the DBSCAN algorithm that takes advantage of the large amounts of memory
and processor cores available on modern GPUs. Two different approaches are
explored in attempt to accelerate this algorithm through parallelism. The first
involves computing the region query for a particular point, by comparing it to
each point in the database in parallel and storing all the results in memory.
Alternatively, the second approach involves computing the range queries of all
the points in parallel and once again storing the results in memory. While this
showed a performance increase of about 2–3x, the advantages are dependent on
the size of the dataset.

The fastest implementation so far is the dedicated hardware Very-Large-Scale
Integration (VLSI) architecture proposed in [11] and is applied to clustering of
image pixel data. In fact this design can only perform 2D clustering and is
therefore very application specific. This hardware architecture is designed in
such a way that there is a processing element for each pixel and full pixel-
parallel processing is achieved. This results in very fast clustering speeds but
requires a significant amount of area per pixel and therefore is not feasible for
even moderately large datasets, particularly when interconnect requirements are
considered. Additionally, it is unclear whether this design is parametrisable in
terms of Eps and MinPts, maximum sizes of clusters and data precision.

In this workwe aim to achieve the performance benefits available through paral-
lelism and hardware implementation, while also maintaining a great level of flex-
ibility. The key contributions are the analysis and development of a novel par-
allelisation strategy for the DBSCAN algorithm and the design of the first high
performance and parametrisable FPGA-based implementation of this clustering
algorithm.

3 Concept and Architecture

The major contributor to the time complexity of the algorithm is the range query
process that needs to be performed for every point in the dataset. This was
also confirmed experimentally through extensive profiling of a custom DBSCAN
MATLAB implementation based on [2]. While R*-Trees do indeed improve the
time complexity of the algorithm, simulations performed using Elki [12] show
that since the tree needs to be reconstructed for each new data sample, this does
not provide substantial performance benefits for applications with hard time
constraints and in some cases, it is actually detrimental. Furthermore, due to
their complexity and highly dynamic nature, R-Trees (which are very similar to



FPGA-Based Parallel DBSCAN Architecture 5

R*-Trees), are shown to be costly in terms of resources to implement efficiently in
hardware [13]. Thus the proposed architecture utilises standard indexing instead
of a tree based data structure.

For DBSCAN to perform the clustering, two sets of range queries are per-
formed, the first obtains the immediate neighbourhood of the particular point
where the second set performs the range queries in order to obtain the extended
neighbourhood of points for that cluster. In most cases, this second batch of
range queries take the longest portion of execution time. This was corroborated
by performing profiling tests in MATLAB with multiple datasets and also vary-
ing parameters. These datasets are of varying spatial densities and are obtained
from an image processing application and consist of coordinates of local features
detected in a variety of images. These results are shown in Table 1.

Table 1. DBSCAN Range query bias analysis

Dataset
No.

Size Eps MinPts
Imm. Neighb.
Range Queries

Ext. Neighb.
Range Queries

1 19504 25 10 238 19342
1 19504 25 80 2657 16995
1 19504 55 220 1903 17731
2 2015 25 8 346 1710
3 6472 70 100 193 6310
4 2237 100 90 176 2094
5 2927 80 100 96 2832

6 2003 100 60 2 2003

These extended neighbourhood range queries have no data dependencies and
thus can be performed in parallel. Furthermore, the algorithm performs these
queries by essentially having a queue of points on which these range queries need
to be performed which is constantly appended with new points. Thus, further
parallelisation can be extracted. This is achieved by loading all the points in the
queue at each iteration and subsequently perform all the range queries for these
points concurrently, thereby significantly reducing the computation time.

Figure 1 shows a hardware architecture diagram for the design outlining all
the key modules.

The Input Memory element is used to store the data that is going to be
clustered, which is not internal to the DBSCAN IP Core in order to allow for
maximum flexibility. It is assumed that all the dimensions of the currently ad-
dressed data point are available simultaneously. Furthermore, it is assumed that
the memory subsystem can provide a data point every clock cycle, which is
possible through pipelining or using SRAMs.

The design uses on-chip BRAM resources for all memory elements, however it
allows for alternative implementations of the input memory element, as long as
the previously mentioned criteria are satisfied. The other two RAM elements in
the architecture are the Cluster ID Memory and the Visited Flag Memory which



6 N. Scicluna and C.-S. Bouganis

CID

Cluster ID
Memory

Input Memory Address

Result Output Enable

Current Point

Manhattan
Distance

Calculation

D1 Dn

Data ID

Visited Flag

Cluster ID
Assignment

Data ID

Immediate
Neighbourhood Data IDs

FIFO

Result Memory Address

Start

Data from Input Memory
Imm. Neighb. Data Point

Extended Neighbourhood Data ID

DBSCAN
FSM

S1

Input
Memory
Address

Multiplexer

S2
C

D

S1 S2
C

D

S3 Sn...

FIFO Read Enable

Number of Elements

Number of Elements

Parallel Element Bank

...

0 1 2 n
Read Enable Decoder

Man.
Dist.
Calc.

Man.
Dist.
Calc.

Man.
Dist.
Calc.

Man.
Dist.
Calc.

DataCluster ID

MinPtsEps

V

Visited
Flag

Ext. Neighb. FIFO Select

...

D1 Dn

Input
Memory

MinPtsEps DBSCAN IP Core
Block

Extended
Neighbourhood
Data IDs FIFOs

Fig. 1. FPGA DBSCAN Hardware architecture

are internal to the IP Core and are implemented in BRAM. The former stores the
cluster identification number for each data point while the latter marks whether
a point has been visited.

The immediate neighbourhood range query results are stored in a first in,
first out (FIFO) memory element which is implemented using the available
BRAM/FIFO resources on the FPGA. This serves as the point queue on which
the extended neighbourhood range queries are performed. However, this does
not store the actual data points, but just their addresses in main memory.

The main parallelised aspect of the design is the computation of the extended
neighbourhood range queries. Towards this, multiple distance measurements are
performed simultaneously through the use of the Manhattan Distance Calcu-
lation Datapath. This is a dedicated component which is designed to work as
a black box, in the sense that, given two data points and the Eps parame-
ter value, it provides an output signal signifying whether or not the distance
between the two points is smaller than or equal to Eps. This element is auto-
matically generated based on the number of dimensions of the input data and
it is also pipelined for high clock frequency. Since the data point should only
be stored into the queue if that condition is satisfied, this output signal is then
used as a write enable for the FIFO which stores the result of the extended
neighbourhood range query. The combination of a distance calculation block
and a FIFO is referred to as a Parallel Element (PE). As shown in the diagram,



FPGA-Based Parallel DBSCAN Architecture 7

multiple PEs can be instantiated depending on the available resources and the
target performance. While the results of multiple range queries are obtained si-
multaneously with these PEs, the cluster identification number and visited flag
must be updated serially and therefore, there needs to be a way of selecting
between the separate parallel elements. This selection is controlled by the Finite
State Machine (FSM) and it is crucial that the read enable signal is high for
only one FIFO at a time. Correspondingly, the outputs of the FIFOs also need
to be considered individually. This is achieved through the use of a decoder and
a multiplexer. If the number of parallel elements is fairly large, the multiplexer
would have a very long critical path, resulting in lower clock speeds. To remedy
this, the multiplexer is pipelined.

To perform the clustering, the DBSCAN FSM iterates through the points in
the data memory and if the data point is not marked as visited in the visited
flag memory, a range query is performed by checking the distance of that point
to all the other points in the dataset. All the points that are within the Eps
neighbourhood are then stored in the immediate neighbourhood data ID FIFO.
If the number of elements is greater than or equal to MinPts these points are
assigned to the current cluster and the FSM then loads into a register bank as
many points as available in the immediate neighbourhood FIFO, or as limited
by the number of available PEs. Subsequently it performs this batch of range
queries concurrently, with the results stored in each respective FIFO. The ele-
ment count for each FIFO is then checked against MinPts and if the condition
is satisfied, these points are added to the immediate neighbourhood queue to
continue expanding the cluster. This whole process is repeated until there are
no points left in the queue at which point the next memory element is checked
to start forming a new cluster.

4 Experimental Results

The proposed architecture was synthesised for the Xilinx Virtex 7 XC7VX690T-3
FPGA and subsequently, its performance is evaluated using the variety of datasets
mentioned in theprevious section.Beingpixel coordinates, thesedatasets are there-
fore two dimensional and each dimension is stored with 16 bit precision.Maximum
clock speeds reported by the synthesis tool for this design with 2D input data and
1–710PEs, range from 350–410MHz. The simulation results are then compared to
a rangeof softwaremethods run on a desktop computerwith an Intel Core i7 2600K
3.4 GHz Sandy Bridge processor and 8GB of DDR3-1066MHz memory. The eval-
uated design instance targets an image processing application, however, the pro-
posed architecture can be configured to handlemulti-dimensional data of anyword
length without an impact on the latency of the system. Table 2 shows the resource
utilisation along with the maximum clock speed and respective power consump-
tion for varying numbers of PEs. The power consumption is estimated using the
Xilinx XPower Analyzer tool and includes both the dynamic and static power.

The proposed systemwas compared against three software implementations. To
provide aworst-case comparison, the software timeused for each case is the shortest



8 N. Scicluna and C.-S. Bouganis

Table 2. Effects of varying number of PEs (Synthesis Estimates)

No. of PEs
Max Clock

Speed (MHz)
LUT

Utilisation (%)
BRAM/FIFO
Utilisation (%)

Total Power
(W)

1 409 0.1 1 0.57
25 413 1 5 0.84
50 393 2 8 1.03
100 395 4 15 1.75
150 391 6 22 2.28
300 378 12 42 3.90
500 372 20 69 6.92

710 353 34 98 8.97

one between three software implementations. The first of these is the MATLAB
implementation, while the second and thirdweremeasured byELKI [12], which is a
software clustering algorithm performance analysis tool written by the developers
of DBSCAN. One of these measurements is with standard indexing, whereas the
other was done using R*-Tree indexing. To provide a fair comparison, the R*-Tree
timing includesboth the time taken for the generationof the treedata structure and
the execution of the DBSCAN algorithm accelerated by that data structure. The
results for the tests performed, along with the respective chosen parameters are
shown in Table 3. The Eps and MinPts parameters in these tests were primarily
chosen to providemeaningful results for the targeted image processing application.
The obtained results show an average speed-up of 32x. Similarly, Fig. 2 shows how
the performance of the fastest software version and the proposedHDL design scale
with increasing dataset sizes.

The conducted experiments show that there is a limit as to howmuch parallelism
can be extracted from a dataset and this is dependant on the combination of the
spatial density of the data and the parameters used. In spite of this, simulations
show that the proposed parallelisation strategy proves significantly beneficial. The
choices of the numbers of PEs used in the tests shown in Table 3 were made to en-
sure that the number of range queries performed in parallel aremaximised for each
dataset. This is based on aMATLABmodel developed to analyse the performance
effects of varying numbers of PEs on the system.

Moreover, the results show that for the range of datasets and parameters tested,
which provide a wide range of test cases with varying spatial density, most of the
performance gains available can be exploited even with a small number of PEs,
despite the performance being dataset limited. Figure 3 shows how this applies to
two particular test cases. Since the maximum clock speed varies with the number
of PEs used in the design, the simulations were performed at the maximum clock
speed attainable with the respective number of PEs.

Figure 4(a) shows that the time taken to cluster the dataset increases approxi-
mately linearly with the MinPts parameter. This is due to more parallelism
potential becoming available in the data as this parameter gets smaller. In this
case, whenMinPts = 0 maximum parallelism is achieved, with the result being a



FPGA-Based Parallel DBSCAN Architecture 9

Table 3. HDL DBSCAN Implementation performance analysis results

Dataset
No.

Size Eps MinPts
Software
Time (s)

Parallel
Elements
(PEs)

Clock
Speed
(MHz)

HDL
Time
(ms)

Speed-Up

1 19504 25 80 7.16 300 377.98 211.88 33.77
1 19504 55 220 11.40 710 353.15 371.51 30.68
2 2015 25 8 0.13 85 405.48 2.77 46.21
3 6472 70 100 1.74 150 391.11 49.56 35.11
4 2237 100 90 0.28 150 391.11 9.76 28.69
5 2927 80 100 0.58 150 391.11 22.34 26.14

6 2003 100 60 0.19 150 391.11 8.64 22.45

2000 6000 10000 14000 18000
0

2

4

6

Number of Points

E
x
ec
u
ti
o
n
T
im

e
(s
)

Software Implementation

HDL Implementation

Fig. 2. Graph showing performance scalability with increasing numbers of points

single large cluster, but when MinPts = 60 no clusters are formed and therefore,
no parallelism can be extracted. Figure 4(b) shows that the relationship is not lin-
ear throughout for the Eps parameter. When the Eps parameter is small we en-
counter the same issue where only a few small clusters are formed and therefore
very little performance gain can be obtained through parallelism. AsEps becomes
larger, the number of PEs becomes the limiting factor and therefore, more are re-
quired to take advantage of the parallelism available in the data. Additionally, as
occurs with the standard DBSCAN implementations, with larger Eps the algo-
rithm takes longer to compute.

Furthermore, the proposed systemwas tested using the datasets that were used
in Thapa R. et al. [3], which the authors have kindly provided. It should be noted
that unlike the datasets tested previously, these are synthetic datasets and have
constant spatial density throughout with the points ordered by cluster. Figure 4
shows the execution times of the various implementations with the parameters set
to Eps = 1.5 and MinPts = 4 as used in [3]. The number of PEs was set to 50 as



10 N. Scicluna and C.-S. Bouganis

0 20 40 60 80
2

4

6

8

10

12

Number of Parallel Elements

E
x
ec
u
ti
o
n
T
im

e
(m

s)
Dataset 2, Eps = 25, MinPts = 8

10

18

26

34

42

50

S
p
ee
d
-U

p

0 100 200 300
8

13

18

23

28

Number of Parallel Elements

E
x
ec
u
ti
o
n
T
im

e
(m

s)

Dataset 4, Eps = 90, MinPts = 100

10

15

20

25

30

S
p
ee
d
-U

p

Fig. 3. Execution time (marked by ∗) with varying number of parallel elements and
respective speed-up (marked by o)

0 20 40 60
0

2

4

6
·106

MinPts Parameter

N
u
m
b
er

o
f
C
lo
ck

C
y
cl
es

Dataset 2, Eps = 25,
Number of PEs = 50

0

20

40

60

S
p
ee
d
-U

p

(a)

0 50 100 150
0

2

4

6
·106

Eps Parameter

N
u
m
b
er

o
f
C
lo
ck

C
y
cl
es

Dataset 2, MinPts = 8,
Number of PEs = 200

0

20

40

60

S
p
ee
d
-U

p

(b)

Fig. 4. Number of clock cycles taken (marked by ∗) to compute clustering with varying
MinPts (a) andEps (b) and respective speed-up (marked by o) over software implemen-
tation

this extracts the maximum amount of parallelism available in the data and allows
for a clock speed of 393 MHz. The speed-ups achieved in synthetic dataset tests
are on average 202x when compared to the software implementations and 143x
compared to the GPU implementation.



FPGA-Based Parallel DBSCAN Architecture 11

Table 4. DBSCAN HDL Implementation in comparison to GPU Implementation

Dataset
Size

Software
Time (s)

Sequential
Time (s)

[3]

GPU
Time (ms)

[3]

HDL
Time (ms)

Speed-Up
over

Software

Speed-Up
over GPU

5000 0.56 1.33 340 2.6 215.55 130.87
10000 1.69 4.5 1120 8.4 201.14 133.30
15000 3.53 6.82 2490 17.41 202.76 143.02

20000 5.64 9.09 4910 29.62 190.42 165.78

5 Conclusions

The paper presented a novel FPGA-based architecture for the DBSCAN cluster-
ing algorithm. The architecture utilises key aspects of the FPGA fabric in order to
accelerate the targeted algorithm. When compared to established software meth-
ods, the proposed architecture achieves considerable performance increases, which
is higher than obtained using the GPU implementation in [3]. Finally, compared to
theVLSI implementation in [11],while the performance is not on the same level, the
proposed system is significantly more flexible and allows for clustering of consid-
erably larger datasets in more dimensions, while still providing high performance.

References

1. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discov-
ering Clusters. In: Proc. of 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, pp. 226–231 (1996)

2. Daszykowski, M.,Walczak, B., Massart, D.L.: Looking for Natural Patterns in Data.
Part 1: Density Based Approach. Chemometrics and Intelligent Laboratory Sys-
tems 56(2), 83–92 (2001)

3. Thapa, R., Trefftz, C., Wolffe, G.: Memory-Efficient Implementation of a Graphics
Processor-Based Cluster Detection Algorithm for Large Spatial Databases. In: Proc.
of the IEEE International Conference on Electro/Information Technology (EIT),
vol. 1(5), pp. 20–22 (2010)

4. He, Y., Tan, H., Luo, W., Mao, H., Ma, D., Feng, S., Fan, J.: MR-DBSCAN: An
Efficient Parallel Density-Based Clustering Algorithm Using MapReduce. In: Proc.
of the IEEE 17th International Conference on Parallel and Distributed Systems
(ICPADS), vol. 7(9), pp. 473–480 (2011)

5. Hartigan, J.A., Wong, M.A.: A K-Means Clustering Algorithm. Journal of the Royal
Statistical Society, Series C 28(1), 100–108 (1979)

6. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering Points
To Identify the Clustering Structure. In: Proc. of the ACM SIGMOD International
Conference on Management of Data, vol. 28(2), pp. 49–60 (1999)

7. Maruyama, T.: Real-time K-Means Clustering for Color Images on Reconfigurable
Hardware. In: Proc. of 18th International Conference on Pattern Recognition
(ICPR), vol. 2(1), pp. 816–819 (2006)



12 N. Scicluna and C.-S. Bouganis

8. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: Proc. of ACM SIGMOD
Int. Conf. on Management of Data, Atlantic City, NJ, pp. 322–331 (1990)

9. Chen, M., Gao, X., Li, H.: Parallel DBSCAN with Priority R-Tree. In: Proc. of the
2nd IEEE International Conference on Information Management and Engineering
(ICIME), vol. 16(18), pp. 508–511 (2010)

10. Li, L., Xi, Y.: Research on Clustering Algorithm and Its Parallelization Strategy.
In: Proc. of the International Conference on Computational and Information Sci-
ences (ICCIS), vol. 21(23), pp. 325–328 (2011)

11. Shimada, A., Zhu, H., Shibata, T.: A VLSI DBSCAN Processor Composed as
an Array of Micro Agents Having Self-Growing Interconnects. In: Proc. of the
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 19(23),
pp. 2062–2065 (2013)

12. Achtert, E., Kriegel, H.-P., Schubert, E., Zimek, A.: Interactive Data Mining with
3D-Parallel-Coordinate-Trees. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, New York, NY, pp. 1009–1012 (2013)

13. Xiang, X., Tuo, S., Pranav, V., Jaehwan, J.L.: R-tree: A Hardware Implementation.
In: Proceedings of the 2008 International Conference on Computer Design (CDES),
Las Vegas, NV, pp. 3–9 (2008)



FPGA-Based High Performance AES-GCM

Using Efficient Karatsuba Ofman Algorithm

Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

LIP6-SoC Laboratory, University of Paris VI, France
{karim.abdellatif,roselyne.chotin-avot,habib.mehrez}@lip6.fr

Abstract. AES-GCM has been utilized in various security applications.
It consists of two components: an Advanced Encryption Standard (AES)
engine and a Galois Hash (GHASH) core. The performance of the sys-
tem is determined by the GHASH architecture because of the inher-
ent computation feedback. This paper introduces a modification for the
pipelined Karatsuba Ofman Algorithm (KOA)-based GHASH. In partic-
ular, the computation feedback is removed by analyzing the complexity
of the computation process. The proposed GHASH core is evaluated with
three different implementations of AES ( BRAMs-based SubBytes, com-
posite field-based SubBytes, and LUT-based SubBytes). The presented
AES-GCM architectures are implemented using Xilinx Virtex5 FPGAs.
Our comparison to previous work reveals that our architectures are more
performance-efficient (Thr. /Slices).

Keywords: AES-GCM, FPGAs, GHASH, Karatsuba Ofman Algorithm
(KOA).

1 Introduction

Recently, techniques have been invented to combine encryption and authenti-
cation into a single algorithm which is called Authenticated Encryption (AE).
Combining these two security services in hardware produces smaller area com-
pared to two separate algorithms.

Galois Counter Mode (GCM) [1] mode is an AE algorithm. It is well-suited
for wireless, optical, and magnetic recording systems due to its multi-Gbps au-
thenticated encryption speed, outstanding performance, minimal computational
latency as well as high intrinsic degree of pipelining and parallelism. New com-
munication standards like IEEE 802.1ae [2] and NIST 800-38D have considered
employing GCM to enhance their performance. The reconfigurability of FPGAs
offers major advantages when using them for cryptographic applications. Hence,
they are commonly used as an implementation target.

Our Contribution. In this work, we present efficient FPGA-based architec-
tures for AES-GCM by modifying the architecture of the pipelined KOA-based
GHASH. Our focus on state of the art of KOA-based GHASHs leads to solve
the algorithm complexity resulting from the inherent computation feedback. In

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014



14 K.M. Abdellatif, R. Chotin-Avot, and H. Mehrez

addition, three different implementations of AES are evaluated and added to the
proposed GHASH in order to increase the flexibility of the presented work.

The major features and the previous work of AES-GCM are described in Sec-
tion 2. After that, our proposed architecture of GHASH is presented (Section
3). The overall architecture of AES-GCM is shown in Section 4. Implementa-
tion details and performance comparison are discussed in Section 5. Section
6 concludes this work.

2 AES-GCM

Recently, Galois Counter Mode (GCM) [1] was considered as a new mode of op-
eration of Advanced Encryption Standard (AES). GCM simultaneously provides
confidentiality, integrity and authenticity assurances on the data. It supports not
only high speed authenticated encryption but also protection against bit-flipping
attacks. It can be implemented in hardware to achieve high speeds with low cost
and low latency. Software implementations can achieve excellent performance
by using table-driven field operations. GCM was designed to meet the need for
an authenticated encryption mode that can efficiently achieve speeds of 10 Gbps
and higher in hardware. It contains an AES engine in counter mode and a Galois
Hash (GHASH) module as presented in Fig. 1.

As shown in Fig. 1, the GHASH function (authentication part) is composed
of chained GF(2128) multipliers and bitwise exclusive-OR (XOR) operations.
Because of the inherent computation feedback, the performance of the system is
usually determined by the GF(2128).

AES

Key

AESAES AES AES

+ + +

+ ++

GF(2128 )
Multiplier
GF(2

128
) 

Multiplier

GF(2128 )
Multiplier
GF(2

128
) 

Multiplier

GF(2128 )
Multiplier
GF(2

128
) 

Multiplier

GF(2128 )
Multiplier
GF(2

128
) 

Multiplier

+

"00..00" CTR[n]CTR[2]CTR[1]CTR[0] Key Key Key Key

H

H H H HA

P[1] P[2] P[n]

C[1] C[2] C[n]

MAC

Encryption using CTR mode 

Authentication using 
GF multiplier

Fig. 1. AES-GCM: Encryption process is performed using counter mode and authenti-
cation is done using GF(2128), A is an optional 128-bit Additional Authenticated Data
which is authenticated but not encrypted



FPGA-Based High Performance AES-GCM 15

Algorithm 1. GF(2128) multiplier

Input A, H ∈ GF(2128), F(x) Field Polynomial.
Output X
X=0
for i = 0 to 127 do
if Ai = 1 then
X ←− X ⊕H
end if
if H127 = 0 then
H ←− rightshift(H)
else
H ←− rightshift(H)⊕ F (x)
end if
end for
return X

Algorithm 1 describes the GF(2128) multiplier. Serial implementation of
Algorithm 1 performs the multiplication process in 128 clock cycles. Parallel
method can be implemented like [3] and it takes only one clock cycle.

In Algorithm 1, if H is fixed, the multiplier is called a fixed operand
GF(2128) multiplier as shown by [4]. This design proposed by [4] can be used
efficiently (smaller area) on FPGAs as the circuit is specialized for H. We inte-
grated this multiplier proposed by [4] with a key-synthesized AES engine in [5]
in order to support slow changing key applications like Virtual Private Networks
(VPNs). Also, in [5], we proposed a protocol to secure the FPGA reconfiguration
to protect the bitstream because it is a key-based bitstream. The disadvantage
of this method is the new reconfiguration which must be downloaded on the
FPGA in case of changing the key.

Karatsuba Ofman Algorithm (KOA) is used to reduce the complexity (con-
sumed area) of the GF(2128) multiplier. The single step KOA algorithm splits
two m bit inputs A and B into four terms Ah, Al, Bh, Bl which are m/2 bit
terms. The 1-step iteration of KOA shown in Fig.2 can be described as:⎧⎪⎪⎨

⎪⎪⎩
Dl = Al ×Bl

Dhl = (Ah ⊕Al)× (Bh ⊕Bl)
Dh = Ah ×Bh

D = DhX
m ⊕Xm/2(Dh ⊕Dhl ⊕Dl)⊕Dl

(1)

After the multiplication stage is processed using KOA, the binary field reduc-
tion step is used to convert the length of the vector from 2m− 1 to m as shown
in Equation 2.

C(x) = D mod P (x) (2)

where P(x) is the field polynomial used for the multiplication operation.

P (x) = x128 + x7 + x2 + x+ 1 (3)



16 K.M. Abdellatif, R. Chotin-Avot, and H. Mehrez

+ +

hB Bl Ah Al

Dl

Dl

Dhl

Dh

Dh

+

+

=  (m/2) Multiplier 

= XOR operation

Binary field reduction
(mod P)

mm

m/2
m/2

m/2
m/2

m−1m−1

m−1

2m−1

m

B A

D

C

Fig. 2. Polynomial Multiplication using KOA

KOAwas used by [6] to reduce the complexity (consumed area) of the GF(2128)
multiplier as shown in Fig. 3a. From Fig. 3a, the MAC calculation is as follows:

MAC = (Ci ⊕ Zi−1)×H (4)

The drawback of the architecture presented in [6] is the the critical delay
resulting from the multiplication stage. In order to reduce the data path (critical
delay) of the KOA multiplier, pipelining concept was accomplished by [7] as
shown in Fig. 3b. Equation 4 was written by [7] as follows:

MAC = Q1 ⊕Q2 ⊕Q3 ⊕Q4, where (5)

Q1 = (((C1 ×H4 ⊕ C5)×H4 ⊕ C9)×H4 ⊕ ....)×H4 (6)

Q2 = (((C2 ×H4 ⊕ C6)×H4 ⊕ C10)×H4 ⊕ ....)×H3 (7)



FPGA-Based High Performance AES-GCM 17

+

Q
1

Q
2

Q
3

Q4

+

MAC
(a)

Ci
Ci

+

KOA multiplier

mod(p)

H

Z i

mod(p)

HH
4

MAC
(b)

X Y

Z

Pi
pe

lin
ed

 K
O

A

Fig. 3. (a) KOA based GHAH; (b) Pipelined KOA based GHASH

Q3 = (((C3 ×H4 ⊕ C7)×H4 ⊕ C11)×H4 ⊕ ....)×H2 (8)

Q4 = (((C4 ×H4 ⊕ C8)×H4 ⊕ C12)×H4 ⊕ ....)×H (9)

The hardware architecture proposed by [7] (Fig. 3b) is a 4-stage pipelined
KOA-based GHASH. An example of data flow control for the GHASH is shown
in Table 1, where C1 .... C8 is the input sequence and ”-” denotes ”don’t care”.
At the beginning, H4 is passed to port Y. After the input of C6, H is passed to
port Y. The partial GHASH values Q1, Q2, Q3, and Q4 are ready at the 9th,
15th, 18th, and 12th clock, respectively. As shown from Table 1, the generated
MAC resulting from 8 frames of 128-bit is ready after 19 clock cycles. Therefore,
the real throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128× (
8

19
) (10)

The last component of Equation 10 is ( 8
19 ), it is called the reduction factor

and the authors of [7] neglected this component in their throughput calculation.
Therefore, their presented design of GHASH has not increased the throughput.

Henzen et al. [8] proposed 4-parallel AES-GCM using pipelined KOA. Their
design achieved the authentication of 18 frames of 128-bits in 11 clock cycles



18 K.M. Abdellatif, R. Chotin-Avot, and H. Mehrez

Table 1. Data flow control for GHASH calculation by [7]

Clock Ci X Y Z Comment

1 C1 C1 H4 0
2 C2 C2 H4 0
3 C3 C3 H4 0
4 C4 C4 H4 0
5 C5 (C1 ×H4)⊕C5 H4 C1 ×H4

6 C6 (C2 ×H4)⊕C6 H C2 ×H4

7 C7 (C3 ×H4)⊕C7 H C3 ×H4

8 C8 (C4 ×H4)⊕C8 H C4 ×H4

9 - - - ((C1 ×H4)⊕ C5)H
4 z = Q1

10 0 ((C2 ×H4)⊕ C6)×H H ((C2 ×H4)⊕ C6)×H
11 0 ((C3 ×H4)⊕ C7)×H H ((C3 ×H4)⊕ C7)×H
12 0 - - ((C4 ×H4)⊕ C8)×H z = Q4

13 0 - - -
14 0 ((C2 ×H4)⊕C6)×H2 H ((C2 ×H4)⊕ C6)×H2

15 - - - ((C3 ×H4)⊕ C7)×H2 z = Q2

16 - - - -
17 - - - -
18 - - - ((C2 ×H4)⊕ C6)×H3 z = Q3

19 - - - - GHASH

because of the latency resulting from the pipelined KOA. As a result, their
throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128× 18

11
(11)

The authors of [8] neglected this component (1811 ) in their throughput calcula-
tion and replaced it by 4. Hence, their presented parallel design of GHASH has
not increased the throughput by 4 as shown in Equation 11.

3 Efficient KOA-Based GHASH

Four different architectures of FPGAs-based AES-GCM have been presented in
the open literature ([5],[7],[6],[8]). It is clear that these contributions do gener-
ally have different challenges related to the performance of their architectures.
The performance of the architecture presented by [5] is limited because a new
reconfiguration is needed in case of changing the key. Also, Zhou et al.[7] claimed
the throughput improvement to their previous KOA-based GHASH [6] by using
pipelined KOA but we discussed how their method is not efficient for through-
put improvement as shown in Equation 10. Also, in [8], the authors claimed that
their parallel architecture increased the throughput by 4 because they presented
four parallel AES-GCM but we proved that their design is not efficient in terms
of increasing the speed as shown in Equation 11.



FPGA-Based High Performance AES-GCM 19

In this work, in order to improve the performance of AES-GCM, an efficient
pipelined KOA-based GHASH is presented. As the targeted platform is FPGA,
FPGA-specific properties are considered for performance improvement.

The KOA is selected to reduce the complexity (consumed area) of the classic
school multiplication as presented by [7]. Therefore, our presented GHASH uses
the KOA for performing the GF (2128) multiplication.

As shown in Equation 4, The generation of the MAC is calculated by the
multiplication between H and the result of XORing the input Ci and the previous
output Zi−1. We propose writing Equation 4 as follows:

MAC = (Ci ⊕ Zi−1)×H
= (Ci ×H)⊕ (Zi−1 ×H)
= (Ci ×H)⊕ [(Ci−1 ⊕ Zi−2)×H2]
= (Ci ×H)⊕ (Ci−1 ×H2)⊕ [(Ci−2 ⊕ Zi−3)×H3]
= (Ci ×H)⊕ (Ci−1 ×H2)⊕ (Ci−2 ×H3)
⊕[(Ci−3 ⊕ Zi−4)×H4]
= ((Ci ×H)︸ ︷︷ ︸⊕ (Ci−1 ×H2)︸ ︷︷ ︸⊕ (Ci−2 ×H3)︸ ︷︷ ︸
⊕ (Ci−3 ×H4)︸ ︷︷ ︸ ....⊕ (C2 ×Hi−1)︸ ︷︷ ︸⊕ (C1 ×Hi)︸ ︷︷ ︸

(12)

According to Equation 12, the feedback resulting from XORing the input Ci

and the previous output Zi−1 is removed because the final MAC is calculated
from the last two lines of the equation.

Assume that there are 64 frames of 128-bit and the generation of MAC is
required. Therefore, Equation 12 will be as follows:

MAC64 = ((C64 ×H)︸ ︷︷ ︸⊕ (C63 ×H2)︸ ︷︷ ︸⊕ (C62 ×H3)︸ ︷︷ ︸
⊕ (C61 ×H4)︸ ︷︷ ︸ ....⊕ (C2 ×H63)︸ ︷︷ ︸⊕ (C1 ×H64)︸ ︷︷ ︸ (13)

If the values form H to H64 are stored and multiplied to the input Ci as shown
in Equation 13, the pipelined architecture can be simply performed. Indeed, the
architecture developed for pipelined KOA-based GHASH is in Fig. 4. 4-stage
pipelined KOA is used. In terms of the complexity, we used 2-step KOA like [7].
The description of Fig. 4 is presented according to the assumption of calculating
the MAC of 64 frames of 128-bit. We divide the process of MAC generation into
two steps:

The first step includes storing the H values in the memory. At the beginning,
H is passed to X and Y ports. The counter counts up and H2 will appear on port
Z after 4 clock cycles because we use 4-stage pipelined KOA. After, the memory
stores H2 and H2 is passed to port Y and H to port X in order to generate H3

and store it in the memory. This process is repeated till filling the memory with
the values from H2 to H64. Filling the memory takes 63× 4 = 252 clock cycles.
This is called initialization stage.

After initializing the memory, the second step concerns with MAC generation
as presented in Equation 13. The counter starts counting down with the first
input. The first input C1 is passed to port Y and the memory passes H64 to



20 K.M. Abdellatif, R. Chotin-Avot, and H. Mehrez

Up/Down
  Counter

A
dd

re
ss

mod (P)

Mux1 Mux2

64

MAC

C H

Z

i

XY

64
H

2H
Memory

Pi
pe

lin
ed

 K
O

A

Fig. 4. Proposed pipelined KOA-based GHASH

port X. After one clock cycle, the second input C2 is passed to port Y and the
memory passes H63 to port X. This scenario is completed by passing C64 to port
Y and H to port X.

The MAC is calculated by XORing Z values (Equation 13). In terms of the
time taken to generate the MAC, it is 64 clock cycles with 5 additional clock
cycles as a latency (4 clock cycles because of the 4-stage pipelined KOA and one
cycle because of the last register). Therefore, the throughput of the proposed
architecture is as follows:

Throughput(Mbps) = Fmax(MHz) × 128× 64

69
(14)

The proposed architecture reduces the reduction factor compared to [7] from
8
19 to 64

69 . Therefore, the developed architecture presents the throughput im-
provement compared to [7]. In case of changing the key, 252 clock cycles are
needed to initialize the memory. Hence, no new reconfiguration is needed in case
of changing the key compared to [4].

Because of targeting our architecture on Xilinx Virtex5 FPGAs, we recom-
mend using CLBs for memory implementation because of 6-input Look-Up-
Tables (LUT). Otherwise, using BRAMs is another solution.



FPGA-Based High Performance AES-GCM 21

4 High Throughput AES-GCM

This section describes adding the proposed GHASH to the pipelined AES in
order to perform the encryption and the authentication of the input message.

Fig. 5 shows the proposed high throughput architecture for AES-GCM. First,
the pipelined AES engine generates H by encrypting ”00..00” frame. Second, the
proposed GHASH needs 252 clock cycles in order to initialize the memory as we
described before. Third, the AES engine changes its mode to be in counter mode
for performing encryption and delivering Ci to the proposed GHASH.

++

R
ou

nd
 1

R
ou

nd
 2

R
ou

nd
 1

0

Key Schedule 

H
H

     Ci

Ciphertext

K10

Proposed GHASH

Counter

"00...00"

Message

K K1 2

MAC

Key

Encryption using pipelined AES

Authentication using  GHASH

Fig. 5. Proposed AES-GCM architecture

The SubBytes transformation of AES can be implemented either by BRAMs,
composite field approach, or direct LUT approach as shown in Fig. 6. Mod-
ern FPGAs contain BRAMs. Therefore, implementing SubBytes using BRAMs
decreases the consumed slices of the FPGA. The LUT approach is especially in-
teresting on Virtex5 devices because 6-input Look-Up-Tables (LUT) combined
with multiplexors allow an efficient implementation of the AES SubBytes stage.
Composite field approach uses the multiplicative inverse of GF(28) and it is
efficient for memoryless platforms.

The proposed architecture of AES-GCM perfectly suits the needs of GCM
mode which performs the encryption and the authentication of the input mes-
sage. As we described before, the encryption and the authentication in GCM are
performed using the pipelined AES in counter mode and the proposed GHASH
respectively. Therefore, the proposed architecture could also be tuned to handle
the decryption and authentication. Indeed, Ci is XORed with the output of the
pipelined AES for performing the decryption and also passed to the proposed
GHASH for MAC generation.



22 K.M. Abdellatif, R. Chotin-Avot, and H. Mehrez

+

+ X−1

2X

2X

X−1

Block
RAM

8 8

(a)

8
LUT

(b)

8

−1

−1

Isomorphic mapping to composite fields

Squarer in GF(2  )4

Multiplication with constant 

Multiplicative inversion in GF(2  )4

Multiplication operation in GF(2  )4

Inverse Isomorphic mapping to GF(2  )8

8

4

4 4

4

4

4

4

4

8 88

(c)

X

X

Fig. 6. SubBytes implementation with BlockRAMs (a), with LUTs (b), with composite
field approach (c)

5 Hardware Comparison

We coded our proposed scheme in VHDL and targeted to Virtex5 (XC5VLX220).
ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST) is
used to perform the synthesize and ISE9.2 was adopted to run the Place And
Route (PAR).

Table 2 shows the hardware comparison between our results and
previous work. Note the filled dots in the ”Key” column. The key is
synthesized into the architecture when denoted by ◦ which requires a
new reconfiguration in case of changing the key. Otherwise, the key
schedule is implemented when denoted by • and no new reconfigura-
tion is needed in case of changing the key.

On Virtex5 platform, our proposed AES-GCM core reaches the throughput of
32.46 Gbps with the area consumption of 3836 slices and 50 BRAMs. In case of
using composite field SubBytes, it consumes 7475 slices, however no BRAMs are
required. In terms of using LUT SubBytes, the proposed architecture occupies
4770 and reaches the throughput of 36.92 Gbps.



FPGA-Based High Performance AES-GCM 23

Table 2. Hardware comparison

FPGA type Design key SubBytes Slices BRAMs Max-Freq Thr. Thr./Slice
MHz Gbit/s Mbps/Slice

This work Virtex5 AES-GCM • BRAM 3836 50 273.4 32.46 8.46
This work Virtex5 AES-GCM • Comp. 7475 0 264.2 31.36 4.19
This work Virtex5 AES-GCM • LUT 4770 0 311 36.92 7.74

[7] Virtex5 AES-GCM • BRAM 3533 41 314 16.9 4.78
[7] Virtex5 AES-GCM • Comp 6492 0 314 16.9 2.60
[7] Virtex5 AES-GCM • LUT 4628 0 324 17.5 3.77

[8] Virtex5 AES-GCM • BRAM 9561 450 233 48.8 5.1
[8] Virtex5 AES-GCM • Comp 18505 0 233 48.8 2.64
[8] Virtex5 AES-GCM • LUT 14799 0 233 48.8 3.29

[5] Virtex5 AES-GCM ◦ BRAM 2478 40 242 30.9 12.5
[5] Virtex5 AES-GCM ◦ Comp. 5512 0 232 29.7 5.38
[5] Virtex5 AES-GCM ◦ LUT 3211 0 216.3 27.7 8.62

By comparing our results of AES-GCM to [7], the comparison shows that our
performance (Thr. /Slice) is better. This improvement results from reducing the
reduction factor in the equation of throughput as shown in Equation 10 and
Equation 14.

In terms of the 4-parallel AES-GCM by [8], our area consumption (Slices +
BRAMs) is smaller compared to them. Also, our performance is better because
the throughput presented by [8] is calculated as shown in Equation 11.

Our previous work [5] presented architectures for slow changing key appli-
cations like VPNs and the FPGA needs the new reconfiguration when the key
changes. Therefore, the proposed architecture in this paper presents better per-
formance compared to [5] because the FPGA does not need a new reconfiguration
when the key changes but it needs 252 clock cycles for the memory initialization
as described in Section 3.

6 Conclusion

In this paper, we presented the performance improvement of AES-GCM (Thr.
/Slice). This was achieved by modifying the architecture of the pipelined KOA-
based GHASH. With our proposed GHASH, the throughput reduction factor is
decreased. Therefore, the throughput of the proposed AES-GCM architectures
is increased. In addition, three AES implementations (BRAMs-based SubBytes,
composite field-based SubBytes, and LUT-based SubBytes) were evaluated in
order to increase the flexibility of the presented work. The throughput of the
presented AES-GCM cores ranges from 31.36 to 36.92 using Xilinx Virtex5 FP-
GAs. It is shown that the performance of the presented AES-GCM architectures
outperforms the previously reported ones.



24 K.M. Abdellatif, R. Chotin-Avot, and H. Mehrez

References

1. McGrew, D.A., Viega, J.: The security and performance of the galois/Counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

2. IEEE Standard for Local and metropolitan area networks–Media Access Con-
trol (MAC) Security Amendment 1: Galois Counter Mode–Advanced Encryption
Standard– 256 (GCM-AES-256) Cipher Suite. IEEE

3. Satoh, A.: High-Speed Hardware Architectures for Authenticated Encryption Mode
GCM. In: IEEE International Symposium on Circuits and Systems (ISCAS), p. 4
(2006)

4. Crenne, J., Cotret, P., Gogniat, G., Tessier, R., Diguet, J.: Efficient Key-Dependent
Message Authentication in Reconfigurable Hardware. In: International Conference
on Field-Programmable Technology (FPT), pp. 1–6 (2011)

5. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: High Speed Authenticated Encryp-
tion for Slow Changing Key Applications Using Reconfigurable Devices . In: IEEE
Wireless Days (2013)

6. Zhou, G., Michalik, H., Hinsenkamp, L.: Efficient and High-Throughput Im-
plementations of AES-GCM on FPGAs. In: International Conference on Field-
Programmable Technology (FPT), pp. 185–192 (2007)

7. Zhou, G., Michalik, H.: Improving Throughput of AES-GCM with Pipelined Karat-
suba Multipliers on FPGAs. In: Reconfigurable Computing: Architectures, Tools
and Applications, pp. 193–203 (2009)

8. Henzen, L., Fichtner, W.: FPGA Parallel-Pipelined AES-GCM Core for 100G Eth-
ernet Applications. pp. 202–205 (2010)



Efficient Elliptic-Curve Cryptography

Using Curve25519 on Reconfigurable Devices

Pascal Sasdrich and Tim Güneysu

Horst Görtz Institute for IT-Security
Ruhr-Universität Bochum, Germany

{pascal.sasdrich,tim.gueneysu}@rub.de

Abstract. Elliptic curve cryptography (ECC) has become the predom-
inant asymmetric cryptosystem found in most devices during the last
years. Despite significant progress in efficient implementations, compu-
tations over standardized elliptic curves still come with enormous com-
plexity, in particular when implemented on small, embedded devices.
In this context, Bernstein proposed the highly efficient ECC instance
Curve25519 that was shown to achieve new ECC speed records in soft-
ware providing a high security level comparable to AES with 128-bit key.
These very tempting results from the software domain have led to adop-
tion of Curve25519 by several security-related applications, such as the
NaCl cryptographic library or in anonymous routing networks (nTor). In
this work we demonstrate that even better efficiency of Curve25519 can
be realized on reconfigurable hardware, in particular by employing their
Digital Signal Processor blocks (DSP). In a first proposal, we present a
DSP-based single-core architecture that provides high-performance de-
spite moderate resource requirements. As a second proposal, we show
that an extended architecture with dedicated inverter stage can achieve
a performance of more than 32,000 point multiplications per second on a
(small) Xilinx Zynq 7020 FPGA. This clearly outperforms speed results
of any software-based and most hardware-based implementations known
so far, making our design suitable for cheap deployment in many future
security applications.

Keywords: FPGA, DSP, ECC, Curve25519, Diffie-Hellman, Xilinx, Zynq.

1 Introduction

With the advent of ubiquitous computing, many applications require an ap-
propriate security level, including complex cryptography. In addition, to avoid
bottlenecks due to security requirements, those devices often need to provide a
significant amount of cryptographic operations per second regardless the compu-
tational constraints of the devices. In particular, modern public key cryptosys-
tems, e.g., RSA, use complex and computation-intensive calculations that are
often too slow on embedded hardware. Neal Koblitz and Victor Miller proposed
independently in 1985 [11,8] the use of Elliptic Curve Cryptography (ECC) pro-
viding similar security compared to RSA but using smaller keys. This benefit

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 25–36, 2014.
c© Springer International Publishing Switzerland 2014



26 P. Sasdrich and T. Güneysu

allows for greater efficiency when using ECC (160–256 bit) compared to RSA or
discrete logarithm schemes over finite fields (1024–4096 bit) while providing an
equivalent level of security [9]. In the last years, ECC has become the standard
for high-performance asymmetric cryptography, although it still places a high
demand on small microprocessors and microcontrollers. Due to this, dedicated
cryptographic hardware such as Field-Programmable Gate Arrays (FPGA) are
still the preferred choice when high-performance on cryptographic operations is
a strict requirement for an embedded application.

Contribution: In this work, we present the first efficient implementation of
a special Elliptic Curve Cryptosystem using the Curve25519 [2] on reconfig-
urable hardware to provide a Diffie-Hellman key agreement suitable for use in
high-performance application. It provides inherently timing resistance against
simple power attacks (SPA) and a security level comparable to NIST P-256
ECC or AES with 128-bit key. In particular, our design takes advantage of the
special-purpose DSP slices of reconfigurable devices in order to increase effi-
ciency and performance. Although ECC using Curve25519 for a Diffie-Hellman
key agreement was initially proposed to accelerate primarily its implementation
in software, we show that similarly its special characteristics can be exploited in
hardware to achieve a compact, space-saving high-performance ECC processor
on reconfigurable devices. Our multi-core Curve25519 implementation on a small
Xilinx Zynq 7020 FPGA achieves more than 32,000 point multiplications per sec-
ond with which we can virtually support any high-performance application of
asymmetric cryptography.

Outline: The paper is organized as follows: Section 2 provides relevant previous
work while Section 3 outlines the Curve25519 function for Diffie-Hellman based
key agreement and its special characteristics. Section 4 describes design consider-
ations and decisions, in particular with respect to the arithmetic units. Section 5
describes two different architectures for moderate and high-performance that are
evaluated and compared in Section 6. Finally, we conclude our work in Section 7.

2 Previous Work

We briefly summarize previously published results of relevance to this contri-
bution. Since there is a wealth of publication addressing ECC hardware archi-
tectures, we refer to the overview in [3] and restrict the discussion of previous
works to the most relevant ones. As one of the first works in ECC implementa-
tions, Orlando and Paar [13] proposed a design targeting explicitly reconfigurable
hardware using Montgomery-based multiplications included with a series of pre-
computations. This publication was followed by many more, e.g., [7] trying to
improve performance on FPGAs by the use of dedicated multipliers or [15] try-
ing to improve the performance in an algorithmic approach. Using integrated
Digital Signal Processors (DSP) both for modular multiplication and modular
addition was initially proposed in [14] targeting standardized NIST primes P-224
and P-256 using a special reduction scheme.



Efficient Elliptic-Curve Cryptography 27

3 Background

In the following, we will briefly introduce to the mathematical background rel-
evant for this work. We will start with a short review of the Elliptic Curve
Cryptosystems (ECC). Please note that only ECC over prime fields GF (p) will
be subject of this work.

Let p be a prime with p > 3 and Fp = GF (p) the Galois Field over p. Given
the Weierstrass equation of an elliptic curve

E : y2 = x3 + ax+ b,

with a, b ∈ GF (p) and 4a3 + 27b2 �= 0, points Pi ∈ E , we can compute tuples
(x, y) also considered as points on this elliptic curve E . Based on a group of points
defined over this curve, ECC arithmetic defines the addition P3 = P1+P2 of two
points P1,P2 using the tangent-and-chord rule as the primary group operation.
This group operation distinguishes the case for P1 = P2 (point doubling) and
P1 �= P2 (point addition). Furthermore, formulas for these operations vary for
affine and projective coordinate representations, i.e., the curve equation for pro-
jective coordinates relaxes the one shown above by introducing another variable
Z. The use of projective coordinates allows to avoid the costly modular inversion
for a point operation at the cost of additional modular multiplications.

Most ECC-based cryptosystems rely on the Elliptic Curve Discrete Logarithm
Problem (ECDLP) and thus employ the technique of point multiplication k ·P as
cryptographic primitive, i.e., a k times repeated point addition of a base point P .
Precisely, the ECDLP is the fundamental cryptographic problem used in proto-
cols and crypto schemes like the Elliptic Curve Diffie-Hellman key exchange [4],
the ElGamal encryption scheme [6] and the Elliptic Curve Digital Signature Al-
gorithm (ECDSA) [1]. Note that all these cryptosystems solely employ affine
coordinates to guarantee unique solutions, i.e., in case the faster projective coor-
dinates are used for intermediate computations, a final modular inversion needs
to be performed to convert projective coordinates back to affine coordinates.

In this work we will focus on the Diffie-Hellman key exchange based on the
special elliptic curve Curve25519 which characteristics are given in the following.

3.1 Curve25519 Function

Curve25519 can be considered a function designed to simplify and accelerate the
Diffie-Hellmann key agreement over elliptic curves. It defines a point multiplica-
tion that provides inherent timing-attack resistance and a conjectured security
level comparable to NIST P-256 or AES-128. Using this function, two parties
can derive a shared secret with the help of their 32-byte secret key and the public
key.

Curve25519 is based on a prime field with a prime close to a power of 2
(Pseudo Mersenne Prime) and defined as follows:

E : y2 = x3 + 486662x2 + x mod 2255 − 19



28 P. Sasdrich and T. Güneysu

Assume a base point P with Q = (Xi, Yi, Zi). Tracking two intermediate points
Q,Q′ and their difference Q − Q′ based on P , Curve25519 defines a combined
point doubling and point addition function as a single step of the Montgomery
Power ladder [12] with 4 squarings, 5 general multiplications, 1 multiplication
by (A − 2)/4 and 8 additions or subtractions. An additional benefit of the
Curve25519 function is, that only the x-coordinate of each point is required
during the computation so that y can be completely omitted in the formulas.
Therefore, the point multiplication solely relies on the x and z-coordinate of the
two points Q and Q′. Eventually, a combined step is computed by

x2 = (x2 − z2)2 = (x− z)2(x+ z)2

z2 = 4xz(u2 +Axz + z2)

x3 = 4(xx′ − zz′)
z3 = 4(xz′ − zx′)x1

3.2 Curve25519 Computations

For the entire scalar multiplication, computing k×P , a total of 255 step function
calls (combined point double and addition) are executed followed by a final
inversion and a single multiplication calculating X × Z−1.

Figure 1 shows the flow of the algorithm for three points Q, Q′ and Q1 rep-
resented in terms of projective coordinates and where Q1 is Q−Q′. Note, that
every addition or subtraction is followed by a multiplication and nearly every
multiplication is followed by an addition or subtraction. This observation is very
helpful for designing an efficient hardware architecture.

In addition, always the same number of operations are performed, indepen-
dently of the processed data. Therefore, the computation can be done in constant
time preventing timing-based attacks.

4 Design Considerations

For most modern standardized elliptic curves, e.g., the NIST P-256, the un-
derlying prime field is based on a Generalized Mersenne Prime which allows a
reduction based on few additions and subtractions. For Curve25519 the field is
based on a Pseudo Mersenne Prime 2n− c based on a similar but slightly differ-
ent concept. For the Curve25519 elliptic curve, the reduction can be computed
by a multiplication with a small constant, in this case the constant c = 19.

However, this prime with a total of 255 bits has some interesting properties
since all field elements can be divided into fifteen words of 17 bit width. Pro-
cessing these chunks is usually inefficient for common processors which operate
on 8-, 16-, 32- or 64-bit data words. Recent FPGA devices, however, provide
a multitude of dedicated, full-custom DSP slices equipped with an addition, a
multiplication and an accumulation stage for integers enhanced with additional
register stages to operate at full device speed. Since the multiplication of DSP
blocks natively supports signed 25 × 18-bit wide operands, this is a perfect fit



Efficient Elliptic-Curve Cryptography 29

+ - + -

x x x x

x - + -

x xx

+ x

x

2Q

X2

2Q

Z2

Q + Q’

X3

Q + Q’

Z3

Q - Q’

X1

Q

X
Q

Z
Q’

X’
Q’

Z’

(A – 2)
4

Fig. 1. Double-and-Add formula according to Montgomery’s ladder

to our requirement of processing unsigned 17-bit data words. By means of an
interleaved multiplication schedule, multiplying two 255-bit field elements can
be rearranged over several parallelly operating DSP-blocks so that each DSP
block has to compute one 17 × 17 bit multiplication at a time resulting in one
partial product. The full multiplication can then be performed using 15 DSP
slices. Additionally, we can use the included accumulation stage per DSP block
to add up the intermediate results. Finally, we end up generating an interme-
diate result in the accumulation stage that is slightly too large but which can
be reduced in a subsequent recombination step. The recombination step itself
can be implemented by a constant multiplier with c = 19, realignment logic to
recombine shares of partial products as well as a subtraction stage to correct the
result by reducing it modulo P in case it is slightly too large.

Besides the modular multiplication, point doublings and point additions re-
quire the computation of modular additions and subtractions. To return a unique
result, a final inversion is required to convert the projective coordinates to affine
coordinates. The addition respectively subtraction unit can be implemented as
cascade of two DSP blocks, one for the main operation and one for the subse-
quent reduction. For the basic version of an inversion, we plan to use Fermat’s
Little Theorem. This approach requires solely a modular multiplier which is al-
ready provided by the core despite of a small additional state machine. Although
inversion based on this approach hardly requires extra hardware, inversion per-
formance will be comparably slow. Another approach would be to implement
a dedicated inversion unit based on the Binary Extended Euclidean Algorithm.



30 P. Sasdrich and T. Güneysu

This obviously requires a significant amount of additional resources but the com-
putation of the inversion would be significantly faster. Optionally, in a multi-core
scenario one dedicated inverter can be shared among several point multiplication
cores reducing the overhead costs by resource sharing.

Finally, we plan to use two 36k true dual-port block RAMs (BRAM) to store
all intermediate values in a butterfly-wise dataflow. Since 17-bit or 34-bit input
and output values need to be processed by arithmetic units, we will specify 34-bit
wide ports of the BRAMs.

5 Implementation

In this section, we present first details of a single-core Curve25519 architecture
resulting in moderate performance at low resource costs. Second, we extend
our design into a multi-core architecture that aims at consuming all available re-
sources of the Xilinx Zynq 7020 device but which is capable to provide maximum
throughput.

5.1 Single-Core Architecture

Our single-core Curve25519 implementation is designed to support asymmetric
cryptography as a supplementary function and saves most of the FPGA logic
for the main application. The cryptographic core is capable to perform a point
multiplication in projective coordinates. For use with most cryptographic pro-
tocols, the core also needs to implement a final inversion to convert the output
in projective coordinates back to affine coordinates. The arithmetic processor
therefore supports two basic operation modes: either a combined double-and-
add step function or a single modular multiplication. The access to the modular
multiplication instruction is required for the final inversion based on Fermat’s
little theorem, i.e, inversion of a field element a ∈ Fp by computing ap−2 mod p.
To prevent timing attacks, the arithmetic unit performs the point multiplication
running a total 255 double-and-add operations and 266 iterated multiplications
for the inversion both in constant time.

In our implementation we follow several of the design suggestions for software
implementations as given in the original work on Diffie-Hellman computations
over Curve25519 [2]. In particular, each addition or subtraction is always fol-
lowed by a subsequent multiplication again nearly always succeeded by another
addition or subtraction. These facts led to the design presented in Figure 2 us-
ing two dual-ported BRAMs in butterfly configuration. More precisely, the first
BRAM only receives the results of the addition or subtraction unit and provides
the input to the multiplication while the second BRAM stores the multiplication
result and feeds the addition unit. This way parallel operation is enabled and
pipeline stalls through loading and write-back can be avoided with only little
overhead.



Efficient Elliptic-Curve Cryptography 31

Arithmetic Unit

Dual Port RAM 1 Dual Port RAM 2

Multiplication /
Squaring /
Inversion

Addition /
Subtraction

Arithmetic
Controller

CTL CTL

CTL

Curve25519 Core

34 34

34

FSM CMD / RESP

CTL

34

8

34

34 34

34

Fig. 2. Overview of the Curve25519 Core

Modular Addition Unit. Centerpiece of the modular addition and subtrac-
tion unit computing c = a ± b mod p are two DSP blocks supporting 25x18-
bit multiplications and up to 48-bit additions, subtractions or accumulations.
The first DSP always performs the main operation (i.e., subtraction or addition
c′ = a± b) whereas the second DSP block computes a prediction for a reduced
result by c′′ = c′∓p. Both, the c′ and c′′ are stored into the first BRAM and dis-
tinguished by a flag obtained from the previous carry/borrow in the prediction
operations that indicates in which registers the correct result is stored. In total,
modular addition or subtraction takes 10 clock cycles which can be executed in
parallel to any multiplication operation. Thus, exploiting the alternating oper-
ation flow as mentioned above, the latency for modular addition or subtraction
is completely absorbed in the latency for a concurrently running modular mul-
tiplication.

Modular Multiplication Unit. The largest component of the arithmetic unit
is the multiplication unit and based on 18 DSP blocks – 15 blocks are used to
compute partial products, one for a prereduction and two for the final mod-
ular reduction. A modular multiplication can be computed in 55 clock cycles
of which 34 cycles are required for the actual multiplication and the remaining
ones for loading and storing data. Due to the modular design shown in Fig. 3,
computation of partials products (stage 1) can be interleaved with the reduc-
tion step (stage 2) in pipeline fashion. So a next multiplication operation can
be already restarted as soon the first stage (partial products) has completed the
previous multiplication Thus, only the first multiplication takes the full 55 clock
cycles, each subsequent multiplication is becoming available with a latency of 17
clock cycles only. Since data dependencies need also been taken into account, the
combined double-and-add step for Curve25519 finally takes 255 cycles in total.



32 P. Sasdrich and T. Güneysu

���������	��
�����

���

	
��

��� 	
�

	
�

�

�

�
��

��� �
�

�
�

�

�

�

�

�

�

���

�

����
��

����
��

�
��

�
�

�������

����

���

���	
�������������

�

�

����
��

�
�

������

�����

� �

��
��

�

��

���

��

���

��

��

��

�

�

Fig. 3. Architecture of the Modular Multiplication Unit

5.2 Multi-core Architecture

A main caveat with the single-core architecture is the slow inversion. In this
work we augment the previously described core design with a dedicated inverter
circuit and share it among several cores for an optimal cost-performance trade-
off. The number of cores per inverter is upper-bounded by the available resources
on the respective device as well as the relation of the cycle count per point
multiplication with respect to one final inversion. Since this number directly
corresponds to resources available on a given FPGA, we implemented the design
generically to allow maximum scalability and flexibility also for other devices.
Figure 4 shows the communication interface and the additional controller for
distributing incoming packets among the Curve25519 cores. Unlike the hardcore
introduced above, all cores of this architecture only support the step function
(double-and-add operation) but no modular inversion anymore. The inversion is
finally performed by a dedicated inversion unit shared by all cores in a subsequent
step.

Dedicated Inversion Unit. In many cases the modular division is the most
expensive operation requiring a modular inversion and at least one multiplica-
tion. In the single-core approach, we noticed that inversion based on Fermat’s



Efficient Elliptic-Curve Cryptography 33

Controller
(FSM)

Core 1 Core 2 Core 11Core 10...

Data

Enable / Command

11-to-1 Muliplexer

Inverter

In

Out

Result

Fig. 4. Overview of the Multi-Core Design

little Theorem is rather ineffective since the inversion requires roughly 20% of
the entire time of a Curve25519 computation. Therefore we implemented a mod-
ular inverter based on the Binary Extended Euclidean Algorithm as an extension
to the existing cores. The inverter uses wide adders/subtracters and uses well-
known implementation techniques so that we refrain from giving all details on
the implementation. With respect to the multi-core design approach, the inverter
receivesX and Z as inputs, and computes the final resultX/Z in a constant time.
Since this inverter is significantly faster compared to a point multiplication, the
inverter can serve as subsequent inversion unit for several point multiplication
cores (cf. Section 6).

Load Balancing. Due to the concurrent operation of individual cores, we im-
plemented a scheme to distribute incoming data to available cores when they
become available. This scheme is basically a round-robin-based loading scheme
where the controller unit keeps track of the last active and the next available
core. Loading continues until all cores are busy. As soon as one core reports a
result, it is handed over to the inversion unit and the core is marked ready again
and can be loaded with a next parameter set.

Clock Domain Separation. The point multiplication cores can operate at a
clock frequency of 200MHz. However, since the dedicated inversion unit imple-
ments 256-bit wide adders and subtracters in logic it only supports a maximum
clock frequency of roughly 130MHz. To still operate the implementation at max-
imum speed, we use different clock domains for the point multiplication cores
on the one hand (200 MHz) and the controller and inversion unit on the other
hand (100 MHz).



34 P. Sasdrich and T. Güneysu

Table 1. Summary of device utilization and performance

Component Used Available Utilization

S
in
g
le
-C

o
re

Number of Slice Registers 3592 106400 3%
Number of Slice LUTs 2783 53200 5%
Number of occupied Slices 1029 13300 7%
Number of DSP48E1 20 220 9%
Number of RAMB36E1 2 140 1%
Cycles per Step Function 64770@200MHz
Cycles per Inversion 14630@200MHz
Total Clock Cycles 79400@200MHz

M
u
lt
i-
C
o
re

Number of Slice Registers 43875 106400 41%
Number of Slice LUTs 34009 53200 63%
Number of occupied Slices 11277 13300 84%
Number of DSP48E1 220 220 100%
Number of RAMB36E1 22 140 15%
Cycles per Step Function 64770@200MHz
Cycles per Inversion 1667@100MHz
Total Clock Cycles 34052@100MHz

6 Results

All results were obtained after place-and-route based on a Xilinx Zynq XC7Z020
using Xilinx ISE 14.5.

6.1 Comparison of the Single- and Multi-Core Architecture

In Table 1 we provide the resource consumption for our single-core and multi-
core design, respectively.

The single-core approach only uses a small portion of the (relatively) small
Xilinx device, i.e., 7% of the Slices and 9% of the DSP slices. The remaining
device components are available for any other function or application that needs
to be implemented.

Our single-core architecture has a maximum operation frequency of 200MHz
and needs roughly 80,000 clock cycles to perform a Curve25519 operation of
which about 20% of the clock cycles are required to compute the final inversion.
All in all, the core can perform about 2500 point multiplications per second.

Our multi-core scenario is obviously trimmed for highest performance using
a moderately large FPGA. Due to the clock domain separation, the multi-core
architecture can compute a point multiplication in about 34,000 cycles at a
frequency of 100MHz. In addition, up to 11 operations can be performed in
parallel with an initial latency of 1667 clock cycles which is the time that is
required for the inversion. This leads to a final throughput of more than 32,000
Curve25519 operations per second.



Efficient Elliptic-Curve Cryptography 35

Table 2. Selected high-performance implementations of public-key cryptosystems

Scheme Device Implementation Logic Clock OP/s

Single-Core XC7Z020 255-bit GF(2255 − 19) 1029 LS/20 DSP 200 MHz 2531
Multi-Core XC7Z020 255-bit GF(2255 − 19) 11277 LS/220 DSP 100 MHz 21686

ECC [7] XC4VFX12-12 256-bit GF(p), NIST 1715 LS/32 DSP 490 MHz 2020
ECC [10] XC2VP125-7 256-bit GF(p), any 15755 LS/256 MUL 39.5 MHz 260

ECC [5] Intel Core i3 255-bit GF(2255 − 19) 64 bit 2.1 GHz 10810
ECC [5] AMD FX-4170 255-bit GF(2255 − 19) 64 bit 4.2 GHz 14285

RSA[17] XC4VFX12-10 1024-bit with DSP 3937 LS/17 DSP 400 MHz 584
RSA[16] 0.5 μm CMOS 1024-bit, unified 28,000 GE 64 MHz 21

6.2 Comparison to Other Work

Despite the fact that this is, to the best of our knowledge, the first implementa-
tion of Curve25519 in hardware and that there exist only few implementations
in software, we intend to also compare to other relevant work. In Table 2 we
list some other implementation results which implement ECC on a comparable
security level to Curve25519. Note, however, that due to varying technology of
different FPGA generations a fair comparison is actually not accurately possi-
ble. In [7] the standardized NIST P-256 curve was implemented using a similar
approach on a Xilinx Virtex 4. The authors report that a design to perform
point requires more resources at a performance of about 2,000 point multiplica-
tions per second. We also like to highlight software results which we obtained
e.g. from ECRYPT’s eBATS project. According to the reported results, an Intel
Core i3 can perform about 10,810 point multiplications per second using the
Curve25519 function and an AMD Bulldozer FX-4170, running at 4.2, GHz can
compute 14,285 Curve25519 operations per second.

Although comparing software and hardware can be misleading, we still like
to emphasize that the moderately large and rather cheap Zynq 7020 FPGA can
outperform some recent high-performance processors such as AMD Bulldozer
and Intels Core i3. This is slightly surprising since elliptic curve cryptography
over prime fields is usually considered a field that is dominated by software
implementations with respect to pure performance.

7 Conclusion

In this paper we propose two new architectures for Elliptic Curve Cryptogra-
phy using the Curve25519 supporting Diffie-Hellman key agreement and other
cryptographic primitives. Both architectures provide a security level comparable
to AES-128 and process data at constant time. We showed that the design can
outperform many recently presented works in hardware and software using only
moderate resource requirements.



36 P. Sasdrich and T. Güneysu

References

1. ANSI X9.62-2005. American National Standard X9.62: The Elliptic Curve Digital
Signature Algorithm (ECDSA). Technical report, Accredited Standards Committee
X9 (2005), http://www.x9.org

2. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006)

3. de Dormale, G.M., Quisquater, J.-J.: High-speed hardware implementations of el-
liptic curve cryptography: A survey. J. Syst. Archit. 53(2-3), 72–84 (2007)

4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22, 644–654 (1976)

5. ECRYPT. eBATS: ECRYPT Benchmarking of Asymmetric Systems. Technical
report (March 2007), http://www.ecrypt.eu.org/ebats/

6. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

7. Güneysu, T., Paar, C.: Ultra High Performance ECC over NIST Primes on Com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

8. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48,
203–209 (1987)

9. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. Journal of Cryp-
tology 14(4), 255–293 (2001)

10. McIvor, C., McLoone, M., McCanny, J.: An FPGA elliptic curve crypto-
graphic accelerator over GF(p). In: Irish Signals and Systems Conference (ISSC),
pp. 589–594 (2004)

11. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

12. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987)

13. Orlando, G., Paar, C.: A scalable GF (p) elliptic curve processor architecture for
programmable hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 348–371. Springer, Heidelberg (2001)

14. Örs, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of
elliptic curve processor over GF(p). pp. 433–443 (2003)

15. Sakiyama, K., Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Reconfig-
urable Modular Arithmetic Logic Unit for High-Performance Public-Key Cryp-
tosystems. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS,
vol. 3985, pp. 347–357. Springer, Heidelberg (2006)

16. Savas, E., Tenca, A.F., Ciftcibasi, M.E., Koc, C.K.: Multiplier architectures for
GF(p) and GF(2n). IEE Proc. Comput. Digit Tech. 151(2), 147–160 (2004)

17. Suzuki, D.: How to Maximize the Potential of FPGA Resources for Modular Ex-
ponentiation. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 272–288. Springer, Heidelberg (2007)

http://www.x9.org
http://www.ecrypt.eu.org/ebats/


Accelerating Heap-Based Priority Queue
in Image Coding Application Using Parallel

Index-Aware Tree Access

Yuhui Bai1,2, Syed Zahid Ahmed2, and Bertrand Granado2

1 Université Cergy Pontoise, ENSEA, UMR CNRS 8051, ETIS, Cergy, France
2 Sorbonne Universités, UPMC Univ. Paris 06, UMR7606, LIP6,

75005, Paris, France
{yuhui.bai,syed-zahid.ahmed,bertrand.granado}@lip6.fr

Abstract. We present a novel heap-based priority queue structure for
hardware implementation which is employed by a wavelet-based image
encoder. The architecture exploits efficient use of FPGA’s on-chip dual
port memories in an adaptive manner. By using 2x clock speed we created
4 memory ports along with intelligent data concatenation of parents and
children queue elements, as well as an index-aware system linked to each
key in the queue. These innovations yielded in cost effective enhanced
memory access. The memory ports are adaptively assigned to different
units during different computation phases of operations in a manner to
optimally take advantage of memory access required by that phase. We
designed this architecture to incorporate in our Adaptive Scanning of
Wavelet Data (ASWD) module which reorganizes the wavelet coefficients
into locally stationary sequences for a wavelet-based image encoder.
We validated the hardware on an Altera’s Stratix IV FPGA as an
IP accelerator in a Nios II processor based System on Chip. The
architectural innovations can also be exploited in other applications that
require efficient hardware implementations of priority queue. We show
that our architecture at 150MHz can provide 45X speedup compared to
an embedded ARM Cortex-A9 processor at 666MHz.

1 Introduction

A wavelet-based image encoder called Öktem coder [1] was developed to
efficiently encode the locally stationary image source. In this coder, image
samples are transformed by a Discrete Wavelet Transform (DWT) using a
Cohen-Daubechies-Feauveau 9/7 wavelet basis, a Scalar Quantization (SQ) is
then performed. The quantized coefficients are fed to an Adaptive Scanning
of Wavelet Data (ASWD) block which adaptively sorts the coefficients of each
subband to maximize the local stationarity of the image, then a Hierarchical
ENUmerative Coding (HENUC) is done which models and entropy encodes
the locally stationary sequences by independently codify each bit-plane to
produce an embedded bit-stream [2]. The Öktem coder is an alternate of
the JPEG2000 coder and is demonstrated by our experiments to have higher

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 37–48, 2014.
c© Springer International Publishing Switzerland 2014



38 Y. Bai, S. Zahid Ahmed, and B. Granado

compression performance than JPEG2000, as the entire subband instead of
separate code blocks is processed so that no blocking effect is perceived in the
Öktem coder [3, 4].

Despite of good image quality provided by the Öktem coder, the algorithmic
complexity is high. Haapala et al. implemented it on a multi-DSP system called
PARNEU using a parallel processor architecture to get the acceleration [4].
The design suffered from high complexity and latency on interprocessor
communication due to the distributed memory architecture. We profiled the
ASWD (single threaded) on ARM Cortex A9. According to the profiling results,
ASWD takes around 65% of the total compression time. Processing single
threaded ASWD of a 512×512 grayscale lena image on ARM Cortex A9 at
666MHz takes around 2000 ms. The processing time can only be halved even
by using multithreading on dual cores of processor in an ideal case. Since
our goal is to integrate Öktem coder on an embedded system to provide
real time performance for video compression, this is too slow to reach our
requirements, thus, it is mandatory to accelerate the coding. To achieve the
high throughput, in the parallel hardware implementation, we leveraged on-
chip memory resources of FPGA in efficient and innovative manners using data
concatenation and 4 port memory access. We implemented Öktem coder on
an Altera Stratix IV FPGA inside a SoC which combines a Nios II processor
and several hardwired intellectual properties (IPs). The SoC provides efficient
acceleration of computational and memory access intensive tasks, appropriate
adaption to an embedded system, as well as possibility to port as an ASIC.
The Nios II processor in the SoC manages the control of IPs and provides the
flexibility for rapid experiments.

2 Adaptive Scanning of Wavelet Data

The ASWD scheme leverages an efficient exploration of the correlation among
inter-band or intra-band wavelet coefficients to increase the compression
efficiency. We compared Öktem coder with two state-of-the-art JPEG2000
coders, Lurawave and ACDSee [5]. In our experiments, both the Peak Signal to
Noise Ratio (PSNR) measure and the Structural SIMilarity (SSIM) measure [6]
of four images were evaluated using a MSU Video Quality Measurement Tool [7].
Compressed image quality was chosen to get approximately same size of output

Table 1. PSNR and SSIM with quantization parameter = 10

Test Image
PSNR (dB) SSIM

Öktem Lurawave ACDSee Öktem Lurawave ACDSee
Flower 43.8483 42.1703 43.1402 0.9882 0.9785 0.9825
Sailboat 44.3472 42.8920 44.7435 0.9888 0.9809 0.9866
House 43.9114 42.2677 44.8325 0.9859 0.9785 0.9837
Parrot 44.3102 41.6757 44.9829 0.9810 0.9699 0.9785



Accelerating Heap-Based Priority Queue in Image Coding Application 39

file for all codecs. Our test results are depicted in Table 1. We observe that
the Öktem coder has higher PSNR than Lurawave. Although the PSNR of
Öktem coder is sometimes lower than ACDSee, they are very close to each other.
Regarding the SSIM index, as SSIM index has been developed to have a quality
reconstruction metric that also takes into account the similarity of the edges
between the denoised image and the ideal one, it has become a widely-used
image quality assessment metric which is considered to provide a better quality
measurement than the PSNR. The Öktem coder shows overall better results
than the two JPEG2000 coders in terms of SSIM.

2.1 Heap-Based Priority Queue

A priority queues is one of the fundamental data structures for dynamic ordered
sets and is used in a wide variety of applications [8]. In a priority queue, each
element is ordered by its associated priority, the basic operations are Insert_key,
Extract_max and Increase_key. In practice, the priority queue is implemented
with two possible data structure : a linked list and a heap. A linked list sorted by
the priority values of the elements is a simple but less efficient way to organize
the priority queue. Although a linked list can extract the highest priority element
in O(1) time, inserting or increasing of the priority of an element takes O(N)
time, where N is the number of elements. For large values of N, a linked list
would be too slow. A second and more efficient way to organize a priority queue
is the heap data structure. A heap is organized as a complete binary tree with
all levels completely filled except possibly the lowest level, where each node of
the tree corresponds to an element and is associated with an id and a priority
value of that element. In the heap, each node has two children, a balanced heap
should satisfy the heap-property: each node should have a value greater than
its children (max-heap) or less than its children (min-heap). A max-heap or
min-heap is built with a Max_Heapify or Min_Heapify operation. A heap can
extract the max element in O(1) time since this element is stored at the root
position due to the heap-property, it can insert or increase the priority of an
element in O(log2N) time so a heap is much more efficient than a linked list.

2.2 ASWD Using Heap-Based Priority Queue Approach

In Öktem coder, an image is decomposed by the Discrete Wavelet Transform
into wavelet coefficients stored in the successive subbands. According to the
parent-children link approach developed by Shapiro [9], every coefficient (the
parent) at a coarser scale can be related to four coefficients (the children) at
the next finer scale of similar orientation, also the children descending from
a significant/insignificant parent are more likely to be significant/insignificant.
Furthermore, Servetto [10] observed that not only the coefficients descending
from a significant parent, but also the morphological neighbors of these
coefficients are predicted to be significant. Based on these approaches, in ASWD,
the strategies shown in Algorithm 1 are used to exploit the parent-children
coefficients correlations and to reorganize them into the locally stationary



40 Y. Bai, S. Zahid Ahmed, and B. Granado

Algorithm 1. ASWD using Priority Queue Approach
1: for each coefficient in subband do
2: Calculate EAM for the coefficient;
3: end for
4: Build a coefficient heap according to the EAM values with Max_Heapify
5: while all the coefficients in subband are not scanned do
6: Pick the coefficient having maximum EAM among the not-yet-scanned

coefficients with Extract_Max;
7: Increase eight morphological neighbor EAMs and update the heap with

Increase_Key;
8: end while

sequences. Firstly, we define a monotonous measure called Expected Activity
Measure (EAM) for each coefficient in a subband that relates to an expected
energy of the coefficient, where EAM is a function of the coefficients in the parent
band and of the previously picked coefficient in the same band. Secondly, we scan
the coefficients of the subband into a 1-D array, each time we pick a coefficient
whose EAM is the highest among the not-yet-picked coefficients, we update the
EAM for its eight morphological neighbor coefficients, i.e., the 3×3 surrounding
coefficients within the subband. Finally, we recursively pick and update the
coefficients until all the coefficients in the subband have been adaptively scanned.
The 1-D array obtained by this adaptive scanning is expected to be a locally
stationary sequence due to the fact that the coefficients with similar activity
levels are collected together. ASWD is implemented using a priority queue
approach, it defines that an EAM is the priority linked with a coefficient thus
higher EAM represents higher priority.

The computational complexity of the algorithm is mainly determined by step
4 and 7 in the Algorithm, as the Max_Heapify operation takes O(N) time, while
the Extract_Max operation takes O(8 ·N · log2N) for updating N coefficients
in a subband. In ASWD, a coefficient is related to an EAM value stored in a
separate EAM memory, each coefficient-EAM relationship is ensured by an index
that indicates the location of the coefficient in the subband. This indirect link
between an EAM and a coefficient must be known by the encoder during the
ASWD. In step 7 of the Algorithm, during each Increase_Key operation, there
are up to eight neighbor EAMs which need to be increased, the recursive heap
update makes the ASWD into a memory access intensive algorithm.

2.3 ASWD Priority Queue Operations

Max_Heapify (A, id) : In a heap implementation, the elements are stored in
an array A such that each parent is guaranteed to be larger than (or equal to)
its two children. This ordering is shown in Fig. 1(a), where the circled nodes
indicate the priorities, the numbers beside the nodes indicate the ids and the
links indicate the parent-children relationship between the priorities. In ASWD,



Accelerating Heap-Based Priority Queue in Image Coding Application 41

Fig. 1. Max-heap structure example

a priority is defined by an EAM value of each coefficient and an id is defined in
form of an index that indicates the location of each coefficient within a subband.

Extract_Max (id) : The Extract_Max operation removes the highest priority
element at the root node from the heap and returns the id of this element. It
is realized by moving the last position node to the root position and searching
an appropriate position for this node to keep the heap balanced. As shown in
Fig. 1(b), in ASWD, the index of the extracted root node indicates a not-yet-
scanned coefficient having maximum EAM among the subband.

Insert_Key (id, priority) : The Insert_Key operation inserts a new element
into the heap. As shown in Fig. 1(c), the new node corresponding to a to-be-
inserted element is appended to the last empty position at the lowest level and
is moved upward until the new node has come to a position where its parent has
a lower priority than its own.

Increase_Key (id, priority, offset) : The Increase_Key operation allows to
increase the priority of an element in the heap. Given the id and the offset value,
the increased node is moved to a new position to maintain a balanced heap. As
shown in Fig. 1(d), in ASWD, an increased node is defined by a morphological
neighbor EAM of the previously extracted coefficient, it is moved upward until
the increased node has come to a position where its parent has a lower priority
than its own. In our paper, since the Increase_Key operation is so similar to the
Insert_Key operation, we do not consider the latter separately in the rest of the
paper, but only Max_Heapify, Extract_Max and Increase_Key operations.

2.4 Related Work

The popularity of heap-based priority queue algorithms has triggered the
development of several architectures in recent years. The applications for these
architectures range from highly parallelized sorting engine to the pipelined
architecture for high-speed queuing network. Although the different hardware



42 Y. Bai, S. Zahid Ahmed, and B. Granado

architectures proposed for priority queue problems have their advantages, they
don’t meet current requirements for our application specific heap-based priority
queue algorithm employed by ASWD. Bhagwan et al. proposed a modified
conventional heap architecture with a pipeline priority queue mechanism [11].
In their implementation, the complex memory management is required and the
pipelined architecture is not applicable for the recursive calls of Extract_Max
and Increase_Key operations. Zabołotny et al. proposed an efficient heap sort
architecture with a pipelined dual port memory access pattern [12], the efficient
implementation allows to sort one element every two clock cycles. However,
the architecture only supports pure sorting application, the data access of
the pipelined architecture is also restricted to the root node which does not
allow to increase the priorities of the element in the heap. Suzuki et al.
implemented a concurrent heap-based queuing solution [13] which segmented
the priority memory of the conventional array-based Heap into layers of a binary
tree, the operations were parallelized during the extract and insert operations.
Nevertheless, in their architecture, by storing the elements of different layers
in the separate memories, we are unable to link the priorities to its id in the
entire heap so the EAM-index relationship is unknown during the Extract_Key
operation. In the next section, we will present our hardware implementation
featuring the self index awareness of the priorities and the multiple memory
access along with data concatenation for the priority queue operations.

3 Hardware Implementation of ASWD

We realized a hardware ASWD IP in an embedded Öktem coder SoC
implemented on a Terasic DE4-230 board containing a Stratix IV FPGA in [14].
The block diagram is illustrated in Fig. 2. The ASWD IP is coupled to the
Nios II processor which manages the system I/O and performs simple control
tasks in the SoC, the image data to be processed are loaded from the DDR2
Memory. The Memory Address Decoder allows to initialize the to-be-processed
data into the two 4-port on chip memories: id_EAM_combo_memory and
id_location_memory, it can also communicate with the two processing modules:
Max Heapify and Update Heap during different subband coding. These two
modules are connected with both 4-port memories, which are created using
FPGA onchip dual port memories running at two times of system speed, in

Fig. 2. Architecture of ASWD in Öktem coder SoC



Accelerating Heap-Based Priority Queue in Image Coding Application 43

order to accelerate the data comparisons and swaps. The processing module are
controlled by a hierarchical finite state machine located in the Global Control
Unit. During the Max_Heapify operation, two slave FSMs are implemented
for controlling the parallel heapify of the left and right sub-heaps. Once the
Max_Heapify operations of both sub-heaps finished, the Master FSM performs
the recursive processing of Extract_Max and Increase_Key operations until all
the coefficients of the subband have been adaptively scanned. In the Max Heapify
module, we perform mainly the Max_Heapify operation, while in the Update
Heapify module, we perform the Extract_Max and Increase_Key operations,
the details of these operations in the light of our architectural innovations are
discussed in the following subsections.

3.1 Index-Aware Heap Structure with Parallel Tree Access

The architecture of the index-aware parallel heap is conceived in the following
manner. In the beginning, the coefficient’s index standing for the id and the
corresponding EAM standing for the priority are arranged into one data set and
stored in an id_EAM_combo_memory. We fix the left half of the data set value
at the id_EAM_combo_memory’s initial address to zero, as we want to locate
two children deriving from the same parent at the same memory address. For
instance, as shown in Fig. 3(a), the EAM values at id1 and id2 stored at the
same address of id_location_memory (lower-left part of the figure) stand for the
two children nodes located at id1 and id2 of the heap (upper part of the figure),
and they are derived from the same parent EAM at id0. To be able to track the
node’s id during the ASWD operations, an id_location_memory (lower-right of
the figure) is created to store the position (address) of each node’s index located
in the heap. The id is used as the id_location_memory’s address, while the data
stored in the memory indicates each id’s position of the heap. Furthermore, we
implemented both the id_EAM_combo_memory and the id_location_memory
as quad-port memory developed based on the dual-port block memory with
a doubled clock and some extra logics, extending the architecture with four
memory read/write in one clock cycle, in order to maximize the parallelization.

3.2 Parallelized Max_Heapify Operation

Heapify Step1 : In this step we perform Max_Heapify on the left and right
sub-heaps. As shown in Fig. 3(a), the heap is split into left and right sub-heaps
(Al and Ar). The Max_Heapify operation is independent in each sub-heap, so
both operations could be executed simultaneously. In the figure example, we start
processing Max-Heapify(Al, 4) and Max-Heapify(Ar, 5) with 4 and 5 representing
the ids of the parents of the last nodes in the left and right sub-heaps. During
the parallel Max_Heapify, the four ports of the id_EAM_combo_memory are
dedicated to the parent and children address of the left and right sub-heaps
respectively. Since two children deriving from a parent are located at the same
memory address, we are able to fetch a parent and its two children from each
sub-heap, that is, 6 nodes simultaneously. After fetching the parents and children



44 Y. Bai, S. Zahid Ahmed, and B. Granado

Fig. 3. Parallel tree access pattern for Max_Heapify and Extract_Heap

nodes, we compare their priorities, if the parent violates the heap property, it is
swapped with its bigger child. During the swapping, the id and it’s corresponding
EAM value in a data set of id_EAM_combo_memory are moved together.
Meanwhile, the position (address) values stored in the id_location_memory are
also swapped according to the swapped nodes in the heap so that the locations
of each id are up-to-date. This step is processed recursively until we reach the
root node of the left and right sub-heaps.

Heapify Step2 : In this step we perform Max_Heapify on the root node. After
the Max_Heapify of the left and right sub-heaps, the sub-heaps Al and Ar below
the root node of A are max-heaps. We continue to process the Max-Heapify(A, 0)
as shown in Fig. 3(b), where the four memory ports are dedicated to read the
root node (parent) together with it’s two children and four grand children in
the next two layers. We compare simultaneously the children and grand children
in each layer and compare the root node (parent) with the bigger grand child
deriving from the bigger child. If a swap is necessary, the nodes are moved to the
to-be-inserted position of the id_EAM_combo_memory simultaneously. The
position values of the id in the id_location_memory are moved accordingly.
The procedure goes through the remaining nodes of the heap until the entire
heap is a balanced max-heap.

3.3 Parallelized Extract_Max Operation

The Extract_Max operation is performed on a balanced max-heap, the
procedure is similar to step2 of Parallelized Max_Heapify operation. It consists
of following two steps.



Accelerating Heap-Based Priority Queue in Image Coding Application 45

Fig. 4. Parallel tree access pattern of heap structure for Increase_Heap

Extract Step1 : Extract the max priority. We swap the root node with the last
node of the heap and reduce the array size by one, and we send the original root
node as the highest that indicates the coefficient having maximum EAM among
the not-yet-scanned coefficients.

Extract Step2 : Heapify the new root node. After moving the last node to the
root position, the heap below the new root node is a max-heap. To maintain the
heap balanced, we process the Max-Heapify(A, 0) as shown in Fig. 3(b), which
is similar to the step2 of the Max_Heapify operation, thus it can be considered
as a special case of the Max_Heapify operation.

3.4 Parallelized Increase_Key Operation

During the Increase_Key operation of ASWD, we increase eight morphological
neighbors of the previous extracted node, and move them to the appropriate
positions to maintain the balanced heap.

Increase Step1 : Increase priorities and Define the update order. To update the
morphological neighbor EAMs, we can identify the 3×3 surrounding nodes of the
just picked coefficient within the subband with the help of the id-EAM data set
stored in the id_EAM_combo_memory, in addition, we also need to identify
the nodes’ positions in the heap from the id_location_memory. During the
increase, as shown in Fig. 4(a), the four memory ports are dedicated to increase
the 4 EAMs at a time until all neighbor nodes are increased. Meanwhile, the
position values of the nodes are sent to a parallel insertion sorter [15] composed
of an array of cascaded comparators that is able to sort one data every clock
cycle and is optimal for small number of data sorting. The nodes whose values



46 Y. Bai, S. Zahid Ahmed, and B. Granado

have been increased are reordered based on the descending order position values,
that is, from the last node position in the heap to the root position in the heap,
the reordered nodes are moved to their new positions one after another to avoid
violating the already up-to-date nodes.

Increase Step2 : Update the priorities to the new positions. The increased
nodes may violate the max heap property so they need to be moved to the new
positions. Since the EAM values of the nodes are always increased in ASWD,
only "looking up" is needed, the four memory ports are dedicated to read the
increased node’s value (child) as well as its parent, grand parent and the great
grand parent from the three upper layers. After fetching the four values, they
are compared simultaneously. If a swap is necessary, the elements are moved to
the to-be-inserted positions in the id_EAM_combo_memory simultaneously,
the location values of the id in the id_location_memory are moved accordingly.

4 Experimental Results

To investigate the feasibility and efficiency of our parallelized architecture,
the ASWD core was developed to communicate with Altera’s Avalon bus. The
IP and the SoC were validated on a StratixIV GX230KF40C2 FPGA. The
implementation was designed to support 32 bit word length for priority and a
heap capacity from 1 to 16384 priorities (1 to 15 layers). The resource utilization
of each individual modules in ASWD and the total resource utilization are given
in Table 2. Values in parentheses stand for the percentage of resource usage
over the total Stratix IV FPGA resource. In our hardware implementation, the
memory size is fixed to the maximum heap capability needed, i.e., 16384 in
ASWD. A distinguishing feature of our architecture is that the heap elements in
every layer are stored in an entire block memory, this makes the design being fully
scalable for large heap capacity and makes the design being index aware. The
four-port RAM requires only small amount of control logic without multiplying
the memory usage, it allows to keep the logic to memory ratio reasonably low.

In Fig. 5, according to the number of priorities in the heap, we evaluated the
clock cycles needed for the Extract_max operation in the worst case which
requires bringing down the node from root position to the lowest layer, as
well as the clock cycles needed for the Increase_key operation. The worst case
Increase_key operation is considered to be similar as the Insert_key operation,
as they both require bringing up the to-be-updated node from the lowest layer

Table 2. FPGA Resource utilization of ASWD

Module Max Freq. ALUTs FFs Memory bits
Max_Heapify 153MHz 3103(1.7%) 1171(0.6%) 0(0%)
Update_Heap 159MHz 4491(2.4%) 1749(0.9%) 112(<0.1%)
4-Port RAMs 396MHz 1053(0.5%) 636(0.3%) 983132(6.7%)
Total ASWD 152MHz 9130(5.0%) 3967(2.2%) 983244(6.7%)



Accelerating Heap-Based Priority Queue in Image Coding Application 47

Fig. 5. HW timing requirements for Extract_Max and Increase_Key

Fig. 6. (a) HW and SW latency comparison for: (a) Max_Heapify and (b) ASWD

to the root position when the updated node’s priority is larger than the root
node’s priority. In Fig. 6, we show the latency of the Max_Heapify operation
and the overall latency of the overall ASWD algorithm including the Heapify
along with the recursive call of the Extract and Increase operations. We also
tested the single threaded software on an ARM Cortex-A9 processor at 666MHz,
the input priorities used were the randomly generated integers of 32 bit-width
used as unsorted coefficients. According to the two experiments with 16384
random priorities, the 150MHz hardware implementation can run 33x faster
than ARM for the Max_Heapify operation, it can run 47x faster than ARM for
the overall ASWD. The acceleration obtained by our hardware over the single-
threaded software is considered to be a fair comparison, as a multi-threaded
implementation using 2/4 cores can only make the software execution 2/4X
faster in ideal case.

Finally, the latency of ASWD core running at 150 MHz for the 512 × 512
grayscale lena image were evaluated. The FPGA based hardware execution time
was measured to be 43.64 ms using Altera performance counter IP provided
by Altera, while the execution time in ARM processor is 1975.11 ms. From the
experiments, to process ASWD in the test image consisting of multiple subbands,
our implementation provides 45x speedup over the ARM.



48 Y. Bai, S. Zahid Ahmed, and B. Granado

5 Conclusion

We presented a novel hardware architecture of an Adaptive Scanning of Wavelet
Data scheme called ASWD. It is a specified heap-based priority queue application
employed by a wavelet-based image coder called Öktem coder and is dedicated
to reorganize the coefficients into a locally stationary sequence. The memory
access intensive nature of the ASWD algorithm makes it penalizing for software
implementation, a more appropriate implementation is necessary to adapt
the design on an embedded system which provides higher performance. We
implemented an embedded SoC in Altera Stratix IV FPGA integrating our
design for fast prototyping and experiment. By adaptively controlling the index-
aware system linked to each key in the queue and the configurable memory access
during different ASWD operations, we demonstrated that our hardware running
at only 150MHz provided 45 times speedup over ARM Cortex-A9 at 666MHz.

References

1. Öktem, L.: Hierarchical enumerative coding and its applications in image
compression. PhD thesis, Tampere University of Technology (November 1999)

2. Öktem, L., Astola, J.: Hierarchical enumerative coding of locally stationary binary
data. Electronics Letters 35(17) (August 1999)

3. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image Compression Fundamentals,
Standards, and Practice. Kluwer Academic Publishers (November 2001)

4. Haapala, K., Lappalainen, K., Hämäläinen, T.: Microprocessors and Microsystems
(2005)

5. Vatolin, D., Moskvin, A., Petrov, O., Trunichkin, N.: JPEG 2000 Image Codecs
Comparison (September 2005)

6. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibitily to structural similarity. IEEE Trans. Signal Process 13(4)
(April 2004)

7. Vatolin, D., Moskvin, A., Petrov, O., Trunichkin, N.: MSU Video Quality
Measurement Tool 3.0 (July 2011)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

9. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE
Trans. Signal Process 41, 3445–3462 (1993)

10. Servetto, S.D., Ramhandran, K.: Image coding based on a morphological
representation of wavelet data. IEEE Trans. Image Proc. 8(9), 1161–1174 (1999)

11. Bhagwan, R., Lin, B.: Fast and scalable priority queue architecture for high-speed
network switches. In: INFOCOM 2000, vol. 2, pp. 538–547 (2000)

12. W.M. Zabołotny. Dual port memory based heapsort implementation for fpga. In:
SPIE 2011 (2011)

13. Suzuki, M., Minami, K.: Concurrent heap-based network sort engine - toward
enabling massive and high speed per-flow queuing. In: IEEE International
Conference on Communications, ICC 2009, pp. 1–6 (2009)

14. Bai, Y., Ahmed, S.Z., Granado, B.: FPGA implementation of hierarchical
enumerative coding for locally stationary image source. In: FPL, pp. 1–6 (2013)

15. Marcelino, R., Neto, H.C., Cardoso, J.M.P.: A comparison of three representative
hardware sorting units. In: Industrial Electronics, IECON 2009 (2009)



A Unified Framework for Over-Clocking Linear
Projections on FPGAs under PVT Variation

Rui Policarpo Duarte and Christos-Savvas Bouganis

Imperial College London, United Kingdom
{r.duarte09,christos-savvas.bouganis}@imperial.ac.uk

Abstract. Linear Projection is a widely used algorithm often implemented with
high throughput requisites. This work presents a novel methodology to optimise
Linear Projection designs that outperform typical design methodologies through
a prior characterisation of the arithmetic units in the data path of the circuit under
various operating conditions. Limited by the ever increasing process variation,
the delay models available in synthesis tools are no longer suitable for perfor-
mance optimisation of designs, as they are generic and only take into account the
worst case variation for a given fabrication process. Hence, they heavily penalise
the optimisation strategy of a design by leaving a gap in performance. This work
presents a novel unified optimisation framework which contemplates a prior char-
acterisation of the embedded multipliers on the target device under PVT variation.
The proposed framework creates designs that achieve high throughput while pro-
ducing less errors than typical methodologies. The results of a case study reveal
that the proposed methodology outperforms the typical implementation in 3 real-
life design strategies: high performance, low power and temperature variation.
The proposed methodology produced Linear Projection designs that were able to
perform up to 18 dB better than the reference methodology.

Keywords: FPGA, embedded multiplier, over-clocking, PVT optimisation,
Linear Projection.

1 Introduction

The Linear Projection algorithm, also known known as Karhunen-LoeveTransformation
(KLT), is used in many scientific areas to compress data, i.e. face recognition.
Additionally, the advent of big data and near real-time performance requirements has
propelled an increased demand in performance for implementations of this algorithm [5].

The continuous increase of resources and performance in Field-Programmable Gate
Arrays (FPGAs), along with low power consumption and highly specialised embedded
blocks, has made them attractive to implement the Linear Projection algorithm, which
relies on multiplications and additions, with high throughput requirements. In real-life
applications, where usually there are hard area requirements, or when the Linear Pro-
jection targets a large number of dimensions, unrolling or deeply pipelining the design
is unfeasible. Thus, the multiplication is assigned to the embedded multipliers and the
convolution is folded. To overcome the performance limitation of the embedded multi-
pliers, which can’t be deeply pipelined, the Linear Projection circuit is over-clocked to

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 49–60, 2014.
c© Springer International Publishing Switzerland 2014



50 R.P. Duarte and C.-S. Bouganis

extreme frequencies beyond those reported by the synthesis tool in order to push further
its overall performance.

Taking into account that synthesis tools rely on models, and don’t have information
about the actual device that is being targeted, they are conservative in their estimate.
Notwithstanding, a device can operate at higher clock frequencies, which can be de-
termined via experimentation, still a margin in performance needs to be preserved to
contemplate variation due to process variation and operating conditions (i.e. temper-
ature and voltage). The proposed methodology tries to close this gap by pushing the
performance further into the error-prone region.

Forasmuch as the performance of designs implemented using FPGAs are affected
by Process-Voltage-Temperature (PVT) variation, the same way as any other silicon
device, optimising an over-clocked Linear Projection will depend on the sensitivity of
the design to PVT variation. That fact requires the design on the device to operate
under variation of different conditions simultaneously. To address this problem the pro-
posed methodology supports design strategies with different operating conditions, such
as low-power and high-performance. Moreover, in real-life voltage and clock frequency
are fixed and don’t change much over time, whereas temperature is very expensive to
control. In addition, the proposed methodology can optimise designs for graceful degra-
dation over a wide range of temperatures. This means that a single design won’t be
optimised for a operating over the worst case temperature, but a set of temperatures.

300 350 400 450 500 550 600 650

10
−5

10
0

Clock Frequency [MHz]

R
ec

on
st

ru
ct

io
n 

M
S

E

Original Space Reconstruction MSE @ 1200mV / 35ºC

Region of Interest→

←
 8

5º
C

←
0º

C

 

 

FPGA Test
Synth. Tool

Fig. 1. Mean squared error of the reconstruction of the Linear Projection in the original space vs
its clock frequency, as well as the maximum operating clock frequencies provided by the conser-
vative models of the synthesis tools. The region of interest corresponds to the clock frequencies
for which the Linear Projection circuit generates errors when ran on a DE0 board from Terasic.

The proposed framework optimises extreme over-clocking of Linear Projection de-
signs into error-prone operation, designated as Region of Interest in figure 1. This figure
shows the evolution of errors with the increase of clock frequency, in a Linear Projec-
tion design from a Z6 space to a Z3 using the embedded multipliers on the FPGA. It
also shows the maximum clock frequencies reported by the synthesis tool.

