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Preface

This short book has been written with the purpose to bring the subject of
Computational Geometry and Topology to a wider audience, namely to the scientists
who deal with shapes in their work. To gain some focus, we have limited the scope to
a small subset of topics, selected to form a coherent and convincing story. This
includes fundamental topics and those that are relevant to applications—and we do
not see any contradiction in these two requirements.

Coherence and relevance were also the selection guidelines when we developed
the course at the Institute of Science and Technology Austria. Indeed, I have
taught versions of the material three times: in 2010/2011 as an advanced course
with Paul Bendich, in 2012 as a core course with Michael Kerber, and in 2013 as a
core course by myself. I owe both, Paul and Michael, for their help in selecting
topics and in finding innovative ways to teach the material. At IST Austria, we do
not have departments, and core courses are taught to a mixed population of stu-
dents: mathematicians, computer scientists, biologists, and neuroscientists. Similar
to a typical course in the USA, the material is delivered in two lectures of 75 min
each per week, and we have arranged the topics such that each section contains the
material for a single lecture. A core course at IST Austria lasts for half a semester,
which explains the small number of sections.

In conclusion, we recommend the prospective reader to approach this short
book like a text in mathematics, and not like a novel. Read it slowly, pay close
attention to detail, think about the concepts, and spend time to digest the material.

Klosterneuburg, Austria, 2013 Herbert Edelsbrunner
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Chapter 1
Roots of Geometry and Topology

Geometric questions have been pondered by people for thousands of years. In
contrast, the abstraction to topological questions is only a few hundred years old.
According to Galileo Galilei (1623), philosophy is written in a grand book—the
Universe—which cannot be understood unless one first learns to comprehend its
language, which is mathematics, and its characters, which are triangles, circles,
and other geometric figures. These characters will figure prominently throughout
this course.

1.1 Platonic Solids

A convex polyhedron is the intersection of finitely many closed half-spaces. As a
practical exercise, we can build one by slicing off pieces of an apple with straight cuts
of a knife. If we do this carefully, we can arrange that all faces are regular polygons
of the same size and type, and that all vertices are endpoint of the same number of
edges. Examples of such polyhedra with non-empty volume are the tetrahedron, the
cube, the octahedron, the dodecahedron, and the icosahedron; see Fig. 1.1. There are
only these five examples. They are referred to as regular polytopes or as Platonic
solids, named after then Greek philosopher Plato,1 who theorized that the elements
were constructed from them.

Euclid gave a full description of the five Platonic solids in Book XIII of the
Elements [1]. It is interesting that the face vector of the octahedron is the reverse
of that of the cube. This is a result of the duality between them: we can map the
vertices, edges, faces of the octahedron bijectively to the faces, edges, vertices of
the cube so that incidences are preserved. Similarly, there is such a mapping from
the dodecahedron, with face vector (20, 30, 12), to the icosahedron, with face vector
(12, 30, 20). The vector of the tetrahedron is a palindrome, and there is an incidence
preserving map that reverses dimensions to itself.

1 Born in 428 BC, he was a student of Socrates, and became one of the most influential thinkers of
all times.

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 1
SpringerBriefs in Mathematical Methods, DOI: 10.1007/978-3-319-05957-0_1,
© The Author(s) 2014
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(6, 12, 8)(8, 12, 6)(4, 6, 4)

Fig. 1.1 Three of the five Platonic solids together with their face vectors. From left to right: the
tetrahedron, the cube, and the octahedron

(16, 32, 16)

Fig. 1.2 The ‘window-frame’ polyhedron has a hole through the middle

1.2 Euler Formula

Another pattern we observe for the Platonic solids is that the alternating sum of the
face numbers is always the same:

#vertices − #edges + #faces = 2. (1.1)

This equation hold more generally for bounded convex polyhedra. The relation is
originally due to Leonhard Euler and is widely considered the starting point of
topology: it is a global statement and it does not depend on the precise geometric
shape. Indeed, it does not depend on the convexity of the polyhedron either, but it
becomes false if we generalize the class of objects too far. For example, #vertices −
#edges + #faces = 0 for the ‘window-frame’ in Fig. 1.2. Indeed, it took more than a
century to find a satisfying framework that includes Euler’s original observation as a
special case and elucidates why and when the relation holds [2]. This generalization
is due to Henri Poincaré, which is the reason why the more general result is referred
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Fig. 1.3 Portion of a densest packing of disks in the plane

to as the Euler-Poincaré formula. It relates the alternating sums of face numbers and
Betti numbers:

∑

i≥0

(−1)i fi =
∑

i≥0

(−1)iβi , (1.2)

where fi is the number of i-dimensional faces, and βi is the i th Betti number. It
would be asking too much to explain the meaning of the Betti numbers now, but we
will find out in due course. The common value of the two alternating sums is also
known as the Euler or Euler-Poincaré characteristic of the polyhedron.

