
Chapter 4
Three Dimensions

Voronoi diagrams and Delaunay triangulations in R3 are more interesting and more
difficult to understand than in R

2. In this section, we develop some intuition by
considering these tessellations for a few symmetric point sets.

4.1 Lattices

The lattice generated by a set of d linearly independent vectors in R
d consists of

all integer combinations: S = {∑d
i=1 ki ui | ki ∈ Z for all i}. In the plane, we just

need two vectors to define a lattice. The most common example is the square lattice
generated by the vectors u1 = (1, 0) and u2 = (0, 1); see Fig. 4.1. The vectors are
not unique. For example, the square lattice is also generated by the vectors (2, 1) and
(1, 1). Every other lattice in the plane is the image of the square lattice under a linear
map, but when we construct the Voronoi diagrams, we see significant differences.

Before we get there, we observe that every site in a lattice is locally the same.
More precisely, for any two sites a, b ∈ S, the translation by the difference vector
leaves the lattice invariant: S = S+(b−a). This implies that the Voronoi regions are
the same: Vb = Va + (b − a). Furthermore, the central reflection through the origin
leaves the lattice invariant: S = −S. It follows that the Voronoi region of the origin
is centrally symmetric. Since all other Voronoi regions are translates of this one, all
Voronoi regions are centrally symmetric. In the plane, the only centrally symmetric
convex polygons have 2k edges, for k an integer larger or equal to 2. Of these, only
4-gons and 6-gons can be used to tile the plane. We thus have really only two types
of Voronoi diagrams, both exemplified in Fig. 4.1. The square lattice on the left is
not in general position. Indeed, the vertices in the Voronoi diagram have degree 4, so
when we take the dual, we get quadrangles instead of triangles. The Voronoi regions
on the right are hexagons, and they meet in triples at vertices of the diagram. In this
case, the dual is a triangulation in which every vertex has degree 6.
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Fig. 4.1 The Voronoi diagram of the square lattice on the left, and that of another lattice on the
right

Fig. 4.2 A subset of 27 sites in the cube lattice, and the Voronoi region of the site at the center

4.2 Cube Lattice

We write 2Z3 for the set of points with even integer coordinates in R
3. It is a

3-dimensional lattice since we can write 2Z3 as the set of all integer combinations
of three vectors: (2, 0, 0), (0, 2, 0), (0, 0, 2). The Voronoi region of any site is a cube
with sides of length 2; see Fig. 4.2. Similar to the square lattice, 2Z3 is not in general
position, which for Voronoi diagrams in R

3 would require that no five points lie on
a common sphere. For this reason, we do not get a triangulation when we dualize.
Indeed, the Delaunay triangulation of 2Z3 consists of cubes that tile R

3; it is still
called a triangulation out of convention. The only difference between the Delaunay
triangulation and the Voronoi diagram is that cubes of the former have their vertices
in 2Z3, while the cubes of the latter have their centers in 2Z3.
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Fig. 4.3 Left the Voronoi region of a site in the BCC lattice. Right a tetrahedron in the Delaunay
triangulation of the BCC lattice

4.3 BCC Lattice

We get the body-centered cubic lattice from 2Z3 by adding the centers of the cubes
to the set. Formally, we write B = 2Z3 ∪ (

2Z3 + (1, 1, 1)
)
. In other words, a point

belongs to B iff all its coordinates are even integers or all its coordinates are odd inte-
gers. We call it a lattice since it is again generated by three vectors: u1 = (1, 1,−1),
u2 = (1,−1, 1), u3 = (−1, 1, 1). To see this, we note that u1 + u2 + u3 = (1, 1, 1),
and the pairwise sums give (2, 0, 0), (0, 2, 0), (0, 0, 2). The latter generate 2Z3, and
adding (1, 1, 1) gives the remaining sites. It is also clear that the vectors generate no
points other than those in B. Recall that the Voronoi regions of the sites are translates
of each other and that they are centrally symmetric. To draw the Voronoi region of
the origin, we note that it is the intersection of its Voronoi region within 2Z3, which
is the cube [−1, 1]3, and the Voronoi region within 2Z3+(1, 1, 1), which is a regular
octahedron. Intersecting the two gives the truncated octahedron drawn in Fig. 4.3.