A novel methodology is proposed to optimise Linear Projections under a unified
framework for over-clocking, which considers different sources of variation simultane-
ously. A key step of the proposed framework is the performance characterisation of the
embedded multipliers in a given device when they are clocked with clock frequencies
well above from what is reported by the synthesis tool. The main idea is to have a prior



A Unified Framework for Over-Clocking Linear Projections 51

characterisation of the device with respect to the degradation of the performance of
the computational units. This characterisation suits the use of FPGAs because of their
reconfigurability property.

The proposed framework automatically selects the best designs to improve the per-
formance of Linear Projection implementations, while minimising errors without the
expense of extra circuit resources. The obtained performance information (i.e. errors
that are expected at the output of the multipliers) is injected to a Bayesian formulation
of the problem in order to obtain the coefficients for the Linear Projection.

This framework uses an error model (for the operating conditions), and later automat-
ically combines this information with high-level parameter selection of the algorithm,
generating designs less prone to error, when compared to typical implementations of
the KLT algorithm.

The main contributions in this paper are:

– Extension of the characterisation and optimisation frameworks to support embed-
ded multipliers;

– Introduction of the support for PVT variation in the characterisation framework and
in the optimisation algorithm;

– Creation of a new error model for the embedded multipliers under a range of oper-
ating conditions;

– Optimisation of Linear Projection designs for performance targeting different sce-
narios (i.e. low power, high performance, temperature variation resilience).

2 Background

Usually the implementation and performance of Linear Projections designs in a digital
system is bound to the number of bits used in quantisation and the depth of pipelining.
However, these methodologies are unable to cope with the aforementioned operating
conditions, consequence of the adopted design strategies, and the intra-die and inter-die
variation.

The ever increasing process variation and the fact that circuits need to support differ-
ent voltages and temperatures makes the designs to operate at lower clock frequencies
than the maximum offered by the fabrication process. Synthesis tools use conservative
models which set the maximum performance of a circuit below the performance of the
worst transistor for the family of the device.

One of the most well known techniques that can be applied to address the problem
of performance variability in a Linear Projection design within a device is Razor [13].
It is a generic time-redundant method proposed for Dynamic Voltage Scaling (DVS) of
CPUs. More recently, [6] proposed a methodology to recover from errors due to PVT.
Both strategies can be applied to any path prone to errors due to time violations, and
the recovery is performed at the expense of extra latency, which heavily penalise Linear
Projections applications processing streams of data.

In [10] the authors present two strategies to compensate for intra-die performance
variability by providing a generic characterisation step for the performance of the device
followed by a reconfiguration step, where parts of the design are mapped to specific
locations of the device given their performance requirements.



52 R.P. Duarte and C.-S. Bouganis

A novel approach to improve the performance of Linear Projection designs, using
Constant Coefficient Multipliers (CCMs), relied on over-clocking of the design [7].
Notwithstanding this work is restricted to CCMs and doesn’t consider different operat-
ing conditions demanded by different designs strategies. In this paper, this constraint is
lifted to make the proposed framework practical in a wider range of real-life applica-
tions. Furthermore, a new optimisation framework that utilises information from a prior
characterisation for a Linear Projection design optimisation is presented. It includes a
new algorithm for design space exploration that utilises an objective function tuned for
the utilisation of embedded multiplier modules within that Linear Projection framework
under different operating conditions. Moreover, since the routing inside the embedded
multipliers doesn’t change, it means that the designs are optimised on a per device basis.

The following sections of this paper detail the proposed methodology to accelerate
Linear Projection designs, while being resilient to PVT variation, based on the prior
characterisation of the device.

The proposed framework breaks new ground proposing:

– graceful degradation of results at the output of the Linear Projection with the in-
crease in variation of the working conditions;

– a methodology to push forward the performance of embedded multipliers without
using extra circuitry;

– a methodology to optimise a design over a set of varying conditions performing
better than accounting for the worst case scenario.

3 Linear Projection Revisited

The Linear Projection, also known as KLT, or Principal Component Analysis (PCA),
transform is formulated as follows. Given a set of N data xi ∈ RP , where i ∈ [1, N ]
an orthogonal basis described by a matrix Λ with dimensions P ×K can be estimated
that projects these data to a lower dimensional space of K dimensions. The projected
data points are related to the original data through the formula in (1), written in matrix
notation, where X = [x1, x2, ..., xN ] and F = [f1, f2, ..., fN ], where f i ∈ RK denote
the factor coefficients.

F = ΛTX. (1)

The original data can be recovered from the lower dimensional space via (2):

X = ΛF +D (2)

where D is the error of the approximation. The objective of the transform is to find
a matrix Λ such as the Mean-Square Error (MSE) of the approximation of the data is
minimised. A standard technique is to evaluate the matrix Λ iteratively as described in
steps (3) and (4), where λj denotes the jth column of the Λ matrix.

λj = arg max E{(λT
j Xj−1)

2} (3)

Xj = X −
j−1∑
k=1

λkλ
T
k X (4)

where X = [x1x2...xN ], X0 = X , ‖λj‖ = 1 and E{.} refers to expectation.



A Unified Framework for Over-Clocking Linear Projections 53

4 Optimisation of Linear Projection Designs for Over-Clocking

In the circuit to implement the Linear Projection design, the data path holds the most
critical paths. The main purpose of this work focus on over-clocking embedded multi-
pliers, as they’re the components with the largest delay in the data path of the design.

Figure 2 shows a rolled architecture of a circuit to implement the data path of one
projection vector from a Zp to Zk Linear Projection. This was preferred instead of the
unrolled one due to the amount of area taken by it.

Fig. 2. Schematic of the data path for one projection vector of a Linear Projection circuit

The input stream of the circuit is identified with Xp. The input sample from each
dimension is multiplied by the corresponding projection vector λpk . This multiplication
only concerns the magnitude of the input and λpk values. The inputs and outputs of
the multiplier are registered. The output of the multiplier is connected to an adder to
do the accumulation. The accumulation sign depends on the signs of the input and λpk .
The output stream is identified with fk.

The calculation of the projection matrix Λ and its hardware mapping onto FPGAs
are often considered as two independent steps in the design process. However, con-
siderable area savings can be achieved by coupling these two steps as shown in [4,3].
The Bayesian formulation presented in [3] considers the subspace estimation and the
hardware implementation simultaneously, allowing the framework to efficiently explore
the possibilities of custom design offered by FPGAs. This framework generates Linear
Projection designs which minimise errors and circuit resources, when compared to the
standard approach of the KLT transform application followed by the mapping to the
FPGA.

The key idea in [3] is to inject information about the hardware (i.e. in this case about
the required hardware resources of a CCM) as a prior knowledge in the Bayesian for-
mulation of the above optimisation problem. In more detail, the proposed framework
in [3] estimates the basis matrix Λ, the noise covariance Ψ , and the factors using Gibbs



54 R.P. Duarte and C.-S. Bouganis

sampling algorithm [8] from the posterior distribution of the variables, having injecting
knowledge about the required hardware recourses for the implementation of the CCMs
through a prior distribution. Thus, a probability density function is generated for the
unknown Λ matrix, which is used to for generation of samples, where the prior distri-
bution tunes this posterior distribution, and thus accommodating the impact the required
hardware resources.

[7] provides an extension of the above work for the optimisation of Linear Projec-
tion designs using CCMs combating the effects for circuit area as well as performance
variation due to over-clocking. This work is focused on the extension of the previous
work to support embedded multipliers and PVT variation in the characterisation, error
modeling, and generation of designs to implement (1). The framework selects the multi-
pliers used for the implementation of each dot product in (1) along with the coefficients
of the Λ matrix that define the lower dimension space.

4.1 Objective Function

The objective function is formed by the MSE of the reconstructed data in the original
space, and errors that are produced due to the over-clocking, under PVT variation, of
the utilised embedded multipliers.

Let’s denote with X̂ the result of the reconstruction of the projected data in a matrix
form. Then, the objective function U is defined as in (5), where both reconstruction
errors and variation errors are captured. E denotes the expectation and Tr the trace
operator. The matrix formulation is defined as:

U = Tr

(
E

[(
X − X̂

)T (
X − X̂

)])
(5)

By expressing the reconstructed data as a function of the Λ matrix, and the variation
error with ε such as X̂ = Λ(F + ε).

By imposing ε to have zero mean, which is achieved by subtracting a constant in the
circuit, and using the fact that the Λ matrix is orthogonal and orthonormal, the objective
function is expressed as:

U = Tr
(
E
[
(X − ΛF )T (X − ΛF )

])
+Tr

(
E
[
εT ε

])
= Tr

(
E
[
(X − ΛF )

T
(X − ΛF )

])
+
∑
j

var(εj)

Here j denotes the columns of the Λ matrix. By assuming that the errors at the output
of the multipliers are uncorrelated, then the first term in the final expression relates to
the approximation of the original data from the Linear Projection without any variation
errors, where the second term relates to the variance of the errors at the output of the
embedded multipliers due to over-clocking, under PVT variation. Thus, the errors due to
dimensionality reduction and variation are captured by one objective function without
any need to formulate a problem using a multi-objective function.



A Unified Framework for Over-Clocking Linear Projections 55

4.2 Prior Distribution Formation

The proposed framework utilises information regarding the performance characterisa-
tion of the embedded multipliers for a given device and their respective resource utili-
sation, by suitably constructing a prior distribution function for the coefficients of the
Λ matrix. The utilised models for the over-clocking errors, under PVT variation, are
described below.

Error Models. The proposed framework utilises the performance characterisation
framework for CCMs, introduced in [7] and now extended to support embedded multi-
pliers and capture PVT variation. By executing that framework, a profile of the errors
expected at the output of the embedded multipliers when one of the operands is fixed
(i.e. representing a coefficient of the Λ matrix) for various frequencies can be obtained.
As indicated by the objective function formulation, the objective is to capture the vari-
ance of the error at the output of the multiplier which models the uncertainty of the
result. As such, a data structure is formed, Err(m, f, p, v, T ), that holds information
regarding the variance at the output of a multiplier when a stream of data is multiplied
by a constant m, the circuit is clocked at frequency f , placed on p coordinates on the
FPGA, using core voltage v, and temperature T .

Prior Distribution. The formation of the prior distribution p(·) of the Λ matrix is
a key part of the framework as it injects hardware information to the framework for
the estimation of the Λ matrix. The aim of the prior distribution is to penalise Λ ma-
trix instances with high errors, due to the use of coefficients that generate high errors
due to over-clocking or due to poor description of the original space, by assigning low
probabilities to them. As no information regarding the distribution of the coefficients
is available on their suitability in representing the original space, this part of the prior
distribution is uninformative and results to a flat prior. Thus, the prior distribution re-
flects solely information about the errors at the output of the over-clocked multipliers
as p(λpk, f, p, v, T ) = g(Err(λpk, f, p, v, T )), where the performance of every coeffi-
cient in the Λ matrix is dictated by the targeted clock frequency, the placement on the
FPGA, the core voltage, and the temperature of the device; and g(·) denotes a user de-
fined function. In this work, the following g(·) function is selected as it provides good
results, without any claim on its optimality.

g(Err(λpk, f, p, v, T )) = cE(1 + Err(λpk, f, p, v, T ))
−β (6)

cE is a constant used to ensure that
∑

λpk
g(Err(λpk, f, p, v, T )) = 1. β is a Hyper-

Parameter that allows the tuning of the contribution of errors in the prior distribution.
Err(λpk, f, p, v, T ) is the variance of the error observed from the performance charac-
terisation of the multiplier.

4.3 Design Generation

The proposed framework uses Gibbs sampling [8] to extract, from the design space, a
set of designs that minimise the selected objective function U . The resulting designs



56 R.P. Duarte and C.-S. Bouganis

are the ones that minimise the value of the objective function. The proposed framework
estimates each dimension (i.e. column) of the Λ matrix in a sequential manner. The user
supplies the targeted dimensions K , the targeted clock frequency f , the coordinates on
the FPGA p, the core voltage v, the temperature T , and the β parameter. The pseudo-
code of the new version for the optimisation algorithm is given in Alg. 1.

Algorithm 1. Linear Projection Design Unified Framework for Over-Clocking
Require: K ≥ 1 ∧ β > 0 ∧ f, p, v, T > 0
Ensure: 1 Linear Projection design

X ← input {original data N cases}
for d = 1 to K do

Create new empty Candidate Projs list
prior ← generate prior(β, f, p, v, T )
λd ← sample projection(X, prior)
F ← (λT

d λd)
−1λT

d X
error ← X −∑d

j=1 λjF

MSEd ← ∑∑
error2/PN

Proj ← (λd,MSEd)
Add Proj to Candidate Projs list
Extract candidate projections {min MSE}

end for
return The Linear Projection design with minimum MSE

5 Evaluation of Over-Clocked Linear Projections Circuits under
PVT Variation

The performance of the proposed methodology was compared contra the performance
of the reference design, which is based on a typical implementation of the KLT algo-
rithm. All designs were implemented on a Cyclone III EP3C16 FPGA from Altera [2],
attached to a DE0 board from Terasic [11]. The core voltage of the FPGA was provided
by a digital power supply PL303QMD-P [1] from TTI. The temperature of the FPGA
was set by a thermoelectric cooler placed on top of the FPGA. The temperature con-
troller was calibrated using a digital thermometer from Lascar Electronics [9] and its
deviation is below 1 ◦C.

The aim of this case study is to demonstrate that an optimisation of a Linear Projec-
tion design targeting different design strategies, under different operating conditions,
using the same framework is achievable. The effectiveness of the framework is demon-
strated with a case study implementing a Linear Projection from Z6 to Z3. The charac-
terisation of the FPGA, the training of the framework and the test used different sets of
data from a uniform pseudo-random distribution, quantised with 9 bits. After synthesis,
the tool reported a resource usage of 126 logic cells and 3 9 × 9 embedded multipli-
ers, and a maximum clock frequency of 342 MHz. Examining the timing report revealed
that the critical paths belong to the embedded multiplier and the delay for the remaining



A Unified Framework for Over-Clocking Linear Projections 57

660 680 700 720 740

10

20

30

40

50

60

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R

Original Space Reconstruction PSNR @ 1400 mV, 5ºC

 

 

KLT
NEW

Fig. 3. Comparison of the performance of the two methodologies for the particular case of
1400 mV and 5 ◦C

components in the data path, i.e. accumulator, and the Finite State Machine (FSM), are
out of reach for the selected over-clocking frequencies. The results from the characteri-
sation of the embedded multipliers were verified using Transition Probability from [12].
To better demonstrate the impact of variation for each design strategy only one setting
has been changed. The framework supports variation of many operating conditions si-
multaneously. The results for the reference implementation without information about
the characterisation of the device are identified with KLT, whereas the results for the
proposed framework are identified with NEW. They are compared in terms of Peak
Signal-to-Noise Ratio (PSNR) of the reconstructed data in the original space.

5.1 Optimisation Targeting Maximum Performance

Optimising a Linear Projection design aiming for the maximum performance implies
an increased FPGA core voltage and active cooling of the device. During the test, the
device was kept at 5 ◦C and supplied with 1400 mV, instead of the 1200 mV specified
by the manufacturer.

With a clock frequency twice as much as the maximum specified by the synthesis tool
for the normal working conditions, the designs generated by the proposed framework
exhibited a reconstruction PSNR up to 15 dB better than the KLT designs for the same
working conditions, as can be observed in figure 3. On the other hand, if a target PSNR
of 30 dB is to be met, then the designs generated by the framework can operate up to
20 MHz higher than the KLT designs.

5.2 Optimisation Targeting Low Voltage

Linear Projection circuits operating under limited power budgets, or battery operated,
tend to operate using the least core voltage possible and be without any active cooling
components. Figure 3 (left) shows the results for the KLT designs when operating at
35 ◦C with different FPGA core voltages. This design strategy considered 900 mV as



58 R.P. Duarte and C.-S. Bouganis

200 300 400 500 600
0

10

20

30

40

50

60

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R
Original Space Reconstruction PSNR @ 35ºC

 

 

KLT 0.9V
KLT 1.0V
KLT 1.1V
KLT 1.2V

240 250 260 270 280
0

10

20

30

40

50

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R

Original Space Reconstruction PSNR @ 35ºC, 900mV

 

 

KLT 0.9V
NEW 0.9V

Fig. 4. Performance of the KLT Linear Projection application under different core voltages (left),
and a comparison between the two methods for the particular case of 900mV (right)

the minimum core voltage for the FPGA. Figure 3 (right) shows that the designs created
by the framework achieve a better PSNR up to 10 dB for the same clock frequency, or
for similar PSNR, a clock frequency up to 10 MHz higher than the reference designs.

5.3 Optimisation Targeting Device Temperature Tolerance

It is well established that temperature affects the performance of silicon devices. Imple-
menting Linear Projection designs without any active cooling components, and oper-
ating them in environments prone to large temperature variation can compromise their
correct functioning. Usually, if an implementation of a Linear Projection has to consider
a wide range of temperatures, then it will have to cope with the worst performance of
them.

To go beyond with the optimisation methodology, it was considered a scenario where
a single design could offer better performance than the reference designs for a range
of temperatures, instead of a design per temperature. Seeing that the errors increase
with the temperature, optimising a design for the worst-case temperature can restrict
the coefficients available to implement the Linear Projection design, hence placing a
ceiling on the best reconstruction MSE that a particular design could achieve, even
without errors in its data-path.

The new idea is focused on sampling Linear Projection designs using the informa-
tion from the characterisation of the device at specific temperatures along with its prob-
ability to operate under those temperatures. To accomplish this, it was investigated the
weighted average of the characterisation errors for a range of operating temperatures
in the generation of Linear Projection designs. As follows, the prior distribution from
equation (7) is now:

g (Err (λpk, f, p, v, T )) =
∑
i

αicE (1 + Err (λpk, f, p, v, Ti))
−β (7)

Here i iterates over all contributing temperatures, and
∑

i αi = 1. The different
weights represent the significance of the errors at a particular temperature. This



A Unified Framework for Over-Clocking Linear Projections 59

480 500 520 540 560 580 600
0

10

20

30

40

50

60

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R
Original Space Reconstruction PSNR @ 1200mV

 

 

KLT 20ºC
KLT 35ºC
KLT 50ºC

500 510 520 530 540 550 560

10

20

30

40

50

60

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R

Original Space Reconstruction PSNR @ 20ºC

 

 

KLT
NEW 20ºC
NEW WAVG

Fig. 5. Performance of the KLT Linear Projection application depending on the temperature of
the device (left), and a comparison between the three methods at 20 ◦C (right)

500 510 520 530 540 550 560

10

20

30

40

50

60

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R

Original Space Reconstruction PSNR @ 35ºC

 

 

KLT
NEW 35ºC
NEW WAVG

500 510 520 530 540 550 560

10

20

30

40

50

60

Clock Frequency [MHz]

O
rig

in
al

 S
pa

ce
 R

ec
on

st
ru

ct
io

n 
P

S
N

R

Original Space Reconstruction PSNR @ 50ºC

 

 

KLT
NEW 50ºC
NEW WAVG

Fig. 6. Performance of the three methods at 35 ◦C (left) and 50 ◦C (right)

particular test case used temperatures 20, 35 and 50 ◦C and α20 = 0.3, α35 = 0.5
and α50 = 0.2. In practice, the proposed framework generates circuit designs per clock
frequency, covering all the temperatures within the expected range. They are identified
with NEW WAVG in the results.

Figure 5 (left) shows the dependency of the performance of the reference Linear
Projection circuit with the temperature of the device, with a supply voltage of 1200 mV.
Figure 5 (right) shows in detail the comparison between the reference and the optimised
designs for a specific temperature and a range of temperatures. Figure 6 holds the results
for 35 and 50 ◦C.

The figures show that the designs generated by the framework always outperformed
the KLT designs for all temperatures. Furthermore, at 510 MHz the PSNR is more than
10 dB better than the KLT design, and at 530 MHz the performance of the NEW design
at 35 ◦C is better than the KLT design at 20 ◦C. The NEW WAVG designs perform
significantly better than the NEW ones since they incorporate more information about
uncertainty of the results under variation, up to the maximum temperature considered.



60 R.P. Duarte and C.-S. Bouganis

6 Conclusion

This paper proposes a novel unified methodology for implementation of extreme
over-clocked Linear Projection designs on FPGAs. It couples the problem of data ap-
proximation and error minimisation under variation of the operating conditions. It was
demonstrated that the proposed methodology optimises Linear Projection designs for
performance and resilience simultaneously, by inserting information regarding the
performance of the arithmetic units when operating under variation.

Acknowledgments. RPD would like to acknowledge “Fundação para a Ciência e Tec-
nologia” (Lisbon, Portugal) for the support through grant SFRH/BD/69587.

References

1. Aim & Thurlby Thandar Instruments. The new pl-p series - advanced bus programmable DC
power supplies, http://www.tti-test.com/products-tti/
pdf-brochure/psu-npl-series-8p.pdf

2. Altera. Cyclone III device handbook, http://www.altera.co.uk/literature/
hb/cyc3/cyclone3 handbook.pdf

3. Bouganis, C.-S., Pournara, I., Cheung, P.: Exploration of heterogeneous FPGAs for mapping
linear projection designs. IEEE Trans. VLSI Syst. 18(3), 436–449 (2010)

4. Bouganis, C.S., Pournara, I., Cheung, P.Y.K.: Efficient mapping of dimensionality reduction
designs onto heterogeneous FPGAs. In: Proc. 15th Annual IEEE Symp. Field-Programmable
Custom Computing Machines FCCM 2007, pp. 141–150 (2007)

5. Chu, J.-U., Moon, I., Seong Mun, M.: A real-time EMG pattern recognition system based on
linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Transactions
on Biomedical Engineering 53(11), 2232–2239 (2006)

6. Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw,
D.T.: RazorII: In situ error detection and correction for PVT and SER tolerance. IEEE J.
Solid-State Circuits 44(1), 32–48 (2009)

7. Duarte, R.P., Bouganis, C.-S.: High-level linear projection circuit design optimization frame-
work for FPGAs under over-clocking. In: FPL, pp. 723–726 (2012)

8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6),
721–741 (1984)

9. Lascar Electronics. El-usb-tc k, j, and t-type thermocouple temperature usb data logger,
http://www.lascarelectronics.com/
temperaturedatalogger.php?datalogger=364

10. Sedcole, P., Cheung, P.Y.K.: Parametric yield modeling and simulations of fpga circuits con-
sidering within-die delay variations. ACM Trans. Reconfigurable Technol. Syst. 1(2), 10:1–
10:28 (2008)

11. Terasic Technologies. Terasic DE0 board user manual v. 1.3 (2009)
12. Wong, J.S.J., Sedcole, P., Cheung, P.Y.K.: A transition probability based delay measurement

method for arbitrary circuits on FPGAs. In: Proc. Int. Conf. ICECE Technology FPT 2008,
pp. 105–112 (2008)

13. Ziesler, C., Blaauw, D., Austin, T., Flautner, K., Mudge, T.: Razor: A low-power pipeline
based on circuit-level timing speculation (2003)

http://www.tti-test.com/products-tti/pdf-brochure/psu-npl-series-8p.pdf
http://www.tti-test.com/products-tti/pdf-brochure/psu-npl-series-8p.pdf
http://www.altera.co.uk/literature/hb/cyc3/cyclone3_handbook.pdf
http://www.altera.co.uk/literature/hb/cyc3/cyclone3_handbook.pdf
http://www.lascarelectronics.com/temperaturedatalogger.php?datalogger=364
http://www.lascarelectronics.com/temperaturedatalogger.php?datalogger=364


Relocatable Hardware Threads in Run-Time

Reconfigurable Systems

Alexander Wold1, Andreas Agne2, and Jim Torresen1

1 Department of Informatics, University of Oslo, Norway
2 Computer Engineering Department, University of Paderborn, Germany

{alexawo,jimtoer}@ifi.uio.no, agne@upb.de

Abstract. Run-time reconfiguration provides an opportunity to increase
performance, reduce cost and improve energy efficiency in FPGA-based
systems. However, run-time reconfigurable systems are more complex
to implement than static only systems. This increases time to market,
and introduces run-time overhead into the system. Our research aims to
raise the abstraction level to develop run-time reconfigurable systems. We
present operating system extensions which enable seamless integration of
run-time reconfigurable hardware threads into applications. To improve
resource utilization, the hardware threads are placed on a fine granular-
ity tile grid. We take advantage of a relocatable module placer targeting
modern field programmable gate arrays (FPGAs) to manage the recon-
figurable area. The module placer accurately models the FPGA resources
to compute feasible placement locations for the hardware threads at run-
time. Finally, we evaluate our work by means of a case study that consists
of a synthetic application to validate the functionality and performance
of the implementation. The results show a reduction in reconfiguration
time of up to 42% and more than double resource utilization.

1 Introduction

The design and implementation of field programmable gate array (FPGA)-based
systems which use run-time reconfiguration is significantly more complex com-
pared to purely static systems. Run-time reconfigurable systems require careful
floorplanning to partition the device into static and reconfigurable regions. In ad-
dition, the communication infrastructure that allows for communication between
the static and the run-time reconfigurable regions, introduces complexity which
increases development time, and introduces run-time overhead into the system.
The run-time overhead includes management of reconfigurable resources, recon-
figuration time and unused resources due to fragmentation. If the complexity
associated with partial run-time reconfiguration is not addressed, the advan-
tages offered may be nullified. It is therefore an attractive proposition to address
these challenges in order to allow systems to be implemented at lower cost.

For many years, the implementation of partial run-time reconfigurable systems
with many relocatable hardware threads has provided a challenge to engineers.
Recently however, improved tools which target partial run-time reconfigurable

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 61–72, 2014.
© Springer International Publishing Switzerland 2014



62 A. Wold, A. Agne, and J. Torresen

systems have become available [1, 2]. These tools have simplified the design of
reconfigurable systems. In particular, new features enable implementation of
systems which allow partially reconfigurable (PR) modules to be relocated at
run-time.

Previous work related to both design time aspects and run-time aspects for
PR implement a coarse grained tile grid to place the PR modules [3, 4]. As
device size and number of PR modules increase, it will be increasingly difficult
to maintain resource utilization on a coarse granularity tile grid used in earlier
work. This requires a fine granularity tile grid to place the PR modules. Part of
the theoretical foundation presented in these publications still applies to modern
devices. However, modern FPGAs are both larger and more heterogeneous than
earlier devices.

In this work, we present improvements to both the development framework
and the run-time environment. We aim to raise the abstraction level for de-
veloping such systems. A higher abstraction level has the potential to shorten
development time. This requires both a flexible development framework and an
operating system to manage the reconfigurable resources at run-time.

Our work targets ReconOS, an operating system and programming model
which supports heterogeneous applications [5]. These heterogeneous applications
consist of both hardware and software threads. ReconOS provides a unified pro-
gramming interface for both software and hardware threads. To raise the abstrac-
tion level, we hide implementation details related to scheduling and placement
of reconfigurable hardware threads behind the operating system’s application
programming interface (API). This allows the operating system to manage, not
only static hardware threads, but also hardware threads which are reconfigurable
at run-time.

Relocatable hardware threads are modules which can be placed at different
locations in the reconfigurable area during run-time. However, a number of con-
straints must be met to place a hardware thread. The resources required by the
hardware thread must be available at the location, the area must be free (i.e. not
used by another hardware thread) and communication has to be routed. To com-
pute placement locations where these constraints are met, we have integrated a
module placer into the ReconOS operating system.

The module placer implements a realistic constraint model to accurately
model the fabric of the FPGA. Computation of feasible placement locations
is based on constraint satisfaction theory [6]. This allows us to implement hard-
ware threads with a complex layout. In addition, the module placer supports
multiple alternative layouts for a single hardware thread. Multiple layout vari-
ants increase the number of feasible placement locations as reported in [6, 7].

In addition, we have implemented a communication infrastructure according
to the zero logic overhead concept introduced by Koch et al. [8]. To provide a
communication infrastructure between the static and the reconfigurable area,
routing of the communication wires is critical. There is no built-in support in
the vendor tools to enable fine granularity routing constraints (i.e. mapping of a



Relocatable Hardware Threads in Run-Time Reconfigurable Systems 63

signal to a physical wire). Therefore, this has to be undertaken with dedicated
tools, for example GoAhead [2] and OpenPR [1].

The remainder of the paper is organized as follows: The implementation flow
is introduced in the following Section 2. In Section 3, we introduce the run-
time environment. This is followed by experimental results in Section 4, and a
conclusion in Section 5.

2 Run-time Reconfigurable System Implementation

To implement run-time reconfigurable systems, the design is partitioned into
static and dynamically reconfigurable regions. In this work, we have partitioned
the device according to the GoAhead floorplan flow presented in [2]. GoA-

head works in conjunction with the Xilinx tools by generating placement and
routing constraints. The GoAhead flow covers system partitioning and signal-
to-wire mapping of wires crossing the boundary of the reconfigurable region.
The signal-to-wire mapping is required to implement communication between
the regions. In addition, GoAhead supports routing of the clock nets. It is a
prerequisite to implement identical clock net routing for the static and partial
run-time reconfigurable region.

Subsequent to the essential steps of system partitioning, signal-to-wire map-
ping and clock net routing, the static design can be implemented independently
of the hardware threads. Independent implementation of the static design and
the hardware threads is a feature supported in both OpenPR [1] and GoAhead,
however not in PlanAhead according to [2]. This is of particular importance in
this work, as we implement many hardware threads in small bounding boxes
to reduce fragmentation. This significantly increases the tool time to place and
route the hardware thread. It is therefore essential to be able to implement
multiple hardware threads concurrently.

OpenPR and GoAhead allows design changes to be made to the static design
without incurring a reiteration of place and route of the relocatable hardware
threads.

2.1 System Partitioning

We aimed to minimize the static region and maximize the run-time reconfig-
urable areas, since this allows the maximum number of hardware threads to run
concurrently. The maximum number of concurrent hardware threads is how-
ever restricted to the number of fast simplex link (FSL) ports supported by the
MicroBlaze processor. Currently, this is limited to 14 ports.

The static region is not required to have a rectangular shape. For example,
it is possible to define reconfigurable areas which are and shaped in addi-
tion to rectangular areas. GoAhead allows definition of placement and routing
constraints with a polyomino (e.g. ) shaped layout, and modeling this layout
is supported by the module placer.

The size, shape and location of the static region is determined by two fac-
tors. Size is determined by the resource requirements. The shape and location



64 A. Wold, A. Agne, and J. Torresen

CLB
RAM

CLB
DSP

CLB
CLB

DSP
CLB

RAM
CLB

CLB
CLB

CLB
CLB

RAM
CLB

DSP
CLB

CLB
DSP

CLB
RAM

CLB
CLB

uBlaze

Communication System bus24x6 tile grid

17 18 19 20 21 22 23 241 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

Fig. 1. 8 ReconOS hardware threads placed on a 24×6 tile grid. The placement depicted
is computed by the module placer.

is constrained by the IOs to external peripherals. For example, the location of
IOs for the PCI-Express interface and memory controller typically reside in the
static partition. On the Virtex-6 ML605 evaluation kit, used in this work, the
external memory is connected to IOs in the center of the device. In Figure 1,
the floorplan of a fully placed and routed design is depicted. To the right of
the device depicted in the figure, dedicated interfaces such as high speed serial
PCI-Express links are located.

2.2 Relocatable Hardware Threads

We have implemented the run-time reconfigurable area with a fine granularity
tile grid, 24×6. 24×6 tiles means the FPGA is divided into a fine granular-
ity grid of 24×6 tiles. However, communication is implemented on a coarser
granularity tile grid, 2×6. This allows the implemented hardware threads to
have little internal fragmentation. However, unused area between the hardware
threads decreases resource utilization for the reconfigurable area. To address this,
we support hardware threads with polyomino shapes, as depicted in Figure 1.
For example, hardware threads can be of , , and shape. These hard-
ware threads span more than one configuration frame in height, also depicted in
Figure 1.

The layout for a hardware threads are defined in GoAhead. GoAhead can
be used to generate constraints to allow a hardware thread to be implemented
with a particular shape. This forces the Xilinx tools to implement the hardware
thread within the defined bounding box. As the Xilinx placer does not support
an API to guide the routing decisions, the size of the area defined to implement
the hardware thread may be too large or too small. A larger area results in in-
ternal fragmentation and a larger bitstream. A smaller area leads to unsuccessful



Relocatable Hardware Threads in Run-Time Reconfigurable Systems 65

implementation, for example a hardware thread which does not meet timing
constraints.

Hardware threads can be made relocatable by modifying the frame address
registers (FARs) within the generated bitstreams on the fly during reconfigura-
tion. This is accomplished by storing the addresses where the FARs are located
in a list. Since this is done once for each module at design-time, we do not have to
parse the entire bitstream at run-time to find the FARs. The FARs are updated
to their new values at run-time when the hardware thread position is known.

3 Run-time Environment Implementation

In this section we present our extensions to the ReconOS operating system for
the support and management of relocatable hardware threads. The extensions
consist of integration of a reconfiguration manager to manage the partial run-
time reconfigurable area, and operating system support to schedule hardware
threads at run-time. We have encapsulated low level implementation details into
a high level thread API. This provides the necessary abstraction level to aid
developers to use relocatable hardware threads. The high level API is exposed
to the application as a set of system functions to create, suspend, resume and
terminate threads.

3.1 ReconOS API Extensions and Scheduling

The ReconOS system function hwt create creates a hardware thread. In Figure 2
API extensions and the life cycle of a hardware thread is depicted. Each hardware
thread has a software delegate thread to manage communication with the other
threads of the application. Similar to software threads, hardware threads have a
thread control block (TCB). The TCB is used by the hardware thread scheduler
and contains pointers to the bitstream layout variants, the address of the FSL
communication port, and the current scheduling state. The FSL port address is
required to allow the hardware thread to communicate with the delegate thread.

The reconfiguration manager is invoked through the hardware thread sched-
uler to compute a feasible location for the hardware thread’s bitstream variants.
If a feasible location exists, the FARs in the bitstream are updated and the
bitstream is transmitted to the internal configuration access port (ICAP) port
of the FPGA. The TCB is updated with the current FSL port address and the
scheduling state is set to running. If a feasible location does not exist for any
of the hardware thread layout variants, the scheduling state is set to waiting.
It can then be placed at a later time when the hardware thread constraints are
met in the run-time reconfigurable region. We follow the software methodology
of adding (hardware) threads to a waiting queue if they cannot be placed. This
allows for the creation of more hardware threads than can currently fit into the
reconfigurable region.



66 A. Wold, A. Agne, and J. Torresen

NEWstart

RUNNING

WAITING

TERMINATED

hwt create

hwt create

hwt suspend

hwt kill

hwt resume

hwt kill

Fig. 2. API extensions to control the life cycle of a hardware thread

Hardware threads can be suspended and resumed through the API functions
hwt yield and hwt resume. In this work, we consider a co-operating scheduling
strategy of the hardware threads. A co-operative, or run to completion, schedule
allows a hardware thread to finish its execution before it is suspended.

When a hardware thread is suspended (hwt yield), the reconfigurable area is
marked as unused, and the TCB is updated to reflect the new state. The area can
then be used by another hardware thread. If there are threads in the waiting
queue, the reconfiguration manager is invoked by the scheduler to compute a
feasible placement location for the waiting hardware threads. Hardware threads
which have a feasible placement location are placed in the reconfigurable area,
and the TCBs are updated with the new FSL port address and state.

Finally, the hwt kill function terminates both, the hardware thread and the
delegate thread. The reconfiguration manager is then updated to allow the area
to be reused by another hardware thread.

3.2 Reconfiguration Manager

In order to find suitable placements for hardware threads, we integrated a mod-
ule placer into the ReconOS system. The module placer takes unused area, hard-
ware thread layouts, communication interface and the heterogeneous tile grid into
account to compute feasible placement locations. This is accomplished accord-
ing to the placement model formulated in [6]: A module (hardware thread), M ,
consist of a sequence of one or more layouts, M = {L1, ..., Ln}. A layout, L is
a implementation variant, consisting of a sequence of one or more tile resources,



Relocatable Hardware Threads in Run-Time Reconfigurable Systems 67

L = {R1, ..., Rn}. The tile resource sequence, R, is the arrangement of tiles re-
quired by the layout variant. There are different types of tile resources, represent-
ing physical FPGA resources such as logic andmemory.R is defined as a bounding
box,R(x0, y0, x1, y1, k), in which x and y represent the bounding box coordinates.
k is a sequence of elements denoting the type of the tile resource column on the
FPGA (e.g. a logic or memory column). Similarly, the run-time reconfigurable
area is modeled as a sequence of tile resources, FPGA = {R1, ..., Rn}.

To compute feasible placement locations, the constraint solver evaluates each
constraint (i.e. unused area, resources). This results in a sequence for each con-
straint, C. The intersection of all sequences form a sequence, P , of feasible pla-
cement locations: P = {Carea ∩Ccommunication ∩Ctilegrid}. P is computed by our
constraint solver using a branch and bound depth first search function.

An up to date scheduling state of all placed hardware threads in the tile grid
is kept by the module placer. This state is updated whenever hardware threads
are created, suspended, resumed or terminated. When a hardware thread is to
be placed, the module placer is invoked by the hardware thread scheduler. The
module placer computes a feasible placement location for one of the hardware
thread layout alternatives. The computed placement is then returned to the
scheduler which updates the bitstream with the new location and writes the
updated bitstream to the ICAP port.

4 Experimental Results

To assess our approach, we have implemented the system presented in the pre-
vious sections and performed an experimental evaluation. The experiments have
been carried out on a Xilinx ML605 Board. Our implementation supports up to
12 active hardware threads located within a 24×6 tile grid (2×6 for communi-
cation). The implemented design is depicted in Figure 3.

We have implemented a benchmark application which consists of hardware
and software threads. The application creates 20 hardware threads, 5 for each
function listed in Table 1. The hardware threads are scheduled and placed by the
operating system. This allows us to verify the correct operation of the system
when threads are suspended and resumed. In addition, the application allows us
to evaluate the effect of multiple layout variants for the hardware threads on a
fine granularity tile grid through experiments rather than simulation.

For comparison, we have also done experiments on two coarser tile grids,
1×6 and 2×6. The height of each tile is a single configuration frame. For the
1×6 tile grid (i.e. slot style), a single tile contains 9920 luts (1240 clbs), 32
brams and 32 dsps on our XC6VLX-240T FPGA. At this course granularity
the tiles are still homogeneous. For the 2×6 tile grid, we have a tile size of
4960 luts (620 clbs), 16 brams and 16 dsps. Note that our communication
infrastructure is implemented according to the zero logic overhead concept for
all tile grids - a communication infrastructure that uses only routing resources.
Therefore, all other reconfigurable resources in the tiles are available to the the
hardware threads. For the 24×6 tile grid (2×6 tile grid for communication), the



68 A. Wold, A. Agne, and J. Torresen

Hardware threads

Run-time reconfigurable tile grid Static region

Fig. 3. Implementation of a the 24×6 (2×6 for communication) tile grid on a Virtex-6
(xc6vlx240t) FPGA. The depicted FPGA fabric is generated from the XDL file of a
fully placed and routed system.

tile grid becomes heterogeneous and not every tile contains clb resources. At
this granularity the tile grid contains either 640 luts (80 clbs), 8 brams or 8
dsps.

4.1 Hardware Thread Implementations

In Table 1, the available hardware thread layout alternatives are listed. The hard-
ware threads were implemented independently of the static system as described
in Section 2. The selection of hardware threads include accelerators for compu-
tation of square root (SQRT), SHA256 hash function, single precision floating
point (FP) addition/subtraction, and fast Fourier transform (FFT).

Resource utilization within the layout bounding box (i.e. the internal frag-
mentation) is listed as the percentage of the total amount of luts used within



Relocatable Hardware Threads in Run-Time Reconfigurable Systems 69

Table 1. Relocatable Hardware Threads

Func-
tion

Lay-
out

Tile
Grid

Tiles Usage
LUTs

LUT-
s/REGs

Tool
Time

Thread
Size

SQRT 1×6 1 11% 1162/1390 21m 342KB
SQRT 2×6 1 23% 22m 206KB
SQRT 24×6 5 62% 2h49m 91KB

SHA256 1×6 1 67% 6664/6971 6h24m 392KB
SHA256 2×6 2 67% 6h24m 392KB
SHA256 24×6 19 80% 16h35m 376KB
SHA256 24×6 16h34m 376KB
SHA256 24×6 16h34m 376KB
SHA256 24×6 16h35m 376KB
SHA256 24×6 16h36m 376KB

FP 1×6 1 4% 410/629 22m 209KB
FP 2×6 1 8% 25m 111KB
FP 24×6 4 21% 26m 59KB
FP 24×6 5 21% 21m 73KB

FFT 1×6 1 21% 1996/2737 22m 384KB
FFT 2×6 1 40% 26m 246KB
FFT 24×6 8 62% 6h40m 172KB

the bounding box. A higher utilization is not always possible due to the resource
demands of the hardware thread, the granularity of tile grid and routing con-
straints. For example, hardware threads such as the square root have a high
amount of unused resources when implemented on a coarse granularity tile grid.
If the hardware thread does not fit on a single tile, two or more tiles are used.
For example, the SHA256 hardware thread does not fit in a single 2×6 tile, and
therefore requires two 2×6 tiles. The number of tiles listed for the 24×6 grid
include bram and dsp tiles.

In our work, we have considered layout variants, but not design variants of the
hardware threads for the different tile grids. In many cases it is possible to exploit
the module design space to better utilize tile resources. For example, various
levels of transformations (e.g. loop unrolling and pipelining) can be applied to
the SHA256 hashing algorithm to obtain design variants with different resource
requirements. In Figure 4, placed and routed layout variants of a functionally
equivalent hardware thread is depicted.

We observe that a smaller layout bounding box increase the tool time to
implement the hardware thread. In particular the place and route time increases.
The tool times as measured on a Xeon X5690 server are listed for each hardware
thread, together with the size of the generated bitstream. We also find that a
smaller layout bounding box reduce run-time reconfiguration time. This is to be
expected, as the resulting bitstream has fewer configuration frames and thus has
a reduced size.



70 A. Wold, A. Agne, and J. Torresen

Fig. 4. A hardware thread implemented with multiple layout variants

Table 2. Bitstream Data for all Hardware Threads on Different Tile Grids

Tile Grid Bitstreams Size Bitstreams Average LUT Usage

1×6 6635KB 20 26
2×6 4775KB 20 35
24×6 3855KB 55 56

4.2 Run-time Experiments

In order to evaluate the placement, the application creates 20 hardware threads.
Each hardware thread is executed 5 times. After each execution the thread yields,
and is removed from the reconfigurable area. If the hardware thread has design
alternatives (i.e. the SHA256 and FP), each design alternative is evaluated by
the module placer to find one that is feasible.

In Table 2, the hardware thread bitstream data is listed for tile grids of 1×6,
2×6 and 24×6 (2×6 for communication) granularity. On a 1×6 tile grid, a max-
imum of 6 hardware threads can be executed concurrently. On a 2×6 and 24×6
tile grid, up to 12 hardware threads can be executed at the same time.

A fine granularity tile grid allows significant reduction in the total bitstream
size as shown in Table 2. The results show a reduction in bitstream size of up
to 42% between a 1×6 and a 24×6 tile grid. Besides reduced storage require-
ments, the main benefit of this is the decrease in configuration time, which is
proportional to the bitstream size. In Table 3, the total bitstream data trans-
ferred during execution of the application is listed. On a 24×6 tile grid we have
reduced the reconfiguration time by up to 46% compared to a 1×6 tile grid. Us-
ing external spi flash memory at 100MHz, this translates into an improvement
from 2.6 seconds (33175KB) down to 1.4 seconds (17800KB).

In addition, we have measured the effect of layout alternatives on resource uti-
lization. While hardware thread layout alternatives consume additional memory



Relocatable Hardware Threads in Run-Time Reconfigurable Systems 71

Table 3. Run Time Experiment Results

Tile Grid Bitstream Data Transferred

1×6 33175KB
2×6 23850KB
24×6 17800KB

for storage, FPGA resources are significantly more expensive than non-volatile
memory1. It is therefore beneficial to use hardware thread layout alternatives
to increase resource utilization, even for hardware thread alternatives which are
rarely used.

Through our experiments, we found that even with a course granularity 2×6
communication tile grid, it is possible to achieve improved resource utilization
when combined with multiple hardware thread layout alternatives and a fine
granularity resource tile grid (24×6).

5 Conclusion

In this work, we have presented our research on integrating support for relocat-
able hardware threads in the ReconOS operating system. Our aim has been to
raise the abstraction level to develop run-time reconfigurable systems. We have
achieved this with extensions to ReconOS which encapsulate implementation de-
tails into a high level thread API. This allows seamless integration of run-time
reconfigurable hardware threads into applications.

To manage the reconfigurable area, we have implemented a module placer tar-
geting modern FPGAs. The module placer accurately models the reconfigurable
resources. This is utilized by the operating system to compute feasible placement
locations for the hardware threads. The computed placement positions are then
used to relocate the hardware threads by updating the frame addresses in the
respective bitstreams.

The system floorplan has been created with GoAhead, which enables the
implementation of a zero logic overhead communication infrastructure. We have
used the tool-flow to develop, synthesize, place, and route the hardware threads
independently of the static system as well as other hardware threads. Thus, our
improvements allow hardware threads to be implemented independently of each
other, similar to the threads of a pure software application.

Our experiments were performed on a Virtex-6 device with a implementation
that supports a fine granularity 24×6 tile grid and multiple hardware thread
layout variants. This combination enables an efficient use of reconfigurable re-
sources at the cost of additional non-volatile memory to store layout variants.

1 The price of a Virtex-6 (xc6vlx195t) FPGA is 2210 Euro, and the price of non-
volatile memory (16GB compact flash), 214 Euro. The prices have been obtained
from http://de.rs-online.com/web/.

http://de.rs-online.com/web/


72 A. Wold, A. Agne, and J. Torresen

Acknowledgment. This work is funded by The Research Council of Nor-

way as part of the Context Switching Reconfigurable Hardware for Communi-
cation Systems (COSRECOS) [9] project, under grant 191156V30, and by the
European Union Seventh Framework Programme under grant 257906, as part of
the Engineering Proprioception in Computing Systems (EPiCS) [10] project.

References

1. Sohanghpurwala, A.A., Athanas, P., Frangieh, T., Wood, A.: OpenPR: An Open-
Source Partial-Reconfiguration Toolkit for Xilinx FPGAs. In: 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, Number Xdl, pp. 228–235. IEEE (May 2011)

2. Beckhoff, C., Koch, D., Torresen, J.: Go Ahead: A Partial Reconfiguration Frame-
work. In: 2012 IEEE 20th International Symposium on Field-Programmable Cus-
tom Computing Machines, pp. 37–44. IEEE (April 2012)

3. Jara-Berrocal, A., Gordon-Ross, A.: An integrated development toolset and im-
plementation methodology for partially reconfigurable system-on-chips. In: ASAP
2011 - 22nd IEEE International Conference on Application-specific Systems, Ar-
chitectures and Processors, pp. 219–222. IEEE (September 2011)

4. Wang, Y., Zhou, X., Wang, L., Yan, J., Luk, W.: SPREAD: A Streaming-Based
Partially Reconfigurable Architecture and Programming Model. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems (99), 1–14 (2013)

5. Lubbers, E., Platzner, M.: ReconOS: An RTOS Supporting Hard-and Software
Threads. In: 2007 International Conference on Field Programmable Logic and Ap-
plications, pp. 441–446. IEEE (August 2007)

6. Wold, A., Koch, D., Torresen, J.: Enhancing Resource Utilization with Design Al-
ternatives in Runtime Reconfigurable Systems. In: 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and Phd Forum, An-
chorage, pp. 264–270. IEEE (May 2011)

7. Koester, M., Luk, W., Hagemeyer, J., Porrmann, M., Ruckert, U.: Design Opti-
mizations for Tiled Partially Reconfigurable Systems. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 19(6), 1048–1061 (2011)

8. Koch, D., Beckhoff, C., Torresen, J.: Zero logic overhead integration of partially
reconfigurable modules. In: Proceedings of the 23rd Symposium on Integrated Cir-
cuits and System Design - SBCCI 2010, p. 103. ACM Press, New York (2010)

9. COSRECOS: Context switching reconfigurable hardware for communication
systems (cosrecos), http://www.mn.uio.no/ifi/english/research/
projects/cosrecos

10. EPiCS: Engineering proprioception in computing systems (epics),
http://www.epics-project.eu

http://www.mn.uio.no/ifi/english/research/projects/cosrecos
http://www.mn.uio.no/ifi/english/research/projects/cosrecos
http://www.epics-project.eu


Faster FPGA Debug: Efficiently Coupling Trace

Instruments with User Circuitry

Eddie Hung, Jeffrey B. Goeders, and Steven J.E. Wilton

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, B.C., Canada
{eddieh,jgoeders,stevew}@ece.ubc.ca

Abstract. Prior to fabricating an integrated circuit, designers will often
construct FPGA-based prototypes that can test and verify their circuits
far more thoroughly than is possible within software simulations, such
as by booting an operating system. A key limitation of physical pro-
totypes, however, is the lack of on-chip observability necessary during
debug. This paper describes a trace-buffer based platform that can be
used to enhance FPGA observability. We use this platform to investi-
gate how best to couple debug instruments with user circuitry, and how
the subsequent debug loop — the process of changing the signals or
trigger observed when converging on the root-cause of a bug — can be
shortened. We demonstrate a working implementation of this platform
on Xilinx technology, finding that runtime speedups for each debug loop
of 1.2–3.0X (and potentially 5.7–11.2X) can be achieved on industrial
benchmarks, when compared to re-instrumenting with vendor tools.

1 Introduction

FPGA prototyping has become an essential tool in the design, verification, and
debug of large complex integrated circuits. Mapping a design to one or more
FPGAs allows designers to exercise their design far more extensively than is
possible using simulation [1]. FPGA prototyping also allows designers to run
their design in-situ, interacting with other parts of the system, real-world I/O,
and embedded software/firmware. Even when simulation is used extensively,
many bugs will escape, and FPGA prototyping is the best way to find these bugs.

Observability is a key challenge during FPGA prototyping. Unlike simulation,
during prototyping, internal signals can only be observed if they are connected
to I/O pins of the FPGA(s), and these I/O pins can be scarce. Worse, it can
be difficult to know, at compilation time, which signals will be important to
observe, meaning many compilation cycles may be required to track down a
difficult-to-find bug. With compile times approaching a day (per FPGA) for the
largest designs, this can severely limit debug productivity.

In recent years, there have been significant efforts to increase the observability
into circuits mapped onto FPGAs [2,3]. In our research group, we have investi-
gated algorithms for intelligently selecting the most relevant signals to trace [4],

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 73–84, 2014.
c© Springer International Publishing Switzerland 2014



74 E. Hung, J.B. Goeders, and S.J.E. Wilton

incremental routing techniques to connect signals to trace pins at run-time [5],
and overlay networks to accelerate the construction of new observation patterns,
again at run-time [6]. These previous efforts have been demonstrated primarily
using academic routing tools such as VPR [7], although [8] studied its algorithm
in the context of a Xilinx device. While these solutions hold the promise for
increased debug productivity, they have not yet been evaluated in the context
of a complete debug flow and in conjunction with real debug IP, meaning the
interactions between our techniques and the rest of the design, validation, and
debug infrastructure can only be estimated.

To address this, we have developed a platform which can be used for demon-
strating and evaluating alternative debug processes and techniques. In this paper,
we describe this platform, and focus on one of the key research questions we en-
countered during its development — how should instrumentation best be coupled
with user circuitry? Effective debugging involves adding circuitry or somehow
modifying the user circuit, often with the purpose of enhancing visibility. This
debug instrumentation circuitry typically consists of trace-buffers, control logic,
and pipelining elements, and is often implemented using general-purpose FPGA
logic, memory, and routing resources. Any instrumentation needs to be added
to a design carefully; ideally, this instrumentation will have as little impact on
the user circuit as possible. Minimizing this impact is important; even small
changes in the internal timing of the user circuit may obscure or even (tem-
porarily) eliminate bugs that are being sought. Uncovering the root-cause of a
bug is impossible if the behaviour changes as new signals are probed. Further-
more, efficiently coupling debug instrumentation can accelerate the turnaround
time between debugging iterations.

Specifically, in this paper, we present four different techniques for inserting
debug instrumentation into a user circuit. These techniques range from coupling
instrumentation to the circuit early in the flow, which requires no additional
CAD support but may suffer in that user circuit’s quality-of-results may be
degraded by the presence of the instrumentation, to a fully incremental flow, in
which the user circuit implementation need not be modified as instrumentation
is inserted. We then quantitatively compare the first three of these techniques in
the context of our platform, which uses the maxflow routing technique from [8]
running in conjunction with Xilinx tools and IP. Although we do not present
measured results for the final technique, we hope that their inclusion in this paper
will motivate others to further develop our techniques, eventually leading to
improved debug techniques and, ultimately, increased productivity of designers
that use FPGA prototyping systems.

2 Background

Unlike in a software simulation, it is not possible for designers to view the value
of any signal in their physical prototype at all timesteps of its operation. Meth-
ods of gaining observability into physical prototypes can be divided into two
main categories: scan-based solutions and trace-based solutions. Scan-based ap-
proaches offer complete observability into a design by providing a snapshot of



Faster FPGA Debug: Efficiently Coupling Trace Instruments 75

the values on all state elements, but only once the circuit has been halted.
With ASICs, this can be achieved by using scan-chains that are often present
for manufacturability, whilst in FPGAs, scan-chains can be implemented using
general-purpose resources (the cost of which is prohibitively high [9]) or using
device readback techniques [3]. Trigger circuitry is used to halt the clock prior
to the scan-out procedure.

In contrast, trace-buffer based solutions operate by recording a small subset of
design signals into a set of on-chip memory resources without interrupting normal
circuit operation. This on-chip memory can be configured as a circular buffer
that continuously samples signals until stopped by the trigger circuit. After
recording is completed, the trace-buffer contents are extracted and a history of
signal activity can then be presented to the designer. Due to limited on-chip
memory, it is only possible to instrument the behaviour of a small number of
signals for a small number of clock cycles (both several thousand, at most). Thus,
multiple “debug turns” are often necessary — each selecting a different set of
trace signals or trigger conditions — to converge on the root-cause of an error.

Typically, modifying the trace instruments between debug turns requires the
circuit to be recompiled, which can be a lengthy procedure that hampers designer
productivity. Prior work has proposed methods to reduce this overhead, such
as by applying trace-specific incremental routing [5], or by building an overlay
network that can be rapidly reconfigured with new signals [6]. However, this
work only targeted a theoretical FPGA architecture, leaving open the question
of their feasibility when applied to a commercial device.

Most recently, [8] presents an incremental-tracing technique that utilizes
minimum-cost maximum-flow (MCMF) graph techniques in order to optimally
connect design signals to trace-buffers using the fewest number of routing resources.
By transforming the trace-buffer routing problem into a single-commodity flow
problem (given that the order which user signals connect to trace-buffer ports does
not affect their observability) this was shown to be solved optimally. While [8] was
evaluated on a real Xilinx routing resource graph with hypothetical IP, in this
work, we investigate the practical considerations of using a fully-functioning in-
strumentation core and demonstrate that it is feasible.

3 Prototype Instrumentation

As described in the previous section, trace-based approaches require inserting
additional circuitry (debug instruments) to a design in order to enhance the
design’s observability. These instruments consist of trace-buffers (memories) to
store trace data, access logic to transmit the data from the user design to the
trace-buffers and to transport the sampled data off-chip, triggering circuitry to
coordinate the temporal behaviour of the trace-buffers, and other control logic.
Trace compression and filtering circuits are also sometimes used to process data
before it is stored in the trace buffers. Together, this instrumentation allows for
the collection of “live” signal activity on-chip.

In inserting these instruments, however, it is essential that the instruments
do not severely impact the user design, for example, by introducing new



76 E. Hung, J.B. Goeders, and S.J.E. Wilton

(a) Post synthesis (b) Incremental: post
placement

(c) Incremental: post
routing

(d) Fully incremen-
tal

Fig. 1. Instrumentation methods: dashed arrow indicates the debug loop

critical-paths or by affecting logic optimization. As described in the introduction,
changes to the timing behaviour of the circuit may obscure incorrect behaviour,
making it more difficult to track down the root-cause of a bug. We have identified
a number of ways for FPGA prototypes to be instrumented using trace-based
debug IP. This section describes and qualitatively compares these techniques.

The techniques we consider are illustrated by Figure 1. The most basic case,
and the case that is currently supported by vendor tools, such as Xilinx PlanA-
head, is to instrument the circuit after synthesis (Fig. 1a). Here, the designer
would use knowledge of the exposed fault and their intuition to select a set of
trace and trigger signals from those present in the synthesized design (though not
all signals may be available, as some may have been optimized away) after which
the CAD tool would generate a custom debug IP block and integrate this into
the user netlist. The compilation procedure would then continue as normal, with
both user and debug logic being treated equally. If a designer wishes to change
the set of trace/trigger signals, new debug IP would need to be generated, and
the design recompiled starting from the packing and placement stage.

Two new approaches evaluated in this paper are shown by Figs. 1b and 1c. In
both flows, a predetermined debug core is first pre-compiled and then coupled
with the user circuit at different stages of the compilation flow. The advantage
of this ‘late-coupling’ flow is that the debug logic will have a smaller impact
on the user circuit, and allow the circuit to be preserved between debug turns.
Care is taken to ensure that the placement sites used by both the debug and
the user netlists are mutually exclusive, which is enforced through placement
(e.g. PROHIBIT) constraints. Once the debug infrastructure has been successfully



Faster FPGA Debug: Efficiently Coupling Trace Instruments 77

coupled, our tool —mcmfRoute — is invoked in order to connect the trace/trigger
signals of interest to any available port on the debug IP, using only unoccupied
routing resources (i.e. it is incapable of ripping-up any existing user nets). Sub-
sequently, should a different set of trace or trigger connections be necessary, only
this mcmfRoute stage would need to be rerun.

For the post placement method (Fig. 1b), we couple a placed — but unrouted
— debug netlist with the equivalent user netlist after the packing and placement
stage. While the two netlists are constrained to mutually exclusive placement
sites, the nets in the combined design are routed simultaneously with equal
priority. For the post routing method (Fig. 1c), we couple the fully place-and-
routed debug netlist with the equivalent user netlist, and perform an additional
incremental re-route phase that fixes any routing conflicts. In this manner, user
routing would be given topmost priority over all FPGA resources, whilst debug
routing is consigned to using the resources that were left behind.

The last method we consider is a fully incremental approach. Here, the place-
ment and routing of the user circuit is performed normally, and the debug IP is
inserted into only the unoccupied resources of this design. This is less intrusive
than the post placement and post routing methods, which restrict the placement
of the circuit. Fig. 1d illustrates this approach.

While the post synthesis approach (Fig. 1a) may have the lowest impact on
the maximum clock speed (Fmax) for the circuit under debug, it is also the most
intrusive on the circuit and has the highest debug turnaround overhead, given
that each new turn requires a fresh place-and-route solution to be computed. For
the post placement (Fig. 1b) and post routing (Fig. 1c) methods implemented in
this work, this turnaround time can be vastly reduced, at the (one-off) expense
of first embedding general-purpose debug IP as part of the initial compilation
phase. Subsequently, the instrumented circuit can then be locked (thereby fully
preserving all existing routing) and only leftover routing resources be used to
build new trace/trigger connections between debug turns.

4 Methodology

To evaluate each of the flows described in the previous section, we integrated
them into our prototype framework. Our framework employs the Xilinx design
flow (ISE v13.3), ChipScope debug instrumentation cores, our custom debug
router (mcmfRoute), and a Virtex-6 ML605 Evaluation Board, which contains
the mid-range xc6vlx240t 40nm FPGA device. In this section, we describe this
framework and show how we have integrated the coupling techniques within.

4.1 Instrumentation Cores and Flow

A key decision was to employ Xilinx ChipScope instrumentation cores in our
platform, rather than create our own instrumentation (however, our techniques
are not specific to Xilinx technology). More specifically, in the post synthesis
flow, we use Xilinx PlanAhead to generate a custom ChipScope core, tailored



78 E. Hung, J.B. Goeders, and S.J.E. Wilton

Fig. 2. mcmfRoute tool

to the signals selected for each debug loop, with which to instrument the cir-
cuit. For the post placement and post routing approaches, we pre-compile a
generic, unconnected ChipScope core (over-provisioned to its widest configura-
tion: 4096 trace ports at 1024 samples, and with 32 trigger ports to provide for
maximum routing flexibility).

The ChipScope core is built with verbose placement and timing constraints
that restrict the trigger and control logic to a small region in the center of the
device, and the trace-buffer RAMs and pipelining registers to the peripheries of
the device, in order to minimize any impact on the user circuit. Subsequently,
when compiling the user circuit, we use opposing constraints to block these same
placement sites from being considered. By applying these constraints, we are able
to couple our ChipScope netlist with the user netlist by first converting both
into the text-based XDL format, and then merging the resulting files. While the
ChipScope core does have priority over the user circuit on these periphery sites,
these placement sites will likely not have a significant impact on the user circuit.

While we can use this method to guarantee that no placement conflicts will
occur, we cannot (nor wish to) make this same guarantee for routing. During
the post routing flow, we are combining two fully routed designs that may use
overlapping resources. Conveniently, the Xilinx routing tool (par) supports a
re-entrant/incremental mode whereby it will accept a partially-routed (or even
illegal) netlist and attempt to find a legal solution. We employ this mode in our
post routing experiments, but due to the closed-source nature of this vendor tool,
we are unable to guarantee that existing user nets are not ripped up. However,
as we show in the results, using par in re-entrant mode causes significantly fewer
nets to be rerouted than for the post placement case.

Unfortunately, Xilinx ISE’s placement tool (map) does not support a similar
re-entrant mode, meaning that we are not currently able to experiment with the
fully incremental flow. This is something we would like to rectify in future work
by constructing our own incremental placer.

4.2 mcmfRoute

The tool that we use to construct new trace and trigger routing connections
between the user circuit and debug core — mcmfRoute — applies many of the
techniques first presented in [8], and is summarized by Figure 2. mcmfRoute
augments existing work by being wirelength-aware, but it is still incapable of



Faster FPGA Debug: Efficiently Coupling Trace Instruments 79

Table 1. Benchmark / debug core summary (on xc6vlx240t: 150,720 LUTs)

LEON3: GSM Pre-compiled
Utilization 4-core 6-core 8-core Switch ChipScope

Logic Slice 50% 65% 81% 42% +3%
LUT 26% 37% 47% 13% +3%
FF 10% 14% 17% 29% +2%
RAM 27% 40% 53% 9% +27%

optimizing circuit timing due to the lack of knowledge into Xilinx wire delays.
While [8] targeted an imaginary debug core using a set of randomly chosen trace
signals, mcmfRoute takes as its input an XDL netlist containing a circuit that
has already been coupled with trace instrumentation, as well as a set of trace
signals and a single trigger signal, described using regular expressions. Although
the ChipScope core that we instantiate can support limited trigger operations
on buses of up to 32 bits, we make the restriction that mcmfRoute users may
only specify one trigger signal; logic operations for reducing any arbitrary trigger
event to this single bit is left as an external exercise. The reason for our Chip-
Scope core supporting a 32 bit trigger is to provide maximum routing flexibility:
instead of allowing the user-specified 1-bit trigger signal to connect to a single
trigger port (the routing resources to which may be congested) we can route the
trigger to any one of these 32 ports and set the unused ports to “don’t care”.

5 Results

We evaluate our platform using the four industrial benchmarks shown in Table 1:
three variants of a System-on-Chip design, and one GSM switch. Additionally,
the resource consumption of our pre-compiled ChipScope netlist (used only for
the post placement and post routing flows) is also shown.

Our first experiment involves instrumenting the full-functioning LEON3 SoC
design [10] configured with six SPARC cores, a DDR3 memory controller, and
supporting peripherals, which occupies 65% of the logic slices on our Virtex-
6 FPGA. Table 2 lists the results. Prior to instrumentation, the circuit can
be compiled in a total of 2979 seconds, meeting the default 13.333ns clock
period constraint (75 MHz). To mimic a debugging scenario, we use regular
expressions to select all interface signals from master and slave devices at-
tached to the SoC’s internal AHB bus (ahb[ms].*), as well as the set of reg-
isters controlling all 7 pipeline stages inside the integer unit of the first CPU
core (nosh\.cpu\[0\]\.l3s\.u0/leon3x0/p0/iu/r .*). The trigger signal is
set to be whenever this core makes a request for a bus transaction
(ahbmo\[0\] hbusreq).

Post Synthesis. Instrumenting the design using the post synthesis approach,
available natively within Xilinx PlanAhead, incurs a small increase in compile
time to 3322s, with the resulting circuit continuing to meet timing regardless



80 E. Hung, J.B. Goeders, and S.J.E. Wilton

Table 2. Results — LEON3 System-on-Chip (6 core, 13.333ns constraint)

This work:
Uninst. Post synthesis Post placement Post routing

User syn./pack/place (s) 2177 2321 2189 2189
User route time (s) 802 1001 - 802
xdl2ncd time (s) - - 90 409
Debug route time (s) - - 1098 768
Total compile time (s) 2979 3322 3365 4165

Total routing PIPs 1663K 1677K 1872K 1868K
Routing PIPs diff. (+/-) - +645K/-628K +128K/-112K

Recompile time (s) - 2512 - -
mcmfRoute time (s) - - 315 313
xdl2ncd time (s) - - 648 619
Total debug time (s) - 2512 963 932
Speedup over post syn. - 1.0X 2.6X 2.7X
Potential speedup - 1.0X 8.0X 8.0X

Tcpd debug disabled (ns) 13.328 13.322 13.322 13.328
Tcpd debug enabled (ns) - 13.322 15.032 14.299
Setup violations @ 13.3ns - - 8 13

Signals observed - 2214 2087 (94%) 2087 (94%)

of whether the debug circuitry is enabled or disabled. A total of 2214 signals
were matched using regular expressions by PlanAhead. However, the drawback
is that the debug loop for this flow is 2512s, which is the time necessary to
re-pack, re-place and re-route the entire circuit.

Post Placement. For the post placement flow, the runtime required to couple
our pre-synthesized debug instrumentation with the user circuit is comparable to
that of post synthesis. Here, each debug loop consists only of re-routing signals
to the existing trace-buffers and so can be completed in 963 seconds: 2.6 times
faster than for the post synthesis approach. Interestingly, the majority of this
turnaround time is consumed by the ‘xdl2ncd’ conversion step, which involves
translating the text-based netlist description back into the proprietary Xilinx
binary format (NCD) used by downstream tools, such as timing analysis or
bitstream generation, as well as performing a set of verbose design rule checks
(DRC). Eliminating this overhead (which would be possible if we had knowledge
of Xilinx’s binary format) could improve our speedup to as much as 8X.

Two trade-offs exist with this flow when compared to the post synthesis ap-
proach. First, the number of signals that exist (and hence, can be traced) post
packing/placement is slightly less than those that can be traced post synthesis
due to the logic mapping and optimization procedure, though we have observed
that generally, registered signals are preserved. Second, whilst a circuit that
has been coupled with ChipScope will continue to meet timing when the debug
instruments are disabled, enabling these instruments does impact the critical-
path delay (Tcpd) of the circuit, where trace connections have increased it from
13.322ns to 15.032ns.



Faster FPGA Debug: Efficiently Coupling Trace Instruments 81

Fig. 3. Functional ChipScope demo: waveforms from an instrumented LEON3 design
— rising edges on the CPU0 bus request were used as the multi-window trigger (T),
values on program counter and instruction register are shown

The reason for this increase is two fold: a) our debug instrumentation is con-
strained to be as far away from the user circuit as possible, which minimizes
its impact but causes large routing delays, and b) our trace router, mcmfRoute,
aims to minimize the average wirelength of the circuit, as opposed to minimiz-
ing the worse-case wirelength of all individual signals [8]. This is evident from
timing analysis, which reports that only 8/2087 signals (0.4%) failed to meet the
13.333ns constraint. We believe that this highlights a present limitation of our
flow, though one that might not have a huge impact for large ASIC prototypes,
where the critical-path delay is often in the region of low MHz — IBM reported
4 MHz (250ns) in [1]. As part of future work, we would like to investigate the pos-
sibility of modifying the graph algorithm to consider the worse-case wirelength,
as well acquiring real wire delays to make mcmfRoute timing-aware. Presently,
using our platform requires either the clock period of the entire circuit to be
slowed to this value, or for those connections that violate timing to be ignored.

Post Routing. Lastly, the post routing approach performs similarly to post
placement, but has a higher compile time overhead due to its two routing phases.
The biggest strength of the post routing approach, however, is that it is less in-
trusive than the post placement flow. To illustrate this, we used the xdldiff tool
from [11] to measure the number of Programmable Interconnect Points (PIPs)
that are different between the original design and the instrumented design.



82 E. Hung, J.B. Goeders, and S.J.E. Wilton

For the post routing method, our flow added 128K PIPs and removed 112K PIPs.
Using the post placement method, 645K PIPs were added and 628K PIPs were
removed. These numbers illustrate that the impact on the original design is
smaller using the post routing method than using the post placement method.

We observe that the post synthesis approach is able to return a more efficient
routing solution (one that uses 1677K routing PIPs), compared to the other
instrumented methods which use ∼1870K routing PIPs). This is because the
post synthesis approach has the freedom to place the ChipScope logic closer to
its signal sources. However, it is worth highlighting that a new placement and
routing is required for each debug turn of the post synthesis approach, whereas
the coupled circuit (containing a generic ChipScope core) is preserved between
all debug turns of the post placement and post routing flows.

Working Demo. Figure 3 shows a screen-capture of the ChipScope Pro Ana-
lyzer software, when connected to a working 6-core LEON3 design instrumented
using the post routing method. The rising edge of the CPU0 bus request was

Table 3. Results — LEON3 System-on-Chip (4 and 8 core), GSM switch

This work:
Uninst. Post synthesis Post placement Post routing

LEON3: 4-core (50% slice utilization, 13.333ns constraint)
Total compile time (s) 2411 2338 2543 2445

Total debug (mcmfRoute) time (s) 1783 (-) 783 (314) 733 (294)
Speedup over post syn. - 1.0X 2.3X 2.4X
Potential speedup - 1.0X 5.7X 6.1X

Tcpd debug disabled (ns) 13.328 13.326 13.326 13.325
Tcpd debug enabled (ns) - 13.326 14.683 15.300
Setup violations @ 13.3ns - - 10 19

Signals observed - 2071 1947 (94%) 1947 (94%)

LEON3: 8-core (81% slice utilization, 13.333ns constraint)
Total compile time (s) 3830 4293 4314 5774

Total debug (mcmfRoute) time (s) 3216 (-) 1149 (308) 1087 (286)
Speedup over post syn. - 1.0X 2.8X 3.0X
Potential speedup - 1.0X 10.4X 11.2X

Tcpd debug disabled (ns) 13.327 13.328 13.328 13.324
Tcpd debug enabled (ns) - 13.328 15.674 15.728
Setup violations @ 13.3ns - - 35 36

Signals observed - 2325 2169 (93%) 2169 (93%)

GSM switch (42% slice utilization, 30ns constraint)
Total compile time (s) 1638 2263 2006 3137

Total debug (mcmfRoute) time (s) 1958 (-) 1626 (294) 1690 (298)
Speedup over post syn. - 1.0X 1.2X 1.2X
Potential speedup - 1.0X 6.7X 6.6X

Tcpd debug disabled (ns) 27.632 23.008 27.140 26.244
Tcpd debug enabled (ns) - 23.008 27.140 26.244
Setup violations @ 30ns - - - -

Signals observed - 2049 2049 (100%) 2049 (100%)



Faster FPGA Debug: Efficiently Coupling Trace Instruments 83

selected as the trigger input, and multiple windows of trace data were captured
— the waveform viewer (background window) shows the values on the program
counter and instruction registers of the register access CPU pipeline stage —
when executing the Stanford software test on the SoC (foreground window).

Other Benchmarks. Table 3 shows the results of experiments conducted on
two additional variants of the LEON3 design — with 4 cores and 8 cores, and on
a GSM switch [12]. As expected, for the smaller 4-core LEON3 design, instru-
mentation has a smaller impact on the critical-path delay (Tcpd) when debug is
enabled, than for the larger 6-core and 8-core designs. The speedups achieved
also increase as this design scales: from 2.3X (5.7X) for the smallest variant to
2.8X (10.4X) for the largest, but the difference in the number of signals ob-
served is due to the different number of cores attached to the AHB bus. The
GSM switch, at a slower constraint of 30ns (33MHz), continues to meet timing
both when debug instruments are disabled and enabled. The speedup over post-
synthesis for the circuit is not as significant due to the majority of the debug
loop (>80%) being consumed by xdl2ncd conversion.

6 Conclusion

When testing FPGA-based circuit prototypes, if an error occurs, the designer
needs to rapidly understand the internal behaviour of their circuit in order to
debug effectively. Trace-buffer based instruments can offer a limited amount of
visibility into on-chip signal activity, but the success of these instruments is de-
pendent on how this additional debug logic is coupled with existing user circuitry.
Furthermore, certain instrumentation flows are also amenable to reducing the
time required to complete a debug turn, allowing the small subset of signals that
are observed to be modified without requiring the whole circuit to be recompiled.

In this paper, we demonstrate a working Xilinx-based platform that can be
used to experiment with different methods of coupling debug instruments to user
circuits. We describe four different instrumentation flows, and apply our platform
to evaluate three of these flows. Results show that adding the debug core to a
user circuit using the post placement and post routing methods can have little
to no effect on the instrumented circuit when not debugging, but subsequently,
allows for the debug loop to be accelerated by 1.2–3.0X. If we could directly
manipulate Xilinx binary netlists, our speedups could be as high as 5.7–11.2X.

6.1 Future Work

We believe that a number of improvements can be made to further improve
debugging productivity. First, we would like to evaluate the fully incremental
debug flow on our platform, which is dependent on access to a high-quality
incremental placement tool. We believe this flow would improve the timing of
our instrumented circuits significantly, given that we will have the freedom to
locate debug logic closer to all signal sources.



84 E. Hung, J.B. Goeders, and S.J.E. Wilton

Second, we would like to improve the debug instruments used. Through study-
ing ChipScope, we have observed that its control logic utilizes a number of high-
fanout high-distance nets in order to drive the address inputs of each trace-buffer,
and that the data outputs of these buffers are all reduced through a set of multi-
plexers before being transported off-chip. We would like to investigate designing
our own debug IP, tailored specifically for our coupling flows.

Acknowledgements. This research was supported in part by Semiconductor
Research Corporation contract 2010-TJ-2058.

References

1. Sohanghpurwala, A.A., Athanas, P., Frangieh, T., Wood, A.: OpenPR: An Open-
Source Partial-Reconfiguration Toolkit for Xilinx FPGAs. In: 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, Number Xdl, pp. 228–235. IEEE (May 2011)

2. Poulos, Z., Yang, Y.S., Anderson, J., Veneris, A., Le, B.: Leveraging Reconfigura-
bility to Raise Productivity in FPGA Functional Debug. In: Proc. of the Conf. on
Design, Automation Test in Europe, pp. 292–295 (March 2012)

3. Iskander, Y.S., Patterson, C.D., Craven, S.D.: Improved Abstractions and
Turnaround Time for FPGA Design Validation and Debug. In: Proc. of the 21st
Int’l Conf. on Field Programmable Logic and Applications, pp. 518–523 (Septem-
ber 2011)

4. Hung, E., Wilton, S.J.E.: Scalable Signal Selection for Post-Silicon Debug. IEEE
Trans. on Very Large Scale Integration (VLSI) Systems 21, 1103–1115 (2013)

5. Hung, E., Wilton, S.J.E.: Incremental Trace-Buffer Insertion for FPGA Debug.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems (accepted for
publication April 2013)

6. Hung, E., Wilton, S.J.E.: Towards Simulator-like Observability for FPGAs: A Vir-
tual Overlay Network for Trace-Buffers. In: Proc. of the 21st ACM/SIGDA Int’l
Symp. on Field-Programmable Gate Arrays, pp. 19–28 (February 2013)

7. Rose, J., Luu, J., Yu, C.W., Densmore, O., Goeders, J., Somerville, A., Kent,
K.B., Jamieson, P., Anderson, J.: The VTR Project: Architecture and CAD for
FPGAs from Verilog to Routing. In: Proc. of the 20th ACM/SIGDA Int’l Symp.
on Field-Programmable Gate Arrays, pp. 77–86 (February 2012)

8. Hung, E., Jamal, A.-S., Wilton, S.J.E.: Maximum Flow Algorithms for Maxi-
mum Observability in FPGA Debug. In: Proc. of the 12th Int’l Conf. on Field-
Programmable Technology (December 2013) (to appear)

9. Wheeler, T., Graham, P., Nelson, B.E., Hutchings, B.: Using Design-Level Scan to
Improve FPGA Design Observability and Controllability for Functional Verifica-
tion. In: Proc. of the 11th Int’l Conf. on Field Programmable Logic and Applica-
tions, pp. 483–492 (August 2001)

10. Aeroflex Gaisler: GRLIB IP Core User’s Manual – v1.3.1 B4135 (August 2013),
http://www.gaisler.com/products/grlib/grip.pdf

11. Steiner, N., Wood, A., Shojaei, H., Couch, J., Athanas, P., French, M.: Torc: To-
wards an Open-Source Tool Flow. In: Proc. of the 19th ACM/SIGDA Int’l Symp.
on Field-Programmable Gate Arrays, pp. 41–44 (February 2011)

12. Murray, K.E., Whitty, S., Liu, S., Luu, J., Betz, V.: Titan: Enabling large and
complex benchmarks in academic CAD. In: Proc. of the 23rd Int’l Conf. on Field
Programmable Logic and Applications, pp. 1–8 (September 2013)

http://www.gaisler.com/products/grlib/grip.pdf


On the Impact of Replacing a Low-Speed

Memory Bus on the Maxeler Platform,
Using the FPGA’s Configuration Infrastructure

Karel Heyse1,�,��, Dirk Stroobandt1,��, Oliver Kadlcek2,��, and Oliver Pell2,��

1 Ghent University, ELIS Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
{Karel.Heyse,Dirk.Stroobandt}@UGent.be

2 Maxeler Technologies Ltd.
1 Down Place, London W6 9JH, UK
{okadlcek,oliver}@Maxeler.com

Abstract. It is common for large hardware designs to have a number
of registers or memories of which the contents have to be changed very
seldom, e.g. only at startup. The conventional way of accessing these
memories is using a low-speed memory bus. This bus uses valuable hard-
ware resources, introduces long, global connections and contributes to
routing congestion. Hence, it has an impact on the overall design even
though it is only rarely used.

A Field-Programmable Gate Array (FPGA) already contains a global
communication mechanism in the form of its configuration infrastructure.
In this paper we evaluate the use of the configuration infrastructure as a
replacement for a low-speed memory bus on the Maxeler HPC platform.
We find that by removing the conventional low-speed memory bus the
maximum clock frequency of some applications can be improved by 8%.
Improvements by 25% and more are also attainable, but constraints of
the Xilinx reconfiguration infrastructure prevent fully exploiting these
benefits at the moment. We present a number of possible changes to the
Xilinx reconfiguration infrastructure and tools that would solve this and
make these results more widely applicable.

Keywords: FPGA, HPC, partial reconfiguration, block RAM.

1 Introduction

Large hardware designs often have a number of configuration registers or mem-
ories of which the contents are changed only sporadically, e.g. at startup. The
conventional way of modifying the contents of these memories is using a low-
speed memory bus. Although a low-speed memory bus uses less hardware re-
sources than a high-speed version, it will still introduce long, global connections,

� Supported by a Ph.D. grant of the Flemish Fund for Scientific Research (FWO).
�� This work was partly supported by the European Commission in the context of the

FP7 FASTER project (#287804).

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 85–96, 2014.
c© Springer International Publishing Switzerland 2014



86 K. Heyse et al.

contribute to routing congestion and affect the performance of the rest of the
design.

A Field-Programmable Gate Array (FPGA) already contains a global com-
munication mechanism in the form of its configuration infrastructure. Although
it does not have the same flexibility as a custom bus, it may serve as an excellent
alternative for a low-speed bus without the previously listed disadvantages.

This paper focuses on the Maxeler platform [1], a high performance computing
(HPC) system consisting of a host CPU and Dataflow Engines (DFE) utilising
FPGAs (Section 2). Many of the applications implemented on the Maxeler plat-
form use mapped memories or small ROMs and RAMs that can be accessed
locally from hardware and globally from the host CPU. Mapped memories are
implemented on the FPGA using block RAM (BRAM) primitives so that local
access is fast. Global access happens via a low-speed mapped memory controller
connecting the host CPU to the mapped memories. In common use, this happens
at most every few hundred milliseconds.

In this paper, we investigate the use of partial reconfiguration of block RAMs
to replace this low-speed memory bus for global mapped memory access (Sec-
tion 3). Partial reconfiguration means that the configuration infrastructure of
the FPGA is used to change the configuration of a part of the FPGA while the
remainder continues to operate without interruption.

Partial reconfiguration is typically used to improve the functional density of
designs. This is for instance done by loading and unloading modules as needed
[2,3] or by performing dynamic circuit specialisation [4]. This makes it possible
to use smaller and cheaper FPGAs to do the same amount of computation as
larger FPGAs that do not use partial reconfiguration.

Partial reconfiguration of block RAMs has been proposed in [5] as a way to
implement Network-on-Chips on FPGAs with reduced hardware resource cost.
In this work, partial reconfiguration is used to transfer data from sender to re-
ceiver by temporarily storing the data in a sender block RAM and relocating the
configuration bitstream of this block RAM to a receiver block RAM. However,
no previous research has ever investigated how partial reconfiguration of block
RAMs can be used to improve the routability and maximum clock frequency of
applications.

Our experiments on three real-world designs, one financial application and two
geoscience applications, have shown that the low-speed memory bus as currently
implemented causes routability issues and limits the clock frequency in some
designs. In those cases, the use of partial reconfiguration instead of this bus
results in higher clock frequencies – up to 8% in our experiments – and thus
better quality designs (Section 5). Improvements of 25% and more were also
attained, but constraints of the Xilinx configuration infrastructure prevent us to
fully exploit these benefits at the moment. In Section 6, we present a number
of small improvements to the Xilinx configuration infrastructure and tools that
would solve this problem and make these results more widely applicable.



Replacing a Memory Bus Using the FPGA’s Configuration Infrastructure 87

2 Maxeler Platform Background

The Maxeler platform, developed by Maxeler Technologies, is a system for high
performance computing consisting of a host CPU and hardware accelerators
called Dataflow Engines (DFE) [1]. This section provides an overview of the
Maxeler platform and toolchain. It also describes the mapped memory compo-
nent and the low-speed memory bus by which they are connected.

2.1 Hardware Platform

Maxeler produces several variants of its hardware platform optimised for different
computing needs. In general, the platform consists of one or more conventional
host CPUs and one or more DFE coprocessors (DFEs) (Figure 1). In the system
we study, the DFEs are connected to the CPUs using PCI Express and to each
other directly over a custom high-bandwidth MaxRing network.

The host CPUs are used for managing the DFEs, by triggering configuration
of the required bitstreams and streaming data to and from the DFEs using DMA
streams, and for computations that do not need to be executed in hardware.

The MAX3 DFE used in this work has a large Xilinx Virtex 6 FPGA, called
the Compute-FPGA (CFPGA), and a smaller auxiliary Xilinx Virtex 6 FPGA,
called Interface-FPGA (IFPGA). This IFPGA is used for managing the PCIe
communication between the host and CFPGA and for configuration of the
CFPGA via its SelectMap interface. The IFPGA itself is configured from flash
memory at startup, while the CFPGA is (re)configured with an application-
specific bitstream provided by the host CPU every time a new application is
started. The MAX3 also contains 24 GB of DRAM directly accessible from the
CFPGA.

2.2 Toolchain

The Maxeler toolchain raises the implementation level for the application devel-
oper above the hardware level and thus reduces the development effort for DFE
applications.

The part of an application that is accelerated in hardware is called a kernel.
To implement a kernel on a DFE, the developer has to create a dataflow model
of it. This is a description of the logic and arithmetic datapath through which
streams of data flow and by which new streams of data are produced.

The description of a complete application for the Maxeler platform consists
of three parts: a dataflow model of the kernel(s) in MaxJ (Maxeler’s extension
of the Java language), a description (also as a dataflow model in MaxJ) of the
manager describing how the kernel(s) communicate with the CPU, other DFEs
and memory, and the host application that is run on the CPU.

Using the Maxeler toolchain the dataflow model and manager description are
compiled into an FPGA configuration bitstream for the hardware accelerator.
The host code, in C or any of the other supported languages, is compiled and
linked with Maxeler’s SLiC and MaxelerOS run-time libraries, which enable it
to communicate with the DFEs.



88 K. Heyse et al.

Fig. 1. Maxeler platform with one host CPU and one DFE. The user-defined parts are
marked in dark grey.

Fig. 2. Mapped memories and the mapped memory controller

2.3 Mapped Memories

Mapped memories are small RAMs or ROMs inside kernels that are implemented
using BRAMs and can be accessed with low latency from local hardware. The
difference with respect to regular RAMs and ROMs is that mapped memories
can also be read and written globally from the host CPU. Mapped memories are
therefore often used for configuration data, like filter coefficients, that need to be
changed between runs of the application but usually not during the processing of
a datastream. Other use cases are ‘working memory’ that needs to be initialised
or of which the final state needs to be retrieved. In common use cases, global
access to these memories occurs at most every few hundred milliseconds.

Global access is enabled by a custom low-speed, low-overhead bus and is a lot
slower than local access. This 32-bit wide, low-speed bus consists of a mapped
memory controller running at 50MHz that is connected in star topology to all
the mapped memories (Figure 2). The controller is connected via the IFPGA to
the host CPU using Programmed Input/Output (PIO). The mapped memory
controller decodes read and write commands received from the host CPU and
controls the read and write signals of the different mapped memories.

Because the mapped memory controller is connected to all the mapped
memories, which may be spread out over the complete CFPGA, it can become



Replacing a Memory Bus Using the FPGA’s Configuration Infrastructure 89

Fig. 3. Groups of configuration frames and stacks of BRAMs and CLBs

a routing bottleneck. Also the long, device spanning connections from remote
mapped memories to the typically centrally located mapped memory controller
can cause timing issues that are hard or impossible to resolve.

3 Implementation of Mapped Memories Using Partial
Reconfiguration

The Xilinx Virtex 6, used in the MAX3, supports configuration readback and
partial reconfiguration of a small portion of the FPGA while the rest of the
FPGA remains operational. Because the contents of the BRAMs are also part of
the FPGA’s configuration, this feature can be used to read and write BRAMs.

By using partial reconfiguration of BRAMs to read and write the mapped
memories, the use of the mapped memory controller can be avoided and the
long, timing-sensitive connections can be removed.

In this section we will first provide more details about partial reconfigura-
tion of BRAMs, then describe the changes made to the hardware, compilation
toolchain and run-time libraries.

3.1 Partial Reconfiguration of BRAMs

Partial reconfiguration and configuration readback are done by sending special
bitstreams from the host CPU to one of the FPGA’s configuration interfaces:
JTAG, SelectMap or ICAP (Internal Configuration Access Port) [6]. This bit-
stream contains the commands to read or write a specific portion of the FPGA’s
configuration.

The minimum granularity by which the FPGA configuration can be accessed,
i.e. the smallest unit of data with its own address, is a configuration frame (2592
bits). Together, a group of frames describes the configuration of a section of the



90 K. Heyse et al.

FPGA’s resources (Figure 3) [7]. A group of 36 frames, for example, describes the
configuration of a partial column of CLBs. A group of 128 frames describes the
contents of a partial column or stack of 8 BRAM36s or 16 BRAM18s, since each
BRAM36 can also be split into two BRAM18s. The BRAMs that are described in
the same group of configuration frames, and therefore belong to the same stack,
have the same X coordinate and the same Y coordinate after integer division by
8 for a BRAM36 or by 16 for a BRAM18.

The configuration infrastructure of the BRAMs is implemented in hardware
by sharing read/write ports with the FPGA fabric. Because of this it is unsafe to
use a BRAM in the FPGA fabric – keeping the clock running and enable signal
active – while readback of its configuration frames is taking place. As a result, if
configuration readback of one BRAM is performed, the complete BRAM stack
containing it must be halted.

According to [8,5] it is possible to mask specific BRAM36s (but not BRAM18s)
during reconfiguration so that their configuration is not overwritten. Our exper-
iments seem to imply that if a BRAM is masked in this way, and only then, it
is safe to use it in the FPGA fabric while reconfiguration of its frames is hap-
pening. Unfortunately, no similar masking function is available for configuration
readback.

3.2 Configuration Interface

To enable communication between the host CPU and the FPGA’s configuration
port the ICAPStreamingBlock is implemented on the CFPGA. This block, op-
erating at 60MHz, connects the ICAP to two PCI Express streams, one in each
direction. The ICAPStreamingBlock receives a combined bitstream and com-
mand stream from the host CPU. The bitstream is passed to the data port of
the ICAP and the command stream sets the ICAP control signals and tells the
ICAPStreamingBlock whether data is expected on the output port of the ICAP.
This output data is then streamed back to the host CPU.

Alternatively, this functionality could be implemented on the IFPGA, which
is already connected to the SelectMap configuration interface. Previous work has
shown that the IFPGA can be used to partially reconfigure the CFPGA[9], but
it is currently only able to (re)configure the FPGA and not to perform configu-
ration readback. Adding readback support is straightforward engineering but we
have not implemented this as part of this work since it would require significant
development time and it is possible to assess the impact on the CFPGA without
this feature being operational.

3.3 Changes to the Compilation Toolchain

We adapt the compilation toolchain so that partial reconfiguration can be used
to perform global access of mapped memories. The underlying implementation
of the global access method is transparent to the developer of the DFE and
it is simple to switch between the original and new access method using the
UseMicroreconfigMem option in the MaxJ description of the kernel (Figure 4).



Replacing a Memory Bus Using the FPGA’s Configuration Infrastructure 91

optimization . pushUseMicroreconfigMem(true );

Memory <DFEVar > ram = mem.alloc(type , size );

ram.mapToCPU ("mapped_ram_name ");

optimization . popUseMicroreconfigMem();

DFEVar x = ram.read(addr );

Fig. 4. Instantiating a mapped memory with global access implemented using partial
reconfiguration

The compilation toolchain disconnects these mapped memories from the
mapped memory controller and extracts the placement and port width of the
BRAMs so that this information can be used by the run-time libraries.

Instead of Xilinx Coregen, we have implemented our own mechanism for com-
posing large memories from BRAM primitives. This is done because the exact
way Coregen combines BRAMs to form larger memories is not documented and
this information is required to map the contents of the mapped memories to the
correct parts of the FPGA’s configuration. This information is also exported for
use by the run-time libraries.

3.4 Changes to the Run-Time Libraries

Instead of passing the read and write commands from the host code to the
mapped memory controller, the MaxelerOS run-time library must now inter-
pret these commands and translate them into the necessary reconfiguration and
readback actions.

First, it must find out in which physical BRAM(s) a memory element is stored
(Figure 5) and calculate the corresponding configuration frame addresses. This
is done using the information that was exported by the compilation toolchain.

To perform a read operation on a BRAM, a special readback bitstream is
sent to the FPGA’s configuration interface causing the contents of the BRAM’s
configuration to be sent back. The mapping of the contents of the BRAM to the
configuration bits is then reversed to extract the requested element. If a memory
element is spread out over multiple BRAMs this procedure is repeated for each
BRAM.

For a write operation we need to take into account that it is not possible to
update a single memory element because a reconfiguration always updates at
least a full BRAM36 (or 2 BRAM18s). Therefore, to correctly perform a write
operation the relevant portion of the current configuration of the BRAM must
be obtained, modified locally on the host CPU and then written back to the
FPGA.

Because the contents of a mapped ROM will only be written from the host
CPU and not locally on the FPGA, it is sufficient to keep a local mirror of the
BRAMs’ configurations on the host CPU to know their current configuration at
all times. This local mirror must be updated in sync with the configuration of
the FPGA.



92 K. Heyse et al.

Fig. 5. Large block memory combining 4 BRAM36s (port width: 16 bits). The first 16
bits of element 3500 are stored in element 1452 of the BRAM on site X10Y67, the last
16 bits in element 1452 of the BRAM on site X10Y68.

For a mapped RAM the only way to know the current configuration of the
BRAM is to perform a configuration readback. It is important that the con-
tents of the BRAM do not change between the readback and reconfiguration
operations because such an update would be lost.

Global access to mapped memories often happens in batches; a large part of
a mapped memory is read or written at the same time. To improve efficiency,
multiple accesses to the same mapped memory that affect the same configuration
frames are grouped together so that the number of configuration readback and
reconfiguration operations is reduced.

4 Challenges: Partial Reconfiguration Constraints

In this section we discuss how the constraints imposed by the configuration in-
frastructure, introduced in Section 3.1, affect applications on the Maxeler plat-
form. We recall that during configuration readback the complete stack of BRAMs
that is being read cannot be used and during reconfiguration only the BRAMs
that are masked can be used.

Write operations to ROM mapped memories, which do not require a config-
uration readback, can therefore be performed safely as long as only BRAM36
primitives are used for their implementation and the other BRAMs are masked
during reconfiguration.

In contrast to write operations on ROMs, read and read-modify-write oper-
ations on RAM mapped memories require that the complete stack of BRAM
primitives containing the BRAM to be accessed is halted. For applications on
the Maxeler platform it may be safely assumed that BRAMs from the same
kernel as the mapped memory will be halted when the mapped memory is being
accessed, but no assumptions about other BRAMs can be made. This will be
a common case in many scenarios where part of a chip must continue running



Replacing a Memory Bus Using the FPGA’s Configuration Infrastructure 93

while another part is paused for reconfiguration. Placement constraints must
therefore be used to prevent other BRAMs being placed in the read back stacks.
In general, (automatic) floorplanning could be used to achieve this, previous
experiments by Maxeler have shown that overly aggressive floorplanning has
significant detrimental effects on maximum clock frequency, so we do not believe
this to be a feasible option.

An alternative method using multiple iterations of Place & Route (P&R) has
also been tested. In this method each incremental P&R run adds constraints
(LOC and PROHIBIT) based on previous runs until the location constraints
for reconfigurable BRAMs are met. This also had an unacceptable impact on
the clock speed of anything but the smallest applications. This is not entirely
unexpected because, for the same reason as the problems with floorplanning in
general, large numbers of constraints are known to make it harder to find a
feasible P&R solution.

While ROM mapped memories using partial reconfiguration can be used on
the Maxeler platform, no feasible solution has been found for RAMs for realis-
tically sized applications. In Section 6 we propose a number of changes to the
configuration infrastructure and Xilinx tools that would make it possible to use
RAM mapped memories on the Maxeler platform and other platforms with sim-
ilar constraints. Note that on certain other platforms the location constraints
may be resolved using floorplanning or circumvented by stopping all BRAMs.

5 Evaluation: Clock Frequency Benefits

5.1 Evaluated Applications

We have evaluated the proposed method on one financial application related to
price prediction of financial derivatives and two geoscience applications related
to detecting underground oil and gas reserves based on acoustic reflections. We
will call them FINAN, GEO1 and GEO2. The evaluated designs are real-world
applications developed by Maxeler and its customers.

Table 1. Description of the applications

Logic DSP BRAM Mapped memories

FINAN 87% 81% 51% 36 x 624 elem. x 32 bit

GEO1 69% 22% 50% 27 x 50 elem. x 23 bit

GEO2 70% 59% 70% 6 x 2002 elem. x 17 bit + 3 x 1024 elem. x 18 bit
+ 33 x ≤128 elem. x 18 bit

Table 1 contains a summary of the resource utilisation and mapped memories
of each application. All three applications use only ROMs and these have values
which are loaded at the start of each compute job (once every few minutes to
hours).



94 K. Heyse et al.

All applications additionally contain 2 small mapped memories that cannot be
implemented with partial reconfiguration so the mapped memory controller has
to be retained. Even though the mapped memory controller cannot be removed,
the routing bottleneck is resolved by disconnecting the majority of the mapped
memories from the controller.

5.2 Maximum Clock Frequency

Table 2 contains the maximum clock frequencies for the three applications in dif-
ferent configurations. The “Conventional” column contains the maximum clock
frequencies using the conventional implementation of mapped memories, the
“ICAP” and “SelectMap” columns show the maximum frequencies using par-
tial reconfiguration. For the values in the “SelectMap” column, the IFPGA is
used to perform partial reconfiguration via the external SelectMap configuration
port of the CFPGA (Section 3.2) instead of the “ICAP” interface and ICAP-
StreamingBlock on the CFPGA itself. This is currently not functional but it is
straightforward to see how it would operate.

In the ROM cases, the use of partial reconfiguration improves the maximum
clock frequency of GEO2 by about 8% and leaves the other applications un-
changed (SelectMap). The introduction of the ICAPStreamingBlock, however,
causes a reduction of the maximum clock frequency of about 10% for GEO1.
The reason for this is that the ICAP and DDR memory controller both are con-
strained to the same, congested area of the FPGA. The use of the SelectMap
configuration interface would alleviate this problem.

In the RAM cases we assume, for the sake of the experiment, that the mapped
memories are RAMs instead of ROMs and that the placement constraints for
RAMs (Section 4) do not exist. In these applications the primary use of RAMs is
for providing debug visibility, however other applications would also use RAMs
in production mode. The conventional implementation of mapped RAMs causes
extra routability issues and increases the advantage of the proposed method.
For GEO1 we now see a frequency increase of 13-25% and for GEO2 we find
that while it was impossible to meet the minimal timing constraints using the
conventional method, a clock frequency of 130MHz can now be attained.

Because in this experiment we are ignoring the placement constraints for
partially reconfigurable RAMs, the result of this experiment can currently not

Table 2. Maximum clock frequency (MHz). Items with * are currently not functional.

Partial reconfiguration
Conventional ICAP SelectMap*

GEO1 (ROM) 100 90 (0.90) 100 (1)
GEO1 (RAM)* 80 90 (1.13) 100 (1.25)
GEO2 (ROM) 130 140 (1.08) 140 (1.08)
GEO2 (RAM)* < 80 130 (> 1.63) 130 (> 1.63)
FINAN (ROM) 180 180 (1) 180 (1)
FINAN (RAM)* 180 180 (1) 180 (1)



Replacing a Memory Bus Using the FPGA’s Configuration Infrastructure 95

be used in practice, however this experiment illustrates the potential benefits of
this approach if modest improvements were made to the partial reconfiguration
mechanism of the FPGA (as we discuss in Section 6). We successfully ran all
the applications in ROM mode.

