
Chapter 8
Topological Spaces

In geometry, we can decide which points are near and which are far by computing
distance. In topology, no such notion is available and distance is replaced by the
weaker concept of neighborhoods. A full treatment of this idea is beyond the scope
of this course. Indeed, we are motivated to side-step the technical difficulties by
restricting ourselves to spaces in which connectivity can be defined by elementary
means. The primary tool to achieve this goal are simplicial complexes.

8.1 Topology and Topology Equivalence

Let X be a set of points. A topology of X is a collection of subsets, called open sets,
such that

(i) X is open and the empty set is open;
(ii) the intersection of any two open sets is open;
(iii) the union of any family of open sets is open.

The setX togetherwith the topology is called a topological space. By a neighborhood
of a point we mean an open set that contains that point. For example, the plane
together with the topology generated by the Euclidean metric is a topological space.
To construct it, we call the set of points at distance less than r > 0 from a point x ∈ R

2

an open disk. Taking finite intersections and arbitrary unions of open disks, we get a
collection of open sets that satisfies the above three conditions. It is usually referred
to as the Euclidean topology of the plane. Similarly, we can construct topologies for
subsets of the plane. Consider for example the unit disk, B2 = {x ∈ R

2 | ‖x‖ ≤ 1}.
The topology inherited from the topology of the plane consists of all intersections
of open sets with B

2. Thus, B2 together with the topology inherited from R
2 is a

topological space.
A function from one topological space to another is continuous if the preimage

of every open set is open. This is derived from the familiar notion of continuity in
calculus. A homeomorphism between two topological spaces is a bijective function
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Fig. 8.1 Left the cylinder. Right the Möbius strip

f : X → Y such that f and f −1 are both continuous. If such a function exists,
thenX andY are said to be homeomorphic, or topologically equivalent, or they have
the same topology type, and this is denoted by writing X ≈ Y. An embedding is a
function g : X → Ywhose restriction to the image, g(X) ⊆ Y, is a homeomorphism.
For example, the open disk is homeomorphic to the plane. To prove this, we introduce
S
1 = {x ∈ R

2 | ‖x‖ = 1} and note that B2 − S
1 is the prototypical open disk. The

function f : B2 − S
1 → R

2 defined by f (x) = x
1−‖x‖ is bijective and bicontinuous

implying that B2 − S
1 ≈ R

2. While f is a homeomorphism between the open disk
and the plane, the identity defined by g(x) = x is an embedding of the open disk in
the plane.

The basic question in topology is to classify spaces up to topology type. For
example, most coffee cups have the same type as the solid torus, which is a ball with
a handle. However, this is a difficult undertaking in general, with known answers
restricted to very limited situations.

8.2 2-Manifolds

Perhaps the best known family for which a complete classification into topological
types is known are the compact surfaces. We define a 2-manifold (without boundary)
as a topological space X for which every point x ∈ X has an open neighborhood
homeomorphic to R

2. As mentioned earlier, this is equivalent to saying that x has
an open disk neighborhood. If the 2-manifold is connected and compact, then we
sometimes call it a compact surface. Similarly, a 2-manifold with (possibly empty)
boundary is a topological space Y for which every point y ∈ Y has a neighborhood
homeomorphic to R

2 or to H
2 = {x = (x1, x2) | x1 ≥ 0}. The boundary of a

2-manifold with boundary is necessarily a 1-manifold, that is: a collection of closed
curves. For example, the cylinder is a 2-manifold with boundary, and its boundary
consists of two closed curves. As illustrated in Fig. 8.1, it can be constructed from a
square by gluing the left edge to the right edge.
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Fig. 8.2 From left to right: the torus, the Klein bottle, the projective plane, and the sphere

If we glue the same two edges with reversed orientation, as shown in Fig. 8.1 on
the right, thenwe get theMöbius strip. In contrast to the cylinder, it is non-orientable,
by which we mean that it is not possible to assign an unambiguous orientation (cw
or ccw) to every point. Indeed, we can walk from a point x—standing on one side
of the Möbius strip—to the same point x—standing on the other side of surface. A
cw orientation observed at the first visit appears as a ccw orientation at the second
visit. This implies that the surface has really only one side, and the two sides make
sense only locally.

We can also glue the top to the bottom edge so that all boundary is removed and
we get a compact surface. Doing this the obvious way, as shown in Fig. 8.2 on the
left, we get the torus, and with one reversed orientation, as in the second picture,
we get the Klein bottle. If we reverse the direction for both pairs of glued edges,
as in the third picture, we get the projective plane. Finally, if we glue the top edge
to the left, and the bottom edge to the right, as in Fig. 8.2 on the right, we get the
sphere. The torus and the sphere can be embedded in R

3, so we are quite familiar
with their curved appearance, but the Klein bottle and the projective plane cannot,
which is perhaps the reason why they are more difficult to imagine. The projective
plane seems most difficult to imagine of all, so we offer an alternative construction.
Starting with the sphere, S2 = {x ∈ R

3 | ‖x‖ = 1}, we call points x and −x
antipodal. Gluing the antipodal points in pairs gives the projective plane. This recipe
glues the northern hemisphere to the southern hemisphere, and it glues the equator
to itself, like wrapping a hair-band twice around a pony-tail.