1.3 Disk Packings

Consider next the question of packing as many disks in a given area as possible. We
assume the disks are all the same size, and they can touch each other but not overlap.
Arranging pennies on a flat table is a good example. The question is generally difficult
because the answer depends on the shape of the area, but it becomes easier when we
pack disks in the infinite plane. It is intuitively obvious that the best packing is the
arrangement in which the disk centers form the regular hexagonal grid; see Fig. 1.3,
and this is also true.

To justify this assertion, we compute the packing density, which is the percentage
of the plane covered by disks. Since the pattern is the same everywhere, we can just
compute the covered fraction of an equilateral triangle spanned by the centers of
three mutually touching disks. Assuming the distance between any two of the three
points is 2, the area of the triangle is

√
3. There are three disks, each covering a
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Fig. 1.4 We have a sphere
centered at each vertex and at
the center of each face of the
cube

portion of the triangle with one sixth of its area. It follows the packing density of the
hexagonal grid is

σ2 = π

2
√

3
= 90.68...%. (1.3)

Every other packing of disks in the plane covers at most that fraction of the plane.

1.4 Sphere Packings

The physically more relevant question is how well spheres can be packed in three
dimensional space, which is significantly more difficulty than for disks in the plane.
The answer has been known since Johannes Kepler, who worked on the problem
and stated the conjecture in 1611, but a proof has been completed only recently [3].
The densest packing is perhaps obvious: arrange a layer of spheres in a hexagonal
grid, as in Fig. 1.3, and put on top another such layer, resting in the crevices of the
first layer. A third layer is added on top of the second layer, and so on. Drawing
the layers as diagonal planes of the cube, we notice that one such configuration is
obtained by placing the centers of the sphere at the corners and the face centers of a
cube tiling; see Fig. 1.4. This gives us a short-cut to computing the packing density of
the arrangement, which is the fraction of the cube covered by the spheres (or rather,
balls). Assuming the spheres have unit radius, the edges of the cube have length 2

√
2.

The cube overlaps with one eight of each corner sphere and one half of each face
center sphere. The total volume of these pieces is four times the volume of a unit
sphere, which is 16π/3. The cube itself has volume 16

√
2. The packing density is

therefore

σ3 = π

3
√

2
= 74.04...%. (1.4)
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Fig. 1.5 A regular
tetrahedron with edges of
length 2 has height

√
8/3. Its

four triangles have height
√

3
each

d

c

a

8
3

√
3

2

b

1.5 Space Filling

To illustrate the difficulty of the sphere packing question, we note a false belief that
goes back to Aristotle,2 namely that copies of the regular tetrahedron can be used
to tile the 3-dimensional Euclidean space. If this were true, then we could compute
the best packing density that can be achieved in R

3 by calculating the percentage
of the tetrahedron covered by the spheres centered at its four vertices. Take the
tetrahedron with vertices a = (

√
2, 0, 0, 0), b = (0,

√
2, 0, 0), c = (0, 0,

√
2, 0),

d = (0, 0, 0,
√

2) in R
4, and notice that its six edges all have length 2. The height

of each triangular face is the distance between a and 1
2 (b + c), which is

√
3, and the

height of the tetrahedron is the distance between a and 1
3 (b + c +d), which is

√
8/3;

see Fig. 1.5. To compute the volume, we take the area of a triangle, which is
√

3,
times the height over 3, which gives

√
8/3 = 0.94.... The dihedral angle between

any two faces of the tetrahedron is 2α = 2 arctan(1/
√

2), which is about 70.52◦.
From this, we get the solid angle at any vertex as 6α−π = 0.55...; this is the surface
area of the portion of the sphere inside the tetrahedron. The total volume of the four
spheres inside the tetrahedron is 4/3 times as much. The fraction of the tetrahedron
covered by the four spheres is therefore

4(6 arctan 1√
2

− π)
√

8
= 77.96...%. (1.5)

We see that this percentage is higher than σ3 given in (1.4). It follows that the
packing in layers is locally not optimal. This is the deeper reason why proving its
global optimality has been so difficult.

2 He was born in 384 BC, studied under Plato, and was the tutor of Alexander the Great.
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Part I
Tessellations

In this part, we introduce Voronoi diagrams and their dual Delaunay triangula-
tions. They both have myriads of applications in diverse disciplines. Indeed, there
is now a conference series on ‘‘Voronoi Diagrams in Science and Engineering,’’
which has its 10th meeting this year. While we explain both types of tessellations
in two and three dimensions, they are defined in any dimension.