The relatively high clock frequency of the FINAN application is not affected
by the method used to implement the mapped memories. This shows that not in
every application the mapped memory controller is a routing bottleneck. There
is currently insufficient data to make conclusions about which type of appli-
cations will benefit the most from the proposed implementation method. Our
preliminary findings, however, show that applications that require a larger effort
to solve the original P&R problem with low-speed bus generally benefit more.

Experiments have shown that read and write speeds of mapped memories im-
plemented using partial reconfiguration (read: 2-14 Mbit/s, write: 1-10 Mbit/s)
remain in the same order of magnitude as with the conventional implementation
(read: 2-4 Mbit/s, write: 7-14 Mbit/s). The difference is of small importance
because the read and write times are very small compared to the total execution
time.

The solutions using partial reconfiguration used at most 1% more logic re-
sources and 2% more BRAM resources than the conventional implementations.
The additional resources were needed for the ICAPStreamingBlock and in some
cases because BRAM18 primitives had to be replaced by BRAM36 primitives.
We believe that this hardware cost is acceptable for an 8% speed improvement.

6 Recommendations

In this section we make a number of recommendations for possible changes to
the FPGA configuration infrastructure and P&R tools that would make the
proposed method more widely applicable.

Configuration readback of a BRAM can currently only be done when all the
BRAMs in the stack containing it are halted or unused (Section 4). This can be
achieved by locking the BRAM to a specific location and prohibiting the other
BRAMs in the same stack from being used, by shutting down all the BRAMs on
the FPGA during configuration readback or, if floorplanning is used, by turning
off all the BRAMs in the region containing the BRAM to be read. For many
applications, including the ones implemented on the Maxeler platform, these are
infeasible solutions. We present three possible ways to solve this problem.

A first possible solution is to change the Placement & Routing algorithm so
that it does not place the BRAMs of which we want to read back the configu-
ration in the same stacks as BRAMs that we do not wish to halt during recon-
figuration. As has been shown, a work-around method using multiple passes of
the existing P&R tools is insufficient, but an integrated algorithm might achieve
better results. We present the option because it is the only solution that does
not require changes to the physical FPGA architecture.

A second option would be read masking – a straightforward extension of the
existing write masking. This would allow independent configuration readback of



96 K. Heyse et al.

BRAMs even if they are located in the same stack. Because the configuration in-
frastructure already supports write masking, we believe that it would be feasible
to implement the same for readback operations in future FPGA architectures.

Alternatively, the bits of the BRAMs in the configuration frames can be re-
arranged so that data of only one BRAM is stored in each frame, as opposed
to the current situation where content from multiple BRAMs is striped across
multiple frames.

Finally, we recommend to provide more possible locations to place the ICAP
port than the currently available two options, which are located close together.
This would help to avoid the routing congestion caused by logic modules that
need to be constrained to the same region.

7 Conclusion

We have proposed a method to access block memories on FPGAs using partial
reconfiguration and configuration readback. The use of this method removes the
need for the low-speed memory bus that is conventionally used for this pur-
pose. Using three real-world applications, we have shown that a maximum clock
frequency improvement of up to 8% is possible because of this. The proposed
method can currently be applied to all applications of which the block memories
only need to be written. We have proposed a number of small improvements to
the Xilinx configuration infrastructure and tools that would make it possible to
achieve clock speed improvements of 25% and more when block memories need
to be read as well as written.

References

1. Pell, O., Mencer, O., Tsoi, K.H., Luk, W.: Maximum Performance Computing with
Dataflow Engines. In: High-Performance Computing Using FPGAs, pp. 747–774
(2013)

2. Beckhoff, C., Koch, D., Torresen, J.: GoAhead: A Partial Reconfiguration Frame-
work. In: IEEE 20th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pp. 37–44 (2012)

3. Xilinx: Partial Reconfiguration User Guide (2010)
4. Bruneel, K., Heirman, W., Stroobandt, D.: Dynamic Data Folding with Parameteri-

zable FPGA Configurations. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 16(4), 43:1–43:29 (2011)

5. Shelburne, M., Patterson, C., Athanas, P., Jones, M., Martin, B., Fong, R.:
MetaWire: Using FPGA Configuration Circuitry to Emulate a Network-on-
Chip. In: International Conf. on Field Programmable Logic and Applications,
pp. 257–262 (2008)

6. Xilinx: Virtex-6 FPGA Configuration User Guide (2012)
7. Xilinx: Virtex-5 FPGA Configuration User Guide (2012)
8. Xilinx: XAPP290 Difference-Based Partial Reconfiguration, 1–11 (2007)
9. Cattaneo, R., Pilato, C., Mastinu, M., Kadlcek, O., Pell, O., Santambrogio, M.:

Runtime Adaptation on Dataflow HPC Platforms. In: NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pp. 84–91 (2013)



Towards Dynamic Cache and Bandwidth

Invasion

Carsten Tradowsky1, Martin Schreiber2, Malte Vesper1, Ivan Domladovec1,
Maximilian Braun1, Hans-Joachim Bungartz2, and Jürgen Becker1

1 Institute for Information Processing Technology, Karlsruhe Institute of Technology
{tradowsky,becker}@kit.edu,

{malte.vesper,ivan.domladovec,maximilian.braun}@student.kit.edu
2 Scientific Computing in Computer Science, Technische Universität München (TUM)

{martin.schreiber,bungartz}@in.tum.de

Abstract. State-of-the-art optimizations for high performance are fre-
quently related to particular hardware parameters and features. This
typically leads to optimized software for execution on particular hard-
ware configurations. However, so far, the applications lack the ability
to modify hardware parameters either statically before execution of a
program or dynamically during run-time.

In this paper, we first propose to utilize the flexibility of underlying
invasive hardware to adapt to the needs of the software. This enables us
to ask for more than just processing power by, e. g., requesting particular
cache parameters that correspond to certain application properties. The
adaptive hardware architecture therefore is able to dynamically reconfig-
ure itself dependent on the availability of the resources in order to achieve
an optimized working point for each application scenario. Secondly, we
present requirements for dynamical scheduling of computing resources
to resource-competing applications. This becomes mandatory to account
for memory-access characteristics of concurrently executed applications.
We propose consideration of such characteristics with bandwidth-aware
invasion.

With this novel approach, we are able to show that dynamic hardware
and software co-design leads to improved utilization of the underlying
hardware resulting in higher throughput in means of efficiency such as
application-throughput per time-unit.

Keywords: invasive computing, adaptive, application-specific microar-
chitecture, reconfigurable cache, compute-bound, memory-bound, HPC.

1 Introduction

Invasive computing is regarded as the paradigm of building a platform that has
a multitude of heterogeneous resources. It allows for dynamic allocation and
utilization depending on the resources’ availability to solve various computing
problems. Due to additional and changing demands of both hardware and soft-
ware requirements, respective changes have to be considered for each of those

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 97–107, 2014.
c© Springer International Publishing Switzerland 2014



98 C. Tradowsky et al.

building blocks of the invasive hardware and software architecture. Both up-
coming sections discuss the different views on dynamic adaptive hardware and
software.

1.1 Dynamic Adaptive Software

Following the trend towards many-core systems and extrapolating the number
of cores exceeding one thousand during the next decades, dynamically chang-
ing resources get mandatory for energy-efficiency, throughput optimizations and
further upcoming requirements like reliability or security. This leads to several
new demands to the application developer to be able to express this changing
resource demands.

Applications should provide information on their requirements, targeting at
improved application- and memory-throughput, real-time requirements, energy
efficiency, etc. Different application scenarios such as multi-resolution image pro-
cessing and dynamic adaptive hyperbolic simulations [1,6] set up the require-
ments from static resource requirements towards dynamic resource scheduling.
With such dynamically changing requirements of applications, further referred
as different phases, it would be beneficial for applications making particular
hardware sets available to other applications or deactivating them for energy
efficiency reasons. With memory expected to be one of the main bottlenecks in
a few years, dynamic reconfigurable memory related components such as caches
and memory bandwidth is our main focus for this work.

Running only a single program on a particular number of cores, numerical
applications such as a matrix-matrix multiplication (MMul) are typically (a)
optimized to a particular cache-line size during compile time, (b) are not able to
consider changing cache-line sizes and (c) are not able to adapt the hardware to
their requirements. To our knowledge, those dynamic optimizations so far target
only non-adaptive hardware resources in current HPC studies[1].

1.2 Dynamic Adaptive Hardware

Adaptive application-specific processors lead to higher efficiency by dedicated
support of applications [9]. E. g., i-Core provides enhanced flexibility within the
microarchitecture itself by enabling the application developer’s interaction with
the microarchitecture [19].

In addition to the standard setting of the hardware, the software developer
should provide extra input to further parametrize the i-Core. This enables the
application developer to pass on its knowledge about the application to the i-
Core in order to achieve an optimized processor configuration. We refer to this as
resource aware programming, which can as well include configurations oo caches.

To our best knowledge, a parametrizable cache was not considered so far. This
constraints the degree of freedom when defining the sizes of, e. g., the dedicated
level one caches in an optimized manner.



Towards Dynamic Cache and Bandwidth Invasion 99

2 Related Work

2.1 Dynamic Adaptive Memory

In the classical model of an n-way associative cache, parameters such as line
length, degree of associativity and number of sets exist. These parameters are
coupled by the total cache size and thus constrained by available chip resources.
Until now, most evaluations on memories have only been done using special
simulators and models neither considering silicon implementation possibilities
nor overhead. This is necessary for invasive computing since one of the key
points is resource sharing between several concurrent independent computational
problems.

For this work, the approach presented in [10] and [13], to tune the cache for
inner loops before the start of each run seems appealing and will be used to get
an overview of the benefits of adaptation. At first glance, it seems obvious that
the highest associativity (fully associative cache) would yield best performance
since the forced cache misses can be minimized. However, the gain by increasing
associativity diminishes vastly after four or eight while the hardware expendi-
ture keeps rising [5,20]. Another side effect of increasing the set size is mapping
larger memory area to the set. This reduces the benefit of having more possible
locations for element storage. With a variable fixed cache size, decreasing this
cache size by deactivating particular sets is expected to yield power benefits but
should only be considered with negligible impact on application’s performance.

In this work, we consider a fixed cache size as a given number of sets be-
ing defined by line length and associativity. The three performance related keys
compensating reduced cache size are prefetching, dense storage and temporal lo-
cality. While prefetching exploits local spatiality by pre-emptive loading of data,
dense storage refers to storing a particular amount of data in a small memory
area. A third effect to be exploited is temporal locality, which refers to data
usually being accessed multiple times in a short time frame. On the one hand,
cache-oblivious algorithms (e. g., matrix multiplication [8] and dynamic adaptive
simulations [3,18]) are likely to benefit of dynamic adaptive caches optimized to
their particular demands. On the other hand, algorithms not being able to ex-
ploit the access locality (e. g., dot product), would improve the performance of
cache-oblivious algorithms by sharing the cache resources with them.

Existing work on reconfigurable caches [14,7] uses only simulation models so
far and thus stays on the hypothetical side from the hardware point of view.
Besides these parameters, there are further additions to a cache that leverage
the same effects introduced above. They include cache-assists (prefetch buffer,
victim cache) and way management.

Prefetch Buffer: A prefetch buffer[10] is a FIFO, into which data following the
location of the last miss is loaded. On the next miss the prefetch buffer will be
queried before the request goes to a lower memory hierarchy level.



100 C. Tradowsky et al.

Victim Cache: In case of replacement, the data being replaced is stored in
a small fully associative cache, which is searched in case of a miss. This is a
mixture of temporal and spatial locality and works by increasing the virtual
cache density. An evaluation of reconfigurable combinations of a victim cache
and prefetch buffer is given in [10].

Way Management:Way management [11] introduces control bits for every line
and assumes a mixed instruction and data cache. The control bits decide whether
a way is writable for data or for instructions. Thus the size of the instruction and
data cache can be changed and parts of the memory can be shared. Furthermore,
some data can be frozen in cache by locking the line completely.

Replacement Strategies: Different replacement strategies [12] appear to be
almost orthogonal to the parameters of line length and associativity. However,
there are corner cases where different replacement strategies yield better results.

2.2 Application Requirements for Dynamic Memory

Without knowledge of applications and their performance, no appropriate run-
time decisions can be undertaken to optimize the hardware resources towards
software requirements. In order to differentiate between particular requirements
of applications, we start with taxonomy of representative state-of-the art algo-
rithms with respect to the memory-related requirements.

Bandwidth Limited Applications: Typical memory access patterns for band-
width limited applications are streams, stencils and in general a relatively small
computation / memory access (CM) ratio for current architectures. Considering
a dot product [16] under the assumption that the sum is kept in a register, two
vector components have to be loaded followed by two computations of multi-
plication of both values and adding the result to the value in the register with
CM = 2 : 2 = 1. Stencil operations are frequently used in image processing for
border detection and scientific computing for iterative solvers [4]. Considering a
simplified sparse 2D stencil operation computing second order derivatives with a
stencil size 3x3, five values have to be loaded, each followed by a multiplication
with the stencil value assumed to be available in a register and an add oper-
ation. Using blocking techniques for cache-reutilization and assuming a single
boundary-data for blocks of size

√
S×√

S still stored in cache, this leads to CM
= 6 : 5 ≈ 1.2

Compute Bound Algorithms: We consider numerical quadrature of a com-
putational intensive function [2]. With frequent evaluation of such functions with
n >> 1 instructions with higher order quadrature formula, those computations
are clearly compute bound due to avoidance of data access assuming that all
instructions to evaluate the function fit into L1 instruction-cache.

Latency Bound Algorithms: Unpredictable access to memory occurs espe-
cially with interactively driven computations such as steering, image editing as
well as spatial-residual aware iterative solvers [17]. Since the access occurs ran-
domly, those algorithms are unlikely to fully exploit cache features. Those classes



Towards Dynamic Cache and Bandwidth Invasion 101

of unpredictable algorithms depend on the dynamically changing memory access
patterns itself. Therefore no clear statement on memory dependency can be given
and those algorithms are not further evaluated in this work.

3 Dynamic Scheduling and Adaptive Hardware

We propose a novel approach to reconfigure particular parts in hardware, which
so far was only statically exploitable to the software developers. Currently, the
concept involves a model of cache tiles. Depending on control signals, these tiles
either form larger memory sections for deeper ways or are used in parallel as
different ways. Each tile incorporates the control logic and can store tags. The
implementation of replacement strategies and the cache assistant is considered as
orthogonal.We consider it reasonable to store line associated management infor-
mation in the tiles, since this memory grows automatically with the addition of
tiles and its connections are managed more naturally if the tiles are dynamically
assigned to different cores in a later step.

Our partitioning of the cache puts the actual memory of data and management
information in one module and control logic like fetch on miss and replacement in
another. This hides the choice on reconfiguring the number of ways or size from
the control module and sets up new tasks: deciding where to put the reconfigu-
ration management, the logic ensuring that the data is in the right places after
changing the size or associativity. On the one hand, it should be fairly general.
On the other hand, detailed knowledge about the memory layout could help to
speed up the implementation. Cache coherency will have to be covered once we
cross the single-core boundary. This will open up new degrees of freedom, such
as partly shared caches or dynamical redistribution of cache, which is one of the
main reasons why we consider re-sizing.

Runtime reconfiguration leads to the issue of changing data layout in the
cache, introducing the need to reorder data before continuing. Reconfiguration is
shown to be a feasible process and provides a solution that flushes half the cache
and realigns the remaining entries in cache for a change in associativity [15]. It
is claimed that one would need a buffer of half the cache size to fully reorder
entries in the cache on an associativity increase [14]. We expect to circumvent
this with our tile approach.

We present an extension of the invasive programming constructs with support
of invadable memory hierarchy. This leads to modification of the cache within
the processor depending on application-specific requirements. With dynamically
changing number of resources for invasion, interfaces have to be provided by
the application developer for distributed memory and by an invasion-safe pro-
gramming style on shared memory systems to assure stability. For our invadable
memory hierarchy, changing resources do not change the reliability as long as
the cache-coherency among processors is guaranteed. The worst-case scenario is
a severe slowdown, but no stability issues. Due to optimizations on requested
hardware layouts, no multiplexing of the claimed resources is allowed.



102 C. Tradowsky et al.

4 Case Study on Potentials of Cache and
Bandwidth-Aware Invasions

We first present a case study of varying cache parameters on representative algo-
rithmic kernels. Secondly, we present required extensions of resource managers
for concurrently executed memory- and compute-bound applications.

4.1 Variation of Cache Parameters

For this case study, we use an inner-loop blocked matrix-matrix multiplication
(MMul). During the execution of the benchmark, the cache is invalidated after
each run of the outer loop. For evaluation, we use a Xilinx XUPV5-lx110t pro-
totyping board. We use the Gaisler Leon3, which has two sets of 8 kB (16 kB) of
instruction cache and four sets of 4 kB (16 kB) of data cache. This enables the
use of different cache parameters that can be defined at design time. Our baseline
for comparisons with parametrizable caches is given by this basic configuration.

Parametrizable Instruction-Cache: On the one hand, the program size of
numerical cores such as MMul and stencil operations is typically small while on
the other hand, the code binary of functions demanding many different computa-
tions integrated typically by numerical quadrature is by far larger. Consequently,
this underlines the potential of changing the cache sizes. As a case study, we dis-
able one set and halved the instruction cache and benchmarked the blocked
MMul. This had only minor impact to the program’s execution time with a
variance of less than 1% relative to the baseline. This provides us with addi-
tional memory resources that can be assigned to the data cache or deactivated
for energy efficiency.

Parametrizable Data-Cache: Applications optimized for spatial-local access
such as the blocked MMul and stencil operations target at exploiting data caches
in an optimal way. Efficiency for such algorithms is gained by cache-oblivious
access of the matrix-matrix multiplication data for particular cache-parameters.
Additionally to the complete execution time, we compare the performance of
every outer loop’s iteration to the baseline of the default configuration.

At first, the cache size is kept constant at 16 kB. This just leaves two options
for variation: the number of sets with respective adjustments of the set size.
Fig. 1 (left) shows halved number of sets (2) and doubled set size (8 kB). We see
a slight overall efficiency gain (approx. 3%), however, more importantly, we can
see that different input data to the MMul is handled very well. In Fig. 1 (right),
a single set with a 16 kB set results in increased efficiency (approx. 7%) relative
to the baseline. Especially the 40 block-size and 384 matrix-size input benefit
from the change in cache parameters.

Secondly, we half the size of the data cache. One option is to half the set size
to 2 kB per set (see Fig. 2, left) or the other option is to half the number of
sets down to two (see Fig. 2, right). As we compare the two results, almost the
same relative performance for the application is achieved in both settings. In
contrast to our first results, modifications of cache parameters did not affect the



Towards Dynamic Cache and Bandwidth Invasion 103

16
32

48
64 128

256
384

512

0.9

1

1.1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

16
32

48
64 128

256
384

512

0.9

1

1.1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

Fig. 1. Relative performance using a 16 kB data cache consisting of two sets with 8 kB
per set (left) and one set with 16 kB (right)

16
32

48
64 128

256
384

512

0.8

1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

16
32

48
64 128

256
384

512

0.8

1

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

Fig. 2. Relative performance using a 8 kB data cache consisting of four sets with 2 kB
per set (left) and two sets with 4 kB (right)

16
32

48
64 128

256
384

512

1

1.2

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

16
32

48
64 128

256
384

512

1

1.2

1.4

matrix−sizeblock−size

re
la

tiv
e 

pe
rf

or
m

an
ce

Fig. 3. Relative performance using a 32 kB data cache consisting of four sets with 8 kB
per set (left) and a 64 kB data cache consisting of four sets with 16 kB per set (right)



104 C. Tradowsky et al.

efficiency of particular problem sizes, by the reduction of cache size. However,
the performance drops by less than 20% compared to a standard execution. We
expect that the information on performance change play a crucial role for the
dynamical resource management. It is very promising to be able to change the
cache set parameter for MatMul with larger problem sizes.

At last, we make potential additional cache resources available to the MatMul
application. Fig. 3 shows the benefits of this approach. Interestingly, the appli-
cation still benefits differently from the change in cache configuration. While the
relative performance is higher for the 24 & 32 block size by 256 matrix-size con-
figuration (left), MatMuls on larger matrices only benefit from a further increase
of the set size (right).

4.2 Intermixing Bandwidth- and Compute-Bound Applications

Concurrently executed applications with different characteristics with respect to
CM ratios have to be considered in an orthogonal way by the resource manager
on a software level. Therefore, our next test case is on the concurrent execution
of bandwidth- and compute-bound applications. Since these applications have
different demands on memory parameters, those parameters are expected to lead
to further efficiency gain once the dynamic adaptive hardware is available, e.g. by
deactivating cache or statically reassigning cache sets to applications.

The experiments are conducted on a four-socket Intel(R) Xeon(R) CPU E7-
4850 running at 2GHz. For our test cases, we only use the physical cores on the
CPU on the first socket. Our benchmark is based on a representative applica-
tion for memory-bound problems, a streaming benchmark1, and a representative
application for compute-bound problems, a mandelbrot2 computation.

The scalability graphs of both applications are presented in Fig. 4. The scal-
ability of the representative memory-bound application almost reaches its peak
with six cores due to the overloadedmemory bus. For our representative compute-
bound application, the scalability is almost linear for all ten cores.

Next, we consider the concurrent execution of one memory- and one compute-
bound application. We pin each application to an exclusive set of cores. The
description and results for the concurrent execution of our considered applica-
tions are given in Fig. 4. They indicate, that the memory-bound application is
independent to the concurrently executed compute-bound application and vice
versa.

Considering the application’s optimal throughput being directly related to the
scalability, we find the optimal throughput by searching the extrema of the sum
of both scalability graphs, as shown in Fig. 5. For the optimal throughput in our
benchmark, two cores should be assigned to the memory-bound application and
the remaining eight cores to the mandelbrot for maximizing the throughput.

However, this optimal application throughput is only valid if at most one
bandwidth-bound application has to be considered. In case of two memory-bound

1 http://www.cs.virginia.edu/stream/ , C-ver., Add BW, N=50 mio, NITER=2.
2 http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/OpenMP/

mandelbrot-omp-by-rows.c, exec. with maxiter = 2048, (x, y) = (0, 0), size = 1.

http://www.cs.virginia.edu/stream/
http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/OpenMP/mandelbrot-omp-by-rows.c
http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/OpenMP/mandelbrot-omp-by-rows.c


Towards Dynamic Cache and Bandwidth Invasion 105

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

S
ca

la
bi

lit
y

Number of cores

Memory bound (Invasive)

Compute bound (Invasive)

Memory bound

Compute bound

Fig. 4. Scalability of memory-bound application (streaming benchmark) and compute-
bound application (mandelbrot). The invasive versions are executed concurrently: If n
cores are assigned to the memory-bound application, then 10−n cores are assigned to
the compute-bound application. Both applications almost do not influence each other.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 p

er
 th

re
ad

Number of cores

Memory bound (Invasive)
Compute bound (Invasive)
Throughput

Fig. 5. Searching optimal distribution of cores to applications. The theoretical optimal
throughput is given for assigning two cores to the bandwidth- and eight cores to the
compute-bound application.

applications, a concurrent execution of both applications would influence the
throughput and thus invalidate their scalability graphs. This yields requirements
for information on memory characteristics which can then be utilized on software
and hardware level for optimizations and is part of our ongoing research.

5 Conclusion and Future Work

We present an approach that exploits parameterization of cache parameters and
computing resource parameters on hardware and software level. In contrast to



106 C. Tradowsky et al.

the state-of-the-art HPC hardware, we are able to exploit this parameterization
to the application developer and offer an optimized application-specific hard-
ware and software realization. This moves away from today’s way of application
programming, as the developer needs to be aware of the underlying hardware
configuration and resources. Consequently, we are able to show a relative per-
formance increase on an adaptive prototyping system, on which we dynamically
change cache parameters. Furthermore, concurrently executed applications with
different bandwidth characteristics extend invasive scheduling parameters for
more efficient execution.

For future work, we plan to simulate and experimentally evaluate the pre-
sented concept. Also, further details of the hardware realization will be specified
and evaluated. Another complex task will be the demonstration and complete
integration into a single System-on-Chip.

Acknowledgement. This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center “In-
vasive Computing” (SFB/TR 89).

References

1. Bader, M., Bungartz, H.-J., Gerndt, M., Hollmann, A., Weidendorfer, J.: Invasive
programming as a concept for hpc. In: Proc. of the 10h IASTED Int. Conf. on Par.
and Dist. Comp. and Netw. (2011)

2. Brechmann, E.C., Schepsmeier, U.: Modeling dependence with c-and d-vine copu-
las: The r-package cdvine. Journal of Statistical Software 52 (2012)

3. Bungartz, H.-J., Mehl, M., Weinzierl, T.: A Parallel Adaptive Cartesian PDE
Solver Using Space–Filling Curves. In: Nagel, W.E., Walter, W.V., Lehner, W.
(eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1064–1074. Springer, Heidelberg (2006)

4. Bungartz, H.-J., Riesinger, C., Schreiber, M., Snelting, G., Zwinkau, A.: Invasive
Computing in HPC with X10. In: X10 Workshop, X10 2013 (2013)

5. Damien, G.: Study of different cache line replacement algorithms in embedded
systems. PhD thesis, KTH (2007)

6. Gerndt, M., Hollmann, A., Meyer, M., Schreiber, M., Weidendorfer, J.: Invasive
computing with iomp. In: Specification and Design Languages, FDL (2012)

7. Gordon-Ross, A., Vahid, F.: A self-tuning configurable cache. In: Proceedings of
the 44th Annual Conference on Design Automation, DAC (2007)

8. Heinecke, A., Trinitis, C.: Cache-oblivious matrix algorithms in the age of multi-
and many-cores. In: Concurrency and Computation: Practice and Experience
(2012)

9. Henkel, J., Bauer, L., Hübner, M., Grudnitsky, A.: i-Core: A run-time adaptive
processor for embedded multi-core systems. In: International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (2011)

10. Ji, X., Nicolaescu, D., Veidenbaum, A., Nicolau, A., Gupta, R.: Compiler Directed
Cache Assist Adaptivity. In: High Performance Computing (2000)

11. Malik, A., Moyer, B., Cermak, D.: A low power unified cache architecture providing
power and performance flexibility (poster session). In: Proceedings of the 2000
International Symposium on Low Power Electronics and Design (2000)



Towards Dynamic Cache and Bandwidth Invasion 107

12. Marty, M.R.: Cache Coherence Techniques for Multicore Proc. PhD thesis (2008)
13. Nicolaescu, D., Ji, X., Veidenbaum, A.V., Nicolau, A., Gupta, R.: Compiler-

directed cache line size adaptivity. In: Chong, F.T., Kozyrakis, C., Oskin, M. (eds.)
IMS 2000. LNCS, vol. 2107, p. 183. Springer, Heidelberg (2001)

14. Nowak, F., Buchty, R., Karl, W.: A Run-time Reconfigurable Cache Architecture.
In: International Conference on Parallel Computing: Architectures, Algorithms and
Applications (2007)

15. Nowak, F., Buchty, R., Karl, W.: Adaptive Cache Infrastructure: Supporting dy-
namic Program Changes following dynamic Program Behavior. In: Proceedings of
the 9th Workshop on Parallel Systems and Algorithms, PASA (2008)

16. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal
on Scientific Computing 26 (2005)

17. Rüde, U.: Mathematical and computational techniques for multilevel adaptive
methods. Society for Industrial and Applied Mathematics (1993)

18. Schreiber, M., Bungartz, H.-J., Bader, M.: Shared memory parallelization of fully-
adaptive simulations using a dynamic tree-split and -join approach. In: IEEE Int.
Conf. on High Performance Comp, HiPC (2012)

19. Tradowsky, C., Thoma, F., Hubner, M., Becker, J.: Lisparc: Using an architec-
ture description language approach for modelling an adaptive processor microar-
chitecture (best work-in-progress (wip) paper award). In: 7th IEEE International
Symposium on Industrial Embedded Systems, SIES (2012)

20. Zhang, C., Vahid, F., Najjar, W.: A Highly Configurable Cache Architecture for
Embedded Systems. In: 30th Annual Int. Symp. on Computer Architecture (2003)



Stand-Alone Memory Controller

for Graphics System

Tassadaq Hussain1, Oscar Palomar1, Osman S. Ünsal1, Adrian Cristal1,
Eduard Ayguadé1, Mateo Valero1, and Amna Haider2

1 Barcelona Supercomputing Center
2 Unal Center of Education Research and Development

first.last@bsc.es, amna@ucerd.com

Abstract. There has been a dramatic increase in the complexity of
graphics applications in System-on-Chip (SoC) with a corresponding
increase in performance requirements. Various powerful and expensive
platforms to support graphical applications appeared recently. All these
platforms require a high performance core that manages and schedules
the high speed data of graphics peripherals (camera, display, etc.) and
an efficient on chip scheduler. In this article we design and propose a SoC
based Programmable Graphics Controller (PGC) that handles graphics
peripherals efficiently. The data access patterns are described in the pro-
gram memory; the PGC reads them, generates transactions and manages
both bus and connected peripherals without the support of a master core.
The proposed system is highly reliable in terms of cost, performance and
power. The PGC based system is implemented and tested on a Xilinx
ML505 FPGA board. The performance of the PGC is compared with
the Microblaze processor based graphic system. When compared with
the baseline system, the results show that the PGC captures video at 2x
of higher frame rate and achieves 3.4x to 7.4x of speedup while process-
ing images. PGC consumes 30% less hardware resources and 22% less
on-chip power than the baseline system.

1 Introduction

Graphics systems are now being used in different engineering sectors such as
artificial intelligence, robotics, telecommunication, etc. Hand-held devices, such
as personal digital assistants (PDAs), or cellular phones have embedded cameras
and most of them have mega-pixel image sensor cameras and interactive appli-
cations such as symbol recognition, etc. As the image resolution of these devices
grows, application specific and high-performance hardware are required to run
complex graphics code.

In this work, we intend to design a low-power and high-performance bus con-
troller called the Programmable Graphics Controller (PGC) for FPGA based
SoC. The PGC resides in on-chip Bus Unit and holds data transfer patterns and
control instructions in its program memory. The PGC provides on-chip and off-
chip bus interconnects and controls data transfer without the support of complex

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 108–120, 2014.
c© Springer International Publishing Switzerland 2014



Stand-Alone Memory Controller for Graphics System 109

bus matrix, DMA and master processor. The PGC reduces the master/slave ar-
bitration delay, bus switching time, balances the work load and gives a promising
interconnection approach for multi-peripherals with the potential to exploit par-
allelism while coping the memory/network latencies. PGC bus scheduler provides
low-cost and simple control that arranges multiple bus access requests and com-
municates with integrated processing units. We integrated dedicated hardware
accelerators in the design as they have low footprint and low power consumption
and gives high performance computation. The PGC supports multi-peripherals
(camera, display) and processor core without support of the master cores and op-
erating system. The integration of PGC with peripherals facilitates the graphics
system to overcome wire (interconnection) and memory read/write delays and
improves the performance of application kernels by arranging complex on-chip
data transfers.

2 Related Work

Rowe et al. [1] proposed an FPGA based camera system for sensor networking
applications. The design dealt with an 8-bit microprocessor and FPGA based
hardware accelerator to capture and process the images. The system does not
support high resolutions due to limited RAM and can process 2 frame per sec-
ond. Petouris et al. [2] proposed an architecture that is used to implement and
test advanced image processing algorithms. The system gives control to the user
to control camera system through LCD panel and the system maintains contact
with a PC through a JTAG interface for storing the images on it. The design
is evaluated on Altera’s DE2 development board and is designed to be a low
cost proposal for academia. Murphy et al. [3] proposed a low cost stereo vision
system on an FPGA, based on the census transform algorithm. The design uses
a camera projection model to represent the image formation process that oc-
curs in each of the two cameras which is suitable for independent vehicles for
agricultural applications. The PGC system does not require a master core to
manage the graphics system. The data movement is controlled by an on-chip
scheduler at higher frame rate which reduces the power and cost of system. A
light weight 16-bit processor core is also proposed in the design to perform basic
image processing.

Matthew proposed an optical imaging system [4] having multiple high sensitiv-
ity cooled CCD cameras. The system gives desired representation of point source
metastases and other small injuries. Shi et al. [5] presented a camera that can not
only see but also perform recognition called Smart Camera. The proposed cam-
era system recognizes simple hand gestures. The camera was built using a single
chip of FPGA as processing device. The PGC system has ability to read data from
multiple image sensors and provide it to processing core in arranged formate. The
PGC bus management allows the processing core to perform computation (recog-
nition, transformation, etc) on run-time video at higher frame rates. 16-bit or 32-
bit processing cores can be used to perform complex algorithms.

To solve the on-chip bus bandwidth bottleneck, several types of high-
performance on-chip buses have been proposed. The multi-layer AHB (ML-AHB)



110 T. Hussain et al.

(a) (b)

Fig. 1. PGC : (a) Internal Structure (b) Flowchart

bus-matrix proposed by ARM [6] has been used in may SoC designs due to its
simplicity, the good architecture and low power. The ML-AHB bus-matrix in-
terconnection scheme provides parallel access paths between multiple masters
and slaves in a system. Hussain et al. [7,8,9,10] discussed the architecture of
a memory controller and its implementation on a Xilinx Virtex-5 in order to
establish a fast communication with the host. The PLB crossbar switch (CBS)
from IBM [11] allows communication between masters on one PLB and slaves on
the other. The CBS supports concurrent data transfers on multiple PLB buses
along with a prioritization method to hold multiple requests to a generic slave
port. Like other on-chip Bus Units, AHB (ML-AHB) and PLB (CBS) use a mas-
ter core that manages on-chip bus transactions. The PGC controls processing
units and manages data transfer between them without support of complex bus-
matrix and processor core. This reduces request/grant time and bus arbitration
time. Moreover, the support for strided and scatter/gather data transfers allows
the PGC system to manage complex data transactions.

3 PGC Graphics System Specification

In this section, we describe the specification of PGC system and design its archi-
tecture. The section is further divided into four subsections: Overview of PGC
System, the Processing Units, the Memory Unit and the Bus Unit.

3.1 Overview of PGC System

The PGC graphics system architecture is pipelined from the sensor chip over
the wire to the processing chip. The PGC inner architecture is shown in Fig-
ure 1(a), which shows the interconnection with the processing units and memory.
The system uses a combined hardware/software solution that includes hardware
accelerators and a RISC processor core. The camera control unit (CCU) and
display control unit (DCU) are custom hardware accelerators and control the
camera sensor and the display unit respectively. The Local Memory holds the
CCU/DCU data for basic image/video processing using the Processor Core.
To store high resolution images the Global Memory is integrated. The Program
Memory is used to hold CCU/DCU program description and data transfer infor-
mation. Depending upon the data transfer the Address Manager takes single or



Stand-Alone Memory Controller for Graphics System 111

Table 1. Graphics System: Use Case, Mode of Operations

Use Case Processing PixelDepth Resolution frame/sec (fps)

Video Mode
Single-Camera Video With/Without 24-bit VGA = 640×480 variable up to 150

Dual-Camera Video With 24-bit VGA = 640×480 variable

Snapshot Mode With/Without 24-bit QSXGA = 2560×2048 1

multiple instructions from Program Memory and schedules the data movement
for CCU and DCU. The PGC Scheduler handles the concurrent bus request by
the CCU and DCU and rearranges multiple bus access requests and arbitrates
data transfer without creating bus contention.

We define two use cases of graphic system (shown in Table 1); the Video
Mode and the Snapshot Mode. The processing step is used to perform filtering,
compression, transformation, etc. on the input image. Each use case has two
variants: with-processing and without-processing. The resolution of Video Mode
is selected to fit in Local Memory of the target device. In our current design, the
Video Mode supports up to 640×480 image resolution. It reads multiple frames
(images) per second (fps) from the camera sensor and transfers them to display
unit. The Video Mode is further divided into two modes. The Single-Camera
Video uses a single image sensor and Dual-Camera Video supports two image
sensors. The Snapshot Mode of operation takes a still image from the image
sensor, performs software processing if required and writes to Global Memory.
The Snapshot Mode supports a maximum resolution of 2560×2048 with 24-bit
pixels (16 Mega colors) depth.

The working operation of the PGC system is shown in Figure 1(b). The pro-
gram memory of PGC is initialized during programming-time. The program
memory holds the instructions of CCU/DCU program registers and data trans-
fer. During initialization, the PGC programs the CCU and DCU according to
the different use cases (Video Mode or Snapshot Mode).

3.2 Processing Unit

The PGC supports two types of cores: the Application Specific Accelerator Core
and the RISC Core.

Application Specific Accelerator Core: Camera Control Unit (CCU ) and
Display Control Unit (DCU ) Application Specific Accelerator Cores are used in
the design to control camera and display units respectively. The CCU grabs raw
data from Image sensor, processes it and transfers it to the system via on-chip
bus. The major function blocks of CCU are Camera Interface Front-End, Image
Signal Processor, Color processing, Scaling, Compression, and Bus controller.
Each CCU block has memory mapped internal registers that can be initialized
and programmed by the processor core. The DCU is used to control and display
image data on LCD panel. The DCU supports LCD 16bpp up to 24bpp colors
and user defined resolution from VGA to QSXGA. Programming is done by
register read/write transactions using a slave interface. The DCU consumes 425
registers and 312 LUTs on a V5-Lx110T FPGA device.



112 T. Hussain et al.

RISC Core: A low power and light weight RISC processor core is used to pro-
vide programmability, flexibility and software data processing. The processing
core changes the features by programming the PGC system using a software API.
The API can be used to correct design errors, update the system to a new graphic
standard and add more features to the graphics system. The proposed proces-
sor core has 16-bit data bus, 16-general purpose registers, custom instruction
set, non-pipelined Load/Store access, hardwired control unit, 64KBytes address
space 16 interrupts and memory mapped I/O. 1KBytes of memory is allocated
for display and camera control units using chip select. On a V5-Lx110T FPGA
device, the core uses 481 registers, 1496 LUTs and 4 Brams.

3.3 Memory Unit

The PGC graphics system memory [12] is organized into two sections: the Local
Memory and the Global Memory.

Local Memory: The Local Memory is used to support run-time video process-
ing. It also reduces wire delay, data access latency and provide parallel read/write
accesses to the processing core. The memory is shared between processor, CCU
and DCU. During Video Mode, two frames buffers are required: one for process-
ing and other for displaying. Each VGA frame has 900KBytes of size therefore
2MBytes of Local Memory are reserved. To save the image in Snapshot Mode we
use Global Memory.

Global Memory: The slowest type of memory in the graphics system is Global
Memory and is accessible by the whole system. The Global Memory has SDRAM,
SD/SDHC cards, etc. interfaces to read/write data. Even though the PGC sys-
tem has an efficient way of accessing Global Memory that best utilizes the band-
width, it still has substantially higher latency with respect to the Local Memory.

3.4 Bus Unit

Two buses are used in the graphics system which are the Graphics Bus and the
System Bus. The Graphics Bus is used for internal communication between the
processing units and Local Memory. The System Bus is used to communicate
with external peripherals such as global memories. Both buses can operate in
parallel. This section is further divided into three subsections: Bus Specification,
Bus Control Unit and Bus Interconnect Network.

3.4.1 Bus Specification
It is important to calculate the required data-rate for each use case before select-
ing and configuring the Bus Unit. This section is further divided into three sub-
sections: Graphics Bus Specification, System Bus Specification and Bus Usage.

Graphics Bus Specification: The clock of the camera and display is directly
synchronized with the output data hence define the bandwidth of Graphics Bus.
The actual theoretical data rate of the Graphics Bus (GBB) is the total band-
width of master sources (shown in Figure 2(a)). For example, during Video Mode



Stand-Alone Memory Controller for Graphics System 113

(a) (b)

Fig. 2. (a) Graphics Bus Required Bandwidth (b) PGC Graphics Bus Unit

(without-processing) the PGC reads streaming data from CCU and writes di-
rectly to DCU. For Video Mode with-processing, the PGC takes video frames
from CCU, writes them to Local Memory for processing and then transfers the
processed frames to DCU. In this case the PGC operates CCU and DCU in
parallel, therefore the bandwidth of the Graphics Bus is the sum of CCU and
DCU data-rates. For dual camera, the PGC takes two video frames and trans-
fers them to CCU. The required Graphics Bus bandwidth (shown in Figure 2(a))
with single camera without processing and with processing is given by the for-
mula GBBSC and GBBSCP respectively. Figure 2(a) also presents the bandwidth
of dual camera GBBDC . The Local Memory provides high bandwidth and has
2 cycles of latency for an individual transfer. The Bus Latency contains the
on-chip/off-chip memories read/write and on-chip bus delays. The Graphics Bus
manages multiple read/write access transactions in a single transfer and pipelines
the multiple stream, thus reducing the overhead of Local MemoryLatency and im-
proving the bus performance. After calculating bus bandwidth and considering
the different use cases we selected a bus with 100 Mhz of clock speed and 32
bit-width.

System Bus Specification: The System Bus manages data transfers during
Snapshot Mode. The PGC reads data from image sensor and writes it to Global
Memory. The bandwidth requirements of System Bus for Snapshot Mode are
given by the Formula (SBBSN ) (shown in Figure 2(a)).

Bus Usage: The PGC Graphics Bus has 400 MB/s of bandwidth, so it takes 10
nsec to transfer 1 pixel (32bit). For example, the graphics bandwidth for video of
30 fps (without-processing) is 9 Mega pixels per second. This means that given
the formula Percentage of Bususage (shown in Figure 2(a)) each pixel takes
111 nsec and occupies Graphics Bus for 9% of its time.

For Video Mode with-processing, the Graphics Bus takes 111 nsec to transfer
one pixel from CCU to Local Memory, and it takes the same time to transfer
it to DCU. Similarly Video Mode needs 18 Mega pixels of bus bandwidth, that



114 T. Hussain et al.

takes 56 nsec to transfer a pixel between image and display accelerators. The
display camera interface for Video Mode utilizes graphics for approximately 14%
of total bus time. The Snapshot Mode requires bus bandwidth of 5 Mega pixels
to transfer one image (QSXGA resolution without-processing) from CCU to the
Global Memory.

3.4.2 Bus Control Unit
The PGC control unit uses program memory, scheduler and address manager,
to manage the processing units and memory units. The program memory holds
descriptors that define the data movement between CCU/DCU, processor core
and memory unit. The descriptors allow the programmer to describe the shape of
memory patterns and its location in memory. A single descriptor is represented
by parameters: command, source address, destination address, priority, stream
and stride. The command specifies data transfers between single/multiple mas-
ters and single/multiple slaves. The address parameters also specify the master
and slave cores. The priority describes the selection and execution criteria of data
transfer by a master core. It also defines the order in which memory accesses are
entitled to be processed. Stream defines the number of pixels to be transferred.
Stride indicates the distance between two consecutive memory addresses of a
stream. PGC manages a complex data transfer protocol using single or multiple
descriptors. Each descriptor transfers a strided burst, by using multiple descrip-
tors the PGC transfers more complex data. C/C++ function calls are provided
to define a complex pattern in software.

The PGC bus scheduler along with address manager (shown in Figure 2(b)) ar-
range requests coming from single or multi-bus masters and arbitrate master pro-
cessing units. A bus master provides address and control information to initiate
read and write operations. A bus slave responds to a transfer that is initiated by
the masters core. The address manager holds the address and control information
of bus slaves. The scheduler ’s interrupt controller reads requests frommaster cores
and routes them to the slave. The address manager ’s decoder determines for which
slave a transfer is destined for. The PGC bus holds two types of status registers:
the source status and the slave status registers. The status registers indicate the
state of each master and slave, such as request, ready, busy and grant. The sched-
uler and address manager administer the status register of master and slave cores
respectively. The PGC scheduler emphasizes on priority and incoming requests of
the master core. At compile-time a number of priority levels are configured for each
data transfer. At run-time the scheduler picks a master core to transfer data, only
if it is ready to run and there are no higher priority data patterns that are ready.
If same priorities are assigned for more than one data pattern, the PGC scheduler
executes them in first-in first-out (FIFO) order.

At run-time, a master core generates a request, the interrupt controller reads
the request and updates its status registers. The scheduler reads data transfer
information of the master and slave cores from program memory and transfer
slave core information to address manager. The PGC address manager decodes
the address of each transfer and provides a select signal for the slave that is
involved in the transfer and provides a control signal to the multiplexers. A single



Stand-Alone Memory Controller for Graphics System 115

master-to-slave multiplexer (MUX ) is controlled by the scheduler. The master-
to-slave MUX multiplexes the write data bus and allocate data bus for a single
master after getting the response signal from the slave-to-master MUX. A slave-
to-master MUX multiplexes the read data bus and response signals from the
slaves to the master. Multiple master-to-slave and slave-to-master multiplexers
can be added to implement a multi-layer Bus Unit. The PGC Bus Unit can be
programmed up to eight layer bus which requires eight pairs of master-to-slave
and slave-to-master multiplexers.

3.4.3 Bus Interconnect
To connect the graphics components together, a bus interconnection is described
(shown in Figure 2(b)). We select a double layer Bus Interconnect (System Bus
and Graphics Bus) for the design due to its design simplicity and low power
consumption. Each layer is controlled by a pair of master-to-slave and slave-to-
master multiplexers. The PGC scheduler and address manager control the pairs
of multiplexers. The PGC Bus Interconnects can be configured according to the
requirements of hardware accelerator, master and slave ports. The System Bus
has a simple design that uses a single master and slave port. The bus is used to
read/write high resolution image to global memory.

The Graphics Bus is employed to provide high speed link between the CCU,
DCU, processor and Local Memory components. Current PGC Graphics Bus has
5 Masters and 4 Slaves therefore the Bus Unit is configured accordingly. The
proposed Bus Unit provides standard communication protocol and implements
the features required for high-performance.

4 Experimental Framework

In this section, we describe and evaluate the PGC based graphics system. In
order to evaluate the performance of the PGC system, the results are compared
with a generic graphics system managed by the MicroBlaze processor. The Xilinx
Integrated Software Environment and Xilinx Platform Studio are used to design
the graphic systems. The power analysis is done by Xilinx Power Estimator
(XPE). A Xilinx ML505 [13] development board is used to test the systems.
For the implementation of graphics system the THDB-D5M Camera and the
TRDB-LTM LCD Touch Panel by Terasic have been chosen. This section is
divided into two subsections: the MicroBlaze based Graphics System and the
PGC based Graphics System.

4.1 MicroBlaze Based Graphics System

The FPGA based MicroBlaze system is proposed (Figure 3 (a)) to operate graph-
ics system. The design (without CCU & DCU) uses 9547 flip-flops, 11643 LUTs
and 51 BRAMs in a Xilinx V5-Lx110T device. The system architecture is further
divided into the Processor Core and the Bus Unit.

The Processor Unit: Two MicroBlaze cores [14] are used in the graphics sys-
tem which are the Master core and the Graphics Core. The Master core is used to



116 T. Hussain et al.

program, schedule and manage the system components. The camera and display
hardware scheduling and data memory management are controlled by Graphics
processor. Both cores use local memory Bus (LMB) [15] to link with local-memory
(FPGA BRAM) that offers single clock cycle access to the local BRAM.

The Bus Unit: In the design, a Processor Local Bus (PLB) [16] provides con-
nection between peripheral components and microprocessors. The PLB has 32
bit-width and is connected to a bus control unit, a watchdog timer, separate
address read/write data path units, and an optional DCR (Device Control Reg-
ister) slave interface that provides access to a bus error status registers. Bus is
configured for single master (MicroBlaze) and multi slaves. The PLB provides
maximum of 400 MBytes of bandwidth while operating at 100Mhz and 32-bit
width, with byte enables to write byte and half-word data.

4.2 PGC Based Graphics System

ThePGCbased graphics system is shown inFigure 3(b) having components similar
to theMicroBlaze based graphic system.The implementationdetails ofPGCbased
graphics system are addressed in Section 3. Themain difference between PGC and
MicroBlaze based system is that PGC system takes instructions during initialize-
time and at run-time it manages and schedules data transfer without the support
of the processor. The processor core and System Bus remain free for the use cases
which do not involve processing. The design (without CCU and DCU) uses 5547
flip-flops, 6643 LUTs and 35 BRAMs in a Xilinx V5-Lx110T device.

5 Results and Discussion

This section analyzes the results of different experiments conducted on the dif-
ferent graphic systems. The experiments are classified into four subsections: Bus
Performance, Snapshot Mode Performance, Applications Performance and Area
& Power.

5.1 Bus Performance

To measure the bus performance, the graphic systems are executed on Video
Mode (without-processing) having fixed resolution (640×480) and variable frame

(a) (b)

Fig. 3. Graphics System: (a) MicroBlaze Core System (b) PGC System



Stand-Alone Memory Controller for Graphics System 117

rate (frame per second - fps). The image sensor is programmed to transfer vari-
able frames (fps) and each frame has VGA quality. Inside DCU we integrated a
controller that detects video frame rate, the speed at which frames are coming. A
hardware timer is added to the on-chip bus controller that measures clocks used
to transfer frames between master to slave peripherals. This section discusses
results for Single-Camera Bus Bandwidth and Multi-Camera Bus Bandwidth.

5.1.1 Single-Camera Bus Bandwidth
In this section, we compare the bus performance of graphic systems while using
single image and display units. Figure 4 shows the on-chip data bus transfer
speed of PGC and Microblaze systems for different video frame rates. A single
THDB-D5M image sensor is used. It can operate up to 150 fps with VGA res-
olution. The X-axis presents video of different fps. The Y-axis shows measured
bandwidth for different videos frame rates. To measure the bandwidth we calcu-
late the time to transfer video from CCU to DCU. Theoretically the PLB and
the graphic bus support video of VGA quality more than 100 fps. In practice
there are on-chip bus arbitration and request grant time delays. By using the
PGC system, the results show that the system manages video for higher fps.
While the MicroBlaze based graphic system supports video up to 40 fps, with
higher fps the video starts flicking. The system uses a separate processor core
that manages the data movement of CCU and DCU. The PGC allows graphics
system to operate Video Mode up to 85 fps. The PGC resides in on-chip bus
unit and has direct interconnection with CCU and DCU. The PGC control unit
controls the CCU and DCU without the intervention of processor core which
reduces the master/slave request/grant time.

5.1.2 Multi-camera Bus Bandwidth
A multi-camera graphics system can be used for 3D-graphics using geometric
transformation and projection plane [17]. In this section, two THDB-D5M image
sensors are used that generate two separate, simultaneous video streams and
apply Alpha blending application that evaluate the performance of system. Each
camera is operating at VGA color resolution. The video of dual image sensors is

Fig. 4. Single and Dual Camera Systems: Bandwidth For Different Frame Rate



118 T. Hussain et al.

combined into a single stream, processed by graphics core and then displayed.
The key issue of the dual-camera system is receiving the images synchronously, in
the right format and on the right bus. The graphic system sends the configuration
data to both image sensors and ensure that they are properly configured and
synchronized. Once both sensors are set up and synchronized, both sensors begin
to transmit image data. The graphic system looks for the appropriate control
characters so it recognizes the start of the frame and start of line for each sensor.
The PGC system performs it by looking for a control character and sequence of
sensors commands. Alpha blending is applied to give a translucent effect to the
incoming video stream. The application blends the color value of the consecutive
pixels of image sensors of the same position. This blending is done according
to the alpha value associated with the pixel. The alpha value represents the
capacity of the given pixel. After blending, the result color value is updated to
the frame buffer of the DCU. Results show (Figure 4) that PGC system handles
dual camera system and support system up to 30 fps. The MicroBlaze based
dual-camera graphics system supports videos only up to 15 fps. The PGC on-
chip scheduler and decoder update multi-camera information in status register.
This allows both cameras to synchronize without using extra clocks.

5.2 Snapshot Mode Performance

In this section the performance is measured by executing PGC and MicroBlaze
systems in Snapshot Mode. During Snapshot Mode the system reads one still
image of QSXGA resolution from CCU using Graphics Bus and writes it to
Global Memory using System Bus. The MicroBlaze based system and PGC take
22.17M and 7.07M clocks respectively to transfer an image. The Snapshot Mode
results show that the PGC system achieves 3.1x of speed compared to MicroBlaze
based system. The PGC directly controls the Graphics Bus, System Bus, CCU
and Global Memory, therefore it takes less clocks to read data from CCU to
synchronize different units, transfer data from Graphics Bus to System Bus and
write data to Global Memory. The MicroBlaze based system uses a separate bus
controller that controls bus system and a DMA controller that transfers data
from CCU to Global Memory.

Fig. 5. Application Performance



Stand-Alone Memory Controller for Graphics System 119

5.3 Applications Performance

In this section we execute some application kernels that perform image process-
ing. The image is saved in Global Memory (SDRAM), the processor core reads
the 4KBytes image, performs computation and then writes it back to Global
Memory. To achieve low power the application kernels are executed by the 16-
bit core on PGC system. Alternatively, a 32-bit MicroBlaze core is also used
with PGC system to get higher performance. Figure 5 shows time (clock cycles)
to process application kernels. The X and Y axis represent application kernels
and number of clock cycles, respectively. The Y-axis has logarithmic scale. Each
bar represents the application kernel’s execution time with 16/32 bit cores and
memory access time. By using the PGC system with 16-bit and 32-bit cores,
the results show that thresholding (Thresh) applications achieve 4.6x and 4.7x
of speedup respectively over the MicroBlaze graphics system. This application
kernel requires single pixel element and very few operations, therefore it achieves
almost the same performance on 16-bit and 32-bit cores. The FIR application
has streaming data access pattern and perform multiplication and addition. The
PGC 16-bit and 32-bit cores achieve 3.4x and 4.7x of speedup respectively. The
FFT application kernel reads a 1D block of data, perform complex computation
and writes it back to Global Memory. This application achieves 4.4x and 4.8 of
speedup. The Laplacian application processes over 2D block of data and achieve
5.2x and 7.4x of speedup. The PGC places access patterns on program memory
at program-time and are programmed in such a way that few operations are re-
quired for generating addresses at run-time. The MicroBlaze based system uses
multiple load/store or DMA calls to access complex patterns. The speedups are
possible because PGC is able to manage data transfers with a single descriptor.
At run-time, PGC takes descriptor from program memory and manages them,
whereas the baseline system is dependent on the processor core that feeds data
transfer instructions. The stand-alone working operation of PGC removes the
overhead of processor/memory system request/grant delay.

5.4 Power

In comparison with on-chip power in a Xilinx V5-Lx110T device, the Microblaze
based system dissipates 3.45 watts and the PGC system 2.7 watts. Results show
that PGC system consumes 30% fewer slices than the Microblaze system. While
comparing on-chip power of Microblaze graphics system with the PGC, results
show that PGC system consumes 22% of less on-chip power.

6 Conclusion

With the increase of image resolution the graphics system demands a low power,
low cost and high performance architecture. In this paper we have suggested a
Programmable Graphics Controller (PGC) for low cost and low power graphics
system. The system takes high resolution images and supports video at higher
frame rate without the support of a processor. The PGC system provides strided,



120 T. Hussain et al.

scatter/gather and tiled access pattern that eliminates the overhead of arranging
and gathering address/data. In the future, we plan to execute some complex and
high performance image processing applications which include image recognition,
image transform and image compression.

Acknowledgments. We thankfully acknowledge the support of Microsoft Re-
search though the BSC-Microsoft Research Centre, the European Commission
through the HiPEAC-3 Network of Excellence, the Spanish Ministry of Educa-
tion (TIN2007-60625 and CSD2007-00050), the Generalitat de Catalunya (2009-
SGR-980) and Unal Center of Education Research and Development.

References

1. Rowe, A., et al.: Cmucam3: an open programmable embedded vision sensor. In:
International Conferences on Intelligent Robots and Systems (2007)

2. Petouris, M., et al.: An fpga-based digital camera system controlled from an lcd
touch panel. In: International Symposium on Signals, Circuits and Systems, ISSCS
(2009)

3. Murphy, C., et al.: Low-cost stereo vision on an fpga. In: 15th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, FCCM (2007)

4. Lewis, M.A., et al.: A multi-camera system for bioluminescence tomography in
preclinical oncology research. Diagnostics (2013)

5. Shi, Y., Tsui, T.: An FPGA-based smart camera for gesture recognition in HCI
applications. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007,
Part I. LNCS, vol. 4843, pp. 718–727. Springer, Heidelberg (2007)

6. AMBA 4 AXI (2013), http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ihi0022e/index.html

7. Tassadaq, H., et al.: Recongurable memory controller with programmable pattern
support. In: 5th HiPEAC Workshop on Reconfigurable Computing, WRC (2007)

8. Tassadaq, H., et al.: PPMC: A Programmable Pattern based Memory Controller.
In: 8th International Symposium on Applied Reconfigurable Computing, ARC
(2012)

9. Tassadaq, H., et al.: PPMC: Hardware Scheduling and Memory Management sup-
port for Multi Hardware Accelerators. In: 22nd International Conference on Field
Programmable Logic and Applications, FPL (2012)

10. Tassadaq, H., et al.: APMC: Advanced Pattern based Memory Controller. In:
22nd ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, FPGA (2014)

11. IBM CoreConnect. PLB Crossbar Arbiter Core (2001)
12. Tassadaq, H., et al.: Implementation of a reverse time migration kernel using the

hce high level synthesis tool. In: International Conference on Field-Programmable
Technology, FPT (2011)

13. Xilinx University Program XUPV5-LX110T Development System,
http://www.xilinx.com/univ/xupv5-lx110t.htm

14. Embedded Development Kit EDK 10.1i. MicroBlaze Processor Reference Guide
15. Xilinx LogiCORE IP. Local Memory Bus (LMB) (December 2009)
16. Embedded Development KitEDK 10.1i. MicroBlaze Processor Reference Guide
17. Hartley, R., et al.: Multiple view geometry in computer vision, vol. 2. Cambridge

Univ. Press (2000)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.xilinx.com/univ/xupv5-lx110t.htm


Evaluating High-Level Program Invariants

Using Reconfigurable Hardware�

Joonseok Park1 and Pedro C. Diniz2

1 Computer and Information Engineering
Inha University, Incheon, Rep. South Korea

joonseok@inha.ac.kr
2 Univ. of Southern California / Information Sciences Institute

Marina del Rey, CA, USA
pedro@isi.edu

Abstract. There is an increasing concern about transient errors in deep
sub-micron processor architectures. Software-only error detection ap-
proaches that exploit program invariants for silent error detection incur
large execution overheads and are unreliable as state can be corrupted
after invariant check points. In this paper we explore the use of config-
urable hardware structures for the continuous evaluation of high-level
program invariants at the assembly-level. We evaluate the resource re-
quirements and performance of the proposed hardware structures on a
contemporary reconfigurable hardware device. The results, for a small
set of kernels codes, reveal that these hardware structures require a very
small number of resources and are fairly insensitive to the complexity of
the invariants thus making the proposed hardware approach an attrac-
tive alternative to software-only invariant checking by integrating them
in traditional processor architectures.

1 Introduction

The sheer scale of multicore systems and their need to cooperatively perform
aggregate large scale computations expose their brittleness to transient failures.
While much progress has been done in protecting regular structures such as stor-
age with either pairing techniques for the correction of single memory bit errors
and dual error detection (SECDED) most internal processor structures (logic
and even register file) are largely unprotected. Silent data corruption (SDC) in
register files and L1 data caches (deemed too expensive to protected via current
storage protection practices) are notoriously nefarious as a single even transient
error in these structure will quickly ”spread” to cache memories and registers.

In this paper we explore an alternative approach that evaluates program in-
variants using configurable hardware structures and thus avoids the execution

� Supported in part by the National Science Foundation under Award CCF 1255949
and by the Semiconductor Research Corp. under contract 2013-TJ-2425. This work
was also partly supported by Basic Science Research Program by the National Re-
search Foundation of Korea funded by the Ministry of Education (2011-0024909).

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 121–132, 2014.
c© Springer International Publishing Switzerland 2014



122 J. Park and P.C. Diniz

penalties of software-only invariant checking. The proposed approach has the
benefit of constant monitoring of the values of the variables involved in an in-
variant, thus preventing further state corruption as soon as an error is detected.
These benefits, however, come at the added cost of additional hardware for in-
variant evaluation, but more importantly, they require the accurate mapping of
high-level program variables to hardware registers and the tracking of this map-
ping at run-time. This paper thus makes the following specific contributions:

1. Describes an algorithm for the mapping of high-level program invariants to
assembly-level invariants that can be directly evaluated in hardware. This
algorithm can be used in a compiler to map program invariants to hardware.

2. Describes the architecture of configurable hardware structures for the eval-
uation of such invariants.

3. Evaluates the implementation complexity and expected performance of the
proposed hardware structures for a small set of kernel codes.

The experimental results reveal that the proposed hardware structures when
mapped to contemporary Field-Programmable Gate Arrays (FPGAs) devices
require a very small number of resources. Furthermore, the hardware structures
are fairly insensitive to the number of clauses in the explored program invariants.
Both these features, make the proposed structures an attractive alternative to
software-only invariant checking, by their integration with traditional processor
architectures in the form of reconfigurable logic.

The remainder of this paper is structured as follows. The next section provides
a simple example illustrating the use of invariants in detecting abnormal compu-
tation behavior. Section 3 describes how to map high-level program invariants to
their corresponding assembly-level representation that can be evaluated in cus-
tom hardware. Section 4 presents experimental results for a set of kernel codes
and section 5 describes related work. Finally, we conclude in section 6.

2 Using Invariants for Silent Error Detection

We now present an example of the use of invariants for the detection of silent
errors in a processor’s logic and internal storage. As this example illustrates
the implementation of this approach requires an interaction between program
analyses and compiler-level register allocation for tracking the values of high-
level variables. We focus on the invariants associated with the program variable
i commonly used in the definition of for loop constructs in a language such
as C. At a high level, a compiler, or in its absence a programmer, can derive a
correctness invariant that would assert the variable i can never assume a value
larger than a specific constant value and can never be negative.1

To evaluate such an invariant in hardware one must track which hardware
registers will hold and at what points of the execution, the values of i. The

1 While the presence of transient errors would not ensure that i would assume mono-
tonic behavior, it would at least detect clearly abnormal execution behaviors.



Evaluating High-Level Program Invariants Using Reconfigurable Hardware 123

key knowledge for this mapping can be captured the computation’s Control-
Flow-Graph (CFG) using Static Single-Assignment (SSA) form which explicit
represents the flow of values between variables as illustrated in figure 1(a). The
example highlights the values of the loop control variable, i, across the execution
of blocks block0 through block4. Figure 1(b) depicts the same CFG after a register
allocation phase where φ nodes of the SSA representation have been instantiated
with real registers in this example using the MIPS $t8 and $t9 registers and
taking into account the live ranges of each of the variables names.

True
False

3block 2block

1block

0block

4block

move $t8, 0

move .., $t9move $t9, ..

move .., $t9

move $t9,$t8

addi $t8,$9,1

bne $t8, $a2, L1

$t9

move $t9,$t8

$t8

$t8

$t9

$t8

R0

R1

R2

R2

(c)(b)

True
False

3block 2block

1block

0block

4block

move $t8, 0

move $t9,$t8

move .., $t9move $t9, ..

move .., $t9

move $t9,$t8

addi $t8,$9,1

bne $t8, $a2, L1

(a)

True
False

3block 2block

1... = i 

i  = 0 (i , i )01 2

1block

i  = 00

0block

4block
1i  = i + 1 2

2if (i < N)

Fig. 1. Example: (a) CFG representation. (b) SSA representation. (c) Tracing of values
for variable i and the associated CFG sections and registers.

Given this assembly-level representation there are three main observations
about tracking of the value of the i variable:

1. Depending on the aggressiveness of the compiler optimizations the loop con-
trol variable might not even be mapped to any field of the enclosing proce-
dure activation record. As such, at run-time there are variables that might
not be mapped to virtual address.

2. A variable might be mapped to distinct live ranges as well as distinct regis-
ters. In this particular example one of i’s live ranges is mapped to the $t8

register whereas another is mapped to the $t9 register.
3. Values of the register $t9 in block3 are not related to the variable i.



124 J. Park and P.C. Diniz

In order to track and use the values of the variable i at run-time an imple-
mentation must be able to detect the start and the end of each of the traces
of live ranges of the variables to validate output of a hardware logic block that
used the value of i for the evaluation of an invariant.

Figure 1(c) depicts the same CFG as Figure 1(b) but indicating which CFG
section or regions (labelled R0 through R2) and which register the implementation
needs to trace the value of, to capture the run-time value associated with the
variable i. Notice that in some CFG sections as is the case of the block3 no
values are associated with i and the checking of the values of registers $t8 and
$t9 can be effectively postponed to the beginning of block4 thus eliminating the
need for an additional tracing region.

3 Deriving and Mapping Invariants to Hardware

We focus on the derivation of simple invariants from a selected set of program-
ming constructs. These invariants can be automatically derived using tools such
as Houdini [1], or directly by relying on programmer annotations.

3.1 Loop and Array Indexing Invariants

In many loop constructs, such as for loops, a compiler can perform symbolic
analysis to determine that the loop upper bound is constant (although unknown
at compiler time). This is the case with common for loop constructs of the form:
for(i = 0; i < n; i++){ ... } where the loop body includes no assignments
to variable n. Here a compiler can safely derive the logic invariant (i >= 0) &&

(i < n) whenever the control reaches the statements in the body of the loop.
Furthermore, and under the assumption of no assignments to i2 the compiler can
even derive hardware that observes the monotonic behavior of i. While out of the
scope of the work described in this paper, the derivation of more sophisticated
invariants and the corresponding hardware structures is clearly within reach of
the techniques and approach presented here.

Associated with loop constructs, programmers commonly use array variables
with statically known indexing bounds. Also, when relying on common dynamic
memory allocation routines such as malloc once allocated the sizes of these
arrays often remain unchanged throughout the execution. Even if allocated dy-
namically a compiler can generate code that tracks the size of arrays saving that
information to be used at run-time for array indexing bounds checking. Irrespec-
tive of the allocation scheme, the array bounds checking3 can be captured by an
invariant with the same structure as the loop invariant described above.

2 A simple condition that compilers performing loop induction variable recognition
and strength reduction can check.

3 Software array bounds checking has been the subject of intense research, in particular
the minimization of the overhead it incurs (as it relies on additional instructions).
The approach presented here can in fact eliminate this overhead.



Evaluating High-Level Program Invariants Using Reconfigurable Hardware 125

3.2 Mapping Invariants to Assembly: SSA and Live Ranges

The mapping of high-level program invariants to the assembly instructions that
manipulate the corresponding values, requires knowledge about which register(s)
will hold the values of which program variables and when, i.e. when in the
execution of the code is this binding of variables to registers valid. In this context
a compiler must capture the following information:

– Live Range Start Address: Relative PC address offset from the beginning of
the procedure where the invariant needs to begin holding.

– Live Range End Address: Relative PC address offset from the beginning of
the procedure where the invariant still needs to hold.

– Mapped Register that holds the value of the variable v.
– Invariant to be evaluated possibly making explicit reference to other registers

(corresponding to other high-level variables) or symbolic constants.

The issue with the starting and ending PC address offsets relates to the fact
that it is possible for two or more live ranges of a given variable to overlap
as at a control-flow joint-point a variable can be mapped to the same register
while originating from multiple locations within a procedure.4 As the example in
section 2 illustrates, the mapping of a variable values to registers is directly (and
almost trivially) derived from the SSA representation after register allocation.

A subtle but important consequence of the potential assignment of different
registers to the same high-level program variable and of the fact that the same
invariant might be splitted across branches of a given web (possibly even disjoint)
is that a single high-level invariant may have to be cast as the union of invariants
whose evaluation logic although the same, is active in distinct CFG regions and
possible using different registers. This is the illustrative case of the invariant
illustrated in figure 1.

3.3 Translation to Hardware

The translation of invariants to hardware follows a simple mapping of its logic
clauses using common numerical operations + or - and the trivial translation to
hardware of bit-level operations and, or and not. Special attention is given to
minimization or even elimination of arithmetic operations as they can lead to
slower hardware implementations. For example the predicate (i < 16) && (i

> 0) can be implemented by logic that checks that all upper 28 bits of a 32− bit
integer representation are 0 and in its lower 4 bits at least one bit is non-zero.
The figure 2(a) below depicts the implementation of this predicate that does not
require any subtraction operator.

In other cases, however, as for instance with the predicate (i < j) the use of a
subtractor is required as shown in figure 2(b). In this case, the compiler can, nev-
ertheless combine the knowledge that both i and j values are less than a specific

4 In the compiler parlance multiple live-ranges form a web itself associated with a
single register which can have multiple starting and ending points.



126 J. Park and P.C. Diniz

P = (i < j)

(b)

i 32

j 32

a

b

(a-b) [31]

LessThan

(a)

P = (i < 16) && (i > 0)

PosLessThan16

i 32
[31..4]

[3..0] P = (i < j) given that 
    (i > 0) && (i < 16) &&
    (j > 0) && (j < 16)

(c)

PosLessThan16i
32

PosLessThan16j 32

a

b

(a-b) [4]

LessThan
4

4

[3..0]

[3..0]

Fig. 2. Example of hardware implementation Predicates: Example of predicate (i >

0) && (i < 16) without subtraction operation (a); Example of predicate (i < j) with
generic subtraction operator; Exploiting values ranges of both i and j (c)

constant to fold that information in the predicate evaluation and thus reduce the
size of the subtractor circuit used. The combined example in figure 2(c) shows
the use of the additional clauses (i < 16) and (j < 16) commonly resulting
from the use of the loop control variables i and j in nested loops.

3.4 System Architecture and Invariant Checker Circuit

At a high-level we envision an architecture where a configurable Invariant Checker
circuit is coupled to a processor execution pipeline via the register file wherefrom
the values used to evaluate the invariant clauses are drawn (as depicted in fig-
ure 3(a)). In this illustrative architecture the Invariant Checker is composed a
single program invariant logic block, itself structured as three independent logic
sub-blocks that evaluate its predicates or clauses.

The evaluation of an invariant is activated by recognizing the CFG region of
interest (bounded by the live ranges’ start/end PC offset values). If the program’s
execution moves into the CFG region of interest, the Invariant Logic block will
continuously track the corresponding clauses via the values of the hardware
registers defined by the mapping of high-level program variables to assembly.
If a violation of an invariant is detected (corresponding to one or more of its
clauses evaluating to false) the hardware records the value of the program
counter register (PC). Other state of interest, such as the contents of ancillary
registers, of the main processor can obviously also be recorded.

3.5 Reconfigurable Invariant Logic Block

The base architecture of an Invariant Logic block, depicted in figure 3(b), is
organized into three main blocks, namely the FSM (and its address registers),
one or more Clause Logic blocks and as Register Selector block as described next.



Evaluating High-Level Program Invariants Using Reconfigurable Hardware 127

Fig. 3. Overall system architecture with an Invariant Checker circuit for a single pro-
gram invariant with 3 logic clauses (a); Architecture of an Invariant Logic block (b)

– Register Selector: This block selects which registers should have their
values tested against the clause logic blocks.

– FSM: This finite-state-machine (FSM) block detects the starting address
value and the ending address value corresponding to a CFG region where
an invariant (and its clauses) should be evaluated. By not enforcing all the
addresses in a traced region to be consecutive, a FSM allows for the continued
activation of invariants across control flow (jumps).

– Clause Logic: These blocks directly implement the logic of each of the
invariants’ clauses. As many clause logic blocks can refer to the same variable,
and hence the same register, the reuse of logic of this block is possible.

The output of a Invariant Checker is an error flag alongside the PC that is
recorded when a violation of an invariant is detected. While the structure of
the FSM and Register Selector blocks is well defined, the structure a clause
logic block is dictated by the needs in terms of inputs and operators of each
invariant. In practice, however, these blocks includes a range of comparators,
arithmetic operators of combined with simple boolean logic gates as illustrated
in the examples in section 3.3.

4 Experiments

We now report on the evaluation the implementation complexity, in terms or
hardware resources and performance, of the Invariant Checker circuit described
in section 3. For this evaluation we relied on a set of high-level program in-
variants for three basic code kernels. After a brief description of each kernel



128 J. Park and P.C. Diniz

we describe the derived invariants and evaluate the overhead of a software-only
invariant checking approach. We then present implementation results of the In-
variant Checker circuit for each of the kernel codes and respective invariants
when targeting an FPGA device.

4.1 Methodology

In this evaluation we used a set of three (3) simple kernel codes developed in the
C programming language. For each kernel we have manually derived a small set
of program invariants for the main computational loops in each code.5 We then
augmented each code with instructions to check the invariants at selected exe-
cution points thus measuring the overhead of a software-only invariant checking.

We then derived a Verilog specification of the logic clauses for each Invariant
Checker circuit as required in each kernel code and simulated it (for correctness)
using ModelSimTM. Lastly, we synthesized each Invariant Checker design using
the Xilinx ISETM14.3 synthesis tool targeting a Virtex-6TMFPGA [2] device to
evaluate the size and clock rate of the corresponding implementation.

4.2 Sample Set of Codes and Derived Invariants

The 3 kernels codes used in our evaluation are as follows:

– InsertSort: This is the basic insertion sort algorithm of 65, 536 integer val-
ues, structured as a doubly nested loop. We derived two invariants over the
loops control variables requiring the iteration space to be ”triangular”.

– FFT: This kernel computes a one-dimensional in-place single-precision
floating-point Fast Fourier Transform for a vector of length 16.We derived two
integer invariants that bound the array access and loop iterations.6

– BFS: This kernel computes the breath-first-search number associated with
the nodes of a 32-node directed graph. The algorithm uses a worklist algo-
rithm over an array. We derived two invariants checking the scanning of the
worklist array to be monotonic, i.e. the two index pointers move in ascending
order, one always trailing the other.

4.3 Overhead of Invariants in Software

We analyzed the execution of each of the kernel codes and observed their over-
head in terms of the additional source code compiler-inserted instructions as well
as actual executed instructions using the Intel R©VTune Amplifier XE 2013TM per-
formance tool on an Intel i7-2600 machine clocked at 3.4 GHz.

The results are depicted in table 1 where v denotes a program variable (sub-
script distinguishes between variables and hence registers); K denotes a compile-
time known constant (different from either 0 or 1) and N denotes a symbolically

5 Omitting invariants in initialization sections of the codes.
6 We deliberately ignored predicates involving floating-point values as extreme cases
such as NaN are detected in common floating-point unit implementations.



Evaluating High-Level Program Invariants Using Reconfigurable Hardware 129

Table 1. Synopsis of kernel invariants and software-only execution overhead

Kernel Number of Structure of Invariant Number of Execution
Code Invariants Variables Overhead (%)

InsertSort 2 [(v0 >= 0) and (v0 < K)] 3 9.3
[(v1 >= 1) and (v1 <= N)]

FFT 1 [(v0 > v1) or (v2 <= N)] 4 0.5

BFS 1 [(v0 >= N)] 2 2.04

constant value (run-time constant). Except for small or compile time known con-
stants, all other invariant inputs require a register reference when implemented
in hardware. This number of registers is also indicated in the table. Lastly, the
table includes the invariant checking overhead as a percentage of additionally
executed instructions with respect to the software version without any invariant
checking. To reduce sample size sensitivity we profiled 10K executions of the
BFS and FFT kernels and report the average execution overhead for 5 runs of
each code and using the -O compiler flag option.

As shown, the instruction execution overhead, while not being overwhelming
in two of the three codes, is also non-negligible, in particular for the InsertSort
as the invariants are evaluated at every internal loop iteration. Moreover, this
overhead figure corresponds to the entire execution of each kernel code and not
just the function or loop in which the invariant instructions were inserted as the
latter overhead figure is bound to be higher.

4.4 Implementation Results on an FPGA

Table 2 presents FPGA implementation results of the Invariant Checker circuits
for the three kernel codes as presented in table 1. The table indicates for each
implementation design the number of Flip-Flop elements (FFs); the number of
Look-Up Tables (LUTs) and the maximum frequency at which each design can be
safely clocked. The current set of designs are implemented using 32-bit register
sizes. In these results we used the Xilinx ISE 14.3 Synthesis tool targeting a
Xilinx Virtex-6 FPGA [2] (xc6vlx75t-2ff484), with area reduction as the design
goal. As a reference, the target FPGA has 46, 560 LUTs and 93, 120 FFs. No
DSP-48 blocks were used so not to bias the designs that requires arithmetic
operators for the evaluation of the invariants and make the results as device-
family independent as possible.

Overall, the sizes of the Invariant Checkers are very small exhibiting low
numbers of LUTs (tiny portions of a large Virtex-6 FPGA). The designs clock
rate, however are fairly low, in particular if an effective integration with a modern
execution pipeline is desired (see discussion section below).

Table 2 also includes a combined design where we have merged all the in-
variants for the three kernels codes so as to evaluate the impact on an increasing
number of clause and invariant checker circuits. As can be observed the increase
of the combined design over the largest of the individual designs is very small,



130 J. Park and P.C. Diniz

Table 2. FPGA implementation results for Invariant Checkers (32 bits)

Kernel Number of Number Clock Rate
Code FFs of LUTs (MHz)

InsertSort 165 67 140.7

FFT 233 195 103.9

BFS 165 96 123.8

Combined 236 295 84.4

suggesting that the logic blocks in each Invariant Checker circuits are a small
fraction of the overall design.

4.5 Discussion

Overall the results elicit the following observations. First, the structure of an
Invariant Checker circuit is simple and easily parametrizable. An invariant and
its clauses can be easily mapped to custom logic using a simple logic mapping
scheme. Second, the Invariant Checker circuits, even for a modest set of invariants
(the combined design has 4 logic invariant circuits) are small with respect to the
overall resources capacity of a modern FPGA device. This suggests that the
inclusion of a reconfigurable array (even of modest size) as a configurable region
in a common processor is feasible. Lastly, however, the attained clock rate of the
designs is very modest and clearly not on par with existing processor execution
pipelines, in itself a major drawback, happening the effective integration of an
Invariant Checker circuit with a modern processor. One possible alternative to
the fine-grain FPGA-like fabric explored here, would be the use of circuit using a
coarse-grain Programmable Logic Device (PLD) style of architecture. Internally,
such PLD architecture would contain fixed blocks such as the FSM and Register
Selector as hard macros onto which coarse-grain field-programmable components
such as comparators, adders and zero/sign detectors of various bit-widths would
be connected. While not as flexible as the fine grain FPGA-style of configurable
logic, this PLD-style of architecture would allow better and more predictable
and higher clocking performance.

5 Related Work

The growing interest of reconfigurable architectures and the expected increase in
transient transistor failure rates have prompted numerous researchers to develop
various techniques to ameliorate the potential impact of these failures. We focus
here on intra-design techniques for transient errors that are complementary to
both techniques for the detection of permanent faults (e.g, [3]) or techniques
that rely on the re-programming of the device (either partially or totally) from
a ”golden” copy of the base design in what is commonly known as scrubbing [4].



Evaluating High-Level Program Invariants Using Reconfigurable Hardware 131

Traditional techniques for detecting and correcting soft errors rely on hard-
ware spatial replication and voting in the form of triple modular redundancy
(TMR). TMR can detect and correct a single error at the expense of a sub-
stantial hardware and energy penalty. To mitigate the spatial impact of TMR
researchers have combined hardware and software protection. As an example,
Cuenca et. al [5] describe the hardening in a soft-microprocessor of a small sub-
set of architecture components, such as the program counter, register file, and
stack pointer thus hardening some of the components in hardware (via TMR)
and others in software (via SWIFT-R [6]). Other techniques combine duplication
of resources with temporal redundancy, named Duplication-with-Compare with
Concurrent-Error-Detection (DWC-CED) [7].

Other approaches have focused exclusively on software-level techniques at var-
ious levels of abstraction. Reinhardt et. al [8], have proposed simultaneous and
redundantly threaded (SRT) processors exploiting the multiple hardware contexts
of a symmetric multiprocessor architecture for fault detection where redundant
copies of a program’s execution execute on independent threads. Performance
overhead is reduced by loosely synchronizing the threads, and eliminating cache
misses and branch mis-speculations in the checking thread. At a lower level of
granularity, Oh et. al [9] proposed EDDI where instructions of a computation
are replicated and the values compared to detect errors. These instructions are
duplicated and interleaved to maximize available ILP when executed on a super-
scalar architecture. While this approach provides error detection on any archi-
tecture, regardless of hardware support, the duplication of program flow incurs
an average 89.3% performance penalty for the benchmarks tested. Rather then
duplicating instructions, other authors have focused on techniques that address
control-flow errors, by devising minimal invading code insertion schemes (using
the notion of signatures) [10] that indicate a faulty control flow in itself a reflect
of an unspecified internal error. While this approach only protects control flow
errors, its overhead is extremely low for non control-intensive computations.

While previous efforts include many points of contact with the work presented
in this paper, there are subtle but important differences. First, and rather than
relying on software-only instruction-based evaluation of invariants at specific
points of the execution, our approach relies on the continuous evaluation of in-
variants using the hardware registers that hold the variables values. Second, the
proposed architecture (the Predicate Processor) relies on reconfigurable hard-
ware logic and can thus be configured to suite the specific needs of the invariants
for a given code. Lastly, and unlike other instruction-based methods, the pro-
posed approach requires a close interaction between the compiler (in particular
with its register allocation phase) so that program-level variables can be mapped
to registers. Lu et. al [11] described an approach similar to ours but where they
explicitly rely on the mapping of variables to the activation records of each pro-
cedure onto the stack and thus cannot handle the continuous or instantaneous
checking of invariant violation that occurs in optimized code or code where the
values of the variables are not explicitly written to storage or when these values
live exclusively in registers and are never mapped to external processor storage.



132 J. Park and P.C. Diniz

6 Conclusion

As transient errors will become the norm rather than the exception, architec-
tures will have to incorporate error detection and possibly correction capabilities
to mitigate their effects. In this paper we explore the use of reconfigurable hard-
ware structure for the evaluation of high-level program invariants used to detec-
tion abnormal program behavior. We described a mapping approach for these
high-level program invariants to assembly-level invariants that can be directly
evaluated in hardware and described the architecture of a hardware Invariant
Checker circuit to directly evaluate them. Implementation results on a contem-
porary FPGA device, albeit limited, suggest that even for a modest number of
program invariants the proposed hardware structures require a small amount of
resources and are fairly insensitive to the number of invariant clauses.

References

1. Flanagan, C., M. Leino, K.R.: Houdini: An Annotation Assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

2. Xilinx Corp., Virtex-6
TM

Series FPGAs: Overview (2012),
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

3. Yu, S.-Y., McCluskey, E.: Permanent Fault Repair for FPGAs with Limited Re-
dundant Area. In: Proc. of the IEEE Intl. Symp. on Defect and Fault-Tolerance in
VLSI Systems. IEEE Computer Society, Los Alamitos (2001)

4. Heiner, J., Sellers, B., Wirthlin, M., Kalb, J.: FPGA Partial Reconfiguration via
Configuration Scrubbing. In: Proc. of the 2009 Intl. Conf. on Field Programmable
Logic and Applications (FPL), pp. 99–104 (2009)

5. Cuenca-Asensi, S., Martinez-Alvarez, A., Restrepo-Calle, F., Palomo, F., Guzman-
Miranda, H., Aguirre, M.: A Novel Co-Design Approach for Soft Errors Mitigation
in Embedded Systems. IEEE Trans. on Nuclear Science 58(3) (2011)

6. Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D.: SWIFT: Software
Implemented Fault Tolerance. In: Proc. of the Intl. Symp. on Code Generation and
Optimization, pp. 243–254 (March 2005)

7. Kastensmidt, F., Neuberger, G., Carro, L., Reis, R.: Designing and Testing Fault-
tolerant Techniques for SRAM-based FPGAs. In: Proc. of the 1st Conf. on Com-
puting Frontiers, pp. 419–432. ACM, New York (2004)

8. Reinhardt, S., Mukherjee, S.: Transient Fault Detection via Simultaneous Multi-
threading. Computer Architecture News 28(2), 25–36 (2000)

9. Oh, N., Mitra, S., McCluskey, E.: ED4I: Error Detection by Diverse Data and
Duplicated Instructions. IEEE Trans. on Comp. 51(2) (February 2002)

10. Vemu, R., Abraham, J.: CEDA: Control-Flow Error Detection Using Assertions.
IEEE Trans. on Computers 60(9), 1233–1245 (2011)

11. Lu, H., Forin, A.: Automatic Processor Customization for Zero-Overhead Online
Software Verification. IEEE Trans. Very Large Scale Integr. Syst. 16(10), 1346–1357
(2008)

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf


Automated Data Flow Graph Partitioning

for a Hierarchical Approach
to Wordlength Optimization

Enrique Sedano1�, Daniel Menard2, and Juan A. López1

1 ETSI Telecomunicación (UPM)
Avenida Complutense, 30

28040 Madrid, Spain
{esedano,juanant}@die.upm.es

2 INSA/IETR
20, Avenue des Buttes de Coësmes

35708 Rennes, France
daniel.menard@insa-rennes.fr

Abstract. Modern automatic analytical methods for studying range
and accuracy in fixed-point systems are gradually replacing the tradi-
tional bit-true fixed-point simulations used in Word-Length Optimization
(WLO) problems. But these models have several limitations that must be
overcome if they are going to be used in real world applications. When
targeting large systems, the mathematical expressions quickly become
too large to be handled in reasonable times by numerical engines. This
paper proposes adapting the classical Fiduccia-Mattheyses partitioning
algorithm to the WLO domain to automatically generate hierarchical
partitions of the systems to quantize. This is the first time this type of
algorithms are used for this purpose. The algorithm has been success-
fully applied to large problems that could not be addressed before. It
generates, in the order of minutes, maneuverable sub-problems where
state-of-the-art models can be applied. Thus, scalability is achieved and
the impact of the problem size as a constraint is minimized.

1 Introduction

In an industry where time-to-market is critical and the efficient implementation
of Digital Signal Processing (DSP) systems can make the difference between
success and failure, an optimized conversion of floating-point system descriptions
to fixed-point implementations in a fast and reliable way still remains an open
issue. The WLO is an iterative process whose objective is to optimize the integer
and fractional Finite Word-Length (FWL) of the variables in the system so that

� Research by Enrique Sedano was partly supported by a PICATA predoctoral fel-
lowship of the Moncloa Campus of International Excellence (UCM-UPM, CIEMAT)
and by the Spanish Ministry of Education and Science under project TEC2009-
14219-C03-02.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 133–143, 2014.
c© Springer International Publishing Switzerland 2014



134 E. Sedano, D. Menard, and J.A. López

the implementation cost is minimized under certain performance constraints. To
do this, a large number of wordlength combinations from large solution spaces
must be evaluated.

The increasing size and complexity of DSP systems make classical approaches
based on bit-true fixed-point Monte-Carlo simulations impractical due to the
excessive computation times. As an alternative, several analytical models have
been developed in the past years [1, 2, 3, 4]. These models are several orders of
magnitude faster than the simulation-based approaches, but the range of systems
they can accurately model is smaller. In order to be more accurate in complex
systems, the analytical models are gradually becoming more complex. Added
to the increment in the number of operations and the uncertainties required
to evaluate such systems, it leads to large and complex mathematical equation
systems that even modern computers have difficulties to solve in reasonable
times. Consequently, analytical approaches that attempt to be used in real world
industrial applications must not only be as general as possible but also scalable.

Up to now, there are few models that have addressed the issue of scalabil-
ity [4, 5]. And even in these, the process is performed mainly by hand. In this
paper, an algorithm to automatically perform a hierarchical decomposition of
systems is presented. It iteratively applies an adapted classical algorithm from
the netlist partitioning literature [6] to divide complete system descriptions into
maneuverable clusters of operations that can be mathematically analyzed with-
out exceeding the computational and memory limits of nowadays computers.
Thus scalability is achieved and systems can be analytically modeled regardless
their size. The main contributions of this work are:

– An iterative algorithm to carry out the hierarchical partitioning of a system,
including the specification of the cost function, balance and stop criterions. It
is the first time that an automated procedure of this type is used to deal with
the problem of scalability in the WLO literature. Up to now, partitioning
has been mostly made by hand.

– The introduction of a simple yet effective Single Source Directed Hypergraph
model to represent the system to be partitioned.

– The demonstration of the suitability of adapting classical netlist partitioning
algorithms to the WLO problem through several experimental results.

The rest of the paper is organized as follows. Section 2 presents a brief overview
of the analytical approaches for range and accuracy evaluation and graph par-
titioning. The partitioning problem is formulated in Section 3 and the imple-
mented algorithm is detailed in Section 4. Section 5 collects the experimental
results, and Section 6 draws the conclusions of the work.

2 Related Work

2.1 Automatic Quantization

The process of transforming the floating-point specification of a system into
its fixed-point implementation requires careful range and accuracy evaluation



Automated DFG Partitioning for a Hierarchical Approach to WLO 135

in order to avoid over- and underflows and keep quantization errors within
reasonable bounds. The most traditional approach to this analysis is to carry
out bit-true fixed-point simulations that suffer from exceedingly long execution
times. To overcome this limitation, several analytical models have been devel-
oped. Their objective is to obtain the required metrics for range and precision
analysis through mathematical models.

In [1], the authors present an analysis of the system based on the perturbation
theory approach where quantization errors are considered small deviations from
the infinite precision values. This approach is valid while none of the operators in
the circuit present strong non-linearities. When studying Linear Time-Invariant
(LTI) systems, Affine Arithmetic (AA) [2, 7, 8] has proven to be a reliable and
fast method to model range and quantization noise. It adequately cancels the
linear dependencies of the uncertainties in the system, but it is not able to
retain temporal correlation after non-linear operations. Modified Affine Arith-
metic (MAA) has been proposed as a solution to this issue for computer graphics
applications [3].

However, in the literature only a few of them have recently dealt with the prob-
lem of scalability. In [4] a hierarchical decomposition of the problem is proposed.
In this approach, the decomposition of the complete system into a hierarchy of
subsystems is performed so each region can be handled independently and, in the
wordlength optimization stage, a divide and conquer strategy is applied. Never-
theless, the hierarchical decomposition is done by hand. A different approach is
introduced in [5, 9], where Polynomial Chaos Expansion (PCE) is used to study
the dynamic range and numerical accuracy of the systems.

The present work introduces a novel algorithm that performs a hierarchical
decomposition of the Data Flow Graph (DFG) fast and automatically, achieving
scalability in order to apply existing dynamic range and accuracy evaluation
techniques. The objective is to isolate strongly non-linear operators and to gen-
erate partitions with a reduced number of inputs while the number of edges
interconnecting the subgraphs is minimized. The algorithm is independent from
the analytical model used, so after partitioning the DFG any of the methods
previously described can be used to perform range and precision analysis.

2.2 Graph Partitioning Algorithms

Graph partitioning has been widely used in the placement and routing stages,
where millions of transistors have to be handled while tight timing constraints
must be met. Only by dividing the netlists into smaller entities the logic-level
and physical-level tools can manage the vast number of components involved.
Thus, the literature related to netlist partitioning is extensive and varied. They
range from move-based iterative improvement algorithms [10, 6] to geometri-
cal and mathematical abstractions of the problem [11, 12], and from top-down
approaches [6, 13] to bottom-up ones [14]. A complete survey of methods and
formulations used in graph partitioning is found in [15].

The objective of partitioning is to find suitable subgraphs with minimal in-
terconnection (cutset) between them. It is possible to find recent and advanced



136 E. Sedano, D. Menard, and J.A. López

partitioning methods based on genetic algorithms [16], but for the aim of this
work only move-based iterative improvement algorithms will be taken into ac-
count. Since the optimization problem itself is already a very time-consuming
task, it is imperative to minimize the time dedicated to additional tasks. On this
behalf, move-based iterative algorithms offer reasonably good results in minimal
times.

Kernighan and Lin (KL) [10] initially proposed a bisection heuristic where
a series of passes are iteratively performed. An advantage of this procedure
is that it can escape from local minima because in each pass all movements
are considered, even those with negative gains. Its major drawback is that the
execution time of the algorithm is between Θ(n2 logn) and Θ(n3) depending on
the implementation.

A KL-inspired but much faster algorithm is introduced by Fiduccia and
Mattheyses (FM) in [6]. Although the main idea is similar to the one in [10],
the execution is reduced to linear time. This is mainly achieved due to the use
of the bucket list, a specialized data structure with constant access time to the
node with the highest gain and fast update time for the gains after each move.
Additional information about the highest gain non-empty bucket is also held
in the bucket list, so the access time is linear. Also, the number of elements to
have in each partition is relaxed by introducing a balance condition that allows
a certain degree of variation between the partition sizes. During the execution
passes only those moves that do not violate the balance condition are allowed.
Nowadays this algorithm remains as the standard against every new heuristic is
compared.

The FM algorithm is further improved [17], by introducing gain vectors as
sequences of potential gains corresponding to future possible moves. The FM
algorithm, along with this improvement, is extended in a straightforward way
in [18] to allow multiple-way partitioning. An important feature of this work
is that, again, an efficient management of the data structures leads to a linear
increase of the execution time with respect to the number of partitions.

3 Definition of the Problem

The input for the partitioning algorithm are DFGs, with a set I = {i1, i2, · · · , in}
of independent inputs that relate among them through F = {f1, f2, · · · , fj} op-
erations, to generate O = {o1, o2, · · · , ik} outputs. The information is propa-
gated from the inputs to the outputs as defined by the set E = {e1, e2, · · · , em}
of directed edges, where ep ∈ (I, F ) ∪ (F, F ) ∪ (F,O) ∪ (I, O). To simplify the
formulation of the problem, the DFG is defined following the notation in [15]
as G = (V,E) where V = I ∪ F ∪ O. The elements in F can be classified as
smooth or un-smooth operators. Smooth operators display a linear behavior for
noise computations even if they are non-linear and time variant and hence can
be treated analytically. Un-smooth operators are not continuous or differentiable
functions of their inputs, such as decision operators and modulus operators.

Following the ideas of the hierarchical partitioning described in [4], a decom-
position of a given DFG is valid if it satisfies the following requisites:



Automated DFG Partitioning for a Hierarchical Approach to WLO 137

– All un-smooth operators are isolated in different individual partitions in the
first level of decomposition.

– The number of inputs to each of the final subsystems are balanced (within
a degree of variation).

– The number of inputs to each of the final subsystems is less than a certain
established value.

Due to the characteristics of this problem, it must be taken into account that
each cut implies a new input in the subgraph that includes the node in which
the cut edge incides. This will be discussed in depth in Section 4.2.

The problem is formalized as follows:
Given a graph G = (V,E) with weighted nodes and two parameters s (par-

tition size) and b (balance condition),
Find a multi-level, hierarchical partitioning of G where Gp−1 =

⋃q
i=0 G

p
i and

∀i, j, i �= j,Gp
i

⋂
Gp

j = ∅, being Gn a subgraph of level n and Gm the m-th par-
tition of a graph. Un-smooth operators must be kept in the first level of the
hierarchy in partitions that contain only one instruction at a time. For the rest
of partitions, the difference in number of inputs per subgraph with less than or
equals to s inputs (counting the ones generated by the cut edges) must be below
b and, for each level, the number of edges crossing between partitions (the cutset
size, Cs) must be minimized.

Correspondence

o1

f6

i4 f5

f4

f3f2

f1 i3

i1 i2

i1 i2

f1

f2

o'1 o'2

i'3 i'4

o1

f6

f5i4

i'1 i'2 i3

f3f4

o'3 o'4

o'3o'1 o'2 o'4

i'1 i'2 i'3 i'4

Fig. 1. Example of the hierarchical decomposition of a DFG

Figure 1 shows an example of a valid decomposition. On the left side the
original DFG is presented. Dark grey nodes with an arrow are inputs or outputs,
depending on the direction of the arrow. Nodes in white are smooth operators,
and the ones in red are un-smooth ones. On the right side a decomposition of
the DFG is shown assuming each partition can contain a maximum of 3 (±1)
inputs. Nodes with dotted lines are new inputs and outputs generated during the



138 E. Sedano, D. Menard, and J.A. López

partitioning process, and the corresponding connections among them is indicated
in the lower right box with the red background.

4 Partitioning Algorithm

Given the requisites specified in the previous section, the partitioning algorithm
is divided in two main stages. This section presents the implementation details
and the basic considerations for both of them. The pseudocode for the complete
partitioner is found in Algorithm 1.

4.1 Stage One: Un-smooth Operators Handling

In this case, the first condition of a valid partitioned DFG is that the un-smooth
operators are kept in the first level of the hierarchy, each of them in a different
subsystem that holds them as the only operation. For the scope of this work, it
is assumed that a list of such operators is available, and thus a single pass over
the DFG is enough to identify and isolate all of them.

By doing this, a DFG with n un-smooth operators will be partitioned into
n + 1 subsystems in the first level; one for each of these operators (un-smooth
partitions) and another where the rest of the operations from E are kept (smooth
partition). Two things must be noted here:

1. The requisite of isolating the un-smooth operators is considered prioritary
over the balance condition. Thus, the latter condition may be violated at
this stage in order to guarantee the former one.

2. The smooth partition may not be connected. Although it is not strictly
necessary, a connectivity analysis can be carried out at this point and further
divide the graph into connected subsystems without incurring in extra cutset
costs.

4.2 Stage Two: Iterative Partitioning

Once the first stage is finished, stage two is carried out over each smooth partition
just created. To hierarchically decompose a smooth partition, the FM algorithm
has been adapted and used as a base for this stage. It is iteratively applied to
each of the subsystems in the partition hierarchy that do not comply with the
stop criterion to generate a new partition level.

One of the main problems of the FM algorithm is that the quality of the solu-
tion strongly depends on the initial partition, which is generated randomly. This
issue is overcome by running several passes of the FM partitioning, each of them
with a different initial state, and using only the best (i.e. the one that minimizes
the cost function) of the obtained final partitions. Given the fast execution time
of the FM algorithm, this can be done a large number of times (Ntest) without
incurring into excessive overall execution times. Some authors have already sug-
gested this type of solutions to obtain as good results with iterative improvement
algorithms as with more refined schemes such as Simulated Annealing [19].



Automated DFG Partitioning for a Hierarchical Approach to WLO 139

DFG Representation. It is common to use hypergraphs [20] when solving par-
titioning problems with the FM algorithm. Assuming that an hyperedge includes
all the edges that connect a node with its successors, a Single Source Directed
Hypergraph (SSD Hypergraph) is defined. Each hyperedge is represented as a list
of the edges in the structure and an indicator of which of them is the source. The
graph is redefined as Ĝ = (V, Ê), where Ê = (ê1, ê2, · · · , êk). Each êi = (vs, Ld)
being Ld the list of all vd that verify (vs, vd) ∈ E. If the list is empty no hyperedge
is generated (i.e. there are no hyperedges with elements from O as source).

