
Chapter 10
Complex Construction

There are not many ways to automatically construct interesting topological spaces,
and by ‘interesting’ we mean spaces that go beyond the designed ones, such as the
ball, and the sphere. Taking the nerve of a collection of sets is one such method, and
we have seen examples: theDelaunay triangulation and the alpha complex. There, we
did not have to worry about the embedding in Euclidean space, but in general we do.

10.1 Abstract Simplicial Complexes

It is often convenient to talk about a simplicial complex abstractly, without reference
to its realization in aEuclidean space. Supposewe have a finite collection of elements,
which can be anything but we call them vertices. An abstract simplicial complex is
a system of subcollection, A, such that α ∈ A and β ⊆ α imply β ∈ A. This
is the abstract equivalent of Condition (i) for simplicial complexes. There is no
abstract equivalent of Condition (ii). The sets α are called abstract simplices. The
dimension of an abstract simplex is one less than its cardinality, and the dimension
of A is the maximum dimension of any of its abstract simplices. We can draw A in
Euclidean space by mapping each vertex to a point inRd , and mapping each abstract
k-simplex to the convex hull of the k+1 corresponding points. If this drawing satisfies
Conditions (i) and (ii) of a simplicial complex, then we call it a geometric realization
of A. For example, a 1-dimensional abstract simplicial complex is a graph, and a
geometric realization is a straight-line embedding of the graph. Given an abstract
simplicial complex, we ask whether it has a geometric realization inRd . The answer
is in the affirmative if d is large enough.

Geometric Realization Theorem Any abstract simplicial complex of dimension k
has a geometric realization in R

2k+1.

For k = 1, the theorem says that every graph can be geometrically realized in R
3.

Indeed, if we place the vertices in general position, with no four points lie on a
common plane, then no two edges can cross. Sometimes, 2k + 1 is best possible.
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Fig. 10.1 With time, the
homotopy moves f (x) to
g(x). The half-way function,
1
2 f + 1

2 g, shrinks the annulus
to half its width

f (x) = x

g(x) = x
x

For example, the graph with 5 vertices and all 10 edges cannot be drawn without
crossing inR2. Hence, 2k +1 = 3 dimensions are necessary to geometrically realize
this graph. A generalization of this example to a k-dimensional abstract simplicial
complex that has no geometric realization in R2k can be found in [1].

10.2 Homotopy

Wemay compare two spaces by deforming one to the other, without gluing or cutting.
We begin with deforming maps. Let f, g : X → Y be continuous maps from one
topological spaces to another. A homotopy between f and g is a continuous map
H : X × [0, 1] → Y for which H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X.
The two functions are homotopic if a homotopy exists. It is reasonable to think of the
second variable as time, going from 0 to 1, and to consider the 1-parameter family
of functions ft : X → Y defined by ft (x) = H(x, t), which interpolates between
f0 = f and f1 = g.
As example, we consider two functions from the annulus to itself. Let X =

{x ∈ R
2 | 1 ≤ ‖x‖ ≤ 3}, and define f, g : X → X by setting f (x) = x and

g(x) = x/‖x‖; see Fig. 10.1. To show that f and g are homotopic, we construct
H : X × [0, 1] → X by setting

H(x, t) = (1 − t) f (x) + tg(x). (10.1)

We have f0 = f and f1 = g by construction. It is also clear that H is well defined,
and that it is continuous.
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10.3 Homotopy Equivalence

To compare two spaces, we construct two homotopies, both involving the identity
map. Specifically, X and Y are homotopy equivalent if there exist continuous func-
tions a : X → Y and b : Y → X such that b ◦ a is homotopic to idX : X → X and
a ◦ b is homotopic to idY : Y → Y. In this case, we also say that X and Y have the
same homotopy type, and we writeX � Y. We already did most of the work to show
that the annulus,X, has the same homotopy type as the circle,Y = S

1. Let a map the
point x ∈ X to the point a(x) = x/‖x‖ in Y, and let b be the canonical embedding
of the circle in the annulus, that is: b(y) = y ∈ X. We proved earlier that g = b ◦ a
and idX are homotopic. To see the other direction, we note that f = a ◦ b is the
identity on the circle: f = idY, which is stronger than f and idY being homotopic.
It follows that the annulus has the homotopy type of the circle. Even simpler than
the circle is the point, and a space that has the homotopy type of the point is said to
be contractible. For example, the disk is contractible, and so is every tree.

We note that being homotopy equivalent is weaker than being homeomorphic.
Indeed, the annulus and the circle have the same homotopy type but not the same
topology type. The two notions are different because the former permits a local
change of dimension while the latter does not. On the other hand, having isomorphic
homology groups is yet weaker than having the same homotopy type:

X ≈ Y =⇒ X � Y =⇒ Hp(X) � Hp(Y), (10.2)

for all dimensions p. To compute the Betti numbers of X, we may therefore find a
homotopy equivalent space Y and compute its Betti numbers.

10.4 Nerves

We are now ready to introduce the announced construction of simplicial complexes
from arbitrary collections of sets. We prefer finite, so let X be a finite collection of
sets. The nerve of X is the system of subcollections of X whose sets have a non-empty
common intersection:

Nrv X =
{
∅ �= V ⊆ X |

⋂
V �= ∅

}
. (10.3)

Here, we use a short-form for taking the intersection of all sets in a collection:⋂
V = ⋂

v∈V v. We note that the nerve is an abstract simplicial complex because
V ∈ Nrv X and U ⊆ V implies U ∈ Nrv X . To make this more clear, we call the
singleton sets in the nerve abstract vertices, the pairs abstract edges, etc.