Chapter 2
Voronoi and Delaunay Diagrams

The goal of this book is the introduction of the Voronoi diagram and the Delaunay
triangulation of a finite set of points in the plane, and an elucidation of their dual
relationship. We begin with convex polygons, which can be constructed as the
intersection of a finite number of half-planes or as the convex hull of a finite set
of points.

2.1 Convex Polygons

A set X is convex if two points x, y ≥ X imply that every point on the line segment
connecting x and y belongs to X . For example, a disk in R

2 is convex but a circle is
not. Importantly, convexity is closed under taking intersections.

Lemma A The intersection of convex sets is convex.

Indeed, if points x and y belong to the intersection then every point of the line
segment belongs to the intersection. A simple convex set is a closed half-plane,
which consists of all points on or on one side of a line in R

2. Assuming the line does
not pass through the origin, we write the half-plane that contains the origin as the set
of points x = (x1, x2) that satisfy

√x, u◦ = x1u1 + x2u2 ≤ 1, (2.1)

where u = (u1, u2) is a non-zero vector. It is a normal vector of the line and its
length is one over the distance of the origin from the line. We will use points and
vectors interchangeably, so u is also a point in the plane, namely the endpoint of the
vector. A convex polygon is the intersection of finitely many half-planes. By Lemma
A, this intersection is indeed convex. Assuming all these half-planes can be written
as in (2.1), the polygon contains the origin in its interior, as in Fig. 2.1.

Every bounded convex polygon can alternatively be constructed by taking the
convex hull of its vertices. This is the intersection of all convex sets that contain all

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 9
SpringerBriefs in Mathematical Methods, DOI: 10.1007/978-3-319-05957-0_2,
© The Author(s) 2014
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Fig. 2.1 The intersection of finitely many half-planes, each defined by its outward directed normal
vector

vertices; in the plane you can visualize it as the region bounded by the rubber band
that stretches around the given points.

2.2 Voronoi Diagrams

Let now S be a finite set of points in R
2. We call the elements of S sites in order to

distinguish them from other points in the plane. Recall that the Euclidean distance
between a point x = (x1, x2) and a site s = (s1, s2) is ∞x − s∞ = √x − s, x − s◦1/2,
which is equal to [(x1 − s1)

2 + (x2 − s2)
2]1/2. For each site, we are interested in the

region of points that are at least as close as to any other site:

Vs = {x ≥ R
2 | ∞x − s∞ ≤ ∞x − t∞,∀t ≥ S}, (2.2)

calling Vs the Voronoi region of s. It is named after the Ukrainian mathematician
Georgy Voronoi [1, 2]. The set of points x that satisfy ∞x − s∞ ≤ ∞x − t∞ is a
closed half-plane, so Vs is the intersection of finitely many half-planes and therefore
a convex polygon. Any two Voronoi regions intersect at most along their boundaries,
and together, the Voronoi regions cover the entire plane. The Voronoi diagram of S
is the set of Voronoi regions, one for each site in S; see Fig. 2.2.

Suppose we pick a point x in the interior of the region Vs and draw a circle with
center x and radius ∞x − s∞. Then s lies on the circle and all other sites lie outside
the circle. On the other hand, if x lies on the boundary of Vs then it also belongs to
at least one other region, say to Vt . In this case, s and t both lie on the circle. Indeed,
if we move x along the edge Vs ∩ Vt , we get a pencil of circles, all passing through
s and t . If x is an endpoint of that edge, then there is typically a third region, Vu , that
contains x . In this case, s, t, u all lie on the circle around x and other other sites lie
outside this circle.
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Fig. 2.2 The Voronoi diagram of a finite set of points in R
2, and the corresponding Delaunay

triangulation superimposed

2.3 Delaunay Triangulations

Given the Voronoi diagram of S ⊆ R
2, we get the Delaunay triangulation by con-

necting two sites by a straight edge whenever the corresponding two Voronoi regions
share an edge [3]. Generically, the intersection of any four or more Voronoi regions is
empty. Three Voronoi regions may intersect in a point, which is then the endpoint of
the three edges formed by taking pairwise intersections. Correspondingly, the three
sites form a triangle in the Delaunay triangulation; see Fig. 2.2. We say the points in
S are in general position if no four points lie on a common circle. It implies that no
four Voronoi regions have a non-empty common intersection. A necessary condition
for any notion of general position is that violations happen with probability zero,
which is the case here. However, computers are finite and work with finite precision,
so violations of such conditions become likely, in particular for large data sets. Still,
arbitrary small perturbations can remove the violation, and such perturbations can
often be simulated without being explicitly constructed.1

Delaunay triangulations have a number of interesting properties, some of which we
now list. To explain them, we define the star of a site s in the Delaunay triangulation
as the collection of edges and triangles that share s. The link of s is the collection of
sites and edges in the boundary of the star that do not contain s.