This representation allows the identification of the direction of the edges with
minimal memory occupation. The detection of whether an hyperedge belongs to
a given cutset is done by checking if any of the nodes from the list is not in the
same partition as the source. Since cutting an edge generates new nodes in the
graph, the SSD Hypergraph notation permits a fast identification of the type of
node that has to be added to each partition by just checking the position of the
source.

Cost Function. The objective of the partitioning algorithm is to obtain a well-
balanced number of inputs in each partition while minimizing Cs. To this end,
only the input nodes are given a non-zero weight. This allows the free movement
of any other node in the graph that may produce a reduction in the cutset size.

It must be taken into account that it is necessary to include new inputs and
outputs to the partitions when an hyperedge is cut, so the corresponding terms
and coefficients from the analytical expressions can be included in the models.
The partition that holds the source node of the cut hyperedge gets one more
output while the number of inputs of the other one is increased in one. Thus, the
resulting subsystems will have different number of inputs and outputs depending
on the final cutset.

Considering all of the above, the cost function for a given partition Gp
m is

the number of inputs to the graph plus the number of cut SSD Hyperedges that
incide in the partition. The expression of the cost is as follows:

fcost(G
p
m) = |Im|+ |êi → êi ∈ cs(Gp−1) ∧ src(êi) /∈ V p

m|

being Im the inputs to the partition, V p
m the list of nodes of Gp

m, cs(Gp−1) the
list of hyperedges cut in the partition of the parent level of Gp

m and src(êi) the
source node of the hypernode êi.

Balance and Stop Criterions. The balance criterion considered for the
present algorithm differs from the one proposed in [6]. In our case, the allowed
deviation is set as a function of the total number of inputs of the graph (in the
experiments in Section 5 a 20% of the size of I was used) while keeping the
largest cell size as its lower bound.

The stop criterion depends exclusively on the analytical model that is going
to be applied to the subsystems to evaluate the dynamic range and accuracy.
Depending on its formulation and implementation, the number of uncertainties
(i.e. inputs of the DFG) that can be handled in reasonable times by the numerical



140 E. Sedano, D. Menard, and J.A. López

Algorithm 1. Hierarchical partitioning pseudocode

// Stage One
for all Fi in F do

if Fi is un-smooth then
partitions ← new partition(Fi);

else
smooth ops ← Fi;

end if
end for
partitions ← new partition(smooth ops);
// Stage Two
for each Pk ∈ partitions not complying stop criterion do

for i = 1 → Ntest do
FM trials ← Fiduccia Mattheyses(Pk);

end for
// partitions to add are two subgraphs
partitions to add ← best partition(FM trials);
set as children of(partitions to add,Pk);
partitions ← partitions to add;

end for

engines may vary. Thus, the iterative partitioning stops when the number of
inputs in the partitions is such a value that the analytical model can handle at
once.

5 Experimental Results

This section presents the results of the experiments carried out on a number of
different graphs. They include an example extracted from the teager benchmark
[21], a simple 2-order IIR filter, a 29-order FIR filter and a pipelined version of a
large Computer Fluid Dynamics (CFD) algorithm. To represent the quantization
noise, Additive White Noise Source (AWNS) inputs have been added to each
operation in the system as in [2], thus greatly incrementing the total number of
operations and inputs in the DFGs. The properties of the different benchmarks
are presented in Table 1, where NNod is the number of nodes of the graph,
NEdg the number of edges and NInp the number of inputs of the graph. The
functional version of the code was written in C++ and the experiments were
carried out in an Intel Core 2 Q9400 running at 2.66 GHz with 6 GB of RAM.

In order to show the behaviour of the algorithm when the initial number of
nodes is large in relation to the number of inputs that comply with the stop
condition, the maximum number of inputs per final partition has been set to
s = 5 in all the experiments. For the present set of benchmarks Ntest has been
set to 256. As stated before, it is the first time a netlist partitioning algorithm
is used to split a DFG hierarchically in order to solve the scalability problem
of analytical approaches. To evaluate the quality of the presented solution, it
is compared to a random partitioner. The stage one is executed unmodified in



Automated DFG Partitioning for a Hierarchical Approach to WLO 141

Table 1. Benchmarks properties

Value Teager IIR-2 FIR-29 CFD

NNod 25 116 172 1585

NEdg 27 117 171 1795

NInp 10 40 58 614

Table 2. Results of the proposed algorithm (100 runs each)

Teager IIR-2 FIR-29 CFD

Value Rand FM Rand FM Rand FM Rand FM

ACS 4,33 1,62 4,22 1,49 4,25 1,72 – 1,87

ACS AD 0,30 0,19 0,17 0,12 0,04 0,08 – 0,02

MCS 13,43 2,35 35,96 4,8 85,24 12,27 – 103,16

MCS AD 1,52 0,45 3,48 1,01 4,82 1,72 – 5,23

FPS 8,92 9,56 8,5 11,05 8,53 9,59 – 8,38

FPS AD 0,53 0,9 0,35 0,61 0,09 0,32 – 0,08

NLvl 46,89 3,32 31,9 5,08 26,81 6,79 – 11,27

ExT 1,21 0,174 7,783 1,725 120,57 6,375 – 557,147

order to isolate non-smooth operators in the first partition level, but in stage
two the destination partition for each node in the graph is decided randomly. In
this case the partitioning for each level is also run Ntest = 256 times and only
the best solution per level is used. No balance criterion is considered.

To obtain a better measure of the results, the partitioning algorithm has been
executed 100 times for each DFG. The results of the experiments, shown in Table
2, collect the average results from all the executions. The absolute deviation
values for some of them is also presented to demonstrate that, even though the
quality of the solution of the FM partitioning is dependent on the initial random
partition, the method presented in this paper generates homogeneous solutions
through several executions.

The following values are presented in Table 2:

– ACS: Average Cutset Size through all the levels in the partitioned graph
(in number of hyperedges).

– ACS AD: ACS Absolute Deviation.
– MCS: Maximum Cutset Size through all the levels in the partitioned graph

(in number of hyperedges).
– MCS AD: MCS Absolute Deviation.
– FPS: Average Final Partitions Size (in number of nodes).
– FPS AD: FPS Absolute Deviation.
– NLvl: Number of Levels generated by the partitioner.
– ExT: Execution Time (in seconds).

It can be observed in the results that both the average and maximum cutset
sizes are notably reduced compared to the results of the random partitioning.



142 E. Sedano, D. Menard, and J.A. López

Also the greatest improvements can be noticed in the number of levels (and
consequently, of partitions performed) and in the execution times. Performing a
single random partition is faster than using the FM algorithm, but the necessity
of doing a larger number of partitions causes longer overall execution times. It
can be noticed that the final partitions size (i.e. the size of the partitions in the
leafs of the hierarchical partitioning tree) is larger in the case of the proposed
algorithm. Obviously, having a smaller number of partitions means that the
number of instructions per partition must be larger. There are no experimental
results for the random partitioning of the CFD algorithm because the large
number of generated partitions caused the system to run out of memory during
runtime.

The results show that the objective of carrying out the partitioning with fast
execution times is fully achieved. While for small sized problems the algorithm
runs in about one second, large benchmarks like the CFD are solved in a few
minutes. It can also be noted that the obtained results are consistent between
executions, being the deviations in cutset sizes and number of levels considerably
small. This proves that the proposed approach deals with the dependency of the
initial solution issue in an effective way, significantly reducing its impact in the
final partitioning results.

6 Conclusion

A two-stage automated hierarchical partitioning algorithm for DFGs that are
going to be processed during the quantization and wordlength optimization stage
of VLSI design has been proposed. Aiming for low execution times without loss of
solution quality, it has been developed using an adapted version of the Fiduccia-
Mattheyses netlist partitioning algorithm and generates solutions that comply
with the requirements established by previous works. The algorithm steps, the
cost function and the balance and stop criterions are specified, and an effective
Single Source Directed Hypergraph representation is introduced. The algorithm
has been applied to a variety of systems to prove its validity and fast execution
time. When compared to a random partitioning, cutset sizes are, on average,
2, 7 times smaller, the number of levels are between 4 and 14 times less and
solutions are obtained between one and three orders of magnitude faster. It is
the first time that an algorithm of this type is applied to address the problem
of scalability in analytical approaches to system modeling, and the feasibility of
adapting netlist partitioning algorithms to the domain of DFG partitioning for
wordlength optimization has been effectively demonstrated.

References

[1] Shi, C., Brodersen, R.W.: A perturbation theory on statistical quantization ef-
fects in fixed-point DSP with non-stationary inputs. In: Proceedings of the 2004
International Symposium on Circuits and Systems, ISCAS 2004, vol. 3, p. III–373.
IEEE (2004)



Automated DFG Partitioning for a Hierarchical Approach to WLO 143

[2] López, J.A., Caffarena, G., Carreras, C., Nieto-Taladriz, O.: Fast and accurate
computation of the round-off noise of linear time-invariant systems. IET Circuits,
Devices & Systems 2(4), 393 (2008)

[3] Shou, H., Lin, H., Martin, R.R., Wang, G.: Modified affine arithmetic in tensor
form for trivariate polynomial evaluation and algebraic surface plotting. Journal
of Computational and Applied Mathematics 195(1-2), 155–171 (2006)

[4] Parashar, K., Rocher, R., Menard, D., Sentieys, O.: A Hierarchical Methodology
for Word-Length Optimization of Signal Processing Systems. In: 23rd Interna-
tional Conference on VLSI Design, pp. 318–323. IEEE (2010)

[5] Esteban, L., López, J., Sedano, E., Hernandez-Montero, S., Sanchez, M.: Quantiza-
tion analysis of the infrared interferometer of the tj-ii stellarator for its optimized
fpga-based implementation. IEEE Transactions on Nuclear Science 60, 3592–3596
(2013)

[6] Fiduccia, C., Mattheyses, R.: A linear-time heuristic for improving network par-
titions. In: 19th Conference on Design Automation, pp. 241–247 (1982)

[7] López, J.A., Sedano, E., Esteban, L., Caffarena, G., Fernández-Herrero, A., Car-
reras, C.: Applications of Interval-Based Simulations to the Analysis and Design
of Digital LTI Systems. In: Cuadrado-Laborde, C. (ed.) Applications of Digital
Signal Processing. Number i, 1st edn., pp. 279–296. InTech (2011)

[8] Sarbishei, O., Radecka, K., Zilic, Z.: Analytical Optimization of Bit-Widths in
Fixed-Point LTI Systems. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 31(3), 343–355 (2012)

[9] Esteban, L., López, J.A., Sedano, E., Sánchez, M.: Quantization Analysis of the
Infrared Interferometer of the TJ-II for its Optimized FPGA-based Implementa-
tion. In: IEEE 18th Real Time Conference, RTC 2012, Berkeley, California, USA
(2012)

[10] Kernighan, B., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal 49(1), 291–307 (1970)

[11] Hall, K.M.: An r-Dimensional Quadratic Placement Algorithm. Management Sci-
ence 17(3), 219–229 (1970)

[12] Tsay, R.S., Kuh, E.: A unified approach to partitioning and placement (VLSI
layout). IEEE Transactions on Circuits and Systems 38(5), 521–533 (1991)

[13] Bui, T.N., Moon, B.R.: Genetic algorithm and graph partitioning. IEEE Transac-
tions on Computers 45(7), 841–855 (1996)

[14] Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Mathematical
Programming 62, 133–151 (1993)

[15] Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey. The
VLSI Journal on Integration 19(1-2), 1–81 (1995)

[16] Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph parti-
tioning: a survey. In: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, pp. 473–480. ACM (2011)

[17] Krishnamurthy, B.: An Improved Min-Cut Algonthm for Partitioning VLSI Net-
works. IEEE Transactions on Computers C-33(5), 438–446 (1984)

[18] Sanchis, L.: Multiple-way network partitioning with different cost functions. IEEE
Transactions on Computers 42(12), 1500–1504 (1993)

[19] Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by
Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning.
Operations Research 37(6), 865–892 (1989)

[20] Berge, C.: Graphs and Hypergraphs. Elsevier (1976)
[21] Mathews, V.J., Sicuranza, G.L.: Polynomial Signal Processing. Wiley (2000)



Partitioning and Vectorizing Binary Applications

for a Reconfigurable Vector Computer

Tobias Kenter, Gavin Vaz, and Christian Plessl

Department of Computer Science,
University of Paderborn, Germany

{kenter,gavin.vaz,christian.plessl}@uni-paderborn.de

Abstract. In order to leverage the use of reconfigurable architectures in
general-purpose computing, quick and automated methods to find suit-
able accelerator designs are required. We tackle this challenge in both
regards. In order to avoid long synthesis times, we target a vector copro-
cessor, implemented on the FPGAs of a Convey HC-1. Previous studies
showed that existing tools were not able to accelerate a real-world ap-
plication with low effort. We present a toolflow to automatically identify
suitable loops for vectorization, generate a corresponding hardware/soft-
ware bipartition, and generate coprocessor code. Where applicable, we
leverage outer-loop vectorization. We evaluate our tools with a set of
characteristic loops, systematically analyzing different dependency and
data layout properties.

Keywords: Heterogeneous System, Binary Acceleration, Outer-Loop
Vectorization.

1 Introduction

Numerous studies have shown that FPGAs can accelerate a wide range of ap-
plications by up to several orders of magnitude compared to general-purpose
CPUs. However, until now they are solely regarded as a special-purpose com-
pute platform. For this to change, two fundamental challenges must be met.
On the one hand, general-purpose computing platforms shine by their ability
to execute virtually any workload with a relatively good performance. In order
to achieve this, a general-purpose FPGA platform needs to incorporate a rea-
sonable CPU for any tasks that perform badly on FPGAs. With Xilinx Zynq,
Altera Cyclone/Arria and Intel Stellarton such platforms are emerging for the
embedded and mobile market. Architecturally, the Convey HC-1 platform we
target can be regarded as their counterpart for the desktop and server market,
with an Intel Xeon CPU and an FPGA-accelerator in the two respective sockets
of a server mainboard. The second, more pressing challenge is the design process
for FPGA platforms. Traditionally, a huge implementation effort and long syn-
thesis times are required to harvest the performance of FPGAs. Over the last
couple of years, High Level Synthesis (HLS) toolflows like Catapult C, Xilinx
Vivado (formerly AutoPilot), and bambu have started to gain more and more

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 144–155, 2014.
c© Springer International Publishing Switzerland 2014



Partitioning and Vectorizing Binary Applications 145

traction. They promise reduced design effort by producing FPGA designs from
high-level source code in C or similar syntax. They generate state machines to
execute the control flow and custom data paths for the computations. Typically,
HLS tools require user interaction to specify where and to what extent those
techniques are to be applied. Afterwards, the designs still need to undergo the
entire time-consuming synthesis process for FPGAs.

One way to avoid this long synthesis process is to utilize a set of prepared
configurations for the FPGA that can then be programmed for a specific appli-
cation with relatively low effort. This can be a Coarse Grained Array structure,
which can be configured with far fewer configuration bits than the underlying
FPGA. Another approach is to implement a softcore processor with specific
features, which enable the acceleration of a class of problems. The so called Vec-
tor Personality for the Convey HC-1 follows this latter approach and features
an instruction set with large vector instructions, which enable it to internally
profit both from pipelining and parallel execution. It serves as a coprocessor
which can most efficiently work on vectorizable loops and leaves sequential or
control-dominated code on the x86 host processor. We found that targeting this
architecture with the Convey Compiler required significant effort in refactoring
the source code and annotating it with pragmas. Yet the generated vector code
was not performing anywhere as good as manually written assembly code [10].
In particular, we found outer-loop vectorization to be an important feature the
Convey Compiler was lacking.

In this work we present a new toolflow based on LLVM, which addresses those
issues. It works on the LLVM intermediate representation (IR) of non-annotated
source code, identifies hotspots to move to the coprocessor and performs suitable
vectorization. Where the problem dimensions are unknown at compile time, it
inserts runtime decisions for selecting the best execution path. The toolflow
integrates some existing LLVM and Convey Compiler tools, but most of the
partitioning related aspects, as well as the vectorization and coprocessor code
generation are new contributions for this work.

The compelling features of our presented work are threefold. Firstly, the
unguided acceleration process requires no additional expertise and manual de-
velopment effort. As such, even a platform that initially has limited market pen-
etration and correspondingly limited support from application developers can
be put to good use. Secondly, the toolflow works on binary applications in the
form of LLVM IR. Even though this is no machine code, it is a binary format
in which applications can be distributed or it can be generated from machine
code [2]. Thus, the toolflow can even be applied in scenarios where source code
is not available [8]. Thirdly, we target a platform that we architecturally con-
sider as a prototype for general-purpose desktop or server systems with FPGA
acceleration, combining a state-of-the-art CPU with an FPGA accelerator.

In the remainder of this paper, we first refer to related work and introduce
our targeted hardware platform. Then we present details about our approach
and toolflow, before discussing the results, conclusion and outlook.



146 T. Kenter, G. Vaz, and C. Plessl

2 Related Work

In this section, we present related work on the Convey HC-1 platform and its
Vector Personality, then discuss approaches of binary acceleration on embedded
FPGA platforms and finally give a brief overview of the compiler background
on the vectorization strategies we follow.

The fundamentals of the Convey HC-1 system architecture and its capabil-
ity to implement instruction set extensions and custom personalities have been
described in the works of Brewer [6] and Bakos [4]. The work by Augustin et
al. [3] studies the suitability of the Convey HC-1 for kernels from linear algebra
and compares the performance to CPUs and GPUs. Their work also uses the
Vector Personality and Convey Compiler infrastructure, as well as the work by
Meyer et al. [12]. They port a stencil computation application to the Vector
Personality and compare both results and development flow with an OpenMP
parallelization. In our previous work, we investigated the pragma-guided compi-
lation approach and theoretical performance data of the Vector Personality [10].
Our current work differs from the all this related work by offering a new, un-
guided toolflow embedded into the LLVM compiler infrastructure and working
on its IR code representation.

Other projects in this field of binary acceleration try to include a full synthesis
process into that process. This limits them to small embedded systems or soft
core CPUs [5] with additional restrictions on a simplified FPGA fabric [11] or a
coarse grained array structure [5] as reconfigurable target platform, or on custom
instructions as acceleration target [7]. By targeting an instruction-programmable
architecture on an FPGA, we avoid the costly synthesis phase and thus can target
a general-purpose and high performance computing platform with large FPGAs.
In contrast to those related embedded projects, our system has a non-uniform
memory access (NUMA) architecture with a shared address space, but physically
distinct memory locations having different throughput and latency properties.

Our source of speedup comes from vectorization of loops that enable large
vectors. The foundations of automated loop vectorization driven by data depen-
dency analysis were established by Allen and Kennedy [1]. In their source-to-
source compilation system they apply loop interchange and then vectorize inner
loops or entire loops nests that are fully vectorizable from the innermost loop
on. Later on, the vectorizing Fortran compiler by Scarborough et al. [15] also
featured direct outer-loop vectorization, like Ngo’s [13] compiler framework inte-
grated into the “Cray Fortran-90 compiling system”. More recently, outer-loop
vectorization has also gained interest for SIMD architectures with short vec-
tor units [14]. In contrast to the systems those compilers target, our system is
heterogeneous. It has a host CPU, which delivers high performance for sequen-
tial code and even contains short SIMD units itself, which can be used without
synchronization overhead or data movement into a distinct memory location.
The large vector unit on the coprocessor offers a richer vector instruction set,
e.g. indexed load and store operations and variable length vectors. It can boost
performance specifically when large vectors can be derived from the loops.



Partitioning and Vectorizing Binary Applications 147

Coprocessor

Host 
Interface

Management 
Processor

User Logic
e.g. Vector 

Coprocessor

8 Memory Controllers

Coprocessor Memory

Intel
Xeon 
CPU

Intel
Chipset

Host 
Memory

Scalar
Coprocessor

8 channels

Fig. 1. Coprocessor Architecture

3 Convey HC-1 Platform and Vector Personality

In this section, we introduce the Convey HC-1 hardware platform, give a brief
overview of the different ways to configure its FPGAs, specifically with the Vector
Personality and introduce the basic tool flow to target the Vector Personality.

A schematic overview of the Convey HC-1 architecture [6] is presented in Fig-
ure 1. At its heart, the Convey HC-1 is a dual socket server system, where one
socket is populated with a Intel Xeon CPU while the other socket is connected
to a stacked coprocessor board. The two boards communicate using the Intel
Front-Side Bus (FSB) protocol. Both processing units have their own dedicated
physical memory, which can be transparently accessed by the other unit through
a common cache-coherent virtual address space. The coprocessor consists of mul-
tiple, individually programmable FPGAs. One FPGA implements the infrastruc-
ture that is shared by all coprocessor configurations. These functions include the
physical FSB interface and cache coherency protocol as well as configuration and
execution management for user programmable FPGAs. For implementing the
application-specific functionality, four high-density Xilinx Virtex-5LX330 FP-
GAs are available.

A distinctive feature of the HC-1 architecture is the availability of a fast multi
channel memory interface, which provides the application engines with access to
8 independent memory banks through 8 dedicated memory controllers with an
aggregated bandwidth of 80 GB/s. In our system configuration, custom-made
scatter-gather modules are installed, which allow accessing memory efficiently in
8-byte data blocks, while standard modules are optimized for 64-byte blocks. The
user logic FPGAs can be configured with so-called Personalities, that need to
implement interfaces to the management processor and scalar coprocessor as well
as to the memory controllers. Users can create their own specialized personalities
or use those provided by Convey, which exist for a number of specific tasks like
graph traversal or local string alignment, and as the general-purpose Vector
Personality.

The Vector Personality provides the functionality of a vector coprocessor that
executes programs targeting its vector instruction set. The Personality we tar-
get is optimized for single-precision floating point operations and also supports



148 T. Kenter, G. Vaz, and C. Plessl

integer operations of different bitwidths. The vector instructions are imple-
mented for up to 1024 elements. A total of 64 vector registers are available
and each can store such a set of 1024 elements. Besides the usual element-wise
arithmetic vector operations, the vector instruction set contains memory instruc-
tions that distinguish it from typical SIMD vector instruction set extensions for
general-purpose CPUs. It can load and store vectors where the elements are
individually indexed and do not need to be aligned in a continuous memory
location. Convey includes a compiler to target this vector personality by anno-
tating source code with pragmas, however we found it to be limited to simple
array data structures, which often requires significant code adaptations besides
adding the vectorization pragmas.

4 Approach

In this section, we first present our overall toolflow to generate heterogeneous
executables for CPU and coprocessor. After this general overview, we discuss in
more detail the extraction of code parts for execution on the coprocessor, the
actual vectorization and our support for runtime checks to guide the execution
and data movement.

4.1 Toolflow for Heterogeneous Executables

Since we use and extend the LLVM compiler infrastructure in this project, we
use its terminology. In particular, a module denotes the top level compilation
unit, e.g. an entire program or a library that will be linked with the main exe-
cutable later. A module contains a set of functions which consist of basic blocks.
Control flow between basic blocks is denoted by edges. Figure 2 depicts our
overall toolflow for generating heterogeneous binaries for execution on the host
CPU and coprocessor. We start with LLVM IR code, which we generated for
our tests in Section 5 with the clang compiler frontend. In our PartitionPass,
we then split the module into code that is to remain on host and code that is
to be executed on the coprocessor. The details of this phase will be presented in
Subsection 4.2. The PartitionPass also includes the planning of a vectorization
strategy described in Subsection 4.3 and the inclusion of runtime decisions as de-
tailed in Subsection 4.4. The modified host code is then translated by the LLVM
backend to x86 assembly code. Note that, where applicable, this will generate
short vector instructions for the host CPU’s SIMD units.

For generating the interface between the host and coprocessor code, we use
the Convey Compiler to match Convey’s calling conventions and to avoid reim-
plementing that functionality. For that purpose, the PartitionPass additionally
emits a .cpp file containing stubs of all the functions we want to implement on
the coprocessor along with their signature of arguments. We also generate prag-
mas indicating to the Convey Compiler that those functions are to be executed
on the coprocessor. The Convey Compiler then generates an x86 function entry,
which contains a runtime check for availability of the coprocessor and puts all



Partitioning and Vectorizing Binary Applications 149

LLVM IR
.bc

PartitionPass

Host Code
.bc

Interface
.cpp

Coproc 
Functions

.bc

LLC
(LLVM 

backend)

CnyCC
(Convey 

Compiler)

CodeGen
Pass

Host Code
.s

Interface
mixed.s

Coproc
Functions

(cny.s)

Python 
Assembly 

Merge Script

Interface + 
Coproc 

Functions
mixed.s

Convey
Assembler + 

Linker

Heterogeneou
s Executable

Fig. 2. Toolflow for generating heterogeneous binaries; blue: our implementation; yel-
low: Convey Compiler infrastructure; green: LLVM infrastructure

arguments properly on the coprocessor stack. Then control is handed over to the
coprocessor entry of this function, where arguments are loaded from the stack
into coprocessor registers.

From the code extracted for the coprocessor, we generate vectorized copro-
cessor assembly code in our CodeGenPass following the vectorization strategy
determined by the PartitionPass. With the help of a Python script we then merge
this code with the headers including function arguments of the function stubs
compiled by the Convey Compiler. Finally we assemble and link the generated
assembly and object files, again using the Convey Compiler tools.

4.2 Code Extraction

We want to identify parts of the code that can be executed on the coprocessor and
are likely to yield a speedup. This subsection focuses on the feasibility whereas
the performance depends on the outcome of the subsequently described steps.

On our platform, the control flow between host CPU and coprocessor is based
on function calls. The only way to transfer control from the CPU to the copro-
cessor is to call a function that is compiled for the latter; the only regular way
to transfer control back is to return from the called function. The coprocessor
may call other coprocessor functions but it can not call functions on the host.
The following process identifies coprocessor suitable code regions in two phases,
before the actual extraction starts.

In the first phase, we identify all function calls to libraries on the host CPU,
e.g. I/O, as direct incompatibilities. The basic blocks containing these calls can
not be moved to the coprocessor, except for a few selected functions, for which
we can generate coprocessor code directly, e.g. a std::min() with appropriate
data types can be directly translated into assembly functions later. In the second
phase, we search for indirect incompatibilities, where function calls inside the com-
pilation module point to functions that need to be at least partially executed on
the host. We repeat this second phase until no new incompatibilities are detected.
The outcome of these two phases are functions that can be entirely moved to the
coprocessor and functions that are only partially coprocessor feasible.



150 T. Kenter, G. Vaz, and C. Plessl

// I n t e g r a l column sums
for ( int x=0; x<WIDTH; x++)

for ( int y=1; y<HEIGHT; y++)
im [ x ] [ y ] = im [ x ] [ y ] + im [ x ] [ y−1] ;

wr i t e In t e rmed ia teResu l t ( im ) ; // c a l l wi th IO
// I n t e g r a l row sums
for ( int x=1; x<WIDTH; x++)

for ( int y=0; y<HEIGHT; y++)
im [ x ] [ y ] = im [ x ] [ y ] + im [ x−1] [ y ] ;

Listing 1.1. Loops that can be extracted for coprocessor execution

For those latter functions, we want to extract the basic blocks that can be
executed on the coprocessor into new functions. For this extraction to be possible,
a set of blocks must have a single entry edge and a single exit edge [9]. Some sets
of basic blocks may not have this property, but can be transformed to satisfy
it. In particular this is the case if they have a single basic block as target for
all entry edges and a single basic block as source for all exiting edges. As such,
all loops in any nesting level have this property. As speedups are only expected
from vectorizing loops, we restrict our toolflow to extract only sets of basic blocks
that form a loop. We proceed from outer to inner nested loops, so if all basic
blocks of an outer loop are marked as coprocessor feasible, the outer loop gets
extracted, otherwise inner loops are tested in the order of their nesting level. We
use LLVM’s refactoring capabilities to perform this extraction after a suitable
loop is detected.

Listing 1.1 shows a simple code example where this function splitting is re-
quired. After the first vectorizable loop nest, some intermediate result is written
to a file, before a second vectorizable loop nest follows. Our toolflow will ex-
tract the two loop nests into two new coprocessor functions, leaving the calls to
those functions along with the other call inside the original function on the host.
Note that we chose the source code listing just for illustration purposes, whereas
internally our tools operate on LLVM IR.

4.3 Vectorization

The vectorization phase checks for two important conditions on each loop nest
level. Firstly, dependencies between loop iterations are detected, which would
prevent vectorization of this loop. The example from Listing 1.1 computes inte-
gral line and column sums respectively, thus the inner loop from the first loop
nest and the outer loop from the second loop nest have dependencies, leaving
the respective other loop for vectorization. Secondly, the dimensions of the loops
are checked, whether they permit any speedup. As heuristic, we use an itera-
tion count of 100, when plain array data structures are detected and 500, when
following pointers to inner dimension, as threshold below which vectorization
often isn’t sufficient to allow speedups on the coprocessor. When the iteration
count of loops is constant, this decision can be made at compile time. However,



Partitioning and Vectorizing Binary Applications 151

1 for ( int x=0; x<WIDTH; x+=VL max)
2 VL = min(VL max , WIDTH−x)
3 for ( int y=1; y<HEIGHT; y++)
4 im [ x : x+VL ] [ y ] = im [ x : x+VL ] [ y ] + im [ x : x+VL ] [ y−1] ;

Listing 1.2. Vectorized pseudo-code for horizontal integral sums

often those counts can only be determined at runtime, which will be covered in
Subsection 4.4.

When the conditions for vectorization specify, that only an outer loop can
be vectorized, many compilers, including the Convey Compiler will try to inter-
change the loop nests and afterwards vectorize the inner loop. Depending on the
compute and data access pattern, this may be inefficient, or infeasible, e.g. if the
loops are not perfectly nested. Therefore we prefer to vectorize the outer loop
directly.

Listing 1.2 illustrates the outer-loop vectorization of the first loop nest from
Listing 1.1 in C-like syntax, where a [x:y] statement indicates, that the elements
from x to y will be processed in parallel. The outer loop is strip-mined: it now
increments by the size of the vector registers VL max. The actually used vector
size VL is computed in line 2, because in the last iteration, there will often be
less than VL max elements left.

Our toolflow does not actually produce code like shown in this listing, but
rather the PartitionPass plans vectorization and marks the identified loops for
vectorization. When mapping the LLVM IR instructions to Convey coprocessor
assembly code, the CodeGenPass then replaces all instructions involving the in-
duction variable of the vectorized loop, in this case x, by corresponding vector
instructions. This can in turn require to vectorize further instructions and vari-
ables, even if they are scalars independent of x. We support this scalar expansion,
but no vector code generation of reduction operations.

In this simple example, loop exchange with inner-loop vectorization would
easily be possible as well. However we can note, that the computation of VL

with outer-loop vectorization is executed only WIDTH
V Lmax

times, whereas after loop
interchange and inner-loop vectorization it would take place in the inner loop
HEIGHT ∗ WIDTH

V Lmax
times. Additional benefits can be exploited when loop-

invariant instructions from the inner loop can be moved to the outer loop. For
example an address calculation or pointer load for an outer dimension of an
array, like im[x:x+VL] in Listing 1.2 can be moved to the outer loop, which may
not be possible after a loop interchange.

Note, that the pattern of vectorized memory operations is independent of
the decision between outer-loop vectorization and inner-loop vectorization after
loop interchange. In this example, assuming C-like row-major order, vectoriza-
tion requires strided or indexed loads, which impose an overhead compared to
continuous loads. When manually optimizing an application for vectorization,
adapting the data layout, also combined with tiling, can be a major source of
speedups. However for our automated acceleration approach, we leave the data
layout unchanged.



152 T. Kenter, G. Vaz, and C. Plessl

4.4 Runtime Decisions

When the iteration space of a loop nest is known at compile time and promises
speedups according to our heuristic threshold, we statically replace the execution
on the host with execution on the coprocessor. However, often the iteration
space depends on concrete input data to an application or on unknown function
arguments when accelerating a library. In many of those cases, the iteration space
can be determined at runtime of the program at the entry of the actual loop. In
this case, we generate code to compute the iteration space before executing the
actual loop, using LLVM’s ScalarEvolution analysis. Then we add a comparison
instruction to compare this value to the threshold for coprocessor execution. If
the threshold is not met, a branch instruction will point to the original entry
of the loop on the host, otherwise to a new basic block where we generate data
movement statements and a call to the according coprocessor function. If the
iteration space can not be computed at this point, e.g. when following a linked
list, execution will remain on the host.

For achieving best performance on the NUMA architecture of our platform,
data should be migrated to the physical memory location where it is most fre-
quently accessed. Therefore we insert calls to Convey’s data movement API to
transfer data to coprocessor memory, before transferring control to the coproces-
sor. For these data movement statements, we need the data space of the accessed
data structures. Similar to the iteration space, it can either be statically com-
puted at compile time, dynamically at runtime before execution of the loop or
it is uncomputable at this point. If it is computable, we add the according data
movement statements, either with static size arguments or with runtime com-
puted size arguments. After the coprocessor function execution, similar state-
ments could move the data back to host memory. However, we would need to
analyze the further control flow of the application to determine whether the next
intensive data access will happen on the host or the coprocessor. Currently we
don’t support this, so we optimistically assume that typically the runtime rele-
vant code sections will be executed on the coprocessor and leave the migrated
data in coprocessor memory. Thus, subsequent coprocessor loops working on the
same data will still have calls to migrate data to coprocessor memory, but will
need very little time because no data actually needs to be moved.

5 Evaluation

We evaluate our approach by comparing the performance achieved after applying
our toolflow and running on host CPU and coprocessor to the baseline perfor-
mance when compiling to pure host code with the clang backend and executing
only on the host CPU. Our entire toolflow just adds a few seconds to the default
clang compilation time. In order to assess the impact of different dependency
patterns, vectorization strategies and data layouts systematically, we designed
a synthetic loop test suite, where we gathered a number of compute patterns
which we observed during our practical work with the Convey Compiler (e.g.
in [10]) and considered vectorizable. We generate variants of each pattern, one



Partitioning and Vectorizing Binary Applications 153

allowing direct inner-loop vectorization (denoted as Inner) and one requiring
loop interchange or outer-loop vectorization (denoted as Outer). The horizontal
and vertical integral sums from Listing 1.1 form one of these pairs. Additionally,
for each of these loops, we generate one data layout which is Favorable for vec-
torization by enabling continuous vector loads and one Transposed layout, which
requires strided or indexed vector loads. Some loops have no dependencies but
pose other challenges like conditionals and are classified as as Independent.

Orthogonal to that distinction, we also vary the data access structure where
possible: multi-dimensional data structures are either put into a continuous Ar-
ray or are accessed by following a Pointer for every dimension to a dynamically
allocated memory location. Accordingly, we group our total of 38 benchmark
loops into five times two groups in Table 1. The 32 loops with dependencies can
be found in their corresponding line of either column Inner or column Outer
and in order to enable a different point of view they are contained again ei-
ther in column Favorable or in column Transposed. Additionally, there are four
Independent Array loops and two Independent Pointer loops.

Table 1. Observed speedup for different groups of loops

Loops Inner Outer Favorable Transposed Independent

Array 8.82 9.16 13.59 4.39 12.49
Pointer 2.62 2.64 3.43 1.83 5.28

Table 1 summarizes the average speedups of our toolflow compared to pure
host execution for each group. The iteration spaces and data spaces are designed
so that the vectorizable loops execute for 5000 sequential iterations on host or
5 iterations on the coprocessor after vectorization, where one iteration is using
less than the maximum possible width of 1024 vector elements. All measure-
ments are performed with data already present in coprocessor memory, which
is close to the practical performance if our optimistic data movement strategy
works out. We see that Array data structures allow speedups of more than one
order of magnitude for independent loops and almost one order of magnitude
for dependent loops. Even Pointer data structures can be accelerated by making
extensive use of indexed vector loads. However, sequences of a pointer load fol-
lowed by a dependent data load seem to have a relatively stronger performance
impact on the coprocessor than on the host CPU. Thus for the Pointer loops,
we achieve only 5x on the independent loops and 2.5x on loops with dependen-
cies. Outer-loop vectorization instead of loop interchange yields slightly better
speedups. Grouping the same Inner and Outer benchmarks with dependencies
into whether their data layout is Favorable for vectorization or Transposed, we
see that all groups still show some speedups even with ill-suited data layout.
However, the right data layout allows three times or two times better speedups,
for arrays and pointers respectively.



154 T. Kenter, G. Vaz, and C. Plessl

When, in contrast to the presented measurements, all data needs to be moved
to the coprocessor before execution of the loop, this adds on average 59% of the
original CPU runtime to the overall runtime of the loop. For these measurements,
we applied the rather pessimistic scenario that the entire data structure is only
iterated once. In that case, 22 investigated loops still yield a speedup with their
first invocation, 13 need two or more invocations to overcome transfer times and
3 have a slowdown even without data movement.

When testing the Convey Compiler on the same benchmark in its fully un-
guided mode, which is intended mainly for finding possible vectorization can-
didates, it produces wrong results, probably due to some unsafe optimizations.
When properly guided by some pragmas like Convey’s toolflow suggests, it can
vectorize only the 20 loops with array data structures. When comparing the
runtimes after applying our toolflow to those from the Convey Compiler, in 9 of
those loops, we are faster between 2.88x and 10.05x, mostly because our more
direct vectorization approach allows higher data reuse. For 7 loops, the run-
times are almost identical (speedups of 1.00x to 1.06x). In 4 examples, we have
slowdowns of 0.44 to 0.49, because we miss a data reuse opportunity by a loop
interchange the Convey Compiler performs.

6 Conclusion

We have presented an automated, unguided acceleration process for binary ap-
plications targeting a heterogeneous platform with an FPGA-based coprocessor.
Our toolflow introduces decisions made at application runtime and beats existing
pragma-based tools in versatility and in many cases in performance. This shows
that acceleration with FPGAs can be achieved without costly design or synthe-
sis processes, which may open new practical uses for FPGAs in general-purpose
computing.

For moving code to the coprocessor, we currently use a threshold for the
required degree of exploitable parallelism that is based on general observations.
In future work, we would like to refine that decision process by including some
automated profiling for loops with different problem sizes into our toolflow. A
bigger goal on the horizon is to exploit the fast acceleration process by moving
it from compile time as presented here to the actual runtime of the program,
e.g. by running the program in LLVM’s just-in-time execution engine and then
accelerating applications fully transparently to the user.

Acknowledgement. Thisworkwas partially supported by theGermanResearch
Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Com-
puting” (SFB 901) and the European Union Seventh Framework Programme un-
der grant agreement no. 610996 (SAVE).



Partitioning and Vectorizing Binary Applications 155

References

1. Allen, J.R., Kennedy, K.: Automatic loop interchange. In: Proc. ACM SIGPLAN
Symp. on Compiler Construction, SIGPLAN 1984, pp. 233–246. ACM (1984)

2. Anand, K., Smithson, M., Elwazeer, K., Kotha, A., Gruen, J., Giles, N., Barua, R.:
A compiler-level intermediate representation based binary analysis and rewriting
system. In: Proc. ACM European Conference on Computer Systems (EuroSys),
EuroSys 2013, pp. 295–308. ACM (2013)

3. Augustin, W., Heuveline, V., Weiss, J.-P.: Convey HC-1 hybrid core computer –
the potential of FPGAs in numerical simulation. In: Proc. Int. Workshop on New
Frontiers in High-performance and Hardware-aware Computing (HipHaC). KIT
Scientific Publishing (March 2011)

4. Bakos, J.D.: High-performance heterogeneous computing with the Convey HC-1.
Computing in Science and Engineering 12(6), 80–87 (2010)

5. Bispo, J., Cardoso, J.M.P., Monteiro, J.: Hardware pipelining of runtime-detected
loops. In: 2012 25th Symposium on Integrated Circuits and Systems Design
(SBCCI), pp. 1–6 (2012)

6. Brewer, T.M.: Instruction set innovations for the Convey HC-1 computer. IEEE
Micro 30(2), 70–79 (2010)

7. Grad, M., Plessl, C.: On the feasibility and limitations of just-in-time instruction set
extension for FPGA-based reconfigurable processors. Int. Journal of Reconfigurable
Computing, IJRC (2012)

8. Happe, M., Meyeraufder Heide, F., Kling, P., Platzner, M., Plessl, C.: On-the-fly
computing: A novel paradigm for individualized IT services. In: Proc. Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS).
IEEE Computer Society Press (June 2013)

9. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: computing
control regions in linear time. In: Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), PLDI 1994, pp. 171–185. ACM
(1994)

10. Kenter, T., Schmitz, H., Plessl, C.: Pragma based parallelization – trading hard-
ware efficiency for ease of use? In: Proc. Int. Conf. on ReConFigurable Computing
and FPGAs (ReConFig), pp. 1–6. IEEE Computer Society (December 2012)

11. Lysecky, R., Stitt, G., Vahid, F.: Warp processors. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 11(3), 659–681 (2004)

12. Meyer, B., Schumacher, J., Plessl, C., Förstner, J.: Convey vector personalities –
FPGA acceleration with an OpenMP-like programming effort? In: Proc. Int. Conf.
on Field Programmable Logic and Applications (FPL) (August 2012)

13. Ngo, V.N.: Parallel loop transformation techniques for vector-based multiprocessor
systems. PhD thesis (1995) UMI Order No. GAX94-33091

14. Nuzman, D., Zaks, A.: Outer-loop vectorization: revisited for short SIMD archi-
tectures. In: Proc. Int. Conf. on Parallel Architecture and Compilation Techniques
(PACT), PACT 2008, pp. 2–11. ACM (2008)

15. Scarborough, R.G., Kolsky, H.G.: A vectorizing Fortran compiler. IBM Journal of
Research and Development 30(2), 163–171 (1986)



Enhanced Radiation Tolerance of an Optically
Reconfigurable Gate Array by Exploiting

an Inversion/Non-inversion Implementation

Takashi Yoza and Minoru Watanabe

Electrical and Electronic Engineering
Shizuoka University

3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
tmwatan@ipc.shizuoka.ac.jp

Abstract. To date, optically reconfigurable gate arrays (ORGAs) have been de-
veloped to realize highly dependable embedded systems. ORGAs present many
beneficial capabilities beyond those of field programmable gate arrays (FPGAs):
The most important is that an ORGA can be reconfigured using an error-included
configuration context that has been damaged by high-energy charged particles.
The radiation tolerance of an ORGA is extremely high. Moreover, if an inver-
sion/ non-inversion implementation architecture is introduced to an ORGA, the
configuration dependability of the ORGA for radiation can be increased drasti-
cally. This paper therefore presents a demonstration of the enhanced radiation
tolerance of an optically reconfigurable gate array achieved by exploiting the in-
version/ non-inversion implementation.

1 Introduction

Currently, field programmable gate arrays (FPGAs) are widely used for embedded sys-
tems [1][2]. Moreover, FPGAs are anticipated for use in high-radiation environments
such as space environments or nuclear power plants because such systems cannot be re-
paired easily. If FPGAs can be used for such environment systems, then the system can
be repaired remotely with the remaining functioning components and can be restarted
remotely, even if the system malfunctions because of total dose effects.

A radiation-tolerant FPGA always includes error checking and correction (ECC) for
configuration SRAM. For that reason, the FPGA is tolerant for a single-bit error [3]–
[5]. However, under a radiation-rich environment, several high-energy charged particles
are incident to the configuration SRAM simultaneously. In such cases, the ECC cannot
repair numerous errors, thereby leading to fatal errors.

Therefore, optically reconfigurable gate arrays (ORGAs) that can execute a more
robust configuration than FPGAs have been developed recently [6]–[9]. In an ORGA, a
configuration procedure is executed optically. At that time, a majority voting operation
is executed automatically. An ORGA’s configuration context consists of bright points
and dark points corresponding respectively to binary state H and binary state L. Bright
points of binary state H can be generated with a summation of numerous in-phase waves
while dark points of binary state L can be generated with a correction of waves with

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 156–166, 2014.
c© Springer International Publishing Switzerland 2014



Enhanced Radiation Tolerance of an Optically Reconfigurable Gate Array 157

Fig. 1. Circuit diagram of an inversion/ non-inversion dynamic optical configuration circuit in-
cluding four configuration bits

various phases. Finally, the bright points and dark points are received on a photodiode
array along with a threshold operation. The mechanism is the same as that of a majority
voting operation. In ORGAs, the configuration procedure becomes very robust since
the number of majority voting operations is extremely high.

In addition, an ORGA’s programmable gate array is also robust [10]. An ORGA
can support high-speed dynamic reconfiguration using numerous reconfiguration con-
texts. In fact, the reconfiguration frequency can reach the operation clock frequency
of a programmable gate array. In this case, multi-function units can be decomposed to
single function unit because the function change can be executed by reconfiguring its
programmable gate array. As a result, many-modular redundancy over triple-modular
redundancy (TMR) can be realized. Therefore, the ORGA’s programmable gate array
is also extremely robust.

However, if an inversion/ non-inversion implementation architecture is incorporated
into an ORGA, then the configuration dependability of the ORGA for radiation can
be increased drastically. This paper therefore presents a demonstration of enhanced
radiation tolerance of an optically reconfigurable gate array by exploiting an inversion/
non-inversion implementation.

2 Configuration Dependability of an ORGA

An ORGA optical system comprises laser sources, an optical holographic memory, and
a programmable gate array VLSI. The holographic memory can store numerous re-
configuration contexts. The reconfiguration contexts in the holographic memory are
addressed by a laser diode array. The diffraction pattern from the holographic memory
can be received as a reconfiguration context on a photodiode-array that is implemented
in a programmable gate array of an ORGA-VLSI. Since the diffraction pattern is gen-
erated by the summation of numerous light waves from a holographic memory, the
configuration procedure on an ORGA is extremely robust against radiation.

Here, an optical reconfiguration circuit for ORGAs is discussed. An ORGA-VLSI
has many configuration circuits for receiving a configuration context. The configura-
tion circuit has two roles: detection of a configuration context pattern and execution of



158 T. Yoza and M. Watanabe

a threshold operation. Numerous optical light waves from a holographic memory are
added to each photodiode. Then a threshold operation is executed on each photodiode.
The photodiode operation means a majority voting operation.

The photodiode circuit detects a bright point of binary state H or a dark point of
binary state L. Here, dark points of binary state L are generated by a collection of nu-
merous waves having various phases. Since the pixel data of a holographic memory are
always damaged randomly by high-energy charged particles, they almost never affect
the light intensity of the dark bits. However, the bright bits are sensitive to damage of a
holographic memory because the number of in-phase waves to generate a bright bit is
lower than the number of waves with various phases to produce a dark bit. Therefore,
to increase the ORGA’s configuration dependability, first, the dependability of bright
bits or binary state Highs have only to be considered. The ORGA’s configuration de-
pendability can be discussed only by the dependability of bright bits or binary state
Highs. The following inversion/ non-inversion configuration method can increase the
dependability of bright bits.

3 Inversion/Non-inversion Configuration Method on ORGA

According to the property of holographic memories, the number of in-phase waves to
generate a bright bit or binary state H depends on the number of bright bits included in
a configuration context. As increasing the number of bright bits, the number of overlaps
of the transparent area of one bright bit and opaque areas for the other bright bits are also
increased. The overlapped area becomes an intermediate value between the transparent
condition and the opaque condition. Along with the increase in the number of bright
bits, the overlapped area is also increased so that the number of holographic memory
pixels corresponding to in-phase waves to generate each bright bit is decreased. There-
fore, to increase the dependability, the reduction of the number of bright bits or binary
state highs is extremely important. The inversion/ non-inversion configuration method
can decrease the number of bright bits or binary state highs.

A new ORGA-VLSI has an inversion/ non-inversion configuration circuit. Figure 1
portrays the circuit diagram of the inversion/ non-inversion dynamic optical reconfig-
uration circuit including four configuration bits. The configuration circuit consists of
charge-integrated photo-circuits and exclusive OR gates. A one-inversion control photo
circuit is also implemented. The output is connected to a port of exclusive OR gates.
Another ports of the exclusive OR gates are connected to the four configuration circuits.
Therefore, if the control photo-circuit receives light, then the outputs of the four con-
figuration circuits are flipped. However, when the control photo-circuit never receives a
light, the outputs of four configuration circuits are sent directly as configuration infor-
mation. If the architecture can be used, then we can generate any four-bit configuration
pattern using two or fewer bits of binary state highs. When the grouping number of
configuration context bits is larger than that, the effect of the bright bit reduction is also
decreased. Consequently, in this case, we have chosen four configuration bits as one
group.



Enhanced Radiation Tolerance of an Optically Reconfigurable Gate Array 159

Here, the reduction efficiency of the number of bright bits of the inversion/ non-
inversion configuration method is calculated. It is assumed that configuration contexts
are given continuously for an ORGA-VLSI and that they uniformly include all possible
patterns. For example, regarding four-bit configuration, all possible patterns indicates
16 patterns of ”0000”, ”0001”..., and ”1111”. Under such a condition, first, the reduc-
tion efficiency of the number of bright bits in a configuration context of conventional
ORGAs is estimated. The average number of ’1’ s corresponding to laser irradiation
is calculated by counting bit ’1’ of all possible vectors and dividing it by N2N of the
summation of bits of all possible vectors, as in the following equation.

κORGA =
∑N

r=1 r ·NCr

2NN
=

1
2
, (1)

Therein, NCr is a combination. The average number of writing ’1’ s corresponding to
laser irradiation is calculated by counting the ’1’ bits of all possible vectors and dividing
it by N2N of the summation of bits of all possible vectors, as in the following equation.

κnew =
∑
[ N

2 ]
r=1 r ·NCr

2NN
+

∑N
r=[ N

2 +1]
(N − r+ 1) ·NCr

2NN
(2)

The first term in the right side of the upper Eq. (2) is identical to Eq. (1). In this case, an
inversion bit γN+1 is equal to 0. In addition, the second term in the right side of upper
Eq. (2) is applicable to the case in which the inversion bit γN+1 is equal to 1. In the case
of four configuration bits, the average number of bright bits can be decreased from 2.0
of conventional ORGAs to 1.5625. Using this inversion/ non-inversion dynamic optical
configuration method, in the case of four bits, about 22% of bright bits are removable.
Consequently, the configuration dependability can be increased using this method.

4 VLSI Design

A new optically reconfigurable gate array VLSI (ORGA-VLSI) chip which can support
the inversion/ non-inversion configuration was designed and fabricated using 0.18 μm
standard complementary metal oxide semiconductor (CMOS) process technology, as
shown in Fig. 2. A transmission gate and a photodiode cell were designed as custom
cells. The gate array design was synthesized by combining such custom cells and stan-
dard cells and using a logic synthesis tool (Design Compiler; Synopsys Inc.). Then, a
place and route for the synthesized gate array design was executed using Astro (Syn-
opsys Inc.). Finally, the ORGA-VLSI was fabricated at Rohm’s manufacturing facility.
The specifications are presented in Table 1. Voltages of the core and I/O cells were de-
signed respectively using 1.8 V and 3.3 V. Photodiodes were constructed between an
N-Well and a P-substrate. The junction area of a photodiode was designed as 4.40 μm
× 4.45 μm. The photodiode cells are arranged at 30.08 μm horizontal intervals and at
30.24 μm vertical intervals. This design incorporates 10,322 photodiodes. To increase
the photodiode sensitivity, a refresh transistor and an optical amplifier connected to a
photodiode were designed to be as small as possible to reduce the load capacitance and
drain capacitance.



160 T. Yoza and M. Watanabe

Fig. 2. Photograph of a 0.18 μm CMOS process highly sensitive optically differential reconfig-
urable gate array VLSI

Table 1. Specifications of ORGA-VLSI supporting the inversion/ non-inversion configuration

Technology 0.18 μm double-poly
5-metal CMOS process

Chip size 5.0 × 2.5 [mm]
Supply Voltage Core 1.8V, I/O 3.3V
Photodiode size 4.40 × 4.45 [μm]
Photodiode response time < 5 ns
Sensitivity 2.12 × 10−14 J
Distance between
Photodiodes h.=30.08, v.= 30.24 [μm]
Number of
Photodiodes 10,322
Number of
Logic Blocks 80
Number of
Switching Matrices 90
Number of Wires
in a Routing Channel 8
Number of
I/O blocks 8 (32 bit)
Gate Count 2,720

The gate array of the ORGA-VLSI uses an island style. The basic functionality of a
gate array is fundamentally identical to that of currently available field programmable
gate arrays (FPGAs). In all, 80 optically reconfigurable logic blocks (ORLBs), 90 op-
tically reconfigurable switching matrices (ORSMs), and 8 optically reconfigurable I/O
blocks (ORIOBs), which include 4 programmable I/O bits, were implemented in the



Enhanced Radiation Tolerance of an Optically Reconfigurable Gate Array 161

Fig. 3. Block diagram and CAD layout of an optically reconfigurable logic block (ORLB)

gate array. The respective ORLBs, ORSMs, and ORIOBs are programmable block-
by-block through 69, 49, and 49 optical connections. Each block can be reconfigured
block-by-block. The total gate count is 2,720.

Optically reconfigurable logic block. The block diagram and CAD layout of an opti-
cally reconfigurable logic block are presented in Fig. 3. Each optically reconfigurable
logic block consists of 2 four-input one-output look-up tables (LUTs), 10 multiplexers,
8 tri-state buffers, and 2 delay-type flip-flops with a reset function. The input signals
from the wiring channel, which are applied through some switching matrices and wiring
channels from optically reconfigurable I/O blocks, are transferred to LUTs through eight
multiplexers. The LUTs are used for implementing Boolean functions. The outputs of an
LUT and of a delay-type flip-flop connected to the LUT are connected to a multiplexer.
A combinational circuit and sequential circuit can be chosen by changing the multi-
plexer, as in FPGAs. Finally, outputs of the multiplexers are connected to the wiring
channel again through eight tri-state buffers. In all, 69 photodiodes are used for pro-
gramming an optically reconfigurable logic block. The optically reconfigurable logic



162 T. Yoza and M. Watanabe

Fig. 4. Block diagram and CAD layout of an optically reconfigurable switching matrix (ORSM)

block can be reconfigured perfectly in parallel. The cell size is 288.00 × 192.48 μm2.
Such an optically reconfigurable logic block design is based on a standard cell design,
except for the custom designs used for the transmission gate cells and photodiode cells.

Optically reconfigurable switching matrix. The block diagram and CAD layout of the
optically reconfigurable switching matrix are portrayed in Fig. 4. Its basic construction
is the same as that used by Xilinx Inc. Four-directional switching matrices with 48 trans-
mission gates were implemented in the gate array. Each transmission gate can be re-
garded as a bi-directional switch. A photodiode is connected to each transmission gate;
it controls whether the transmission gate is closed or not. The four-direction switch-
ing matrices can be programmed as 49 optical connections. The cell size is 197.76
× 192.48 μm2. Such an optically reconfigurable switching matrix was designed using
custom cells of photodiode cells and transmission gate cells, except for some buffers.
The switching matrix never includes the inversion/ non-inversion configuration method
since the number of bright bits is always small so that it is not necessary the inversion
operation.



Enhanced Radiation Tolerance of an Optically Reconfigurable Gate Array 163

(a) Normal configuration (b) Inversion configuration

Fig. 5. Holographic memory patterns of a NAND circuit consisting of 300 × 300 pixels

(a) Normal configuration (b) Inversion configuration

Fig. 6. Impulse-noise-applied holographic memory patterns of a NAND circuit consisting of 300
× 300 pixels

5 Experimental System and Results

An ORGA optical system comprises a laser source, an optical holographic memory,
and an ORGA-VLSI, as shown in Figs. 7(a) and 7(b). As holographic memory, a liq-
uid crystal spatial light modulator (LC-SLM) was used. The light source was a 532 nm
300 mW laser (torus 532; Laser Quantum). The LC-SLM was a projection TV panel



164 T. Yoza and M. Watanabe

(a)

(b)

Fig. 7. Experimental system

(L3D07U-81G00; Seiko Epson Corp.): a 90◦ twisted nematic device with a thin film
transistor. The panel consists of 1,920 × 1,080 pixels, each of which is 8.5 × 8.5 μm2.
The new ORGA-VLSI was placed 160 mm distant from the LC-SLM.

Here, a simple three-input NAND circuit was implemented onto the ORGA-VLSI.
The original holographic memory pattern of the NAND circuit is presented in Fig. 5(a).
Also, the holographic memory pattern of the NAND circuit using the inversion/ non-
inversion configuration is presented in Fig. 5(b). The CCD-captured configuration con-
text patterns generated from the holographic memory patterns of Figs. 5(a) and 5(b) are
presented respectively in Figs. 8(a) and 8(b). Using the new ORGA-VLSI to support
the inversion/ non-inversion configuration, the number of bright bits on a configuration
context of NAND circuit was reduced from 16 to 12.

We applied impulse noise for the original holographic memory patterns of Fig. 5(a)
and 5(b). The impulse-noise-applied holographic memory patterns are depicted in Fig.
6(a) and 6(b). In the original holographic memory, correct configuration procedures
can be executed up to 64,800 impulse-noises. However, in the inversion configuration
holographic memory, correct configuration procedures were confirmed up to 68,400
impulse noises. Therefore, the radiation tolerance can be improved drastically. The in-
version/ non-inversion configuration is useful to increase the dependability of ORGA
with only a small increase in hardware.



Enhanced Radiation Tolerance of an Optically Reconfigurable Gate Array 165

(a) Normal configuration (b) Inversion configuration

Fig. 8. CCD-captured configuration context images of a NAND circuit generated from original
holographic memory patterns

(a) Normal configuration (b) Inversion configuration

Fig. 9. CCD-captured configuration context images of a NAND circuit generated from noise-
applied holographic memory patterns

6 Conclusion

This paper has presented a proposal of a more advanced method for increasing the ra-
diation tolerance of ORGAs by exploiting an inversion/ non-inversion implementation.
It was demonstrated that the use of an inversion/ non-inversion implementation reduces
the number of bright bits on a configuration context so that the radiation tolerance can
be increased to 106 %. This advanced method for increasing radiation tolerance, which
exploits an inversion/ non-inversion implementation, is expected to be useful to increase
the reliability of ORGAs in a radiation environment.

Acknowledgments. This research was supported by the Ministry of Education, Sci-
ence, Sports and Culture, Grant-in-Aid for Scientific Research (B), No. 24300017. The
VLSI chip in this study was fabricated in the chip fabrication program of VLSI Design
and Education Center (VDEC), the University of Tokyo in collaboration with Rohm
Co. Ltd. and Toppan Printing Co. Ltd.



166 T. Yoza and M. Watanabe

References

1. Khalil-Hani, M., Eng, P.C.: FPGA-based embedded system implementation of finger vein bio-
metrics. In: IEEE Symposium on Industrial Electronics & Applications (ISIEA), pp. 700–705
(2010)

2. Sterpone, L., Violante, M.: An Analysis of SEU Effects in Embedded Operating Systems
for Real-Time Applications. In: IEEE International Symposium on Industrial Electronics,
pp. 3345–3349 (2007)

3. Bonacini, S., Faccio, F., Kloukinas, K., Marchioro, A.: An SEU-Robust Configurable Logic
Block for the Implementation of a Radiation-Tolerant FPGA. IEEE Transactions on Nuclear
Science 53(6), 3408–3416 (2006)

4. Martin, Q., George, A.D.: Scrubbing optimization via availability prediction (SOAP) for
reconfigurable space computing. In: IEEE Conference on High Performance Extreme Com-
puting (HPEC), pp. 1–6 (2012)

5. Hjortland, E., Chen, L.: Fault-tolerant FPGAs by online ECC verification and restoration. In:
IEEE Region 5 Conference, pp. 91–93 (2006)

6. Kubota, S., Watanabe, M.: A four-context programmable optically reconfigurable gate array
with a reflective silver-halide holographic memory. IEEE Photonics Journal 3(4), 665–675
(2011)

7. Nakajima, M., Watanabe, M.: Fast optical reconfiguration of a nine-context DORGA us-
ing a speed adjustment control. ACM Transaction on Reconfigurable Technology and Sys-
tems 4(2) (2011)

8. Seto, D., Nakajima, M., Watanabe, M.: Dynamic optically reconfigurable gate array
very large-scale integration with partial reconfiguration capability. Applied Optics 49(36),
6986–6994 (2010)

9. Morita, H., Watanabe, M.: Microelectromechanical Configuration of an Optically Reconfig-
urable Gate Array. IEEE Journal of Quantum Electronics 46(9), 1288–1294 (2010)

10. Shirahashi, Y., Watanabe, M.: Dependability-increasing method of processors under a space
radiation environment. In: International Workshop on Applied Reconfigurable Computing,
p. 218 (2013)

11. Watanabe, M., Nakajima, M., Kato, S.: An inversion/non-inversion dynamic optically recon-
figurable gate array VLSI. World Scientific and Engineering Academy and Society Transac-
tions on Circuits and Systems 8(1), 11–20 (2009)



Hardware-Accelerated Data Compression
in Low-Power Wireless Sensor Networks

Andreas Engel1 and Andreas Koch2

1 LOEWE Research Center AdRIA, Darmstadt
2 Embedded Systems and Applications Group, Technische Universität Darmstadt

Abstract. In wireless sensor networks, the actual transmission of col-
lected data is often the most energy-consuming operation. Frequently, it
is worthwhile to spend energy aggregating the raw sensor data on the
node to reduce the transmission effort. For many cases, lossless data com-
pression can be employed as a general data aggregation method, as in-
compressible data (noise) generally does not carry any information worth
transmitting. Nevertheless, the energy spent for data compression must
be traded-off against the energy saved for transmitting the compressed
data. In this work, sensor data of two real-life applications is compressed
using a hardware-accelerator of the heterogeneous HaLOEWEn sensor
node. The benefits of providing the node with a reconfigurable compute
unit is demonstrated by comparing its energy consumption with that of
of a purely software-based implementation.

Keywords: reconfigurable computing, wireless sensor network, data com-
pression, heterogeneous architecture, low-power mode.

1 Introduction

Wireless Sensor Networks have been the subject of intense research [11]. In
these distributed monitoring applications, the data gathered by the sensor nodes
usually has to be forwarded to a central base station for final processing or
storage. As the radio transceiver is the major power consumer of a wireless sensor
node, even computationally intensive decentralized data aggregation methods
can result in a reduction of the overall energy consumption of the sensor node.
This is a major concern for the typically battery-powered sensor nodes.

In many applications, no specialized high-level data aggregation scheme (e.g.,
actual feature extraction) can be applied. Instead, all of the sensor data has to
be forwarded to the base station. In these cases, lossless data compression can
be employed as a more general form of data aggregation. However, efficiency
can sometimes be improved by considering an application-specific system model
in the compression scheme, e.g., the nature of rotating machinery. Generally,
a trade-off between the compression quality and complexity of the underlying
data model has to be found. When monitoring slowly changing environmental
conditions, differential encoding has often proven useful.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 167–178, 2014.
c© Springer International Publishing Switzerland 2014



168 A. Engel and A. Koch

While reducing the communication demands and energy consumption of the
sensor nodes, data compression comes at the cost of encoder and decoder com-
plexity. As the decoding is typically performed at the (often mains-powered) base
station, the decoder complexity is not a major concern, thus this work focuses
on encoding.

To improve the compression quality, many encoders first collect a block of data
to analyze its statistical nature before compressing the block with the appropri-
ate settings. This two-pass strategy increases the memory capacity required on
the node as well as the latency between data acquisition and transmission. The
block size, and thus the gains in compression quality, may be limited by the
amount of available memory or real-time requirements in latency-sensitive ap-
plications. In addition, both encoder passes require a certain amount of compu-
tation time and energy, which must be amortized by the reduced communication
effort. Moving operations from software to specialized hardware blocks can often
reduce energy consumption and thus offers an attractive option to improve the
computation vs. transmission energy balance on a sensor node.

In this work, data acquired by two different monitoring applications is loss-
lessly compressed by a heterogeneous sensor node incorporating a low-power
FPGA-based reconfigurable compute unit and a microcontroller-based radio
system-on-chip [4]. The energy required for data transmission as well as for
software and hardware implementations of the encoding are compared to demon-
strate the benefits of hardware-accelerated data compression.

The remainder of this article is organized as follows: Section 2 gives a brief
overview of software- and hardware-based data compression in WSN. In Section
3, the sample applications are introduced and a variety of compression schemes is
applied to the raw sensor data to find the trade-off between compression quality
and encoder complexity. Section 4 details the hardware-accelerated implemen-
tation of the most appropriate compression scheme before evaluating the energy
reduction of the proposed method in Section 5. Section 6 concludes this work
and looks out to further research.

2 Related Work

Fundamentally, we distinguish between generic data compression, applicable to
almost all kinds of sensor data, and compressive sensing [3]. The latter assumes
highly specific properties in the input signals and is not addressed in this work.

Data compression in WSN was investigated frequently in the last decade [7].
For example, an LZW-compressor was implemented on an MSP430 MCU to
analyze the effect of reduced data rates on the end-to-end packet delay in a
multi-hop network [2]. The energy savings achievable by an nonlinear adaptive
pulse code modulator running on the ARM processor of a Beagle Board were
investigated in [6]. However, these authors erroneously considered the compres-
sion ratios achieved directly as energy savings, completely ignoring the energy
required for the encoding. This gross simplification was not used in [9], where
run-length and adaptive Huffman encoding were implemented on the AVR MCU



Hardware-Accelerated Data Compression in Low-Power WSN 169

of a Mica2 mote. The energy for encoding was determined solely by simulations
and datasheet-specifications, using just synthetic data streams with guaranteed
statistical properties as inputs.

Hardware-accelerated data compression in context of wireless sensor networks
focused mainly on lossy image compression in visual surveillance networks, such
as the JPEG compression on an Altera EP2C35 FPGA [12], or the identification
of relevant image sections using a Xilinx Virtex II FPGA [8]. In addition to
not compressing losslessly, these investigations aimed at reducing the required
data rate to the throughput limits of the wireless transmission channel, instead
of minimizing overall system energy consumption. The acceleration of a second
order ADPCM compressor on a Xilinx XC4000 device was proposed in [1], but
did not report any energy requirements.

The use of hardware accelerators for lossless data compression under energy
constraints, which is the focus of this work, has not been studied extensively
before.

3 Characteristics of Monitoring Applications

To investigate the potential and difficulties of compressing sensed data, two
different applications were examined. The first one, neural activity in primates, is
delay constrained, while the second one, condition monitoring of heavy industrial
machinery, is computationally expensive due to multiple parallel data channels.

3.1 Evaluation of Compression Algorithms

As a baseline for our work, we examined the fundamental efficiencies of various
compression algorithms for the applications, using off-the-shelf software imple-
mentations running on a non-energy constrained x86 processor.

In both cases, 8192 samples of each data stream were split into blocks of
different size and fed into the compression algorithms listed in Table 1 with
their specific run-time options. Static overhead (e.g., file headers) generated by
these tools was disregarded when calculating compression ratios.

Table 1. Compression algorithms and options used in further evaluation

codec options version codec overhead

BZIP2 -9 1.0.6 RLE + BWT + MTF + Huffman 24 B

RAR -m5 -en 5.00 proprietary 55 B

ZP c3 1.00 context modeling + arith. coding 221 B

MP4ALS -7e RM23 adapt. linear prediction + Rice 34 B

FLAC -8 1.3.0 adapt. linear prediction + Rice 8292 B

ALAC ffmpeg 0.8.7-6 adapt. linear prediction + Rice 0 B



170 A. Engel and A. Koch

In addition to using these off-the-shelf encoders, a custom forward-adaptive
differential pulse code modulation (ADPCM-APF) compressor was implemented
to allow a fine-grained trade-off between encoder complexity and compression
ratio. Here, the first M samples of a sample-block (x1, . . . ,xN ) are transmitted
uncompressed. The successive samples xi are mapped to a prediction error

di = xi −
∑M

k=1 akxi−k M < i ≤ N (1)

for the linear predictor of order M with coefficients a1, . . . , aM ∈ R. The classical
approach of using an encoder based on a static first-order (M = 1) predictor
and a1 = 1 is referred to in the following as DPCM scheme.

For the forward adaptive predictor, which is referred to as a ADPCM scheme,
the predictor coefficients a1, . . . , aM are not static but fitted to the current sam-
ple block by calculating the autocorrelation values for the block:

rk = sk
N−k with sk =

∑N−k
i=1 xixi+k 0 ≤ k ≤ M (2)

These values are then used to build a system of linear equations, whose solution
results in prediction coefficients that minimize the variance of the prediction error
sequence (d1, . . . , dN ) [10]. This is important for the downstream Rice encoder,
which maps the error value sequence to an actual bit stream, aiming for short
bit representations for each error value. We will use Rice encoding in both the
DPCM and ADPCM schemes.

As an initial step for Rice encoding, the sequence of signed difference (predic-
tion error) values di is converted to a sequence of unsigned values pi by a simple
transformation:

pi =

{
2di, for di ≥ 0

−2di − 1, for di < 0
(3)

The values pi are then encoded into Rice-form bit sequences

RK(pi) = concat
(
U( pi

2K ),BK(pi mod 2K)
)

(4)

with K being the Rice parameter that balances the widths of a zero-terminated
unary code U and the binary block code BK in a bit-wise concatenation. Precise
predictions (pi < 2K) can thus be represented by K+1 bits. Infrequently occur-
ring larger prediction errors, caused by unforeseen spikes, can still be expressed
losslessly by exploiting the variable length unary code. In our experiments, K
was statically chosen for each data channel and not adapted to each sample
block, in contrast to the audio encoders listed in Table 1.

3.2 Neural Activity in Primates

At the German Primate Center in Göttingen, the neural activities of primates
solving different tasks are measured by a micro-electrode inside the probands
brains. As the apes have to move freely over a wide testing area, wired instru-
mentation is impractical and thus the sensor data sampled with 16 bit resolution



Hardware-Accelerated Data Compression in Low-Power WSN 171

0 330
−150

150

time (ms)

sa
m
pl
e
va
lu
e

Fig. 1. 8192 samples of neural activity data (min
= -155, max = 169, mean = 6.3, stddev = 45.5)

Table 2. Statistical characteris-
tics of 8192 samples of machinery
condition monitoring data

channel 1 2 3

min -3872 -4156 -22466
max 5203 13104 16307
mean 110 2919 -3339
stddev 1213 2374 13041

at a frequency of 24.414 kHz (see Figure 1) has to be transmitted wirelessly.
The resulting data rate of 391 kbit/s exceeds the capability of the popular IEEE
802.15.4 protocol, on which many recent low power radio transceivers are based.
The captured data stream thus has to be compressed by about 50 % before it
can actually be transmitted by an IEEE 802.15.4 transceiver.

Based on the received neural data, the variable penetration depth of the micro-
electrode is controlled remotely by an operator at the control station. In order
to allow timely interactive manipulation of the probe depth, the maximum end-
to-end latency is thus restricted by the human response time of about 100 ms.
Thus, the maximum block size used by a two pass encoder may not exceed
2, 400 samples at 24.414 kHz.

The compression ratios (compressed data size / uncompressed data size)
achieved by applying the compression algorithms from Section 3.1 are shown
in Figure 2. As expected, the compression ratios of all encoders improve with
increasing block sizes. With the exception of MP4ALS, the predictive audio en-
coders clearly outperform the dictionary-based compression schemes. Given the
audio-like characteristics of the neural activity data, this in itself is unsurprising.
However, the additional encoder complexity necessary for adapting the higher
order linear predictor coefficients in the algorithms used in MP4ALS, ALAC or
FLAC does not improve the compression ratios significantly compared to the

32 64 128 256 512 1024 2048
30

40

50

60

70

80

90

100

Block Size

co
m
pr
es
si
on

ra
ti
o
(%

)

encoders BZIP2 RAR ZP MP4ALS ALAC FLAC DPCM

Fig. 2. Reduction of neural activity data achieved by various compression schemes



172 A. Engel and A. Koch

static first-order DPCM predictor. For instance, at a block size of 2048 samples,
the FLAC encoder achieves only a 3 % improvement in compression ratios at the
cost of double the execution time when compared to the DPCM encoder running
on the same platform.

3.3 Condition Monitoring of Heavy Industrial Machinery

The second application deals with detecting damage or fatigue of the rotating
parts of very large industrial machines. This condition monitoring is used to
schedule inspection/maintenance intervals before unanticipated major damage
leads to high repair costs and downtime of the machinery. Since the monitoring
algorithms observe long-term trends in the acquired data, this application is
latency insensitive. Note that the sensor nodes are located on heavily vibrating
parts of the machine, which would quickly wear out fixed cable connections, thus
making low-power wireless communication preferable.

The raw data streams are gathered from a three channel MEMS sensor sam-
pled at 1 kHz with a resolution of 16 bit per channel. Table 2 shows some sta-
tistical characteristics of the captured signals1.

The compression algorithms described in Section 3.1 were applied to each
channel separately. The resulting overall compression ratios are shown in
Figure 3. Again, the predictive audio codecs are most appropriate. At a block
size of 2048 samples, FLAC produces results 6 % smaller than DPCM. As in
Section 3.2, this improvement comes at the cost of double the execution time for
FLAC.

32 64 128 256 512 1024 2048

40

60

80

100

Block Size

co
m
pr
es
si
on

ra
ti
o
(%

)

encoders BZIP2 RAR ZP MP4ALS ALAC FLAC DPCM

Fig. 3. Reduction of condition monitoring data achieved by various compression
algorithms

The ADPCM scheme is examined separately. Figure 4 quantifies the impact
of the prediction order. For small blocks, the size of the stored prediction param-
eters exceeds the benefit of improved compression ratios due to the reduced pre-
diction error variance. For blocks of 2048 samples, the compression ratio strictly
1 Actual waveforms cannot be shown here for confidentiality reasons.



Hardware-Accelerated Data Compression in Low-Power WSN 173

32 64 128 256 512 1024 2048

40

60

80

100

Block Size

co
m
pr
es
si
on

ra
ti
o
(%

)
prediction order 1 2 3 4 5 6 7 8 9

Fig. 4. Impact of prediction order on ADPCM compression ratio

decreases with the prediction order and a break even point for best energy effi-
ciency can be derived from the platform specific power draw for computation and
transmission. Thus, adaptive prediction should be used for condition monitoring
if the target platform supports storing a sufficient amount of samples (recall that
there are three data channels, and double-buffering may be necessary for parallel
sampling and encoding).

In conclusion, the adaptive schemes reached the best compression ratios for
larger sample blocks, while static DPCM proved superior on small blocks. Thus,
for delay-sensitive applications or memory-constrained platforms, the simple
DPCM scheme should be applied. In all other cases, FLAC can improve the com-
pression ratio of DPCM by about 5 %. Note that FLAC is just a combination
of ADPCM with an extensive search for the optimal prediction order. For data
sources with known characteristics, a static selection of the prediction order may
be sufficient. The adaptation of prediction coefficients in ADPCM only becomes
worthwhile, if the further data size reduction of 5 % over DPCM can be achieved
with less energy than required to transmit the just DPCM-compressed data. For
this reason, we also examine the energy efficiency of a hardware implementation
of the ADPCM algorithm.

4 Hardware-Accelerated Data Compression

In Section 3, (adaptive) differential pulse code modulation combined with Rice
coding was identified as a balanced trade-off between compression quality and
run-time effort for the investigated data streams. However, the low-power micro-
controllers typically used in wireless sensor nodes may be overburdened even by
these simpler algorithms, particularly by the adaptive compression scheme.

In [4], the HaLoMote architecture was proposed to energy-efficiently perform
more compute-intensive distributed tasks even on low-powerwireless sensor nodes.
This heterogeneous architecture combines a micro-controller-based radio system-
on-chip (MCU), responsible for handling wireless protocols and system manage-
ment, with a reconfigurable compute unit (RCU) for the hardware-acceleration



174 A. Engel and A. Koch

MCU

RCU

WRITE

(A)DPCM

COMPRESS

HW Kernel API

HW Kernel Controller

READ

(A)DPCM (A)DPCM

ROM Radio

(a) System overview

Block Buffer

MAC

Prediction Error Rice

Linear Equation
System Solver

Bit buffer

Sample FIFO

s0 ... sM

a1 ... aM

xi ... xi M

(b) Compression Module

Fig. 5. Hardware-software interaction of the heterogeneous sensor node (a) and
hardware-accelerated data compression (b)

of complex computations. The current implementation, called HaLOEWEn, em-
ploys a TI CC2531 RF-SoC as MCU and a Microsemi AGL1000 FPGA as RCU.
This section describes the hardware implementation of the (a)DPCM algorithms
on the HaLoMote reconfigurable architecture.

Figure 5a gives an overview of the proposed implementation. The RCU can
hold multiple hardware (HW) kernels performing different algorithmic functions.
A communications API allows the MCU to interact with individual kernels [5].
The HW-Kernel controller starts the execution of HW-Kernels, manages data
input and output, and reports execution completion. It is driven by the MCU via
a bit-parallel interface through the application-independent API. For the data
compression application, three HW-Kernels were implemented. The WRITE ker-
nel distributes a sample stream to the compression modules, each processing one
data channel. In practice, this sample stream will be generated by sensors at-
tached to the RCU. For better reproducibility of results, our experiments below
will process a prerecorded sample stream, read from the MCU code memory.

The compressed data stream generated by the compression modules is then
sequentialized by the READ kernel and passed back to the MCU, which trans-
mits it wirelessly. The HaLOEWEn radio stack allows parallelizing the radio
transmission with the data transfer from the RCU to the MCU. Thus, the MCU
duty cycle is not stretched by the communication task. This is important for the
energy efficiency of the system (shorter duty cycles allow longer ultra-low-power
sleep phases). Finally, the COMPRESS kernel controls the compression modules
and tracks the number of generated output bytes.

Figure 5b shows the implementation of the compression module, instantiated
once for each data channel. It contains a block buffer using on-chip RAM to
hold the sample stream and compressed data stream. This in-place compression
architecture allows to compress larger data blocks in memory-constrained sys-
tems (the on-chip RAM of the low-power FPGA used is limited to just 144 kbit).



Hardware-Accelerated Data Compression in Low-Power WSN 175

However, it requires a compression ratio smaller than 100 % (i.e., compression
actually reduces the data size) for each prefix of each sample block in the sample
stream. This constraint is achievable for both the primate neural activity as well
condition monitoring scenarios, where the spikiness of data is limited by the
inertia of the underlying biochemical and mechanical systems.

The shaded modules of Figure 5b are used only in the adaptive prediction. For
the simple static first-order DPCM compression, the block buffer is read once
(retrieving uncompressed data), with the last sample xi−1 also being retained in
a sample FIFO to calculate the prediction error as required by Equation 1. This
prediction error is passed to the Rice coder to produce the bit sequence described
by Equations 3 and 4. This bit sequence is sliced into bytes and written back to
the block-buffer (now in compressed form) by a bit-buffer module.

For the adaptive ADPCM compression scheme, an additional coefficient op-
timization pass precedes the compression pass. During this pass through the
block-buffer, the autocorrelation sums sk of Equation 2 are accumulated. To
this end, a time-multiplexed multiply-accumulate unit (MAC) is supplied with
the appropriate operands from the sample FIFO (xi, . . . ,xi−M ) and the accu-
mulator set (s0, . . . , sM ). At the end of the pass, the autocorrelation sums sk
computed in the accumulators are used to generate the linear equation system
that has to be solved to retrieve the prediction coefficients (a1, . . . , aM ). As a
trade-off between prediction accuracy and the time and energy spent to calculate
the coefficients and the prediction values, fixed point arithmetic was chosen. The
resulting coefficients are stored in Q4.12 format. To conserve FPGA area and
energy, we chose M = 1 for our experiment, which simplifies the linear equation
system solver to just

a1 = r1
r0

= s1 ·N
s0 ·N−s0

(5)

By restricting the block size N to a power of two, the remaining integer division
can be performed sequentially in 16 clock cycles. In each step of the subsequent
compression pass, the prediction coefficients have to be multiplied with the cor-
responding prior value(s) from the sample FIFO to accumulate the prediction
of the next sample (Equation 1). The MAC unit and one of the autocorrelation
sums is reused for these calculations, which are performed in parallel with the
bit-buffering of the Rice code of the previous prediction error.

5 Experimental Evaluation

The hardware-accelerated data compression design described in Section 4 was
synthesized for the Microsemi IGLOO AGL1000V2 FPGA using Synplify Pro
H-2013.03M-1 with retiming. The block buffer size of the compression modules
was fixed at 2048 samples. As shown in Table 3, the design is primarily limited
by the available memory and restricted to four channels at the given block size.
Even so, some area remains for implementing higher order predictors.

To demonstrate the energy efficiency of the hardware-accelerated data com-
pression, the measurement setup shown in Figure 6 was used. The HaLOEWEn
sensor node is supplied by an external 3 V voltage source to power its internal



176 A. Engel and A. Koch

Table 3. Synthesis results for the Microsemi IGLOO AGL1000V2 device

channels scheme BRAM Core Cells max Frequency

1 DPCM 8 (25 %) 1681 ( 7 %) 19.2 MHz
1 ADPCM 8 (25 %) 6728 (27 %) 10.5 MHz
3 DPCM 24 (75 %) 4419 (18 %) 22.4 MHz
3 ADPCM 24 (75 %) 14088 (57 %) 10.7 MHz

components. The MCU drives the RCU into its low power flash freeze mode
as long as no hardware-accelerated computations are required. For precise time
measurements, an external trigger is asserted by the MCU when a compute task
starts and is recorded by an oscilloscope. The average current drawn by the sys-
tem during the task execution is measured by an Agilent 34411A multimeter,
which provides a resolution of 3 µA at a sampling frequency of 50 kHz.

For comparison with the hardware-accelerated encoders described in Section
4, the DPCM and ADPCM compression schemes were also implemented on the
TI CC2530 MCU of the HaLOEWEn sensor node to estimate the energy con-
sumption of a conventional microcontroller-based sensor node. The software was
compiled by the Small Device C-Compiler (SDCC) v3.3 with speed optimizations
enabled. The energy required for transmitting the uncompressed data stream is
used as the baseline measurement. Each transmitted packet carries a maximum
of 116 payload bytes.

As indicated in Figure 5a, a block of 2048 prerecorded sensor samples per
channel, stored in the MCUs code memory, is used as the data source. The
software implementations of the compression schemes operate directly on this
data block. For the hardware-accelerated compressors, the process of moving the
samples from the MCU to the RCU is not included in the measurements, as we
assume that in practice, the sensors would be directly attached to the RCU.

Table 4 shows the results for processing the neural data described in Section
3.2. Both DPCM and ADPCM compression reduce the data size down to 38.5 %,
making the simpler DPCM algorithm a better choice for this application. The
DPCM execution on the MCU takes more than double the 61.2 ms required for
transmitting the compressed data stream. The MCU thus has to be kept active
beyond the pure transmission time of the prior packet in order to perform the
compression of the current packet. As the current drawn by the system during
compression exceeds the current drawn in low-power mode by about 120 times,

HaLOEWEn 
MCU 

DC/DC 

Oscilloscope 

DC/DC DC/DC 

RCU 20 MHZ 
Oscillator 

3.3 V 1.2 V 2.5 V 
Voltage 
Source 

Multimeter 
3 V 

Flash Freeze Trigger 

Fig. 6. Measurement setup



Hardware-Accelerated Data Compression in Low-Power WSN 177

Table 4. Energy to compress/transmit 2048 samples of neural data (Sec. 3.2)

compression compression + transmission

duration current energy duration current energy
scheme on [ms] [mA] [µJ] bytes [ms] [mA] [mJ] [%]

none 4096 158.8 41.5 19.77 100.0
DPCM MCU 132.2 11.8 4680 1577 184.6 21.6 11.96 60.5

ADPCM MCU 249.4 11.8 8829 1577 310.4 17.5 16.30 82.4
DPCM RCU 1.4 10.7 45 1577 62.6 41.9 7.87 39.8

ADPCM RCU 2.6 10.7 83 1577 63.8 41.3 7.90 40.0

Table 5. Energy to compress/transmit 3×2048 samples of condition data (Sec. 3.3)

compression compression + transmission

duration current energy duration current energy
scheme on [ms] [mA] [µJ] bytes [ms] [mA] [mJ] [%]

none 12288 474.4 41.6 59.21 100.0
DPCM MCU 531.0 11.9 18957 9836 912.0 24.3 66.48 112.3

ADPCM MCU 906.0 11.9 32344 9732 1281.0 20.6 79.17 133.7
DPCM RCU 1.6 10.7 51 9836 381.6 42.5 48.62 82.1

ADPCM RCU 2.9 10.7 93 9732 378.9 42.4 48.15 81.3

the longer duty cycles lead to deteriorated overall energy efficiency. In contrast,
for the hardware-accelerated implementations, RCU to MCU data movement
occurs in parallel to the ongoing data transmission. The very short execution
time of the compression stretches the duty cycle before going back to sleep only
marginally, leading to an almost complete translation of compression ratio into
system-level energy savings (38.5 % ratio vs. 39.8 % energy for DPCM).

Processing of the condition monitoring data discussed in Section 3.3 is eval-
uated in Table 5. Here, the adaptive predictor improves the compression ratio
over DPCM such that a complete radio packet is saved. On the MCU, how-
ever, compressing the three data channels takes so much time, that the energy
required cannot be amortized over the transmission savings, instead leading to
an efficiency deterioration. The hardware-accelerated encoders fare much better:
Since all channels can be compressed in parallel, the total execution time only
slightly increases over that of the single channel encoder used in Table 4. As be-
fore, the encoders using the RCU convert nearly all of the data volume savings
into actual energy savings.

6 Conclusion and Future Work

In this work, lossless data compression was used to aggregate collected sensor
data before transmitting it wirelessly to a data sink (central node). The trade-off



178 A. Engel and A. Koch

between compression quality and encoder complexity was analyzed for two dif-
ferent types of real-world sensor data. To this end, differential compression with
a linear predictor and a downstream Rice encoder has been implemented on a
Microsemi IGLOO FPGA and a TI CC2530 microcontroller. While the software
compressor did reduce the overall energy consumption of compression and trans-
mission for data compression ratios of 40 %, it did not succeed for compression
ratios of only 80 %. The hardware-accelerated encoder, however, achieved almost
perfect efficiency converting space savings due to compression into actual energy
savings. Since for some data streams, such as the condition monitoring applica-
tion, adaptive encoding yields improved efficiency, future work will evaluate the
gains possible using higher-order adaptive predictors.

References

1. Boonyakitmaitree, C., Nandhasri, K., Ngarmnil, J.: A low computational predictor
coefficient algorithm for adpcm implementation of portable recording devices. In:
The 2004 47th Midwest Symposium on Circuits and Systems, MWSCAS 2004,
vol. 3, pp. iii-187–iii-190 (2004)

2. Deng, X., Yang, Y.: Online adaptive compression in delay sensitive wireless sensor
networks. IEEE Transactions on Computers 61(10), 1429–1442 (2012)

3. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4),
1289–1306 (2006)

4. Engel, A., Liebig, B., Koch, A.: Feasibility analysis of reconfigurable comput-
ing in low-power wireless sensor applications. In: Koch, A., Krishnamurthy, R.,
McAllister, J., Woods, R., El-Ghazawi, T. (eds.) ARC 2011. LNCS, vol. 6578,
pp. 261–268. Springer, Heidelberg (2011)

5. Engel, A., Liebig, L., Koch, A.: Energy-efficient heterogeneous reconfigurable sensor
node for distributed structural health monitoring. In: Morawiec, D.A., Hinderscheit,
J. (eds.) Conference on Design and Architectures for Signal and Image Processing
(DASIP), Electronic Chips & Systems design Initiative (2012)

6. Kasirajan, P., Larsen, C., Jagannathan, S.: A new data aggregation scheme via
adaptive compression for wireless sensor networks. ACM Trans. Sen. Netw. 9(1),
5:1–5:26 (2012)

7. Kimura, N., Latifi, S.: A survey on data compression in wireless sensor networks.
In: Proc. Int. Conf. Information Technology: Coding and Computing, ITCC 2005,
vol. 2, pp. 8–13 (2005)

8. Ngau, C., Ang, L.M., Seng, K.: Low memory visual saliency architecture for data
reduction in wireless sensor networks. IET Wireless Sensor Systems 2(2) (2012)

9. Reinhardt, A., Christin, D., Hollick, M., Steinmetz, R.: On the energy efficiency of
lossless data compression in wireless sensor networks. Proc. IEEE 34th Conf. Local
Computer Networks, LCN 2009, 873–880 (2009)

10. Sayood, K.: Introduction to Data Compression. Morgan Kaufmann (2005)
11. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput.

Netw. 52, 2292–2330 (2008)
12. Zhiyong, C., Pan, L., Zeng, Z., Meng, M.: A novel fpga-based wireless vision sensor

node. In: Proc. IEEE Int. Conf. Automation and Logistics ICAL (2009)



OCP2XI Bridge: An OCP to AXI Protocol

Bridge

Zdravko Panjkov1, Juergen Haas1, Martin Aigner1, Herbert Rosmanith1,2,
Tianlun Liu1, Roland Poppenreiter1, Andreas Wasserbauer1,

and Richard Hagelauer1,2

1 Intel Mobile Communication (IMC), Danube Mobile Communications Engineering
Zdravko.Panjkov@intel.com

2 Institute for Integrated Circuits, Johannes Kepler University Linz

Abstract. The modern SOC design contains many IP cores with differ-
ent communication protocols. Improving the bridging and signal transla-
tion between these protocols has become a critical factor for the
performance of the whole system. In this paper we will address the
bridging of two well defined protocols, the Advanced Extensible Inter-
face (AXI) and the Open Core Protocol (OCP). This bridge supports
pipelined and multiplied transactions from both AXI and OCP interface.
In comparison to related work our bridge offers simpler implementation
and handling while containing full protocol functionality. The bridge is
implemented and verified in a modern SystemC regression environment
with large functional coverage. FPGA emulation is done on Versatile Ex-
press board using the CPU board as a main emulation controller. The
result shows that the bridge is covering full protocol functionality and
that maximal FPGA frequency is acceptable for a wide range of appli-
cations.

Keywords: AXI, OCP, FPGA.

1 Introduction

With the increase in process integrity and frequency, the amount of different
protocols used in SOC increased substantially. The result is that the configura-
bility and reusability of the chip protocol to the different bus types has become
a dominant factor.

In the past, the widely accepted bus protocol was AMBA AHB [1], which
facilitates single and burst transactions by using shared multiplexer architecture.
The multiplexer architecture performs well with a limited number of IP cores,
but with the increase number of cores the amount of transactions increased to
more than one transaction at the time which is not supported by the shared
architecture. Precisely for this reason two new protocols have been developed:
the first is an Advanced extensible Interface (AXI) protocol, and the second is
an Open Source Protocol (OCP).

The Open Core Protocol organization (OC-IP) started work in 2001 on some-
thing that would eventually become an OCP protocol [2]. OCP-IP aim was to

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 179–190, 2014.
c© Springer International Publishing Switzerland 2014



180 Z. Panjkov et al.

create a standardized interface and thus simplify the SOC’s integration problems.
The most important benefit of the OCP is its flexibility and configurability. OCP
can be configured as a simple peripheral core, a high performance microprocessor
or a chip subsystem.

AXI was first launched in 2003 with AMBA 3 architecture [3]. A protocol
defines five separated channels with a separate set of signals for each channel.
The interface is not restricted by the internal bus architecture so the designer
can integrate different IP’s by direct connection or by bus infrastructure between
them.

This paper presents our experience and methodology with designing, verifying
and emulating the bridge between OCP and AXI protocols. Verification is done
in a state of the art SystemC verification environment with a wide range of cases
and with high functional coverage. For emulation, the bridge is synthesized for
Xilinx Virtex6 FPGA, which is part of the Versatile Express board. The entire
verification environment is ported and implemented on Versatile Express board
which gave a significant increase in verification speed. We showed that this bridge
can handle many real time applications such as high definition images, different
types of data or even a slow stream transmission.

The key contributions of this paper are:

– The paper presents the design of a full-featured OCP to AXI bus bridge,
which is verified in the SystemC verification environment.

– The paper presents our FPGA synthesis methodology for OCP to AXI bus
bridge and the porting of whole SystemC verification environment to an
emulation board.

– The paper demonstrates how the above bridge can handle real time applica-
tion directly on FPGA emulation board.

The remainder of the paper is organized as follows. Section 2 reviews related
work and provides backward information on the bus bridge. Section 3 describes
our experience in designing the bridge. Section 4 describes the verification en-
vironment used to verify protocol bridge. Section 5 presents emulation board
and procedure to create an emulation environment. Section 6 present results,
functionality and performance of the synthesized bridge. Section 7 concludes.

2 Related Work

There are commercially available software tools and solutions for protocol
bridging.

The most used software tools are the Sonics Express [4] and Arteries FlexNoC
[5]. Sonic Express provides a high bandwidth bridge between AXI and OCP
protocols with the capability of crossing clock, power and physical boundaries.
Arteries FlexNoC can implement a bridge between any combination of AMBA,
AXI, AHB, APB and OCP protocols. The only problem of these tools is their
price and usually quite complicated GUI which adds additional complexity.

Beside software tools there are also commercial IP solutions.MIPS-Imagination
offers OCP to AXI Bridge [6]. The MIPS IP is relatively specialized as it only



OCP2XI Bridge: An OCP to AXI Protocol Bridge 181

allows the connection of OCP 32 bit width interface to AXI bus. This makes sense
because the bridge was developed for MIPS32 processor but it is not applicable in
any different solution. Xilinx offers many different protocol bridges as part of the
Xilinx Platform studio [7], including AHB2AXI, AXI2APB, AXI2PLB. However,
the OCP2AXI bridge is not supported.

There are many applications where protocol bridging plays an important role.
In applications such as sound, graphic and network the peripheral component
interconnect (PCI) has to be connected to the AMBA bus throw AHB-PCI
bridge/adapter [8][9][10]. In the SoC test techniques the AHB-APB bridge is
extensively adopted to adjust different protocol speeds [11][12][13].

It is true that commercial tools offer a form of bridging but additional com-
plexity and the introduction of a new tool is not always desirable in modern
design. However solutions both scientific and commercial do not offer a func-
tional OCP to AXI Bridge.

3 Hardware Design of the On-chip Bridge

The OCP to AXI bridge connects two protocols with different functionality. The
bridging involves mapping the inputs and outputs of the OCP slave to the inputs
and outputs of AXI master. The signals coming from OCP master are inputs
to OCP2AXI bridge which are then converted into AXI signals and delivered to
AXI master.

Figure 1 shows the block scheme of OCP2AXI bridge, with key components
highlighted. The bridge consists of:

– OCP slave
– OCP to AXI kernel
– AXI master
– AXI Downsizer

Because we can’t directly connect AXI and OCP interfaces we developed our
own intermediate interface which can be easily translated to both OCP and AXI

Fig. 1. Block scheme of OCP to AXI bridge



182 Z. Panjkov et al.

interfaces. The interface preserves all key features of both protocols but without
specialized optimization of one particular protocol.

The intermediate interface consists of read and write channels with one com-
mon address channel (see Figure 2). Both read and data channels have similar
interface with one FIFO’s input for better handling of different protocol timing.
Address channel covers all other protocol functionality, including out-of-order
transaction, multiple transactions, and burst size. The interface is designed to
provide a quick way to implement a lightweight interface between OCP and AXI
interface. Finite state machine (intermediate FSM) is developed to implement
functionality of intermediate interface and to serve as slaves for OCP/AXI pro-
tocol. The intermediate interface does not support specific optimizations such
as separate read/write transaction for AXI protocol or configurable interface of
OCP protocol.

Fig. 2. Block diagram of intermediate interface

The OCP slave design applies a translation of the OCP interface signals to
intermediate interface signals. The intermediate FSM is capable of executing
translation but we still needed to generate handshake signals for OCP side of
the bridge. Simple OCP FSM is implemented to control the flow of each OCP
transaction and to generate signals as OCP slave interface (MCmd, MAddr,
MData). The OCP FSM supports burst, pipelined, out-of-order transaction and
its output is delivered to intermediate FSM.

The AXI master design is responsible for the reverse translation form the
intermediate interface to the AXI interface. Again the intermediate FSM is im-
plemented to execute translation and AXI FSM is created to handle hand shake
between AXI interface and OCP2AXI bridge.

The AXI FSM is created with two subs FSMs, one FSM for reading and one
FSM for writing. This preserves AXI ability to read and write independently of
channels. Each new address initiates new AXI transaction and AXI FSM expect
a response from the AXI interface to proceed with a next transaction.

OCP to AXI kernel is a time multiplexer between two intermediate FSM.
Because there is usually differences in OCP and AXI timing it is necessary to
synchronize two protocols. The kernel is monitoring the status signal of both
intermediate interfaces and depending on the current state it gives permission
for the next read/write transmission.



OCP2XI Bridge: An OCP to AXI Protocol Bridge 183

The AXI Downsizer is responsible for the downsizing data width of 256, 128,
64 to 32. This is a design from Xilinx [14] and it is offered as part of their
ISE tool. Reason for implementing AXI Downsizer is necessity to simulate and
emulate 32 data width within our verification/emulation environment while DSP
design used as driver is designed with configurable OCP data width.

4 RTL Simulation of the Bridge

We used RTL simulation as the primary approach to debug RTL modifications
until the whole design became stable enough. Once the design became stable to
allow basic transactions we proceeded to more sophisticated levels of verification.

For sophisticated verification we developed SystemC verification environment.
The environment contains a large number of high quality regression tests with
high coverage over a large functional domain. Figure 3 shows the block design
of the verification environment. The environment consists of four parts:

– OCP driver/monitor
– AXI random access memory (RAM)
– OCP2AXI Bridge
– System C environment

Fig. 3. Block design of the verification environment

The OCP driver/monitor is essentially an IMC DSP processor. The DSP was
developed in our group during previous project and it has an OCP interface with
adjustable bit data width (from 32 to 256 data bit width). With a limited inter-
face optimization the DSP becomes precisely what we needed for this verification
procedure. The DSP gives great controllability and visibility which can be easily
combined with verification environment. It is relatively easy to create a wide range
of input vectors and to cover almost all functionality of the OCP interface.

AXI random access memory is developed to support the AXI side of the bridge
and it consists of two designs. The first design is the Xilinx AXI BRAMController
which is a soft IP core designed as an AXI endpoint slave and the master device to
local RAM [15]. The second design is a RAM with a regular interface, the RAM
is a simple concurrent design with variable matrix as its basis.



