
Chapter 3
Weighted Diagrams

Every region in a 2-dimensional Voronoi diagram consists of all points for which
the corresponding site minimizes the Euclidean distance. In this section, we modify
the notion of distance by introducing weights. Particular attention will be paid to
the case of subtracting the weight from the squared Euclidean distance because this
gives convex regions, like for the unweighted Euclidean distance.

3.1 Apollonius Diagrams

Let S be a finite set of points or sites in the plane. For each s ∈ S, we let ws ∈ R

be its weight. Suppose we define the weighted distance of a point x ∈ R
2 from s by

subtracting the weight from the Euclidean distance:

dA(s, x) = ‖x − s‖ − ws . (3.1)

Drawing the weighted site as a circle with center s and radius |ws |, we can interpret
this notion of distance geometrically. If ws ≥ 0 and ‖x − s‖ ≥ ws , then dA(x, s)
is the Euclidean distance to the nearest point on the circle. The same interpretation
works for ‖x − s‖ < ws except that dA(s, x) is now negative. Finally, if ws < 0,
then dA(s, x) is the Euclidean distance to the furthest point on the circle. To unify
the three cases, we draw a vertical cone in R

3, adding a third coordinate to the
plane. Its axis of rotation is the vertical line passing through s, its apex is the point
(s,−ws) ∈ R

3, and its opening angle is 90◦; see Fig. 3.1. Theweighted distance from
x to s is then the vertical distance from x to the cone. In other words, (the surface
bounding) the cone is the graph of the function that maps x to the weighted distance
from s. Let now s and t be two weighted sites. The bisector consists of all points
x with equal weighted distance from both: dA(s, x) = dA(t, x) or, equivalently,
‖x − s‖ − ‖x − t‖ = ws − wt . This is the equation of a hyperbola; it is the vertical
projection of the intersection of the two cones to R

2. On one side of the bisector,
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Fig. 3.1 The cones of two sites in the plane, one with positive and the other with negative weight
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Fig. 3.2 The Apollonius diagram of six sites. The intersection of the regions of s and t consists of
five segments

we have dA(s, x) < dA(t, x), and on the other side we have the reverse inequality.
Returning to the set of finitely many sites with real weights, the region in which s
minimizes the weighted distance is

As = {x ∈ R
2 | dA(s, x) ≤ dA(t, x), ∀t ∈ S}, (3.2)

and the Apollonius diagram of S is the set of such regions. In contrast to the Voronoi
diagram, the regions in the Apollonius diagram are not necessarily convex; only the
region of the site with the smallest weight is guaranteed to be convex. Nevertheless,
every non-empty region is connected. In contrast, the intersection of two regions is not
necessarily connected; see Fig. 3.2. Recall howwedefined theDelaunay triangulation
by connecting siteswhoseVoronoi regions have a non-empty intersection. Because of
the more complicated intersections, this construction is no longer as straightforward
for the Apollonius diagram.



3.2 Power Diagrams 19

ts

Fig. 3.3 The paraboloids of two sites in the plane, one with positive and the other with negative
weight

3.2 Power Diagrams

Instead of subtracting the weight from the Euclidean distance, we now subtract it
from the square of the Euclidean distance:

dP (s, x) = ‖x − s‖2 − ws . (3.3)

Here, dP (s, x) is called the power or power distance of x from s. Recall that the
bisector consists of all points that satisfy dP (s, x) = dP (t, x). Writing the squared
Euclidean distance as a scalar product, we get

‖x − s‖2 = 〈x − s, x − s〉 = ‖x‖2 − 2〈x, s〉 + ‖s‖2.

The equation of the bisector is therefore 2〈x, t − s〉 = ‖t‖2−‖s‖2+ws −wt , which
is the equation of a line. We can see this geometrically, by drawing the graph of the
function that maps a point to its power distance from s; it is a paraboloid with vertical
axis of rotation and lowest point at (s,−ws). We also draw the graph of the function
for t , which is a translate of the paraboloid for s; see Fig. 3.3. The intersection of the
two paraboloids is a parabola that lies in a vertical plane; its projection to R

2 is a
line. Returning to the set of finitely many sites with weights, the region within which
s minimizes the power distance is

Ps = {x ∈ R
2 | dP (s, x) ≤ dP (t, x), ∀t ∈ S}, (3.4)

and the power diagram of S is the set of such regions. Since the bisectors are straight
lines, each region is the intersection of half-planes and therefore convex. In contrast
to the unweighted case, a site may have an empty region in the power diagram.
Otherwise, the power diagrams are visually difficult to distinguish from Voronoi
diagrams,which is perhaps the reasonwhy they are sometimes referred to asweighted
Voronoi diagrams.
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Fig. 3.4 The power diagram and the superimposed weighted Delaunay triangulation of twelve sites
in the plane. Note that only eleven of the sites function as vertices of the triangulation

3.3 Weighted Delaunay Triangulations

Having convex regions,we can again draw the dual, connecting two siteswith an edge
whenever the corresponding two power regions share an edge; see Fig. 3.4. Similar
to the unweighed case, this construction typically gives a triangulation, but unlike the
unweighted case, not every site is necessarily also a vertex in that triangulation. To
understand the construction, it will be useful to generalize the circumscribed circles
that characterize the triangles in the unweighted Delaunay triangulation. To this end,
we say a point x with weight wx is orthogonal to s if

