
Chapter 13
Matrix Reduction

We have seen how mathematical reasoning can be used to compute persistent
homology for simple filtrations. In this section, we present a more generally applica-
ble computer algorithm that constructs persistence diagrams through matrix reduc-
tion. It can be viewed as a common extension of the incremental algorithm, discussed
two sections ago, and the classic normal form algorithm, which can also be found in
standard texts on algebraic topology [1].

13.1 Boundary Matrices

The input to the algorithm are the boundary maps represented by binary matrices.
Recall that the p- and (p − 1)-simplices form bases of the vector spaces of p- and
(p − 1)-chains. The p-th boundary map is fully specified by the p-th boundary
matrix,

∂p = ∂p[1 . . . sp−1, 1 . . . sp], (13.1)

whose columns correspond to the p-simplices, whose rows correspond to the (p−1)-
simplices, and whose entries record the face relation, with ∂p[i, j] = 1 if the i-th
(p − 1)-simplex is a face of the j-th p-simplex, and ∂p[i, j] = 0, otherwise. For
example, the four boundary matrices of the tetrahedron are

∂0 = [
0 0 0 0

]
, (13.2)

∂1 =

⎡

⎢
⎢
⎣

1 0 1 0 1 0
0 1 0 1 1 0
1 1 0 0 0 1
0 0 1 1 0 1

⎤

⎥
⎥
⎦ , (13.3)

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 99
SpringerBriefs in Mathematical Methods, DOI: 10.1007/978-3-319-05957-0_13,
© The Author(s) 2014

100 13 Matrix Reduction

∂2 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0
1 0 0 1
0 1 1 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

, (13.4)

∂3 =

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ . (13.5)

We use standard row and column operations to reduce each matrix to normal form.
By this we mean a matrix that is entirely zero, except for an initial segment of the
diagonal, which consists of 1s. Since we use modulo 2 arithmetic, it is easy enough
to get the matrices into this form. For the four boundary matrices above, we get

R0 = [
0 0 0 0

]
. (13.6)

R1 =

⎡

⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤

⎥⎥
⎦ , (13.7)

R2 =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

, (13.8)

R3 =

⎡

⎢⎢
⎣

1
0
0
0

⎤

⎥⎥
⎦ . (13.9)

The dimensions of the null-spaces are the ranks of the cycle groups, the number of
1s in the diagonals are the ranks of the boundary groups in one lower dimension, and
we get the Betti numbers by subtraction Table13.1:

Table 13.1 The ranks of the
cycle and boundary groups
and the Betti numbers of the
tetrahedron

p = 0 p = 1 p = 2 p = 3

rank Zp 4 3 1 0
rank Bp 3 3 1 0
βp 1 0 0 0

13.2 Reduction Algorithm 101

13.2 Reduction Algorithm

To compute the Betti numbers, we need no particular ordering on the simplices, but
for computing persistence, the ordering is essential. We therefore modify the classic
algorithm in two ways, storing all boundary maps in one big matrix, and using
only left-to-right column additions and no row operations. These are not enough to
transform the matrix into normal form, but we will see that they suffice to give the
needed rank information.

Let σ1 to σn be the filter, and write ∂ = ∂[1 . . . n, 1 . . . n] for the big boundary
matrix, with ∂[i, j] = 1 if dim σi = dim σ j −1 andσi is a face ofσ j , and ∂[i, j] = 0,
otherwise. The algorithm reduces the matrix by iterating through the columns from
left to right. It zeroes out a column j from bottom to top, to the extent possible. To
explain this, we set pivot(j) equal to the maximum row index for which column j
has a non-zero entry. We set pivot(j) = 0 is the entire column is zero.

R = ∂;
for j = 1 to n do
while ∃k < j with pivot(k) = pivot(j) �= 0 do
add column k to column j

endwhile
endfor.

We call the resulting matrix reduced because each row contains at most one pivot.
We shortly discuss why the pivots are significant.

While the above pseudo-code states only two loops explicitly, there are really
three. The innermost loop adds two columns of length n in time proportional to n.
The middle loop searches for a column to the left of column j that has the pivot
in the same row. It iterates until no such column can be found, and at each step,
the pivot of column j moves up by at least one position. It follows that we iterate
fewer than n times. Finally, the outer loop iterates over n columns. The total running
time of the algorithm is therefore at most cubic in the number of simplices. All fast
implementations of this algorithm use sparse matrix representations of ∂ and R.
While ∂ is necessarily sparse, it is not clear that R inherits this property, but very
often it does. Already the original publication on persistent homology [2] used a
sparse matrix representation in which the columns are stored as lists that store only
the non-zero entries. The availability of fast software is indeed an important factor
in the success of the mathematical framework within applied communities.

