
Chapter 5
Alpha Complexes

The original motivation for the concept of alpha shapes was the desire to develop a
concrete version of the intuitive notion of ‘shape’ of a finite point set. Starting from
this idea, we explore connections to Voronoi diagrams and Delaunay triangulations.

5.1 Jarvis’ Construction

In an early approach, Jarvis defines the shape of a point set procedurally, as the output
of a generalized convex hull algorithm [1]. Letting S be a finite set of sites in R2, we
can construct the convex hull by rotating a line about the set; see Fig. 5.1. Assuming
general position, we begin by letting s be the leftmost site. Drawing a vertical line
L through s and oriented downward, we see that all sites lie to the left of L , so s is
indeed a vertex of the convex hull. Using s as a pivot, we rotate L in a ccw order until
it hits another site, t . All sites other than s and t lie to the left of L , implying that st
is an edge of the convex hull. We repeat this step now using t as the pivot. Each step
gives a new edge of the convex hull, and the algorithm halts when it returns to the
initial site, s.

What else we can do by wrapping the set? For example, we can construct non-
convex shapes if we shorten the rotating line to a line segment of fixed length [2]. This
works if the sites are nicely distributed, as in Fig. 5.1, but can get the line segment
lost and return a sequence of sites that cannot be reasonably called its shape. Another
shortcoming is that this algorithm necessarily constructs only one closed curve, while
two closed curves might be more appropriate for the example at hand; see Fig. 5.2.

5.2 The Alpha Shape

A theoretically and practically more satisfying solution to constructing the shape of
a finite set can be based on empty disks [3]. Letting α ≥ 0 be a fixed radius, we write
Dx (α) for the closed disk with center x ∈ R

2 and radius α. It is empty if it contains
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Fig. 5.1 Left illustration of Jarvis’ convex hull algorithm. Right the generalization to constructing
shapes obtained by shortening the line to a line segment

α

Fig. 5.2 A set of points sampling the letter ‘R’, with its α-hull on the left and its α-shape on the
right

no site: Dx (α) ∩ S = ∅. The α-hull of S is the complement of the union of empty
disks of radius α; see Fig. 5.2. Setting α to zero, we get the set of points, and setting
it to infinity, we get the convex hull.

The curved edges of the α-hull can sometimes be annoying. This motivates us to
draw them straight, which results in the α-shape of S. We will give an alternative
definition shortly, which will eliminate any remaining ambiguities. In contrast to the
α-hull, theα-shape is a polyhedron in the general sense: it does not have to be convex,
and it can have different intrinsic dimension at different places. For example, the
α-shape in Fig. 5.2 is mostly 2-dimensional except it has a 1-dimensional extension
at the right leg. If S contains a site that is further than distance 2α from any other site,
then this point is isolated and forms a locally 0-dimensional portion of the α-shape.
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Fig. 5.3 Left the union of disks of radius α of the same points as in Fig. 5.2. Right the Voronoi
decomposition of the union

5.3 Union of Disks

A point x is the center of an empty disk of radius α iff it is further than α from every
site. To make this relationship concrete, we construct the union of disks of radius α

centered at the sites:

US(α) =
⋃

s∈S

Ds(α); (5.1)

see Fig. 5.3. This union is the complement of the set of centers of the empty disks.
We can therefore expect that the boundaries of the α-hull and the union of disks
are related. Indeed, for each circular arc of US(α), we have a vertex of the α-hull,
and for each vertex of US(α), we have a circular arc of the α-hull. In its details,
this relationship is troubled by arcs in the boundary of the α-hull that intersect and
partially or completely erase one another. An example are the two circular arcs that
connect the right leg of the ‘R’ to its last site. Since they lie inside each other’s empty
disks, they do not belong to the α-hull.

5.4 Voronoi Decomposition

To get a cleaner relationship between the union of disks and the α-shape, we need an
unambiguous definition of the latter. For this, we overlay the union of disks with the
Voronoi diagram, effectively decomposing the union into convex regions; seeFig. 5.3.
To formalize this idea, we write Rs(α) = Vs ∩ Ds(α) and note that this is a convex
set because it is the intersection of convex sets. Furthermore, US(α) = ⋃

s∈S Rs(α).
In words, the regions Rs cover the union, but in contrast to the disks, which also cover
the union, they do this without overlap. More specifically, the common intersection
of the regions is limited to shared edges and vertices. Following the recipe for the
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Fig. 5.4 The α-complex is
superimposed on the union of
disks, which is decomposed
into convex regions by the
Voronoi diagram

Fig. 5.5 While the inter-
section of any two regions
is non-empty, the common
intersection of all three
regions is empty because
α is smaller than the radius of
the circumcircle. Accordingly,
the α-complex contains the
three edges but not the triangle
spanned by the three sites

Delaunay triangulation, we construct the α-complex by drawing an edge between
two sites if their regions intersect in a common edge, and by drawing a triangle
between three sites if their regions intersect in a common point; see Fig. 5.4. For ease
of reference, we denote the resulting complex by AS(α), or by A(α) if the set of sites
is understood. For example, A(0) is the set of sites without any additional structure,
and A(∞) is the Delaunay triangulation of S. We now formally define the α-shape
as the union of simplices in the α-complex.