‖x − s‖2 = ws + wx . (3.5)

Drawing s as the circle with center s and radius
√

ws , and similarly for x , we get
two circles that meet at a right angle.1 Given s, ws , and x , we can always find wx

such that the two weighted points are orthogonal. In fact, the weight for which this
is the case is unique. However, if in addition we are given t and wt , we can find wx

such that x is orthogonal to s as well as to t only if x lines on the bisector of s and
t . Finally, if in addition we are given u and wu , then we can find wx such that x is
orthogonal to all three only if x lies on all three bisectors or, equivalently, it is the
unique point at which the three regions in the power diagram of s, t , u meet.

We can now formulate a criterion for stu being a triangle in theweightedDelaunay
triangulation of S. In the unweighted case, we said S is in general position if no four
sites lie on a common circle. The appropriate notion in the weighted case is that no
four unweighted sites have a common orthogonal circle.

1 For this to be true, we have to assume that both weights are positive. A similar but geometrically
not quite as compelling interpretation can also be found for the case in which one of the weights is
non-positive.
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Lemma A Let S be a finite set of weighted sites in general position in R
2. Then

s, t, u ∈ S form a triangle in the weighted Delaunay triangulation of S iff ‖x − v‖2 ≥
wv + wx for every v ∈ S, where x is the unique weighted point orthogonal to s, t ,
and u.

3.4 Geometric Primitives

There are many algorithms for weighted and unweighted Delaunay triangulations,
one being the incremental construction briefly mentioned at the end of last lecture.
All these algorithms need to be able to decide whether the circle that passes through
three sites is empty (see Lemma B (i) in Chap.2) or, in the weighted case, whether
the circle orthogonal to three weighted sites is further than orthogonal from all other
sites (see Lemma A). We now study the details of these decisions, beginning with
the unweighted case.

Let a = (a1, a2), b = (b1, b2), c = (c1, c2), be three points in R
2. If the points

lie on a common line, then we can write c = (1−λ)a +λb, assuming a �= b. Hence,
the determinant of

� =
⎡
⎣
1 a1 a2
1 b1 b2
1 c1 c2

⎤
⎦ (3.6)

vanishes. Indeed, det� = 0 iff a, b, c are collinear. In addition, det� > 0 iff a, b, c
form a left-turn. We can formulate a similar test for cocircularity. Lift a to the point
a+ = (a1, a2, a2

1 +a2
2) inR

3, and similarly for b and c. Furthermore, let v = (v1, v2)

be a fourth point, write v+ = (v1, v2, v
2
1 + v22), and define

� =

⎡
⎢⎢⎣
1 a1 a2 a2

1 + a2
2

1 b1 b2 b21 + b22
1 c1 c2 c21 + c22
1 v1 v2 v21 + v22

⎤
⎥⎥⎦ . (3.7)

The crucial insight is that det � = 0 iff v lies on the circle determined by a, b, c. To see
this, we interpret the determinant as an expression of the points a+, b+, c+, v+ inR3.
It vanishes iff the four points lie on a common plane. Now, we just need to verify that
being coplanar in R3 corresponds to being cocircular in R2. To see this, we intersect
the paraboloid given by x3 = x21+x22 with the plane given by x3 = 2Ax1+2Bx2+C .
Eliminating x3, we get (x1 − A)2 + (x2 − B)2 − (A2 + B2 − C) = 0, which is the
equation of a circle; see Fig. 3.5.

Lemma B Let a, b, c, v be points in R
2 and �,� the matrices defined in (3.6) and

(3.7). Then the point v belongs to the open disk bounded by the circle passing through
a, b, c iff det� · det � < 0.

http://dx.doi.org/10.1007/978-3-319-05957-0_2
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Fig. 3.5 Lifting a, b, c to the paraboloid, we get the circle that passes through them by projecting
the intersection between the paraboloid and the plane passing through the lifted points

We omit the proof, which consists of two parts: verifying that v lies on the circle
if det � = 0, and making sure that the sign is negative inside and positive outside
the circle. We note that the extra factor, det�, is necessary because switching two
points of a, b, c changes the sign of the determinant without changing the geometric
configuration. The test explained in Lemma B can be generalized to the weighted
case by changing the matrix in (3.7) to

�W =

⎡
⎢⎢⎣
1 a1 a2 a2

1 + a2
2 − wa

1 b1 b2 b21 + b22 − wb

1 c1 c2 c21 + c22 − wc

1 v1 v2 v21 + v22 − wv

⎤
⎥⎥⎦ . (3.8)

Indeed, if we project the intersection of the paraboloid with the plane that passes
through the thus lifted points of a, b, c, then we get the unique orthogonal circle. We
can now modify Lemma B.

Lemma C Let a, b, c, v be weighted points in R
2 and �,�W the matrices defined

in (3.6) and (3.8). Letting x with wx be the weighted point orthogonal to a, b, c, we
have ‖v − x‖2 < wv + wx iff det� · det �W < 0.

Note that Lemma C agrees with Lemma B when the weights of a, b, c, v vanish.
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