Lemma B Let S be a finite set of sites in general position in R
2.

(i) Sites s, t, u ≥ S form a triangle in the Delaunay triangulation iff all other sites
lie outside the unique circle that passes through s, t, u.

(ii) The triangles in the Delaunay triangulation decompose the convex hull of S.
(iii) The cyclic list of sites in the link of a site s is the same as the cyclic list of edges

of Vs.

1 Sect. 1.4 in [4]
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A standard mistake is to assume that the link of every site bounds a convex polygon.
This is not true.

2.4 Planar Graphs

Let n be the number of sites in S. To count the edges and vertices in the Voronoi
diagram—as well as the edges and triangles in the Delaunay triangulation—we recall
some basic facts about graphs that can be drawn without crossings in the plane. A
graph consists of finitely many vertices and edges, each edge being a pair of vertices.
We draw each vertex as a point and each edge as a curve connecting the points that
represent its two vertices. The graph is planar if there exists such a drawing in which
no two curves cross each other; that is, no two curves intersect other than possibly at
shared endpoints. This drawing is called an embedding of the graph in the plane. An
example is the 1-skeleton of the Delaunay triangulation, which has the extra property
that each edge is drawn as a straight line segment. It is not entirely obvious but true
that no two of these line segments cross.

Planar graphs cannot have substantially more edges than vertices. To make this
precise, let v be the number of vertices, e the number of edges, and f the number of
faces of an embedding. Similar to the Euler-Poincaré Formula for convex polyhedra,
we have a linear relation provided the graph is connected.

Euler relation A connected planar graphs satisfies v − e + f = 2.

Proof Draw the vertices as points in R
2. During the first phase of the construction,

we add edges, one by one, always making sure that the two endpoints belong to
separate components before we add the edge. After drawing v − 1 such edges, we
reach a connected graph and therefore the end of the first phase. At this stage, we
have e = v−1 edges, and because there are no cycles, we have f = 1 face. Plugging
these values into the alternating sum gives v− (v−1)+1 = 2, so the relation holds.

During the second phase, we draw the remaining edges, again one by one.
Each edge decomposes a face of the current graph into two. Adding an edge thus
increases e and f by 1 each. The two changes cancel, so the claimed relation is
maintained. �

2.5 Maximally Planar Graphs

A planar graph is maximal if adding any new edge would render the graph non-
planar. It is plausible that in an embedding of a maximal planar graph, every face is
bounded by exactly three edges. This is also true, and because of this property, we
have 3 edges per face and 2 faces per edge. Assuming v ⇒ 3, this implies 3 f = 2e.
Plugging this equation into the Euler Relation, we get
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Fig. 2.3 Adding a new site to the Voronoi diagram and the corresponding Delaunay triangulation

e = 3v − 6, (2.3)

f = 2v − 4. (2.4)

The Delaunay triangulation can only have fewer edges and faces than the maximal
planar graph for the same set of points. Writing n for the number of sites, we therefore
get fewer than 3n edges and fewer than 2n triangles. Correspondingly, the Voronoi
diagram of S has fewer than 3n edges and fewer than 2n vertices.

The degree of a vertex is the number of incident edges. Since every edge is incident
to only two vertices, the sum of degrees, over all vertices, is less than 6n. This implies
that the average degree in the Delaunay triangulation is less than 6, and that there is
at least one vertex of degree at most 5.

2.6 Incremental Construction

A popular algorithm for constructing the Voronoi diagram adds one site at a time. To
add a site, s, we first find the Voronoi region that contains s, and second construct the
Voronoi region of s by stealing pieces of the surrounding regions. The new Voronoi
region is of course convex, which implies that its boundary is connected and can
be computed by stepping from one neighboring region to the next, as illustrated in
Fig. 2.3. The corresponding algorithm for the Delaunay triangulation removes and
adds triangles. The triangles that are removed correspond to the Voronoi vertices that
lie in the stolen region, which implies that their circumcircles enclose the new site.
The new triangles are all incident to the new site, and they cover the same area in the
plane. To implement this algorithm, it is convenient to add three dummy sites that
span a triangle containing the entire set S. Starting with this triangle as the initial
Delaunay triangulation, we add one site at a time:
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Let D0 consist of the triangle xyz;
for i = 1 to n do

1 find the subset of triangles, A ⊆ Di−1,
whose circumcircles enclose the i-th site in S;

2 let B contain the triangles formed by joining
the i-th site to the boundary edges of

⋃
A;

3 Di = (Di−1 − A) ∪ B
endfor.

To implement this algorithm, we need a test that decides whether a point lies inside or
outside the circle that passes through three other points. Such a test will be discussed
during the next lecture.