13.3 Translation to Barcode

We illustrate the algorithm with an example, first turning the filtration in Fig. 11.1
into a single boundary matrix. We recall that we have a sequence of 15 simplices
that correspond to the rows and the columns of the boundary matrix; see Fig. 13.1.

http://dx.doi.org/10.1007/978-3-319-05957-0_11

102 13 Matrix Reduction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

4

1

2

5

6

7

8

9

10

11

12

13

14

15

=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

∂

Fig. 13.1 The big boundary matrix of the filtration of the tetrahedron in Fig. 11.5

1 2 3 4 5 6 7 8 9 10 11 13 14 15

3

4

1

2

5

6

7

8

9

10

11

12

13

14

15

=

4 7
5
4

5
4

7
4

12
12 10

13
12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

1

1

R

Fig. 13.2 The reduced boundary matrix with lowest non-zero entries highlighted. The stacks of
column indices at the top indicate the left-to-right column additions used to reduce the matrix

It should be clear that even just storing this matrix is a waste of resources because
most entries are zero. However, the algorithm is easiest to explain for the full matrix,
and we worry about speeding up the algorithm later.

http://dx.doi.org/10.1007/978-3-319-05957-0_11

13.3 Translation to Barcode 103

The above matrix is small enough that we can run the algorithm by hand, dis-
playing the result in Fig. 13.2. Each zero column is a cycle, adding to the rank of the
corresponding cycle group. Together with the pivots, they encode all the information
we need. The meaning of a pivot in row i and column j + 1 is that the addition of σi

creates a class that the addition of σ j+1 destroys. In other words, there is a homology
class born at Ki that dies entering K j+1. The dimension of the class is the dimension
of σi . To translate this information into the barcode, we draw an interval from i to
j + 1 for every pivot in row i and column j + 1, and we draw an interval from i to
infinity if column i is zero but row i does not contain any pivot.

Translating the reduced matrix in Fig. 13.2 gives the barcode in Fig. 11.2. This is
perhaps easiest to see by translating the reduced matrix into the persistence diagram
in Fig. 11.3. To do this, we rotate the matrix by 45◦ in a ccw order so that its diagonal
lies horizontal. The pivots become the points in the diagram, and we just need to add
points at infinity for zero columns that do not correspond to pivots.

13.4 Uniqueness of Pivots

The number of pivots is the rank of the reduced matrix. Since column operations do
not alter the rank, this number is also the rank of the initial boundary matrix. More
than the number, we now show that the pivots themselves are unique and do not
depend on the sequence of column operations used to reduce the matrix. To prove
this, we consider lower-left submatrices ∂

j
i obtained from ∂ by deleting the first i −1

rows and the last n − j columns. For example, ∂ = ∂n
1 . Taking the alternating sum

of the ranks of four submatrices gives

r∂(i, j + 1) = rank ∂
j+1
i + rank ∂

j
i+1 − rank ∂

j
i − rank ∂

j+1
i+1 .

Substituting R for ∂, we get again submatrices and alternating sums of ranks. Since
left-to-right column additions do not alter the ranks of any of these submatrices,
rank ∂

j
i = rank R j

i . Writing

A = rank R j+1
i , B = rank R j

i ,

C = rank R j+1
i+1 , D = rank R j

i+1,

we therefore have r∂(i, j + 1) = rR(i, j + 1) = A − B + C − D; see Fig. 13.3.

Pivot Uniqueness Lemma An entry R[i, j + 1] is the pivot of column j + 1 in the
reduced boundary matrix iff r∂(i, j + 1) = 1.

Proof Since r∂ = rR , it suffices to show pivot(j + 1) = i iff rR(i, j + 1) = 1. We
prove this in a case analysis, making use of the fact that the non-zero columns in R
and any of its lower-left submatrices are linearly independent.

http://dx.doi.org/10.1007/978-3-319-05957-0_11
http://dx.doi.org/10.1007/978-3-319-05957-0_11

104 13 Matrix Reduction

i
i + 1

j j
+
1

AB
CD

Fig. 13.3 Four submatrices of ∂ or of R, and their ranks

First, assume pivot(j + 1) = i . Since the last column is non-zero, we have A −
B = 1. If we nowdelete the top row from R j+1

i , then the last column is zero, implying
C − D = 0. Hence, rR(i, j +1) = 1, as required. Second, assume pivot(j + 1) �= i .
If pivot(j + 1) < i , then the last column is zero, and we get A − B = C − D = 0.
Else if pivot(j + 1) > i , then the last column is non-zero, even after deleting the top
row, and we again get A − B = C − D = 0. The claimed result follows. �

An off-shot of this analysis is an explanation why the reduction algorithm does
not continue the elimination of non-zero entries above the pivots.

13.5 Alternative Algorithm

The Pivot Uniqueness Lemma can also be used to justify variants of the algorithm.
For example, we could use the current column to reduce future columns, as opposed
to using past columns to reduce the current column.

R = ∂;
for j = 1 to n do

i = pivot(j);
for � = j + 1 to n do
if R[i, �] = 1 then add column j to column � endif

endfor
endfor.

This works provided we stipulate that R[0, �] = 0 for all columns �. The running
time is similar to the earlier algorithm, namely at most cubic in the number of
simplices. While the resulting reduced matrices computed by the two algorithms

13.5 Alternative Algorithm 105

may be different, the Pivot Uniqueness Lemma implies that the sets of pivots are the
same. This is comforting because it confirms that the persistence diagram is uniquely
defined by the filtration and does not depend on the algorithm that computes it.

References

1. Munkres JR (1984) Elements of algebraic topology. Perseus Publications, Cambridge, Massa-
chusetts

2. Edelsbrunner H, Letscher D, Zomorodian A (2002) Topological persistence and simplification.
Discrete Comput Geom 28:511–533

	13 Matrix Reduction
	13.1 Boundary Matrices
	13.2 Reduction Algorithm
	13.3 Translation to Barcode
	13.4 Uniqueness of Pivots
	13.5 Alternative Algorithm
	References