184 Z. Panjkov et al.

The verification environment is a state of the art environment developed us-
ing the SystemC language. The SystemC language is an advanced set of C++
libraries that provides an event driven simulation [16]. The environment is suc-
cessfully used in many different projects including previously mentioned DSP
project. The environment has complete control over DSP which allows a wide
variety of different OCP regression tests. These regression tests could be run
over a couple of days in our ModelSim batch mode transaction pool.

During designing even after small changes it was necessary to rerun the whole
regression pool to be sure that change did not affect any other bridge functional-
ity. In case of new functionality it was necessary to develop a new test case which
would cover new functionality. Until the whole design was not working properly
we did not start the next step (synthesis). Even when everything was working
correctly in simulation, we still continued to use simulation flows to ensure that
the synthesis tool chain performs correctly.

5 FPGA Emulation of the OP2XI Bridge

RTL simulation is a basic methodology for verifying and debugging RTL design.
The main problem of RTL simulation is its limited speed, one second of real time
is usually around a couple of days in the simulator. To improve verification of real
time situations we used the Versatile Express board as emulation environment.

5.1 Versatile Express Board

The Versatile Express platform provides a quality solution for rapid prototyping
and hardware verification of the next generation of digital designs [17]. Versatile
board is a highly configurable solution with high speed interfaces and the ability
to develop and verify both software and hardware applications. Figure 4 gives a
block description of the board components. The board consists of three parts:

– Versatile Express Motherboard
– Versatile Express CoreTile
– Versatile Express LogicTiles

Fig. 4. Versatile Express board, block description



OCP2XI Bridge: An OCP to AXI Protocol Bridge 185

The motherboard has been specially designed to support future generations
of software development. The board envelops all the necessary interfaces and
peripherals for development of any new digital designs or graphic engine.

The CoreTile is delivered with different types of processor cores (Cortex-A15,
Cortex-A9, Cortex-A7 and Cortex-A5) and it is mainly used as a CPU for the
whole environment.

The LogiTile is delivered with a choice of different types of FPGAs and with
capabilities to stack up to four boards one on top of each other. The board en-
ables rapid prototyping, software/hardware codesign, verification and hardware
driver development alongside a CoreTile CPU. This greatly reduces bring-up
time and testing of IP design in parallel with software driver.

5.2 Synthesis Tool Flow

Most of our RTL design is coded in Verilog language so at the beginning we chose
Xilinx Ise [18] as main synthesis tools. Xilinx Ise is relatively cheap and easy to
use but does not support all features and languages available on the market.
Unfortunately some part of our design is written in System Verilog which is not
supported in XILINX Ise so it was necessary to find a different solution.

We had two solutions to either use Synplify Pro [19], or to use new Xilinx
Vivado [20] suit. Both tools are high performance, cost effective FPGA synthesis
tool with the ability to interpret System Verilog syntax.

The Vivado Design Suite implements all steps necessary for the FPGA bit
generation (synthesis, mapping and placement) in one tool. Synplify Pro syn-
thesis software is the industry standard FPGA tool and its unique Behavioral
Technology performs optimization at a highest level. It is important to notice
that in the case of Synplify Pro we still needed to use Xilinx Ise for mapping
and placement.

In this case we have chosen a Synplify Pro not just for its optimization abil-
ities but also because of good customer and time proven reviews. Compared to
Synplify Pro Vivado Design Suit is a relatively a newcomer to the field and it is
still necessary to pass the test of time.

Cshel scripts are created to control synthesis procedure. Synplify Pro inter-
prets the RTL files and creates the edf file. Xilinx ISE collects the edf files and
implements mapping and placement. In Table 1 you can see the synthesis results.

Table 1. Synthesis results

Device Xlinx Virtex 6 xc6vlx760 %

Slices: 79.940 out of 948,480 8
LUTs: 82,027 out of 474,240 17
RAM36: 122 out of 720 16
RAM18: 17 out of 1440 1
IOB: 635 out of 1200 52
MAX. FREQ: 27.083 MHz



186 Z. Panjkov et al.

5.3 Emulation on Versatile Express Board

The whole Versatile Express board is connected by an AXI interface [21] so the
only way to send data between LogicTile board and CoreTile board is through
the AXI bus.

LogicTile environment. The AXI bus was delivered as a basic driver for the
LogicTile board. The problem was that the basic driver has only one AXI master
for the emulation environment while in our case we needed at least two masters
and one slave. For the generation of additional interfaces we used Xilinx Platform
Studio [22] which enables easy generating of additional AXI interfaces. Figure 5
(a) presents a LogicTile environment which consists of AXI bus with connections
to Logic Tile Fash DRAM memory, processor and emulation environment.

Fig. 5. Top system design (a) LogicTile environment (b) Emulation environment

Emulation environment (DSP, OCP2AXI...). During emulation development
we tried to reuse as much of RTL simulation as possible knowing that we can
greatly improve functional coverage and also simplify our development process.
Figure 5 (b) shows the block design of the emulation environment. The environ-
ment consists of:

– DSP processor
– OCP2AXI bridge
– Emulation environment

Both DSP and OCP2XI bridge are described in previous chapters.
The emulation environment consists of two AXI master interfaces and one AXI

slave interface. The first AXI master is connecting the OCP2AXI bridge with
flash DRAM memory (see Figure 4) enabling collecting data from the bride out-
put. The second master interface transfers data between DSP and flash DRAM
memory delivering input date to the DSP. The AXI slave is giving the CPU full
control over DSP design.

During emulation individual functionality or even entire blocks can be sep-
arately verified. This was enabled by DSP design which has nearly the same



OCP2XI Bridge: An OCP to AXI Protocol Bridge 187

functionality as in RTL simulation. The CPU is used to control the DSP from
outside of FPGA using Linux drivers and partially ported SystemC verification
environment.

Drivers for CPU core. The Core Tile board is delivered with Boot Monitor
which is a standard application built on CPU platform library. The library han-
dles the system initialization and provides basic I/O subsystem that supports
simple drivers [23]. Unfortunately this was not enough to enable communication
between CPU AXI interface and FPGA environment design on LogicTile boards.

In order to run the bridge core in the FPGA emulation board, we installed Linux
image and developed two Linux drivers to enable delivering and collecting data
from the design. Figure 6 presents Linux driver which consists of two components.

– Direct memory driver
– DSP driver

Fig. 6. CPU Linux driver design

The direct memory driver is responsible for delivering data to the flash DRAM
memory located on the LogicTile board Figure 4. Its function is to provide
necessary service to direct memory access so that data can be sent without any
problems. This data will be used during a transaction as input/output data to
the AXI interface of the bridge.

DSP driver is partly redesigned DSP control from SystemC environment. The
driver controls the DSP AXI interfaces from CPU giving similar DSP controlla-
bility as in RTL simulation.

Beside these two drivers, the almost entire verification environment is ported
and translated from the SystemC language to CSHELL scripts. For porting
we extract SystemC functionality and optimized it for CSHELL scripts. It was
not possible to use the whole environment because in simulation we had full
visibility while in emulation only a small subset of signals was extracted by
Xilinx ChipScope [24].

6 Results

For emulation and verification we used images of different sizes and definition.
Besides images we also used many different types of data but images remain the



188 Z. Panjkov et al.

Fig. 7. Evaluation results

best and the simplest way to measure the quality of the bridge. Figure 7 presents
an execution time for different image sizes on FPGA emulation board. The Y-
presents size/resolution of images and the X-presents execution time.

We also tried to use the live stream for system emulation but unfortunately
the max frequency is too low to support this feature (see table 1). The system
can only process around 3 images per second, (this greatly depends on image
quality) and for live stream you need at least 20 images per second.

The benefits of the RTL simulation environment such as high functional cover-
age, large number of tests and relatively long regression run are implemented in
the emulation environment. Emulation still adds large speed increase so almost
all simulation tests are rerun in less than a couple of hours. Table 2 presents a
functional coverage results.

Table 2. Presents a functional coverage results

Design Branch % Conditions % STMT % Toggled %

OCP slave 91.176 94.737 96.00 96.585
OCP2AXI kernel 95.277 93.888 87.821 92.223
AXI master 90.887 96.551 90.221 98.002
AXI Downsizer 92.222 93.367 89.032 96.988



OCP2XI Bridge: An OCP to AXI Protocol Bridge 189

Our OCP2AXI bridge preserves all instructions and functionality of both
protocols. Table 3 (a) presents protocol specifications which are supported in
the bridge.

Table 3. Result tables: (a) Supported protocol specification (b) Synthesis report of
the stand alone OCP2AXI Bridge

AXI interface OCP interface Device Xlinx Virtex 6 %

Separate address and Small set of Slices: 79.940 of 948,480 1
data channel mandatory signals LUTs: 82,027 of 474,240 1
Unaligned data Configurable address RAM36: 122 of 720 0
transfers and data width RAM18: 17 of 1440 0
Limited burst transactions Burst transfers IOB: 635 of 1200 52
Separate read and Inclusion of sideband MAX. FREQ: 83.773 MHz
write channel signals
Multiple addresses Pipelined transfers
Out-of-order transac. Out-of-order transac.

As explained in synthesis section, the max frequency of the system on FPGA
is 27 MHZ (see table 1). This is a relatively low frequency, especially knowing
that the bridge is not a large design. The reason for low frequency is coming from
a complicated emulation environment. DSP is probably a synthesis overhead but
it would be rather complicated to create dedicated OCP driver with the same
emulation purpose and functional coverage. The synthesis results of the stand
alone bridge are presented in Table 3 (b). The results are extracted from the
bridge alone synthesis report and they represent the real capability of a bridge.
From this report it is obvious that a stand alone bridge can handle real time
applications like live streaming.

7 Conclusion

In this paper we presented our experience in designing, verifying and emulating
an OCP to AXI bridge. The described design technique provides an easier im-
plementation of the protocol bridge for modern digital design. Verification and
emulation is done using a modern regression environment with large coverage
and long test execution.

The proposed OCP to AXI bridge improves SOC integrations by allowing
connection and reuse of IP’s with different on-chip protocols. Furthermore it is
also possible to connect two different bus protocols with almost no functional
or bandwidth loss. Our FPGA emulation based on the Versatile Express board
demonstrates that the bridge can be successfully used in many different real time
situations such as live stream, high-definition images, and data transfer.

For future design we plan to optimize the emulation environment by designing
a specific OCP driver and monitor so that we do not need to use IMC DSP as



190 Z. Panjkov et al.

a driver. With this improvement the maximal frequency should increase from
27 MHz to approximately 50 MHz which would enable sending a high definition
live stream through an FPGA board.

References

1. AMBA AHB interface, http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0203f/I1054045.html

2. Open Core Protocol International Partnership (OCP-IP), http://www.ocpip.org/
3. AMBA Open Specifications, http://www.arm.com/products/system-ip/amba/

amba-open-specifications.php
4. Sonics Express, http://sonicsinc.com/products/
5. Arteris FlexNoC Interconnect IP, http://www.arteris.com/
6. MIPS-Imagination BusBridge3 Module,

http://www.imgtec.com/mips/mips-busbridge3.asp

7. Xilinx Platform studio, http://www.xilinx.com/ise/embedded/edk_ip.htm
8. Zhonghai, W., Yizheng, Y., Jinxiang, W., Mingyan, Y.: Designing AHB/PCI bridge

ASIC. In: Proceeding of the 4th International Conference on ASIC, pp. 578–580
(2001)

9. AMBA-AHB PCI Bridge IP Introductory Document PLDA Ltd.,
http://www.plda.com/

10. ARM PrimeCell External Bus Interface (PL220), ARM, ARM DDI 0249B (2002),
http://www.arm.com

11. Song, J., Yi, H., Han, J., Park, S.: An efficient SoC test technique by reusing
on/off-chip bus bridge. Journal IEEE Transactions on Circuits and Systems 56(3),
554–565 (2009)

12. Lin, C., Liang, H.: Bus-oriented DFT design for embedded cores. In: Proc. IEEE
Asia-Pacific Conf. on Circuits and Systems, pp. 561–563 (2004)

13. Song, J., Min, P., Yi, H., Park, S.: Design of Test Access Mechanism for AMBA-
Based System-on-a-Chip. In: IEEE VLSI Test Symmposium, pp. 375–380 (2007)

14. Xilinx data-width conversion Downsizer, http://www.xilinx.com/products/
intellectual-property/axi interconnect.htm

15. AXI BRAM Controller, http://www.xilinx.com/products/
intellectual-property/axi bram if ctlr.htm

16. SystemC, http://www.accellera.org/activities/
committees/systemc-language/

17. Versatile Express Product Family, http://www.arm.com/products/tools/
development-boards/versatile-express/index.php

18. ISE WebPACK Design Software, http://www.xilinx.com/products/
design-tools/ise-design-suite/ise-webpack.htm

19. Synplify Pro, http://www.synopsys.com/Tools/Implementation/
FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx

20. Vivado Design Suite, http://www.xilinx.com/products/design-tools/vivado/
21. Example LogicTile Express 13MG design for a CoreTile Express A15x2,

http://infocenter.arm.com/help/index.jsp?topic=/

com.arm.doc.dai0305a/index.html
22. Xilinx Platform Studio, http://www.xilinx.com/tools/xps.htm
23. Versatile Express Boot Monitor, http://infocenter.arm.com/help/topic/

com.arm.doc.dui0465f/DUI0465F boot monitor trm.pdf
24. Xilinx ChipScope, http://www.xilinx.com/tools/cspro.htm

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0203f/I1054045.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0203f/I1054045.html
http://www.ocpip.org/
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://sonicsinc.com/products/
http://www.arteris.com/
http://www.imgtec.com/mips/mips-busbridge3.asp
http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.plda.com/
http://www.arm.com
http://www.xilinx.com/products/intellectual-property/axi_interconnect.htm
http://www.xilinx.com/products/intellectual-property/axi_interconnect.htm
http://www.xilinx.com/products/intellectual-property/axi_bram_if_ctlr.htm
http://www.xilinx.com/products/intellectual-property/axi_bram_if_ctlr.htm
http://www.accellera.org/activities/committees/systemc-language/
http://www.accellera.org/activities/committees/systemc-language/
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://www.xilinx.com/products/design-tools/vivado/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0305a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0305a/index.html
http://www.xilinx.com/tools/xps.htm
http://infocenter.arm.com/help/topic/com.arm.doc.dui0465f/DUI0465F_boot_monitor_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0465f/DUI0465F_boot_monitor_trm.pdf
http://www.xilinx.com/tools/cspro.htm


FPGA Implementation of a Video Based Abnormal
Action Detection System with Real-Time Cubic Higher

Order Local Auto-Correlation Analysis

Kaoru Hamasaki, Keisuke Dohi, Yuichiro Shibata, and Kiyoshi Oguri

Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract. In this paper, we show FPGA implementation of a real-time video-
based abnormal action detection system, which is a key basic function of
applications such as security systems and monitoring systems for nursing el-
derly people. Our system extracts Cubic Higher order Local Auto-Correlation
(CHLAC) features from input video frames and detects abnormal actions with a
subspace method based on Candid Covariance-free Incremental Principal Com-
ponent Analysis (CCIPCA). Empirical experiments demonstrate our system works
well at 62.5 fps, which is limited by a camera device. The system implemented
on the FPGA is estimated to achieve up to 240 fps, which corresponds to 8.6
times speedup compare to software execution on a PC. It is also shown that the
FPGA implementation is more than 20 times energy efficient than the software
execution.

1 Introduction

Abnormal action detection is an important and useful image recognition technique for
a wide range of application fields. As a powerful feature extraction method for abnor-
mal action detection, Otsu et al proposed Cubic Higher order Local Auto-Correlation
(CHLAC)[1][2] and they applied the Candid Covariance-free Incremental Principal
Component Analysis (CCIPCA)[3] method to compute a subspace of normal action
patterns.

The CHLAC feature is extension of HLAC feature. Although abnormal action detec-
tion systems with HLAC[4] have been proven to achieve a high performance, real time
CHLAC feature extraction is difficult for software-based implementation when large
size images are processed with a real-time rate [5]. In this paper, we propose FPGA
implementation of a real-time video-based abnormal action detection system with the
CHLAC and CCIPCA methods. The design employs deep-pipelined stream computing
approach, which is known to be able to efficiently exploit parallelism in real-time image
processing with reduced energy consumption[6–8].

The contributions of this paper are as follows: (1) Real-time stream-based FPGA
implementation of the CHLAC feature extraction method is shown. (2) A full system
including a learning mechanism with CCIPCA as well as camera input interface is
implemented on a single FPGA chip without using external memory. (3) The imple-
mentation demonstrates to achieve not only higher performance but also higher energy
efficiency compared to software implementation.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 191–196, 2014.
c© Springer International Publishing Switzerland 2014



192 K. Hamasaki et al.

Fig. 1. CHLAC feature

2 Abnormal Action Detection

Our image recognition process is divided into three stages: preprocessing, feature ex-
traction and discrimination. In preprocessing, smoothing and binarization are applied to
normalize a given input video sequence and interframe differences are calculated. Next,
we extract CHLAC features from the normalized interframe difference images. Then,
in the discrimination step, we calculate how far away the given input feature is from
normal action patterns in the CHLAC feature space. Here, a subspace method with the
CCIPCA algorithm is used. In this section, we describe these algorithms.

2.1 CHLAC Feature

The Cubic Higher order Local Auto-Correlation (CHLAC) is a feature widely used for
action detection systems owing to position invariance and an additive property[2]. The
CHLAC feature is a multi-dimensional vector defined in a spatiotemporal space con-
sisting of a sequence of binarized interframe differences. Elements of a CHLAC feature
vector is autocorrelation of pixels in the spatiotemporal space. The N-th autocorrelation
function xN(a1, . . . , aN) is expressed as:

xN(a1, . . . , aN) =
∫

f (r) f (r + a1) . . . f (r + aN)dr (1)

where r is a reference point in the spatiotemporal space, ai is a displacement from the
point r, and f (r) is a pixel value of the point r. This multiple integration is defined
on the space direction and the time direction. The interval of integration for the space
directions covers a whole area of the frame and the interval of the time direction spans
time t −W to t. Since the interframe difference images have been binarized, f (r) takes
a value of 0 or 1. The number N is called a degree of the CHLAC pattern (Fig.1).

The displacement ai in the CHLAC definition has a constraint. Since the autocorre-
lation is defined in the spatiotemporal space of the sequence of the interframe difference
images, ai has three axises: the x-axis and the y-axis within a frame and the t-axis along
the time domain. Then, the CHLAC constraint on the displacement vectors is denoted:

ai = (dsaix, dsaiy, dtait)

{
aix, aiy, ait ∈ {0, 1,−1}
‖ai‖ � 0

(2)

where ds and dt are distance coefficients in space and time domains, respectively. Thus,
the number of the restricted ai vectors is 33 − 1 = 26. When we set 0 ≤ N ≤ 2, the
number of combinations of ai becomes 251, eliminating the same vector patterns with
parallel translation. These are corresponding to elements of a CHLAC feature vector.



FPGA Implementation of a Video Based Abnormal Action Detection System 193

Fig. 2. Overview of the detection system

2.2 CCIPCA

The Candid Covariance-free Incremental Principal Components Analysis (CCIPCA) is
an incremental method for principal component analysis which does not need to solve
an eigenvalue problem directly.

Here, the eigenvector is updated as a sum of the weighted last estimated eigenvector
and input data by

v(n) =
n − 1

n
v(n − 1) +

1
n

u(n)tu(n)
v(n − 1)
‖v(n − 1)‖ . (3)

While this equation estimates only the first dominant eigenvector, we typically need
some other eigenvectors for principal component analysis. In this case, we can utilize
an orthogonally projected input series:

ui+1(n) = ui(n) − tui(n)
v(n)
‖v(n)‖

v(n)
‖v(n)‖ . (4)

3 Implementation

An overview of our implementation is shown in Fig.2. The architecture was designed
based on a deeply pipelined stream processing structure, where input image data is fed
through sequentially-connected filter modules.

3.1 CHLAC Extraction Module

The process of the CHLAC feature extraction consists of two steps: 1) extraction of a
CHLAC feature vector from input; and 2) integration of the CHLAC feature vectors in
time-domain (Fig.3).

In the CHLAC feature vector extraction step, the binarized pixels of interframe dif-
ferences are stored in frame buffers. Given a displacement in the time dimension dt, a
total of 2dt frame buffers for full-size difference images and one frame buffer for a par-
tial difference image are needed. Each frame buffer is consisted of registers and BRAMs
with (2ds+1)×(2ds+1) of a window. At every clock, 27 pixels, one for a reference point
and 26 for surrounding points, are fetched from frame buffers. Then, the 251 CHLAC
patterns of comparisons are performed on the pixels in parallel. The number of pixels
which matched with each CHLAC pattern is counted by independent 251 accumulators.
Repeating this operation until the last pixel in the valid region of a frame is processed, a
partial sum of a CHLAC feature vector in space-domain xs(t) is obtained as the output
of the accumulators. These processes are performed in a pixel-by-pixel manner.

In the CHLAC feature vector integration step, a series of W partial sums is accumu-
lated in time-domain to obtain a CHALC feature vector x(t). To reduce the latency and
resource utilization, we used the following recursive relationship:



194 K. Hamasaki et al.

Fig. 3. Frame buffers for CHLAC extraction with dt = 1

x (t) = xs (t) +
W∑
i=1

xs (t − dti) − xs (t − dtW)

= xs (t) + x (t − dt) − xs (t − dtW) . (5)

Eq. (5) requires only two vector addition operations regardless of the integration width
W and the displacement dt. Therefore, we equipped two ring buffers which can keep dt

vectors for x and (dtW − 1) vectors for xs.
With this architecture, the time-domain accumulation is performed as follows: (1)

x (t − dt) and xs (t − dtW) are read from the ring buffers, respectively; (2) x (t) is com-
puted by Eq. (5); (3) x (t − dt) and xs (t − dtW) on the ring buffers are replaced by x (t)
and xs (t), respectively; (4) Indexes of the two ring buffers are put forward, respectively.

3.2 CCIPCA Module

The CCIPCA module in this implementation computes up to five base vectors v1 ∼
v5. Since a computation of vi is dependent on the result of computation of vi−1, each
computational process of vi needs to be performed sequentially. Each computation of
vi consists of two steps, computation of ui and computation of vi with the use of ui;
the latter depends on the former.

Both Eq. (3) and (4) can be separated into two steps: calculation of an inner product
of vectors and the others. The computation of Eq. (3) and (4) excluding the inner product
can be generalized as follows:

z = C0x +
C1

C2
y (6)

where C0, C1 and C2 are scalar values, x and y are input vectors and z is an output
vector of the computation, respectively. We call this computation a kernel of CCIPCA.
The CCIPCA computation for the five base vectors can be break down into 10 inner
product operations and 10 kernel computations.

The kernel module is implemented in a fully-pipelined manner. All the operators
in the module are for single precision floating point numbers. Both input and output
vectors form a stream, where new output result is generated every clock cycle.

The operations of the inner products can be overlapped with an immediate predeces-
sor kernel calculation because the output stream of the kernel module can be connected
to the input stream of the inner product module. Fig.4 illustrates pipeline scheduling of
the kernel and inner product modules.



FPGA Implementation of a Video Based Abnormal Action Detection System 195

Fig. 4. Pipeline scheduling for CCIPCA

Fig. 5. Test video for experiments

4 Evaluation

The system was mapped on a Xilinx KC705 board equipped with a Kintex-7 XC7K325T
FPGA. The input video frames were fed by an Omnivision Technologies OV9620 cam-
era device. To compare the performance, we also implemented the same functionality
in software on a Linux PC with a 3.40-GHz Intel Core-i7 2600K processor with 16-GB
DDR III-1066 memory by C++ (for feature extraction) and Octave (for CCIPCA and
projection computation). The parameters for the CHLAC extraction we employed were
ds = 10, dt = 1,W = 20.

In this experiment, we used a 2099-frame VGA video sequence which contains three
action patterns: walking leftward, walking rightward, and stumbling. In this video, a per-
son performs 7 actions shown in Fig.5. We used the first 2 normal actions for learning.

Fig.6 plots the detection results as a distance of CHLAC feature from the normal ac-
tions. There are 7 peaks which corresponding to the input actions. Among them, we can
clearly distinguish the 5-th and 7-th peaks from the others as abnormal actions. In addi-
tion, the FPGA implementation and the software implementation produced the almost
the same distance results. This suggests the use of single precision floating arithmetic
in the FPGA implementation did not negatively affect the detection results.

While the frame rate of the software implementation was 28.1 fps, our FPGA imple-
mentation worked at 62.5 fps. This was limited by the camera device that we used this
time. If a faster camera device is available, our system is estimated to achieve 240.3
fps, considering that the maximum operating frequency of the FPGA circuit was 96.13
MHz.

The resource usage of each module is illustrated in Table1. The Block RAM usage
was relatively high, since both of the Diff module and the CHLAC extraction module
utilized frame buffers. However, energy consumption of our FPGA implementation was
384.82 J, while that of the software implementation was 7416.46 J, highlighting the
efficiency of the deep pipelined structure of the FPGA implementation.



196 K. Hamasaki et al.

Fig. 6. Detection results

Table 1. Resource usage. Diff module calcu-
lates interframe difference images and DTSM
module binarizes the interframe difference
images.

Module LUTs Slice Regs BRAMs DSP48Es

Diff 80 50 128 0
DTSM 6,694 3,577 2 17
CHLAC 9,128 5,402 37 0
CCIPCA 3,487 3,640 6 16
Detection 6,239 8,166 0 26
Others 754 576 2 0

Total 26,382 21,411 175 59
Available 203,800 407,600 445 840

5 Conclusion

The empirical experiments revealed that the presented architecture achieved a through-
put of 62.5fps taking the advantage of streamed processing without accessing exter-
nal memories. Theoretical analysis suggests the implementation is able to achieve the
throughput of 240fps, which corresponds to 8.6 times speedup compared to software ex-
ecution. It was also shown that the FPGA implementation is more than 20 times efficient
than the software in terms of energy efficiency. Our future work includes evaluation of
detection accuracy in more details considering practical applications.

References

1. Otsu, N.: Towards flexible and intelligent vision systems-from thresholding to CHLAC. In:
IAPR Conference on Machine Vision Application, pp. 430–439 (2005)

2. Nanri, T., Otsu, N.: Unsupervised abnormality detection in video surveillance. In: IAPR
Conference on Machine Vision Applications, pp. 574–577 (2005)

3. Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal compo-
nent analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(8), 1034–1040
(2003)

4. Ishii, I., Sukenobe, R., Yamamoto, K., Takaki, T.: Real-time image recognition using hlac
features at 1000 fps. In: Proceedings of the 2009 International Conference on Robotics and
Biomimetics, pp. 954–959 (2009)

5. Shiraki, T., Saito, H., Kamoshida, Y., Ishiguro, K., Fukano, R., Shirai, T., Taura, K., Otake,
M., Sato, T., Otsu, N.: Real-time motion recognition using chlac features and cluster com-
puting. In: Proceedings of the 3rd IFIP International Conference on Network and Parallel
Computing, pp. 50–56 (2006)

6. Dohi, K., Yorita, Y., Shibata, Y., Oguri, K.: Pattern compression of FAST corner detection
for efficient hardware implementation. In: Proc. IEEE 21st Int. Conf. Field Programmable
Logic and Applications, pp. 478–481 (September 2011)

7. Negi, K., Dohi, K., Shibata, Y., Oguri, K.: Deep pipelined one-chip FPGA implementation of
a real-time image-based human detection algorithm. In: Proc. Int. Conf. Field-Programmable
Technology, pp. 1–8 (December 2011)

8. Dohi, K., Hatanaka, Y., Negi, K., Shibata, Y., Oguri, K.: Deep-pipelined FPGA implementa-
tion of ellipse estimation for eye tracking. In: Proc. IEEE 22st Int. Conf. Field Programmable
Logic and Applications, pp. 458–463 (2012)



A Synthesizable Multicore Platform

for Microwave Imaging

Pascal Schleuniger and Sven Karlsson

DTU Compute
Technical University of Denmark

{pass,svea}@dtu.dk

Abstract. Active microwave imaging techniques such as radar and to-
mography are used in a wide range of medical, industrial, scientific, and
military applications. Microwave imaging devices emit radio waves and
process their reflections to reconstruct an image. However, data process-
ing remains a challenge as image reconstruction algorithms are computa-
tionally expensive and many applications come with strictly constrained
mechanical or power requirements. We developed Tinuso, a multicore ar-
chitecture optimized for performance when implemented on an FPGA.
Tinuso’s architecture is well suited to run highly parallel image recon-
struction applications at a low power budget. In this paper, we describe
the design and the implementation of Tinuso’s communication struc-
tures, which include a generic 2D mesh on-chip interconnect and a net-
work interface to the processor pipeline. We optimize the network for a
latency of one cycle per network hop and attain a high clock frequency
by pipelining the feedback loop to manage contention. We implement a
multicore configuration with 48 cores and achieve a clock frequency as
high as 300 MHz with a peak switching data rate of 9.6 Gbits/s per link
on state-of-the-art FPGAs.

1 Introduction

Active microwave imaging techniques such as radar and tomography are used
to detect, locate, and analyze objects. Microwave imaging systems consist of
synchronized radio transmitters and receivers that emit radio waves and process
their reflections to reconstruct an image of an object. Radar systems deliver
high quality pictures of a scene independent of light and weather conditions and
tomography is able to visualize internal structures of the body. Therefore, mi-
crowave imaging is used in a wide range of medical, industrial, scientific, and
military applications including diagnostic medicine, baggage inspection, envi-
ronmental monitoring, surveillance, and reconnaissance. An output image is re-
constructed from reflected data that is interpreted as a set of projections. Often
a very high number of operations is required to reconstruct the output image
because each pixel must analyze hundreds of these reflections. Given the large
amount of data and the parallel structure of image reconstruction applications,
graphic processing units, GPUs, are well suited for this type of data processing.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 197–204, 2014.
c© Springer International Publishing Switzerland 2014



198 P. Schleuniger and S. Karlsson

However, for many applications with strict mechanical or power requirements
GPUs may not be an appropriate solution and custom embedded systems need
to be designed.

The production and design costs for application specific integrated circuits,
ASICs, continue to rise making ASICs only feasible for very high production
volumes. Field programmable gate arrays, FPGAs, on the other hand, have a
high unit cost but essentially no setup cost. Due to this, FPGAs are increasingly
being used in low and medium volume markets. The logic integration of FP-
GAs has reached a point where multiple processor cores, dedicated accelerators,
and a large number of interfaces can be integrated on a single device. As many
modern microwave imaging systems successfully use FPGAs for signal process-
ing already, we aim to integrate the data processing in the same device. We
propose and advocate for a multicore system because it raises the abstraction
level for the application programmer without facing the current performance
drawbacks of high-level synthesis [4]. Moreover, mapping an application to mul-
ticore system significantly reduces development effort over a fully custom FPGA
implementation [2].

We developed Tinuso, a processor architecture optimized for a high through-
put on modern FPGA architectures. Our current hardware implementation, the
Tinuso I core, can be clocked as high as 376MHz on a Xilinx Virtex 6 and con-
sumes less hardware resources than a similar MicroBlaze configuration [7]. In a
case study, we have shown how to map the POLARIS synthetic aperture radar,
SAR, application on a Tinuso multicore system on a Xilinx Virtex-7 consuming
only about 10 watt [6].

In this paper, we evaluate Tinuso’s communication structures and analyze the
scalability. We make the following contributions:

– We describe the design and implementation of a generic packet switched, 2D
mesh on-chip network optimized for FPGA implementation.

– To attain a high data rate, we optimize routing scheme and flow control
mechanism for high clock frequency and low latency. We apply a look-ahead
routing scheme to simplify decode and arbitration logic in the router. We
pipeline the feedback loop to manage contention to reduce the routing delay
in the time-critical path of the design.

– We evaluate the network-on-chip, NoC, by measuring the network latency
of random traffic and compare it to a baseline implementation without
pipelined feedback loop to manage contention.

– To evaluate the scalability of the system we compose multicore systems and
derive the maximum clock speed. On a multicore system with 48 processor
cores we reach a clock frequency of 300 MHz with a peak switching data rate
of 9.6 Gbits/s per link on state-of-the-art FPGAs.

2 Related Work

MARC is a many-core approach to reconfigurable computing that allows pro-
grammers to easily express parallelism through a high-level programming lan-
guage [2]. MARC enables efficient high performance computing for applications



A Synthesizable Multicore Platform for Microwave Imaging 199

expressed in C or C++ by exploiting FPGA specific resources such as distributed
block memories and DSP blocks. In contrast to Tinuso, MARC implements a
heterogeneous multicore architecture with a central processing core and high
number of arithmetic processing cores.

MoCReS is a router architecture that applies virtual cut-through flow-control
to transfer packets across multiple clock domains [1]. The router uses a FIFO
buffer, implemented as block RAM, to transfer data across clock domains. It
allows for operating multiple routers on independent clock frequencies and pre-
vents the slowest router from restricting the operating frequency of the network.
This is of particular interest for heterogeneous systems where processing ele-
ments operate at different clock frequencies. The MoCReS router operates at a
clock frequency as high as 357MHz on a Xilinx Virtex 4 device. However, the
performance of this network design is limited by a latency of at least 7 cycles per
hop. In contrast, our router is designed to operate at the same clock frequency
as the processor cores to avoid latencies in synchronization buffers.

DESA is a distributed elastic switch architecture presented by Roca et.al.
[5]. The interconnect is composed of a collection of independent switching mod-
ules, called AC-modules. The fine-grained decomposition of the network in AC-
switching modules allows for various network topologies and leads to better
mapping on the FPGA. The design is evaluated by comparing to a mesh in-
terconnect that consists of routers with a single pipeline stage. The evaluation
shows that the DESA design increases the clock frequency by 50% while con-
suming about the same amount of resources as the baseline implementation.
Nevertheless, the increased clock frequency comes at the cost of an additional
pipeline stage, which increases the latency by one clock cycle per network hop.
Tinuso allows for much higher clock frequencies than the single pipeline stage
router used for the DESA evaluation. Therefore, Tinuso achieves lower network
latency for low network loads while DESA performs better at higher network
loads.

Lu et. al. introduce a generic router architecture optimized for FPGA imple-
mentation [3]. It supports network topologies such as ring, 2D mesh, 3D cube,
and hybrid configurations. They apply a look-ahead routing scheme and pipeline
the router design to attain a high clock frequency. A router with five ports and
a 32 bit data-path width utilizes about 700 LUTs and can be clocked as high
as 220MHz on an Altera Stratix III device. Tinuso requires more hardware re-
sources than a 2D mesh implementation of the proposed architecture. However,
Tinuso allows for a higher clock speed and a lower latency of only 1 clock cycles
per hop.

3 System Overview

We aim for a system as shown in Figure 1 to integrate signal and data processing
of microwave imaging applications in a single FPGA device. The image recon-
struction application is mapped to a number of parallel processing elements that
communicate over an interconnect with a memory controller.



200 P. Schleuniger and S. Karlsson

F
P

G
A

NI
P

NI
P

NI

Signal
processing

Mem 
controller

A/D

Antenna

Network Interface

Processor Pipeline

fifo

pkg in

I$ & D$

pkg out tx fifo

rx fifo

Com. InterfaceP
NI
P

Interconnect

Off-chip
memory

Fig. 1. System overview of a multicore data processing unit

We use instances of the Tinuso processor architecture as processing elements.
Tinuso is a lightweight architecture with a small instruction set that can easily be
extended. It is a three operand, load-store architecture with a fixed instruction
word length of 32-bits. The single issue, in-order pipeline is optimized for a high
instruction throughput when implemented on an FPGA. For example, Tinuso
uses pipelined cache and register file accesses, which results in a fast and deep
pipeline. Given the high instruction throughput, the small hardware footprint,
and the ability to extend the design, Tinuso is an attractive choice for multicore
systems. Figure 1 shows the internals of the network interface. Its primary task
is to connect a processor core to a router and to translate cache misses into
memory request messages.

4 Router Architecture

Typically, an FPGA consists of a two-dimensional array of logic elements called
configurable logic blocks, CLBs, that are interconnected by horizontal and verti-
cal routing channels. We argue for a 2D mesh network topology as it maps well
to the FPGA architecture. The network consists of a number of routers that
are connected through unidirectional links. A router has five bidirectional ports,
namely, North (N), East (E), South (S), West (W), and Home (H).

Figure 2 shows the block diagram of the router and the state diagram of an
input port. We have implemented a wormhole router with a backpressure flow-
control mechanism and only use flip-flops at the output to attain a latency of one
cycle per hop. We decided for an XY routing scheme because it is deterministic,
deadlock-free and simple to implement.

Data packets are broken into a sequence of flow control digits, flits. The net-
work supports packets that consist of a header flit and an arbitrary number
of data flits. To keep the communication overhead low, all routing information
is encoded in a single header flit. Each data link includes a status signal that
indicates whether the data is valid or not.

The state machines of the router input ports remain in the idle state until a
packet arrives. The destination node is extracted from the header flit and an out-
put port is selected following the routing scheme. If multiple flits arrives at the
same time and aim for the same output resource, the arbiter applies a round-robin



A Synthesizable Multicore Platform for Microwave Imaging 201

control-logic FSM
arbiter

crossbar

valid bit backpressure in

backpressure out

reg1 reg2

data outslack buffers

data in

valid bit

valid
 bit ou

tp
ut

 r
eg

is
te

rs

idle

arbiter transmit

retransmit

backpressure
port 

available

port available

tail flit retransmitted

tail 
flit transmitted 

flit re-
transmitted

backpressure

Fig. 2. Router block diagram and control state diagram

scheme to decide which one will proceed. In cases where the desired output port
is not available the flit is retained in slack buffers and the backpressure signal is
set. The backpressure signal propagates up-stream to stall the data flits until the
desired output port is available.

We implement the router architecture as behavior-level description in VHDL
as it is shorter, easier to adapt, and less error prone than descriptions at a lower
level. Moreover, behavioral-level designs are independent of the technology and
can easily be migrated to alternative platforms. We identified the time-critical
path of the design in the decode logic in the idle state. The decode logic ex-
tracts the destination address of the header flit and determines an output port
according to the XY routing scheme. If the header flit only contains the coor-
dinates of the destination node, costly comparison operations are necessary to
determine the route of the packet. Therefore, we apply look-ahead routing to
simplify the time-critical path by computing the output port in the previous
network hops. The proposed router architecture requires the ability to retrans-
mit flits if contention occurs. We use a backpressure flow control mechanism
to manage contention. It was necessary to pipeline the backpressure feedback
loop to reduce the routing delay in the time-critical path of the design. As a
consequence, a backpressure signal that reports contention arrives with a delay
of two clock cycles. Hence, the slack buffers store the last two transmitted flits
and the router retransmits them when the backpressure signal is released. While
this leads to a higher system clock frequency, it slightly rises the network latency
when contention occurs because data need to be retransmitted.

Other networks that are optimized for FPGA implementation typically use
buffers implemented as block RAMs [8,3,1]. We use CLBs to implement the
buffers because block RAMs slow down the design or require a pipelined router
design with an additional clock cycle latency.



202 P. Schleuniger and S. Karlsson

Table 1. Hardware resource usage and maximum clock frequency

FPGA Speed 16 bit link 24 bit link 32 bit link
Family Grade LUTs MHz LUTs MHz LUTs MHz

Virtex 7 -3 683 437 913 428 1121 394

Virtex 6 -3 679 412 903 372 1097 347

Spartan 6 -3 753 223 1031 208 1299 204

0.1 0.2 0.4
0

100

200

300

400

500

L
at

en
cy

 [
cl

o
ck

 c
yc

le
s]

Injection Rate [flits per second / node / clock cycle]

 

 

8 flits pipelined
8 flits baseline
16 flits pipelined
16 flits baseline

(a) Latency in clock cycles

0.1 0.2 0.4
0

100

200

300

400

500

600

700

800

L
at

en
cy

 [
u

s]

Injection Rate [flits per second / node / clock cycle]

 

 

8 flits pipelined
8 flits baseline
16 flits pipelined
16 flits baseline

(b) Absolute latency in μs

Fig. 3. Latency vs. packet injection rate of a 4x4 2D mesh network

5 Results

We evaluate the proposed network in two steps. First, we derive clock speed and
hardware resources of various router configurations and measure the network la-
tency of random traffic. Second, we evaluate the scalability of Tinuso multicore
systems. Table 1 lists hardware resources and maximum clock speed of a single
router implementation on various Xilinx FPGA families based on Xilinx ISE
14.6 ”place and route report”. The proposed design scales well with the data
link width as a 16 bit router consumes about 60% of the hardware resources
of a 32 bit implementation. To evaluate the network latency we use a VHDL
simulator on multicore setups consisting of 4x4 nodes to measure the average
network latency of random packets for various injection rates. We run experi-
ments with 32 bit link width and a fixed packet size of eight and sixteen flits. To
get unbiased results, we warm the network and run up to 50 iterations per test
point. We compare the latency of a Tinuso network with a baseline router imple-
mentation without pipelined feedback loop to manage contention. The baseline
router is simpler as it only requires a single slack buffer but the backpressure
feedback loop restricts the clock frequency of the design. Figure 3a shows average
latencies for various injection rates. The latency of the baseline implementation
is lower when contention occurs because of the smaller slack buffer fewer flits
need to be retransmitted. We observe a very low latency up to an injection rate
of 0.3 flits per node per cycle. At higher injection rates high contention occurs
and latencies become unacceptable long. In Figure 3b we derive the absolute



A Synthesizable Multicore Platform for Microwave Imaging 203

1 2 4 8 16 32 48 64 96

0

100

200

300

400

m
ax

im
um

 f
re

qu
en

cy

Fig. 4. Scaling of Tinuso multicore systems

latency in μs. We scale the latency with the maximum clock frequency of 304
MHz for the Tinuso router and 164 MHz for the baseline implementation. The
maximum frequency of the multicore system is lower than the clock speed of
a single router implementation because it includes routing delays between the
routers. The Tinuso network performs better at low injection rates but there are
situations at high contention where the latency in the network with the base-
line router is lower. To evaluate scalability, we populate the network nodes with
Tinuso processor cores to compose multicore systems of various size and derive
the maximum clock frequency on a Virtex 7 device. Figure 4 shows the results
of the placed and routed designs. With increasing system size it becomes more
difficult for the tools to map the design on the FPGA fabric. Designs with more
than 4 processor cores require floor-planning in Xilinx PlanAhead to attain an
acceptable clock speed. We assign local area constraints (Pblocks) to the proces-
sor cores and let the Xilinx toolchain find a performance optimized placement
for the network. However, for very large systems with more than 64 processor
cores the tools report a high system frequency after synthesis but the tools are
not able to map the design efficiently and report slow place and route results.

6 Conclusion

In this paper, we motivated synthesizable multicore platforms for microwave
imaging systems. We described the design, implementation and evaluation of
communication structures for Tinuso multicore systems. The proposed router
architecture uses wormhole switching and a backpressure flow control mecha-
nism to attain a latency of one clock cycle per hop. We optimized routing scheme
and flow control mechanism for high system clock frequency. We measured the
network latency of random traffic and compared it to a baseline router imple-
mentation. We showed that a pipelined feedback loop to manage contention leads
to significantly higher clock speed and a lower network latency at low injection
rates. For a Tinuso multicore system we attain a maximum clock frequency of
300 MHz on a Xilinx Virtex 7 device. However, as we scale the system, the Xilinx
tools increasingly have problems to map the design efficiently. Xilinx’s Virtex 7



204 P. Schleuniger and S. Karlsson

family comes with devices up to two million logic cells that allow for Tinuso
multicore configurations with up to 480 processor cores. Hence, we currently ex-
plore how to automatically generate fine-grained design constraints to efficiently
support the placement for very large systems.

References

1. Janarthanan, A., Swaminathan, V., Tomko, K.: MoCReS: An Area-Efficient Multi-
Clock On-Chip Network for Reconfigurable Systems. In: IEEE Computer Society
Annual Symposium on VLSI, ISVLSI 2007 (2007)

2. Lebedev, I., Shaoyi, C., Doupnik, A., Martin, J., Fletcher, C., Burke, D., Mingjie,
L., Wawrzynek, J.: MARC: A many-core approach to reconfigurable computing. In:
Conference on Reconfigurable Computing and FPGAs, ReConFig (2010)

3. Lu, Y., McCanny, J., Sezer, S.: Generic Low-Latency NoC Router Architecture
for FPGA Computing Systems. In: Conference on Field Programmable Logic and
Applications, FPL 2011 (2011)

4. Papakonstantinou, A., Liang, Y., Stratton, J., Gururaj, K., Chen, D., Hwu, W.:
Multilevel granularity parallelism synthesis on FPGA. In: Symposium on Field-
Programmable Custom Computing Machines FCCM (2011)

5. Roca, A., Flich, J., Dimitrakopoulos, G.: DESA: Distributed elastic switch archi-
tecture for efficient networks-on-fpgas. In: Conference on Field Programmable Logic
and Applications, FPL (2012)

6. Schleuniger, P., Kusk, A., Dall, J., Karlsson, S.: Synthetic aperture radar data pro-
cessing on an fpga multi-core system. In: Conference on Architecture of Computing
Systems ARCS (2013)

7. Schleuniger, P., McKee, S.A., Karlsson, S.: Design principles for synthesizable pro-
cessor cores. In: Conference on Architecture of Computing Systems ARCS (2012)

8. Sethuraman, B., Bhattacharya, P., Khan, J., Vemuri, R.: LiPaR: A light-weight
parallel router for FPGA-based networks-on-chip. In: Great Lakes Symposium on
VLSI, GLSVLSI (2005)



 

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 205–212, 2014. 
© Springer International Publishing Switzerland 2014 

An Efficient Implementation of the Adams-Hamilton’s 
Demosaicing Algorithm in FPGAs 

Jalal Khalifat, Ali Ebrahim, and Tughrul Arslan 

{J.Khalifat,A.ebrahim,T.Arslan}@ed.ac.uk 

Abstract. Demosaicing is the process of reconstructing a full color image from 
incomplete samples generated by typical image sensors. This paper discusses 
the Adams-Hamilton’s demosaicing algorithm and presents a high-performance 
and cost-effective implementation of the algorithm in Field Programmable Gate 
Arrays (FPGAs). The paper also presents a proposed demosaicing hardware ar-
chitecture which increases the number of pixels processed in a single clock 
cycle by using efficient pipelining. Images obtained from our FPGA implemen-
tation are compared to images obtained from standard software demosaicing 
functions. Our proposed hardware architecture is shown to outperform previous 
hardware implementations of the algorithm. Our architecture is capable of 
processing up to 419 MPixels/s. 

Keywords: Adams-Hamilton, FPGAs, Demosaicing, PSNR , HD, Bayer CFA. 

1 Introduction  

Most of the commercial portable devices, which capture digital images such as digital 
cameras and mobile phones, use an array of filters on top of the image sensors. In the 
case of RGB images format, each pixel record is produced by a sensor overlaid with 
one type of color filter. This arrangement results in an incomplete image samples with 
two missing colors from each pixel. Using Color Filter Array (CFA), sensors produce 
a two-dimensional array of pixels each representing a single color: red, green or blue. 
Many types of color filter arrays are used in digital capturing devices. The most 
common type is the Bayer color filter array [1]. The Red-Green-Green-Blue (RGGB) 
arrangement of the Bayer color filter array is shown in Fig.1a). In this arrangement, 
the filters are 50% green, 25% red and 25% blue. Half of the sensors are coupled with 
filters for the green color, the color for which the human eye is more sensitive.  

To construct a full RGB image, demosaicing algorithms are used to interpolate 
missing red, green and blue sub-pixels from the surrounding pixels. Different algo-
rithms have different image qualities and vary in term of computation demand. Bili-
near interpolation is the simplest algorithm that interpolates missing colors using 
symmetric bilinear interpolation from the nearest neighbors of the same color by find-
ing the average color from two or four of the matched surrounding sub-pixels. 

A huge number of Demosaicing algorithms have been patented. Some of them, such 
as the Freeman’s algorithm [2], use a median filter added to the bilinear interpolation to 



206 J. Khalifat, A. Ebrahim, and T. Arslan 

 

reduce the noise and artifacts produce by bilinear interpolation. Other algorithms exploit 
the spatial correlation principle such as Adams-Hamilton’s algorithm demonstrated in 
[3], and the asymmetric interpolation scheme using color discontinuity equalization 
demonstrated in [4].  

Most of the demosaicing algorithms are implemented and tested using software-
based environments. This type of implementation causes a huge reduction in the per-
formance as they execute instructions sequentially. On the other hand, hardware  
implementation could process the algorithm faster as they use parallel computing 
concept. Few research works discuss the implementation of demosaicing algorithm in 
hardware-based environments, but most of them use the bilinear interpolation [5][6] 
and [8], which adds zipper effects and artifacts to the images produced. Other imple-
mentations use customized algorithms such as the algorithm in [9]. In [5] the algo-
rithm was verified using Altera's Cyclone II FPGA. In [6], the implementation uses 
the same algorithm with HD images. However, no details are given on how data are 
passed to/from memory. In [7], the author implemented the Freeman's algorithm using 
a dual-core architecture with coarse-grained dynamically reconfigurable processors 
that provide throughput of up to 241Mpixel/s. 

This paper presents a novel hardware implementation of Adams-Hamilton’s algo-
rithm which utilizes efficient pipelining in Field Programmable Gate Arrays (FPGAs). 
The design of the different components of the data path is discussed and analyzed. 
This paper also presents a brief introduction of the algorithm and discusses its benefits 
compared to other algorithms. Moreover, implementation results are compared to 
other similar designs.  

The rest of the paper is organized as follows. In Section 2, we explain the back-
ground of Adams-Hamilton’s algorithm. In Section 3, we show the architecture of the 
system and design components. In Section 4, we show the experimental results.  
Finally, Section 5 concludes the paper. 

2 Adams-Hamilton’s Demosaicing 

Adams-Hamilton’s algorithm is considered one of the edge-based algorithms that 
exploit the spatial correlation principle by interpolating along the edges and not across 
them. This technique reduces color artifacts and zipper effects to the regions with 
edges not like the other type of algorithms which disregard directional information. 
Moreover, averaging the pixels across an edge will decrease the sharpness at edges. 

The algorithm is divided into two steps; firstly, the green color plane is interpolated, 
and then the red and blue planes are interpolated. G missing pixels can be interpolated 
vertically, horizontally or using the two directions based on specific classifiers to choose 
the interpolation direction as depicted in Fig. 1b) and Fig. 1c). In the case of G pixels in 
B positions, the same equations are used as R positions replaced with B.  

Once the G color plane is interpolated, the algorithm starts interpolating the red 
and blue colors. In this estimation, a window of 3x3 needed as depicted in Fig. 1b 
and1c. This step is categorized into three different cases: Case 1 is when the nearest 
neighbors to (R or B) are in the same column. Case 2 is when the nearest neighbors to 



An Efficient Implementation o

 

(R or B) are in the same row
are at the corners. In cases 
in Fig. 1b). The classifiers u
1 for nearest neighbor in the

 

          (a)   

Fig. 1. (a) Bayer Filters and se

 

  1  

    2  

3 4 5 6 

  8  

  9  

 

Fig. 2. G pixel estim

 B5

 R5

Case 3, when the missin
1c) or missing B pixel part 
the 3x3 window.  Classif
green data and gradients fo
the high spatial frequency i
tive diagonal (DN) and po
and (4) for the case of miss
the direction of interpolatio

 DN =

 DP =

If DN > DP, 

 R5 = 

of the Adams-Hamilton’s Demosaicing Algorithm in FPGAs 

w and case 3 is when the nearest neighbors to the (R or
1 and 2, the missing (R or B)s are in G locations as sho
used to estimate the missing colors are as follow: Equat
e same column and Equation 2 in the same row.  

     (b)              (c) 

ensors (a) pixel estimation case 1 and 2 (b) pixel estimation ca

 

 

7 

 

 

mation at pixel 5 using Adams and Hamilton’s method  

5= (B2+B8)/2+ (-G2+2G5-G8)/2 

5= (R4+R6)/2+ (-G4+2G5-G6)/2

ng R pixel part in B locations as the case depicted in F
in R locations. The nearest neighbors are at the corner

fiers composed of Laplacian second-order terms for 
or the chroma data are used. These classifiers are sens
information present in the pixel neighborhood in the ne
sitive diagonal (DP) directions as shown in Equations 
ing R pixel part in B locations, and based of the classifi

on determined as shown in Equations 5, 6, 7. 

= |R1 − R9| + |G5 − G1 + G5 − G9|

= |R3 − R7| + |G5 − G3 + G5 − G7|

(R3 + R7)/2 + (− G3 + 2G5 − G7)/2 

1 2 3  1 2 3 

4 5 6  4 5 6 

 
7 

8 9 
 

7 8 9 

1. Calculate horizontal gradient 
ΔH = |G4 − G6| + |R5 − R3 + R5 − R7| 
2. Calculate vertical gradient 
ΔV = |G2 − G8| + |R5 − R1 + R5 − R9| 
3. If ΔH > Δ V, 
G5 = (G2 + G8)/2 + (R5 − R1 + R5 − R9)/4 
Else if ΔH < ΔV, 
G5 = (G4 + G6)/2 + (R5 − R3 + R5 − R7)/4 
Else 
G5 = (G2 + G8 + G4 + G6)/4  
+ (R5 − R1 + R5 − R9 + R5 − R3 + R5 − R7)/8 

207 

r B) 
own 
tion 

se 3 

 (1) 

(2) 

Fig. 
s of 
the 

sing 
ega-

(3) 
iers, 

(3) 

(4) 

(5) 



208 J. Khalifat, A. Ebrahim, and T. Arslan 

 

Else if DN < DP, 

 R5 = (R1 + R9)/2 + (− G1 + 2G5 − G9)/2 (6) 

Else 

 R5 = (R1 + R3+ R7 + R9)/4 + (− G1 − G3 + 4G5 − G7 − G9)/4 (7) 

3 Hardware Implementation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. System implementation 

Our implementation of the Adams-Hamilton’s demosaicing is illustrated in Fig. 3. As 
the images processed line by line from left to right, a set of data buffers employed for 
each line. The implemented system designed to process images of size 1920x1080 
pixels where 1920 is the width. A shift window of sizes 5x5 and 3x3 are used in G 
interpolation and R&B colors interpolation stages respectively. 

The system designed to process two pixels in one clock cycle using an efficient pi-
pelining scheme, as the data input is designed to accept 2 bytes (pixels) and the 
processes are parallelized in the data path. This technique will double the performance 
but will increase the resources required. Each input pixel (byte) is converted to 3 
bytes which limits the number of pixels processed in one clock cycle. 

3.1 Data Buffering 

The size of the FIFO is 1914 bytes as the image width is 1920 and the remaining six 
bytes are located in the shift registers where the window is located. Block memories 
(BRAMs) are used to design FIFOs for each line in the shift window. For the green 
interpolation stage, Fig. 4 shows the four FIFOs contain the image lines under process 
and the registers where the actual window is located. The red and blue interpolation 
uses the same structure but uses two FIFOs instead of four. P22 and P23 are the  

Origi-
nal 

Plane 

Buffer 1 
Buffer 2 

Buffer 1 
Buffer 2 Green 

Plane 

Green 
Plane 

Interpola-
tion 

(5X5) 2 

Microblaze processor 

D
D

R
3 

R
A

M
 

 

                

NPI  

 

MPMC 

 

 
     

NPI   

R&B 
 

Interpo-
lation 

Original 
Plane 

Buffer 1
Buffer 2
Buffer 3
Buffer 4

 
Data-In 
Buffer 

 
Data-

out 
Buffer

 

NPI 

Read 
 

32-bit 
32 burst

NPI 
Write

 

32-bit 
64 burst

Full 
Color 
Image 

 
RGB 



An Efficient Implementation of the Adams-Hamilton’s Demosaicing Algorithm in FPGAs 209 

 

locations of pixels processed at each clock cycle. In each clock cycle, a shift operation 
occurs by shifting the bytes in registers 1 and 2 to the next row buffer and bytes in 
registers 3 and 4 to registers 1 and 2 and finally the most significant two bytes in the 
same row buffer to registers 5 and 6. Inside the buffer, if the data of the image is still 
coming, the write address and read address are incremented when a shift operation 
occurs; otherwise, the read address is incremented only until the two addresses are 
equal, which means the end of the image data.  

 
 
 
 
 
 
 
 
 

Fig. 4. Buffers of G interpolation stage  

3.2 Image Interpolation 

In each clock cycle, the content of registers 1 to 6 is sent to the hardware design of the 
equations mentioned in section 2, for both sets of equations, the G interpolation stage 
and the R & B interpolation stage. The design is divided into two parts:  

1. Even rows: In these rows, the received six bytes ordered in the form RGRGRG. 
The algorithm interpolates the missing colors in the middle locations where the 
pixels RG are located. For the G interpolation stage, only the first Green pixel is 
interpolated as the second is contained in the original data. However, for the R & B 
interpolation stage, the B part is unknown in the first pixel and the B and R parts 
are unknown in the second pixel.  

2. Odd rows: In these rows, the received six bytes are ordered in the form GBGBGB. 
The design in these rows acts as it acts in the even rows case, but interpolates dif-
ferent colors as the location of each color is changed. In G stage, the green color 
part is missing in the second pixels in the odd rows. On the other hand, the red and 
blue color parts are missing in the first pixel while the red color part is missing in 
the second pixel.  

3.3 Memory Interface 

The Xilinx Native Port Interface (NPI) [10] is used to connect the system to the DDR 
memory through the Xilinx Multi Port Memory Controller (MPMC) [10]. Two ports 
of the MPMC are dedicated, one for reading and the other for writing. Due to the 
difference in data size between the NPI part and the demosaicing system, two blocks 
in the middle named Data_In and Data_out are implemented to convert the size of 
data from the NPI form to the system form and vise versa. A Microblaze processor is 
used to control data transfer from memory side and number of burst required. 

Data In

1st Row pixels  (1914 bytes) P00 P01 

P11 P12 

P20 P21 

P30 P31 

P40 P41 

P02 P03 

P13 P14 

P22 P23 

P32 P33 

P42 P43 

P04 P05 

P15 P16 

P25 

P34 P35 

P44 P45 

2nd Row pixels (1914 bytes) 

3rd Row pixels (1914 bytes) 

4th Row pixels (1914 bytes) 

    1    2          3     4    

Data out to Algorithm 



210 J. Khalifat, A. Ebrahim, and T. Arslan 

 

4 Experimental Results 

4.1 Performance and Utilization 

The above architecture was implemented on Xilinx ML605 boards with a Virtex-6 
XCE6VLX240T FPGA chip. The maximum operation frequency is 209.6 MHz but 
the system was tested at a frequency of 200MHz due to the limitation in memory 
interface. When the maximum frequency is used, the throughput reaches 
419.2Mpixel/s. Table 1 shows the system resource utilization. The BRAMs used in 
“Data in buffers” and “Data out” components are mainly to buffer the extra data not 
yet sent to the next stage, due to the difference in data size between the two consecu-
tive components. To solve this problem a high priority given to the writing operation 
over the reading from memory to make sure that the buffers are not full.  

Table 1. System resource's utilizstion 

Resources Data in B. Ham Alg. Data out B. Mblaze & Mem. Total Percentage 

Slices 101 1003(2.6%) 202 3163 4469 11% 
RAMB36s 15 8 (2%) 36 29 88 21% 

The latency of the design equals to the time needed for 2940 clock cycles as the da-
ta passes through two different set of FIFOs to process the data. The first FIFO needs 
around 1940 clock cycles and the second 960 clock cycles. The other logics need 
around 40 clock cycles. The time measured to process the whole image of size 
1920x1080 is equal to 8.53 ms including the memory interface timing. This system 
can process around 117 frames per second. The design can perform better than the 
designs proposed in [6][7] in terms of execution time and average throughput as 
shown in Table. 2 for images of size 1920x1080.  

Table 2. Demosaicing performance comparison 

Resources Multi-core 
DR 
Freeman [7] 
 

FPGA bilinear 
implementa-
tion [6]  

Bilinear Inter. Archi-
tecture for Vision 
Systems [11] 

Our Im-
plementa-
tion  

Execution time (ms) 8.92 13.82 - 8.53 
Throughput (Mpix./s) 232.2 150 250 419.2 

4.2 Image Analysis  

Fig. 5b) shows the constructed images using the implemented system, which are orig-
inally in raw format as shown in Fig. 5a). To measure the quality of constructed im-
ages, a set of images are modified and mosaiced by removing two colors from each 
pixel to construct images as the one produced by the digital camera's sensors. The 
position of the colors determines the type Bayer pattern. RGGB Bayer patterned im-
ages are produced and then passed to the implemented system stages. The recon-
structed images are compared with the original RGB images by taking the Peak  
Signal to Noise Ratio (PSNR) between the two images. 



An Efficient Implementation of the Adams-Hamilton’s Demosaicing Algorithm in FPGAs 211 

 

PSNR is used to measure how closely the constructed image fits the original one. 
In our case, a set of three images are mosaiced using Matlab. The three Bayer pat-
terned images are passed to the implemented system and PSNR values are calculated 
for the constructed images to show the algorithm quality. Table 3 shows both the 
PSNR values for the images using the implemented system and for the same images 
reconstructed using the function domesaic from Matlab’s image processing toolboxes. 
The results show that our system can achieve similar quality to the one achieved by 
the gradient-corrected linear interpolation algorithm used in the default demosaic 
function in Matlab.  

Table 3. PSNR for different images vs Matlab 

Image PSNR of the implemented 
system images (dB) 

PSNR of images using demosaic's 
Matlab function (dB) 

Image1 (Woman) 34.214 34.562 
Image2 (Battle) 41.931 36.361 
Image3 (Green mountains) 31.254 32.458 

 
   

 
  

 
  

 
   (a)     (b) 

Fig. 5. (a) Raw Bayer images; (b) Constructed images  



212 J. Khalifat, A. Ebrahim, and T. Arslan 

 

5 Conclusion 

In this paper, we have presented an Adams-Hamilton demosaicing implementation 
based on FPGAs. The implementation is highly cost effective and real time approach 
to image demosaicing as the system can process images of size 1920x1080 within 
9ms. The results have demonstrated that the architecture provides higher throughput 
than similar designs implemented in hardware. The system used number of data buf-
fers to buffer the unprocessed data prior the processing units and to form processing 
windows of size 3x3 and 5x5. We have used the Xilinx NPI with MPMC cores to 
interface the system to the DDR3 RAM memory. The architecture achieved a clock 
speed of 210MHz on a Xilinx Virtex-6. We have also presented image analysis on 
number of images produced by the system and compare them with the original RGB 
images. The measured PSNR values range between 30dB and 42dB.  

References 

1. Bayer, B.E.: Color imaging array. U.S. Patent No. 3,971,065 (July 1976) 
2. Freeman, W.T.: Median filter for reconstruction missing color samples. U.S. Patent No. 

4,724,395 (1988) 
3. Hamilton, J.F., Adams, J.E.: Adaptive Color Plane Interpolation in Single Sensor Color 

Electronic Camera. U.S. Patent, No. 5629734 (1997) 
4. Nguyen, T.: System and method for asymmetrically demosaicing raw data images using 

color discontinuity equalization. U.S. Patent No. 0,167,602 A1 (2002) 
5. Fuentes, I.O.H., Bravo-Zanoguera, M.E., Yanez, G.G.: FPGA Implementation of the Bili-

nar Interpolation Algorithm for Image Demosaicking. In: International Conference on 
Electrical, Communications, and Computers (CONIELECOM), pp. 25–28 (2009) 

6. Jair, G.L., Miguel, A.A., Julio, W.V.: A Digital Real Time Image Demosaicking Imple-
mentation for High Definition Video Cameras. In: Electronics, Robotics and Automotive 
Mechanics Conference (CERMA), pp. 565–569 (2008) 

7. Zhao, X., Yi, Y., Erdogan, A.T., Arslan, T.: Dual-core reconfigurable demosaicing engine 
for next generation of portable camera systems. In: Conference on Design and Architec-
tures for Signal and Image Processing Conference (DASIP), pp. 289–294 (2010) 

8. Rani, K.S., Hans, W.J.: FPGA implementation of bilinear interpolation algorithm for CFA 
demosaicing. In: International Conference on Communications and Signal Processing 
(ICCSP), pp. 857–863 (2013) 

9. Karloff, A., Muscedere, R.: A low-cost, real-time, hardware-based image demosaicking 
algorithm. In: IEEE International Conference on Electro/Information Technology (EIT), 
pp. 146–150 (2009) 

10. DS643: LogiCORE IP Multi-Port Memory Controller (MPMC) (v6.03.a), Xilinx Inc. 
(March 2011) 

11. Fahmy, S.A.: Generalised Parallel Bilinear Interpolation Architecture for Vision Systems. In: 
International Conference on Reconfigurable Computing and FPGAs (ReConFig), pp. 331–336 
(2008) 



FPGA Design of Delay-Based Digital Effects

for Electric Guitar

Pablo Calleja, Gabriel Caffarena, and Ana Iriarte

University CEU-San Pablo,
Urb. Monteprincipe, 28668, Madrid, Spain

pablocallejaibanez@gmail

gabriel.caffarena@ceu.es

http://biolab.uspceu.com

Abstract. In this paper we address the hardware design of delay-based
audio effects. The paper focuses on the fixed-point hardware implementa-
tion of the effects delay, flanger and chorus. This work aims at providing
a proof-of-concept for the application of reconfigurable devices in real-
time audio processing. The results yield that FPGA devices enable for
the simultaneous application of a high number of digital effects using a
high sampling rate and providing a very low latency.

Keywords: Audio, Delay, DSP, Fixed-Point.

1 Introduction

Early electric guitar players sought for a distinctive sound by selecting different
types of guitars or varying the amplifiers’ settings. Later on, guitar pedals were
created to generate a wide range of audio effects (e.g. echo, distortion, etc.).
Digital processing allows increasing the complexity and subtlety of these effects.
Real-time digital processing of audio signals is commonly implemented using
processor-based approaches: computers with specialized software or stand-alone
solutions based on DSP (digital signal processors) [1]. The former leads to high
latencies for complex processing, making it inappropriate for real-time playing.
The latter provides reduced latencies, though the number of effects that can
be chained together is limited. Reconfigurable hardware provides a high level of
parallelism, difficult to beat by other approaches that rely on software. Their
main drawbacks are long development time and reduced flexibility. These might
be overcome by the fact that professional sampling rates as well as extremely
low latencies can be offered.

There are scarce published works on the use of FPGA devices [2] for real-
time audio processing, and in general they do not focus on the implementation
process. In this paper we present an up-to-date implementation of some digital
effects, putting the stress on hardware design. Delay-based effects are used since
they conform some of the most fundamental guitar effects.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 213–218, 2014.
c© Springer International Publishing Switzerland 2014

http://biolab.uspceu.com


214 P. Calleja, G. Caffarena, and A. Iriarte

-D KWET

KDRY

KFB

yDRY[n]

yWET[n]bIN[n] bOUT[n]

(23,0)

(23,0) (23,0)

(23,0)(27,0)

(27,0)(27,0)

(27,0)

SAT SAT

A1

A2

M1

M2

M3

Fig. 1. Block diagram of delay-based effects

2 Delay-Based Audio Effects

Fig. 1 shows the block diagram for the delay-based audio effects [3]. The figure
contains the name of the inner variables, and the the fixed-point formats in grey
(see subsection 3.3). There are 2 adders (Ai), a D-tap buffer and 3 multipliers
(Mi) involved in the processing.

The output signal y[n] has the following expression:

y[n] = kdry · x[n] + kwet · (x[n−D] + kfb · y[n−D]) . (1)

Parameter kdry ∈ [0, 1] controls the level of x[n] at the output, kwet ∈ [0, 1]
controls the amount of echo, and parameter kfb ∈ [−1, 1] determines the amount
of feedback in the system. Finally, parameter D sets the separation in samples
of the repeated echoes.

Table 1 shows the different parameter configurations for the three delay-based
effects. Note that effects flanger and chorus have a time-variant delay generated
by an oscillator, so the oscillation frequency fOSC is required. Also, the delay
range is specified in milliseconds and not in samples.

Table 1. Effects’ parameters

Effect Dmin Dmax kwet/kdry kfb fosc Memory size(1)

(msec) (msec) (Hz) (samples)

Delay > 0.0 ≈ 5 · 103 (0.0, 1.0] (−1.0, 1.0) 0.0 ≈ 5 · 106
Chorus > 5 [7, 40] 0.5 0.0 [0.02, 5.0] ≈ 4 · 103
Flanger 0.0 [7, 10] 0.5 (−1.0, 1.0) [0.02, 5.0] ≈ 103

(1) With respect to a sample rate of fs = 88 ksps.

2.1 Delay

The delay effect generates one echo or more of the input signal. The user can
control the time separation of echoes with parameter D, as well as the presence
or not of feedback in the system. If the delay is too short, then, there is no way
to distinguish the echoes from the original signal, and, interesting audio effects
are produced (e.g. the sound becomes metallic). Typical delays range from half
a second to several seconds so a buffer with several thousand of taps will be
required (see Table 1).



FPGA Design of Delay-Based Digital Effects for Electric Guitar 215

2.2 Chorus

The effect chorus modifies the guitar sound so it seems that several instruments
are playing simultaneously. The time-variant delay produces a Doppler effect,
which in fact varies the frequency of the guitar signal. Table 1 shows that there
is a lower and upper limit to the delay, and that the delays are very short. Thus,
the frequency changes are subtle and also the hardware requirements for the
buffer are low. Finally, note that feedback is set to 0.

2.3 Flanger

The flanger effect is also based on a time-variant delay, but this time there is
feedback and the lower limit for D is fixed to 0. The audio sensation is similar
to the whoosh of a plane [3]. The range of D is small, so the buffer requirements
are, again, not too restrictive.

3 Hardware Design

The hardware design of the effects must comply with different goals in mind:
i) the effects must be parameterizable; ii) high-quality audio is targeted setting
the precision to 24 bits and the sampling rate fs to 88 ksps; iii) fixed-point
design must be optimized so the quality degradation is controlled and the final
hardware cost is low; iv) real-time must be accomplished, minimizing latency;
and, iv) effect chaining must be supported.

FPGA devices are suitable for all these points. They enable for the implemen-
tation of multiple-wordlength arithmetic circuits, which is essential for optimized
fixed-point implementations. Also, they are specially suitable for pipelining and
parallelization, which leads to real-time processing for high sampling rates and
eases effects chaining. The high amount of memory resources (LUTs and flip-
flops) supports parameterization.

In this work we target Altera devices, concretely the Cyclone IV family, but
the applied methodology can be extended to other families of Altera devices,
and to other manufacturers’ FPGAs.

3.1 Handling Memories for Buffering

Cyclone-IV devices provide three types of memory: flip-flops (bit), 4-input LUTs
(24 bits), and memory blocks (213 bits).

The variable-delay buffer is implemented using a circular buffer. Given a mem-
ory with M words, a counter is used to generate the write addresses (AWR), so
each incoming datum (bIN [n]) is stored. The delay signal (bOUT [n]) is created
by reading from the address ARD = |AWR −D|M . The delay has a fixed value
for D, so it is stored in a register, while for flanger and chorus, D is the output
of the oscillator.

Delay requires an external memory, so an SRAM controller must be added.
The other two effects can make use of the M9K inner memory blocks.



216 P. Calleja, G. Caffarena, and A. Iriarte

3.2 Parameterizable Coefficients

The parameter multiplications are implemented with a generic multiplier, a shift
operation and a truncation. It was decided to use 8-bit parameters with a fixed
scaling of 2−8, so the range is [0, (28−1)/2−8] and they can be stored in registers.
The shift and truncation operations can be implemented in hardware for free.
Next section analyses the truncation error.

3.3 Fixed-Point Issues

The circuits are developed using fixed-point arithmetic in order to obtain a
reduced area as well as good performance [4,5].

First, it is necessary to select the number of integer bits for each signal in our
circuit. A positive number of integer bits implies a most significant bit (MSB)
located to the left of the fractionary point. The MSB must be such that the
probability of overflow is minimized. Next, it is necessary to select the position
of the LSBs, which might result in a truncation, thus, introducing an underflow
error which is propagated towards the output. The errors must be controlled so
the overall quality of the application does not degrade.

Overflow Error. The range of a signal s[n] is bounded as follows [6]:

(
range (x[n])

∞∑
i=0

|hs[i]|
)1/2

≤ range (s[n]) ≤ range (x[n])

∞∑
i=0

|hs[i]|, (2)

where hs is the impulse response from the input of the system to signal s[n].

The range of signal bin is computed considering the worst-case (kfb = 28−1
28 ,

kwet = kdir = 1) andD = 1. To minimize resources, the left side of expression (2)
was considered, which resulted in adding 4 extra bits and a saturation block (see
the output of adder A1, Fig. 1). The MSB of signals bout, ydry and ywet can be
simply inferred. Note that the output signal y is saturated to 24 bits to comply
with the format of the audio samples.

Underflow Error. The power of the quantization noise at the output of an
Linear Time-Invariant (LTI) system can be computed analytically [6,4,5]. Fig. 2
displays the Signal-to-Quantization Noise-Ration (SQNR) for different scenarios.
A digitized guitar signal composed of different arpeggios (I-IV-II-V) is used as a
reference signal. The SQNR is computed by expressing in dB the ratio between
the power of the signal and the power of the output quantization noise. Different
values for the dynamic range of x[n] and the feedback factor were tested.

The SQNR ranges from 60 dB to 120 dB, which proves that the quantization
noise can be neglected. The graph shows how the SQNR decreases when the
dynamic range of x[n] decreases, and also when the feedback increases.



FPGA Design of Delay-Based Digital Effects for Electric Guitar 217

10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

110

120

130
Signal−to−Quantization Noise−Ratio

S
Q

N
R

 (
d
B

)

Signal dynamic range (%)

FB 100%

FB 90%

FB 50%

FB 10%

Fig. 2. SQNR for combinations of FB and the dynamic range of the guitar signal

4 Results

The effect box was implemented using the Terasic DE2-115. The components
used for the prototyping of the effect modules were an Altera Cyclone-IV
EP4CE115F29C7 device, 24-bit Audio CODEC (Wolfson WM8731), a 2-MB
SRAM, and the set of buttons, switches, LEDs and 7-segment displays for in-
terfacing. A guitar was directly connected to the MIC input of the board and
the LINE-OUT output was connected to an amplifier. The prototype was coded
using VHDL and synthesized with Quartus 12.1 from Altera.

The prototype was conformed by three blocks: i) a CODEC interface (Altera
University Program); ii) a User Interface to set up the effects; and, iii) a DSP
block implementing the effects. The effects can be chained as follows: A) no effect;
B) Delay; C) Flanger; D) Chorus; E) Flanger+Delay; and, F) Chorus+Delay.

Four implementations were made: I) only the CODEC interface; II) whole
prototype; III) only the delay; IV) only flanger; and, V) only chorus. Table 2
shows that the CODEC interface (I) requires scarce resources (less than 1%).
The whole system (II) uses 8% of the resources, so there is ample room to
introduce more effects. The implementation of the effects in isolation (III, IV
and V) requires around 5% of the FPGA.

Delays were introduced at the inputs and outputs of each module to improve
routing and to enable pipelining. Thus, each effect introduces a delay of 2 samples
(0.022 msecs),so many effects can be chained together.

Table 2. Implementation results

Implementation Total Logic Elements Total memory bits
I 523 (< 1%) 2288 (< 1%)
II 8.727 (8%) 95.232 (< 1%)
III 5.638 (5%) 9.261 (< 1%)
IV 4.813 (4%) 37.888 ((< 1%)
V 4.749 (4%) 66.560 (2%)



218 P. Calleja, G. Caffarena, and A. Iriarte

5 Conclusions

We have presented the design and the implementation results of delay-based
effects for electric guitar. The results yield that FPGA are suitable for real-time,
high-quality audio processing (sample rates of 88 ksps and precision of 24 bits).
The FPGA resource usage shows that it will be possible to implement more
complex delay-based effects (stereo delays, reverb, etc.). We can safely state
that these effects can be implemented leaving still room for extra effects.

As a main future line, we gather to continue with the implementation of
other digital effects. Also, it is interesting to study the effect of quantization
noise and saturation when several modules are chained together. The use of
dual fixed-point [7] could provide some advantages in terms of dynamic range
and quantization noise. The use of self-reconfigurable multipliers could reduce
cost, enabling more parallelism or increase the mathematical precision [8].

Acknowledgments. We thank Altera University Program for the support given
to the Laboratory of Bioengineering, University CEU-San Pablo.

References

1. Byun, K., Kwon, Y.S., Park, S., Eum, N.W.: Digital audio effect system-on-a-chip
based on embedded dsp core. ETRI Journal 31(6), 732–740 (2009)

2. Pfaff, M., Malzner, D., Seifert, J., Traxler, J., Weber, H., Wiendl, G.: Implement-
ing digital audio effects using a hardware/software co-design approach. In: 10th
International Conference on Digital Audio Effects, pp. 125–132 (2007)

3. Pirkle, W.: Designing Audio Effect Plug-Ins in C++, 1st edn. Taylor and Francis
(2013)

4. Constantinides, G., Cheung, P., Luk, W.: Optimal Datapath Allocation for Multiple-
Wordlength Systems. IEE Electronics Letters 36(17), 1508–1509 (2000)

5. Caffarena, G., Carreras, C., López, J., Fernández, A.: SQNR Estimation of Fixed-
Point DSP Algorithms. Int. J. on Advances in Signal Processing 2010, 1–11 (2010)

6. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall,
Englewood Cliffs (1987)

7. Tee, C., Cheung, P., Constantinides, G.: Dual Fixed-Point: An Efficient Alternative
to Floating-Point Computation. In: Field Programmable Logic and Applications,
pp. 200–208 (2004)

8. Hormigo, J., Caffarena, G., Oliver, J.P., Boemo, E.: Self-reconfigurable constant
multiplier for fpga. ACM Trans. Reconfigurable Technol. Syst. 6(3), 14:1–14:17
(2013)



Design Space Exploration of a Particle Filter

Using Higher-Order Functions

Rinse Wester and Jan Kuper

University of Twente, Drienerlolaan 5, Enschede, The Netherlands
{r.wester,j.kuper}@utwente.nl

Abstract. This paper presents a design space exploration methodol-
ogy based on higher-order functions to facilitate the tradeoff between
execution time and area usage on FPGAs. Higher-order function are
transformed, resulting in parameterized nodes where the amount of par-
allelism and thereby performance, can be controlled. For composition
and scheduling of operations, dataflow principles are used. To show the
validity of the approach, a particle filter has been transformed and syn-
thesized for FPGA. The resulting architecture is parameterizable and
achieves good performance.

Keywords: Higher-order functions, Tradeoff, Particle filter, FPGA.

1 Introduction

Particle filtering is a popular Monte Carlo based technique, to perform state
space estimation e.g. tracking [1]. Since particle filtering is computationally
intensive, a proper tradeoff between time and space is necessary for FPGA imple-
mentation. In this paper, we propose a novel design space exploration method-
ology that exploits the mathematical structure in particle filters, resulting in a
tradeoff between execution-time and FPGA area usage i.e. between time and
space. Higher-order functions, a key abstraction technique used in functional
programming, are translated into dataflow nodes using transformation rules that
perform a tradeoff between time and space.

The tradeoff is explored in a particle filter written in plain Haskell [2] consist-
ing only of normal and higher-order functions (functions that take a function as
argument). Using a set of transformation rules, these higher-order functions are
transformed into parameterizable CλaSH [3] hardware components. The CλaSH
language is a subset of Haskell that is translated to hardware (VHDL) by the
CλaSH compiler. To simplify simulation, the particle filter is implemented in
both Haskell and CλaSH. For composition of the resulting CλaSH hardware,
dataflow principles are used by adding logic that performs synchronization and
scheduling.

The rest of this paper is structured as follows. First, related work is presented
in Section 2. In Section 3.1, some background information is given on hardware
design using the functional language Haskell. Particle filtering is introduced in
Section 3.2. The design methodology is presented in Section 4 while simulation

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 219–226, 2014.
c© Springer International Publishing Switzerland 2014



220 R. Wester and J. Kuper

and hardware results are given in Section 5. Finally, in Section 6, conclusions
are drawn and possible directions for future work are discussed.

2 Related Work

Particle filters have become a subject of intensive research since the publication
of [1]. Hardware implementations of particle filters using FPGAs for acceleration
is extensively covered in [4] and [5] while hardware design methodologies can be
found in [6] and [7]. In [6] a generic method is presented to implement different
particle filters using a single model. [7] incorporates dataflow principles (data
triggered execution) into a particle filtering architecture.

The main difference between the aforementioned papers and the methodology
presented in this paper is that the tradeoff is directly applied to the mathemat-
ical definition (in Haskell) of a particle filter instead of C source code. As was
shown in [8], there exists a one-to-one relation between higher-order functions
and the resulting structure of components on the FPGA. It is therefore interest-
ing to explore the transformations of higher-order functions involving a tradeoff
between time and space.

A lot of research exists on using functional languages for hardware design
[9], [10] including hardware design using higher-order functions [11]. However,
compared to a direct register transfer level (RTL) approach, the transformations
presented in this paper are applied on a higher abstraction level by exploiting
the regularity of higher-order functions i.e. the transformations produce RTL
style hardware.

3 Background

3.1 Hardware Design Using Haskell

All designs presented in this paper are written in Haskell or CλaSH. Haskell [2]
is a functional language supporting abstraction techniques like type derivation,
partial application and higher-order functions. Especially higher-order functions
(functions accepting a function as argument or returning a function as result)
is a very useful abstraction because it allows the designer to express the mathe-
matical regularity of the application very concisely and semantically clear [8].

To design real hardware we use the functional hardware description language
CλaSH [3], a subset of Haskell that is translated to VHDL by the CλaSH com-
piler. The language features that make Haskell very attractive for hardware
design, like higher-order functions, are also available in CλaSH. Among others,
the higher-order functions map, zipWith and foldl are supported by CλaSH,
allowing a direct implementation of the components resulting from the design
methodology. In CλaSH, all components are expressed in the form of a Mealy
machine (the output and new state are a function of the current state and input).
Listing 1.1 shows a small CλaSH code example of a circuit adding all elements
in a vector (a list with constant length).



Design Space Exploration of a Particle Filter Using Higher-Order Functions 221

Listing 1.1. CλaSH code example

sum ( State s ) xs = ( State s ’ , out )
where

s ’ = v f o l d l (+) 0 xs
out = s

As shown Listing 1.1, the function describing the Mealy machine of sum
accepts two arguments (the current state s and vector of values xs) and returns
a new state s′ and output out. Using the higher-order function vfoldl, the sum of
the vector xs is determined and assigned to s′. vfoldl accepts the binary addition
function (+), an initial value 0 and the vector of numbers xs to be summed.
vfoldl determines the sum incrementally adding elements from xs starting with
the initial value 0, thereby forming a chain of adders. In the last line, the value
of the internal state register s is assigned to the output out.

3.2 Particle Filtering

Particle filtering is a Bayesian filtering technique to estimate the state of a
system recursively using noisy measurements [1]. The state of the system is a set
of properties that should be tracked, examples are speed, position and angular
momentum. For each measurement (a radar image for example), the current
estimate of the real state vector is updated resulting in a more and more precise
estimate. Since measurements contain noise, the resulting state will be in the
form of a Probability Density Function (PDF). Analytically finding this PDF is
often mathematically intractable (the integrals can not be solved) which is why
approximation methods are used. Particle filters approximate this PDF by a set

of N particles x
(i)
k where i = 1 . . .N is the index of a particle and k the iteration

of the filter. A higher density of particles represents a higher probability in the
continuous state space (Figure 1). We focus on a commonly used type of particle
filter, the Sequential Importance Resampling Filter (SIRF) which consists of four
steps: prediction, update, normalization and resampling [1].

(a) (b)

Fig. 1. Continuous PDF and particle representation



222 R. Wester and J. Kuper

During prediction, the next state is derived from the current state using the
known dynamics of the system that is being observed. This is implemented by

evaluating the system dynamics function f for allN particles, x
(i)
k = f(x

(i)
k−1, uk).

f consist of a deterministic and non-deterministic part. For each particle, the

deterministic part depends only on the previous state x
(i)
k−1 while the non-

deterministic part uk requires a sample from a known distribution. For example,
a ship moves in a straight line (deterministic) while the position might fluctuate
a bit due to waves (non-deterministic).

In the update step, every particle x
(i)
k is assigned a weight ω

(i)
k , using the a like-

lihood function g, representing the importance of a particle given a measurement

zk. The function g returns a weight ω
(i)
k given a particle x

(i)
k , a measurement zk

and optionally noise vector vk.

ω
(i)
k = g(x

(i)
k , zk,vk), for i = 1 . . .N (1)

The remaining two steps in particle filtering are normalization and resampling.
During normalization the weights are scaled such that the sum is equal to one,
preparing them for resampling. To prevent degeneracy of weights the resampling
step replicates particles zero, one or more times depending on their normalized
weight ω̃(i), while keeping the total number of particles constant i.e. particles
with a high weight are replicated while particles with a low weight are discarded.
More information on resampling techniques can be found in [4].

4 Design Methodology

As already elaborated in [8], the whole Haskell description of the particle fil-
ter can be divided into two groups, higher-order functions and normal func-
tions. Higher-order functions are used to express structure and repetition with
other functions as argument. Normal functions (base type contains no function-
arguments) on the other hand are used as discrete components and correspond
to combinatorial circuits like an adder for example. The design space exploration
methodology consists of three phases: it starts out with 1. a definition of the par-
ticle filter in Haskell 2. applying transformation rules to higher-order functions,
and 3. composition using dataflow principles.

4.1 Particle Filter in Haskell

Throughout this paper, a simple example of a particle filter is used to evaluate the
design methodology. This filter performs tracking of a white square moving over
a dark background using 32 particles. Every frame is considered a measurement
that is used in a complete cycle of the particle filter. Based on the color of a
pixel in this frame pointed at by a particle, a weight is calculated. This simple
particle filter is first implemented in Haskell for simulation where each step
(prediction, update, normalization or resampling) consists of normal and higher-
order functions. Transformations are applied to these higher-order functions such
that a tradeoff between time and space is made.



Design Space Exploration of a Particle Filter Using Higher-Order Functions 223

4.2 Space/Time Tradeoff Rules

Figure 2 and 3 show the transformation of foldl. The list to be processed (xs) is
split into P sublists of size M such that M×P = N . Each sublist is processed in
a single cycle using foldls (space) while the whole list is processed sequentially
using foldlt (time). The amount of replication on hardware can now be controlled
by the parallelization factor M , a parameter introduced by the transformation
rule. A larger M results in larger sublists and therefore a higher throughput in
a single clock cycle at the cost of more hardware. Similarly, smaller M requires
more clock cycles but less hardware.

Fig. 2. Transformation of foldl

Figure 3 shows the transformation of foldl visually. As shown in Figure 3c,
the final architecture requires an additional register to store intermediate results
from a previous cycle. Again, the size of the sublists and the amount of paral-
lelism in controlled by M . Similar rules are applied to the other higher-order
functions (map, zipWith, foldl and scanl).

f f

x0 xM-1

f f

xM x2M-1

f f

x(P-1)M xN-1

a y

(a)

f f

x0 xM-1

a

f f

x(P-1)M xN-1

y

(b)

f f

x0 xM-1

a

r

(c)

Fig. 3. Transformation of higher-order function foldl

4.3 Composition Using Dataflow

When all higher-order functions are transformed, the resulting components are
wrapped into a dataflow node [12] for synchronization and scheduling. All these
nodes are then connected together using FIFO buffers for storage of intermediate
results. The data triggered behavior is implemented using a firing rule (start
execution when all required data is available). When a node fires, arguments are
removed from the input FIFOs while the result are written into an other FIFO.



224 R. Wester and J. Kuper

5 Results

Before the VHDL generated by CλaSH is synthesized, the design is thoroughly
simulated to verify its correctness. Since the CλaSH description of the dataflow
particle filter is a valid Haskell program, simulation can be performed by just
executing the code. A small framework has been built where a reference particle
filter in plain Haskell is compared with the implementation in CλaSH. This
framework produces a stream of grayscale images (256 × 256 pixels) for both
particle filters to track. The resulting tracks are displayed in Figure 4. Both
filters are able to track the square on the Lissajous path within a few pixels.
However, the CλaSH particle filter deviates sometimes a few pixels more from
the path due to the 18 bit fixed point implementation of arithmetic operations.

50 100 150 200

100

150

X(pixel)

y
(p
ix
el
)

CλaSH

Haskell

Real

Fig. 4. Tracking of a Lissajous curve

The throughput is determined by looking at activity of the write signal of
the FIFO between the replicator and the predictor. With parallelization factor
M=4, the resampled particles are sent in groups of 8 tokens to the predictor
where each token contains 4 particles. Averaging over the differences between
arrival times of each first token results in an average cycle time of 69 clock cycles.
This cycle time gives a throughput of 32/69 ≈ 0.46 particles per clock cycle.

After successfully simulating the particle filter, it has been translated to
VHDL by the CλaSH compiler and synthesized for a Virtex 6 XC6VLX240T
FPGA with parallelization factor M=2, 4 and 8 respectively. All instantiations
are able run at a clock frequency of approximately 25MHz (currently limited
reciprocal operation in the normalization step). Table 1 and Figure 5 show the
number of LUTs used for the dataflow based particle filter. The number of LUTs
required scales more or less linear with M . Similarly, M DSP48E1 multipliers
are required for each instantiation.

Compared to the architectures presented in [5] and [6], the performance of
the architecture presented in this paper is in the same order of magnitude. The
throughput is also very similar to performance of the fully parallel particle filter
in [8] but requires approximately a factor 6 fewer LUTs. Therefore, this design
space exploration methodology is adequate for particle filtering.



Design Space Exploration of a Particle Filter Using Higher-Order Functions 225

Table 1. Resource usage of dataflow based

M = 2 M = 4 M = 8

Component LUTs FFs LUTs FFs LUTs FFs

Noisegen 70 64 138 128 274 256
Predict 37 - 69 - 133 -
Update 44 28 44 50 61 94
Sum 81 22 116 21 187 20
Recipr 923 - 923 - 923 -
Norm 20 4 29 3 48 2
Ws2Rs 204 30 333 29 592 28
Replicate 70 42 126 76 214 142
FIFOs 5210 4021 4650 3707 4435 3538

Total: 6659 4211 6428 4014 6867 4080

2 4 8

0

500

1,000

37 69
133

70
138

274

44 44 6181 116
187

923 923 923

20 29 48

204

333

592

70
126

214

M

L
U

T
s

Predict
Noisegen
Update
Sum
Recipr
Norm
Ws2Rs
Replicate

Fig. 5. LUTs used by components of particle filter

6 Conclusions and Future Work

A design methodology based on transformation of higher-order functions has
been presented and applied to a particle filter application. The transformation
rules produce dataflow nodes with a parallelization parameter M . By choosing
a proper value for M , a tradeoff between execution time and FPGA area is
made. For composition of the resulting components, dataflow principles are used.
When applied to the particle filter example, the methodology produces scalable
hardware in terms of throughput and FPGA area consumption. Higher-order
functions are therefore an adequate abstraction to express dependencies.

All transformations and implementations of dataflow nodes have currently
been done by hand, the next step is to automate this. The idea is to develop
an embedded language to easily express designs using higher-order functions. A



226 R. Wester and J. Kuper

transformation algorithm then applies the transformation rules presented in this
paper after which the hardware can be generated using CλaSH.

Acknowledgements. This research is conducted as part of the Sensor Technol-
ogy Applied in Reconfigurable systems for sustainable Security (STARS) project
www.starsproject.nl.

References

1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing 50(2), 174–188 (2002)

2. Jones, S.P. (ed.): Haskell 98 Language and Libraries. Journal of Functional Pro-
gramming, vol. 13 (2003)

3. Baaij, C.P.R., Kooijman, M., Kuper, J., Boeijink, W.A., Gerards, M.E.T.: CλaSH:
Structural descriptions of synchronous hardware using Haskell. In: Proceedings
of the 13th EUROMICRO Conference on Digital System Design: Architectures,
Methods and Tools, Lille, France, USA, pp. 714–721. IEEE Computer Society
(September 2010)

4. Bolić, M., Djurić, P.M., Hong, S.: Resampling algorithms for particle filters: a
computational complexity perspective. EURASIP J. Appl. Signal Process. 2004,
2267–2277 (2004)

5. Cho, J.U., Jin, S.H., Pham, X.D., Jeon, J.W., Byun, J.E., Kang, H.: A real-time
object tracking system using a particle filter. In: 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2822–2827 (2006)

6. Saha, S., Bambha, N.K., Bhattacharyya, S.S.: Design and implementation of em-
bedded computer vision systems based on particle filters. Computer Vision and
Image Understanding 114(11), 1203–1214 (2010)

7. Hong, S., Liang, X., Djuric, P.: Reconfigurable particle filter design using dataflow
structure translation. In: IEEEWorkshop on Signal Processing Systems, SIPS 2004,
pp. 325–330 (2004)

8. Wester, R., Baaij, C.P.R., Kuper, J.: A two step hardware design method using
CλaSH. In: 22nd International Conference on Field Programmable Logic and Ap-
plications, FPL 2012, Oslo, Norway, USA, pp. 181–188. IEEE Computer Society
(August 2012)

9. Sheeran, M.: mufp, a language for vlsi design. In: Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, LFP 1984, pp. 104–112. ACM,
New York (1984)

10. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.
In: Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 1998, pp. 174–184. ACM, New York (1998)

11. Sheeran, M.: Designing regular array architectures using higher order functions.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 220–237. Springer,
Heidelberg (1985)

12. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)



Simulation of Complex Biochemical Pathways

in 3D Process Space via Heterogeneous
Computing Platform: Preliminary Results

Jie Li, Amin Salighehdar, and Narayan Ganesan

Department of Electrical and Computer Engineering
Stevens Institute of Technology, Hoboken NJ 07030, USA

{jli8,asalighe,nganesan}@stevens.edu

Abstract. Biological pathways typically consist of upto hundreds of
reacting chemical species and reactions within a biological system. Mod-
eling and simulation of biological pathways in explicit process space is a
computationally intensive, both due to the number of interactions and
time-scale of processes. Traditional stochastic or ODE based simulation
of chemical processes ignore spatial and biological information. Hence
there is a need for new underlying simulation algorithms as well as need
for newer computing systems, platforms and techniques. Such pathways
describe exhibit considerable behavioral complexity in multiple funda-
mental cellular processes. In this work we present a new heterogeneous
computing platform to accelerate the simulation study of such complex
biochemical pathways in 3D reaction process space. Several tasks in-
volved in the simulation study has been carefully partitioned to run on
a combination of reconfigurable hardware and massively parallel proces-
sor such as the GPU. This paper also presents an implementation to
accelerate one of the most compute intensive tasks - sifting through the
reaction space to determine reacting particles. Finally, we present the
new heterogeneous computing framework integrating a FPGA and GPU
to accelerate the computation over the use of a any single platform. This
framework can achieve 10-times speedup over a single GPU-only plat-
form. Besides, the extensible architecture is general enough to be used
to study a variety of biological pathways in order to gain deeper insights
into biomolecular systems.

Keywords: GPU+FPGA, Process Simulation in 3D space, Heteroge-
neous Computing, Complex Biochemical Pathways, Stochastic
Simulation.

1 Introduction

Simulation and study of such biochemical pathways will lead to deeper insights
and understanding of functions of proteins, kinases and phosphotases that acti-
vate and de-activate reagents, sensitivity of various chemical species etc. There
are several modeling and simulation tools that are used to study biological path-
ways, including but not limited to Ordinary Differential Equations(ODEs), graph

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 227–232, 2014.
c© Springer International Publishing Switzerland 2014



228 J. Li, A. Salighehdar, and N. Ganesan

theoretical analysis of reaction networks, boolean networks and explicit model-
ing in reactive process space, with each having its own scientific, computational
and implementation merits and disadvantages. Although, ODEs are a popular
modeling framework and computationally very efficient, they only represent ag-
gregate concentration of the species, and fail to capture many intricacies and
local behavior mechanisms within the cell. On the other hand, reaction mod-
eling in 3D process space is the most computationally intensive and serves as
a virtual computational microscope into biological systems. Typically, model-
ing such biological pathways in reaction space requires millions of reagents and
beyond and it is imperative to consider all-particle interactions simultaneously
within the system. In this paper, we present a new heterogeneous computational
framework to study the interactions enabled by the massively parallel process-
ing capability of the GPUs and FPGAs. The computational framework will take
the simulation and study of large biological systems to the next level, where
in macro-biological systems such as cells, and interaction between multiple cells
can be studied to gain valuable insights into real biological processes.

2 Algorithm and Implementation

Sequential Algorithm. Algorithms such as the Kinetic-Monte Carlo[1,2] and
Gillespi Algorithm[3] have been used for stochastic simulation of chemical sys-
tems, on a sequential execution platform. The algorithm proceeds by listing all
possible reactions and choosing to execute one of them based on the stoichiomet-
ric rate and the population of reagents. The time counter is then incremented
appropriately. However, the procedure (a) doesn’t capture spatial and local in-
formation and (b) is inherently sequential to be suitable for studying behavior
of large number of reagents due to rapid growth of possible interactions between
reagents. The number of feasible reactions grows with growing number of species
as well as the the number of individual reagents. In general, the growth in the set
of all possible interactions grows proportional to O(N2), for a set of N reagents
and O(M2) for M different chemical species. In the above algorithm, the se-
quential nature of the enumeration of all possible reactions as required by the
algorithm, which overwhelms the computation required to accurately simulate
the process behavior. Hence the traditional algorithm above faces fundamental
bottlenecks from a computational standpoint and is not scalable to simulation
study of large biochemical systems within a reactive 3D space.