2.7 Expectations

Instead of giving a detailed analysis of the run time, we just count the triangles that
are constructed during the course of the algorithm. It is possible to choose the sites,
and their ordering, such that this number is a constant times n2. However, this is not
typical, which is a number that is linear in n. To substantiate this claim, we compute
the average over the n! orderings of the n sites. Note that there is no assumption on
the configuration of the sites.

To understand this average, we count the triangles while we go backward in the
ordering. In other words, we ask for the expected number of triangles constructed
when we add the last, or n-th site. Every site is equally likely to be the last, so this is
the average number of triangles in the star of a vertex, now averaged over all sites,
which we know is less than 6. Let ti be the expected number of triangles constructed
(and possible already destructed) after adding the first i sites. Since expectations are
additive, we have

tn < tn−1 + 6. (2.5)

We have t3 = 1 and therefore tn < 6n. In words, if we add the sites in a random
order, then the expected number of triangles constructed during the course of the
algorithm is less than 6n. Less than 2n appear in the final triangulation, which implies
that roughly two thirds of the triangles are wasted. Similarly, the expected number
of edges constructed by the algorithm is less than 6n, and about half of them are
wasted.
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Chapter 3
Weighted Diagrams

Every region in a 2-dimensional Voronoi diagram consists of all points for which
the corresponding site minimizes the Euclidean distance. In this section, we modify
the notion of distance by introducing weights. Particular attention will be paid to
the case of subtracting the weight from the squared Euclidean distance because this
gives convex regions, like for the unweighted Euclidean distance.

3.1 Apollonius Diagrams

Let S be a finite set of points or sites in the plane. For each s ≥ S, we let ws ≥ R

be its weight. Suppose we define the weighted distance of a point x ≥ R
2 from s by

subtracting the weight from the Euclidean distance:

dA(s, x) = √x − s√ − ws . (3.1)

Drawing the weighted site as a circle with center s and radius |ws |, we can interpret
this notion of distance geometrically. If ws ◦ 0 and √x − s√ ◦ ws , then dA(x, s)
is the Euclidean distance to the nearest point on the circle. The same interpretation
works for √x − s√ < ws except that dA(s, x) is now negative. Finally, if ws < 0,
then dA(s, x) is the Euclidean distance to the furthest point on the circle. To unify
the three cases, we draw a vertical cone in R

3, adding a third coordinate to the
plane. Its axis of rotation is the vertical line passing through s, its apex is the point
(s,−ws) ≥ R

3, and its opening angle is 90≤; see Fig. 3.1. The weighted distance from
x to s is then the vertical distance from x to the cone. In other words, (the surface
bounding) the cone is the graph of the function that maps x to the weighted distance
from s. Let now s and t be two weighted sites. The bisector consists of all points
x with equal weighted distance from both: dA(s, x) = dA(t, x) or, equivalently,
√x − s√ − √x − t√ = ws − wt . This is the equation of a hyperbola; it is the vertical
projection of the intersection of the two cones to R

2. On one side of the bisector,

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 17
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ts

(s,−ws)

(t,−wt)

Fig. 3.1 The cones of two sites in the plane, one with positive and the other with negative weight

s

t

Fig. 3.2 The Apollonius diagram of six sites. The intersection of the regions of s and t consists of
five segments

we have dA(s, x) < dA(t, x), and on the other side we have the reverse inequality.
Returning to the set of finitely many sites with real weights, the region in which s
minimizes the weighted distance is

As = {x ≥ R
2 | dA(s, x) ∞ dA(t, x), ∀t ≥ S}, (3.2)

and the Apollonius diagram of S is the set of such regions. In contrast to the Voronoi
diagram, the regions in the Apollonius diagram are not necessarily convex; only the
region of the site with the smallest weight is guaranteed to be convex. Nevertheless,
every non-empty region is connected. In contrast, the intersection of two regions is not
necessarily connected; see Fig. 3.2. Recall how we defined the Delaunay triangulation
by connecting sites whose Voronoi regions have a non-empty intersection. Because of
the more complicated intersections, this construction is no longer as straightforward
for the Apollonius diagram.
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ts

Fig. 3.3 The paraboloids of two sites in the plane, one with positive and the other with negative
weight

3.2 Power Diagrams

Instead of subtracting the weight from the Euclidean distance, we now subtract it
from the square of the Euclidean distance:

dP (s, x) = √x − s√2 − ws . (3.3)

Here, dP (s, x) is called the power or power distance of x from s. Recall that the
bisector consists of all points that satisfy dP (s, x) = dP (t, x). Writing the squared
Euclidean distance as a scalar product, we get

√x − s√2 = ∩x − s, x − s⊆ = √x√2 − 2∩x, s⊆ + √s√2.