8.3 Classification of Compact Surfaces

We use the Euler characteristic and the orientability of a surface for classification. To
define the former, we decompose the surface into triangles, making sure that any two
meet in a shared edge, or a shared vertex, or not at all. Then we compute the Euler
characteristic as the alternating sum of simplices: number of vertices minus number
of edges plus number of triangles. The four triangulations shown in Fig. 8.3 all have
27 edges and 18 triangles, but they differ in the number of vertices, which from left
to right is 9, 9, 10, 11. It follows that χ = 0, 0, 1, 2 for the torus, the Klein bottle,
the projective plane, and the sphere. Remembering that the torus and the sphere are
orientable, and the Klein bottle and the projective plane are not, we use these two
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Fig. 8.3 From left to right: triangulations of the torus, the Klein bottle, the projective plane, and
the sphere. Only one copy of each vertex and one copy of each edge is shown

Fig. 8.4 The double torus obtained by forming the connected sum of two tori

pieces of information to tell the four surfaces apart. As observed about a century ago
in [1, 2], the method extends to all compact surfaces. It is worth mentioning that
such a classification is out of reach for 4-manifolds since it is undecidable whether
two triangulated 4-manifolds are homeomorphic [3]. To explain this extension, we
write T2 for the torus, K2 for the Klein bottle, P2 for the projective plane, and S

2

for the sphere. Assuming triangulations, we can form the connected sum of two by
removing a triangle in each and gluing their boundaries to each other; see Fig. 8.4.

Denoting this operation by #, we observe that forming the connected sum with S2

does not change the topological type. However, forming the connected sum with any
of the other three surfaces does change the type. In all three cases, it changes the Euler
characteristic, and if we start with an orientable surface and form the connected sum
with the projective plane or the Klein bottle, it changes the surface from orientable
to non-orientable. Define

Tn = T
2#T2# . . . #T2, (8.1)

Pn = P
2#P2# . . . #P2 (8.2)

by iterating the connected sum n − 1 ≥ 0 times each. The Euler characteristic of
the resulting spaces is χ(Tn) = 2 − 2n and χ(Pn) = 2 − n. Note that all Tn are
orientable and all Pn are non-orientable.

Classification Theorem Two connected, compact 2-manifolds (without bound-
ary) are homeomorphic iff they have the same Euler characteristic and they are both
orientable or both non-orientable.

This result amounts to saying that the sphere together with the two infinite families
defined in (8.1) and (8.2) exhaust all compact surfaces. Note that it also says that
K

2 ≈ P
2#P2.
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8.4 Simplicial Complexes

We are now more formal about the decompositions of surfaces into triangles. This is
also a good moment to drop the restriction to two dimensions. A set of k + 1 points,
u0, u1, . . . , uk , is affinely independent if the k vectors, u1−u0, u2−u0, . . . , uk −u0,
are linearly independent. A k-simplex is the convex hull of k +1 affinely independent
points. Writing σ for the k-simplex, we call k = dim σ its dimension, and u0 to uk its
vertices. Simplices of dimension 0, 1, 2, 3 are usually referred to as vertices, edges,
triangles, tetrahedra. A face of σ is a simplex spanned by a subset of the vertices of
σ. Since a set of k + 1 elements has

(k+1
�+1

)
subsets of size � + 1, σ has this number

of �-faces, for 0 ≤ � ≤ k. The total number of faces is therefore

k∑

�=0

(
k + 1

� + 1

)
= 2k+1 − 1, (8.3)

the number of subsets minus 1 because we do not count the empty set. Sometimes it
is convenient to call ∅ a face of σ, namely the unique (−1)-face, but we will refrain
from this practice. When we triangulate a surface, we choose the triangles such that
they have only proper intersections. Similarly, we define a simplicial complex as a
finite collection of simplices, K , such that

(i) for every simplex σ ∈ K , every face of σ is in K ;
(ii) for every two simplices σ, τ ∈ K , the intersection, σ ∩ τ , is either empty or a

face of both simplices.

If the intersection of two simplices is a common face, then (i) implies that it is
a simplex in K . The dimension of K is the largest dimension of any simplex in
K . A subcomplex is a subset of the simplices that is itself a simplicial complex.
The Euler characteristic of K is the alternating sum of simplex numbers: χ(K ) =
s0 − s1 + s2 − . . . ± sk , where k is the dimension of K and si is the number of
i-simplices, for 0 ≤ i ≤ k.

8.5 Triangulations

Until now, we have avoided anymention of the space inwhich the simplicial complex
lives. Clearly, k + 1 points in Rd can be affinely independent only if k ≤ d. Suppose
K is a simplicial complex in R

d . The underlying space of K is the union of the
simplices,

|| K || =
⋃

σ∈K

σ, (8.4)
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Fig. 8.5 Triangulation of the
sphere. Each triangle of the
octahedron projects centrally
to a spherical triangle that
covers an eighth of the sphere

together with the topology inherited from the Euclidean topology of Rd . We recall
that this means that the open sets in || K || are the intersections of the open sets in Rd

with the underlying space. Note that the underlying space is a set of points, while
the simplicial complex is a set of simplices. Sometimes, this difference is important
but more often than not, it is convenient to ignore it. A triangulation of a space X is
a simplicial complex, K , whose underlying space is homeomorphic to X.

Many times we talk about a topological space, we do so in reference to a trian-
gulation of the space. It therefore pays off to elaborate on the concept by showing a
few examples of spaces and triangulations. The simplicial complexes consisting of
18 triangles and their edges and vertices depicted in Fig. 8.3 are triangulations of the
torus, the Klein bottle, the projective plane, and the sphere.We note a few pitfalls that
need to be avoided when constructing a triangulation. For example, the triangulation
of the square used for the torus on the left does not work for the sphere, because the
identification of boundary edges would render some of the diagonal edges invalid,
namely the ones for which the endpoints are the same. Similarly, the identification
would render some edges the same,which is not allowed since the simplicial complex
is a set and not a multi-set. Another popular method for constructing a triangulation
is by projection. Take for example any convex polytope in R

3 whose faces are all
triangles, such as the octahedron. Fixing a point in the interior of the polytope as the
origin, the central projection from the boundary of the polytope to the sphere is a
homeomorphism; see Fig. 8.5.
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