Scalable Concurrent Algorithm. In our previous work, we have designed
and applied the following algorithm to study the growth of biofilms[4] which
was implemented on on massively parallel processors such as GPUs. We have
also used GPUs for simulation study of spatial molecular dynamics and their
conformation[5]. However, in contrast to purely physical interactions, general
chemical interactions will result in creation of new particles and consumption of
others in a consistent pattern and in predefined quantities, as described by the
chemical equations. Furthermore, in contrast to molecular dynamics problem,
where fixed persistent agents interact with all the neighboring agents, chemical



Simulation of Complex Biochemical Pathways in 3D Process Space 229

reagents interact only with select neighbors while producing new products. In
order to leverage the parallel and concurrent framework, each interacting entity
or particle is treated as a “autonomous agent” that interacts with other such
agents of different type in an independent and autonomous fashion. This helps
overcome the sequential limitations imposed by traditional algorithms. The con-
current reactions at each time step is updated to reflect the consumption of
old reagent particles and production of newer agents. One of the crucial tasks
in transitioning from traditional algorithms to an explicitly defined 3D process
space populated by individual particles is conversion of reaction rates to equiv-
alent interaction radii. A pair of particles within the specified interaction radius
on a collision course, will react together always or with a probability that is set
by their velocities in order to produce the product of the specified reaction. It
is very-well possible that each particle is within the interaction radius of several
other particles capable of reacting with each other, in such case, efficient parallel
techniques to select a set of mutually consistent reactions to carry out, must be
formulated. The concurrent algorithm can be stated as follows,
(1) Initialize: The particles positions, drift velocities. (2) Initialize Reaction
Radii: Enumerate the set of reactions between different types along with the
interaction radius of the reaction. For first order reactions of type A → φ or
A → B + C, each particle of type A is assigned a life-span by sampling from
an exponential distribution parametrized by its decay rate. For reactions of type
A+B → C +D, the reaction radius is set based on the rate-constant and drift
rate of particles[6].(3) Build Neighbor List: Divide the simulation volume
into disjoint cubic cells of dimensions equal to the largest radius of interaction.
In order to identify the neighbors of each particle only the current cell and the
26 adjacent cells in 3D need to be examined. For each particle, build a list of par-
ticles of compatible types that could react. This is done efficiently with the help
of a stoichiometric bit-vector. In the stoichiometric bit-vector the jth element
of ith bit-vector is set to 1 if type i can react with j. A separate lookup table
stores the product each corresponding reaction between types i and j. (4) Start
the Simulation: Sift through the 3D process space of each particle in parallel,
scanning for reacting particles and carefully selecting the pairs of particles in a
mutually consistent manner for reaction. Increment global time and repeat steps
(1) - (4) until simulation time.

2.1 Heterogeneous Computing Framework

The high-throughput and similar nature computation required to process each
agent makes any massively parallel processor such as the GPU a good initial
choice. However, as we outline below, the reconfigurable hardware co-processor
is extremely beneficial in handling tasks that would otherwise strain the memory
bandwidth and instruction throughput of the GPU. In this work we demonstrate
the power of heterogeneous computational framework in accelerating an appli-
cation that is not amenable to massively parallel processor alone. In the original
GPU implementation of the NeighborList build kernel, each thread-block is
responsible for building the neighbor list of all the particles within a specific cell



230 J. Li, A. Salighehdar, and N. Ganesan

CPU

PCIe
Switch

DDR
Memory

GPU FPGA

DDR
Memory

DDR
Memory

GPU Kernel Tasks

CleanArray
SortFeasible

ExecuteReaction
UpdatePosition

BuildCell
UpdateCell

CheckConstraints

FPGA Kernel Tasks

NeighborBuild

Fig. 1. Heterogeneous system framework

Fig. 2. processing unit architecture

with in the reaction space. To this effect each thread block sifts through the
particles in 26-adjacent cells in addition to its own cell to determine the neigh-
bors of each particle within the cell. Among all kernel functions in the table,
NeighborBuild function consumes 97% of the total execution time. This is due
to fact that any parallel implementation that sifts through adjacent cells will
require 27x bandwidth to the off-chip global memory, as each cell performs the
same task to its neighboring cells. The problem is further amplified by the fact
that the NeighborBuild kernel is called far more often here than in an appli-
cation such as molecular dynamics. The faster the movement of particles more
often the NeighborBuild kernel needs to be called. This places undue strain on
the global memory bandwidth even on a high-throughput device and throws off
the instruction-to-memory ratio far from the optimal value. In order to over-
come this bottleneck, we implement the NeighborBuild task on the FPGA and
leverage the capability of the heterogeneous computational platform.

Hardware Design. Although the presented application is unique and the appli-
cation domains are different, previous work on accelerating molecular dynamics
on reconfigurable platform[7,8], is most related to the current implementation.
We present the hardware design for the task to compute NeighborList and a



Simulation of Complex Biochemical Pathways in 3D Process Space 231

Device XC6VLX240T

Logic Cells 241,152

Conf.Logic Blocks 37,680

DSP48E1 3,650

Block RAM Blocks 768

(a) Device Capability

Resource quantities

SliceRegisters 54

Memory 40

DSP48Es 8

Maximumspeed 300M

(b) Device utilization

unified heterogeneous computing framework for large scale process simulations
in 3D space. Target hardware: a generic PC and GPU GTX 580 and a PCIe
plug-in board ML605 with Xilinx XC6VLX240T. It is possible to leverage the
capabilities of each device via a task-level partition of the kernels as shown in
Figure (1). The FPGA processes one central cell at a time. Each processing unit
(figure 2)needs to compute the distance between all pairs of particles i and j,
where i must be in the central cell but j can be in any of the 26 neighborhood
cells or in the central cell. In order to fully parallelize each cell, the system
needs as many processing units as the particles in the central cell. One parti-
cle in the neighboring cell is processed per time cycle. So, the total execution
time of one central cell is 27 x the maximum number of particles in any cell.

510

Fig. 3. Performance of the kernel with re-
spect to the total number of particles (inde-
pendent agents). The FPGA performance is
shown in blue bars while the GPU perfor-
mance is shown in red.

In order to preserve the accuracy
of distance calculation, floating point
precision is necessary. Fortunately,
modern FPGAs are equipped with
ample DSP units that make floating
point distance calculation within each
processing element possible. With
the available resources, it is usually
advantageous to use the existing float-
ing point units instead of synthesiz-
ing custom fixed precision units. In
our implementation particles coordi-
nates and reagent types are copied
from GPU to FPGA. We also main-
tain a reaction radius lookup table on
FPGA, as each reaction may have dif-
ferent effective reaction radius. In or-
der to process a million particles, the
total amount of data transferred to
the FPGA for coordinates array is
1Million x 3 channel x 32 bits ≈ 12MB
and for particle types array is 1Mil-
lion x 32 bit ≈ 4MB. However, the
copy-back of the FeasibleList can be overlapped with computation. The tasks
partitioned among the FPGA and GPU such that the NeighborList build is
performed on the FPGA and the other remaining functions on the GPU. Once
the computation is initiated, data transfer between GPU and FPGA would take



232 J. Li, A. Salighehdar, and N. Ganesan

place once per iteration. The critical resources on the FPGA are the hard mul-
tipliers, the registers and the block RAMs as shown in table (2).

2.2 Experiments and Performance

The computational framework presented here especially suitable to simulate
large and complex biological pathways serving as a macro-molecular visual scope
and helps observe key biochemical reactions, as the events unfold in space and
time. For performance comparisons, the JAK-STAT signaling pathways was ini-
tialized with 1.23 million particles or independent reacting agents, within a sim-
ulation space of 200×200×200 distance units. For performance comparisons, we
set different initial number of particles for this system from 10k to 2,000K in
order to measure the average time-per-step. In figure (3), we compare the per-
formance of GPU and FPGA implementation of the compute intensive task of
calculating the FeasibleList. The FPGA achieves approximately 10 x speedup
over GPU-only implementation for all system sizes while using the 32 bit floating
point to maintain simulation quality.

Acknowledgements. The authors would like to thank the Xilinx University
Program(XUP) and the NVIDIA-Professor partnership for their generous sup-
port and donation helpful in carrying out the research.

References

1. Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Methuen, London
(1965)

2. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the
stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI),
vol. 4695, pp. 184–199. Springer, Heidelberg (2007)

3. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Jour-
nal of Physical Chemistry 81(25), 2340–2361 (1977)

4. Li, J., Sharma, V., Ganesan, N., Compagnoni, A.: Simulation and study of large-
scale bacteria-materials interactions via bioscape enabled GPUs. In: Proceedings of
ACM-BCB 2012 (2012)

5. Taufer, M., Ganesan, N., Patel, S.: GPU enabled macromolecular simulations: Chal-
lenges and opportunities. IEEE Computing in Science and Engineering 15(1) (Jan-
uary 2012)

6. Erban, R., Chapman, S.J.: Stochastic modelling of reaction-diffusion processes: al-
gorithms for bimolecular reactions. Physical Biology 6(046001) (2009)

7. Chiu, M., Herbordt, M.C.: Molecular dynamics simulations on high-performance
reconfigurable computing systems. ACM Trans. Reconfigurable Technol. Syst. 3(4),
23:1–23:37 (2010)

8. Gu, Y., VanCourt, T., Herbordt, M.C.: Explicit design of fpga-based coprocessors for
short-range force computations in molecular dynamics simulations. Parallel Com-
puting 34(4-5), 261–277 (2008)



Efficient Buffer Design and Implementation

for Wormhole Routers on FPGAs

Taimour Wehbe and Xiaofang Wang

Department of Electrical and Computer Engineering
Villanova University

800 E Lancaster Avenue
Villanova, PA 19085, USA

{twehbe,xwang}@villanova.edu

Abstract. Several studies show that the overall network performance
in worhmole routers is degraded due to congestion at a specific part in
the network while other parts have little or no flow of data. Our design
improves the performance of the wormhole router by adding a central
channel that is shared among the physical channels. Experimental re-
sults using the uniform random traffic and the hotspot traffic show that
enabling the central buffer increases the performance of the network by
as much as 13%. On the implementation side, buffers consume more than
half of the router’s area and power, and the coarse-grain nature of em-
bedded BRAMs in most FPGAs has led to very inefficient utilization of
such memory resources. We propose two different types of buffer sharing:
1. Sharing between the processors of a system on chip and router buffers;
2. Sharing BRAMs among different virtual and physical channels inside
the wormhole router. Our designs target the Xilinx Virtex-6 FPGAs and
the results show a decrease of 87.5% in BRAM usage on the expense of
a slight register increase. Our techniques can be easily applied to any
other FPGA-based buffer implementation.

1 Introduction

The growing design complexity and the ever-increasing requirements in embedded
systems have been constantly driving system designers to explore more efficient
interconnection networks for systems-on-chip. Packet switching networks-on-chip
(NoCs) are expected to replace shared buses and point-to-point networks to pro-
vide scalable and high-performance communication for multi/many-core process-
ing platforms [1]. Extensive research efforts have been devoted in the last decade
to investigating high-performance and energy-efficient designs.

NoCs rely on routers to make data transfer decisions using various routing al-
gorithms. Buffers are used to house arriving packet flits that cannot be forwarded
immediately onto output links when contention arises. In the conventional worm-
hole router, each channel has a set of dedicated buffers. Their size and design
have a large impact on the overall performance of an NoC, especially when the
network is congested. It has been shown that buffers can consume up to almost
75% of the total area [2] leading to significant power consumption [3]. Nonethe-
less, several studies show that the typical utilization of these expensive buffers

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 233–239, 2014.
c© Springer International Publishing Switzerland 2014



234 T. Wehbe and X. Wang

is very low, mostly less than 30% [4]. We have proposed a network topology,
called X-network, to reduce resource requirements and improve performance at
the same time [5]. In the X-Network, each router is shared by four nodes and
each node has direct connection with four neighboring routers in addition to the
north, south, east, and west connections with neighboring nodes. This reduces
the total number of routers for a given number of nodes.

With rapidly growing processing capabilities, FPGAs have been increasingly
employed to implement complex SoCs. M. Papamichael et al. propose to take ad-
vantage of the routing wires in FPGAs to reduce other resource usage like the
use of configurable logic blocks and on-chip memory resources based on the as-
sumption that they are usually underutilized [6]. When it comes to implementing
buffers on FPGAs, the dedicated BRAM, which is commonly found in FPGAs,
is the main choice. However, such BRAM tend to have tens of Kbits, which are
mostly wasted when implementing a FIFO buffer. On the other hand, a large num-
ber of such memory blocks are needed to implement all the buffers in a router. For
this reason, some research proposals prefer to use distributed RAM in Xilinx FP-
GAs instead of dedicated BRAMs [6]. This approach, however, reduces the total
logic resources available to other purposes. Tomakemore efficient use of dedicated
memory blocks, several central buffering solutions have been proposed [4,7,8]. The
centralized scheme, however, improves buffer utilization at the cost of complicated
control circuitry. In addition, congested output ports may consume a significant
portion or all of the shared buffers, preventing smooth transportation on other
ports. Other research groups, such as Kwa et al. [9], use buffer sharing between
virtual channels (VCs) of a router. Kwa et al.were able to reduce the BRAMusage
for Altera FPGAs by as much as 50%; however, their work imposes degradation in
performance and early network saturation. Moreover, their design requires access
to as many as four different memory locations during the same cycle, which is not
supported by BRAMs in Xilinx FPGAs.

2 Hybrid Buffer Design and Implementation

2.1 Hybrid Buffer Design

This work is based on a 2-D 4×4 Torus in-house developed X-Network [5] which
uses only 9 routers to connect our 16 PEs. Our wormhole router uses the Round-
Robin algorithm in its arbiters and utilizes an XY adaptive routing algorithm to
handle traffic. The development done in our design is the introduction of a shared
central channel (Fig. 1). Most traffic patterns usually create congestion at specific
channels inside a router [10]. The central channel here allocates specific buffers
for the channels in need, reducing the latency of the network. A central arbiter
controls different multiplexers and decides whether incoming flits can progress
to the desired channel or to the central channel by monitoring the status of the
buffers in these channels. It also modifies the credits sent between routers to
include the central’s channels status. In addition, a signal named central mux
hold is used to prevent the apportionment of the flits of one packet in case the
central arbiter switches control while a packet is being stored.



Efficient Buffer Design and Implementation 235

 

CROSSBAR
Output
Arb_N

Output
Mux_N

Central
Arbiter

Mux_Hold

Central
MUX

Credit
Mux_N

Credit_Out_N

Credit_Out_S

Credit_Out_E

Credit_Out_W

Credit_Out_PE1

VC_Manager North
BufferDemux

Credits_In_N

N
North Channel

VC_Manager South
BufferDemux

Credits_In_S

S
South Channel

N

S Credit
Mux_S

VC_Manager East
BufferDemux

Credits_In_E East Channel
E

E
Credit
Mux_E

VC_Manager West
BufferDemux

Credits_In_W West Channel
W

W

Credit
Mux_W

VC_Manager Central
Buffer

Central Channel

Output
Arb_S

Output
Mux_S

Output
Arb_E

Output
Mux_E

Output
Arb_W

Output
Mux_W

N

S

E

W

VC_Manager PE_1
Buffer

PE_1 Channel
PE_1

Output
Arbiter
PE_1

Output
Mux
PE_1

PE_1

Credit_Out_PE2VC_Manager PE_2
Buffer

PE_2 Channel
PE_2

Output
Arbiter
PE_2

Output
Mux
PE_2

PE_2

Credit_Out_PE3VC_Manager PE_3
Buffer

PE_3 Channel
PE_3

Output
Arbiter
PE_3

Output
Mux
PE_3

PE_3

Credit_Out_PE4VC_Manager PE_4
Buffer

PE_4 Channel
PE_4

Output
Arbiter
PE_4

Output
Mux
PE_4

PE_4

Fig. 1. The proposed router architecture

2.2 Buffer Implementation Tailored to FPGAs

Our router has eight physical channels and one central channel, each composed
of eight virtual channels. Therefore, each router needs 72 BRAMs to implement
its buffers. In addition, each buffer consumes only 640 bits out of each BRAM
(16 flits deep x 40 bits/flit). In our design, we target the Xilinx Virtex-6 FPGA
which is composed of 36 Kbits of BRAM blocks. This motivates NoC researchers
to find better solutions for managing and sharing BRAM resources. We approach
this sharing process in the following two different ways.

Sharing BRAMs between Processing Elements and Router Buffers.
Sharing processor BRAMs with resources outside the processor system helps
reduce the resources wasted for building buffers for wormhole routers. Fig. 2(a)
shows how a processor’s BRAM ports and BRAM controller’s ports are made
external to share it with a FIFO. The processor system is instantiated as a
submodule in the top level design and connected to one input of a multiplexer
which is used to switch between the controllers of port A of the shared BRAM.
The second input of the mux comes from one port of a FIFO controller to
enable the sharing process. The decision in sharing the BRAM is taken by the
software (processor) to maintain its flexibility and insure that no performance
degradation happens. Resource analysis of the design shows that the logic needed
to implement the sharing process is minimal.

Sharing BRAMs between Virtual Channels. Sharing the memory resource
in this design is based on time division multiplexing. Since BRAMs operate at a
much faster speed than wormhole routers, they can be accesssed multiple times



236 T. Wehbe and X. Wang

 

Reset

Wr En
Data In
Rd En

Data Out

Empty
Full

Mux Control

Clk_P
Clk_N

UART In
UART Out

text

FIFO
Controller

Clk

Microblaze
Block
RAM BRAM

Controller

AXI Bus

Shared
Block
RAM

Dual
Port

iLMB

dLMB
Port A

Port B
Processor System

Mux

Clk

(a) Between a processor and a FIFO

 

North
Channel

N

S

N

PE_1

South
Channel

Shared FIFO

BRAM

Controller
PE Buffers

PE Buffers

S

Shared FIFO

BRAM

Controller

East
Channel

E

W

E

West
Channel

Shared FIFO

BRAM

Controller
PE Buffers

PE Buffers

W

Shared FIFO

BRAM

Controller

PE1
Channel

PE1

PE2

PE1

PE2
Channel

Shared FIFO

BRAM

Controller
PE Buffers

PE Buffers

PE2

Shared FIFO

BRAM

Controller

PE3
Channel

PE3

PE4

PE3

PE4
Channel

Shared FIFO

BRAM

Controller
PE Buffers

PE Buffers

PE4

Shared FIFO

BRAM

Controller

Central
Channel

PE Buffers

Shared FIFO

BRAM

Controller

Central

Central
MUX

W
E
S
N

(c) Between physical channels

 Reset_1

Wr En_1

Addr In A

Rd En_1

Data Out_1

Empty_1

Full_1

Block
RAM

Clk

Vdd

Clk A
Rd En A
Wr En A

Data In_1 Data In A

Read
Pointer 1
Generator

Rd En B

Write
Pointer 1
Generator

Clk B

Status
Counter 1
Generator

Addr In B

Status Counter 1

Synchronous FIFO

Clk_ds

Reset_2

Wr En_2
Rd En_2

Empty_2

Full_2

Read
Pointer 2
Generator

Write
Pointer 2
Generator

Status
Counter 2
Generator

Status Counter 2

Mux

Mux

Control Unit

Data In_2
Data Out_2

De-Mux

Register 1

(b) Between virtual channels

Fig. 2. Block RAM sharing

during one system clock cycle. We tried sharing a BRAM between two and four
VCs yielding to the reduction of BRAM usage by 50% and 75% respectively. To do
that, we used faster clock speeds to access the memory, and as a result, by the end
of each system clock cycle, each of the FIFOs sharing the same BRAM will have
read or written the needed data. Fig. 2(b) shows how 2 VCs share one BRAM. The
control unit works at a faster clock speed and controls multiplexers to provide the
sharing process and to output the needed data of each FIFO from the BRAM.

Sharing BRAMs between Physical Channels. We imported the idea of
sharing BRAMs between virtual channels to physical channels. A faster clock is
now used in the controller and the BRAM is shared among 8 FIFOs. Fig. 2(c)
shows the new interconnection of the different physical channels of the wormhole
router. The two sections of each two physical channels now share two BRAMs.
The North and South physical channels share the same set of BRAMs while the
East and West share another set. Similarly PE channels and the central channel
share their own BRAMs.



Efficient Buffer Design and Implementation 237

Fig. 3. Random Traffic

(a) Hotspot Pct: 10% (b) Hotspot Pct: 20%

Fig. 4. Hotspot Traffic (PE2,2)

(a) Hotspot Pct: 10% (b) Hotspot Pct: 20%

Fig. 5. Hotspot Traffic (PE4,4)

3 Experimental Results

We have implemented our designs in VHDL targeting Xilinx Virtex 6 FPGAs.
Three cases are studied and compared: without central buffer, with central buffer
and all channels have 2 VCs, and with central buffer and all channels have 4
VCs. Fig. 3 shows the network latency under the uniform random traffic. The
plot shows that at high injection rates, the design that has the central buffer
shows a performance improvement of about 13% in injection rate.

Fig. 4, 5, and 6 show the plots of the hotspot traffic pattern taking different
hotspot percentages and locations into consideration. Several studies show that
real-life traffic possesses a higher congestion at the center, diagonal, and corner
positions of the network. Therefore, we choose PEs (2,2), (4,4) and (2,4) in our
simulations for hotspot traffic. The central buffer increases the performance by
10% when the hotspot is chosen as PE(2,2) whether the hotspot percentage is
10% (Fig. 4a) or 20% (Fig. 4b) and when it is chosen as PE(4,4) with a hotspot
percentage of 10% (Fig. 5a). When it is 20%, the improvement in performance
is decreased to about 5% (Fig. 5b). When PE(2,4), an edge PE, is chosen as the
hotspot PE, the graphs show similar results for 10% hotspot percentage (Fig.
6a) and an increase of about 8% for a hotspot percentage of 20% (Fig. 5b).

We finally evaluate the resource utilization of all the BRAM sharing designs.
Table 1 shows that all the BRAM sharing designs showed an expected slight



238 T. Wehbe and X. Wang

(a) Hotspot Pct: 10% (b) Hotspot Pct: 20%

Fig. 6. Hotspot Traffic (PE2,4)

Table 1. The difference in resource utilization per wormhole router of the four designs

Resources per Normal 2 VCs share 4 VCs share 2 PCs share
wormhole router Design BRAM BRAM BRAM

Slice registers 9369 12154 13605 12998

Look-up tables 20542 20106 19407 20049

36Kb BRAMs 72 36 18 9

increase in register usage and a huge decrease in BRAM usage reaching an
87.5%. The final design makes the most efficient use of BRAMs consuming 5
Kbits out of the 36 Kbits found in each.

4 Conclusions

Our work shows that the addition of a central buffer improves the latency of
the network by as much as 13%. The different proposed approaches for sharing
BRAM resources shows a great resource efficiency (87.5%), which leads eventu-
ally to better power consumption. In our last design, we shared a BRAM between
two physical channels leading to a more efficient use of each BRAM (14%).

References

1. Mohapatra, P.: Wormhole routing techniques for directly connected multicomputer
systems. ACM Computing Surveys 30(3), 374–410 (1998)

2. Dally, W., Towles, B.: Route packets, not wires: on-chip interconnection networks.
In: Proc. ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 684–689
(2001)

3. Wang, H., Peh, L.-S., Malik, S.: Power-driven design of router microarchitectures
in on-chip networks. In: Proc. Annual IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), pp. 105–116 (2003)

4. Tran, A., Baas, B.: DLABS: A dual-lane buffer-sharing router architecture for
networks on chip. In: Proc. IEEE Workshop on Signal Processing Systems (SIPS),
pp. 327–332 (2010)



Efficient Buffer Design and Implementation 239

5. Wang, X., Bandi, L.: X-Network: An area-efficient and high-performance on-chip
wormhole-switching network. In: Proc. IEEE Int’l Conf. High Performance Com-
puting and Communications (HPCC), pp. 362–368 (2010)

6. Papamichael, M.K., Hoe, J.C.: Connect: Re-examining conventional wisdom for
designing NoCs in the context of FPGAs. In: Proc. ACM/SIGDA Int’l Symp.
Field Programmable Gate Arrays (FPGA), pp. 37–46 (2012)

7. Nicopoulos, C.A., Park, D., Kim, J., Vijaykrishnan, N., Yousif, M.S., Das, C.R.:
Vichar: A dynamic virtual channel regulator for network-on-chip routers. In: Proc.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), pp. 333–346 (2006)

8. Wang, L., Zhang, J., Yang, X., Wen, D.: Router with centralized buffer for network-
on-chip. In: Proc. ACM Great Lakes Symp. VLSI, pp. 469–474 (2009)

9. Kwa, J., Aamodt, T.: Small virtual channel routers on FPGAs through Block RAM
sharing. In: Proc. Int’l Conf. Field-Programmable Technology (FPT), pp. 71–79
(2012)

10. Mishra, A., Vijaykrishnan, N., Das, C.: A case for heterogeneous on-chip inter-
connects for cmps. In: Proc. Annual Int’l Symp. Computer Architecture (ISCA),
pp. 389–399 (2011)



MicroACP - A Fast and Secure Reconfigurable
Asymmetric Crypto-Processor

–Overhead Evaluation of Side-Channel Countermeasures–

Christopher Pöpper1, Oliver Mischke2, and Tim Güneysu2

1 ESCRYPT GmbH - Embedded Security
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
christoph.poepper@escrypt.com, {mischke,gueneysu}@crypto.rub.de

Abstract. In this work we present a lightweight co-processor for asym-
metric cryptography. While focusing on standardized elliptic curve cryp-
tography over prime fields, the architecture has been chosen generic
enough to also allow to perform RSA operations on the same hard-
ware. Compared to previous work our processor distinguishes itself by
not only having on par performance with recent work in this field, but
also by being able to additionally apply state of the art side-channel
analysis countermeasures to protect the implementation against timing
and power analysis attacks. Different countermeasures can be dynami-
cally selected at runtime, allowing a flexible trade-off between security
and performance. Utilizing a specialized 32-bit ALU and a microcode-
based control unit, it is possible to easily reprogram the controller after
deployment allowing to make changes to the implemented algorithm or
countermeasures by updating the microcode. This allows to keep some of
the reconfigurability of FPGA-based designs even when fabricating the
proposed core as an ASIC.

1 Introduction

Computing is no longer restricted to powerful mainframes or personal comput-
ers. Nowadays almost everyone carries a smartphone which is more powerful
then most computers a few years back. But not only users actively interact, the
Internet of Things becomes more and more a reality, where different devices au-
tonomously communicate which each other. With the increased communication
rises also the need for reliable asymmetric cryptographic primitives to provide
the necessary security. This is especially true in the vehicle-2-vehicle commu-
nication where based on messages by other cars automatic actions might be
performed, for example emergency brakes to prevent collisions.

Rivest-Shamir-Adleman (RSA) [9] was for a long time the algorithm of choice
for asymmetric cryptography and still provides some advantages like fast ver-
ification times by using small public exponents. In case both the signing and
verification of messages is needed, Elliptic Curve Cryptography (ECC) [5,7] is
a better solution since it provides equal security using shorter operands which
reduces not only computation time but also signature size.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 240–247, 2014.
c© Springer International Publishing Switzerland 2014



A Fast and Secure Reconfigurable Asymmetric Crypto-Processor 241

While these algorithms remain secure from a mathematical point of view,
they can easily be attacked by so called side-channel attacks if no precautions
are taken. In the late 90s and early 2000s several ways have been discovered to
extract secret information from a circuit by observing e.g., timing behaviour,
power consumption, or electromagnetic emanation. Most notably is the work of
Kocher et al. introducing differential power analysis [6]. Since then there exists
an arms race between designers of countermeasures and attackers where the
outcome is still open. Fan et al. [3] gives a good overview of the current state of
the art in ECC countermeasures.

Implementations of pure ECC or combined ECC-RSA processors have been
an ongoing research topic for some time. Many implementation techniques have
been evaluated and fill different niches. As example, Batina et al. [1] proposed
the design of an ECC and RSA processor based on systolic arrays. While this
method is inherently protected against some attacks because of the static op-
eration flow, it requires a high amount of logic resources and is not protected
against e.g., differential power analysis. In [4] the authors focus on achieving a
very high throughput by utilizing a large number of FPGA hard macros like
DSPs and BRAMs, which makes the design less scalable and leads to high area
requirements. [12] and later [11] on the other hand proposed designs based on a
so called microcode architecture where a small ALU is controlled by a flexible
state machine which can be easily reprogrammed by changing the microcode.

This work also uses the microcode approach aiming for a small implementation
footprint and high reconfigurability. In addition our implementation is signifi-
cantly stronger protected against side-channel attacks. We have implemented
several countermeasures and evaluate the performance overhead. Furthermore,
the designed ALU is more flexible being able to not only perform ECC but also
RSA operations while maintaining a similar performance as in [11].

The remaining article is organized as follows: Section 2 describes our design ar-
chitecture and the implemented countermeasures. Performance results together
with a comparison to recent work is given in Section 3. This section also states
the performance overhead of the chosen countermeasures and combinations.
Finally, Section 4 concludes our research.

2 Our Design

In this work we are aiming to implement a design which is capable of performing
both ECC and RSA operations using the same logic. We have chosen to build our
design on the ideas of [12] and [11] utilizing the microcode approach. This means
that a small but powerful ALU is controlled by a dedicated tiny processor which
controls the program flow and the memory management based on stored opcodes
in the program memory. By updating the program memory it is possible to easily
update algorithms or implemented countermeasure even after deployment in the
field. This gives us the highest flexibility for a very efficient ALU on a small
footprint. Beside choosing an efficient architecture to perform both ECC and
RSA operations, our focus is mainly on secure implementations of those by
implementing several countermeasures against side-channel attacks.



242 C. Pöpper, O. Mischke, and T. Güneysu

So
ftw

ar
e 

En
gi

ne

PGM

WrAdr
/
9

RdAdr
/
9

Instruction
/

32

DM A

Memory 
Controller

Ad
r A / 11

Da
ta

 A
/ 32 Ad
r B / 11

Da
ta

 B
/ 32

Ad
r A / 11

Da
ta

 A
/ 32 Ad
r B / 11

Da
ta

 B
/ 32

DM B

ALU
Controller

Modular
ALUBoolean 

result

Arithmetic 
function

Result
opA, 
opB, 
mod

/
 3x32

/
32

Boolean 
result

opcode

Data
/

32

opA,opB,res 
Adr

/
3 x 9

DM A/B flag
/

3x1

op
A,

op
B,

m
od /

3x
32

/
32

/
32

Fig. 1. Architecture overview

Our solution, the MicroACP is a cryptographic co-processor which imple-
ments ECC over prime fields and generic RSA exponentiations with a maximum
operand size of 2048 bits. For the ECC part, the core is primarily designed to
work with the NIST prime curves, especially NIST-P256. If lower security is suf-
ficient, NIST-P224, or even NIST-P192 can be chosen using exactly the same
hardware. It is possible to switch between different curves at runtime by up-
dating the internal program code, but for the remainder of this paper we are
focusing on NIST-P256 for high security applications.

2.1 Architecture

Figure 1 depicts the architecture of the MicroACP. The program memory
(PGM) stores the necessary algorithms for the execution of the secure ECC and
RSA operations. It can either be preloaded by the bitstream or loaded via the
software interface during runtime. This also allows a flexible update of the code to
either support different ECC curves or countermeasures. The ALU itself utilizes
a 32-bit datapath for all operations. Four hardware multipliers are used and
the ALU is also able to perform addition, subtraction, compare and reduction
operations. The operands and the results of ALU operations are stored in two
true dual port block rams (BRAM). The interaction between the memories and
the ALU is handled by the memory and the ALU controller.

2.2 Implemented Algorithms

For the fast and unprotected version of the ECC we implemented the Double-
And-Add (DAA) algorithm, which is also called Left-to-right binary method for



A Fast and Secure Reconfigurable Asymmetric Crypto-Processor 243

point multiplication. Furthermore, for an efficient computation we chose the Ja-
cobian projective coordinates for the required point additions and doublings
which results in an better overall-performance than standard affine coordinates.

Since all of the computations are made in prime fields, a reduction algorithm
is required. Due to our choice of the NIST-P256 curve, which standardized a so
called pseudo-Mersenne prime number as modulus, the required reduction can
be efficiently computed with simple additions and subtractions.

Similar to the ECC we choose the Square-and-Multiply (SAM) algorithm for
the implementation of the modular exponentiation, used in the RSA crypto
system. In contrast to ECC operations, we have to deal with random moduli
for the RSA, which requires a generic reduction algorithm. For our design we
implemented the Montgomery Reduction [8] which is a well-known and efficient
technique.

2.3 Implementation of Countermeasures

To defeat side-channel attacks a set of countermeasures against SPA and DPA
attacks on ECC were chosen. According to the work from Fan et al. [3] due
to the usage of the following presented countermeasures the implementation is
secure against all known SPA attacks and against the traditional DPA as well
as against the RPA (Refined Power Analysis) and the ZPA (Zero-Value Point
Analysis) attack.

All these countermeasures are not exclusive but can be combined in order to
fulfill high security requirements or to choose a trade-off between security and
performance.

Double-and-Add-Always. To defeat SPA attacks, J. Coron proposed in 1999
an alternative version of the DAA algorithm [2]. The principle is that an addition
takes place in every loop iteration, either with the real output registers or with
an unrelated dummy register. Consequently, a dependency of the scalar k and
the runtime of the algorithm is prevented.

Scalar Randomization. In [2], beside the DAAA, also some DPA counter-
measure are presented. The first is the Scalar Randomization, or also known as
Coron’s first Countermeasure. The idea is that the secret scalar k is random-
ized or masked. This is done by adding a random multiple of the order #E to
the scalar: r · #E + k · P . Due to this tampering of k at each ECC execution,
the dependency between the secret key and the operations on the chip, and
consequently the leakage of information about k is prevented.

Point Blinding. Coron’s second Countermeasure [2] blinds or masks the input
point instead of the scalar. Since in every scalar multiplication the point is
blinded by adding a secret random point, the leakage of information about the
scalar, and therefore the attack target, is prevented.

Randomized Projective Coordinates. The third countermeasure that was
proposed by Coron in [2] is working on the projective, in our implementation on
the Jacobian, coordinate representation. The principle is again a randomization



244 C. Pöpper, O. Mischke, and T. Güneysu

of the point P . For this task the affine point P is converted to Jacobian rep-
resentation. But instead of setting Z = 1, we use Z = r, where r is a random
number. It is obvious, that we have to compute X and Y according to r. Due to
this translation the coordinates do not have a dependency to the hypothetical
values which are computed by the attacker. Since this is an appropriate repre-
sentation of the input point, the inverse conversion to the affine coordinates after
the multiplication returns the correct result.

Square-and-Multiply-Always. To defeat SPA attacks on the RSA compu-
tation, a dependency between the runtime and the exponent k must be pre-
vented. Similar to the used DAAA for the ECC, we implemented the Square-
And-Multiply-Always (SAMA) which was presented 1999 by Kocher et al. [6]
and uses dummy registers to avoid runtime varieties.

3 Results

For the evaluation of the implementation, we chose the SASEBO GII platform
which is equipped with a Xilinx Virtex-5 LX50 FPGA. All results have been
obtained post Place&Route using Xilinx ISE 14.3.

For the ECC performance measurements, we used 256 bit random numbers as
the scalar and averaged the results of the multiplication with the base point of the

Table 1. Comparison between different approaches

Design This work [11] [12] [10]

Device Xilinx
Virtex-5 Xilinx Virtex-II Pro Xilinx Spartan-3

Curve P256 P256 any P256 not
supported

RSA size 2048 bit not supported
not

supported 2048 bit

Max. Clk.
(MHz) 210 210 68.17 40 95

Logic 1914 1158 2085 27597

RAM Blocks 6 3 9 0

HW Mults 4 4 7 0
ECPM
[cycles] 830000 949951 1074625 708000 not

supported

ECPM [ms] 3.95 4.52 15.75 17.7 not
supported

MEXP
[cycles] 372000 not supported

not
supported 74100

MEXP [ms] 1.77 not supported
not

supported 0.78



A Fast and Secure Reconfigurable Asymmetric Crypto-Processor 245

NIST-P256 curve. On embedded devices such as Engine Control Units (ECUs)
usually only the signature verification is required. Therefore, for efficiency rea-
sons, in nearly all of the currently deployed real-world RSA implementations
the public exponent 216 + 1 is used. As a result, this exponent was also used
for the performance measurement. Usually, the signature verification with the
RSA crypto system is done with a public key, which means that countermea-
sures against side-channel attacks are not necessary. Nevertheless, the execution
of the SAMA algorithm is tested in order to show the time difference and the
feasibility of countermeasure implementations for RSA using our core.

Table 1 shows the efficiency of the core compared to other recent work. The
term ECPM denotes Elliptic Curve Point Multiplications while MEXP means
Modular Exponentiations. While we have chosen a Virtex-5 FPGA for our real
performance measurements, numbers obtained for the older Virtex-2 Architec-
ture are only slightly worse then in the Virtex-5 case. Also note that our ALU
is slightly more complex then in the given comparisons since we are also able to
perform RSA operations.

Table 2 depicts the performance overhead required if different side-channel
countermeasures are chosen. Focusing on the ECC case which requires most se-
curity for the private signing operation, overhead numbers for each of Coron’s
countermeasures and their possible combinations are given. The overheads are
surprisingly low showing the efficiency of the countermeasures. The minimum
protection against timing attacks (as well as simple power analysis attacks) can

Table 2. Comparison of unprotected and protected variants of an ECPM and a MEXP
in terms of Runtime, Cycles and Operations per second of our approach on a FPGA
with 210 MHz

ECC Countermeasures Runtime Cycles in
1000

Operations
per second

Runtime in
percent

Without countermeasures 3.95 ms 830 252 100 %
DAAA 5.22 ms 1097 191 132 %

Random projective
coordinates 4.54 ms 953 220 115 %

DAAA and random
projective coordinates 5.79 ms 1217 172 147 %

Point blinding 4.85 ms 1018 206 123 %
Point blinding and DAAA 6.09 ms 1279 164 154 %
Point blinding and random

projective coordinates 5.46 ms 1147 28 138 %

Point blinding, random
projective coordinates,

DAAA
6.67 ms 1401 149 169 %

RSA Countermeasures Runtime Cycles in
1000

Operations
per second

Runtime in
percent

Without countermeasures 1.77 ms 372 564 100 %
Square-And-Multiply-

Always 3.23 ms 679 309 182 %



246 C. Pöpper, O. Mischke, and T. Güneysu

be gained by using the DAAA countermeasure at the cost of 32% more compu-
tation time. Unifying the computation time is especially important since timing
attacks can even be performed by remote attackers over, e.g., ethernet/WiFi in
the vehicle-2-vehicle case. If a local adversary is assumed, additional protection
against differential power analysis can be gained by applying point blinding and
or randomized projective coordinates. Using all countermeasures at the same
time to maximize the desired security only leads to a 69% increase in computa-
tion time which is very reasonable considering the risks caused by unprotected
implementations.

4 Conclusion

In this work we have presented the design of an low-area highly reconfigurable
co-processor for asymmetric cryptography. The design is focused on side-channel
resistant executions of elliptic curve operations but can also be used to addition-
ally compute RSA exponentiations. Using less than 2000 slices on a Virtex-5
FPGA and only four hardware multipliers, the proposed core is able to com-
pute approximately 250 scalar point multiplications or double point multiplica-
tions. Because of the low area utilization, the core is inherently highly scalable
since additional cores can just be instantiated in parallel to achieve the desired
throughput.

We have also implemented a set of countermeasures achieving resistance against
various side-channel attacks. The constant execution time and fixed program flow
of the Double-and-Add-Always countermeasure thwarts not only timing attacks
but also SPA or SEMA attacks. Point blinding and the use of randomized projec-
tive coordinates are state-of-the-art countermeasures to protect against DPA and
DEMA attacks. We also analyzed the performance overhead of these countermea-
sures and found that even when using all countermeasures the core still delivers
a respectable throughput of 150 scalar point or double-point multiplications per
second. This overhead is quite low when compared to symmetric cryptography
where masking schemes to protect against differential power analysis attacks usu-
ally lead to a performance drop of factor 3x-10x.

Using both standardized NIST curves over elliptic curve prime fields and pro-
tecting the implementation against side-channel attacks makes this work highly
relevant from an industry point of view. The reason behind this is that the up-
coming Federal Information Processing Standard (FIPS) 140-3 (to accredited
cryptographic modules) will require mandatory side-channel testing for certain
security levels. The possibility to update the core by new microcode even when
deployed as ASIC allows to react to new attacks by e.g., updating countermea-
sures as well.

Acknowledgment. This project has been partially funded by the European
Union, Investing in your future, European Regional Development Fund.



A Fast and Secure Reconfigurable Asymmetric Crypto-Processor 247

References

1. Batina, L., Bruin-Muurling, G., Örs, S.B.: Flexible Hardware Design for RSA
and Elliptic Curve Cryptosystems. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS,
vol. 2964, pp. 250–263. Springer, Heidelberg (2004)

2. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 292–302. Springer, Heidelberg (1999)

3. Fan, J., Verbauwhede, I.: An Updated Survey on Secure ECC Implementations:
Attacks, Countermeasures and Cost. In: Naccache, D. (ed.) Cryphtography and
Security: From Theory to Applications. LNCS, vol. 6805, pp. 265–282. Springer,
Heidelberg (2012)

4. Güneysu, T., Paar, C.: Ultra High Performance ECC over NIST Primes on Com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

5. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48,
203–209 (1987)

6. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

7. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

8. Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of
Computation 44(170), 519–521 (1985)

9. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Commun. ACM 21(2), 120–126 (1978)

10. Sakiyama, K., Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Reconfig-
urable modular arithmetic logic unit supporting high-performance RSA and ECC
over GF(p). International Journal of Electronics, 501–514 (2007)

11. Varchola, M., Güneysu, T., Mischke, O.: MicroECC: A Lightweight Reconfigurable
Elliptic Curve Crypto-processor. In: Athanas, P.M., Becker, J., Cumplido, R. (eds.)
ReConFig, pp. 204–210. IEEE Computer Society (2011)

12. Vliegen, J., Mentens, N., Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Ver-
bauwhede, I.: A compact fpga-based architecture for elliptic curve cryptography
over prime fields. In: 2010 21st IEEE International Conference on Application-
specific Systems Architectures and Processors (ASAP), pp. 313–316 (2010)



ARABICA: A Reconfigurable Arithmetic

Block for ISA Customization

Ihsen Alouani1, Mazen A.R. Saghir2, and Smail Niar1

1 LAMIH, Université de Valenciennes et du Hainaut Cambrésis
{ihsen.alouani,smail.niar}@univ-valenciennes.fr

2 Electrical and Computer Engineering Program, Texas A&M University at Qatar
mazen.saghir@qatar.tamu.edu

Abstract. We propose a dynamically reconfigurable arithmetic block
architecture for customizing embedded application processor instruction
sets. Our architecture uses medium-grained arithmetic blocks and a dedi-
cated but reconfigurable interconnection network to support a wide range
of instruction-set extensions. Our experimental results demonstrate the
performance of our arithmetic block compared to a general-purpose pro-
cessor, and its area- and energy-efficiency compared to dedicated arith-
metic circuits.

1 Introduction

Mobile computing is increasing demands for powerful application processors that
can deliver high levels of performance and energy efficiency. To match the widest
range of applications domains, application processors include several dedicated
processing units to execute domain-specific machine instructions. We believe
such heterogeneity can be more efficiently supported using a dynamically recon-
figurable, datapath-oriented architecture and interconnection network to imple-
ment common computational structures (e.g. SIMD, VLIW, and dataflow) using
simple computational building blocks.

In this paper we present ARABICA (A Reconfigurable Arithmetic Block for
ISA CustomizAtion), a dynamically reconfigurable computational block that we
use to extend the instruction-set architecture of the Xilinx MicroBlaze soft pro-
cessor core [1]. The ARABICA block consists of a programmable network of
multiplexers and four, programmable, 18 × 25-bit DSP48E1 slices [2]. Repro-
gramming the multiplexers and DSP48E1 slices at run-time enables us to modify
the structural organization and functionality of the ARABICA block to support
a small but versatile set of instruction-set extensions.

Our paper is organized into four sections. In Section 2 we describe the ARA-
BICA architecture and show how it can be used to extend the instruction set of
the MicroBlaze processor. In Section 3 we present our experimental methodology
and results, and in Section 4 we present our conclusions.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 248–253, 2014.
c© Springer International Publishing Switzerland 2014



ARABICA: A Reconfigurable Arithmetic Block for ISA Customization 249

ARABICA

Programmable 
Interconnect

DSP48E1 
Computational 

Blocks

Output 
Buffer

Input 
Buffer

Address 
Register

Execution Block

Configuration Vector 
Store

Xilinx MicroBlaze 
Processor

FSL FSL

Custom Logic 
Blocks

Fig. 1. ARABICA System Architecture

2 The ARABICA Architecture

Figure 1 shows our system architecture. It consists of the ARABICA block
connected to a Xilinx MicroBlaze processor using a pair of fast simplex links
(FSLs) [3]. The ARABICA block extends the instruction set architecture of the
MicroBlaze processor using custom instructions exhibiting different formats such
as SIMD, VLIW, custom data-flow, and single-precision, floating-point.

The FSL channels connect the MicroBlaze processor to the ARABICA block.
While one channel transfers configuration commands and data operands to the
block, a second channel transfers results back to the processor. This coupling is
imposed by current Xilinx technology, which supports extensions to the MicroB-
laze microarchitecture through FSL-connected co-processors only [4].

The ARABICA block is configured by a single control word sent from the
MicroBlaze processor. The control word is stored in an address register and
used to index into a 78-bit-wide configuration vector store that functions like
the horizontal microcode stores of early computer systems [5]. The bit fields of
a configuration vector determine the block’s structural organization by enabling
the interconnection paths that organize slices into specific computational struc-
tures. They also determine its functionality by specifying the operations that
different DSP48E1 slices perform.

The ARABICA block currently supports four instruction-set extensions: four-
waySIMD exclusive-or (XOR4); signed integermultiply-accumulate (MACC); a data-
flow instruction that implements the integer multiply-add (MADD) function:
f = g · h + i; and two-way, single-precision, floating-point addition (SPFADD2),
which demonstrates the block’s support for both floating-point arithmetic and
VLIW-style ILP. These extensions are by no means exhaustive and are only used



250 I. Alouani, M.A.R. Saghir, and S. Niar

DSP0

DSP3

DSP2

DSP1

2's Com
plem

ent

Select and Shift Logic

N
orm

alize

Data 0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7

R0

R2
R1

R3

Fig. 2. ARABICA Execution Block

to demonstrate the versatility of the ARABICA architecture, which can be eas-
ily extended to support a wider set of instruction extensions. The block is fully
pipelined and operates at 150 MHz.

Because a FSL channel can only transfer one, 32-bit, data word at a time,
an input buffer is used to synchronize data operands. The number of operands
used by different instruction-set extensions varies depending on the nature of
the corresponding computation. For example, a XOR4 instruction uses eight,
32-bit operands, while a MACC instruction uses only two. The input buffer uses
a bank of shift registers to delay different operands by different amounts until
all operands become available. The operands can then be applied to the inputs
of the execution block simultaneously.

The execution block consists of four DSP48E1 slices [2], three dedicated
hardware blocks, and a programmable interconnection network of multiplex-
ers overlayed on the FPGA fabric. The functionality of a DSP48E1 slice can be
modified at run time by setting its control inputs appropriately. The dedicated
hardware blocks implement a set of operations currently not supported by the
DSP48E1 slices, but that are necessary for floating-point arithmetic. These in-
clude unsigned-to-signed number conversion, select and shift logic, and result
normalization. However, from a functional perspective, we assume each of these
blocks is a DSP48E1 slice configured to implement the corresponding operation.

The latency of a custom instruction depends on the structural organization
and delay paths along its computational blocks. To minimize the impact of
variable-latency instructions on the block’s clock cycle time, we pipelined the
inputs of its DSP48E1 slices and dedicated hardware blocks, which appear as
shaded rectangles in Figure 2. The block’s instructions vary in latency from
1 clock cycle for XOR4 to 4 clock cycles for SPFADD2. Additional cycles are also
used to transfer operands and results between the MicroBlaze processor and the
ARABICA block.



ARABICA: A Reconfigurable Arithmetic Block for ISA Customization 251

Once an instruction completes execution, its results are transferred back to
the MicroBlaze processor over the output FSL channel. Different ARABICA
instructions generate a different number of results with possibly different bit
widths. For example, the XOR4 instruction generates four, 32-bit results while the
SPFADD2 instruction generates two, 32-bit results. An output buffer is therefore
needed to temporarily store these results before they can be transferred to the
MicroBlaze processor over the FSL channel one, 32-bit, word at a time.

3 Experimental Methodology and Results

We developed three prototypes and compared them in terms of FPGA resource
utilization, execution performance, and power and energy consumption. Our
first prototype was a standalone MicroBlaze system configured with a single-
precision floating-point unit to implement the functionalities of the ARABICA
block’s instructions in software. Our second prototype was an ARABICA block
connected to a MicroBlaze processor, and our third prototype was a dedicated
circuit block (DCB) containing hardwired circuits for each of the custom in-
structions supported by the ARABICA block. The circuits could only be used
one at a time, and the DCB was connected to a MicroBlaze processor using the
same FSL interface as the ARABICA block.

We implemented the three prototypes in the Virtex-6 XC6VLX240T FPGA
found on the ML605 development board using the Xilinx Platform Studio (XPS)
13.4 tools. To measure FPGA resource utilization, we used the data reported
in the XPS post-place-and-route synthesis reports. We also used a Xilinx XPS
Timer/Counter IP core [6] to count the number of clock cycles consumed by dif-
ferent implementations of four, simple, benchmark programs that we executed
on the different prototypes. We also measured the average dynamic power con-
sumed by each prototype directly from the ML605 board [7,8]. We also estimated
static power consumption using the Xilinx XPower Analyzer tool [9]. Finally, we
computed energy consumption by multiplying the total power consumed by each
prototype by the corresponding execution time for each benchmark.

3.1 FPGA Resource Utilization

Figure 3 shows the FPGA resources used by the three prototypes. Using the
geometric mean of the resources used by each prototype, and normalizing the
results with respect to the MicroBlaze processor, our results show that, as stan-
dalone units, the ARABICA block and DCB use 61% and 23% fewer resources
than the MicroBlaze processor, respectively. Our results also show that the block
uses 49% fewer resources than the DCB.

3.2 Execution Performance

Figure 4 shows the number of clock cycles consumed by the MicroBlaze processor
and the ARABICA block for each of the benchmarks. These show that the block



252 I. Alouani, M.A.R. Saghir, and S. Niar

2076
3352

5
8

210

1604

4 5

864

2369

12

4

1

10

100

1000

10000

Slice Registers LUTs DSP48E1 BRAMs

MB

ARABICA

DCB

Fig. 3. FPGA Resource Utilization

3766 3666
5967

23010

325 253
503 623

1

10

100

1000

10000

100000

XOR4 MACC MADD SPFADD2

Cl
oc

k
Cy

cl
es

MB

ARABICA

Fig. 4. Execution Performance

runs 12–37× faster than the MicroBlaze processor. The block achieves the same
performance as the DCB because the latter uses the same MicroBlaze interface
and hardware implementation for each instruction.

3.3 Power and Energy Consumption

Figure 5 shows the static, dynamic, and total power consumed by the three pro-
totypes. The standalone ARABICA block consumes an average of 23% less static
power, 30% more dynamic power, and 7% less total power than the MicroBlaze
processor. It also consumes an average of 25% less static power, 4% less dynamic
power, and 17% less total power than the standalone DCB. These results are
mainly due to the block’s efficient use of arithmetic and logic resources. The
blocks’ lower total power translates directly to lower energy consumption; on
average it consumes 95% less energy than the MicroBlaze processor and 17%
less energy than the DCB.



ARABICA: A Reconfigurable Arithmetic Block for ISA Customization 253

3.42

1.44

4.86

2.65

1.87

4.52

3.52

1.95

5.47

0

1

2

3

4

5

6

Static Dynamic Total

W
at

ts MB

ARABICA

DCB

Fig. 5. Static, Dynamic, and Total Power Consumption

4 Conclusions

In this paper we proposed an architecture for a dynamically reconfigurable arith-
metic block that can be used to customize an ISA at run-time. Our experimental
results show that the ARABICA block achieves the same level of execution per-
formance as dedicated hardware circuits using 49% fewer resources and 17% less
power and energy. We believe these results can be further improved by elimi-
nating the area, latency, and power overhead of the current, FSL-based, host
processor interface. We are therefore working on integrating the block with the
datapath of a RISC processor. We are also expanding the architecture to support
a larger set of ISA extensions, and we are porting a compiler to generate ISA
extensions and switch between block configurations automatically.

References

1. Xilinx, MicroBlaze Processor Reference Guide, UG081 (v12.0) (March 1, 2011)
2. Xilinx, Virtex-6 FPGA DSP48E1 Slice User Guide, UG369 (v1.3) (February 14,

2011)
3. Xilinx, LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c), DS449 (April 19,

2010)
4. Xilinx, Connecting Customized IP to the MicroBlaze Soft Processor Using the Fast

Simplex Link (FSL) Channel, XAPP529 (v1.3) (May 12, 2004)
5. Landskov, D., et al.: Local Microcode Compaction Techniques. ACM Computing

Surveys 12(3), 261–294 (1980)
6. Xilinx, LogiCORE IP XPS Timer/Counter (v1.02a), DS573 (April 19, 2010)
7. Texas Instruments, USB Interface Adapter Evaluation Module User’s Guide, Liter-

ature Number: SLLU093 (August 2006)
8. Texas Instruments, Fusion Digital Power Software
9. Xilinx, Xilinx Power Estimator User Guide, UG440 (v2012.4/14.4) (December 18,

2012)



Built-in 3-Dimensional Hamming Multiple-Error

Correcting Scheme to Mitigate Radiation
Effects in SRAM-Based FPGAs

B. Chagun Basha1, Stanis�law J. Piestrak2, and Sébastien Pillement3

1 IETR, Université de Rennes 1
chagun.basheer@univ-nantes.fr

2 IJL, Université de Lorraine
stanislaw.piestrak@univ-lorraine.fr

3 IETR, Polytech’Nantes, LUNAM Université
sebastien.pillement@univ-nantes.fr

Abstract. SRAM-based FPGAs have been employed extensively in ma-
ny applications to implement adaptable systems whose functionalities
can be changed at runtime. Unfortunately, even in terrestrial applications
the SRAM configuration memory of FPGA devices is highly susceptible
to radiation which may cause not only single but also multiple errors
in physically adjacent memory cells, called Multiple Bit Upsets (MBUs).
This paper proposes a new built-in 3-Dimensional Hamming (3DH) error
correcting scheme to mitigate MBUs. The estimations of the probability
of occurrence of undetected multiple errors indicate significant improve-
ment of the error correction capabilities of the 3DH scheme proposed
here, compared to known 2DH and 1DH schemes. The other important
advantage of the new scheme is that it can provide faster reconfigura-
tion of configuration frames affected by multiple errors, because error
correction can be done using an internal bus alone.

1 Introduction

SRAM-based FPGAs are widely used in various application domains, due to
their great advantages such as high density, fast time-to-market, flexible pro-
grammability, and cost effectiveness. However, their more widespread use in
safely and mission critical applications is limited due to their high sensitivity to
radiation causing so called Single Event Effects (SEEs). Amongst various types
of SEEs, Single Event Upsets (SEUs) affecting SRAM-based memory cells are
the most common. If an SEU alters the content of a single memory bit, it is
called a Single Bit Upset (SBU). Unfortunately, besides SBUs a single parti-
cle strike can also alter the content of several memory cells (usually physically
adjacent), called Multiple Bit Upsets (MBUs), which are significantly more dif-
ficult to handle than SBUs [7]. The results presented in [8] indicate that the
percentage of MBUs continues to increase with each generation of FPGA de-
vices. Recent experimental results on Xilinx Kintex7 FPGAs indicate that 9.9%
of events cause multiple upsets within a frame (7.5% are double upsets); i.e., the
estimated SRAM MBU rate is 1.02 ·10−11, which corresponds to one MBU every

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 254–261, 2014.
c© Springer International Publishing Switzerland 2014



Built-in 3-Dimensional Hamming Multiple-Error Correcting Scheme 255

1515 s (about 25 min) [9]. Undoubtedly, the necessity of handling MBUs is of
growing importance. On one hand, fault mitigation can be achieved by modifying
the manufacturing process technology to produce radiation hardened FPGAs,
but such solutions are very expensive [6]. On the other hand, fault mitigation
techniques relying on using some fault-tolerance approaches are of growing in-
terest, because they can be applied at various levels of an FPGA-based system
without the need to change the standard manufacturing technology.

In this paper, we propose a new built-in 3-Dimensional Hamming (3DH) error
correcting scheme, whose goal is to deal with the effects of MBUs. Section 2
addresses the need for an alternative mitigation scheme based on the study of
existing soft error mitigation schemes and their limitations in recent SRAM-
based FPGA devices. Section 3 explains the proposed 3-Dimensional Hamming
code. Section 4 discusses how to choose the optimal size of the 3D-buffer to reduce
parity memory overhead, whereas Section 5 shows the reliability improvement of
the proposed scheme. Finally, Section 6 summaries achieved results and discusses
further extensions of the present work.

2 Related Work

Redundancy based techniques are effective against errors affecting a single mod-
ule, but they could be prone to MBUs and accumulated SEU-induced multiple
errors producing erroneous outputs when more than one copy of any redundant
module is affected by SEUs at the same time [6]. To avoid accumulation of SEU-
induced multiple errors, fault-tolerance techniques supported by some form of
configuration scrubbing can be the simplest way [3]. An alternative to scrubbing
is configuration readback which enables verification of the bitstream frame data
by performing a bit-by-bit comparison. However, the latter requires a mask and
a readback files, a size of each is equal to the size of the original bitstream used
to configure the FPGA, which is time-consuming and triplicates the memory
required to perform the readback and reconfiguration process [13].

Another way of verifying configuration frames and SEU detection relies on
using readback along with the Cyclic Redundancy Check (CRC). In this method,
the N -bit CRC value is recorded for each frame of the configuration data. During
readback of each frame, the CRC value is re-calculated and compared with the
expected CRC value, any disagreement activating an error detection signal, so
that the FPGA has to be reprogrammed. Because a data frame is the smallest
unit of configuration memory, it suffices to re-program only the erroneous data
frame, thanks to the possibility of the dynamic partial reconfiguration, [1, 3].
Nowadays, some of the high-end commercial FPGAs such as Virtex 5 and 6 series
from Xilinx [5] and Stratix V Devices from Altera [1] have this kind of dedicated
built-in readback and CRC logic to support faster detection and correction of
configuration bit upsets. However, almost all of known reconfiguration (partial)
based techniques require continuous access to an external storage device. Those
external memories also need to be protected against SEUs and reconfiguration
process involves an excessive delay in accessing the external storage device.



256 B.C. Basha, S.J. Piestrak, and S. Pillement

The scheme proposed here relies on using Hamming single-error-correcting/-
double-error-detecting (SEC/DED) codes, because of relatively low complexity
of supporting hardware compared to Low Density Parity Check (LDPC), turbo,
Viterbi, and Reed-Solomon (RS) codes [10]. Some of the recent works [2, 12]
propose built-in ECC-based methods of correcting configuration data which do
not rely on the external golden copy. The error detecting and correcting matrix
codes proposed in [2] combine the Hamming code and the parity code check bits
in a matrix format. Their limitation is that if there are more than two errors
in each code word, the matrix codes can correct them if and only if there are
only two errors in each row of the matrix and one in each column. To deal with
multiple upsets, the Hamming based 2D product code which performs Hamming
SEC/DED in two different axes (directions): row-wise and column-wise was in-
troduced in [12]. However, the latter scheme fails to correct multiple bit errors
if they occur in both directions. Compared to existing 1D and 2D schemes men-
tioned before, the number of non-correctable multiple errors will be significantly
reduced in the 3DH error correcting scheme proposed here.

3 New 3-Dimensional Hamming (3DH) Code

In this section, we will present the construction of the new 3DH code which can be
implemented provided that an FPGA architecture contains a 3D memory whose
buffer provides bitwise access to memory bits in all three directions (X, Y, and
Z) (in contrast to conventional 2D memory where only one dimensional access is
allowed). The latter allows to avoid excessive delay in multiple swapping of the
configuration data in Y and Z direction. Because our work focuses on modelling a
built-in configuration fault mitigation scheme, the design aspects of the 3D SRAM
memory are omitted, as they can be found e.g. in recent works [4,11] which discuss
both the design of 3D SRAMs and their performance improvements.

Fig. 1. General architecture that
implements the 3DH error cor-
recting scheme, proposed for
SRAM-based FPGAs configura-
tion memory protection

The basic idea of the proposed scheme is to apply a separate single bit error
correcting scheme to each of three axes of the 3D data, so that the maximal
number of erroneous bits could be corrected. The analysis of the hardware com-
plexity (logic gate count) and error correction performance (bit error rate (BER))
of various ECCs, presented in [12], clearly shows that Hamming codes require
the minimal hardware complexity compared to other ECCs. The general archi-
tecture that implements the proposed 3DH error correcting scheme to protect
the configuration memory of SRAM-based FPGA is shown in Fig. 1.



Built-in 3-Dimensional Hamming Multiple-Error Correcting Scheme 257

Fig. 2. Illustration of the 3D Hamming error correcting scheme: (a) Bit positions in
terms of 3D co-ordinates (X, Y, and Z) and random errors introduced in data frames;
(b) Error correction results after X-axis computation; (c) Error correction results after
Y-axis computation; (d) Error correction results after Z-axis computation

The principles of error correction of the proposed scheme will be illustrated
on a simple example of the 3 × 3 × 3 = 27 bit array, shown in Fig. 2. Fig. 2a
shows the arrangements of configuration bits in the 3D buffer, how bit positions
are enumerated in terms of coordinate values (X, Y, and Z), and some randomly
introduced multiple errors. In 27 data bits, we have introduced 13 errors which,
despite they constitute almost 50% of all bits, still all will be shown correctable.
Fig. 2b shows the results of the Hamming check bits generation along the X-axis,
which allows to correct all single bit errors along the X-axis. Once all these errors
are corrected, all errors present in the positions 110 and 020 of the frame Z0 as
well as those in the positions 102 and 012 of the frame Z2 are all corrected. The
same operation is performed along the Y and Z axes and its results are shown in
Figs 2c and 2d, respectively. Next, once all errors are corrected along the Y-axis,
the errors which were present in the positions 200 and 220 of the frame Z0 as
well as those in the positions 202, 212, and 222 of the frame Z2 are all corrected.
However, note that the errors in the frame Z1 are left uncorrected, because they
correspond to a so far non-correctable error pattern: multiple errors in adjacent
bit positions in adjacent rows and columns. Nevertheless, even this seemingly
non-correctable 4-tuple error pattern can be handled, as explained in Fig. 3.
Indeed, the same erroneous bits can be arranged in a correctable format, should
this error pattern be viewed along the Y-axis (the latter can be seen as nothing
else but a virtual breaking of the group of non-correctable errors and dispersing
them in Y-frames, so they could become correctable). Then, these errors can



258 B.C. Basha, S.J. Piestrak, and S. Pillement

eventually be corrected along the remaining 3rd axis Z. In summary, the sample
configuration data can be completely recovered even from such a large number
of errors. More complex error patterns can be corrected by performing the 3DH
correction iteratively and the actual number of iterations can be considered as
the performance parameter. There are also some cases for which the proposed
3DH scheme fails to recover the data, but the occurrence percentage of such
non-correctable error patterns is significantly smaller compared to other 1D and
2D Hamming error correcting schemes (detailed in Section 5).

Fig. 3. Dealing with seemingly
non-correctable error patterns: (a)
Non-correctable 4-tuple error pat-
tern in Z-frame; and (b) The same
error pattern which is correctable in
Y-frames

The proposed 3DH error correcting scheme of the FPGA’s configuration bit-
stream is summarised as the following algorithm.

Algorithm 1

Step 1) Read the N -bit configuration data frame through the serial readback
bus along with corresponding parity bits stored in a separate parity memory
array.

Step 2) Perform the Hamming SEC/DED coding on the N -bit data and store
the resulting data in the 3D N -bit buffer.

Step 3) Repeat Steps 1) and 2) until the buffer is full (for the 3D buffer
formatted with suitable coordinate values see Fig. 2a).

Step 4) Read one by one the words of the 3D buffer along the Y axis and per-
form Hamming SEC/DED coding on them (all single bit errors are corrected
during this operation).

Step 5) If no multiple bit error is detected, perform Step 4) until the 3D
buffer is fully scanned along the Y axis.

Step 6) If multiple bit error is detected, record the current Y coordinate value
and continue the same till the buffer is fully scanned along the Y axis.

Step 7) Take the recorded Y coordinate value and perform the Hamming
SEC/DED coding along the Z axis for that particular Y value.

Step 8) Repeat Step 7) for all previously recorded Y values.
Step 9) Once a full cycle of scanning of the 3D buffer along all three axes is

completed, proceed to Step 10) if additional iteration is required.
Step 10) Read the words one by one along the X axis and perform the Ham-

ming SEC/DED coding on them.
Step 11) Continue performing Hamming SEC/DED coding along the X axis

until the buffer is fully scanned in the X-direction, then proceed to Step 4).
Step 12) If any bit has been corrected, write back the corrected configuration

data through the programming bus (thanks to partial reconfiguration).
Step 13) Restart Step 1), for the next frame.



Built-in 3-Dimensional Hamming Multiple-Error Correcting Scheme 259

4 Determining the Optimal Size of the 3D Buffer and the
Parity Memory Overhead

The size of the configuration data frame varies depending on the family of FPGA
devices. Consequently, the number of check bits depends directly on the size of
the configuration data frame and the error protection scheme used, like CRC
and Frame ECC; for instance, in all Virtex 7 series FPGA devices: (i) all frames
have a fixed, identical length of 3,232 bits and (ii) a 13-bit Hamming code and
a 32-bit CRC with readback are used for error detection and correction [5, 14].

In the 3D buffer scheme proposed here, the overall parity memory overhead
is given by

P3D = (n1 · k2 + n2 · k1)n3 + n1 · n2 · k3, (1)

where n1, n2 and n3 are the corresponding sizes of X, Y, and Z co-ordinates,
respectively, of the 3D buffer and ki is the number of parity bits of the SEC/DED
Hamming code for ni data bits, i = 1, 2, 3. The total parity memory overhead of
the proposed scheme for a particular FPGA device is

TotalPOH = P3D · Total number of configuration frames in FPGA

Number of frames per 3D buffer
(2)

Because this overhead depends on the choice of the co-ordinate values of the
3D buffer, of particular interest is the so called perfect SEC/DED Hamming
code for which the condition n = 2k−1 − k holds, which protects the maximal
number of the data bits n for a given number of parity bits k. For instance, the
minimum of k = 6 parity bits suffice to protect n = 12 (minimum) as well as
n = 26 (maximum) data bits. Fig. 4 shows the parity memory overhead of 3DH
scheme for perfect Hamming codes (PH) and standard Hamming codes (SH) for
k ranging from 5 to 10. Clearly, choosing the sizes of the 3D buffer which meet
the perfect Hamming code condition can lead to significant overhead reduction.

Fig. 4. Comparison of the
parity memory overhead be-
tween 3D encodings using per-
fect Hamming codes (PH) and
standard Hamming codes (SH)
applied to n = 2j data bits

Unfortunately, the possibility of meeting the latter condition is hardly feasible
for existing devices, because it greatly depends on the frame size of the FPGA’s
configuration plan. Nevertheless, it is desirable to choose the co-ordinates (n1,
n2, and n3) of the 3D buffer as closely as possible to the perfect Hamming code
condition. As an example, we have estimated the best sizes (n1, n2, n3) of the
3D buffer for Virtex 7 series FPGAs by providing ‘Number of frames/buffer’
and ‘frame size (bits/frame)’ of the FPGA as the input parameters. Two best



260 B.C. Basha, S.J. Piestrak, and S. Pillement

arrangements of 64 configuration frames of 3232 bits in the 3D format found were
(32, 64, 101) and (16, 101, 128), where all permutations of (n1, n2, n3) would
obviously result in the same overheads equal respectively to 87488 and 108496
check bits. The first triple involves the minimum parity overhead equal to 42.2%,
which is significantly larger than to implement error handling mechanisms used
in the Virtex 7 series devices (the Frame ECC and CRC). Nevertheless, the
latter error correcting scheme cannot handle multiple bit errors as effectively as
the proposed scheme, because CRC must be supported by readback requiring
external circuitry to perform error correction.

5 Reliability Improvement

The reliability improvement of the proposed scheme is evaluated by comparing
the percentages of non-correctable error patterns in 1D, 2D, and 3D Hamming
code error correcting schemes. Some figures are listed in Table 1 for 3D data
cubes with n = 3, 4, and 5, where the occurrence percentage Nep is the ratio
of the total number of non-correctable error patterns to the entire sum of cor-
rectable and non-correctable error patterns for the given bit/word/window size
of the data. All possible error patterns were generated and the Nep values were
obtained using MATLAB R©. Unfortunately, estimating non-correctable patterns
for n ≥ 6 turned out computationally too complex.

Table 1. Comparison of non-correctable error
patterns of various Hamming schemes

1DH scheme 2DH scheme 3DH Scheme
n Tb Nep[%] Tb Nep[%] Tb Nep[%]

3 3 50.00 9 17.18 27 0.86
4 4 68.75 16 23.68 64 0.60
5 5 81.25 25 23.84 125 0.53
Tb: total number of protected bits;
Nep: percentage of non-correctable error
patterns

Table 1 reveals decreasing na-
ture of the percentage of non-
correctable error patterns with
the increase of the 3D buffer
size. Recall that the simple
Hamming SEC/DED scheme
is capable of correcting only
single-bit errors in a word and
that the percentage of non-
correctable error patterns in it
is very high. As for the 2D
Hamming code, any multiple
bit error in more than one
adjacent row/column is uncor-
rectable [12]. The data listed in Table 1 show that the percentage of such un-
correctable error patterns is relatively high. On one hand, Table 1 reveals that
the ratio of non-correctable error patterns in 1D and 2D schemes grows with the
increase of word and window size, respectively. On the other hand, it shows that
the ratio of non-correctable error patterns in the proposed 3D Hamming code
is not only very small (less than 1%) but also, unlike the other two schemes,
it tends to decrease with the increase of the window size. It suggests that the
multiple bit error correction efficiency of the proposed scheme is significantly
higher than of the other schemes.



Built-in 3-Dimensional Hamming Multiple-Error Correcting Scheme 261

6 Conclusion

Anewbuilt-in3-DimensionalHamming (3DH)multiplebit error-correcting scheme
proposed tomitigateMulti BitUpsets (MBUs) in configurationmemory of SRAM-
based FPGAs is presented. The major advantage of the new scheme is that it can
provide faster reconfiguration of frames affectedbymultiple errors.Thiswould con-
tribute to improving performance of FPGA-based systems, because error removal
(correction) can be done using internal bus alone, unlike most knownmethods that
rely on the external configuration back-up. Since the configuration readback is a
background process, the proposed 3DH error-correcting scheme operates without
stalling the whole system. Only the short reconfiguration of erroneous frames re-
sults in interruption of the system operation. Quantitative estimations show that
the percentage of non-correctable error patterns in the proposed 3DH scheme is
significantly smaller when compared to the other schemes, thus considerably im-
proving the reliability of the protected system. It seems that the error-correcting
scheme proposed here can be also extended to other SRAM-basedmemory devices
as well. In the future, we will evaluate the computation and hardware overhead in-
volved in the implementation of the proposed 3DH error-correcting scheme.

References

1. Altera Corp.: Stratix V Device Handbook. Device Interfaces and Integration. SEU
Mitigation for Stratix V Devices, vol. 1, ch. 9. Altera Corp., San Jose (June 2013)

2. Argyrides, C., et al.: Matrix codes for reliable and cost efficient memory chips.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(3), 420–428 (2011)

3. Carmichael, C., et al.: Correcting single-event upsets through Virtex partial con-
figuration. Appl. Note XAPP216 (v1.0) (June 1, 2000)

4. Hsu, C.-L., et al.: High-performance 3D-SRAM architecture design. In: Proc. IEEE
Asia Pacific Conf. Circuits and Systems, pp. 907–910 (2010)

5. Chapman, K.: SEU strategies for Virtex-5 devices. Appl. Note XAPP864 (v2.0)
(April 1, 2010)

6. Kastensmidt, F.L., et al.: Fault-Tolerance Techniques for SRAM-Based FPGAs.
Springer, Dordrecht (2006)

7. Quinn, H., et al.: Radiation-induced multi-bit upsets in SRAM-based FPGAs.
IEEE Trans. Nucl. Sci. 52(6), 2455–2461 (2005)

8. Quinn, H., et al.: Static proton and heavy ion testing of the Xilinx Virtex-5 device.
In: Proc. IEEE Workshop on Radiation Effects Data, Honolulu, HI, USA, July
23-27, pp. 177–184 (2007)

9. Takai, H., et al.: Soft error rate estimations of the Kintex-7 FPGA within the AT-
LAS Liquid Argon (LAr) Calorimeter. In: TWEPP 2013, Perugia, Italy, September
23-27 (2013)

10. Lin, S., Costello Jr., D.J.: Error Control Coding: Fundamentals and Applications,
2nd edn. Prentice-Hall, Englewood Cliffs (2004)

11. Pathak, M., et al.: Reliability and performance-aware 3D SRAM design. In: Proc.
IEEE 54th Int. Midwest Symp. Circuits and Systems, pp. 1–4 (2011)

12. Park, S.P., et al.: Soft-error-resilient FPGAs using built-in 2-D Hamming product
code. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 248–256 (2012)

13. Xilinx, Inc.: Virtex FPGA series configuration and readback. Appl. Note XAPP138
(March 2006)

14. Xilinx, Inc.: 7 Series FPGAs Configuration: User Guide (October 22, 2013)



Adapting Processor Grain via Reconfiguration

Jecel Mattos de Assumpção Jr.1, Merik Voswinkel2, and Eduardo Marques1

1 Universidade de São Paulo
Departamento de Sistemas de Computação

São Carlos, Brasil
{jecel,emarques}@icmc.usp.br

2 HH Research Institute
Wehe-Den Hoorn,The Netherlands

merik@morphle.org

Abstract. Squeak is an open source Smalltalk-80 implementation cre-
ated to implement high level code that is used as glue between optimized,
low level ”plug-ins” written in C or a restricted subset of Smalltalk and
translated to C. SiliconSqueak is a hardware implementation with coarse
grained processors for the high level code and fine grained “ALU Ma-
trix” co-processors for the plug-ins. When implemented in an FPGA, a
given area can either be used for a co-processor or for two more high
level cores. The ideal mix varies at runtime as applications go through
different phases, so the solution presented in this paper is to reconfigure
the system as needed.

Keywords: Reconfiguration, Heterogeneous cores, Smalltalk.

1 Introduction

One of the defining features of a programming language is its type system. In a
strongly typed language, like Haskell, there is a strict control of which kinds of
objects can be used with a given operation while languages like Forth or assembly
are untyped and this control is up to the programmer. Many popular languages,
such as those derived from C or Pascal have a relatively strong type system
with features like type casts and untagged unions to weaken the system under
programmer control. While some programmers use the terms “strong typing”
and “weak typing” for languages that associate type information with source text
variables and runtime objects respectively, we will use the more traditional terms
“static typing” and “dynamic typing” in order not to mix what are independent
concepts.

Statically typed languages can get good results from relatively simple com-
pilers while dynamically typed languages have traditionally been interpreted,
which resulted in a significant performance gap. Since type declarations can be
an obstacle to exploring different design options, a traditional software develop-
ment method has been to write the application initially in a dynamic language
(Lisp, for example) and when it is stable to completely rewrite it in a static
language (like Fortran). This is even the case for embedded applications where

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 262–267, 2014.
c© Springer International Publishing Switzerland 2014



Adapting Processor Grain via Reconfiguration 263

the initial algorithms might be developed in something like Matlab running on a
desktop machine and the final application is a rewrite in C to run on the target
machine.

This popular separation of dynamic languages for prototyping and static
languages for production is being challenged by two trends: faster hardware
via “Moore’s Law” can make the performance of even interpreters acceptable
for many applications and sophisticated compilation technologies developed for
dynamic languages in the 1990s[3] are being increasingly adopted. Section 2
explains how Squeak Smalltalk[4] deals with performance issues and how this
reflects on the design of the SiliconSqueak hardware. Section 3 is about the use
of runtime reconfiguration of a FPGA implementation of this hardware to match
the processing granularity as the application requirements change. Projects that
have some features in common with the one described here are mentioned in
section 4 and finally section 5 describe the next steps for this project and the
results that have been obtained so far.

2 Squeak and SiliconSqueak

One problem with advanced compilation systems is that it takes significant effort
to port them to different platforms and running on as many machines as possible
was a major goal of the Squeak project created at Apple in 1996 [4]. It was
decided that a good interpreter would meet the needs of the project given modern
hardware and the fact that in multimedia applications more time is spent in
library functions like codecs than inside the language itself. Java was considered
as an option for the base language so that the small team could focus on the
application while external groups took care of the platform but the development
tools were considered too primitive compared with what Smalltalk-80 had nearly
20 years earlier back at Xerox PARC. Since Apple had a very liberal license for
those tools from Xerox, they were selected as the starting point for an open
source project with the idea that if development were easy enough, external
groups could take care of the porting to machines besides the Mac.

Smalltalk-80 is implemented as a virtual machine which has to be simulated
on different computers either with dynamic compilation or with an interpreter.
Traditional interpreters were implemented in languages such as C, but the origi-
nal book explaining the language[2] included a complete reference design written
in a restricted form of Smalltalk without any object creation other than Integers
and with no polymorphism. This made it easy for a programmer to rewrite in
Pascal, C or even assembly language but it also made it possible to create a sim-
ple tool to translate it (the Squeak group called this Smalltalk subset “Slang”
although there are a few actual programming languages with that name) auto-
matically to C. Though Slang doesn’t use all of Smalltalk-80’s features, it can
run on a normal Smalltalk implementation and make use of all the advanced de-
velopment tools. Once the functionality has been fully verified, the code can be
translated to C and then compiled for higher performance. This can be done not
only for the main interpreter, but also for “plug-ins” like the codecs mentioned



264 J.M. de Assumpção Jr., M. Voswinkel, and E. Marques

ALU Matrix
from
datapath

to
datapath

from ring network

to ring network

8 bit ALU

64 sequences
of instructions

op rdest ldest src1 src2

64 registers

to 4 neighbors

Fig. 1. 64 ALU Matrix

earlier. Or existing libraries written in other languages can be used, whichever
is more convenient.

As planned, Squeak was ported by independent individuals to all the major
desktop platforms within weeks of the initial release and to dozens of less known
machines over the next couple of years. It is easy to make Squeak run on any soft
core with a C compiler, such as the Nios II or the Leon3, to have it available in a
FPGA-based reconfigurable system, but a dedicated SiliconSqueak core can be a
more efficient option. The goal is to eliminate as much overhead as possible from
the interpreter while at the same time including features that make it attractive
as a target for adaptive compilation (a part of the project which is outside the
scope of this paper, but note that other dynamic compilers have been developed
for Squeak in the past and there is currently a very active project called Cog).

Most modern FPGAs are large enough that two or more SiliconSqueak cores
can be used at the same time to implement course grained parallelism. This
can speed up many kinds of applications, but the plug-ins written in Slang
and in C don’t benefit from this. So an optional co-processor, called the “ALU
Matrix” and shown in figure 1, was developed specifically for that part of the
code. The example shows an 8 by 8 matrix of 8 bit ALUs, each with 64 8
bit registers, but each of these parameters can be changed with no impact on
the main SiliconSqueak core (though code for the co-processor would have to be
recompiled). Besides its local registers, each ALU has its own programmemory so
that when the main core asks the ALUMatrix to execute sequence 5, for example,
the exact operation can be different for each ALU making this fine grained
architecture a mix of SIMD and MIMD features. It also combines computation
and communication in that the instruction names two destination registers: one
for the output of this ALU and one for the output of a selected neighbor.

3 Scheduling and Reconfiguration

Blue blocks in figure 2 represent generic SiliconSqueak cores, green depicts a
64 ALU matrix including the adjacent SiliconSqueak core to control it, the or-
ange block is a 4 x 8 Gb/s networking unit to interconnect with neighboring
input/output unit or FPGAs and ASIC processors in a mesh with point to point



Adapting Processor Grain via Reconfiguration 265

1.4 x (time to reconfigure + time to execute in new configuration ) <

time to execute in current configuration

switch when:

Fig. 2. FPGA reconfiguration at work

links, yellow is the memory controller properly balanced with the optimal num-
ber of cores to avoid bottlenecks to dynamic random access memory (DRAM).
Interconnecting of cores, matrices and units is accomplished by a ring network.

With an initial configuration as in the left of figure 2, switching to the option
in the middle would replace some of the existing cores both in terms of FPGA
area and as an element in the ring networks. If that particular processor was
exclusively executing code that will now be done by hardware, there will be a
gain in performance. If, on the other hand, it was also executing unrelated code
that must now be moved to the other cores then there will be a performance
loss no matter how much faster the hardware is than the optimized code. The
scheduler should group related code under heavy loads to make it simpler to
detect the situation where a software block has one or more cores dedicated to
it and so is a candidate for a hardware replacement.

Given that an FPGA that is being reconfigured does not execute anything,
the scheduler should deal with time frames N times longer than this inactive
period. Besides the reconfiguration time itself, there is the time needed to save
all current state to external memory and then the time to restore it (adapting
to the new configuration). Since a single core with an ALU Matrix takes up the
same FPGA resources as three simple cores, any code which doesn’t make use
of the co-processor will run roughly three times slower. Any code that does take
advantage of the ALU Matrix (code generated by the new compiler), on the
other hand, will run X times faster.

N > 1.4× (1 + (1 − α)× 3N + α× N

X
) (1)

α >
( N
1.4 − 3N − 1)

(NX − 3N)
(2)

Where α is the percent of time that code that could use the co-processor takes
on the configuration with three simple cores. To avoid needlessly switching back
and forth between configurations, a factor of 1.4 adds some hysteresis to the
system. Equation 1 shows under what conditions it is profitable to replace three
simple cores with a single one having a co-processor. Equation 2 solves for α
given X (notice that N

X − 3N < 0 given that X > 1). So if X = 6 (code becomes



266 J.M. de Assumpção Jr., M. Voswinkel, and E. Marques

six times faster with the ALU Matrix) and N = 10 (the scheduling time frame
is ten times the reconfiguration time) then α > 84%.

N > 1.4× (1 + (1− β)× N

3
+ β ×NX) (3)

β <
( N
1.4 − N

3 − 1)

(NX − N
3 )

(4)

In equation 3 we have the condition where it is a good idea to replace a
SiliconSqueak core including an ALU Matrix with three simple cores. Here β is
the percent of the time in which code that uses the ALU Matrix executes in the
original configuration (this is different, but related to, α). Given the same X = 6
and N = 10, then β < 5%.

4 Related Works

Designing processors optimized for Java, such as JOP[6], are becoming more
popular, as are extensions to conventional processors like the two Jazelle options
for the ARM. The Lisp Machines of the 1970s to 1990s are the best known lan-
guage specific architectures, but there were many designs optimized for Smalltalk
including the first machine based on FPGAs, the Manchester Mushroom[8].

Among the many systems that use runtime reconfiguration to reallocate FPGA
resources, the BORPH operating system[7] is interesting in its analogy to mem-
ory allocation in Unix systems. The Virtex 4 FPGAs used in the initial exper-
iments in this project allow partial reconfiguration which has the advantage of
not disrupting the part of the design that stays the same from one configuration
to the next. This isn’t being used yet in part because of the complexity of the
tools required and in part because the plan is to build machines with multiple
FPGAs which allows partial configuration at the system level.

Reconfigurable co-processors were used in projects like ADRES[1] or in NEC’s
IMAPCAR2 chip[5], where groups of four can be used as either a VLIW MIMD
node or a SIMD machine.

5 Initial Results and Future Works

The ML401 development board from Xilinx is based on the Virtex 4 LX 25 FPGA
and offers several configuration options. One of them is the SystemACE chip, also
from Xilinx, which can load a configuration file from a Compact Flash memory
card into the FPGA through its JTAG port. The SystemACE understands the
FAT file system and can select one of eight different configuration files from
subdirectories as indicated by a configuration file at the root of the memory
card. Normally switches at three pins of the SystemACE device will select which
file to load, but it is possible to override this choice by placing a value in a
configuration register using the microcontroller port. In the ML401 board this



Adapting Processor Grain via Reconfiguration 267

port is connected to the Virtex 4 so a design in the FPGA can replace itself with
a different one on demand.

The files to be loaded into the FPGA are all the same size (1MB) regardless
of the specific design, so the time to reconfigure the Virtex 4 chip has been
measured at 1.4 seconds (a transfer rate of 732KB per second, which is limited
by the JTAG port but is not too far from what the memory card can achieve).

A simple benchmark was developed to draw fractal images with a computa-
tional load that varies in a 40 second cycles (so that it is worth using a config-
uration for at least 14 seconds, which is 10 times longer than the configuration
time and there is no need to save and restore state for this simple program). This
shows a limitation of the scheduler described in this paper: the model includes a
constant speedup factor which can be very different from the actual speedup. In
the phase of the project focused on adaptive compilation this constant should
be replaced by runtime measurements.

A more realistic set of benchmarks will be implemented once the port of the
Squeak interpreter is finished.

In conclusion: though all systems contain a mix of computational tasks with
different levels of parallelism, the design of Squeak makes this explicit and the
hardware design of SiliconSqueak reflects this by separating the course grained
parallelism of the main cores from the fine grained parallelism of the ALUMatrix
co-processors. On a reconfigurable platform it is possible to change the ratio of
these resources at runtime to adapt to varying computing needs.

References

1. Bouwens, F.J., Berekovic, M., Kanstein, A., Gaydadjiev, G.N.: Architectural Ex-
ploration of the ADRES Coarse-Grained Reconfigurable Array. In: Proceedings of
International Workshop on Applied Reconfigurable Computing, pp. 1–13 (2007)

2. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston (1983)

3. Hölzle, U.: Adaptive optimization for Self: reconciling high performance with ex-
ploratory programming. Ph.D. thesis, Stanford University (1994)

4. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The
story of Squeak, A practical Smalltalk written in itself. In: Proceedings OOPSLA
1997, ACM SIGPLAN Notices, pp. 318–326. ACM Press (1997)

5. Kyo, S., Koga, T., Hanno, L., Nomoto, S., Okazaki, S.: A low-cost mixed-mode
parallel processor architecture for embedded systems. In: Proceedings of the 21st
Annual International Conference on Supercomputing - ICS 2007, p. 253. ACM Press,
New York (2007), http://portal.acm.org/citation.cfm?doid=1274971.1275006

6. Schoeberl, M.: A Java Processor Architecture for Embedded Real-Time Systems.
Journal of Systems Architecture (2007), doi:10.101

7. So, H.K.H.: BORPH: An Operating System for FPGA-Based Reconfigurable Com-
puters. Ph.D. thesis, Engineering – Electrical and Computer Sciences, University of
California, Berkeley (2007)

8. Williams, I.W.: Using FPGAs to Prototype New Computer Architectures. In:
Moore, W.R., Luk, W. (eds.) FPGAs, ch. 6.8, pp. 373–382. Abingdon EE & CS
Books (1991)

http://portal.acm.org/citation.cfm?doid=1274971.1275006


Instruction Set Optimization

for Application Specific Processors

Max Ferger and Michael Hübner

Embedded Systems of the Information Technology (ESIT)
Ruhr-University Bochum (RUB), Germany

{max.ferger,michael.huebner}@ruhr-uni-bochum.de
www.esit.ruhr-uni-bochum.de

Abstract. Tools and services are available that modify the hardware
description, compilers, and tools to build application specific instruction-
set architectures (ASIPs).

This work introduces an automatic approach in identifying ”hot”
code idioms: find and count recurring tuples of assembly instructions
(N-grams) in a simulator trace. Our analysis gives a short list of fre-
quent combinations of instructions, even across control-flow boundaries.
These candidates are most promising to optimize.

On the example of an implementation of the Smith-Waterman-
Algorithm for String-Alignment in C, running on a PD RISC by Synop-
sys Processor Designer, the hot part of the assembly code is identified
and manually replaced by an intrinsic function of the same behavior.
Results include the growth in logic of the processor, speed-up of the pro-
gram, and reduction in energy consumption, due to the first round of
applying the proposed technique.

Keywords: Adaptive Processors, ASIP, ASIP Optimization, Instruc-
tion Set, Instruction Sequences, Instruction N-Grams, Control Flow, In-
trinsic Functions.

1 Introduction

The analysis of compiled application code in order to achieve a reduction of the
code size and a speedup of the application is well known and documented in many
publications like [12]. Dutt et al.[6] specifically target the reduction of the energy
consumption of RISC processors by optimizing the instruction set architecture.
This topic is of high importance in embedded systems, especially when energy
is very limited in ultra low power and mobile applications. In these domains,
not only the well-known methods of energy saving (clock scaling, clock gating,
voltage scaling, et cetera) are possible ways to extend the time of operation
of an embedded system. Many more options, especially within the processors
data- and control path offer a variety of possibilities to optimize the hardware/
software architecture. However, these methods are often not easy to apply, since
a deep knowledge about the processor internal mechanisms and the compiler

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 268–274, 2014.
c© Springer International Publishing Switzerland 2014

www.esit.ruhr-uni-bochum.de


Instruction Set Optimization for Application Specific Processors 269

is required to explore a large design space for an optimization. Furthermore, if
the chosen optimization methods involve graph theory, problems of exponential
complexity have to be addressed. Galuzzi and Bertels[7] give a survey on that
topic.

This work includes the application’s control flow graph in the analysis, as
opposed to staying between basic block boundaries while analyzing the trace of
a compiled application. The result of this analysis is the realization of a special
instruction which leads to a reduction of cycles required for the entire program.
If automated, these could be used in conjunction with reconfigurable technology,
perhaps complementing works by others[1][14][4][5], if the amortization of just-
in-time reconfiguration is achievable, as discussed by Grad and Plessl[8]. The
introduction of a special instruction offers the advantage of no communication
overhead as opposed to building an external accelerator, helping predictability
in this early work.

In the paper, the analysis of the program code and integration into a real pro-
cessor presents first results about cycle count, power consumption and speedup.

The remaining paper is organized as follows: Section 2 gives a short overview of
techniques that influence this work. Section 3 brings the concept and realization.
The evaluation of this first, manual experiment can be found in section 4. The
paper is closed in section 5 with a conclusion, and an outlook to future work in
section 6.

2 State of the Art

Peephole Optimization was introduced by Mc Keeman[11] and is performed on
object code, as well as on intermediate code[13]. It was defined by Tanenbaum as
follows: “A peephole optimization is one that replaces a sequence of consecutive
instructions by a semantically equivalent but more efficient sequence.”[13] The
goal is to apply optimizations on the instruction level that are beneficial per sé,
which can be determined at compile time. When put together with peephole-
based optimizations, ”Profiling information can result in small, but notable im-
provements in performance.”[2]

The Language for Instruction Set Architectures (LISA)[9] allows to quickly
describe a processor architecture based on its resources and available commands.
A compiler can be re-targeted accordingly with the Synopsys Processor Designer
(PD).1 Tools exist to generate the necessary libraries, binary tools, debugger,
and instruction set simulator. It is possible to generate a Register-Transfer Level
(RTL) implementation of the processor in VHDL or Verilog.

3 Concept and Realization

The current state of a processor architecture is taken as a reference point for the
optimization. As the development is driven by a specific program2, this program

1 Formerly known as “CoSy Express” by CoWare.
2 We speak of only one application, but consider a merge of several programs.



270 M. Ferger and M. Hübner

is compiled into assembly and executed on the simulator, which logs all executed
instructions in a simulator trace. If necessary, exemplary input is fed into the
program.

The trace either contains or is annotated with the mnemonics of the assembly
instructions, which defines the order of the executed commands and their behav-
ioral functionality. This trace is then seen as a phrase of words in the assembly
language, for example ...; ADD; CMPLE; BCC243; NOP4 ; ...

As the string of executed statements streams in, every sub-string up to a
certain length is registered and counted in a prefix-tree. At depth N, this tree
contains all sequences of length N, also called N-grams.

In a second phase, redundant information is removed. Due to the fact that
every N-gram contains two (N−1)-grams, three (N−2)-grams and so on, overlap-
ping sub-sequences need not be counted towards good optimization candidates,
iff they don’t occur on their own.

The result is a list of candidate N-grams, sorted by their execution frequency,
which is inspected by the system architect. Suppose some of these high-rated N-
grams are transformed into special instructions, and suppose every occurrence
in the re-compiled program gets replaced, the performance gain is highly pre-
dictable by multiplying the reduction in cycles with the respective frequency.
This fact might be mitigated by a poor choice of input data while tracing the
program.

This analysis can be mapped back onto a control flow graph of basic blocks of
assembly instructions. In the presence of a-cyclic control flow (consisting only of
If-Then, If-Then-Else and short-circuit-evaluation schemes), the combination
of “parallel” sequences that cross basic block boundaries is important.

So far, data-flow dependencies have been disregarded, because we search for
optimization candidates. Obeying dependencies is work for the compiler and puts
in many constraints that should not narrow down our search in the first place.

The Synopsys Processor Designer (PD) framework used for the tests comes
with a “starter kit” processor, the PD RISC which has a 5-stage pipeline, but
no other instruction-level parallelism. The produced assembly is therefore very
linear and orderly, when compared to the C source code.

We used an example implementation of the Smith-Waterman Algorithm for
the alignment of sequences5, which is based on dynamic programming. In its in-
nermost loop, the maximum of three values and zero is calculated, as highlighted
in the middle of Fig. 1.Determining this maximum involves three If-Then-Else-
constructs: one within each branch of an outer If-Then-Else.

A special 32-bit instruction PMAX was built, that supports three non-zero
operands via registers. The forth operand, zero, is implicit.

All tools, libraries and Register-Transfer Level (RTL) description are
re-generated with the tools by Synopsys.

3 Branch/Jump on Compare/Carry Condition.
4 The PD RISC can operate with one cycle delay-slot-filling[10].
5 This algorithm might be seen as classic in Bio-Informatics.



Instruction Set Optimization for Application Specific Processors 271

Because of the easily and far abstracted nature of this instruction, all its
potential parallelism can influence hardware generation. Unfortunately, we were
unable to identify the corresponding parts of the RTL logic.

To use the special instruction, an intrinsic function was necessary as it was
not possible (yet) to write a matcher pattern for the elaborated control flow
scenario.6 The C code is thus modified in two places within the inner loop: once
at the place of discovery, plus another occurrence of a maximum of two values
and zero. The new Control Flow Graph (CFG) is depicted in Fig. 2.

Both programs are run on their special architectures and compared as illus-
trated in Fig. 3, Fig. 4 and Fig. 5.

4 Evaluation

The gain in execution time of the inner loop is as expected: where the origi-
nal program uses 44.25 cycles in average, the optimized version with the PMAX

instruction iterates every 33 cycles, saving −25.4%. Or, otherwise said, the op-
timized loop runs up to 1.33x faster by comparison of its statically scheduled
assembly.7

Under the assumption that an estimation is feasibly, how many cycles any
new instruction might be pipelined into8 to not hurt the processor’s maximum
frequency, the gain in performance can be calculated without feedback from logic
synthesis.

The original PD RISC occupies 53′625 cells as reported by Synopsys De-
sign Compiler with the power-saving defaults given by PD, on a Default 90nm
process by UMC. The added PMAX instruction costs +12.25% more chip area
(60′195 cells).

Both variants of the core could be synthezised for 25MHz with a slack of
21.11ns without, respective 22.08ns with PMAX. Apparently, the newly introduced
instruction had no negative impact on the length of the processor’s critical path.

So far, clock-gating is not used to switch off the special instruction and the
average amount of power consumed by the processor growths by +4.85%, from
0.1876mW to 0.1967mW. Every iteration of the inner loop thus uses 332nWs in
the original, and only 257nWs when using PMAX at 25MHz. This potentially saves
−22.6% energy, when the program processes very large inputs, even without
lowering the voltage, or adjusting the clock.

As our method involves manually identifying and coding a new instruction,
the explored design space is still very small and justifies no deeper analysis of
trade-offs. On the other hand an intelligent system architect can skip the gap
between a small example input to very big ones by justified extrapolation.

6 This ought to be feasible through a specialized module within the underlying “CoSy”
compiler framework by ACE Associated Compiler Experts b.v., Amsterdam.

7 The overall speedup was found to be 1.088x (from 9′389 downto 8′628 cycles), on a
small input size that leads to 72 iterations of the inner loop.

8 This is only 1 cycle in case of PMAX.



272 M. Ferger and M. Hübner

Fig. 1. Control Flow Graph of Original Assembly

Fig. 2. Control Flow Graph of Optimized Assembly

Fig. 3. Growth in Chip Area

Fig. 4. Power Consumption

Fig. 5. Gain in Execution Time



Instruction Set Optimization for Application Specific Processors 273

5 Conclusion

Widening trace information up to N-grams that occur frequently and filtering
these by combinatorial and statistical means gives a system architect a lever
on a very huge design space exploration by looking a little further than one
instruction at a time. If any program code has more than one hot spot, their
similarities have combined weight onto the optimization process.

By disregarding basic block boundaries in this statistical approach, it is pos-
sible to identify code idioms that span control flow patterns and quickly come
up with larger blocks to optimize. Although the amount of produced logic might
be arguably high, the gain in performance results in lower energy consumption.

6 Outlook

So far, we applied our technique on the level of assembly instructions. As Tanen-
baum believes[13], optimizations on the Intermediate Representation (IR) within
a compiler are more beneficial in most cases: the semantics of the program are
still clear and side-effects of instructions are known by construction. Also, more
powerful analysis techniques are available. Thus it would make sense to map our
combined profiling information back onto the IR and deduce new instruction
candidates for the architecture on a basis of expression (sub-)trees.

Another problem to solve will be the generation of suitable entry and exit
boundaries to regions of code. We are working on an approach of combined
control and data flow analysis on the IR level.

Depending on the style of the IR, efficient automatic synthesis of the required
additional logic might be feasible.

On the road to achieve these semi-automatic and automatic optimizations, a
much larger variety of programs and architectures should be investigated. Such
automation could also be used to define a Reconfigurable Functional Unit (RFU)
by terms of Barat and Lauwereins survey[3]. Energy measurements should be pre-
cised with techniques like clock-gating, clock-adjustment and voltage lowering.