The equation of the bisector is therefore 2∩x, t − s⊆ = √t√2 −√s√2 +ws −wt , which
is the equation of a line. We can see this geometrically, by drawing the graph of the
function that maps a point to its power distance from s; it is a paraboloid with vertical
axis of rotation and lowest point at (s,−ws). We also draw the graph of the function
for t , which is a translate of the paraboloid for s; see Fig. 3.3. The intersection of the
two paraboloids is a parabola that lies in a vertical plane; its projection to R

2 is a
line. Returning to the set of finitely many sites with weights, the region within which
s minimizes the power distance is

Ps = {x ≥ R
2 | dP (s, x) ∞ dP (t, x), ∀t ≥ S}, (3.4)

and the power diagram of S is the set of such regions. Since the bisectors are straight
lines, each region is the intersection of half-planes and therefore convex. In contrast
to the unweighted case, a site may have an empty region in the power diagram.
Otherwise, the power diagrams are visually difficult to distinguish from Voronoi
diagrams, which is perhaps the reason why they are sometimes referred to as weighted
Voronoi diagrams.
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Fig. 3.4 The power diagram and the superimposed weighted Delaunay triangulation of twelve sites
in the plane. Note that only eleven of the sites function as vertices of the triangulation

3.3 Weighted Delaunay Triangulations

Having convex regions, we can again draw the dual, connecting two sites with an edge
whenever the corresponding two power regions share an edge; see Fig. 3.4. Similar
to the unweighed case, this construction typically gives a triangulation, but unlike the
unweighted case, not every site is necessarily also a vertex in that triangulation. To
understand the construction, it will be useful to generalize the circumscribed circles
that characterize the triangles in the unweighted Delaunay triangulation. To this end,
we say a point x with weight wx is orthogonal to s if

√x − s√2 = ws + wx . (3.5)

Drawing s as the circle with center s and radius
⇒

ws , and similarly for x , we get
two circles that meet at a right angle.1 Given s, ws , and x , we can always find wx

such that the two weighted points are orthogonal. In fact, the weight for which this
is the case is unique. However, if in addition we are given t and wt , we can find wx

such that x is orthogonal to s as well as to t only if x lines on the bisector of s and
t . Finally, if in addition we are given u and wu , then we can find wx such that x is
orthogonal to all three only if x lies on all three bisectors or, equivalently, it is the
unique point at which the three regions in the power diagram of s, t , u meet.

We can now formulate a criterion for stu being a triangle in the weighted Delaunay
triangulation of S. In the unweighted case, we said S is in general position if no four
sites lie on a common circle. The appropriate notion in the weighted case is that no
four unweighted sites have a common orthogonal circle.

1 For this to be true, we have to assume that both weights are positive. A similar but geometrically
not quite as compelling interpretation can also be found for the case in which one of the weights is
non-positive.
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Lemma A Let S be a finite set of weighted sites in general position in R
2. Then

s, t, u ≥ S form a triangle in the weighted Delaunay triangulation of S iff √x − v√2 ◦
wv + wx for every v ≥ S, where x is the unique weighted point orthogonal to s, t ,
and u.

3.4 Geometric Primitives

There are many algorithms for weighted and unweighted Delaunay triangulations,
one being the incremental construction briefly mentioned at the end of last lecture.
All these algorithms need to be able to decide whether the circle that passes through
three sites is empty (see Lemma B (i) in Chap. 2) or, in the weighted case, whether
the circle orthogonal to three weighted sites is further than orthogonal from all other
sites (see Lemma A). We now study the details of these decisions, beginning with
the unweighted case.

Let a = (a1, a2), b = (b1, b2), c = (c1, c2), be three points in R
2. If the points

lie on a common line, then we can write c = (1−λ)a +λb, assuming a ∪= b. Hence,
the determinant of

α =
⎡

⎣
1 a1 a2
1 b1 b2
1 c1 c2

⎤

⎦ (3.6)

vanishes. Indeed, det α = 0 iff a, b, c are collinear. In addition, det α > 0 iff a, b, c
form a left-turn. We can formulate a similar test for cocircularity. Lift a to the point
a+ = (a1, a2, a2

1 +a2
2) inR3, and similarly for b and c. Furthermore, let v = (v1, v2)

be a fourth point, write v+ = (v1, v2, v
2
1 + v2

2), and define

σ =

⎡

⎢⎢⎣

1 a1 a2 a2
1 + a2

2
1 b1 b2 b2

1 + b2
2

1 c1 c2 c2
1 + c2

2
1 v1 v2 v2

1 + v2
2

⎤

⎥⎥⎦ . (3.7)