Note that the global connectivity of the union of disks in Fig. 5.4 is that same as
that of the α-complex and of the α-shape: all three are connected and have a single
hole. This is not a coincidence but rather a consequence of the Nerve Theorem, which
will be discussed later in this course.
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5.5 Filtration

Next we vary α and consider the complete range of possible values, which is from
0 to ∞. For α < α′, we have Ds(α) ⊆ Ds(α

′) and therefore Rs(α) ⊆ Rs(α
′).

Recall that st is an edge in the α-complex iff Rs(α) ∩ Rt (α) 	= ∅. Since the regions
grow with the radius, this implies Rs(α

′) ∩ Rt (α
′) 	= ∅, and therefore st is also an

edge in the α′-complex. Similarly, every triangle in the α-complex belongs to the
α′-complex. In summary, A(α) ⊆ A(α′) whenever α ≤ α′. It thus makes sense to
ask—for each vertex, edge, and triangle σ in the Delaunay triangulation—what the
smallest value of α is for which σ belongs to A(α). Denoting this value by ασ , we
can construct the α-complex simply by collecting all vertices, edges, and triangles
that have a value not larger than α:

A(α) = {σ ∈ K | ασ ≤ α}, (5.2)

where K is the Delaunay triangulation of S. Computing this value is easiest for the
vertices, since we have αs = 0 for every s ∈ S. It is also easy for triangles, for which
αstu is the radius of the circumcircle; see Fig. 5.5. The computation of the smallest
α-value is slightly more difficult for edges. Here, we distinguish between two cases.
First, the edge st may intersect the dual Voronoi edge in its interior; as in Fig. 5.5. In
this case, st belongs to the α-complex as soon as the two disks meet, which happens
when the radius reaches half the distance between the sites: αst = 1

2‖s − t‖. If st
is shared by the triangles stu and stv in K , then the condition of st intersecting
the dual Voronoi edge in its interior is equivalent to having acute angles at u and v.
This leads us to the second case in which one of these two angles is obtuse, say the
angle at u. Then it is not enough that the two disks meet; they also need to reach the
Voronoi edge, which happens when the triangle stu enters the α-complex. Hence,
αst = αstu . Now that we have the threshold value for every vertex, edge, and triangle
in the Delaunay triangulation, we can sort them such that

ασ1 ≤ ασ2 ≤ . . . ≤ ασn . (5.3)

The corresponding sequence of simplices is called a filter. Here, we make sure that
every simplex is preceded by its faces. We get this from the formulas already, since
the value of every edge is smaller than or equal to the values of the triangles it belongs
to. However, in case the value of the edge is equal to that of an incident triangle, we
make sure we order the edge before the triangle. With this, every prefix of the filter
is a complex. Writing Kj for the collection of simplices σi with i ≤ j , we get an
increasing sequence of complexes,

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K . (5.4)

We call such an increasing sequence as a filtration. The not necessarily contiguous
subsequence of alpha complexes is sometimes referred to as the alpha complex
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filtration of the set S. This and other filtrations will play an important role in later
sections, when we talk about persistent homology.

5.6 Space-Filling Models of Proteins

A major application of alpha complexes are proteins and other molecules modeled
as unions of balls [4]. One such model is the van der Waals diagram of a protein.
It is based on the van der Waals force, which is weakly attractive at short distance
between the atoms, and turns into a strongly repulsive force if we push the atoms
closer together. The diagram is obtained by taking the union of the balls centered at
the atoms in which the radii are chosen so that the atoms are at equilibrium when the
balls touch.

Different types of atoms affect neighboring atoms differently, which leads to
different radii. For example, hydrogen atoms are the smallest, with carbon, oxygen,
and nitrogen atoms represented by somewhat larger balls. This motivates the concept
of weighted alpha complexes, which are defined analogous to weighted Voronoi
diagrams and weighted Delaunay triangulations. To be specific, we have a finite set
of sites with real weights, and we recall that the bisector of two sites under the power
distance is the set of points x that satisfy ‖x − s‖2 − ws = ‖x − t‖2 − wt . We have
shown that the bisector is a straight line. If we add the same constant, α2, to the
weights, then the bisector stays the same. We therefore define Ds(α) as the disk with
center s and radius

√
ws + α2. We note that the radius depends on the weight as

well as on α. We could therefore drop α and change all weights. We prefer to keep
the weights fixed and modify the complex by varying the parameter, thus stressing
that we use only one degree of freedom. Observe that the radius in the weighted
case agrees with the definition in the unweighted case, when it is α. To construct the
weighted α-complex of S, we take the union of the disks Ds(α), for all s ∈ S, we
decompose the union into convex regions using the weighted Voronoi diagram, and
we take the dual, as before.

If we choose the weights so that the radii agree with the van der Waals forces,
we get the weighted 0-complex as the dual of the van der Waals diagram. There are
reasons to also consider non-zero values of α. One is the solvent accessible diagram
in which the van der Waals radii are increased by about 1.4 Angstrom, which is
the radius used to approximate a water molecule. The diagram thus represents the
interaction between the protein and solvent, which is water. Indeed, if we represent a
water molecule by the ball with center x and radius 1.4 Angstrom, then this molecule
is not yet repelled by the protein iff x lies outside the solvent accessible model. For
other solvents, we would modify the radius by different amounts. A word or caution
is in order: increasing all radii by the same amount relates to the Apollonius and
not the power diagram. Indeed, only if we increase all squared weights by the same
amount—which for reasons of compatibility with the unweighted case is denoted as
α2—we preserve the power diagram.
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