References

1. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: A Transparent Dynamic Opti-
mization System. ACM SIGPLAN Notices 35(5), 1–12 (2000),
http://portal.acm.org/citation.cfm?doid=358438.349303,
http://dl.acm.org/citation.cfm?id=358438.349303

2. Bansal, S.: Peephole Superoptimization. ProQuest (2008),
http://books.google.com/books?id=DITv8TZSBbEC&pgis=1

3. Barat, F., Lauwereins, R.: Reconfigurable Instruction Set Processors: A Survey,
p. 168 (June 2000), http://dl.acm.org/citation.cfm?id=827261.828228

4. Bispo, J., Paulino, N., Cardoso, J.M.P., Ferreira, J.C.: Transparent Trace-Based
Binary Acceleration for Reconfigurable HW/SW Systems. IEEE Transactions on
Industrial Informatics 9(3), 1625–1634 (2013),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6392266

http://portal.acm.org/citation.cfm?doid=358438.349303
 http://dl.acm.org/citation.cfm?id=358438.349303
http://books.google.com/books?id=DITv8TZSBbEC&pgis=1
http://dl.acm.org/citation.cfm?id=827261.828228
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6392266


274 M. Ferger and M. Hübner

5. Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner, K.: An Archi-
tecture Framework for Transparent Instruction Set Customization in Embedded
Processors. ACM SIGARCH Computer Architecture News 33(2), 272–283
(2005), http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1431563,
http://dl.acm.org/citation.cfm?id=1080695.1069993 ,
http://portal.acm.org/citation.cfm?doid=1080695.1069993,
http://dx.doi.org/10.1109/ISCA.2005.9

6. Dutt, N.D., Lee, J.E., Choi, K.: Energy-efficient instruction set synthesis for
application-specific processors. In: Proceedings of the 2003 International Sympo-
sium onLowPower Electronics andDesign, ISLPED2003, pp. 330–333. ACM(2003),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1231889,
http://home.unist.ac.kr/professor/jlee/public/

papers/03islped-isa-energy.pdf

7. Galuzzi, C., Bertels, K.: The instruction-set extension problem: A survey. In:
Woods, R., Compton, K., Bouganis, C., Diniz, P.C. (eds.) ARC 2008. LNCS,
vol. 4943, pp. 209–220. Springer, Heidelberg (2008),
http://link.springer.com/chapter/10.1007/978-3-540-78610-8_21

8. Grad, M., Plessl, C.: On the Feasibility and Limitations of Just-in-
Time Instruction Set Extension for FPGA-Based Reconfigurable Proces-
sors. International Journal of Reconfigurable Computing 2012, 1–21 (2012),
http://dl.acm.org/citation.cfm?id=2213807.2213808

9. Hoffmann, A., Meyr, H., Leupers, R.: Architecture Exploration for Embedded Pro-
cessors with LISA. Springer US, Boston (2002),
http://link.springer.com/10.1007/978-1-4757-4538-2

10. McFarling, S., Hennesey, J.: Reducing the cost of branches. ACM SIGARCH Com-
puter Architecture News 14(2), 396–403 (1986),
http://dl.acm.org/citation.cfm?id=17407.17402

11. McKeeman, W.M.: Peephole optimization. Communications of the ACM 8(7),
443–444 (1965), http://dl.acm.org/citation.cfm?id=364995.365000

12. Med, M., Krall, A.: Instruction Set Encoding Optimization for Code Size
Reduction. In: 2007 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling and Simulation, pp. 9–17. IEEE (July 2007),
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4285728,
http://www.cse.unt.edu/~sweany/CSCE6650/HANDOUTS/29.pdf

13. Tanenbaum, A.S., van Staveren, H., Stevenson, J.W.: Using Peephole Optimization
on Intermediate Code. ACM Transactions on Programming Languages and Sys-
tems 4(1), 21–36 (1982), http://dl.acm.org/citation.cfm?id=357153.357155

14. Vahid, F., Stitt, G., Lysecky, R.: Warp Processing: Dynamic Translation of
Binaries to FPGA Circuits. Computer 41(7), 40–46 (2008),
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4563878,
http://www.inf.pucrs.br/~moraes/prototip/artigos/warp_processing.pdf

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1431563
 http://dl.acm.org/citation.cfm?id=1080695.1069993
http://portal.acm.org/citation.cfm?doid=1080695.1069993
http://dx.doi.org/10.1109/ISCA.2005.9
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1231889
http://home.unist.ac.kr/professor/jlee/public/papers/03islped-isa-energy.pdf
http://home.unist.ac.kr/professor/jlee/public/papers/03islped-isa-energy.pdf
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-540-78610-8_21
http://dl.acm.org/citation.cfm?id=2213807.2213808
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-1-4757-4538-2
http://dl.acm.org/citation.cfm?id=17407.17402
http://dl.acm.org/citation.cfm?id=364995.365000
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4285728
http://www.cse.unt.edu/~sweany/CSCE6650/HANDOUTS/29.pdf
http://dl.acm.org/citation.cfm?id=357153.357155
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4563878
http://www.inf.pucrs.br/~moraes/prototip/artigos/warp_processing.pdf


A Dataflow Inspired Programming Paradigm

for Coarse-Grained Reconfigurable Arrays�

A. Niedermeier, Jan Kuper, and Gerard J.M. Smit

Computer Architecture for Embedded Systems Group
Department of Electrical Engineering, Mathematics and Computer Science

University of Twente, The Netherlands

Abstract. In this paper, we present a new approach towards pro-
gramming coarse-grained reconfigurable arrays (CGRAs) in an intu-
itive, dataflow inspired way. Based on the observation that available
CGRAs are usually programmed using C, which lacks proper support for
instruction-level parallelism, we instead started from a dataflow perspec-
tive combined with a language that inherently supports parallel struc-
tures. Our programming paradigm decouples the local functionality of a
core from the global flow of data, i.e. the kernels from the routing. We
will describe the ideas of our programming paradigm and also the lan-
guage and compiler itself. Our complete system, including the CGRA, the
programming language and the compiler, was developed using Haskell,
which leads to a complete, sound system. We finish the paper with the
implementation of a number of algorithms using our system.

1 Motivation and Related Work

Many algorithms common in digital signal processing (DSP), like for example
audio filtering, contain a high degree of instruction-level parallelism. To accel-
erate those algorithms, coarse-grained reconfigurable arrays (CGRAs) are often
used due to their capability of large-scale parallelism. A CGRA is an array of
small, configurable cores, often in combination with a general purpose processor
for control operations. The cores in the CGRA usually contain an ALU and a
small local memory.

Popular examples of CGRAs are MorphoSys (2000) [1], XPP (2003) [2],
ADRES (2003) [3] and SmartCell (2010) [4]. Since the details of the mentioned
CGRAs is out of scope of this paper, the reader is referred to the respective
papers and to the surveys [5] and [6], where a good overview on CGRAs is
given.

The above mentioned architectures (and also other CGRAs) have in common
that they are programmed in a C-based approach. In our opinion, the choice of C
for programming CGRAs is not an obvious one. Since C has been designed as a
sequential language, it lacks intuitive support to express fine-grained parallelism.

Motivated by that, we developed a dataflow-inspired programming paradigm.
In dataflow programming, an algorithm is represented as a directed graph [7].

� This research is conducted as part of the Sensor Technology Applied in Reconfig-
urable systems for sustainable Security (STARS) project (www.starsproject.nl)

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 275–282, 2014.
c© Springer International Publishing Switzerland 2014

www.starsproject.nl


276 A. Niedermeier, J. Kuper, and G.J.M. Smit

The graph consists of nodes and arcs. The nodes represent the operators and
are interconnected by arcs, which represent the dependencies between the nodes.
The general idea of dataflow programming is to describe dependencies between
operations instead of a sequence of instructions. Hereby, the structure of an
algorithm is directly represented.

In an earlier paper [8], we presented a CGRA which is based on dataflow
principles, both in the execution mechanism of the cores as well as in the config-
uration principle. In this paper, we present a programming language and com-
pilation framework for this architecture.

The programming language itself is implemented as an embedded domain
specific language (EDSL) in the functional programming language Haskell. This
enables a designer to implement DSP applications in a concise and straight-
forward manner by using Haskell’s higher order functions. As these functions
have a notion of structure, all information on parallelism and flow of data is
automatically contained in the resulting expressions.

2 Architecture

The architecture [8] for which we present our programming language and com-
pilation belongs to the class of coarse-grained reconfigurable arrays (CGRA). It
is an array of small, independent, reconfigurable cores, shown in Figure 1, the
size of the array can be configured during design time.

C00

C01

C02

C03

C10

C11

C12

C13

C20

C21

C22

C23

C30

C31

C32

C33

ALU

in1 in2opc

... ...

REG

PMEM

Fig. 1. Architecture

Each core in the architecture follows the rules of dataflow, i.e. as soon as all
operands for a certain core are available, the configured operation is performed.
Inside each core, an ALU is available, which can execute binary operations, i.e.
addition, multiplication and the like. Furthermore, a local register file to store
intermediate results and a storage for constants are available.



A Dataflow Inspired Programming Paradigm 277

3 Programming Paradigm

For our programming paradigm, we adopt ideas from dataflow, such as the firing
rule and the representation of an algorithm as a graph. Furthermore, we use finite
state machines to extend the possibilities of pure dataflow notation.

On the conceptual level, we consider the configuration of our architecture on
two different views: The local view, i.e. everything that is executed locally on
one core, and the global view, which is the global flow of data through the array.

3.1 The Local View

Since it is difficult to describe iterations in pure dataflow notation [9], we decided
to use a combination of state machines and dataflow notation. Iterations (or
initial stages) are configured using state machines, the states itself are described
using a dataflow graph. The transition conditions are determined by the number
of iterations per state.

Figure 2 shows a high-level illustration of the local view. In Figure 2a, the
dataflow graph is shown, in Figure 2b, the state machine.

- EXi

- Cx

- Rx

- ADD

- MUL

- ...

- Rx

source

opcode

store

(a) Local View - Dataflow Graph (b) Local View - State Machine

Fig. 2. Local View

The dataflow graph is defined in terms of

– source of each input (EX ternal input i , a Constant value x , Register x )
– opcode defining the current operation (ADD, MUL, ...)
– whether to store the result at Register x

On the input arcs, a token indicates that a token is required on that arc to
trigger the execution. On the output arc, a token indicates whether a token is
produced or if the result is only stored locally inside the core (then, no token
would be produced on the output arc).

The example state machine in Figure 2b shows a configuration of a core con-
sisting of two states. The condition to transit between the states is defined by
the number of iterations per state, indicated by the variable i on the arcs of the
state machine. One iteration is defined as one firing of the dataflow graph of the
current state. A core with this configuration would first perform a multiplication



278 A. Niedermeier, J. Kuper, and G.J.M. Smit

on two incoming token pairs, and then an addition on the next incoming token
pair. In each state, it would produce an output token, but would not store the
result in the internal register file.

3.2 The Global View

While the local view defines everything that happens inside a core, the global
flow of data is out of the core’s scope. A core only has the notion that an input
can come from an external source, e.g. another core or an external input, but
precisely from where is irrelevant. Consequently, for the flow of data a global
dataflow scheme is required, i.e. the global view. The routing of the tokens is
handled by the interconnection logic in the array.

4 Programming Language

In this section we present the specification of the programming language targeted
at the architecture introduced in Section 2. We implemented our programming
language as an Embedded Domain Specific Language (EDSL) as a recursive
datatype in Haskell. Therefore, algorithms can be implemented directly using
Haskell. As a consequence of implementing the EDSL as recursive datatype, the
resulting expression is the abstract syntax tree (AST) of the expression that was
specified. This means that the parser is “for free”.

In Listing 1.1, the definition for the EDSL datatype is given. The names of
the constructors hereby resemble their functionality. In line 1, the definition how
to specify a constant number is given, line 2 specifies how a delay is defined, the
definition in line 3 shows how the result from the previous clock cycle can be
used (i.e. a feedback loop), line 4 represents an input where the string denotes
and input stream and finally in line 5 the operation itself is defined. Op is a data
constructor of the type Expr and indicates an operation, and OpCode defines
the opcode.

1data Expr = Const Number
2| DELAYED Expr
3| PREV RES
4| Input String
5| Op OpCode Expr Expr
6

7data OpCode = ADD | MUL | SUB | AND . . .

Listing 1.1. Recursive EDSL definition for an expression

To implement the graph defining the right state of the state machine in Figure
2b, a designer would write Op ADD (Input ‘‘x’’) (Input ‘‘ y ’’) . To implement a
multiplication with a constant value 5, one would write Op MUL (Input ‘‘x’’)
(Const 5). In the following section, we will illustrate in more detail how the
proposed language can be used to construct more complex algorithms.



A Dataflow Inspired Programming Paradigm 279

5 Workflow

In this section, we will describe the workflow of our system, i.e. all the required
steps to implement an algorithm on our architecture using the herein presented
framework.

Input

“x0”

Input

“y0”

∗

Input

“x1”

Input

“y1”

∗

+

Input

“x2”

Input

“y2”

∗

+

Input

“xN”

Input

“yN”

∗

+

. . .

. . . out

Fig. 3. Structure of the dot product

As illustrating example, we will use the dot product, i.e. the multiplication of
two vectors, throughout this section. The dot product of two vectors x and y of
length N + 1 is defined as

∑N
i=0 xiyi. The structure for the dot product of two

vectors x and y is shown in Figure 3.

5.1 Implementing the Algorithm

The computation of the dot product contains two steps: 1. The two vectors
have to be multiplied pair-wise, and 2. the results have to be accumulated. A
straight-forward implementation of these two steps can be achieved by using the
two higher-order functions zipWith and foldl1 as shown in Listing 1.2.

1vxvEDSL x y = out
2where
3ms = zipWith (Op MUL) x y
4out = fo ld l 1 (Op ADD) ms

Listing 1.2. Implementation of the dot product in the EDSL

In line 1 of the code, the function name vxv and its arguments x and y,
which are the two vectors to be multiplied, are defined, out is the resulting
output. In line 3, the vectors are pair-wise multiplied which leads to the row
of multipliers in Figure 3. Finally, in line 4, the results of the multiplications
are accumulated, which leads to the row of adders in Figure 3. Please note that
instead of the mathematical operators + and ∗, the constructors of the proposed
embedded language are used, namely Op ADD and Op MUL, respectively. Also,
at this point the expression vxvEDSL directly represents the abstract syntax
tree (AST), since the EDSL was implemented as recursive datatype in Haskell
as explained in Section 4.



280 A. Niedermeier, J. Kuper, and G.J.M. Smit

5.2 Code Generation

In order to generate code for the hardware architecture, the compiler traverses
through all nodes in the AST and generates the corresponding configuration
code.

Each node in the AST is one of the five different possible cases given in Listing
1.1: 1. A constant, 2. a delayed expression, 3. a pointer to the previous result,
4. an input, or 5. an operation. Code is only directly generated for nodes that
define an operation. All the other cases are used as inputs by the operation nodes
and are handled there.

In Figure 4a, the resulting graph is shown for a multiplication of an external
input with a constant with the value 2. In Figure 4b, a multiplication of two
external inputs is shown. This is also the graph which is generated for the mul-
tiplications in the dot product of our example. Figure 4c shows the addition of
two external inputs, as required for the additions in the dot product.

Figures 4d and 4e show two slightly more complex examples where either one
input is delayed (Op ADD (DELAYED x)y) or where one of the operands is the
previous result, thus forming a feedback loop (Op ADD PREV RES y).

(a) Op MUL x
(Const 2)

(b) Op MUL x
y

(c) Op ADD x
y

(d) Op ADD (DELAYED x)y (e) Op ADD PREV RES y

Fig. 4. Code generation

5.3 Mapping to the CGRA

To execute the expression on the CGRA, each node in the AST is mapped to
one core using simulated annealing. The cost function is the distance between
communicating nodes, i.e. the communication costs. After a mapping has been



A Dataflow Inspired Programming Paradigm 281

determined, the routing information is added to the configuration of each node
which completes the configuration of the array.

The resulting mapping for the dot product maps one operator node on one
core each, for the communication only p2p links are used, i.e. the network-on-
chip is not required. This is an optimum mapping for our case, since we define
the communication costs to be the cost function during the mapping step.

5.4 Evaluation

The previously presented usecase of the dot product was targeted towards a
CGRA with 4x4 cores. Since our array is scalable, we implemented a number
of test cases on a 4x4 array and on a 8x8 array to evaluate the usability of our
compiler. The results are shown in Table 1.

For each of the implemented algorithm, the number of used nodes (and hence
required cores in the architecture) and connections are shown. On the 4x4 array,
we implemented an 8-tap FIR filter, the 8x8 dot product which we used in
Section 5, and a 4 point FFT kernel. On the 8x8 array, we implemented a 32-tap
FIR filter, a 32x32 dot product, an 8 point FFT kernel and an 8 point DCT
kernel. For every test case, an optimum mapping was achieved, i.e. only p2p
connections were used which ensures the highest throughput.

Table 1. Test cases for the different array sizes

array size Algorithm nodes connections

4x4
FIR8 15 14

8x8 Dot Product 15 14
FFT4 16 16

8x8

FIR32 63 62
32x32 Dot Product 63 62

FFT8 60 80
DCT8 40 50

6 Conclusions

We developed a complete framework for implementing, mapping and verifying
DSP algorithms on a (previously presented) CGRA architecture. The framework
consists of the CGRA itself, a programming paradigm and language, a compiler
and a verification environment. All the parts of the framework were implemented
using the functional programming Haskell.

The programming paradigm was developed in order to express instruction-
level parallelism. Furthermore, we considered a DSP application to be composed
of two views: The local view, which represents everything that happens within
one core, and the global view, which represents the flow of data through the array.
For our programming paradigm we adopted principles from dataflow and finite



282 A. Niedermeier, J. Kuper, and G.J.M. Smit

state machine (FSM) notations, which made it possible to express algorithms in
the form of dataflow graphs with extended control.

For the implementation of the compiler, we used Haskell as a base, since it
inherently has a notion of structure and, thus, can easily express parallelism
and data dependencies. We implemented an embedded domain specific language
(EDSL) as recursive datatype. In combination with higher order functions, this
EDSL can be used to construct expressions that directly resemble the structure of
a given algorithm. Consequently, the abstract syntax tree does not explicitly have
to be extracted. We believe that by using a programming paradigm that closely
resembles the structure of DSP algorithms, expressions can be implemented in
a very intuitive and straight-forward manner.

References

1. Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Chaves Filho, E.M.:
MorphoSys: an integrated reconfigurable system for data-parallel and computation-
intensive applications. IEEE Transactions on Computers 49(5), 465–481 (2000)

2. Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., Weinhardt, M.: Pact
xpp - a self-reconfigurable data processing architecture. The Journal of Supercom-
puting 26(2), 167–184 (2003)

3. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: an archi-
tecture with tightly coupled VLIW processor and coarse-grained reconfigurable ma-
trix. In: Cheung, P.Y.K., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778,
pp. 61–70. Springer, Heidelberg (2003)

4. Liang, C., Huang, X.: SmartCell: an energy efficient coarse-grained reconfigurable
architecture for stream-based applications. EURASIP Journal on Embedded Sys-
tems 2009(1), 518–659 (2009) 00012

5. Hartenstein, R.: A decade of reconfigurable computing: a visionary retrospective. In:
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
2001, pp. 642–649. IEEE Press, Piscataway (2001)

6. Tehre, V., Kshirsagar, R.: Survey on coarse grained reconfigurable architectures.
International Journal of Computer Applications 48(16), 1–7 (2012)

7. Davis, A., Keller, R.: Data flow program graphs. Computer 15(2), 26–41 (1982)
00374

8. Niedermeier, A., Kuper, J., Smit, G.: Dataflow-based reconfigurable architecture
for streaming applications. In: 2012 International Symposium on System on Chip
(SoC), pp. 1–4. IEEE (2012)

9. Gajski, D., Padua, D., Kuck, D., Kuhn, R.H.: A second opinion on data flow ma-
chines and languages. Computer 15(2), 58–69 (1982) 00232



Thread Shadowing: Using Dynamic Redundancy

on Hybrid Multi-cores for Error Detection

Sebastian Meisner and Marco Platzner

Computer Engineering Research Group, University of Paderborn, Germany
{sebastian.meisner,platzner}@upb.de

Abstract. Dynamic thread duplication is a known redundancy tech-
nique for multi-cores. The approach duplicates a thread under observa-
tion for some time period and compares the signatures of the two threads
to detect errors. Hybrid multi-cores, typically implemented on platform
FPGAs, enable the unique option of running the thread under obser-
vation and its copy in different modalities, i.e., software and hardware.
We denote our dynamic redundancy technique on hybrid multi-cores as
thread shadowing. In this paper we present the concept of thread shadow-
ing and an implementation on a multi-threaded hybrid multi-core archi-
tecture. We report on experiments with a block-processing application
and demonstrate the overheads, detection latencies and coverage for a
range of thread shadowing modes. The results show that trans-modal
thread shadowing, although bearing long detection latencies, offers at-
tractive coverage at a low overhead.

1 Introduction

Hybrid multi-cores combine instruction set based cores that are software-pro-
grammable with cores that are implemented in reconfigurable logic. Much like
heterogeneous multi-cores, which typically combine different CPU cores, hybrid
multi-cores are of interest for applications that exhibit parallelism at the thread-
level and can benefit from mapping the threads to different core types in order
to improve performance or energy efficiency. A main challenge for hybrid multi-
cores is to create a software architecture that allows for a convenient integration
of reconfigurable logic cores with software-programmable cores. In our work we
leverage ReconOS [1], a programming model and runtime environment that ex-
tends multithreading to reconfigurable logic cores. In ReconOS, cores mapped
to reconfigurable logic are turned into so-called hardware threads that can call
an operating system running on the system’s main CPU much like a software
thread. In general, a ReconOS system can comprise several CPUs and recon-
figurable hardware cores and run dynamically created software and hardware
threads on their respective cores.

This work focuses on detecting errors at the thread level in single-chip hybrid
multi-cores. Such errors arise when faults at the physical level are not masked and
thus propagate up to the level of application threads. There are several causes
for faults. Continuously shrinking microelectronic device structures lead to an

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 283–290, 2014.
c© Springer International Publishing Switzerland 2014



284 S. Meisner and M. Platzner

increase in components per chip area. This increase in functional density comes at
the cost of reduced reliability due to increasing variations in device behavior and
device degradation, as described by Borkar [2]. One particularly important source
of unreliability is heat. Thermal hot spots and extensive temperature swings
should be avoided since these effects accelerate aging which in turn leads to
degradation [3] and, eventually, to total chip failure. Another and external cause
for faults are single-event upsets [4]. Especially FPGAs, which are currently the
main implementation platform for hybrid multi-cores, are vulnerable to single-
event upsets since they store their configuration data in SRAM cells.

One traditional approach to detect faults is dual modular redundancy (DMR).
DMR duplicates elements of a system and compares their results. This approach
can be applied at hardware and software levels. At hardware level, the simplest
form is lockstep execution [5]. A number of improvements over simple DMR have
been presented to balance the trade-off between area/energy consumption and
error detection rate [6,7,8]. At software level, DMR can be applied to threads
or processes. Compared to hardware, DMR at the software level offers higher
flexibility, but comes with the challenge of encapsulation, as all interactions of
the thread or process with the environment have to be observed and compared.
Works like [9] and [10] present prototypes for thread and process level DMR
under Linux and POSIX, respectively.

The main contribution of this paper is the presentation and evaluation of
thread shadowing, a thread-level error detection technique for hybrid multi-cores.
Thread shadowing is a dynamic redundancy technique that duplicates (shadows)
a running software or hardware thread for some time period. During shadowing,
we compare the signatures of the two threads and detect an error if they deviate.
The novel option unique to hybrid multi-cores is trans-modal error detection, i.e.,
hardware threads can shadow software threads and vice versa.

Allowing for dynamic redundancy across the hardware-software boundary
opens up new potential for optimizing efficiency and overheads, as well as new
ways of designing reliable systems. Thread shadowing eliminates the need for
dedicated redundant cores and it can use idle cores of any modality. Addition-
ally, error detection can be activated per thread either permanently or on a spot
sample basis, which supports applications with mixed reliability requirements.

2 Shadowing Prototype Implementation

2.1 ReconOS and Shadowing Extensions

Our work leverages ReconOS [1], a programming model and runtime environ-
ment that extends multithreading to reconfigurable logic cores. ReconOS builds
on a host operating system such as Linux or eCos and distinguishes between
hardware threads and software threads. Both thread types, denoted as thread
modalities, can call operating system functions to interact with other threads
and the operating system kernel using well known programming objects such
as semaphores, message boxes and shared memory. Figure 1 depicts an exem-
plary ReconOS system architecture comprising a main CPU, three reconfigurable



Thread Shadowing: Using Dynamic Redundancy on Hybrid Multi-cores 285

Fig. 1. Exemplary ReconOS architecture

Thread mgmt.: getinitdata(),

yield(),exit()

Semaphore: post(),wait()

Mutex: lock(),unlock(),

trylock()

Cond. variable: wait(),signal(),

broadcast()

ReconOS queue: send(),receive()
Mailbox: get(),put(),

tryget(),tryput()

Fig. 2. List of shadowed function calls

hardware slots, a memory controller and peripherals. Every hardware slot has
two interfaces, an operating system interface (OSIF) for calling operating sys-
tem functions and a memory interface (MEMIF) enabling direct access to the
shared system memory. ReconOS uses a main CPU which runs an operating
system kernel and user software threads. Hardware slots either accommodate
hardware threads or worker CPUs that run additional software threads. Worker
CPUs implement an operating system stub to embed their software thread into
the multithreading environment. Hardware threads and software threads run-
ning on worker CPUs communicate with the operating system kernel by means
of delegate threads. These delegates call operating system functions on behalf
of their corresponding hardware threads or software threads on worker CPUs.
Since ReconOS supports run-time reconfiguration, both thread types can be
instantiated, loaded and started at run-time.

We have extended the ReconOS architecture and runtime system to moni-
tor the calls listed in Figure 2 for thread synchronization, communication and
management. We denote the original thread as thread under observation (TUO)
and its duplicate as shadow thread (ST). The shadowing system is implemented
in form of a user space library. The library substitutes each of the monitored
functions with a version that wraps the original function and, in case shadowing
is activated, implements function call tracing and comparison. At start-up, the
runtime system creates all required STs and puts them to sleep state for later
activation by the shadowing scheduler. While in our prototype this consumes
some memory and, for hardware STs, a hardware slot, the ST activation time
is greatly reduced. At runtime, the shadowing scheduler chooses a thread from
the thread list to shadow.

2.2 Thread Signatures and Shadowing Schemes

As thread signature we use the sequence of OS calls and their parameters. Since
in ReconOS, all OS calls issued by hardware threads and software threads on
worker CPUs are relayed by delegate threads, it is sufficient to monitor delegate
threads and software threads on the main CPU. The data structure for one OS



286 S. Meisner and M. Platzner

call includes a pointer to the function name, the parameters, the return value
and some meta data such as the lengths of data fields and a timestamp. For OS
calls that involve a pointer to a block of writable memory, the shadowing system
creates a copy of the memory block for the ST. This way, the ST gets a pristine
copy of the input data that can be modified independently of the TUO.

In this paper, we report on two different shadowing schemes. The first scheme
shadows n TUOs by another n STs, with the characteristics that all TUOs are
of the same modality, i.e., software or hardware, and all STs are of the same
modality, i.e., software or hardware, as well. This shadowing scheme basically
doubles the number of required cores but runs for each thread a permanent copy
and thus fault detection covers the complete runtime, which makes it suitable for
SEU detection. The second shadowing scheme shadows n TUOs of one modality
with only one S in a round-robin fashion. This scheme performs error detec-
tion on a spot-sample basis, but requires only one additional core, which makes
it preferable for permanent fault detection, when single errors are acceptable.
We have selected these two schemes for presentation in this paper since they
represent interesting corner cases. Obviously, there a many more schemes with
arbitrary modalities for the single TUOs and STs.

3 Experimental Evaluation

We have conducted experiments on a ReconOS implementation extended for
thread shadowing running under Linux kernel version 2.6.37 on the Xilinx ML605
Evaluation Kit, which is equipped with a Virtex-6 LX240T FPGA. We have set
up a static architecture with a MicroBlaze soft core as the main CPU, seven
MicroBlaze worker CPUs for additional software threads and seven hardware
slots for hardware threads. In the experiments shown in this section we use at
most three worker cores and three hardware slots. The main CPU, the worker
CPUs and all hardware slots have been clocked at 100 MHz. For testing, we have
implemented a sorting application that sorts integers in 8 KiB blocks. The main
application thread distributes the workload over several software and hardware
sorting threads. A software sorting thread is able to sort data at a rate of 0.537
blocks/s; a hardware sorting thread sorts at a rate of 8.333 blocks/s. Therefore,
using a hardware thread results in a speedup of 15.518. The number of software
and hardware sorting threads used, as well as the number of blocks to be sorted
are parameterized, but for the reported experiments we have fixed the number of
blocks to 64. The sorting application communicates the data/results to/from the
threads via ReconOS message queues which utilize only the OSIF (cmp. Figure
1). Since the shadowing system checks the OS call names and parameters, all
input and output, including the sorted data, is checked for consistency.

Figure 3 shows the simplified main loop of a sorting thread with its operating
system interactions. The first receive() call returns the number of integers
to be sorted, while the second receive() call provides the actual data to be
sorted. The sorted data is written back to the main thread via a send() call.
Since the sorting application operates on blocks of data, there is actually no state



Thread Shadowing: Using Dynamic Redundancy on Hybrid Multi-cores 287

while (true)

{

yield();

receive (&recv_queue ,

&len , 4);

if (len == UINT_MAX)

{ exit (); }

receive (&recv_queue ,

buffer , len);

/* sort buffer ... */

send (& send_queue ,

buffer , len);

}

Fig. 3. Simplified main loop of the
sorting thread

Fig. 4. Visualization of thread shadowing
modes. Dark shapes are STs, light shapes are
TUOs, and arrows indicate shadowing.

between the processing of consecutive blocks. Such application models are wide-
spread, especially in the signal processing domain. The shadowing scheduler can
deactivate/activate a thread at the yield() call issued at the beginning of the
thread’s main loop. Based on the two shadowing schemes described in Section 2.2
we have experimented with the following six different shadowing modes:

1. Original: Reference sorting application on ReconOS without shadowing sup-
port for baseline comparison.

2. Shadowing Off: The shadowing system is in place, but no ST is activated.
This mode measures the overhead of the shadowing system, i.e., the tracing
of operating system calls.

3. Shadowing On: Intra-modal shadowing for all threads, i.e., n hardware STs
shadow n hardware TUOs or n software STs shadow n software TUOs,
respectively, with n = 1 . . . 3.

4. Shadowing Round-robin: Intra-modal shadowing for all threads with one ST
switched on every yield() call in a round-robin fashion, i.e., one hardware
ST shadows n hardware TUOs or one software ST shadows n software TUOs,
respectively, with n = 1 . . . 3.

5. Shadowing On Trans-modal: Trans-modal shadowing for all threads, i.e., n
hardware STs shadow n software TUOs or n software STs shadow n hardware
TUOs, respectively, with n = 1 . . . 3.

6. Shadowing Round-robin Trans-modal: Trans-modal shadowing for all threads
with one ST switched on every yield() call in a round-robin fashion, i.e.,
one software ST shadows n hardware TUOs or one hardware ST shadows n
software TUOs, respectively, with n = 1 . . . 3.

Figure 4 visualizes these modes of operation for the case that the TUOs are
hardware threads and n = 3. All modes are symmetrical for software threads as



288 S. Meisner and M. Platzner

TUOs. We have verified the correct functionality of our shadowing implemen-
tation by modifying the source code of one hardware and one software thread
to include an error that leads to a different thread OS call signature. These
erroneous threads have been used as TUOs and STs in varying configurations
to successfully test the shadowing system. In the following, we report on three
measured metrics: the slowdown of the TUOs inflicted by using thread shadow-
ing, the time difference between identical OS calls of TUO and ST, which we
call the error detection latency, and the shadowing coverage. All data presented
has been averaged over 10 runs of the application.

3.1 Runtimes

Table 1 shows the runtimes of the different shadowing modes for different system
configurations, i.e., number of software and hardware threads. The data has been
normalized to mode “Original” for the given number of TUOs. Using software
TUOs, the absolute runtimes for sorting 64 data blocks in the ”Original” mode
decrease from 119.1s, over 59.94s to 41.46s when going from one to three cores.
Similarly, using hardware TUOs the absolute runtimes in the “Original” mode
decrease from 7.73 s, over 4.24 s to 3.19 s.

Table 1. Normalized runtimes of the sorting application under all shadowing modes
over different numbers of software and hardware TUOs

Thread Count
Software TUOs Hardware TUOs

1 2 3 1 2 3

Original 1.00 1.00 1.00 1.00 1.00 1.00

Shadowing Off 1.00 1.00 1.00 1.02 1.02 1.01

Shadowing On 1.00 1.01 1.01 1.06 1.09 1.13

Shadowing Round-robin 1.00 1.00 1.00 1.07 1.03 1.02

Shadowing On Trans-modal 1.00 1.01 1.01 15.22 13.81 12.50

Shadowing RR Trans-modal 1.00 1.01 1.01 15.07 1.72 1.82

The data for software TUOs in Table 1 shows that the overhead posed by
the shadowing scheme and the slowdowns for different shadowing modes are
negligible with at most 1%. The data for hardware TUOs shows that the over-
head posed by the shadowing system alone (Shadowing Off) is at most 2% and
thus negligible. For intra-modal shadowing, i.e., hardware STs shadow hardware
TUOs, the sort application is slowed down by 13% at maximum for three TUOs
for mode “Shadowing On”. In mode “Shadowing Round-robin” the slowdown re-
duces to 2% for three TUOs. As expected for the given application, trans-modal
shadowing where software STs shadow hardware TUOs severely affects runtimes
due to the speed difference between software and hardware threads, e.g., 1422%
for shadowing one hardware thread by one software thread. In the trans-modal
round-robin shadowing mode, the hardware TUOs are shadowed by one software
thread only for a fraction of the overall runtime. Hence, the slowdown decreases
with the number of hardware threads down to 82% for three TUOs.



Thread Shadowing: Using Dynamic Redundancy on Hybrid Multi-cores 289

3.2 Latencies and Coverage

To determine the error detection latency, we measure the time difference be-
tween two identical operating system calls of the TUO and the ST. Since our
shadowing scheme is symmetrical with respect to TUO and ST roles, we report
on positive values for the detection latency, where an ST lags behind the TUO,
as well as negative values, where an ST actually called the operating system
function earlier than its TUO. As our measurements show, the results differ
significantly between intra-modal and trans-modal shadowing modes. While for
intra-modal shadowing the latencies lie between −0.35ms and 2.92ms, trans-
modal shadowing results in latencies increased by orders of magnitude, lying
between −578.24ms and 580ms. These increased latencies are easily explained
by the differences in execution speed of hardware and software implementations.

Table 2. Average percentage of shadowed application cycles per thread in round-robin
modes 4 and 6

Thread Count
Software TUOs Hardware TUOs

1 2 3 1 2 3

Shadowing Round-robin 100% 31.09% 17.81% 100% 31.09% 17.97%

Shadowing RR Trans-modal 100% 31.25% 17.66% 100% 4.69% 6.25%

In the round-robin shadowing modes, the TUOs are not shadowed for the
complete runtime. In order to quantify the coverage of shadowing, we measure
the number of application cycles a TUO is actually shadowed and relate it to the
overall number of the application cycles a TUO executes. In our sorting applica-
tion, one application cycle consists of one iteration of the while-loop in Figure 3.
Table 2 shows the percentage of shadowed application cycles. Obviously, if only
one TUO is to be shadowed by one ST in a round-robin fashion the coverage is
100%. With an increasing number of TUOs shadowed by one ST in a round-robin
fashion the coverage decreases. While one would expect that with n TUOs the
coverage decreases to 1

n , the measured coverage is lower since de-attaching and
attaching STs to TUOs is always synchronized to the TUOs yield() operat-
ing system calls, thus adding a synchronization delay when changing the TUO.
Another result is that hardware TUOs in trans-modal round-robin shadowing
mode have a rather low coverage of around 5%. Since hardware TUOs are slowed
down by their software STs, every other non-shadowed TUO is able to complete
a lot of application cycles in this time period, thereby decreasing the number of
potential application cycles for shadowing.

4 Conclusion and Future Work

In this paper we have presented thread shadowing, our thread-level dynamic
redundancy technique for hybrid multi-cores that allows not only for intra-modal
but also for the novel technique of trans-modal error detection. We have discussed



290 S. Meisner and M. Platzner

its implementation on a ReconOS system. Our multi-core setup allows us to
systematically experiment with different shadowing schemes and determine their
overhead, application slowdown, detection latency, and achieved coverage. In
this paper we have studied several shadowing schemes for a sorting application
and we have identified two interesting configurations: First, if one can accept
the high cost for doubling the number of cores intra-modal shadowing for all
threads results in with full coverage, minimal slow down and low error detection
latency. A reasonable alternative that requires only one additional core is intra-
modal round-robin shadowing at a somewhat reduced coverage. Second, the
novel technique of trans-modal shadowing is an attractive option when hardware
threads shadow software threads. Here, especially the trans-modal round-robin
shadowing mode is very appealing since often a hardware thread implementation
will be fast enough to shadow a number of software threads.

Future work will include experimenting with more applications, studying al-
ternative thread signatures and setting up fault injection experiments to quan-
titatively characterize the effectivity of the different thread shadowing modes.

References

1. Lübbers, E., Platzner, M.: ReconOS: Multithreaded Programming for Recon-
figurable Computers. ACM Transactions on Embedded Computing Systems
(TECS) 9(1) (October 2009)

2. Borkar, S.: Designing Reliable Systems from Unreliable Components: The Chal-
lenges of Transistor Variability and Degradation. IEEE MICRO, 10–16 (Novem-
ber/December 2005)

3. Stott, E.A., Wong, J.S., Sedcole, P., Cheung, P.Y.: Degradation in FPGAs: Mea-
surement and Modelling. In: Proceedings of the 18th Annual ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. FPGA 2010, pp. 229–238.
ACM, New York (2010)

4. Lesea, A., Drimer, S., Fabula, J., Carmichael, C., Alfke, P.: The Rosetta Experi-
ment: Atmospheric Soft Error Rate Testing in Differing Technology FPGAs. IEEE
Transactions on Device and Materials Reliability 5(3), 317–328 (2005)

5. IBM: PowerPC 750GX Lockstep Facility. Application Note (March 2008)
6. Austin, T.: DIVA: A Reliable Substrate for Deep Submicron Microarchitecture De-

sign. In: Proceedings. 32nd Annual International Symposium on Microarchitecture,
MICRO-32, pp. 196–207 (1999)

7. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore Soft Error Rate
Stabilization using Adaptive Dual Modular Redundancy. In: Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 27–32 (March 2010)

8. Rodrigues, R., Koren, I., Kundu, S.: An Architecture to Enable Life Cycle Testing
in CMPs. In: 2011 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pp. 341–348 (October 2011)

9. Mushtaq, H., Al-Ars, Z., Bertels, K.: A User-level Library for Fault Tolerance on
Shared Memory Multicore Systems. In: 2012 IEEE 15th International Symposium
on Design and Diagnostics of Electronic Circuits Systems (DDECS), pp. 266–269
(April 2012)

10. Shye, A., Blomstedt, J., Moseley, T., Reddi, V., Connors, D.: PLR: A Software
Approach to Transient Fault Tolerance for Multicore Architectures. IEEE Trans-
actions on Dependable and Secure Computing 6(2), 135–148 (2009)



Diffusion-Based Placement Algorithm

for Reducing High Interconnect Demand
in Congested Regions of FPGAs

Ali Asghar and Husain Parvez

Karachi Institute of Economics and Technology
Korangi Creek, 75190, Karachi, Pakistan

{ali.asghar,husain.parvez}@pafkiet.edu.pk

Abstract. An FPGA has a finite routing capacity due to which a fair
number of highly dense circuits fail to map on a slightly under-resourced
architecture. The high-interconnect demand in the congested regions is
not met by the available resources as a result of which the circuit becomes
un-routable for that particular architecture. In this paper we present
a new placement approach which is based on a natural process called
Diffusion. Our placer attempts to minimize the routing congestion by
evenly disseminating the interconnect demand across an FPGA chip. For
the 20 MCNC benchmark circuits, our algorithm reduced the channel
width for 6 circuits. The results showed on average 11% reduction in
standard deviation of interconnect usage at an expense of an average 5%
penalty on wire length. Maximum channel width gain of 17% was also
observed.

1 Introduction

With every passing year the logic density inside a chip increases approximately
following Moore’s Law, which makes more and more complex problems solv-
able and applications realizable. But with these advancements, the efficiency of
CAD tools to map and optimize these new applications is decreasing. These
highly dense circuits introduce new kind of challenges for CAD tool designers;
especially longer run-time of algorithms, higher power dissipation and inhomo-
geneous heat distribution are of primary concern.

In this paper we present a new congestion driven placement approach that
attempts to reduce the variations in interconnect usage via diffusion. The major
contribution of this work is a new placement cost function which pays attention
to both wirelength and congestion.

Diffusion is a natural transport mechanism under the influence of which par-
ticles from a region of higher concentration move towards a region of lower con-
centration. The diffusion of a dye in water, the distribution of heat in a metal
plate and the spreading of gas molecules in a room are all examples of diffusion.

In our case, the regions with high-interconnect demand act as high concen-
tration regions while the surrounding regions with relatively low-interconnect

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 291–297, 2014.
c© Springer International Publishing Switzerland 2014



292 A. Asghar and H. Parvez

usage act as low concentration regions. Hence a concentration gradient exists
between the two regions due to which diffusion takes place. During the diffusion
process, logic blocks with high-interconnect demand are moved towards regions
of relatively low-interconnect demand. Consequently, the variations in intercon-
nect demand are reduced and a solution with better routability is produced.

The remainder of this paper is organized as follows: In Sect. 2, we review some
prior research work in the domain of congestion driven placers along with some
other techniques which have been used to reduce high interconnect variations.
In Sect. 3, we propose our diffusion based placement algorithm and introduce
the cost function used in this placer along with some techniques used to improve
the run-time of our placer. In Sect. 4, we present the experimental results, while
Sect. 5 cover the conclusion and future work.

2 Background and Previous Work

In the standard CAD flow for FPGA, synthesis and technology mapping are
followed by clustering. In clustering, LEs are grouped together on the basis of
connectivity of the mapped netlist to form configurable logic blocks (CLBs).

The clustering stage is followed by placement in which the clusters are placed
onto the fixed array of CLBs. The cost function used by the VPR’s placement
algorithm [1] is wirelength driven i.e. it attempts to optimize the total wirelength
of the current placement. The total wirelength is estimated on the basis of a
semi-perimeter bounding box metric using the following equation:

Wiring Cost =

N∑
i=1

q(i) · (bbx(i) + bby(i)) (1)

where N is the total number of nets, bbx(i) and bby(i) are the horizontal and
vertical span of the net i. q(i) is a compensation factor for nets with more than
three terminals [2].

To reduce high interconnect variation or congestion; a placement algorithm
must pay attention to the routability of the final design. The semi-perimeter
bounding box metric used by VPR’s placement algorithm does not address this
issue because a semi-perimeter based cost function brings the CLBs as close as
possible unaware of the routing resources available in the target architecture.
Such a placement could result in a large number of nets getting restricted to a
relatively small area of the chip generating regions with high interconnect de-
mand which in some cases exceeds the resources available in the architecture. To
address these issues the authors of [10] have presented a congestion driven placer
which considers the effect of overlapping bounding boxes. A congestion coeffi-
cient is generated from a congestion map which indicates the number of bound-
ing boxes or nets which overlap each CLB. This coefficient is then multiplied
with the cost function in (1) which penalizes the moves resulting in congestion.



Diffusion-Based Placement Algorithm 293

Another congestion driven placement approach was presented in [8] which uses
the well-known Rent’s rule to estimate the routing requirements of the design. A
novel approach for the reduction of high interconnect demand [9] is to iteratively
perform re-clustering until a target channel width constraint is met.

The approach used in this paper for reducing congestion i.e. diffusion based
placement has been applied in placement algorithms for ASICs. The authors
of [7] used diffusion to overcome a very critical post-placement design closure
issue called Legalization.

Jaffari and Anis [3] applied the concept of diffusion to address the uneven
heat distribution problem in an FPGA by targeting thermal uniformity as the
main objective function. The proposed placer tool uses a simulated annealing
engine with a weighted common driver cost function to account for the issues
of wirelength and performance requirements. The CLBs with high temperature
are moved away from each other in such a way that the overall thermal profile
of the FPGA smooth out. The cost function used in this placer is similar to
the wirelength cost function of simulated annealing in which a negative cost is
desirable for the move to get accepted. This work shows a significant improve-
ment in standard deviation (up to 51%) and average reduction (up to 73%) in
temperature with a 4% penalty in wirelength and delay.

3 Implementation

Our proposed idea focuses on improving (i.e. reducing) the standard deviation
of interconnect usage, which attempts to reduce the peak channel occupancy
of a congested region, this may later reduce the overall channel width of the
architecture. Our congestion driven placer strives to reduce the interconnect
variations by evenly spreading the routing demand across the entire chip. We
have adopted the same diffusion based placement technique as proposed in [3].
However, instead of using the technique for reducing high temperature spots,
as done in [3], we have used the technique for reducing high-interconnect usage.
Moreover, unlike the work done in [9], size of FPGA is not increased.

Our placer uses a weighted common driver cost function similar to the one
used in [3] except for the fact that the common driver weight in [3] corresponds
to thermal cost extracted from the temperature profile of an FPGA while in our
case it corresponds to the occupancy (defined in section 3.1) of each CLB which
we call the congestion cost.

3.1 The Cost Function

The equation for calculating the congestion cost is:

Congestion Cost =
n∑

i=0

(
n∑

j=1

ci · cj
rij

) (2)



294 A. Asghar and H. Parvez

where n is the number of CLBs used in the FPGA, ci and cj are the occupancy of
the ith and jth CLB while rij is the distance between the ith and jth CLB, ci and
cj are obtained from a pre-placed and routed file which we call Congestion File,
this file contains the occupancy of all the used CLBs. The term occupancy refers
to the number of connections a CLB has with the adjacent routing channels.

The cost function of our placer incorporates both the wirelength cost obtained
from (1) and the congestion cost.

ΔCost = α(
ΔWiring Cost

Wiring Cost
) + (β)(

ΔCongestion Cost

Congestion Cost
) (3)

where α is the weight assigned to wiring cost and

β = 1− α

is the common driver weight assigned to congestion cost. The formula for cal-
culating ΔWiring Cost is same as the one implemented in VPR framework [1].
The calculation details for ΔCongestion Cost are discussed in 3.3.

3.2 Flow Overview

Our placement flow has three stages as described below.

1. First a routine placement is performed using the conventional wirelength
driven cost function (1). Routing is performed using PathFinder routing
algorithm [5].

2. After the completion of placement and routing, a congestion file is generated
that contains the occupancy of all used CLBs.

3. Now the placement is performed again using the weighted common driver
cost function (3), the values for ci and cj are obtained from the generated
congestion file. Routing is again performed.

3.3 Improvements in Run-Time

The complexity of the congestion cost function is quadratic in nature which
makes the run-time of our placer un-scalable for large designs. To improve the
run-time of our placer we have made following attempts:

3.3.1 Calculating the Incremental Change in Congestion Cost
Instead of calculating the overall (global) congestion cost we calculate the change
in congestion cost. Change in congestion cost which results when a block is moved
or swapped is added to the global congestion cost which should produce the same
result as computing the overall congestion cost.



Diffusion-Based Placement Algorithm 295

The equation for calculating the ΔCongestion Cost is:

ΔCongestion Cost =

n∑
i=0

(ci · cj)( 1

rij(new)
− 1

rij(old)
) (4)

where n is the number of used CLBs in the FPGA, ci is the occupancy of the
logic block which is moved, cj represents the occupancy of all the other logic
blocks, rij(old) and rij(new) represent the distance between the ith and jth CLBs
before and after the move. For ΔCongestion Cost to be negative in (3) the dis-
tance between the congested logic blocks should increase.

3.3.2 Creating a Priority Queue
The incrementalΔCongestion Cost improves the run-time considerably but still
suffers from long run-time penalty when the number of used logic elements is very
high. To counter this problem we have made a priority queue in which CLBs
are arranged in ascending order according to their occupancies. Now instead
of computing the ΔCongestion Cost for all used CLBs at each move, only the
CLBs present in the priority queue are considered because in (4) there is a greater
probability of acceptance for the moves which involve logic elements having high
values of occupancy. Hence, the idea of considering only a percentage of highly
congested elements is justifiable.

4 Results

To fully check the functionality and performance of our proposed placer we
have performed rigorous testing on all the 20 MCNC benchmarks circuits [6] by
varying different key parameters which include:

1. Common driver weight.
2. Top percentage of CLBs inserted in the priority queue (discussed in 3.3.1).
3. Varying the cluster size (for N=1 and N=4).

Note: The FPGA architecture used for experiments consists of clusters with size
N=1 and 4, LUT size k=4. For all the benchmark circuits [6] the FPGA logic
utilization is close to 100%. The architecture is based on directional wires which
are prevalent in the modern commercial architectures due to their better area
and delay performance [4].

During experimentation we empirically tested different combinations of driver
weight and percentage of CLBs. From our experiments we observed that setting
the driver weight between 0.1–0.2 while inserting top 15–20% CLBs in the pri-
ority queue generates optimum results.

We compare our results with the VPR’s placement algorithm. The results
from VPR are obtained by running it in the wirelength driven mode for place-
ment and routing.

Figure 1 shows the values of standard deviation in interconnect demand, wire-
length and channel width required for the 20 MCNC benchmark circuits nor-
malized to the values obtained from VPR’s placement algorithm. For all the



296 A. Asghar and H. Parvez

Fig. 1. Comparative results of Channel width, Standard deviation and Wirelength for
diffusion based placement algorithm normalized to the respective results from VPR’s
placement algorithm for cluster size N=1

20 benchmark circuits common driver weight was set equal to 0.1 while top 20
percent CLBs were considered (i.e. inserted in the priority queue).

The results show on average ˜11% reduction in standard deviation of inter-
connect demand at an expense of an average ˜5% penalty on wirelength. The
highest gain (reduction) in standard deviation was observed for elliptic (˜32%)
and misex3 (˜24%). For misex3 a gain of (˜17%) was also achieved in channel
width, which further justifies the idea that significant gains can be achieved in
channel width by reducing standard deviation.

Figure 2 shows the results obtained when the cluster size is increased to N=4,
the same parameters (shown in Fig. 1) are normalized to the results from VPR.
The common driver weight was again set to 0.1 while top 15 percent CLBs were
inserted in the priority queue.

Fig. 2. Comparative results of Channel width, Standard deviation and Wirelength for
diffusion based placement algorithm normalized to the respective results from VPR’s
placement algorithm for cluster size N=4



Diffusion-Based Placement Algorithm 297

The results on average show ˜10% decrease in standard deviation of intercon-
nect demand at an expense of ˜4% penalty on wirelength. The channel width was
reduced for 6 benchmark circuits with the highest gain in channel width achieved
for s298 (˜10%) at an expense of ˜3% wiring penalty. One important thing to
note is that the routing channel width required by our placement approach never
exceeds VPR which proves its stability.

5 Conclusion and Future Work

In this paper we have proposed a new diffusion based placement algorithm which
attempts to minimize variations in interconnect demand to achieve gains in chan-
nel width. The average results for the 20 MCNC benchmark circuits show ˜11%
decrease in standard deviation with ˜5% penalty in wiring cost. The highest
gain in channel width was observed to be ˜17% with only ˜4% penalty in wiring
cost. The average results can be further improved once this technique is applied
to the circuits with inherent congestion as used in [9]. Our router lacks a de-
lay estimator. We plan to implement it and measure the delay penalties caused
by the increase in wiring cost. A proper scaling of the run-time is also needed,
which becomes a critical parameter when the circuit to be mapped is fairly dense.

References

1. Betz, V., Rose, J.: VPR: A New Packing Placement and Routing Tool for FPGA
research. In: International Workshop on FPGA, pp. 213–222 (1997)

2. Cheng, C.: RISA: Accurate and Efficient Placement Routability Modeling. In:
ICCAD, pp. 690–695 (1994)

3. Jaffari, J., Anis, M.: Thermal Driven Placement for Island-style MTCMOS FPGAs.
Journal of Computers, 24–30 (April 2008)

4. Lemieux, G., Lee, E., Tom, M., Yu, A.: Directional and Single-Driver Wires in
FPGA Interconnect. In: ICFPT (2004)

5. McMurchie, L., Ebeling, C.: Pathfinder: A Negotiation-Based Performance-Driven
Router for FPGAs. In: Proc. FPGA (1995)

6. MCNC. LGSynth93 benchmark suite. Microelectronics Centre of North Carolina,
Tech. Report (1993)

7. Pan, D.Z., Alpert, C.J.: Diffusion based placement migration with application on
Legalization. In: ICCAD (December 2007)

8. Parthasarathy, G., Marek-Sadowska, M., Mukherjee, A., Singh, A.: Interconnect
Complexity-Aware FPGA Placement Using Rent’s Rule. In: International Work-
shop on System-Level Interconnect, pp. 115–121 (2001)

9. Tom, M., Leong, D., Lemieux, G.: Un/Do Pack: Re-clustering of large system-
on-chip designs with interconnect variation for low-cost FPGAs. In: ICCAD,
pp. 680–687 (2009)

10. Zhuo, Y., Li, H., Mohanty, S.P.: A congestion driven placement algorithm for FPGA
synthesis. In: FPL (2006)



GPU vs FPGA: A Comparative Analysis

for Non-standard Precision

Umar Ibrahim Minhas, Samuel Bayliss, and George A. Constantinides

Department of Electrical and Electronic Engineering
Imperial College London

South Kensington Campus, London SW7 2AZ
umar.minhas12@imperial.ac.uk

Abstract. FPGAs and GPUs are increasingly used in a range of high
performance computing applications. When implementing numerical al-
gorithms on either platform, we can choose to represent operands with
different levels of accuracy. A trade-off exists between the numerical ac-
curacy of arithmetic operators and the resources needed to implement
them. Where algorithmic requirements for numerical stability are cap-
tured in a design description, this trade-off can be exploited to opti-
mize performance by using high-accuracy operators only where they are
most required. Support for half and double-double floating point repre-
sentations allows additional flexibility to achieve this. The aim of this
work is to study the language and hardware support, and the achievable
peak performance for non-standard precisions on a GPU and an FPGA.
A compute intensive program, matrix-matrix multiply, is selected as a
benchmark and implemented for various different matrix sizes. The re-
sults show that for large-enough matrices, GPUs out-perform FPGA-
based implementations but for some smaller matrix sizes, specialized
FPGA floating-point operators for half and double-double precision can
deliver higher throughput than implementation on a GPU.

Keywords: GPU, FPGA, High Performance Computing (HPC), Non-
standard Precision, Half Precision, Double-double Precision.

1 Introduction

Over the past three decades, improvements in semiconductor process technology
have delivered an exponential increase, over time, in the number of transistors
that can be economically manufactured on a single silicon die. Until recently,
each shrink in process technology was accompanied by a reduction of supply
voltage in line with scaling rules established by Dennard et al.[1]. In recent
process technologies, where leakage power dominates, higher transistor density
has been accompanied by reductions in energy-efficiency. The industry response
to this has been a shift to multi-core parallel processing.

In the world of High Performance Computing (HPC), this has meant an in-
crease in the use of specialised parallel architectures such as Graphic Processing

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 298–305, 2014.
c© Springer International Publishing Switzerland 2014



GPU vs FPGA: A Comparative Analysis for Non-standard Precision 299

Units (GPUs) and Field Programmable Gate Arrays (FPGAs) in heterogeneous
supercomputers to achieve energy-efficient computation.

Numerical Analysts continually seek to improve the accuracy of numerical
approximation under the constraint of finite arithmetic precision. For floating
point computation on both GPUs and FPGAs, there is a trade-off between
the resource utilization and precision of arithmetic primitives. GPUs commonly
contain specialized units for computation on single and double precision floating-
point operands and FPGAs contain hardened DSP primitives which may be
composed into floating point units supporting a variety of different precisions.
Existing studies show that the area, power and delay of floating point operations
is increased when double precision operators are used in place of single precision
operators. However very little existing work seeks to answer the question of how
to efficiently implement a wider range of different precisions on both FPGAs and
GPUs. The unique contributions of this paper are :

– An investigation into how half (16-bit) and double-double (128-bit) precision
floating point operations can be efficiently implemented on both GPUs and
FPGAs.

– A comparison of the performance achievable by GPUs and FPGAs for half
and double-double precision computations.

Our hope is that this can be used to guide future work on ‘heterogeneous’
computing. This will allow numerical analysts to efficiently implement high-
precision at the points where it is needed in a computation, and optimize for
power and throughput in areas where it can be safely reduced.

2 Methodology

In this section we provide an overview of the equipment and benchmark used
for our experiments. We follow this in Section 3 with a deeper look at the GPU
and FPGA implementations and report comparative performance in Section 4.

2.1 Equipment

For these experiments, the NVidia Tesla C1060 [2] has been selected as an ex-
emplary GPU architecture. The Tesla range of products is purposely designed
for parallel high performance computing and GPGPU programming. The C1060
is implemented in a 55nm process and has hardware support for IEEE-754 com-
pliant single and double precision data-types. It has 240 streaming processor
cores running at 1.3GHz. These cores are clustered together in groups of 8 as
SIMD processors, with those 8 cores sharing a 16KByte local memory. Either
OpenCL or CUDA APIs can be used for programming, expressing computation
as explicitly parallel kernels for offload to SIMD processors within the GPU.

We have selected a Xilinx Virtex-6 [3] FPGA (XC6VLX195T) for this
comparison study. This device is implemented in a 40nm process and our syn-
thesis scripts targeted a 250MHz clock rate for each implementation. It was pro-
grammed using RTL design-entry incorporating floating-point cores from Xilinx
Coregen[4] and FloPoCo[5].



300 U.I. Minhas, S. Bayliss, and G.A. Constantinides

2.2 Benchmark and Metrics

Matrix-Matrix multiplication has been chosen as a benchmark algorithm for this
work. It forms a core component of many numerical algorithms and the corner-
stone of the LINPACK benchmarks. For input matrices of size n×n, the compu-
tational complexity of a näıve matrix-matrix multiplication algorithm varies as
O(n3), exceeding the communications requirement which scales as O(n2). This
means that for large-enough matrices, we can be sure that the algorithm per-
formance is bounded by the computational capabilities of our two platforms.
We measure the performance of our applications by counting the throughput
in FLOPs (floating-point operations per second). Both peak power and total
energy consumption are also useful metrics in large HPC environments, but a
comparison of these lies outside the scope of this work.

3 Implementation

In this section, we consider how to design an efficient implementation of a matrix-
matrix multiplication on GPUs and FPGAs using half and double-double preci-
sion arithmetic operands. Section 3.1 and Section 3.2 demonstrate how this can
be achieved on a GPU and FPGA platform respectively. We then follow this in
Section 4 with a performance comparison.

3.1 GPU Implementation

Many optimized GPU implementations exist. We have selected the SGEMM im-
plementation from [6] which was distributed in early versions of the CUBLAS [7]
library. The Tesla C1060 GPU does not have dedicated support for computation
using half-precision data types. We instead implement these using native single-
precision floating-point units. However, we can still exploit reduced-precision
operands to improve performance by improving the storage density of operands
in global and local memories. Where the asymptotic compute bounds are not
reached, we would expect this to deliver an improvement in performance. In
global-memory, CUDA stores half-precision operands as unsigned short and
provides interfaces via half2float() and float2half() intrinsics [8]. These
conversions are hardware-accelerated single-cycle GPU operations.

Neither CUDA nor the GPU architecture provide hardware support for double-
double precision operations. Researchers have built libraries for use of double-
double precision [9][10] based on underlying double precision primitives. We
chose a library based on [9] for our experiments. The library stores double-
double precision numbers in an abstract data type and provides functions for
arithmetic operations using double-double precision based on the IEEE-754 stan-
dard. A high accuracy double-double addition requires 16 basic double-precision
operations and a multiplication requires 3 basic and 4 fused multiply-add double-
precision operations.

The library only supports double-double precision operations on the GPU
(not on the host processor), therefore numbers are transferred to the device
using double-precision and then transformed to double-double precision using



GPU vs FPGA: A Comparative Analysis for Non-standard Precision 301

a library function. Since a double-double number was represented as a struct
of two double precision numbers and additional temporary numbers were used
for mathematical operations, the additional register pressure means computa-
tion must spill into local memory within each GPU multiprocessor. This has an
impact on performance that is explored in Section 4.

3.2 FPGA Implementation

Current FPGAs do not include hardened floating-point units. Instead floating
points units are constructed using a combination of hardened DSP-block prim-
itives and LUT logic. We have used floating-point cores from two vendors to
implement our experiments. Xilinx LogiCORE IP [4] (Version 5.0) exploits the
low-level architectural details of Xilinx FPGA fabric to provide high quality
floating-point operators. For precision beyond 80 bits, arithmetic operators gen-
erated by FloPoCo [5] were used. FloPoCo does not offer as wide a range of
options as Xilinx IP cores for trading-off latency and resource usage but allows
us to generate cores with a wider range of precisions. All the operators selected
were fully pipelined.

In our experiments, we have aimed to maximize the design throughput by
targeting full utilization of the FPGA. To ensure this, we ran preliminary exper-
iments to calculate how many adders and multipliers would fit on the selected
FPGA. For matrix-matrix multiplication of square matrices of order n×n (where
n is a power of 2), a näıve algorithm requires n multipliers and n − 1 adders.
After having an estimate of resources used by each precision’s arithmetic oper-
ators, the next step in the design process was to divide up the total available
resources on the FPGA and find the approximate number of arithmetic units
that can be implemented.

For matrix-matrix multiplication of large matrices, blocking was used to divide
up the matrix. The block size should be small enough to be stored on the on-
chip RAM but large enough to hide external memory latency. A moderate size
of 64× 64 was chosen that suits both conditions. However, for this section it is
assumed that all the data is already stored in on-chip Block RAM for multiplying
64x64 matrix and the results are to be stored in the same memory as well. A
discussion of more realistic memory architecture can be found in [11] but for
large enough matrices, the throughput of calculations on individual 64 × 64
blocks should limit performance.

The FPGA logic utilization supports an implementation of 2n multipliers and
2n − 1 adders for a particular precision. This means, a block of 2n row elements
and 2n column elements can all be multiplied in parallel. A binary reduction
tree is then used to produce each element of the output matrix.

4 Results

In this section, we first consider the performance of different numerical precisions
on each separate platform. We follow this with a comparison of the relative



302 U.I. Minhas, S. Bayliss, and G.A. Constantinides

performance achievable on an FPGA or GPU when deploying different numerical
precisions.

For the GPU platform, Figure 1 shows the relative performance using each dif-
ferent precision. For each precision, the vertical-axis shows the number of floating
point operations which can be completed each second (in GFLOPs). In all preci-
sions, where large enough matrices are multiplied, the problem is compute-bound
by the throughput of the individual floating-point operators. This throughput
varies for each precision with double-precision calculations achieving approxi-
mately 2.3× lower throughput than single-precision operators ( 200GFLOPs vs
85GFLOPs).

The double-double precision computation implemented on the GPU platform
achieves fewer than 8GFLOPs, approximately 11× slower than the double pre-
cision computation. This is in line with predictions since each double-double
operation requires 7 double-precision operators and each addition requires 16 ba-
sic double precision operations. The half-precision floating point results deliver
on our expectation that when compute-bound, they mirror the single-precision
results.

Each different precision becomes compute-bound at a different matrix size.
This reflects the different memory-system overheads for each implementation.
Curiously, the half-precision does not deviate from the single-precision results.
This indicates that reduced-precision data storage has not delivered significant
benefits in improving memory-throughput. An interesting comparison would be
to compare these results with those generated using different matrix-blocking

 0

 50

 100

 150

 200

 250

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384
T

hr
ou

gh
pu

t (
G

F
LO

P
S

)

Matrix Dimension Size

Half

Single

Double

Double-Double

Fig. 1. Comparison of GPU performance using different matrix sizes and operand
precisions



GPU vs FPGA: A Comparative Analysis for Non-standard Precision 303

Table 1. Logic utilization for FPGA implementations with varying precisions

Logic Utilization Half Single Double Dbl-dbl

Number of Slice Registers 35% 61% 43% 32%

Number of Slice LUTs 56% 92% 66% 82%

Number of Block RAM/FIFO 83% 83% 55% 27%

Number of DSP48E1s 80% 60% 100% 87%

sizes and thread-group allocations. This might be achieved using an auto-tuned
GPU library such as Atlas [12].

For the FPGA platform, Table 1 shows how logic utilization varies for various
target precisions. Each precision must match the ratio of addition operators to
multiplication operators necessary for the algorithm to the ratio which can be
delivered by the FPGA fabric. For single and double precision implementations,
the designs utilize greater than 90% of LUT and DSP48 resources respectively.
This high-utilization is not achieved for the half precision implementation, where
Block RAM availability, specifically port availability, limits the number of oper-
ators which may be implemented on the FPGA.

Table 2 shows the performance that can be achieved using the FPGA im-
plementations. All implementations target 64× 64 matrix block sizes. The table
indicates that single precision FPGA implementations achieve approximately 3×
the compute throughput of double-precision implementations (∼68GFLOPS vs
∼23GFLOPS). Where double-double precision is used, the FPGA implementa-
tion achieves 5GFLOPS, a 16× reduction over the performance of single pre-
cision. The specialized compute operators for half-precision operators mean a
half-precision implementation can reach 83GFLOPS, a 1.2× improvement over
single precision.

To compare the performance of the two platforms, Table 2 shows the
achievable performance (in GFLOPs) for different matrix sizes and precisions.
Where results are presented in grey, they indicate the FPGA implementation
has achieved greater computational throughput than the equivalent GPU im-
plementation. These cases occur when smaller matrices are multiplied and is a
direct result of the large overhead of executing a GPU kernel and higher memory
latency in our GPU implementation.

These results are represented graphically in Figure 2. This graph makes clear
the very significant performance penalty that GPUs face when moving from
hardware-supported single and double precision operation to using non-native
double-double precision operations. By comparison, the FPGA implementations
see a much more gradual degradation of performance as the numerical accu-
racy of operators is increased. This can be attributed to the specialized circuits
produced by the Coregen [4] and FloPoCo[5] tools.

Overall, the results suggest that for large dense matrices and for sufficiently
large matrices, GPU platforms deliver greater throughput than competing FPGA
platforms, but for smaller matrices, the combination of specialized operator
structures and the absence of large kernel setup times makes FPGA implemen-
tation competitive.



304 U.I. Minhas, S. Bayliss, and G.A. Constantinides

 0.01

 0.1

 1

 10

 100

 1000

Half Single Double Double-Double

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

FPGA 64x64
GPU 64x64

GPU 128x128
GPU 256x256

GPU 1024x1024

Fig. 2. Comparison of FPGA and GPU performance for various precisions and matrix
sizes

Table 2. Performance (in GFLOPS) for varying precisions and matrix sizes in FPGA
and GPU implementations

Precision
Performance (GFLOPS)

FPGA
64x64

(on-chip)

GPU
64x64

GPU
128x128

GPU
256x256

GPU
1024x1024

Half 83.12 8.09 42.45 135.3 199.17

Single 67.68 9.039 45.59 137.5 198.98

Double 22.9 5.825 28.72 63.79 85.06

Double-Double 4.93 0.047 0.33 0.771 7.60

5 Conclusion and Future Work

This work focused on analyzing the performance of non-standard precision on
GPU and FPGA. An arithmetically dense program, matrix-matrix multiply, was
implemented for various data sizes. The results showed that GPU implementa-
tions outperforms FPGA for larger data sizes but underperform for smaller sizes
where the memory latency and kernel start overhead become significant. FP-
GAs have good vendor support for custom floating-point formats and we would
expect this gap to increase further, in favour of FPGA implementation if even
more exotic number representation were selected.

While this work has delivered a comparison of the throughput of the two
platforms, other performance metrics warrant further investigation. Firstly, the
accuracy of computations; in this work the non-standard precision results were
converted to single or double precision on the same platform and compared for
correctness with a verified matrix-matrix multiplication running on the same
platform. Because of the error induced while converting between formats, this
error criteria may be unduly lenient. However for future work, the results can



GPU vs FPGA: A Comparative Analysis for Non-standard Precision 305

be compared with a verified library to precisely estimate the correctness of non-
standard computations.

Comparison of power and energy usage will also be an interesting study. With
massively parallel supercomputing systems comprising of hundreds of GPUs and
FPGAs a specific value of watts/GFLOPS for non-standard precision can be a
key specification in system design.

Finally, the comparison can be extended to different benchmarks. GPUs are
tuned to deliver very high performance for matrix-matrix multiply calculations.
We would expect the gap in performance between the two platforms to narrow in
other algorithms where the flexible memory systems and efficient synchronization
allow FPGAs to achieve a higher proportion of peak performance than GPUs.

References

1. Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., LeBlanc, A.: Design of Ion-
Implanted MOSFET’s with Very Small Physical Dimensions. IEEE Journal of
Solid-State Circuits 9(5), 256–268 (1974)

2. NVIDIA Corporation, Santa Clara, U.: Tesla C1060 Computing Processor Board
(January 2010)

3. Xilinx Corporation: Virtex-6 Family Overview. Technical Report DS150 (January
2012)

4. Xilinx Corporation: LogiCORE Floating-Point Operator v5.0. (2011)
5. De Dinechin, F., Pasca, B.: Designing Custom Arithmetic Data Paths with

FloPoCo. IEEE Design & Test of Computers 28(4), 18–27 (2011)
6. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune Dense Linear Algebra. In:

Proceedings of the 2008 ACM/IEEE conference on Supercomputing, p. 31. IEEE
Press (2008)

7. NVIDIA Corporation: CUBLAS library v5.5. Technical report (2013)
8. NVIDIA Corporation: CUDA library documentation 4.1,

http://developer.download.nvidia.com/compute/cuda/4 1/rel/toolkit/

docs/online

9. Thall, A.: Extended-Precision Floating-Point Numbers for GPU Computation. In:
ACM SIGGRAPH 2006 Research posters, p. 52. ACM (2006)

10. Lu, M., He, B., Luo, Q.: Supporting Extended Precision on Graphics Processors.
In: Proceedings of the Sixth International Workshop on Data Management on New
Hardware, pp. 19–26. ACM (2010)

11. Minhas, U.: GPU vs FPGA: A Comparative Performance Analysis for Non-
Standard Precision. Master’s thesis, Imperial College London (2013)

12. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimizations of
Software and the ATLAS project. Parallel Computing 27(12), 3–35 (2001)

http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online


 

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 306–311, 2014. 
© Springer International Publishing Switzerland 2014 

Instruction Extension and Generation  
for Adaptive Processors 

Chao Wang1, Xi Li1, Huizhen Zhang2, Liang Shi3, and Xuehai Zhou1 

1 School of Computer Science, University of Science and Technology of China 
2 School of Computer Science, Huaqiao University 

3 School of Computer Science, Chongqing University 
saintwc@mail.ustc.edu.cn, zhanghz@hqu.ustc.edu.cn 

shiliang@cqu.edu.cn,{llxx,xhzhou}@ustc.edu.cn 

Abstract. Adaptive reconfigurable instruction-set processors (RISP) is an 
emerging research field for state-of-the-art VLIW processors. However, it still 
poses significant challenges to generate and map the original codes to the cus-
tom instructions. In this paper we propose an architecture framework to extend 
new instructions for adaptive RISP. The selected hotspot is considered as a cus-
tom instruction and implemented in reconfigurable hardware units. An instruc-
tion generator is used to provide a mapping mechanism from hot blocks to 
hardware implementations, using data flow analysis, instruction clustering, sub-
graph enumerating and subgraph merging techniques. To demonstrate the effec-
tiveness and performance of the framework and to verify the correctness of the 
mapping mechanism, a prototype instruction generator has been implemented. 

Keywords: Instructions Extension, Adaptive Multicore Processors. 

1 Introduction and Background 

Reconfigurable instruction-set processor (RISP) is one of the most important domains 
to which reconfigurable computing technologies have been applied. RISP combines a 
general purpose processor and a reconfigurable logic unit into a sound framework, 
which enables RISP to adapt instruction-set architectures to a specific application. 
Compared to other state-of-the-art reconfigurable systems, RISP is also taking bene-
fits from traditional application specific instruction processor (ASIP) design metho-
dologies with the additional implementation of reconfigurable instruction-set.  

However, RISP design still poses significant challenges on several key issues. The 
ISA of RISP can be adaptively reconfigured after fabrication, which makes compre-
hensive differences with traditional processors [1]. Due to the hardware resources 
limitation of a single FPGA device, it is essential to carefully choose the hotspots of 
applications for hardware implementation. During the instruction extension process, 
the identification, definition and implementation of those selected operations provid-
ing the largest performance improvement should be hardwired. 

In this paper, we propose a custom instruction generation and mapping method for 
RISP. The main contributions of this article are extensions to our previous research in 



 Instruction Extension and Generation for Adaptive Processors 307 

 

[2] and can be summarized as follows: we present instruction-set extensions and can-
didates selection algorithms; we propose a custom instruction-set extension algorithm 
for RISP, including data flow analysis, instruction clustering, subgraph enumerating 
and subgraph merging. Experiments show that the algorithm could handle all the non-
trivial custom instruction candidates efficiently. 

2 Instruction Extension and Generation 

Given the target functions as hotspots, custom instructions should be selected and 
considered to be implemented via hardware logic blocks. Traditionally custom in-
structions are usually generated from data flow chart in front-end analyzing tools. In 
this paper, the custom instructions are generated statically after hotspot information is 
obtained. In our algorithm there are two parts: data flow analysis and instruction-set 
extension. Moreover, the instruction-set extension process includes both the instruc-
tion selection and generation. 

2.1 Data Flow Analysis 

Data flow analysis is employed to analyze the generated instruction sequence and 
choose the custom instructions. Since all the instructions are regarded as the nodes in 
a data flow graph (DFG), we first designed an algorithm named BuildDFG to gener-
ate the target custom instructions. The instruction extension process is shown in Fig.1. 

 

Fig. 1. InstructionSet Extension Process 



308 C. Wang et al. 

 

In this paper, the codes between two branch instructions are regarded as a basic 
block. BuildDFG maintains a register table to keep the record of the producers of data 
flow. Once a new instruction arrives, the register table is looked up to check whether 
data already exists in the table. If not, then the associated registers are marked as  
LiveIn registers; once the basic block is finished, all the non-empty registers are 
marked as LiveOut registers. The BuidDFG algorithm is shown in Algorithm 1. 

 
Algorithm 1.  BuildDFG algorithm                   
Input: Basic Block, SrcReg, DestReg 
Output: LiveIn Registers and LiveOut Registers 
1:   for i = 0 to num of insts in basic block do 
2: dreg = getdestreg(bb [i]); 
3: sreg1 = getsrcreg1(bb [i]);  
4: sreg2 = getsrcreg1(bb [i]); 
5: sindex1 = getproducer(sreg1); 
6: if sindex1 = = -1 then 
7:  marklivein(sreg); 
8: end 
9: sindex2 = getproducer(sreg2); 
10: if sindex2 = = -1 then 
11:  marklivein(sreg2); 
12: end 
13: setproducer (dreg,i); 
14: setrefindex (sreg1,i); 
15: setrefindex (sreg2,i); 
16: end  
  
This algorithm outlines how the data flow is analyzed by building a data flow 

graph. The input parameters of BuildDFG consist of the basic block, source and des-
tination registers, while the output parameters are LiveIn and LiveOut registers. The 
algorithm looks up for every basic block to mark the registers to source registers 
(Sreg) or destination registers (Dreg). The Sreg and Dreg identify the input and output 
parameters for custom instructions. 

2.2 Instruction-Set Extension 

Some instructions, such as memory access (Load & Store) instructions, are not cost 
effective and are not included in custom instructions. Moreover, there are limitations 
that should be considered during instruction-set extension: 

— Number of Operands. Considering the limitation of the register ports, the operand 
number must not overpass the number of registers. 

— Number of custom instructions. The size of instruction code limits the number of 
generated custom instructions. 



 Instruction Extension and Generation for Adaptive Processors 309 

 

— Area constraints. All the custom instructions are implemented in hardware (e.g., 
FPGA, CPLD), thus their hardware implementations area must not exceed the 
area limitations. 

Generally, the instruction-set extension problem can be defined as a graph problem 
which is described as follows: 

Definition 1: Construct a directed acyclic graph G (V, E) which represents the data 
dependencies between different instructions, in which V represents instructions, while 
E represents data relations. In the graph, each vertex v represents nodes included in 
custom instructions. Assume P is the node set under processing. All nodes which 
require external data are in IN(P), and those producing external data are in OUT(P). 
The limitations of the number of inputs and outputs are Min and Mout, respectively. 
PATH (u, v) is the path from node u to node v. The custom instruction problem is to 
find a suitable node set P to meet the following constraints: first the node number in 
IN(P) and OUT(P) should not exceed the limitation of Min and Mout,. Then for each 
pair of nodes vi and vj in P and vk not in P, the path between vi and vk and vj and vk 
should not share any common nodes. 

Since in the instruction sequences not all the instructions have data hazards, the se-
quences can be divided into several clusters. All the clusters have no data dependence 
between each other, so we only need to check the constraints inside each cluster and 
then combine the clusters. 

The number assigned to each node indicates the execution order. In one cluster, 
each instruction has data paths to every other instructions. Different clusters need to 
be marked with different colors corresponding to different categories. The algorithm 
is described in Algorithm 2. 

Algorithm 2.  Cluster marking algorithm 
Input: G (V, E) 
Output: Mark for G (V, E) 
1:   for i = 0 to num_nodes do 
2:    n = g.vGraph [i]; 
3: if isValidNode(n) != OK then 
4:  continue; 
5: end 
6: regmark=(mark[i]==-1)?regionnum + 1 : mark [i]; 
7: regmark = getminregmark(); 
8: if regmark = =regionnum + 1 then  
9:  regmark = regionnum++; 
10: else 
11:  collectremarknodes(remarklist);  
12:  mark [i] = regmark; 
13:  for j = 0 to succ_index do  
14:   mark [successors [j]] = regmark; 
15:  end 
16:  regmark(remarklist,regmark);  
17: end 
18: end   



310 C. Wang et al. 

 

The marking algorithm checks each node in the graph. First it checks whether the 
current node is valid. The term regmark refers to the number of successor nodes al-
ready marked. The function getminregmark() in line 7 returns the minimum ID from 
the current node and all its successor nodes. If all the successor nodes and the current 
node have not been marked, then a new cluster is created including all these nodes. 
Otherwise, the marks of the successor nodes should be updated (lines 12-17). 

3 Mapping Instructions to Reconfigurable Logic  

In this section, we illustrate an example of mapping instructions to reconfigurable 
logic. The hardware architecture is based on our previous starnet architecture [3], 
while the scheduling method [4] and programming models [5] are from the state-of-
the-art. Custom instructions are mapped to our reconfigurable logic array architecture. 
In this paper, we introduce an automatic mapping method using producer-consumer 
techniques. The logic array is deployed when the program is executed for the first 
time. The producer of a parameter refers to the hardware module where the instruc-
tion is mapped to. 

The automatic mapping procedure first looks up the producers of sources registers. 
If a certain register has no producers, then it is marked as LiveIn Registers, and the 
instruction is mapped to current level; otherwise, which means the register is pro-
duced by other instructions, the instruction can be only mapped to the next level. All 
the subsequent instructions cannot be mapped higher level than current instruction. 