As mentioned earlier, the Delaunay triangulation of a point set is the nerve of the
collection of Voronoi regions. More precisely, the Delaunay triangulation is the geo-
metric realization of the nerve obtained by mapping each Voronoi region to the point
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Fig. 10.2 Two contractible
regions whose union is a
disk with two holes. The
nerve consists of two vertices
connected by an edge, which
has a different homotopy type

that generates the region. Here it is important that the points are in general position,
else the dimension of the nerve can be higher than that of the ambient Euclidean
space. A geometric realization in this space would then be impossible. However,
we can always go to higher-dimensional Euclidean spaces to construct geometric
realizations. Independent of the realization, the nerve has the same homotopy type
as the union.

Nerve Theorem If all sets in X are closed and triangulable, and all non-empty
common intersections of the sets are contractible, then Nrv X and

⋃
X have the

same homotopy type.

If all sets in X are convex, then their non-empty common intersections are convex
and therefore contractible. This is the situation for restricted Voronoi regions, so
the Nerve Theorem implies that the alpha complex has the same homotopy type as
the union of balls it represents. It follows that it has isomorphic homology groups
and therefore the same Betti numbers. If the sets are not convex then be aware
that the contractibility of the sets themselves is not sufficient to conclude homotopy
equivalence. To get an example, it suffices to have two contractible regions overlap
in multiple locations, as in Fig. 10.2. We note that the example is similar to Fig. 3.2,
which shows two regions in an Apollonius diagram.

10.5 Čech Complexes

Suppose we simplify the construction of the alpha complex by intersecting the disks
directly, without first restricting them to the corresponding Voronoi regions. To
describe this more formally, let S be a finite set of points in R

2, let r ≥ 0 be a
real number, and write Ds(r) for the disk with center s and radius r , as before. The
Čech complex is isomorphic to the nerve of the disks:

Čech(r) = {∅ �= T ⊆ S |
⋂
s∈T

Ds(r) �= ∅}. (10.4)

http://dx.doi.org/10.1007/978-3-319-05957-0_3
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Fig. 10.3 The Vietoris-Rips
complex of six points equally
spaced on the unit circle and
a parameter

√
3/2 < r < 1.

It consists of eight triangles
connected like the faces of an
octahedron

Even if the points are in general position, the radius may be large enough so that the
complex has dimension larger than 2. For this to happen, it suffices that four disks
have a non-empty common intersection, such as in Fig. 7.2. Nevertheless, the Nerve
Theorem implies that the Čech complex has the same homotopy type as the union
of disks. Similarly, the Nerve Theorem implies that the alpha complex for radius
r , denoted as A(r), has the same homotopy type as the union of disks. Since
homotopy equivalence is transitive—every equivalence relation is—this implies
|| A(r) || � || Čech(r) ||. Note also that A(r) is isomorphic to a subcomplex of Čech(r),
simply because the restricted disks are subsets of the unrestricted disks.

It might be interesting to study the structure of the extra simplices in the Čech
complex.Howdoes it relate to the substitutionmethod that reduces a long Pie formula
to a short Pie formula; see Chap.7.

10.6 Vietoris-Rips Complexes

To construct the Čech complex, we need to test whether a collection of disks has a
non-empty intersection, which can be difficult or, in some metric spaces, impossible.
We now define a complex that needs only the distances between the points in S for
its construction. Letting r ≥ 0 be a real number, the Vietoris-Rips complex of S and
r , denoted as Vietoris-Rips(r), consists of all abstract simplices in 2S whose vertices
are at most a distance 2r from one another. In other words, we connect any two
vertices at distance at most 2r from each other by an edge, and we add a triangle or
higher-dimensional simplex to the complex if all its edges are in the complex; see
Fig. 10.3.

While theVietoris-Rips complex is easy to construct, it generally does not have the
homotopy type of the union of disks of radius r . Indeed, for the 6 points in Fig. 10.3,
the disks with radius r form an annulus, which has β0 = β1 = 1 and βp = 0 for
all p �= 0, 1. In contrast, the Vietoris-Rips complex triangulates a 2-sphere, which
has β0 = β2 = 1 and β1 = 0. This example suggests that Vietoris-Rips complexes
can have topological artifacts that do not show up in the data. While this is true, the
artifacts are limited.

http://dx.doi.org/10.1007/978-3-319-05957-0_7
http://dx.doi.org/10.1007/978-3-319-05957-0_7
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Vietoris-Rips Lemma Let S be a finite set inR2.Then Ĉech(r) ⊆ V ietoris-Rips(r)

⊆ Čech(r’), where r ′ is 2
√
3

3 = 1.154 . . . times r .

Proof The first containment is obvious because Čech(r) and Vietoris-Rips(r) have
the same edges. For the second containment, we note that the equilateral triangle

with edges of length 2r has a circumcircle of radius r ′ = 2
√
3r
3 . If three points lin

on this circle, then their disks of radius r ′ have a non-empty common intersection,
so the triangle belongs to Čech(r ′). The longest of the three edges connecting the
points has length at least 2r , implying that all triangles in Vietoris-Rips(r) have a
circumcircle of radius at most r ′. This implies the second claimed containment. �
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