The crucial insight is that det σ = 0 iff v lies on the circle determined by a, b, c. To see
this, we interpret the determinant as an expression of the points a+, b+, c+, v+ inR3.
It vanishes iff the four points lie on a common plane. Now, we just need to verify that
being coplanar in R

3 corresponds to being cocircular in R
2. To see this, we intersect

the paraboloid given by x3 = x2
1 +x2

2 with the plane given by x3 = 2Ax1+2Bx2+C .
Eliminating x3, we get (x1 − A)2 + (x2 − B)2 − (A2 + B2 − C) = 0, which is the
equation of a circle; see Fig. 3.5.

Lemma B Let a, b, c, v be points in R
2 and α,σ the matrices defined in (3.6) and

(3.7). Then the point v belongs to the open disk bounded by the circle passing through
a, b, c iff det α · det σ < 0.

http://dx.doi.org/10.1007/978-3-319-05957-0_2
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b+

a

c

c+

b

a+

Fig. 3.5 Lifting a, b, c to the paraboloid, we get the circle that passes through them by projecting
the intersection between the paraboloid and the plane passing through the lifted points

We omit the proof, which consists of two parts: verifying that v lies on the circle
if det σ = 0, and making sure that the sign is negative inside and positive outside
the circle. We note that the extra factor, det α, is necessary because switching two
points of a, b, c changes the sign of the determinant without changing the geometric
configuration. The test explained in Lemma B can be generalized to the weighted
case by changing the matrix in (3.7) to

σW =

⎡

⎢⎢⎣

1 a1 a2 a2
1 + a2

2 − wa

1 b1 b2 b2
1 + b2

2 − wb

1 c1 c2 c2
1 + c2

2 − wc

1 v1 v2 v2
1 + v2

2 − wv

⎤

⎥⎥⎦ . (3.8)

Indeed, if we project the intersection of the paraboloid with the plane that passes
through the thus lifted points of a, b, c, then we get the unique orthogonal circle. We
can now modify Lemma B.

Lemma C Let a, b, c, v be weighted points in R
2 and α,σW the matrices defined

in (3.6) and (3.8). Letting x with wx be the weighted point orthogonal to a, b, c, we
have √v − x√2 < wv + wx iff det α · det σW < 0.

Note that Lemma C agrees with Lemma B when the weights of a, b, c, v vanish.



Chapter 4
Three Dimensions

Voronoi diagrams and Delaunay triangulations in R
3 are more interesting and more

difficult to understand than in R
2. In this section, we develop some intuition by

considering these tessellations for a few symmetric point sets.

4.1 Lattices

The lattice generated by a set of d linearly independent vectors in R
d consists of

all integer combinations: S = {∑d
i=1 ki ui | ki ∈ Z for all i}. In the plane, we just

need two vectors to define a lattice. The most common example is the square lattice
generated by the vectors u1 = (1, 0) and u2 = (0, 1); see Fig. 4.1. The vectors are
not unique. For example, the square lattice is also generated by the vectors (2, 1) and
(1, 1). Every other lattice in the plane is the image of the square lattice under a linear
map, but when we construct the Voronoi diagrams, we see significant differences.

Before we get there, we observe that every site in a lattice is locally the same.
More precisely, for any two sites a, b ∈ S, the translation by the difference vector
leaves the lattice invariant: S = S+(b−a). This implies that the Voronoi regions are
the same: Vb = Va + (b − a). Furthermore, the central reflection through the origin
leaves the lattice invariant: S = −S. It follows that the Voronoi region of the origin
is centrally symmetric. Since all other Voronoi regions are translates of this one, all
Voronoi regions are centrally symmetric. In the plane, the only centrally symmetric
convex polygons have 2k edges, for k an integer larger or equal to 2. Of these, only
4-gons and 6-gons can be used to tile the plane. We thus have really only two types
of Voronoi diagrams, both exemplified in Fig. 4.1. The square lattice on the left is
not in general position. Indeed, the vertices in the Voronoi diagram have degree 4, so
when we take the dual, we get quadrangles instead of triangles. The Voronoi regions
on the right are hexagons, and they meet in triples at vertices of the diagram. In this
case, the dual is a triangulation in which every vertex has degree 6.