In order to support the mapping method, three tables are integrated, one is used to 
store all the producers, and other two tables keep the records of LiveIn and LiveOut 
registers. The numbers of LiveIn and LiveOut registers refer to the input and output 
operands of custom instructions, respectively. Fig. 2 shows an example of the auto-
matic mapping scheme. 

```  

Fig. 2. An Example of Instruction Mapping 



 Instruction Extension and Generation for Adaptive Processors 311 

 

Assume we have four custom instructions: ANDI, ADDI, OR and SLLI. The map-
ping process is described as follows: (1) ANDI R3,R1,#4. After checking the produc-
ers of the instruction, R1 is marked to LiveIn registers since it does not have any  
producer. Meanwhile R3 is marked to LiveOut registers. The ANDI instruction is 
mapped to module A, which is also the producer of R3. (2) ADDI R3,R3,#1. The 
process is similar to (1). Since the R3 has a producer A, it should be mapped to the F 
block in level 2. The producer of R3 is updated to F as well. (3) OR R4,R2,R4. There 
are no producers for both R2 and R4, hence the OR instruction is mapped to G. R2 
and R4 are LiveIn registers, R4 is also the LiveOut register and G is the producer. (4) 
SLLI R4,R4,#2. The SLLI instruction can only be mapped to next level since the R4 
has a producer J. 

After the mapping procedure is finished, the reconfiguration controller needs to ex-
amine for the constraints, including whether the number of LiveIn and LiveOut regis-
ters exceed the table size, or if they could not be deployed simultaneously due to  
device limitations. Anyway, if a certain custom instruction fails the checking exami-
nation, the instruction is removed from the table. 

4 Conclusion and Future Work 

In this paper, we have presented an instruction-set extension method with dynamic 
compiler support for reconfigurable VLIW processors. The first step is to generate the 
custom instruction with a data flow analysis method. Due to area constraints, only 
part of the candidate instructions can be extended. Here we use a clustering algorithm 
to generate and select the instructions paths. Then the custom instructions are mapped 
to reconfigurable array units. We demonstrated the effectiveness of the mapping 
scheme and the instruction generation algorithm. Preliminary experiments on the 
Altera Nios II based FPGA board with NetBench and MiBench revealed speedups 
from 1.7x to 5.1x of our approach over the traditional sequential execution. 

Acknowledgments. This work was supported by the National Science Foundation of 
China under grants No. 61379040, No. 61272131 and No. 61202053, Jiangsu Provin-
cial Natural Science Foundation grant No. SBK201240198. 

References 

1. Galuzzi, C., Bertels, K.: The Instruction-Set Extension Problem: A Survey. TRETS 4(2), 18 
(2011) 

2. Wang, C., Zhang, H., Zhou, X., Ji, J., Wang, A.: Tool Chain Support with Dynamic Profil-
ing for RISP. In: 9th IEEE International Symposium on Parallel and Distributed Processing 
with Applications (ISPA 2011), Busan, Korea, May 26-28, pp. 155–160 (2011) 

3. Wang, C., Li, X., Zhang, J., Zhou, X., Wang, A.: A Star Network Approach in Heterogene-
ous Multi Processors System on Chip. The Journal of Supercomputing 62(3), 1404–1424 

4. Wang, C., Li, X., Zhang, J., Zhou, X., Nie, X.: MP-Tomasulo, A Dependency-Aware Au-
tomatic Parallel Execution Engine for Sequential Programs. ACM Transactions on Archi-
tecture and Code Optimization (TACO) 10(2), 9 

5. Wang, C., Chen, P., Li, X., Feng, X., Zhou, X.: FPM, A Flexible Programming Model for 
MPSoCs. In: 19th Reconfigurable Architecture Workshop (RAW 2012), pp. 477–484 (2012) 



DeSyRe: On-Demand Adaptive

and Reconfigurable Fault-Tolerant SoCs�

I. Sourdis1, C. Strydis6, A. Armato7, C.-S. Bouganis5, B. Falsafi3,
G.N. Gaydadjiev1, S. Isaza6, A. Malek1, R. Mariani7, S. Pagliarini2,
D.N. Pnevmatikatos4, D.K. Pradhan2, G. Rauwerda8, R.M. Seepers6,

R.A. Shafik2, G. Smaragdos6, D. Theodoropoulos4, S. Tzilis1,
and M. Vavouras5

1 Computer Science and Engineering, Chalmers University of Technology, Sweden
2 Computer Science Dept., University of Bristol, UK

3 Computer and Communication Sciences, EPFL, Switzerland
4 ICS, Foundation for Research and Technology Hellas (FORTH), Greece

5 Electrical and Electronic Engineering Dept., Imperial College London, UK
6 Neurasmus B.V., The Netherlands

7 Yogitech SpA, Italy
8 Recore Systems B.V., The Netherlands

sourdis@chalmers.se

Abstract. The DeSyRe project builds on-demand adaptive, reliable
Systems-on-Chips. In response to the current semiconductor technology
trends thatmake chips becoming less reliable,DeSyRedescribes a newgen-
eration of by design reliable systems, at a reduced power and performance
cost. This is achieved through the following main contributions. DeSyRe
defines a fault-tolerant system architecture built out of unreliable compo-
nents, rather than aiming at totally fault-free and hencemore costly chips.
In addition, DeSyRe systems are on-demand adaptive to various types and
densities of faults, as well as to other system constraints and application
requirements. For leveraging on-demand adaptation/customization and
reliability at reduced cost, a new dynamically reconfigurable substrate is
designed and combined with runtime system software support. The above
define a generic and repeatable design framework, which is applied to two
medical SoCs with high reliability constraints and diverse performance
and power requirements. One of the main goals of the DeSyRe project is
to increase the availability of SoC components in the presence of perma-
nents faults, caused at manufacturing time or due to device aging. A mix
of coarse- and fine-grain reconfigurable hardware substrate is designed to
isolate and bypass faulty component parts. The flexibility provided by the
DeSyRe reconfigurable substrate is exploited at runtime by system opti-
mization heuristics,which decide tomodify component configurationwhen
a permanent fault is detected, providing graceful degradation.

1 Introduction

In the coming nanoscale era, chips are becoming less reliable, while manufac-
turing fault-free chips is becoming increasingly more difficult and costly [2].

� The DeSyRe Project is supported by the European Commission Seventh Framework
Programme, grant agreement no 287611. www.desyre.eu

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 312–317, 2014.
c© Springer International Publishing Switzerland 2014

www.desyre.eu


DeSyRe: On-Demand Adaptive and Reconfigurable Fault-Tolerant SoCs 313

Prominent causes for this are the shrinking device features, the sheer number
of components on a given area of silicon, as well as the increasing complexity
of current and future chips. It is expected that a significant number of devices
will be defective already at manufacture time and many more will degrade and
fail within their expected lifetime. Furthermore, process variations as well as the
increasing number of soft errors introduce more errors in future chips.

As feature size continues to shrink and chips become less reliable, the cost
for delivering reliable chips is expected to grow for future technology nodes.
Providing reliable systems incurs substantial overheads in power and energy
consumption, performance and silicon area. However, it is a well-known fact that
power consumption is becoming a severe problem, while performance no longer
scales very well (mostly due to power-density limitations). To reduce some of
the above overheads, the DeSyRe project aims at reliable systems containing
and tolerating unreliable components rather than targeting totally fault-free
systems [1]. Our goal is to describe a new, more efficient design framework for
SoCs, which provides reliability at lower power and performance cost.

Although technology trends make the design of future SoCs harder, one of
them can be turned to our advantage. The increasing power density limits
gate density. In a few years, significant parts of a chip will be forced to re-
main powered-down in order to keep within the available power budget [4]. In
DeSyRe, we capitalize on this observation and propose to exploit the aforemen-
tioned unused resources to offer flexibility and reconfigurability on a chip. Until
recently, reconfigurable hardware had a significant resource overhead; however,
as explained above, this limitation no longer exists as on-chip resources are be-
coming cheaper. A dynamically reconfigurable hardware-substrate can provide
an excellent solution for defect tolerance; it can be used to adapt to faults on
demand, isolate and correct defects, as well as to provide spare resources to
substitute defective blocks. In the DeSyRe project, we intend to use such a re-
configurable substrate and combine it with system-level techniques to provide
adaptive and on-demand reliable systems.

The remainder of the paper is organized as follows: Section 2 gives an overview
of the DeSyRe design framework. Section 3 describes the DeSyRe reconfigura-
bility that offers the flexibility to tolerate permanent faults on a SoC. In Section
4, we present the DeSyRe runtime system adaptation techniques, which exploit
the above hardware flexibility and provide graceful degradation. Finally, we draw
our conclusions in Section 5.

2 The DeSyRe Project: On-Demand System Reliability

The DeSyRe project describes a generic design framework for fault-tolerant het-
erogeneous SoCs. The DeSyRe framework is partitioned across two orthogonal
design dimensions: a physical and a logical abstraction. The physical partition-
ing considers that different parts of the chip are manufactured to have different
vulnerability to faults, considering for instance different technological substrates
(with different fault densities) or having different design approaches. The logical



314 I. Sourdis et al.

DeSyRe System-on-Chip
Fault Free Area Fault Prone Area

IP-core
Library

Processing
Element

Ru
nT

im
e

M
id

dl
eW

ar
e

Task 
descrip.

DSP
Custom 
Block

DSP
Custom 
BlockRISC

RISC

 

Fig. 1. DeSyRe SoC physical partitioning with a fault-free section for SoC management
and a fault-prone section for SoC functionality

partitioning considers the same framework from the viewpoint of functionality
(i.e. which part of the system does what).

Figure 1 illustrates the physical partitioning of the DeSyRe SoC. The design
area is physically divided into a fault-free (FF) section providing overall system
management and a fault-prone (FP) section providing the actual system func-
tionality. The motivation for this partitioning is to reduce the chip cost: Design-
ing a totally fault-free system is expensive, thus having a small and lightweight
FF SoC part is expected to incur lower overheads. The FF section is required to
provide centralized, system-wide control of the SoC, aiming to provide Quality of
Service (QoS) attributes such as performance, low power consumption, resource
utilization and fault tolerance. The various techniques through which this will
be achieved involve an efficient combination of: online fault tolerance, runtime
task scheduling and resource allocation, reconfiguration schemes to achieve flex-
ible and defect-tolerant operation. The FP section is under the direct control of
the FF section. It contains various components realized in the DeSyRe recon-
figurable substrate. The components implement the main system functionality
based on the target application (domain). They are required to exhibit, among
others, self-checking and self-correcting properties, working in tight synergy with
those of the FF section.

The logical partitioning organizes the DeSyRe SoC in three main layers.
Figure 2 depicts the layers from bottom to top: components, middleware and run-
time system. This subdivision is based on the abstraction level involved and the
tasks handled by each layer. The bottom layer deals with fault-tolerance issues of
eachComponent (i.e. unit which delivers a specific functionality) in the FP sec-
tion, individually. Each component is enhanced with local fault detection and pos-
sibly correctionmechanisms, hardware reconfigurability options, and a wrapper to
interface with the FF part of the SoC. The second (software) layer, calledMiddle-
ware, is located in the FF part of the SoC and is responsible for the dynamic re-
configuration of hardware resources implemented in the (fine- and/or coarse-grain)
reconfigurable substrate of FP section. The third (software) layer is theRuntime
System, also located in the FF part of the SoC. The basic functionality of the



DeSyRe: On-Demand Adaptive and Reconfigurable Fault-Tolerant SoCs 315

L3: Runtime System:
Task scheduling
Adaptive Checkpointing
Alternative task descr.

L2: Middleware:
HW reconfiguration
Place and Route
Component sharing

L1: Components:
Self checking
Self correcting
Variable modes
Context switching
Self awareness

Fa
ul

t F
re

e 
Se

ct
io

n
Fa

ul
t P

ro
ne

 S
ec

tio
n

CL
1:

 O
nl

in
e 

te
st

in
g

CL
2:

 G
ra

ce
fu

l d
eg

ra
da

tio
n

CL
3:

 V
irt

ua
liz

at
io

n 
Su

pp
or

t

20%

T6

shared

T3

T2

T1

80%

T4

T5

DeSyRe Abstraction Layers

Fig. 2. Logical partitioning of a DeSyRe SoC: Components layer (SoC functionality),
Middleware layer and Runtime-System layer (SoC management)

Runtime System is to schedule tasks to components, to ensure the best quality of
service for the soft real-time portion of the applications, and to adapt the system
in the presence of faults. Finally, DeSyRe has three distributed tasks that span
across the three logical layers, since all three of them need to deal with and sup-
port them: (i) online testing, for permanent fault detection and diagnosis, (ii)
graceful degradation of performance and/or functionality when the availabil-
ity of SoC resources is reduced, (iii) virtualization support to allow tasks to be
executed on different, heterogeneous components.

3 The DeSyRe Reconfigurable Substrate

The DeSyRe framework relies significantly on a flexible and dynamically re-
configurable hardware substrate to isolate, replace and (when possible) correct
design and manufacturing defects as well as other permanent faults due to aging.
In previous works, the design choice was either coarse- or fine-grain granularity
of substitutable units; these are units that can be replaced when defective. In the
first case, the substitutable unit can be an entire sub-component (e.g. a micro-
processors pipeline stage) [3], while in the latter case an FPGA logic cell [5, 6].
There are tradeoffs between these two alternatives. Coarse-grain approaches are
less defect-tolerant - fewer defects can have large impact to the system - but lead
to solutions that are more power and silicon efficient. Fine-grain approaches can
tolerate a larger number of defects, but utilizing an FPGA-like substrate intro-
duces performance, power, and cost overheads.

One of the primary challenges in the DeSyRe project is to investigate the
architecture of the underlying hardware substrate for the DeSyRe SoC. DeSyRe
explores a granularity mix of fine- and coarse-grain underlying hardware in or-
der to provide increased defect-tolerance without giving away significant parts
of the system performance and power efficiency. Figure 3 depicts such an ex-
ample with two DeSyRe RISC components. In this example, each RISC proces-
sor is divided in smaller sub-components (pipeline stages implemented in fixed
hardware) surrounded by reconfigurable interconnects/wires. In the absence of



316 I. Sourdis et al.

SS SS S

SS SS S
s s s

Sub-component/ 
pipe-stage etc.

S’

Alternative 
implemen-
tation of s

Fine-grain Reconf. HW

Fine-grain Reconf. HW

LUT

RISC

RISC

Fig. 3. The novel DeSyRe flexible/reconfigurable hardware substrate

defects, the sub-components S will form the RISC component. However, in case a
sub-component is defective, it can be isolated using the reconfigurable intercon-
nects, and subsequently be replaced either by an identical unused neighboring
sub-component (S), or by a functionally equivalent instance (S) implemented in
fine-grain reconfigurable hardware.

Our preliminary results indicate that, for a given silicon area, compared to
core-level redundancy, the above mixed granularity reconfiguration increases the
availability of components up to ×4 when the probability to have a permanent
fault in a component is above 30%. Even when defect density increases above 1
defect per component, the DeSyRe reconfigurable substrate is able to preserve
the functionality of more than 50% of components. The overhead of coarse-grain
reconfigurability in the cycle time is about 15%; this overhead increases to ×3
when using fine-grain reconfigurable blocks.

Besides component reconfigurability, DeSyRe provides flexibility to tolerate
permanent faults at links and routers of a Network-on-Chip, while additionally
network traffic can be redirected to bypass and avoid faulty NoC resources.
Finally, another (compiler-assisted) fault avoidance technique is developed to
preserve the usage of partially faulty components; it offers alternative binaries
of the same application task, which avoid specific functional units of a processor.

4 Runtime System Adaptation and Graceful Degradation

A DeSyRe SoC is designed to be capable of managing the accumulation of faults
in the system in a graceful manner; in other words, to refrain from crashing and
instead decide to sacrifice part of the system functionality and/or performance.
Graceful Degradation is achieved in 3 different ways:

– Reconfiguration: The Runtime System exploits the reconfigurability capa-
bilities of the components, in order to tolerate permanent faults and tailor
the set of working components to the application needs. Reconfigurability



DeSyRe: On-Demand Adaptive and Reconfigurable Fault-Tolerant SoCs 317

is used to increase the availability of the SoC components, while partially
defective components are potentially used with reduced functionality.

– Workload Adaptation: The Runtime System has the ability to adapt the
workload of the system by dropping (low-priority) tasks or replacing tasks
with other that have different processing requirements (possibly less compu-
tationally intensive and less efficient/accurate).

– Task (re-)mapping: Given the dynamic nature of both the available system
resources and the software workload, the binding of tasks to resources may
also need to be modified. This can be used to facilitate Graceful Degradation:
If the number of available cores is reduced, the Runtime can either queue
more tasks on the remaining cores and expect them to be carried out slower
(performance degradation) or drop the least important tasks so that the rest
are performed without performance loss (functional degradation).

The runtime system contains fast heuristics to modify hardware configuration,
functionality (workload), and task mapping, using objective function, which re-
flects the system constraints (e.g. peak-power, available energy) and application
requirements (e.g. performance, functionality).

5 Conclusions

The increasing need for fault tolerance imposed by the currently observed tech-
nology scaling introduces significant performance and power overheads. In our
attempt to alleviate these overheads, the DeSyRe project will deliver a new gen-
eration of by design reliable systems, at a reduced power and performance cost.
This is achieved through the following main contributions. Rather than aiming
at totally fault-free chips, DeSyRe designs fault-tolerant systems built using
unreliable components. In addition, DeSyRe systems are on-demand adaptive
to various types and densities of faults, as well as to other system constraints
and application requirements. A new dynamically reconfigurable substrate is de-
signed and combined with runtime system software support in order to leverage
on-demand adaptation, customization, and reliability at reduced cost.

References

1. DeSyRe Project official website, http://www.desyre.eu/
2. Borkar, S.: Designing reliable systems from unreliable components: the challenges

of transistor variability and degradation. IEEE Micro 25(6), 10–16 (2005)
3. Gupta, S., Feng, S., Ansari, A., Blome, J., Mahlke, S.: The stagenet fabric for con-

structing resilient multicore systems. In: IEEE/ACM MICRO, pp. 141–151 (Novem-
ber 2008)

4. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Toward dark silicon in
servers. IEEE Micro 31(4), 6–15 (2011)

5. Skaggs, B., Emmert, J., Stroud, C., Abramovici, M.: Dynamic fault tolerance in
fpgas via partial reconfiguration. In: IEEE Symp. on FCCM (2000)

6. Tzilis, S., Sourdis, I., Gaydadjiev, G.: Fine-grain fault diagnosis for fpga logic blocks.
In: Int. Conf. on Field-Programmable Technology (FPT 2010) (December 2010)

http://www.desyre.eu/


Effective Reconfigurable Design:

The FASTER Approach�

D.N. Pnevmatikatos1, T. Becker2, A. Brokalakis8, G.N. Gaydadjiev3, W. Luk2,
K. Papadimitriou1, I. Papaefstathiou8, D. Pau7, Oliver Pell6, C. Pilato4,

M.D. Santambrogio4, D. Sciuto4, and Dirk Stroobandt5

1 Foundation for Research & Technology - Hellas, Greece
2 Imperial College London, UK

3 Chalmers University of Technology, Sweden
4 Politecnico di Milano, Italy
5 Ghent University, Belgium
6 Maxeler Technologies, UK
7 STMicroelectronics, Italy

8 Synelixis, Greece

Abstract. While fine-grain, reconfigurable devices have been available
for years, they are mostly used in a fixed functionality, “asic-replacement”
manner. To exploit opportunities for flexible and adaptable run-time
exploitation of fine grain reconfigurable resources (as implemented cur-
rently in dynamic, partial reconfiguration), better tool support is needed.
The FASTER project aims to provide a methodology and a tool-chain
that will enable designers to efficiently implement a reconfigurable system
on a platform combining software and reconfigurable resources. Starting
from a high-level application description and a target platform, our tools
analyse the application, evaluate reconfiguration options, and implement
the designer choices on underlying vendor tools. In addition, FASTER
addresses micro-reconfiguration, verification, and the run-time manage-
ment of system resources. We use industrial applications to demonstrate
the effectiveness of the proposed framework and identify new opportuni-
ties for reconfigurable technologies.

1 Introduction

Fine-grain, reconfigurable devices have been available for years in the form of
FPGA chips. Many of these devices support the dynamic modification of their
programming while they are operating (Dynamic Reconfiguration). However,
this ability remains mostly unused as FPGA devices are mostly used in a fixed
functionality, “asic-replacement” manner. This is due to the increased complex-
ity in the design and verification of a changing system. In addition to design
requirements, the process of creating (partially) reconfigurable designs is less
widespread and the corresponding tools are less friendly to the designers.

� The FASTER project is supported by the European Commission Seventh Framework
Programme, grant agreement #287804. http://www.fp7-faster.eu/

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 318–323, 2014.
c© Springer International Publishing Switzerland 2014

http://www.fp7-faster.eu/


Effective Reconfigurable Design: The FASTER Approach 319

Fig. 1. The FASTER tool-chain

We believe that in order to exploit the opportunities presented by flexible and
adaptable exploitation of fine grain reconfigurable resources, better analysis and
implementation tool-chains are needed. For example, in a Network Intrusion De-
tection System, packet contents are compared against suspicious content. This
can be efficiently done in FPGAs [1]. New threat identification results in new
rules that must be added to the system. Reconfigurable logic allows the incor-
poration of new functions to the baseline hardware system, combining hardware
speed with software-like flexibility.

The FASTER project (http://www.fp7-faster.eu/) aims to provide a method-
ology and a tool-chain that will enable designers to efficiently implement a recon-
figurable system on a platform combining software and reconfigurable resources
hiding asmuch as possible low-level technology details from the user. Figure 1 illus-
trates the envisioned tool-chain. Starting from a high-level application description
and a target platform, our tools analyse the application, evaluate reconfiguration
options, alter the application description to include reconfigurability, and imple-
ment the designer choices on the underlying vendor tools. In addition, FASTER
addresses micro-reconfiguration, a technique to reprogram very small portions of
the FPGAwhen a set of infrequently-changing parameters define the function of a
block [2], verification, and the run-time management of system resources. We use
industrial applications to demonstrate the effectiveness of the proposed framework
and identify new opportunities for reconfigurable technologies.

Technical progress of our work has been documented in technical papers that
can be found in http://www.fp7-faster.eu/. Practical achievements include the
integration of partial reconfiguration functionality in the Maxeler design flow [3],
and its demonstration of partial reconfiguration in a Maxeler platform using a
canny edge detection code, the use of micro-reconfiguration for a NIDS appli-
cation, and the application of our verification tools on a large scale application
(Reverse time migration) [4].



320 D.N. Pnevmatikatos et al.

The paper is structured as follows: In Section 2 we discuss related efforts
within the context of EU projects and the novel aspects of our work. Section 3
presents the designs methods and how we combine them to form the tool-chain,
while Section 4 discusses the way the system is controlled at run-time. Finally
Section 5 closes the paper.

2 Related Work and Novelty

Several efforts exist towards similar directions with FASTER project such as
the concurrent development of architecture and application for heterogeneous
systems. hArtes [5] was an EU-funded project targeting automatic paralleliza-
tion and generation of heterogeneous systems. It adopted OpenMP pragmas to
specify the parallelism automatically extracted from the initial sequential speci-
fication but it did not address any aspect related to reconfiguration or dynamic
execution. In FASTER we use the same formalism to represent the parallel ap-
plication, even if the partitioning is provided by the designer since automatic
parallelization does not fall into the project’s scope. Other EU-funded projects
such as REFLECT [6], ACOTES [7] and ANDRES [8] conducted research on the
necessary stages of a tool-chain and addressed similar issues with FASTER, but
they focused more on system-level or architectural aspects of reconfiguration.
Moreover, they did not explicitly emphasize on the design and runtime aspects
of partial and dynamic reconfiguration, or, on choosing the best reconfiguration
grain-size. Finally, the ERA project [9] adopts dynamic reconfiguration (with
low-level OS support) but it targets only a specific platform developed by the
consortium.

None of the existing approaches abstracts from the designer complex manip-
ulations needed to control effectively hardware accelerators, in particular when
these are designed as dynamically reconfigurable modules. Towards this direc-
tion, we aim at providing a general formulation, capable to deal with different
multiprocessor systems (targeting the embedded, desktop and high-performance
computing domains), supporting different hardware implementations for the
tasks and proposing a tool-chain that efficiently partitions the application, while
performing considerably more exploration on the possible solutions for the prob-
lem. In addition, it takes reconfiguration into account from the early stages of the
design process all the way to its runtime use, hiding most of the implementation
details from the user.

Other novelties of FASTER are the study of the way micro-reconfiguration is
integrated into a tool-chain and interacts with the other tools, and our verifica-
tion approach which applies equally to static, region-based, or micro-reconfigura-
tion without modification. Finally, we envision a Run-Time System Manager
(RTSM) able to support a wide range of platforms, thus we are studying the
extent to which it will be developed as a generic library.



Effective Reconfigurable Design: The FASTER Approach 321

3 Methods and Tool-Chain

The starting point of our front-end is a C application, whose initial decomposi-
tion is described with OpenMP pragmas, and an XML file containing the target
architecture definition (#processing elements, HW/SW tasks characterization,
their different implementations and so on). The application task graph is derived
and partitioned to determine which processing element (PE) will execute each
of the tasks. Our tool-chain performs the following processing steps:

Application profiling and identification of reconfigurable cores : This step analy-
ses the C-code, identifies tasks that could be moved to reconfigurable hardware,
and partitions the application accordingly. Based on the initial source code of
the application and the description of the target architecture, it decomposes the
application into tasks and assigns them to the different components of the archi-
tecture. It can also receive information about the achieved performance of the
current task assignment, and feedback after the identification of the schedule
(e.g. how the partitioning affects the computed schedule) to improve the solu-
tion. It also determines (i) the best reconfiguration level (none, region- or micro
reconfiguration) for each of the HW cores, and (ii) the properties of the identi-
fied tasks, such as the frequency of call functions and parameters changing, the
resources required by the implementations, and the execution performance. This
processing includes analysis of the call graph, estimation of data transfers, and
source code profiling.

High-level Analysis : This step explores various implementation options for ap-
plications (or parts of applications) that target reconfigurable hardware and
identifies automatically opportunities for run-time reconfiguration. The explo-
ration is performed based on high-level design estimates to avoid time-consuming
iterations in the design process, and produces estimates of implementation at-
tributes such as area, computation time, and reconfiguration time; these can
be looped back to the Application profiling and identification of reconfigurable
cores step, to perform iterative design optimizations for arithmetic operations
presentation, computational precision, and parallelism in the implementation.
The High-level Analysis also provides an automatic way to suggest opportu-
nities for reconfiguration, such as partitioning of the application into several
reconfigurable components.

Optimizations for region- and micro-reconfiguration: This step receives the de-
scriptions of the tasks, i.e. the corresponding source code, that could benefit
from the reconfiguration and it produces new and optimized implementations
for them to be considered for the task mapping. This analysis will be performed
also through dynamic profiling of the application tasks to determine the param-
eters for the micro-reconfiguration and through the identification of isomorphic
sub-graphs for supporting the data-path merging and thus reducing the number
of reconfigurations.



322 D.N. Pnevmatikatos et al.

Compile-time scheduling and mapping onto reconfigurable regions : It receives
information about the application and the architecture from the two previous
processing steps, focusing on the tasks assigned to the reconfigurable hardware,
and it determines their scheduling along with the mapping of the cores onto the
reconfigurable regions. In particular, it determines the number and the charac-
teristics (e.g. size) of these regions, the number and the size of each input/output
point, and also takes into account the interconnection infrastructure of the sys-
tem (e.g. bus size). Also, it schedules the resulting implementation and annotates
the characterization part with such information to further refine the specifica-
tion. It annotates the tasks with information about the feasibility of the imple-
mentation where the solution is specified (i.e. if the reconfigurable region can
satisfy the resource requirements) and it provides feedback to the partitioning
methodology to further refine the solution.

Verification: To verify that a simple, unoptimized design (the source) implements
the same behaviour as an optimized, possibly reconfiguring design (the target),
we combine symbolic simulation with equivalence checking. The source and tar-
get designs are first compiled for a symbolic simulator, which then stimulates
the design with symbolic inputs, rather than the numerical or Boolean inputs
used in traditional approaches. Equivalence checking is used to check symbolic
outputs from source and target designs that may differ but still be equivalent
(for example b+ a instead of a+ b). If symbolic outputs from source and target
designs are equivalent for all inputs, the designs are proved equivalent, otherwise,
the first input with different outputs can be used to debug the target design.

4 Run-Time System

The Run-Time System Manager (RTSM) is responsible for managing resources,
scheduling SW and HW tasks, and enforcing adaptation of the system according
to functional and non-functional parameters (e.g. temperature) for applications
developed with the FASTER tool-chain. Its basic components and functionality
were presented abstractly in [10]. The concept of its development relies on the
work initially published in [11]. Here we describe briefly its first implementa-
tion, which takes into account all known restrictions imposed by the current PR
technology.

Figure 2 illustrates how the RTSM is generated, its basic components and ac-
tions. RTSM basic functionality is specified by the baseline scheduler contained
in the XML file. The XML contains the available runtime alternatives to recon-
figure the regions, the representation of the task graph, the number of iterations
for each task, and additional information about each task which will be used for
the scheduling, e.g. power consumption, reconfiguration time, execution time.
The necessary information retrieved from the XML file is used for feeding the
RTSM structures.



Effective Reconfigurable Design: The FASTER Approach 323

placement (>1 PRRs)
trigger reconf (transparent)
start execution
avoid reconf (reuse)
reconf_scheduling
exec_scheduling
relocation
reservation
caching
prefetching
micro-reconfiguration
thermal-scheduling
power-scheduling

tag <exec_time>;
tag <reconf_time>;
tag <power value>;
tag <schedule>;
…

RTSMstatic input (XML)

dynamic input list of actions

status of each PE
status of each task
temperature
…

update 
structures

p
a
r
s
e

Placer
Scheduler

Loader
Translator

Fig. 2. RTSM inputs, characteristics and operations

5 Conclusions

The FASTER project enhances various aspects in designing modern computing
systems. The main challenge is the inclusion of reconfiguration as an explicit
design concept. To do this we are developing new design methods and a tool-
chain for efficient and transparent use of reconfiguration.

References

1. Sourdis, I., Pnevmatikatos, D., Vassiliadis, S.: Scalable Multi-Gigabit Pattern
Matching for Packet Inspection. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 16(2), 156–166 (2008)

2. Bruneel, K., Stroobandt, D.: Automatic Generation of Run-Time Parameterizable
Configurations. In: IEEE International Conference on Field Programmable Logic
and Applications (FPL), pp. 361–366 (August 2008)

3. Cattaneo, R., Pilato, C., Mastinu, M., Kadlcek, O., Pell, O., Santambrogio, M.D.:
Runtime Adaptation on Dataflow HPC Platforms. In: NASA/ESA Conference on
Adaptive Hardware and Systems (AHS) (June 2013)

4. Todman, T., Luk, W.: Verification of Streaming Designs by Combining Symbolic
Simulation and Equivalence Checking. In: IEEE International Conference on Field
Programmable Logic and Applications (FPL) (August 2012)

5. http://www.hartes.org/ (accessed 2012)
6. http://www.reflect-project.eu/ (accessed 2012)
7. http://www.hitech-projects.com/euprojects/ACOTES/ (accessed 2014)
8. http://andres.offis.de/ (accessed 2014)
9. http://www.era-project.eu/ (accessed 2014)

10. Pnevmatikatos, D., Becker, T., Brokalakis, A., Bruneel, K., Gaydadjiev, G., Luk,
W., Papadimitriou, K., Papaefstathiou, I., Pell, O., Pilato, C., Robart, M., San-
tambrogio, M.D., Sciuto, D., Stroobandt, D., Todman, T.: FASTER: Facilitating
Analysis and Synthesis Technologies for Effective Reconfiguration. In: Euromicro
Conference on Digital System Design (DSD) (September 2012)

11. Durelli, G., Pilato, C., Cazzaniga, A., Sciuto, D., Santambrogio, M.D.: Auto-
matic Run-Time Manager Generation for Reconfigurable MPSoC Architectures. In:
IEEE International Workshop on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC) (July 2012)

http://www.hartes.org/
http://www.reflect-project.eu/
http://www.hitech-projects.com/euprojects/ACOTES/
http://andres.offis.de/
http://www.era-project.eu/


HARNESS Project: Managing Heterogeneous

Computing Resources for a Cloud Platform�

J.G.F. Coutinho1, Oliver Pell2, E. O’Neill3, P. Sanders2, J. McGlone3,
P. Grigoras1, W. Luk1, and C. Ragusa3

1 Imperial College London, UK
2 Maxeler Technologies, UK

3 SAP HANA Cloud Computing, Systems Engineering, Belfast, UK
jgfc@doc.ic.ac.uk

Abstract. Most cloud service offerings are based on homogeneous com-
modity resources, such as large numbers of inexpensive machines in-
terconnected by off-the-shelf networking equipment and disk drives, to
provide low-cost application hosting. However, cloud service providers
have reached a limit in satisfying performance and cost requirements for
important classes of applications, such as geo-exploration and real-time
business analytics. The HARNESS project aims to fill this gap by devel-
oping architectural principles that enable the next generation cloud plat-
forms to incorporate heterogeneous technologies such as reconfigurable
Dataflow Engines (DFEs), programmable routers, and SSDs, and provide
as a result vastly increased performance, reduced energy consumption,
and lower cost profiles. In this paper we focus on three challenges for
supporting heterogeneous computing resources in the context of a cloud
platform, namely: (1) cross-optimisation of heterogeneous computing re-
sources, (2) resource virtualisation and (3) programming heterogeneous
platforms.

1 Overview

The current approach for building data centres is to assemble large numbers of
relatively inexpensive personal computers, interconnected by standard routers
and supported by stock disk drives. This model for cloud computing leverages
commodity computation, communication, and storage to provide low-cost appli-
cation hosting. The efficacy of this platform depends on the providers’ ability to
satisfy a broad range of application needs while at the same time capitalising on
infrastructure investments by making maximal use of the platform’s resources.
Two key concepts related to cloud data centres are managed multitenancy and
elasticity [6]. To support multitenancy, the provider must accommodate and rec-
oncile the resource needs of several applications simultaneously, while elasticity
allows an application to run on a platform using a pool of resources that can

� The HARNESS Project is supported by the European Commission Seventh Frame-
work Programme, grant agreement no 318521 http://www.harness-project.eu

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 324–329, 2014.
c© Springer International Publishing Switzerland 2014

http://www.harness-project.eu


HARNESS Project: Managing Heterogeneous Computing Resources 325

0.01

0.1

1

10

100

1000

10000

100000

10 100 1000 10000 100000 1000000 10000000

tim
e 

to
 p

ro
ce

ss
 (m

s)
 

number of impressions processed 

CPU (1 thread @2.67Ghz) CPU (20 threads @2.67Ghz) DFE @100Mhz

149 times  
slower than DFE 

9 times  
slower than DFE 
 

8 times  
faster than DFE 

9 times  
slower than DFE 
 

8 ti

3 times  
faster than DFE 
 

cutoff point: DFE  
becomes more profitable than  
the 20 threads CPU version 

Fig. 1. Results comparing three AdPredictor implementations running on a CPU and
DFE platforms. In this example, the size of the task (number of impressions to be
processed) affects how each implementation fares against other implementations.

grow and shrink over time. At play here are many conflicting concerns involving
application requirements, resource capacity and availability, and pricing.

The HARNESS project envisions an enhanced cloud Platform-as-a-Service
(PaaS) software stack that not only supports existing commodity technolo-
gies, but also incorporates heterogeneous technologies such as Dataflow Engines
(DFEs) [5], programmable routers and different types of storage devices, to pro-
vide vastly increased performance, reduced energy consumption, and lower cost
profiles. To realise this goal, we are working on a platform design that abstracts
the underlying infrastructure, enabled by runtime management systems, pro-
gramming tools and middleware layers.

In this paper, we focus on the problem of making effective use of specialised
computing resources, including DFEs and GPGPUs, in the context of a cloud
platform. In particular, we have identified three key challenges in addressing
this problem: performing global optimisation across a set of provisioned hetero-
geneous resources (Section 2), virtualising computing resources to enable sharing
in a multitenant environment (Section 3), and programming heterogeneous plat-
forms (Section 4).

2 Cross-Optimisation of Heterogeneous Resources

In current computational systems, heterogeneity is largely invisible to the oper-
ating system, and only minimal management functionality is provided. Acceler-
ators such as GPGPUs and FPGAs are often accessed by applications as I/O
devices via library-call interfaces. These accelerators must be manually managed
by the application programmer, including not just execution of code but also in
many cases tasks that are traditionally performed by the operating system such
as allocation, de-allocation, load balancing, and context switching. If resources



326 J.G.F. Coutinho et al.

Virtual Computation 
Resource #1 
(OpenCL GPU)  

Virtual Computation  
Resource #2 

(MaxelerOS DFE Group) 

DFE #1 

DFE #2 

DFE #3 

GPU 

Executive 

virtual machine 

dispatcher monitor 

diagnostic 
information 
dia
inf

spatchet h

task 
dispatch 

(a)  Kernel DB 

resource 
characterisation 

application 

execute task 

(c)  (b)  

application

stmt1 
task 1 
stmt2 2

dispatcher 

diagnostic 
information 
di
inf

dispatcdispatc

task 
dispatch 

monitor 

 
library of optimised 

kernels 
library of optimised

 
library of  executive 

strategies 

Fig. 2. Our runtime management system performs cross-optimisations over set of pro-
visioned heterogeneous resources

are shared between several hosts, issues of contention, fairness and security be-
come further pronounced. Since heterogeneous computing elements are generally
outside the control of the operating system or other system software, global opti-
misation of resources for performance and energy efficiency, for instance, requires
considerable programming effort and expertise.

The need for a system that automatically performs global optimisation of re-
sources is illustrated in Fig. 1. In this example we compare the performance of the
AdPredictor [2] training process (a computationally intensive machine-learning
application) with three different implementations: a single-threaded CPU version
(CPU-1), a 20-threaded CPU version (CPU-20) and a 100Mhz DFE version. The
CPU platform is based on a dual Intel Xeon X5650 with 24 cores running each at
2.67Ghz. The DFE platform [5], on the other hand, contains a Virtex-6 FPGA
as the computation fabric and external RAM for bulk storage. The AdPredictor
training module processes a log of online advertisement views, called ad impres-
sions, to update a model that predicts whether a user will click an ad when
visiting a website. The size of an AdPredictor task corresponds to the number of
ad impressions to be processed. It can be seen from Fig. 1 that the DFE version
is not efficient for small tasks, however, at 10 million impressions, the DFE ver-
sion runs an order of magnitude faster than the multithreaded version. In this
example, the task size influences the relative performance of these three designs,
with smaller task sizes performing better on the single and multithreaded CPU,
and large tasks performing better with the DFE.

We are developing a computation management system [4] that automatically
makes these allocation decisions at runtime (Fig. 2). In particular, our runtime
management system processes jobs dispatched by the cloud platform using the
set of provisioned computing resources to satisfy a given goal or policy, such as
minimising job completion. Each job, triggered when an application is launched
on a cloud platform, is processed in a virtual machine (VM). An application con-
tains two types of code: standard code that is executed directly by the CPU host-
ing the VM, and managed tasks. Managed tasks are special program functions



HARNESS Project: Managing Heterogeneous Computing Resources 327

DFE #1 

DFE #2 

DFE #3 

Executive 

virtual machine #1 

virtual 
resource  
interface 

app 
#1 

DFE #1 

DFE #2 

physical machine 

MaxelerOS  
DFE Group 

virtual computation resource 

v

i

virtual machine #2 

MaxelerOS  
DFE Group 

l

virtual computation resource 

Executive app 
#2 

virtual 
resource  
interface 

Governor 

virtual computation  
resource management 

Fig. 3. Virtualisation of Maxeler DFEs to support resource sharing and elasticity

that are executed onto one or more provisioned computing resources through a
queue-based mechanism. In particular, during the application execution, man-
aged tasks are dispatched to a component called the executive (Fig. 2(a)), which
decides how to allocate workload (Fig. 2(b)) based on the availability of opti-
mised kernel implementations stored in a database (Fig. 2(c)) along with associ-
ated performance models, such as the one presented in Fig. 1. These performance
models allow the executive to make intelligent decisions about how to optimise
workload based on runtime conditions, such as task size. Other factors that can
affect these decisions include accrued historical data, dependencies between tasks
and availability of computing resources.

3 Virtualising Specialised Computing Resources

Specialised computing resources, such as FPGAs and GPGPUs, are designed to
be single-tenant devices and typically do not provide native mechanisms that
allow these resource to be shared by multiple users. In contrast, CPUs are man-
aged by the operating system which transparently stores and restores the context
of a process, so that multiple processes can share a single CPU.

We have designed a virtualisation mechanism for DFEs that in addition of
supporting resource sharing, also supports elasticity where a single virtual com-
puting resource can accumulate or shed multiple physical resources according
to workload. Virtual computing resources (Fig. 2(b)) supported by our run-
time management system adhere to the same interface, which allows the exec-
utive component to dispatch tasks and acquire diagnostic information, such as
temperature and power consumption, without having to deal with proprietary
interfaces.

To illustrate our virtual computing resource mechanism we present an example
in Fig. 3 in which two applications are running each on a VM. In this example,



328 J.G.F. Coutinho et al.

FAST 
program 

LARA 
aspect design 

cloud tenants 
write functional 
descriptions of 
their applications 

cloud providers 
make available aspects 
that codify infrastructure  
knowledge for efficient 
application mapping FAST 

program 
A 

LARA 
aspect 

design 
A 

FAST 
program 

B 

design 
B 

weaving process strategy re-use 

a weaver automatically 
maps a FAST program  
onto the infrastructure to  
derive an efficient design 
 

LARA aspects can convey general strategies to  
optimise multiple applications 

Fig. 4. Aspect-oriented programming methodology to support the HARNESS Cloud
Platform

each of the applications has one virtual DFE provisioned. A virtual DFE can
be instantiated to employ a fixed or variable number of physical DFEs. If the
virtual DFE (also known as a DFE group) is configured with variable physical
resources then physical DFEs are automatically re-allocated from one virtual
resource to another depending on the workload. This management of shared
resources is performed by a component called the governor. Shared resources are
particularly important for online jobs: cloud tenants, rather than provisioning
exclusive resources that are only used some of the time due to temporary bursts
of workload, can instead share those resources with other tenants to minimise
their cost, while cloud providers are able to maximise resource utilisation.

4 Application Development

Developers must acquire considerable knowledge and expertise to effectively pro-
gram heterogeneous platforms. Heterogeneous platforms may include an arbi-
trary number of computing resources, such as DFEs, GPGPUs and multi-core
CPUs. Developers of these platforms must, therefore, be aware of a number
of architectural details including: the different types of processing cores which
may exhibit various levels of complexity, the communication topology between
processing elements, the hierarchy between different memory systems, and built-
in specialised architectural features. There are two common programming ap-
proaches that address heterogeneity: (1) a uniform programming framework
supporting a single programming language and semantics to target different
types of computing resources; (2) a hybrid programming framework in which
developers must manually partition and map their applications using the most
suitable languages and tools.

We are developing the Uniform Heterogeneous Programming approach (see
Fig. 4), which aims to combine the benefits of the above two approaches by using
two complementary languages: FAST [3] and LARA [1]. With FAST, develop-
ers (cloud tenants) use a single software language (based on C99) to implement



HARNESS Project: Managing Heterogeneous Computing Resources 329

their applications with the possibility of using multiple semantics to describe al-
ternative versions of the same algorithm. For instance, with dataflow semantics,
C99 code is translated into functional units that are mapped into reconfigurable
logic to realise deep pipelined architectures, in which data is computed in par-
allel and the output is forwarded synchronously to the next functional unit. We
believe FAST simplifies not only the compilation and optimisation design-flow
using a single code base, but also simplifies the programming effort when target-
ing specialised computing resources. With LARA, on the other hand, hardware
infrastructure experts (for instance, working on behalf of cloud providers) can
codify domain specific knowledge into special programs called aspects which
analyse and manipulate (naive) FAST programs. Subsequently, a process called
weaving automatically combines non-functional (LARA aspects) and functional
concerns (FAST programs) to derive designs that are optimised for a specific
cloud platform and infrastructure.

5 Conclusion

In this paper we presented HARNESS, an FP7 project which aims to develop
the architectural principles that enable the next generation of cloud platforms
to provide increased performance, reduced energy consumption, and lower cost
profiles. In the context of this project, we are developing a runtime management
system that supports cross-optimisation and virtualisation of heterogeneous re-
sources to provide managed multitenancy and elasticity. In addition, we are
developing an aspect-oriented programming approach which allows programs
capturing multiple semantics to be mapped efficiently to the HARNESS cloud
platform. Future work includes integrating and evaluating our heterogeneous
cloud platform and development tools with industrial use cases.

References

1. Cardoso, J.M.P., Carvalho, T., Coutinho, J.G.F., Luk, W., Nobre, R., Diniz, P.,
Petrov, Z.: LARA: An aspect-oriented programming language for embedded sys-
tems. In: Proceedings of the Annual International Conference on Aspect-Oriented
Software Development, pp. 179–190 (2012)

2. Graepel, T., et al.: Web-scale Bayesian click-through rate prediction for sponsored
search advertising in Microsoft’s Bing search engine. In: Proc. of the Intl. Conf. on
Machine Learning, pp. 13–20 (2010)

3. Grigoras, P., Niu, X., Coutinho, J.G.F., Luk, W., Bower, J., Pell, O.: Aspect driven
compilation for Dataflow designs. In: Proc. of the IEEE Conference on App-Specific
Sys. Arch. and Proc. (ASAP), pp. 18–25 (2013)

4. O’Neill, E., McGlone, J., et al.: SHEPARD: Scheduling on HEterogeneous Plat-
forms using Application Resource Demands. In: Proc. of the Intl. Conf. on Parallel,
Distributed and Network-based Processing (2014) (to appear)

5. Pell, O., Averbukh, V.: Maximum performance computing with Dataflow engines.
Computing in Science Engineering 14(4), 98–103 (2012)

6. Schubert, L., et al.: Advances in clouds: Research in future cloud computing. Expert
Group Report, European Commission, Information Society and Media (2012)



Profile-Guided Compilation of Scilab Algorithms

for Multiprocessor Systems

Jürgen Becker2, Thomas Bruckschloegl2, Oliver Oey2, Timo Stripf2,
George Goulas1, Nick Raptis1, Christos Valouxis1, Panayiotis Alefragis1,

Nikolaos S. Voros1, and Christos Gogos3

1 Karlsruhe Institute of Technology, Germany
2 Technological Educational Institute of Western Greece, Greece

3 Technological Educational Institute of Epirus, Greece
{becker,bruckschloegl,oey,stripf}@kit.edu

{ggoulas,nraptis,cvalouxis,alefrag,voros}@teimes.gr,cgogos@teiep.gr

Abstract. The expression of parallelism in commonly used program-
ming languages is still a large problem when mapping high performance
embedded applications to multiprocessor system on chip devices. The
Architecture oriented paraLlelization for high performance embedded
Multicore systems using scilAb (ALMA) European project aims to bridge
these hurdles through the introduction and exploitation of a Scilab-based
toolchain which enables the efficient mapping of applications on multi-
processor platforms from a high level of abstraction. To achieve maximum
performance the toolchain supports iterative application parallelization
using profile-guided application compilation. In this way, the toolchain
will increase the quality and performance of a parallelized application
from iteration to iteration. This holistic solution of the toolchain hides
the complexity of both, the application and the architecture, which leads
to a better acceptance, reduced development cost, and shorter time-to-
market.

Keywords: MPSoC, Parallelization, Multicore, Profiling, Optimization.

1 Introduction

Chips are needed that are efficient, flexible, and performant. Many performance-
critical applications (e.g. digital video processing, telecoms, and security appli-
cations) that need to process huge amounts of data in a short time would benefit
from these attributes. Research projects such as MORPHEUS [8] and CRISP [3]
have demonstrated the feasibility of such an approach and presented the benefit
of heterogeneity and parallel processing on a real hardware prototype. Providing
a set of programming tools for respective cores is however not enough. A com-
pany must be able to take such a chip and program it, based on high-level tools
and automatic parallelization/mapping strategies without having to know the
underlying hardware architecture. Only then, when combining the advantages of
an Application-Specific Integrated Circuit (ASIC) in terms of processing density,

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 330–336, 2014.
c© Springer International Publishing Switzerland 2014



Profile-Guided Compilation of Scilab Algorithms for Multiprocessor Systems 331

with the flexibility of an Field-Programmable Gate Array (FPGA), in addition to
it being affordable since it could be manufactured in larger numbers (like general
purpose processors or FPGAs), it will profit from benefits of programmability
and system level programming.

The Architecture oriented paraLlelization for high performance embedded
Multicore systems using scilAb (ALMA, Greek for “leap”) European project [1]
intends to provide a full design framework for designing parallel and concurrent
computing systems. The design framework will rely on Scilab, an open source
language for developing high-level system models. Scilab will be extended to pro-
vide explicit parallel directives, which will allow high-level optimization of Scilab
system models, based on user defined cost functions and the constraints of the
underlying architecture. The ALMA parallel software optimization environment
will be combined with a fully functional SystemC simulation framework for mul-
ticore heterogeneous SoCs, which will be defined through generic SystemC in-
terfaces/protocols to connect existent Multiprocessor System-on-Chip (MPSoC)
simulation modules targeting multiple architectures.

In this paper, we present our concept of the ALMA toolchain enabling profile-
guided compilation of Scilab source code to multicore architectures. The organiza-
tion of the paper is as follows: Section 2 gives an overview of the ALMA toolchain.
The profile-guided compilation and optimization of applicationswithin the ALMA
toolchain is described in Section 3. Section 4 presents the current status of the
project evaluation and its results. A conclusion of the paper is given in Section 5.

2 ALMA Toolchain

The Architecture oriented paraLlelization for high performance embedded Multi-
core systems using scilAb (ALMA) toolchain aims to enable engineers to pro-
duce parallel programs for a variety of Multiprocessor System-on-Chip (MPSoC)
embedded systems in a special Scilab [7] subset dialect. In order to maintain
platform quasi-agnostic, the ALMA toolchain has a set of requirements for the
target platforms. The target platform has to be described in a language devel-
oped within the ALMA project, an Architecture Description Language (ADL).
The toolchain requires a platform simulator that conforms to relevant ALMA
specifications in order to be able to optimize parallel code. In addition, the
platform should have a C toolchain with Message Passing Interface (MPI) [6]
support. Two different parallel multicore embedded platforms are used as initial
targets, KIT’s Kahrisma architecture from the academia and Recore Systems’
tiled multicore SoC architecture from the industry.

The ALMA toolchain components are presented in Figure 1. At first, Scilab
Front-End (SAFE) will consume the ALMA-specific Scilab dialect source code
to produce a C representation of the original code. This C source is then loaded
into Generic Compiler Suite (GeCoS) [2] to generate a special Intermediate
Representation (IR) extended to meet the needs of the ALMA project. Differ-
ent GeCoS modules provide parallelism extraction tools on fine-grain as well
as coarse-grain levels. Fine-grain parallelism extraction aims to exploit plat-
form SIMD features and optimize code sections known as Static Control Parts



332 J. Becker et al.

Applications

Telecom-
munication

Image 
Processing

Annotated Scilab Code

Architecture 
Description

ADL

ADL Compiler

GeCoS Framework

Fine-Grain
Parallelism Extraction

Coarse-Grain
Parallelism Extraction

Parallel Code Generation

ALMA IR

ALMA IR

Annotated C Code

Target-Spec. Compilation

C Code + Back-Annotation

Multi-Core 
Simulator

Binary

Pr
of

ile
In

fo
rm

at
io

n

JSON

Kahrisma 
Compiler

Recore 
Compiler

ALMA Architectures

Kahrisma 
Arch. Recore Arch.

Ite
ra

tiv
e 

O
pt

im
iza

tio
n

ALMA Front-End Tools

Source-Level
Profiler

Pr
of

ile
In

fo
rm

at
io

n

SciLab Front-
End (SAFE)

High-Level 
Optimizer

HLIRHLIR

Fig. 1. ALMA Toolchain Overview

(SCoPs), while coarse-grain optimization aims to consider the whole Control and
Data Flow Graph (CDFG) and optimize it for parallel execution. The ALMA
ADL provides platform information on instruction set or core architectures, thus
supporting the parallelism extraction phases. These steps will produce parallel C
code for the platform compilers. The toolchain provides a full system simulator
allowing application profiling and performance analysis. Simulation and profiling
results are feed back to the coarse-grain parallelism extraction to increase the
quality and performance of the parallel application.

3 Profile-Guided Optimization

The ALMA coarse-grain optimization process aims to minimize the parallel pro-
gram running time considering the Control and Data Flow Graph (CDFG) Inter-
mediate Representation (IR). In order to remove cycles from the CDFG, which
are introduced by loop structures, the CDFG is converted to the Hierarchi-
cal Task Graph (HTG) IR [5]. The HTG IR transforms the CDFG by defining a



Profile-Guided Compilation of Scilab Algorithms for Multiprocessor Systems 333

new layer for each control structure and the resulting graph for every layer is a
Directed Acyclic Graph (DAG). The vertices of each DAG layer are instruction
sequences which we call tasks, while the edges represent data dependencies and
mandate the order of execution of tasks as well as which program variables should
be available before a task is executed. For each DAG two synchronization tasks
are introduced: All tasks in a DAG depend on the start task, while the end task
depends on all tasks in the DAG.

The result of coarse-grain optimization is to label the tasks to run on specific
processing elements, as well as to define their relative order of execution. For
a correct schedule, which is a schedule that does not violate the dependency
constraints, if task execution times as well as data transfer times are known,
task start and end execution times can be assigned. The goal of the optimization
process is to minimize the running time, which is the difference in task start times
between the start and end tasks of the top level task of the HTG.

In order for the coarse grain optimization to work, accurate times for each
task execution as well as for the possible data communications are required. Es-
timating running and communication times without simulating the program at
hand is not straightforward and is vulnerable to more than one order of mag-
nitude errors. To avoid this problem, the coarse grain optimization generates a
sequence of program schedules and uses the simulator to derive profiling infor-
mation. As the optimizer attempts various solutions, more profiling information
is available and the predictive accuracy of the running times increases.

Feedback Loop. The coarse grain optimization process generates the initial
HTG IR and labels weights using inaccurate and broad estimations. The initial
running time estimation for a task is the number of instructions, while the ini-
tial communication overhead is the size in bytes of the data to be transferred.
The initial step for the coarse grain optimization process generates a sequential
schedule that is a schedule to run on a single processing element. The sequential
schedule is passed to the next steps of the tool flow, the parallel code generation
and the simulator. The next coarse grain optimization step labels the tasks with
the profiling information results and produces an initial parallel solution. Now,
two samples are available for each task execution and one sample is available
for each data dependency that has created a data communication event. This
iterative process continues for several steps.

As the initial communication time estimates and the profiled ones may dif-
fer by orders of magnitude, a strong bias towards specific schedules is possible.
In addition, the profiler is not able to profile all tasks dependencies in a single
run, as the communicating tasks should be scheduled on different processors. In
order to avoid this strong bias, a simple learning model is used to predict the
communication times between tasks. For all profiled communications, the pro-
filed time as well as the amount of data transferred in bytes is used in a linear
regression model. The parameters of the model, intercept and slope, correspond
to the basic communication parameters latency and bandwidth. The commu-
nication times for the non-profiled dependencies finally are predicted using the
parameters above.



334 J. Becker et al.

Profiling Information. The information used as feedback from the profiler
includes a number of profiling parameters for each task and task dependency.
For a task, the parameters include mean, maximum and minimum running time
as well as number of executions. The number of executions is used to calculate
the number of iterations for loops. For task dependencies, the information in-
cludes the amount of data transferred as well as mean, minimum and maximum
communication time.

As the solution process advances, a number of samples are available for every
task or dependency. In order to produce estimates for the optimization process,
the samples are averaged. An idea to use a weighted average to favor latest
results was not used, as there is no indication that the final solution that would
be produced would be more similar to the last solutions.

Simulator Support. The ALMA Multicore Simulator supports application
profiling by handling the profiling instructions added to the application, aggre-
gating the profiling information as well as output generation. The system profiler
consists of different profiling events that listen to the instrumentation function
within the application. According to the generated event one or multiple infor-
mation generation phases will be triggered. This allows the profiler to aggregate
information about task execution and communication between different tasks.

A single task within the application is referenced as a code block between
a start task profiling and an end task profiling instrumentation function. Each
of these functions generates a profiling event that will be handled by the
system profiler. Each task is given an id that becomes unique in combina-
tion with the id of the core executing this task. Communication is recog-
nized by using start send profiling and end send profiling in combination with
start recv profiling and end recv profiling. The systemprofiler can handle different
combinations of instrumentation functions for information aggregation andoutput
generation. This results in the generation of different output files that contain the
necessary information for iterative parallelization and application compilation.

4 Evaluation

As the project is at integration phase, concrete end-to-end speedup results for
ready programs are not yet available, although independent components present
promising results, as the Mathematical Programming Module (MPM) [9]. Several
simple and more complex C codes are used to test the integration of the Coarse
Grain optimization modules with the Code Generation and Simulator, including
an edge detection algorithm. The author of the edge detection application is
cited as Mazen A.R. Saghir from University of Toronto, 1992, while the code
comments cite the book from Embree and Kimble [4] as the source of algorithms
and routines. Edge detection is used in image processing, image compression
and computer vision in order to detect sharp changes in image brightness and is
used to define objects boundaries, boundaries of surfaces, discontinuities in sur-
face orientation. The particular code example detects edges in a 256 grayscale
128 × 128 pixels image and is available in four flavors, covering Arrays versus



Profile-Guided Compilation of Scilab Algorithms for Multiprocessor Systems 335

(a) before profiling (b) after profiling of the serial code

(c) after profiling the parallel code

Fig. 2. The DAG for a specific while loop for the edge detection application

pointers and normal versus software pipelining versions. The arrays with soft-
ware pipelining code are slightly modified to satisfy current limitations of the
toolchain, such as implementation of standard library functions like abs().

The hierarchical task graph extraction identified 25 total hierarchical layers in
a structure 5 layer deep that contain 149 leaf tasks inside them. Each layer has
a DAG with vertices, a set of layer tasks and leaf tasks and task dependencies
between them that refer to data dependencies. In addition, each DAG has a
special source node as a single entry point and a special sink node as a single
exit point. All tasks in each DAG have zero weight dependencies with those
nodes. The whole HTG for the edge detection application has a total of 331
edges, including the zero-weight edges between the tasks and the special nodes.

Figures 2 presents the DAG for a specific while loop of the edge detection
application. The labels on the arcs represent the cost for communication and
the symbols involved for every dependency. When a label is starred, the com-
munication cost is predicted, otherwise it is the profiled communication cost.
Figure 2(a) shows the DAG before the usage of the profiler. All communication
costs are estimated to be the size of the data structure in bytes, while the task
durations are set to be one. Figure 2(b) shows the DAG after the first usage
of the profiler on the serial version of the application. Now the tasks durations
have durations assigned, while the communication costs are still estimated. Fig-
ure 2(c) shows the DAG for the same loop, after profiling the parallel code for
the first time. For this specific DAG, the communication costs have been up-
dated. In this example, the labels are starred, thus the coarse-grain algorithm
decided that leaf tasks 36 and 37 should not be executed on different processors
and the particular costs are predicted based on the profiling information of other
communications.



336 J. Becker et al.

5 Conclusion

In this paper, we presented profile-guided compilation of parallel application for
multiprocessor architectures as part of the ALMA EU project. ALMA intends
to deliver a full framework for the development for parallel and concurrent com-
puter systems. The main concept is programming in the platform-independent
high-level language Scilab and still getting an optimized binary for a given hard-
ware architecture automatically from the tools. This can be achieved by using
fine-grain as well as coarse-grain parallelism extraction working on a graph-based
representation of the input application. The profile-guided compilation within
the toolchain provides application instrumentation, profiling and simulation sup-
port. This will generate valuable feedback to the toolchain as well as to the pro-
grammer about application parallelization, execution times and communication
to increase the quality and performance of the parallel application.

Acknowledgments. This research is part of the collaborative project ALMA,
which is partially funded by the European Commission under the Seventh Frame-
work Programme (FP7/2007-2013) with Grant Agreement 287733.

References

1. Architecture oriented paraLlelization for high performance embedded Multicore sys-
tems using scilAb (ALMA), http://www.alma-project.eu

2. GeCoS, https://gforge.inria.fr/projects/gecos/
3. Ahonen, T., ter Braak, T.D., Burgess, S.T., Geißler, R., Heysters, P.M., Hurskainen,

H., Kerkhoff, H.G., Kokkeler, A.B.J., Nurmi, J., Rauwerda, G.K., Smit, G.J.M.,
Zhang, X.: CRISP: Cutting Edge Reconfigurable ICs for Stream Processing. In:
Cardoso, J.M.P., Hübner, M. (eds.) Reconfigurable Computing: From Fpgas to Hard-
ware/Software Codesign, pp. 211–238. Springer, London (2011)

4. Embree, P., Kimble, B.: C Language Algorithms for Digital Signal Processing. Pren-
tice Hall (1991)

5. Girkar, M., Polychronopoulos, C.D.: The hierarchical task graph as a universal in-
termediate representation. Int. J. Parallel Program. 22(5), 519–551 (1994)

6. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Ver-
sion 2.2 (September 2009)

7. Scilab Consortium (Digiteo). Scilab, http://www.scilab.org
8. Thoma, F., Kuhnle, M., Bonnot, P., Panainte, E., Bertels, K., Goller, S., Schneider,

A., Guyetant, S., Schuler, E., Muller-Glaser, K., Becker, J.: Morpheus: Heterogeneous
reconfigurable computing. In: International Conference on Field Programmable Logic
and Applications, FPL 2007, pp. 409–414 (August 2007)

9. Valouxis, C., Gogos, C., Alefragis, P., Goulas, G., Voros, N., Housos, E.D.: Schedul-
ing using Integer Programming in heterogeneous parallel execution environments.
In: Multidisciplinary International Scheduling Conference, MISTA, Ghent, Belgium
(2013)

http://www.alma-project.eu
https://gforge.inria.fr/projects/gecos/
http://www.scilab.org


SAVE: Towards Efficient Resource Management
in Heterogeneous System Architectures�

G. Durelli1, M. Coppola2, K. Djafarian3, G. Kornaros4,
A. Miele1, M. Paolino5, Oliver Pell6, Christian Plessl7, M.D. Santambrogio1,

and C. Bolchini1

1 Politecnico di Milano
{gianlucacarlo.durelli,antonio.miele,marco.santambogio,

cristiana.bolchini}@polimi.it
2 STMicroelectronics

marcello.coppola@st.com
3 ARM

karim.djafarian@arm.com
4 Technological Educational Institute of Crete

kornaros@ie.teicrete.gr
5 Virtual Open Systems

m.paolino@virtualopensystems.com
6 Maxeler Technologies
oliver@maxeler.com

7 University of Paderborn
christian.plessl@uni-paderborn.de

Abstract. The increasing availability of different kinds of processing
resources in heterogeneous system architectures associated with today’s
fast-changing, unpredictable workloads has propelled an interest towards
systems able to dynamically and autonomously adapt how computing
resources are exploited to optimize a given goal. Self-adaptiveness and
hardware-assisted virtualization are the two key-enabling technologies
for this kind of architectures, to allow the efficient exploitation of the
available resources based on the current working context. The SAVE
project will develop HW/SW/OS components that allow for deciding at
runtime the mapping of the computation kernels on the appropriate type
of resource, based on the current system context and requirements.

1 Current Trends and Challenges in System Architecture

Since the 1960s processors have shown an exponential improvement in perfor-
mance fueled by advances in semiconductor technology, allowing to increase the
clock speed, and architectural innovations increasing the amount of work done
per cycle, e.g., pipelining, branch prediction and out-of-order execution. Since
about 2005 this exponential growth of single-core performance has significantly
flattened out. While further increasing the clock frequency would be possible,

� This research is partially supported by the European Commission, EU Seventh
Framework Program, Project 610996-SAVE.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 337–344, 2014.
c© Springer International Publishing Switzerland 2014



338 G. Durelli et al.

the energy-efficiency of the computation would drastically decrease. The answer
of the semiconductor industry to this challenge was to move away from maximiz-
ing single-core performance towards maximizing the aggregated computational
power and efficiency of the complete processor. This objective is addressed using
two main techniques: on-chip parallel computing and customization.

On-chip parallel computing exploits the fact that shrinking semiconductor
process geometries allow for integrating several CPU cores into a single package
while keeping power dissipation constant. We can witness this trend of paral-
lelism by the rapid proliferation of multi- and many-core processors. The former
provide fine-grain parallelism through SIMD, and coarse-grain parallelism by
integrating different cores onto the same chip. The concept of on-chip parallel
processing is carried further by many-core processors, which integrate several
dozens of simpler CPU cores in a single processor. This concept is for example
used in the Intel Xeon Phi co-processor, Kalray [3], or the STM research platform
“Platform 2012” [5]. Massively parallel processor architectures even increase the
number of cores to several hundreds, while reducing the complexity of each core
and imposing a more restrictive execution model. The prototypical representa-
tive of this class of architectures are GPGPUs, which use a SIMD-like execution
model that is targeted by dedicated programming and runtime environments,
such as, CUDA, STREAM, OpenCL, C++ AMP.

The other direction for improving the performance and computation efficiency
is to use programmable hardware devices, in particular field-programmable gate
arrays (FPGAs). These devices can be used to implement customized applica-
tion-specific computing engines that are perfectly tailored to the needs of a given
application. One instance of this approach that is currently receiving a lot of at-
tention in high-performance computing (HPC) are dataflow engines (DFEs), that
implement custom, high-throughput processing pipelines for scientific computing
or big data analytics.

In practice, neither massively parallel on-chip processors nor customized DFEs
are used as the sole computational resource. Instead, these technologies are used
as accelerators in combination with conventional multi-core processors. The re-
sulting heterogeneous computing systems are integrated either as system-on-
chip solutions for the embedded and mobile computing segment or by attaching
the massively parallel architectures as acceleration co-processors via PCI ex-
press/Infiniband for the HPC domain.

While the performance and energy-efficiency potential of heterogeneous com-
puting systems is widely acknowledged and many heterogeneous systems are
being deployed, it is still an open research question how to program, operate,
and manage these systems to reap the benefits of heterogeneous computing while
keeping the complexity in bounds. For example, GPUs’ and DFEs’ computing
resources are currently not managed by the OS but by the applications that use
them, preventing a global optimization of resource usage at system-level.



SAVE: Towards Efficient Resource Management 339

2 The Objectives of the SAVE Project

According to recent technology studies the demand for computing will continue
to rise rapidly and the number of computing devices will be more than triple
by 2020. Given that each device contributes to our society’s energy and carbon
footprint, new technologies to address this challenge must be found. Indeed, we
are moving towards an on-demand computing scenario, characterized by vary-
ing workloads, constituted of diverse applications with different performance
requirements, and criticality. With the end of Dennard Scaling [1] in sight and
a slowdown in supply voltage scaling, the entire ICT industry is currently going
through an inflection point where energy efficiency, which used to be the key de-
sign concern of embedded and mobile systems, is becoming the ultimate design
constraint for the entire computing spectrum ranging from embedded systems
(ES) to HPC systems.

In this scenario, heterogeneous computing is currently the most promising
approach to address these challenges. The flip side of heterogeneity is increased
complexity. To reach an optimal solution, a system architect needs to take into
account the efficiency of the computational units, the workload, the working con-
ditions and so on. As a result, heterogeneous computing is often considered too
complex or inefficient, except for very specific application environments, where
the working context is delimited and the design space to be explored is suitably
contained. Hence, it is key to find answers to the question how to integrate,
exploit, and manage heterogeneous resources to reach the desired performance
goal at minimal cost while limiting the complexity for development.

The EU FP7 project SAVE (Self-Adaptive Virtualization-aware high-perfor-
mance/low-Energy heterogeneous system architectures) [2] aims at addressing
the challenge of exploiting specialized computing resources of a heterogeneous
system architecture (HSA) by pooling them and taking advantage of their in-
dividual characteristics to optimize the performance/energy trade-off for the
resulting system, without constraining the applications or operation context. To
this end, we strive for defining a more general approach for exploiting HSAs, low-
ering the complexity of managing the available resources, while enabling the over-
all system to pursue an optimization goal that can depend on the current working
conditions (application requirements, workload, ...). More precisely, SAVE will
address these limitations by providing self-adaptivity and hardware-assisted vir-
tualization to allow the system to dynamically and autonomously decide how
to optimally allocate the workload generated by applications to the specialized
resources for achieving an effective execution of the application while optimizing
a user-defined goal (e.g., performance, energy, reliability, resource utilization).

SAVE will define the necessary SW/HW technologies for implementing
self-adaptive systems exploiting heterogeneous architectures that include two
classes of accelerators: GPUs and DFEs that enhance heterogeneous architec-
tures to cope with the increased variety and dynamics of workloads observed
in the HPC and ES domains. Virtualization and self-adaptiveness are jointly
exploited to obtain a new self-adaptive virtualization-aware Heterogeneous Sys-
tem Architecture, dubbed saveHSA, that exhibits a highly adaptive behavior to



340 G. Durelli et al.

achieve the requested performance while minimizing energy consumption by allo-
cating the tasks to the most appropriate accelerators, based on the current status
of the overall system. The effectiveness of SAVE’s technologies will be validated
in two applications scenarios, financial risk computing and image processing al-
gorithms, to cover the ES and HPC domain. We strive for an energy-efficiency
improvement of 20% with respect to today’s architecture that use DFEs or GPUs
in a traditional fashion. At the same time, system manageability, ease of deploy-
ment and resilience will be greatly improved.

3 The SAVE Concept

SAVE will enable the system to decide at run-time, based on the observation of
collected information that characterizes the changing scenario, how to use the
available resources, to pursue a defined, but changeable, optimization goal. The
overall project outcome are technologies suitable for a cross-domain adoption rang-
ing from the data centers and HPC, where virtualization plays a relevant role, to
ES, where heterogeneity and customized execution prevail. An important issue is
how to move one step forward in the way operating systems view such computa-
tional resources, traditionally perceived as secondary components that hide their
complexities behind pre-defined device drivers that expose high-level program-
ming API. In this perspective hardware-assisted virtualization offers the opportu-
nity to simplify the sharing of such heterogenous resources, without compromising
performance. In SAVE, the various computing HW resources, will execute work-
loads constituted from multiple applications running in a virtualized environment.
Since device drivers determine how accelerators are shared, this restricts schedul-
ing policies and optimization criteria for the computational resources. If resources
are shared between several guest OSes running in virtual machines (VMs), issues
of contention, fairness and security become further pronounced. In addition the
hypervisor has limited control on how the heterogeneous computing resources are
used, and whether sharing is possible in time, space or both, because there is no
direct control over the scheduler actions beyond the proprietary interfaces.

Therefore, to benefit from the opportunity that heterogeneous platforms offer
SAVE exploits virtualization and integrates it in a self-adaptive perspective, to
obtain a performance/energy cost-effective solution.

The final goal is to provide a set of technologies implementing a self-adaptive
virtualization-aware Heterogeneous System Architecture, consisting of:

1. an architecture able to run any kind of applications (through virtualization),
2. a scalable, cache coherent heterogeneous platform that exposes the hetero-

geneity (different kinds of virtualizable computation islands, such as GPUs
and DFEs) reducing power consumption and simplifying management,

3. a dynamically adaptable saveHSA management, driven by different environ-
ment inputs that may change at run-time, exploiting a runtime and just-in-
time code generation infrastructure that allows for dynamically offloading
computational hotspots to heterogeneous computing resources, and



SAVE: Towards Efficient Resource Management 341

4. an integrated hypervisor layer that promotes the specialized islands of com-
putation as schedulable entities, that can be shared by multiple VMs.

This goal will be achieved by developing new technologies deeply integrated
to obtain efficiency and optimality: (i) an advanced run-time self-adaptiveness
OS support layer, (ii) a hardware-assisted virtualization support for the special-
ized computing resources, (iii) new hypervisor extensions that expose a virtual
computation interface to applications, and (iv) a just-in-time compilation and
offloading infrastructure.

3.1 Advanced Run-Time Self-adaptiveness OS Support Layer and
Adaptive Hardware Layer

The first main target of the SAVE project is the development of a self-adaptive
and virtualization-aware HSA, able to modify itself according to the changing
scenario, thus exposing autonomous adaptation capabilities driven by the sys-
tem itself, as a response to a variation in the workload, in the architecture
resources, or in the user (optimization) requirements.

While reconfigurability for some classes of architectures (e.g., homogeneous
multi- and many-core platforms, FPGAs) has been tackled to some extent in
both the ES and HPC scenarios, each one exploiting the peculiarities of the
domain, we aim at tackling the challenge by referring to a more general archi-
tectural platform, that is across the two domains, to serve as a means for both
low-cost HPC or high-end ES. Fig. 1 shows the SAVE self-adaptiveness concept,
where a self-adaptive orchestrator module integrated in the host operating sys-
tem dispatches the submitted kernels onto the most appropriate kind of resources
available in the saveHSA, where the appropriateness depends on the currently
pursued goal (power consumption, performance, overall load) and the kernel
nature, in terms of computational requirements. To support the runtime self-
adaptive orchestrator module, SAVE will develop an enhanced communication
infrastructure, monitors combining cache coherent on-chip interconnects with
off-chip (PCI-E) with knobs to observe their behavior and configure them to act
in a specific mode, along with the design of a common interface towards hardware
components, called Dynamically Manageable Component (DMCs), suitable for
the realization of adaptive systems. On top of this, a novel parametric versions
of existing OS components (e.g., observable and controllable schedulers, device
drivers with adaptive and introspective data structures) will be developed, able
to orchestrate the execution of the kernels on the heterogeneous architecture, by
adjusting at run-time the adopted policies, and set the ground for a novel OS with
new self-aware components to support self-awareness and run-time adaptability.
Furthermore, the development of a library of optimization policies allowing the
system to decide, on the basis of the observed behavior (achieved performance,
monitored temperature, ...), the actions (on what resource to map kernels) to
be carried out to fulfill the optimization goal, has to be implemented.



342 G. Durelli et al.

self-adaptive
orchestrator

KVM

optimisation
goals

guest OS

DFE
kernel

GPU
kernel

CPU
kernel

CPU
kernel

just-in-time
code generator

GPU GPU

hw virt.
extension

hw virt.
extension

GPU resourcesworkload

host 
OS

ex
te

rn
al

 c
on

ne
ct

iv
ity

D
F

E

h
w

 v
ir

t.
ex

te
n

si
o

n

D
F

E

h
w

 v
ir

t.
ex

te
n

si
o

n

resource 
utilisation

fu
ll 

ca
ch

e 
co

he
re

nt
 N

oC
 &

 s
ys

te
m

 N
oC

SAVE HW platform

system
memory

SAVE SW platform

uP

uP

uP

uP

uP

uP

uP

uP

CPU resources
big LITTLE

guest OS

CPU
kernel

CPU
kernel

CPU
kernel

Fig. 1. SAVE self-adaptiveness concept

3.2 Hardware-Assisted Virtualization Support for the Specialized
Computing Resources

The second main target of the project is the definition of an innovative hardware
support for virtualization for the components constituting the heterogeneous
platform, such that their exploitation and sharing can be facilitated. More pre-
cisely, within the perspective of a self-adaptive system that may migrate VMs
running kernels from one resource (e.g., CPU) to a different one (e.g., GPU),
as shown in Fig. 2, the foreseen proposed solutions will need to be flexible and
sophisticated to allow virtualization not to introduce overheads and prevent the
exploitation of the peculiarities of the platform.

GPU

hw virtualisation
extensions

CPU

hw virtualisation
extensions

DFE

hw virtualisation
extensions

kernel A kernel B kernel C

kernel D kernel E

Fig. 2. SAVE virtualization concept

guest OS

vCPU vCPU vCPU

kernel kernel

kernel

guest OS

vCPU vGPU vDFE

kernel

guest OS

vCPU vCPU vDFE

kernel
DFE

runtime

kernel
DFE

runtime
GPU

runtimekernel

kernel

VM VM VM

KVM

just-in-time
code generator

self-adaptive
orchestrator

device 
driver

device 
driver

device 
driver

host OS
(Linux)

Fig. 3. SAVE hypervisor extensions

This goal will be achieved through the development of APIs to expose to the
self-adaptive orchestrator the performance, power information of kernels running
in VMs on the specific accelerator (GPU, DFE). The APIs shall provide the ac-
cess to the dynamic characteristics of the kernels being executed to support the
decision of the orchestrator on where to map the VM kernels to pursue the op-
timization goal. Moreover hardware cache coherency between the host processor
and the different on-chip islands of computation resource will be introduced.
This mechanism will simplify the communication cost related to data and code
of executing kernel in specific accelerators. In this way, kernels can be efficiently
transferred to accelerators reducing the number of copies between accelerators
and host processor. Another advantage is the usage of a common virtual mem-
ory system for host processors and accelerators, to allow accelerators to access
virtual memory addresses that are not yet available in the physical memory.



SAVE: Towards Efficient Resource Management 343

3.3 Hypervisor Extensions

The third target of the project is a set of elements (Fig. 3) needed to inte-
grate the two previously discussed objectives in the realization of a self-adaptive
virtualization-aware HSA. This integration will be accomplished by developing
extensions to enable multiple VMs to directly access virtualized GPU/DFE,
by means of the hardware-assisted virtualization. This will add the concepts of
vGPU and vDFE to the already existing, in the virtualization scenario, vCPU.
The hypervisor will manage these resources, enabling multiple VMs to safely
interact with them concurrently. Furthermore, it will be necessary to provide ex-
tensions for allowing inner and outer migration. The former enables the “smart”
orchestrator to migrate and schedule directly the tasks of different VMs among
vCPUs/vGPUs/vDFEs. The latter will provide scalability in the HPC scenario
(such as that of Cloud computing data centers), giving to the VMs the possibil-
ity to migrate among different saveHSA platforms. Finally, the development of
an efficient communication mechanism that permits the interaction between the
host and the VMs will be done. In this way, the just-in-time code generator and
the orchestrator will be able to dispatch tasks to the appropriate resources and
achieve the self-adaptiveness of the system.

3.4 Just-in-Time Compilation and Offloading Infrastructure

Finally, SAVE aims at exploring a novel approach of offloading computational
hotspots to heterogeneous computing resources. To this end, a runtime sys-
tem based on the LLVM compiler and virtual machine infrastructure [4] will
be developed to autonomously analyze applications for computational hotspots
that could be executed more efficiently with DFEs or GPUs. If such hotspots
are identified, the smart orchestrator can initiate a just-in-time compilation for
the optimal resource. Once the compilation has completed, the runtime system
transparently migrates the computation to the targeted computing resource.

4 Conclusions

The heterogeneity, generated by the acceleration cores (e.g., GPUs, DFEs), con-
sists of specialized islands of computation in architectures where different exe-
cutions models can be used to exploit the peculiarities of the resources. However
heterogeneity has a price too; chips have limited resources and all units on the
chip compete for the shared resources, thus receiving only a limited share of
load, so being under- To reach an optimal solution, it is up to the architect to
distribute the resources among the different units by taking into account the
efficiency of these units as well as the workload. SAVE will address this issue
by developing a customizable and adaptable computing capability that manages
the available resources, through virtualization, to decouple the relation between
the applications and the complex underlying heterogeneous architecture.



344 G. Durelli et al.

References

1. Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., LeBlanc, A.: Design of ion-
implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-
State Circuits 9(5), 256–268 (1974)

2. EU FP7 project SAVE, http://www.fp7-save.eu
3. KALRAY, http://www.kalray.eu
4. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis

& transformation. In: Proc. Int. Symp. Code Generation and Optimization, pp. 75–86
(2004)

5. STMicroelectronics and CEA: Platform 2012: A many-core programmable accelera-
tor for Ultra-Efficient Embedded Computing in Nanometer Technology. In: Research
Workshop on STMicroelectronics Platform 2012 (2010)

http://www.fp7-save.eu
http://www.kalray.eu


Data Parallel Application Adaptivity

and System-Wide Resource Management
in Many-Core Architectures

Giuseppe Massari, Edoardo Paone, Michele Scandale,
Patrick Bellasi, Gianluca Palermo, Vittorio Zaccaria,

Giovanni Agosta, William Fornaciari, and Cristina Silvano

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
{name.surname}@polimi.it

1 Introduction

Since the silicon technology entered the many-core era, new computing platforms
are exploiting higher and higher levels of parallelism. Thanks to scalable, clus-
tered architectures, embedded systems and high-performance computing (HPC)
are rapidly converging. We are also experiencing a rapid overlapping of the chal-
lenges related to efficient exploitation of processing resources. Platform-specific
optimization and application boosting cannot be considered independently any-
more. Thus the increased interest towards broader and versatile methodologies,
which could easily scale from the embedded up to the general-purpose domain.

Scalable platforms enable also new application scenarios, where the paral-
lelism could be exploited to support intensive computation. Augmented reality
and advanced image processing are just examples of computation intensive mul-
timedia applications which are now required also on high-end mobile devices,
while exhibiting classical HPC traits. To simplify the exploitation of increasing
processing capabilities, programmers are supported by specialized parallel pro-
gramming models. Custom paradigms have been proposed by different industry
players, targeting their own many-core platforms, but the convergence of archi-
tectures is now pushing for more generic and portable programming models. The
OpenCL1 industry standard [4] is considered one of the most promising solution,
which supports portability while still effectively exploiting the available compu-
tational power. From the software perspective, even in the industrial embedded
domain, the increased computational power has fostered more and more the
opportunity to run multiple applications. This configures new mixed-workload
scenarios where applications with different priorities and requirements compete
for the usage of shared resources. While the workload set is generally known in
advance, its run-time variability is instead unpredictable, since the workload mix
as well as the application requirements are generally defined by asynchronous
conditions not knwon “a priori”.

1 OpenCL is a trademark of Apple Inc., used by permission by Khronos.

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 345–352, 2014.
c© Springer International Publishing Switzerland 2014



346 G. Massari et al.

Considering that the new generation of many-core systems is manufactured
using advanced technology nodes, these systems are also subject to a wide spec-
trum of variability issues. Thus, the run-time variability could also be generated
by resources, mainly due to aspects related to the fabrication process or to the
run-time thermal and reliability issues. Overall, the hardware and software sce-
nario defined above represents a classical run-time management problem, but
it requires the definition of efficient yet portable solutions. Due to the prob-
lem complexity, an effective proposal could not disregard any of the different
facets related to design-time profiling and run-time control possibilities as well
as application-specific tuning and system-wide multi-objective optimization.

This paper proposes an innovative methodology, defined during the 2PARMA
project [7], based on a properly defined run-time support to enable an effective
exploitation of design-time information. The synergy between design-time and
run-time provides an efficient yet portable run-time management solution which
could scale from embedded to general purpose systems. The methodology pro-
poses the integration of independent tools to provide effective compilation of
OpenCL code, multi-objective design space exploration, system-wide run-time
resource management and application-specific monitoring and tuning.

The rest of this paper is organized as follows. Section 2 outlines the proposed
approach. Section 3 provides an experimental assessment of the tools. Finally,
Section 4 draws some conclusions and highlights future research direction.

2 Proposed Approach and Toolchain

Design Space Exploration. In our approach, Design Space Exploration (DSE) is
applied to the optimization of parallel streaming applications, provided that the
application is designed to expose a set of parameters that impact on both perfor-
mance and quality metrics. The designer is interested in a set of objectives, such
as performance or CPU usage. Multi-objective optimization techniques allow to
efficiently explore the space of feasible solutions (parameter configurations in the
design space), thus reducing the simulation time while ensuring close-to-optimal
results. To automate the DSE phase, we use the open source Multicube Ex-
plorer framework, which includes a set of optimization algorithms and Design-of-
Experiment (DoE) sampling techniques [5]. The proposed approach exploits the
synergy between the design time exploration framework and the BarbequeRTRM
(BBQ) framework driving the system at runtime [9]. Such combined approach
has two main advantages: a simplified low-level profiling and exploitation of iso-
lated execution context created by BBQ for each application. BBQ has access
to both software and hardware performance counters available in the platform,
which can be easily exported to the DSE framework through a standardized
interface2. This enables the designer to save effort which would be otherwise
spent to write ad-hoc wrappers for application profiling. The output of DSE is a
set of application Operating Points (OPs), which represent the Pareto-set in the

2 For more details, the reader can refer to the open source MULTICUBE XML inter-
face specification at http://www.multicube.eu

http://www.multicube.eu


Data Parallel Application Adaptivity 347

multi-objective space, to be used at runtime to support application adaptivity.
Moreover, OPs are filtered with respect to platform specific metrics, to identify
a set of Application Working Modes (AWMs), which represent the amount of
resources required to obtain a certain application behavior. The set of AWMs
represents the application recipe to be used at runtime by the BBQ for optimal
resource allocation.

System-WideResourceManagement. TheSystem-WideRun-TimeResourceMan-
ager (SW-RTRM) module, BBQ 3, represents the central component of the pro-
posed run-time management approach, as shown in Fig. 1. At high abstraction
level, the SW-RTRM is in charge of collecting: 1. variable requirements from the
running applications,when theyaredemanding formore resources; 2. changes in re-
source availability from the computing platform. This information can activate an
optimization step, where a system-wide optimization policy is executed to identify
a different assignment (resource partitioning) of the available computational re-
sources.Once a new resource assignment has been identified, the SW-RTRMmod-
ule provides all the control actions required to setup platform specific constraints
and to notify the interested applications. The configured set of platform specific
constraints will grant a predefined amount of resources to each application, while
applications will be also notified about the updated resource availability.

Fig. 1. Overview of BBQ ’s role to support system-wide run-time resource management

A detailed description of the optimization policy can be found in [1]. Briefly,
our resource management problem can be formulated as a multi-choice multi-
dimension multiple knapsack problem (MMMKP) [3]. Even if such a problem
is known to be NP-hard, we employ state-of-the-art heuristics [8] to find near-
optimal solutions fast enough for an effective run-time exploitation. Then, an OS-
specific method is employed to enforce the resource partitioning. For example,
in a generic multi-core Linux machine, the standard Control Groups framework
could be exploited to this purpose [2]. This allows to setup a set of isolated
execution contexts, one for each scheduled application, matching the optimal
resource requirements identified at design time. Finally, resource assignment is
notified to each application through a dedicated interface.

3 Open Source project website at http://bosp.dei.polimi.it

http://bosp.dei.polimi.it


348 G. Massari et al.

Application Specific Runtime Manager. The DSE output (Sec. 2) is a set of
application configurations that are optimal with respect to the objectives de-
fined at design-time. These configurations expose different tradeoffs in terms of
performance and quality metrics, as well as different requirements in terms of
platform resources. In our approach, they are called Operating Points (OPs)
and are used for application tuning at run-time. Each application is linked to
the RTLib library that provides an Application-Specific Run-Time Manager (the
AS-RTM). The AS-RTM component itself is generic, while its behavior can be
customized for each application by passing a different set of operating points
and defining one or more application goals. The goal represents a soft-constraint
(such as the frame-rate) that can be dynamically set by the user or selected by
the application itself depending on external events. The main purpose of the
AS-RTM is to manage application adaptivity, by changing parameter config-
urations and/or requesting resources to the BBQ . At this aim, the AS-RTM
uses high-level monitors of the performance (such as a throughput monitor or
a Quality-of-Service monitor), but even user-defined monitors can be added for
application-specific metrics. Although the DSE results are averaged over a large
set of workloads/datasets, the run-time behavior might not completely fit the
profiled values. Thus, the AS-RTM component is also in charge of absorbing
small fluctuations due to the run-time workload conditions. As shown in Fig. 2,
given a constraint on a specific AWM, the AS-RTM selects an OP which is ex-
pected to satisfy the goal, based on the design-time profiling. The OPs can be
sorted according to a specified metric so that the AS-RTM will select the OP
which provides the optimal tradeoff between the required goal and the metric
to be optimized. The AS-RTM is characterized by a very low delay (< 20μs
on average) and memory footprint (typically < 200KB to load the list of OPs).
Moreover, it directly interacts with the application without the need of passing
through the BBQ or the OS, thus enabling the possibility to activate it with

Fig. 2. Application adaptivity through the AS-RTM



Data Parallel Application Adaptivity 349

higher frequency with respect to the BBQ reconfiguration. The AS-RTM has to
interact with BBQ only when no OP in the current AWM allows to reach the
goal. Then, the AS-RTM can request a higher AWM to the BBQ , by calling the
setGoalGap() API. The goal-gap is a normalized measure of the distance from
the goal, which enables BBQ to take into account dynamic requirements from
all running applications for optimal resource allocation.

Compiler and Language Runtime. OpenCRun aims at providing a multitarget
OpenCL infrastructure, based on the LLVM and Clang open source frameworks.
The infrastructure is composed by four logical components: 1. the host runtime,
which implements the OpenCL APIs; 2. a device description, as seen by the
host; 3. a device runtime providing for each device the OpenCL runtime;
4. a device runtime library, providing the implementation of OpenCL builtin
functions. Currently we target two devices: X86 multiprocessors and P2012.
The former uses pthread library to map a thread for each core in a X86 NUMA
architectures. The latter is a clustered accelerator composed by four cluster of
sixteen STxP70 cores.

OpenCRun
host runtime

Clang
OpenCL FE

LLVM X86
MCJIT

LLVM
STxP70 BE

OpenCRun
CPU RT

pthread

OpenCRun
CPU library

OpenCRun
P2012 RT

p12Runtime

OpenCRun
P2012 library

host side

device side

Fig. 3. OpenCRun toolchain flow

Figure 3 describes the complete toolchain overview: from the host runtime
the OpenCL source code is compiled using the OpenCL frontend. After the
translation in LLVM IR and the LLVM optimizer, depending on the selected
device, native code is generated. For the X86 device, native code is emitted di-
rectly in memory through the MCJIT component. For P2012, a shared object
must be generated to be later deployed on the device memory. The execution
enviroments are specific for each device. For the X86 device, a POSIX thread
is pinned to each physical core and each workgroup is scheduled on a single
core. For P2012, an active runtime layer is used to coordinate the exection of
OpenCL commands. The generation of OpenCL builtins implementation is fully
automated using a TableGen-based tool4. The generation is based on an abstract

4 TableGen is a component of the LLVM framework.



350 G. Massari et al.

Table 1. Performance of Multiview Stereo Matching Kernels [s]

Kernel LLVM xp70 back-end P2012 SDK back-end

WinBuild 34.673 33.539
WinBuild 34.635 33.512
CostAggreg 128.344 124.193
FinalDecision 1.812 1.549
Refinement 19.312 36.929

description of each builtin variant, a basic implementation for scalar variants,
and the strategy that must be used to build the vectorized variants. Target
specific overrides are allowed for optimized implementation.

3 Experimental Evaluation

In this section, we provide an experimental assessment of techniques and tools.
We consider a study case based on the OpenCL implementation of the Stereo-
Matching (SM) algorithm described in [10]. The algorithm works on stereo im-
ages, with the aim of estimating the depth of the objects in the captured scene.
The algorithm computes the pixel disparity between the left and the right frame
of the stereo input: the higher the pixel disparity, the closer the object is to the
viewpoint (e.g., a camera).

OpenCL toolchain. We first provide an assessment of the back-end compiler,
using a large suite of media applications, including H264 and JPEG, implemented
in C. When using a single VLIW way, our compiler outperforms on average by
4.3% the one provided in the P2012 SDK for integer benchmarks. The gain
is limited to 2.56% when the VLIW bundle formation is enabled, using both
ways. We then compare our OpenCL compiler toolchain with the one provided
in the P2012, running the kernels that compose the Multiview Stereo-Matching
Application. The comparison, shown in Table 1 is done using the P2012 SDK
for the runtime components, since our language runtime is not yet optimized.
Overall, the timings reflect the performance of the back-end on C benchmarks.
It is worth noting that for one kernel, Refinement, the LLVM-based compiler
performs remarkably better than the SDK compiler.

System-Wide Resource Management. Three experimental scenarios have been
considered by using 1, 3 and 6 instances of the Stereo-Matching application, and
comparing a non-adaptive version of this application with the runtime adaptive
version. In the first case, every Stereo-Matching instance spawns a fixed number
(8) of threads, while in the second case the number of threads is set dynamically,
up to a maximum of 8. A first analysis has been done, by observing performance
metrics listed such as workload completion time, power consumption, and num-
ber of context switches. To state the significance of the statistics, we repeated



Data Parallel Application Adaptivity 351

the execution of each scenario 30 times, with a mean confidence interval of 95%
and 99%. The scenario stops when all the instances have completed their input
stream. In the case of a single running instance, there is an increase of the com-
pletion time of about 40%, but a reduction of the system power consumption of
12%. Benefits are higher when the system is subjected to resource contention.
In a 3-instances scenario, without noticeable changes in power consumption,
the completion time decreases by 35%, while, in the 6-instances scenario, both
completion time and power consumption decrease by approximately the 15%.

Application-Specific Tuning & RTM. The goal of this section is to assess the
benefits of using the AS-RTM proposed in Sec. 2. We have seen that the behavior
of the Stereo-Matching application can be tuned by changing some parameters,
which affect the performance in terms of frame-rate and disparity error. This set
of parameters defines a wide space of configurations but DSE allows to identify a
sub-space of useful ones (Operating Points). In this experiment, a single Stereo-
Matching instance is deployed on a quad-core Intel CPU and has an input stream
of 100 frames to process. The optimization goal is set on the frame-rate, while
we consider a Quality-of-Service (QoS) metric, computed as the inverse of the
disparity error, to sort the list of OPs. Thus, application reconfiguration on a
different OP is triggered by the AS-RTM if either the current goal is not met
(the application is too slow) or the application is running faster than requested,
to improve the QoS. We define 3 application working modes (AWM), with 1-2-
3 processing cores available respectively. The test is repeated 12 times for each
AWM, with the frame-rate goal incremented at each run from 0.5 to 6.0 frames/s
with a fixed step. The three curves in Fig. 4 show the reconfiguration in each
AWM. The yellow points correspond to the highest AWM (2). In this AWM, the
AS-RTM has enough computational resources to meet the frame-rate goal up to
5.0 frames/s. However, for goal values higher than 2.0 frames/s, the AS-RTM
starts selecting OPs with lower accuracy. In other words, there is a range of
goal values, different for each AWM, where the AS-RTM can trade off between
performance and QoS to meet the goal. After a certain frame-rate threshold, the
AS-RTM (already on the OP with lowest QoS) cannot find any suitable OP to
meet the goal, then it requests a higher AWM to BBQ. This technique, when
combined with system-level runtime management, allows to absorb performance
fluctuations due to varying workloads, reducing the interaction with BBQ .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

Q
oS

 [n
or

m
al

iz
ed

]

Frame-Rate goal [frames/sec]

Average Quality-of-Service vs. Frame-Rate goal

AWM 0
AWM 1
AWM 2

Fig. 4. Observed frame-rate and QoS by varying the frame-rate goal and the Applica-
tion Working Mode



352 G. Massari et al.

4 Conclusions

The paper proposes a design approach to support application adaptivity, exploit-
ing a RTRM framework operating at both the application and system level. The
hierarchical and modular nature of the approach makes it promising for scal-
ing with the application performance requirements and platform computational
capabilities. Future developments include a closer integration of the tools, to en-
able a stronger demonstration of the benefits of the approach. In particular, the
OpencCL compiler and language runtime can benefit from an integration with
the DSE tools, for a co-exploration of the compiler parameters [6], and with the
runtime manager, to propagate decisions to the language runtime, allowing it to
adjust to the new conditions.

References

1. Bellasi, P., Massari, G., Fornaciari, W.: A RTRM proposal for multi/many-core
platforms and reconfigurable applications. In: ReCoSoC, pp. 1–8 (2012)

2. Bellasi, P., Massari, G., Fornaciari, W.: Exploiting Linux Control Groups for Effec-
tive Run-time Resource Management. In: PARMA 2013 Workshop HiPEAC 2013,
Berlin, Germany (January 2013)

3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
4. Khronos Group: OpenCL, http://www.khronos.org/opencl
5. Palermo, G., Silvano, C., Zaccaria, V.: ReSPIR: A Response Surface-Based Pareto

Iterative Refinement for Application-Specific Design Space Exploration. IEEE
Trans. on CAD of Integrated Circuits and Systems 28(12), 1816–1829 (2009)

6. Silvano, C., Agosta, G., Palermo, G.: Efficient architecture/compiler co-exploration
using analytical models. DAES 11(1), 1–23 (2007)

7. Silvano, C., Fornaciari, W., Reghizzi, S.C., Agosta, G., Palermo, G., Zaccaria, V.,
Bellasi, P., Castro, F., Corbetta, S., Di Biagio, A., et al.: 2parma: parallel paradigms
and run-time management techniques for many-core architectures. In: VLSI 2010
Annual Symposium, pp. 65–79. Springer Netherlands (2011)

8. Ykman-Couvreur, C., Nollet, V., Catthoor, F., Corporaal, H.: Fast Multi-
Dimension Multi-Choice Knapsack Heuristic for MP-SoC Run-Time Management.
IEEE (2006)

9. Ykman-Couvreur, C., Avasare, P., Mariani, G., Palermo, G., Silvano, C., Zaccaria,
V.: Linking run-time resource management of embedded multi-core platforms with
automated design-time exploration. IET Computers & Digital Techniques 5(2),
123–135 (2011)

10. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogo-
nal integral images. IEEE Trans. Circuits and Systems for Video Technol. 19(7),
1073–1079 (2009)

http://www.khronos.org/opencl


Author Index

Abdellatif, Karim M. 13
Agne, Andreas 61
Agosta, Giovanni 345
Ahmed, Syed Zahid 37
Aigner, Martin 179
Alefragis, Panayiotis 330
Alouani, Ihsen 248
Armato, A. 312
Arslan, Tughrul 205
Asghar, Ali 291
Ayguadé, Eduard 108

Bai, Yuhui 37
Basha, B. Chagun 254
Bayliss, Samuel 298
Becker, Jürgen 97, 330
Becker, T. 318
Bellasi, Patrick 345
Bolchini, C. 337
Bouganis, Christos-Savvas 1, 49, 312
Braun, Maximilian 97
Brokalakis, A. 318
Bruckschloegl, Thomas 330
Bungartz, Hans-Joachim 97

Caffarena, Gabriel 213
Calleja, Pablo 213
Chotin-Avot, R. 13
Constantinides, George A. 298
Coppola, M. 337
Coutinho, J.G.F. 324
Cristal, Adrian 108

de Assumpção Jr., Jecel Mattos 262
Diniz, Pedro C. 121
Djafarian, K. 337
Dohi, Keisuke 191
Domladovec, Ivan 97
Duarte, Rui Policarpo 49
Durelli, G. 337

Ebrahim, Ali 205
Engel, Andreas 167

Falsafi, B. 312
Ferger, Max 268
Fornaciari, William 345

Ganesan, Narayan 227
Gaydadjiev, G.N. 312, 318
Goeders, Jeffrey B. 73
Gogos, Christos 330
Goulas, George 330
Granado, Bertrand 37
Grigoras, P. 324
Güneysu, Tim 25, 240

Haas, Juergen 179
Hagelauer, Richard 179
Haider, Amna 108
Hamasaki, Kaoru 191
Heyse, Karel 85
Hübner, Michael 268
Hung, Eddie 73
Hussain, Tassadaq 108

Iriarte, Ana 213
Isaza, S. 312

Kadlcek, Oliver 85
Karlsson, Sven 197
Kenter, Tobias 144
Khalifat, Jalal 205
Koch, Andreas 167
Kornaros, G. 337
Kuper, Jan 219, 275

Li, Jie 227
Li, Xi 306
Liu, Tianlun 179
López, Juan A. 133
Luk, W. 318, 324

Malek, A. 312
Mariani, R. 312
Marques, Eduardo 262
Massari, Giuseppe 345
McGlone, J. 324
Mehrez, H. 13



354 Author Index

Meisner, Sebastian 283
Menard, Daniel 133
Miele, A. 337
Minhas, Umar Ibrahim 298
Mischke, Oliver 240

Niar, Smail 248
Niedermeier, A. 275

Oey, Oliver 330
Oguri, Kiyoshi 191
O’Neill, E. 324

Pagliarini, S. 312
Palermo, Gianluca 345
Palomar, Oscar 108
Panjkov, Zdravko 179
Paolino, M. 337
Paone, Edoardo 345
Papadimitriou, K. 318
Papaefstathiou, I. 318
Park, Joonseok 121
Parvez, Husain 291
Pau, D. 318
Pell, Oliver 85, 318, 324, 337
Piestrak, Stanis�law J. 254
Pilato, C. 318
Pillement, Sébastien 254
Platzner, Marco 283
Plessl, Christian 144, 337
Pnevmatikatos, D.N. 312, 318
Poppenreiter, Roland 179
Pöpper, Christopher 240
Pradhan, D.K. 312

Ragusa, C. 324
Raptis, Nick 330
Rauwerda, G. 312
Rosmanith, Herbert 179

Saghir, Mazen A.R. 248
Salighehdar, Amin 227
Sanders, P. 324
Santambrogio, M.D. 318, 337
Sasdrich, Pascal 25
Scandale, Michele 345

Schleuniger, Pascal 197
Schreiber, Martin 97
Scicluna, Neil 1
Sciuto, D. 318
Sedano, Enrique 133
Seepers, R.M. 312
Shafik, R.A. 312
Shi, Liang 306
Shibata, Yuichiro 191
Silvano, Cristina 345
Smaragdos, G. 312
Smit, Gerard J.M. 275
Sourdis, I. 312
Stripf, Timo 330
Stroobandt, Dirk 85, 318
Strydis, C. 312

Theodoropoulos, D. 312
Torresen, Jim 61
Tradowsky, Carsten 97
Tzilis, S. 312

Ünsal, Osman S. 108

Valero, Mateo 108
Valouxis, Christos 330
Vavouras, M. 312
Vaz, Gavin 144
Vesper, Malte 97
Voros, Nikolaos S. 330
Voswinkel, Merik 262

Wang, Chao 306
Wang, Xiaofang 233
Wasserbauer, Andreas 179
Watanabe, Minoru 156
Wehbe, Taimour 233
Wester, Rinse 219
Wilton, Steven J.E. 73
Wold, Alexander 61

Yoza, Takashi 156

Zaccaria, Vittorio 345
Zhang, Huizhen 306
Zhou, Xuehai 306


	Preface
	Organization
	Table of Contents
	Regular Papers
	Applications I
	FPGA-Based Parallel DBSCAN Architecture
	1 Introduction
	2 Background
	2.1 DBSCAN Algorithm
	2.2 Related Work

	3 Concept and Architecture
	4 Experimental Results
	5 Conclusions
	References

	FPGA-Based High Performance AES-GCMUsing Efficient Karatsuba Ofman Algorithm
	1 Introduction
	2 AES-GCM
	3 EfficientKOA-BasedGHASH
	4 High Throughput AES-GCM
	5 Hardware Comparison
	6 Conclusion
	References

	Efficient Elliptic-Curve CryptographyUsing Curve25519 on Reconfigurable Devices
	1 Introduction
	2 Previous Work
	3 Background
	3.1 Curve25519 Function
	3.2 Curve25519 Computations

	4 Design Considerations
	5 Implementation
	5.1 Single-Core Architecture
	5.2 Multi-core Architecture

	6 Results
	6.1 Comparison of the Single- and Multi-Core Architecture
	6.2 Comparison to Other Work

	7 Conclusion
	References

	Accelerating Heap-Based Priority Queue in Image Coding Application Using Parallel Index-Aware Tree Access
	1 Introduction
	2 Adaptive Scanning of Wavelet Data
	2.1 Heap-Based Priority Queue
	2.2 ASWD Using Heap-Based Priority Queue Approach
	2.3 ASWD Priority Queue Operations
	2.4 Related Work

	3 Hardware Implementation of ASWD
	3.1 Index-Aware Heap Structure with Parallel Tree Access
	3.2 Parallelized Max_Heapify Operation
	3.3 Parallelized Extract_Max Operation
	3.4 Parallelized Increase_Key Operation

	4 Experimental Results
	5 Conclusion
	References


	Methods, Frameworks and OS for Debug,Over-Clocking and Relocation
	A Unified Framework for Over-Clocking LinearProjections on FPGAs under PVT Variation
	1 Introduction
	2 Background
	3 Linear Projection Revisited
	4 Optimisation of Linear Projection Designs for Over-Clocking
	4.1 Objective Function
	4.2 Prior Distribution Formation

	5 Evaluation of Over-Clocked Linear Projections Circuits underPVT Variation
	5.1 Optimisation Targeting Maximum Performance
	5.2 Optimisation Targeting Low Voltage
	5.3 Optimisation Targeting Device Temperature Tolerance

	6 Conclusion
	References

	Relocatable Hardware Threads in Run-TimeReconfigurable Systems
	1 Introduction
	2 Run-time Reconfigurable System Implementation
	2.1 System Partitioning
	2.2 Relocatable Hardware Threads

	3 Run-time Environment Implementation
	3.1 ReconOS API Extensions and Scheduling
	3.2 Reconfiguration Manager

	4 Experimental Results
	4.1 Hardware Thread Implementations
	4.2 Run-time Experiments

	5 Conclusion
	References

	Faster FPGA Debug: Efficiently Coupling TraceInstruments with User Circuitry
	1 Introduction
	2 Background
	3 Prototype Instrumentation
	4 Methodology
	4.1 Instrumentation Cores and Flow
	4.2 mcmfRoute

	5 Results
	6 Conclusion
	6.1 Future Work

	References


	Memory Architectures
	On the Impact of Replacing a Low-SpeedMemory Bus on the Maxeler Platform,Using the FPGA’s Configuration Infrastructure
	1 Introduction
	2 Maxeler Platform Background
	2.1 Hardware Platform
	2.2 Toolchain
	2.3 Mapped Memories

	3 Implementation of Mapped Memories Using Partial Reconfiguration
	3.1 Partial Reconfiguration of BRAMs
	3.2 Configuration Interface
	3.3 Changes to the Compilation Toolchain
	3.4 Changes to the Run-Time Libraries

	4 Challenges: Partial Reconfiguration Constraints
	5 Evaluation: Clock Frequency Benefits
	5.1 Evaluated Applications
	5.2 Maximum Clock Frequency

	6 Recommendations
	7 Conclusion
	References

	Towards Dynamic Cache and BandwidthInvasion
	1 Introduction
	1.1 Dynamic Adaptive Software
	1.2 Dynamic Adaptive Hardware

	2 Related Work
	2.1 Dynamic Adaptive Memory
	2.2 Application Requirements for Dynamic Memory

	3 Dynamic Scheduling and Adaptive Hardware
	4 Case Study on Potentials of Cache and Bandwidth-Aware Invasions
	4.1 Variation of Cache Parameters
	4.2 Intermixing Bandwidth- and Compute-Bound Applications

	5 Conclusion and Future Work
	References

	Stand-Alone Memory Controllerfor Graphics System
	1 Introduction
	2 Related Work
	3 PGC Graphics System Specification
	3.1 Overview of PGC System
	3.2 Processing Unit
	3.3 Memory Unit
	3.4 Bus Unit

	4 Experimental Framework
	4.1 MicroBlaze Based Graphics System
	4.2 PGC Based Graphics System

	5 Results and Discussion
	5.1 Bus Performance
	5.2 Snapshot Mode Performance
	5.3 Applications Performance
	5.4 Power

	6 Conclusion
	References


	Methodologies and Tools I
	Evaluating High-Level Program InvariantsUsing Reconfigurable Hardware
	1 Introduction
	2 Using Invariants for Silent Error Detection
	3 Deriving and Mapping Invariants to Hardware
	3.1 Loop and Array Indexing Invariants
	3.2 Mapping Invariants to Assembly: SSA and Live Ranges
	3.3 Translation to Hardware
	3.4 System Architecture and Invariant Checker Circuit
	3.5 Reconfigurable Invariant Logic Block

	4 Experiments
	4.1 Methodology
	4.2 Sample Set of Codes and Derived Invariants
	4.3 Overhead of Invariants in Software
	4.4 Implementation Results on an FPGA
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

	Automated Data Flow Graph Partitioningfor a Hierarchical Approachto Wordlength Optimization
	1 Introduction
	2 Related Work
	2.1 Automatic Quantization
	2.2 Graph Partitioning Algorithms

	3 Definition of the Problem
	4 Partitioning Algorithm
	4.1 Stage One: Un-smooth Operators Handling
	4.2 Stage Two: Iterative Partitioning

	5 Experimental Results
	6 Conclusion
	References

	Partitioning and Vectorizing Binary Applicationsfor a Reconfigurable Vector Computer
	1 Introduction
	2 Related Work
	3 Convey HC-1 Platform and Vector Personality
	4 Approach
	4.1 Toolflow for Heterogeneous Executables
	4.2 Code Extraction
	4.3 Vectorization
	4.4 Runtime Decisions

	5 Evaluation
	6 Conclusion
	References


	Architectures I
	Enhanced Radiation Tolerance of an OpticallyReconfigurable Gate Array by Exploitingan Inversion/Non-inversion Implementation
	1 Introduction
	2 Configuration Dependability of an ORGA
	3 Inversion/Non-inversion Configuration Method on ORGA
	4 VLSIDesign
	5 Experimental System and Results
	6 Conclusion
	References

	Hardware-Accelerated Data Compression in Low-Power Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Characteristics of Monitoring Applications
	3.1 Evaluation of Compression Algorithms
	3.2 Neural Activity in Primates
	3.3 Condition Monitoring of Heavy Industrial Machinery

	4 Hardware-Accelerated Data Compression
	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	OCP2XI Bridge: An OCP to AXI ProtocolBridge
	1 Introduction
	2 Related Work
	3 Hardware Design of the On-chip Bridge
	4 RTL Simulation of the Bridge
	5 FPGA Emulation of the OP2XI Bridge
	5.1 Versatile Express Board
	5.2 Synthesis Tool Flow
	5.3 Emulation on Versatile Express Board

	6 Results
	7 Conclusion
	References



	Short Papers
	Applications II
	FPGA Implementation of a Video Based AbnormalAction Detection System with Real-Time Cubic HigherOrder Local Auto-Correlation Analysis
	1 Introduction
	2 Abnormal Action Detection
	2.1 CHLAC Feature
	2.2 CCIPCA

	3 Implementation
	3.1 CHLAC ExtractionModule
	3.2 CCIPCA Module

	4 Evaluation
	5 Conclusion
	References

	A Synthesizable Multicore Platformfor Microwave Imaging
	1 Introduction
	2 Related Work
	3 System Overview
	4 Router Architecture
	5 Results
	6 Conclusion
	References

	An Efficient Implementation of the Adams-Hamilton’s Demosaicing Algorithm in FPGAs
	1 Introduction
	2 Adams-Hamilton’s Demosaicing
	3 Hardware Implementation
	3.1 Data Buffering
	3.2 Image Interpolation
	3.3 Memory Interface

	4 Experimental Results
	4.1 Performance and Utilization
	4.2 Image Analysis

	5 Conclusion
	References

	FPGA Design of Delay-Based Digital Effectsfor Electric Guitar
	1 Introduction
	2 Delay-Based Audio Effects
	2.1 Delay
	2.2 Chorus
	2.3 Flanger

	3 Hardware Design
	3.1 Handling Memories for Buffering
	3.2 Parameterizable Coefficients
	3.3 Fixed-Point Issues

	4 Results
	5 Conclusions
	References

	Design Space Exploration of a Particle FilterUsing Higher-Order Functions
	1 Introduction
	2 Related Work
	3 Background
	3.1 Hardware Design Using Haskell
	3.2 Particle Filtering

	4 Design Methodology
	4.1 Particle Filter in Haskell
	4.2 Space/Time Tradeoff Rules
	4.3 Composition Using Dataflow

	5 Results
	6 Conclusions and Future Work
	References

	Simulation of Complex Biochemical Pathwaysin 3D Process Space via HeterogeneousComputing Platform: Preliminary Results
	1 Introduction
	2 Algorithm and Implementation
	2.1 Heterogeneous Computing Framework
	2.2 Experiments and Performance

	References


	Architectures II
	Efficient Buffer Design and Implementationfor Wormhole Routers on FPGAs
	1 Introduction
	2 Hybrid Buffer Design and Implementation
	2.1 Hybrid Buffer Design
	2.2 Buffer Implementation Tailored to FPGAs

	3 Experimental Results
	4 Conclusions
	References

	MicroACP - A Fast and Secure ReconfigurableAsymmetric Crypto-Processor–Overhead Evaluation of Side-Channel Countermeasures–
	1 Introduction
	2 OurDesign
	2.1 Architecture
	2.2 Implemented Algorithms
	2.3 Implementation of Countermeasures

	3 Results
	4 Conclusion
	References

	ARABICA: A Reconfigurable ArithmeticBlock for ISA Customization
	1 Introduction
	2 The ARABICA Architecture
	3 Experimental Methodology and Results
	3.1 FPGA Resource Utilization
	3.2 Execution Performance
	3.3 Power and Energy Consumption

	4 Conclusions
	References

	Built-in 3-Dimensional Hamming Multiple-ErrorCorrecting Scheme to Mitigate RadiationEffects in SRAM-Based FPGAs
	1 Introduction
	2 Related Work
	3 New 3-Dimensional Hamming (3DH) Code
	4 Determining the Optimal Size of the 3D Buffer and the Parity Memory Overhead
	5 Reliability Improvement
	6 Conclusion
	References

	Adapting Processor Grain via Reconfiguration
	1 Introduction
	2 Squeak and SiliconSqueak
	3 Scheduling and Reconfiguration
	4 Related Works
	5 Initial Results and Future Works
	References

	Instruction Set Optimizationfor Application Specific Processors
	1 Introduction
	2 State of the Art
	3 Concept and Realization
	4 Evaluation
	5 Conclusion
	6 Outlook
	References


	Methodologies and Tools II
	A Dataflow Inspired Programming Paradigmfor Coarse-Grained Reconfigurable Arrays
	1 Motivation and Related Work
	2 Architecture
	3 Programming Paradigm
	3.1 The Local View
	3.2 The Global View

	4 Programming Language
	5 Workflow
	5.1 Implementing the Algorithm
	5.2 Code Generation
	5.3 Mapping to the CGRA
	5.4 Evaluation

	6 Conclusions
	References

	Thread Shadowing: Using Dynamic Redundancyon Hybrid Multi-cores for Error Detection
	1 Introduction
	2 Shadowing Prototype Implementation
	2.1 ReconOS and Shadowing Extensions
	2.2 Thread Signatures and Shadowing Schemes

	3 Experimental Evaluation
	3.1 Runtimes
	3.2 Latencies and Coverage

	4 Conclusion and Future Work
	References

	Diffusion-Based Placement Algorithmfor Reducing High Interconnect Demandin Congested Regions of FPGAs
	1 Introduction
	2 Background and Previous Work
	3 Implementation
	3.1 The Cost Function
	3.2 Flow Overview
	3.3 Improvements in Run-Time

	4 Results
	5 Conclusion and Future Work
	References

	GPU vs FPGA: A Comparative Analysisfor Non-standard Precision
	1 Introduction
	2 Methodology
	2.1 Equipment
	2.2 Benchmark and Metrics

	3 Implementation
	3.1 GPU Implementation
	3.2 FPGA Implementation

	4 Results
	5 Conclusion and Future Work
	References

	Instruction Extension and Generation for Adaptive Processors
	1 Introduction and Background
	2 Instruction Extension and Generation
	2.1 Data Flow Analysis
	2.2 Instruction-Set Extension

	3 Mapping Instructions to Reconfigurable Logic
	4 Conclusion and Future Work
	References


	Special Session Papers
	DeSyRe: On-Demand Adaptiveand Reconfigurable Fault-Tolerant SoCs
	1 Introduction
	2 The DeSyRe Project: On-Demand System Reliability
	3 The DeSyRe Reconfigurable Substrate
	4 Runtime System Adaptation and Graceful Degradation
	5 Conclusions
	References

	Effective Reconfigurable Design:The FASTER Approach
	1 Introduction
	2 Related Work and Novelty
	3 Methods and Tool-Chain
	4 Run-Time System
	5 Conclusions
	References

	HARNESS Project: Managing HeterogeneousComputing Resources for a Cloud Platform
	1 Overview
	2 Cross-Optimisation of Heterogeneous Resources
	3 Virtualising Specialised Computing Resources
	4 Application Development
	5 Conclusion
	References

	Profile-Guided Compilation of Scilab Algorithmsfor Multiprocessor Systems
	1 Introduction
	2 ALMA Toolchain
	3 Profile-Guided Optimization
	4 Evaluation
	5 Conclusion
	References

	SAVE: Towards Efficient Resource Management in Heterogeneous System Architectures
	1 Current Trends and Challenges in System Architecture
	2 The Objectives of the SAVE Project
	3 The SAVE Concept
	3.1 Advanced Run-Time Self-adaptiveness OS Support Layer and Adaptive Hardware Layer
	3.2 Hardware-Assisted Virtualization Support for the Specialized Computing Resources
	3.3 Hypervisor Extensions
	3.4 Just-in-Time Compilation and Offloading Infrastructure

	4 Conclusions
	References

	Data Parallel Application Adaptivityand System-Wide Resource Managementin Many-Core Architectures
	1 Introduction
	2 Proposed Approach and Toolchain
	3 Experimental Evaluation
	4 Conclusions
	References



	Author Index