It is also interesting to draw the Delaunay triangulation of the BCC lattice. We
have long edges of length 2 and short edges of length

√
3. Every long edge connects

the centers of two neighboring cubes, and every short edge connects the center of a
cube with one of its corners. Every tetrahedron in the Delaunay triangulation consists
of two long and four short edges; see Fig. 4.3. The dihedral angle at a long edge is
90◦, so that four tetrahedra fit around the edge. In contrast the dihedral angle at a short
edge is 60◦, with six tetrahedra fitting around the edge. Indeed, these two types of
edges correspond to the quadrangles and the hexagons in the dual Voronoi diagram.

4.4 FCC Lattice

We get the face-centered cubic lattice by adding the centers of the faces to the
cube lattice. Formally, we define F as the set of points with integer coordinates
that add up to an even number. It is again a lattice, generated by v1 = (1, 1, 0),
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Fig. 4.4 Left the Voronoi region of a site in the FCC lattice. Right an octahedron and the eight
neighboring tetrahedra in the Delaunay triangulation of the FCC lattice

v2 = (1, 0, 1), v3 = (0, 1, 1). To see that these vectors generate F , we note that
v1 + v2 − v3 = (2, 0, 0), v1 − v2 + v3 = (0, 2, 0), −v1 + v2 + v3 = (0, 0, 2)
generate 2Z3, and that adding v1, v2, and v3 gives the face centers. It is clear that the
vectors generate no other points.

The Voronoi region of a site is show in Fig. 4.4. It is the intersection of a non-
regular octahedron with a square cylinder. In contrast to the BCC lattice, the dual
Delaunay triangulation does not just consist of tetrahedra. To see this, note that the
Voronoi region has two kinds of vertices: of degree 3 and of degree 4. Every degree-
3 vertex is shared by three other Voronoi regions, implying that it corresponds to
a tetrahedron in the Delaunay triangulation. In contrast, every degree-4 vertex is
shared by five other Voronoi regions, and the dual cell in the Delaunay triangulation
is an octahedron. Both the tetrahedron and the octahedron are regular, as illustrated
in Fig. 4.4.

4.5 Quadratic Example

In all the examples we have seen so far, the number of edges, faces, and cells in the
Delaunay triangulation are at most some constant times the number of sites. This is
not true in general. Indeed, if we place n/2 sites on a line, and another n/2 sites on a
second, skew line, then we have more than n2/4 edges in the Delaunay triangulation;
see Fig. 4.5. This number can be further increased to

(n
2

)
by being more careful in

how we place the points in R
3. To describe how this is done, we define the moment

curve as the set of points M(t) = (t, t2, t3), with t ∈ R. Suppose that S consists of
n points chosen from the moment curve. We claim that the Delaunay triangulation
of S contains all

(n
2

)
edges, which is clearly the maximum number possible. To see

this, we observe that any sphere intersects the moment curve in at most four points.
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Fig. 4.5 Delaunay triangulation of sites that lie on two it skew lines

Indeed, we can write a sphere as the set of points that satisfy

(x1 − A)2 + (x2 − B)2 + (x3 − C)2 − R2 = 0.

Substituting t for x1, t2 for x2, and t3 for x3, we get a polynomial equation of
degree 6:

0 = (t − A)2 + (t2 − B)2 + (t3 − C)2 − R2

= t6 + t4 − 2Ct3 + (1 − 2B)t2 − 2At + (A2 + B2 + C2 − R2).

A theorem of Descartes asserts that the number of roots is bounded from above by
the number of sign changes when we read the coefficients in sequence.1 Here we
have 1, 0, 1,−2C , 1−2B,−2A, and A2 + B2 +C2 − R2. No matter how we choose
A, B,C, R, we cannot have more than four sign changes, which implies the claimed
upper bound on the number of intersections.

Why does this imply that the Delaunay triangulation of S has
(n
2

)
edges? To prove

this, let t1 < t2 < · · · < tn be the parameters that define the n sites. For any four
indices 1 ≤ i < i + 1 < j < j + 1 ≤ n, we consider the sphere that passes through
the four corresponding points. It intersects the moment curve in these four points and
in no others. It follows that the segments between M(ti ) and M(ti+1) and between
M(t j ) and M(t j+1) lie inside the sphere, and the other three segments along the
moment curve lie outside the sphere. Hence, the tetrahedron spanned by the four
points belongs to the Delaunay triangulation. Every one of the

(n
2

)
edges belongs

to at least one such tetrahedron and therefore also to the Delaunay triangulation, as
claimed.

1 This is known as Descarte’s sign rule and was first described in his La Géométrie, which was
published in 1637 as an appendix to his Discour de la méthod, where he presents his method for
obtaining clarity on any subject.
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