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 23
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Fig. 4.1 The Voronoi diagram of the square lattice on the left, and that of another lattice on the
right

Fig. 4.2 A subset of 27 sites in the cube lattice, and the Voronoi region of the site at the center

4.2 Cube Lattice

We write 2Z3 for the set of points with even integer coordinates in R
3. It is a

3-dimensional lattice since we can write 2Z3 as the set of all integer combinations
of three vectors: (2, 0, 0), (0, 2, 0), (0, 0, 2). The Voronoi region of any site is a cube
with sides of length 2; see Fig. 4.2. Similar to the square lattice, 2Z3 is not in general
position, which for Voronoi diagrams in R

3 would require that no five points lie on
a common sphere. For this reason, we do not get a triangulation when we dualize.
Indeed, the Delaunay triangulation of 2Z3 consists of cubes that tile R

3; it is still
called a triangulation out of convention. The only difference between the Delaunay
triangulation and the Voronoi diagram is that cubes of the former have their vertices
in 2Z3, while the cubes of the latter have their centers in 2Z3.
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Fig. 4.3 Left the Voronoi region of a site in the BCC lattice. Right a tetrahedron in the Delaunay
triangulation of the BCC lattice

4.3 BCC Lattice

We get the body-centered cubic lattice from 2Z3 by adding the centers of the cubes
to the set. Formally, we write B = 2Z3 ∪ (

2Z3 + (1, 1, 1)
)
. In other words, a point

belongs to B iff all its coordinates are even integers or all its coordinates are odd inte-
gers. We call it a lattice since it is again generated by three vectors: u1 = (1, 1,−1),
u2 = (1,−1, 1), u3 = (−1, 1, 1). To see this, we note that u1 + u2 + u3 = (1, 1, 1),
and the pairwise sums give (2, 0, 0), (0, 2, 0), (0, 0, 2). The latter generate 2Z3, and
adding (1, 1, 1) gives the remaining sites. It is also clear that the vectors generate no
points other than those in B. Recall that the Voronoi regions of the sites are translates
of each other and that they are centrally symmetric. To draw the Voronoi region of
the origin, we note that it is the intersection of its Voronoi region within 2Z3, which
is the cube [−1, 1]3, and the Voronoi region within 2Z3 +(1, 1, 1), which is a regular
octahedron. Intersecting the two gives the truncated octahedron drawn in Fig. 4.3.

It is also interesting to draw the Delaunay triangulation of the BCC lattice. We
have long edges of length 2 and short edges of length

√
3. Every long edge connects

the centers of two neighboring cubes, and every short edge connects the center of a
cube with one of its corners. Every tetrahedron in the Delaunay triangulation consists
of two long and four short edges; see Fig. 4.3. The dihedral angle at a long edge is
90◦, so that four tetrahedra fit around the edge. In contrast the dihedral angle at a short
edge is 60◦, with six tetrahedra fitting around the edge. Indeed, these two types of
edges correspond to the quadrangles and the hexagons in the dual Voronoi diagram.

4.4 FCC Lattice

We get the face-centered cubic lattice by adding the centers of the faces to the
cube lattice. Formally, we define F as the set of points with integer coordinates
that add up to an even number. It is again a lattice, generated by v1 = (1, 1, 0),
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Fig. 4.4 Left the Voronoi region of a site in the FCC lattice. Right an octahedron and the eight
neighboring tetrahedra in the Delaunay triangulation of the FCC lattice

v2 = (1, 0, 1), v3 = (0, 1, 1). To see that these vectors generate F , we note that
v1 + v2 − v3 = (2, 0, 0), v1 − v2 + v3 = (0, 2, 0), −v1 + v2 + v3 = (0, 0, 2)
generate 2Z3, and that adding v1, v2, and v3 gives the face centers. It is clear that the
vectors generate no other points.

The Voronoi region of a site is show in Fig. 4.4. It is the intersection of a non-
regular octahedron with a square cylinder. In contrast to the BCC lattice, the dual
Delaunay triangulation does not just consist of tetrahedra. To see this, note that the
Voronoi region has two kinds of vertices: of degree 3 and of degree 4. Every degree-
3 vertex is shared by three other Voronoi regions, implying that it corresponds to
a tetrahedron in the Delaunay triangulation. In contrast, every degree-4 vertex is
shared by five other Voronoi regions, and the dual cell in the Delaunay triangulation
is an octahedron. Both the tetrahedron and the octahedron are regular, as illustrated
in Fig. 4.4.

4.5 Quadratic Example

In all the examples we have seen so far, the number of edges, faces, and cells in the
Delaunay triangulation are at most some constant times the number of sites. This is
not true in general. Indeed, if we place n/2 sites on a line, and another n/2 sites on a
second, skew line, then we have more than n2/4 edges in the Delaunay triangulation;
see Fig. 4.5. This number can be further increased to

(n
2

)
by being more careful in

how we place the points in R
3. To describe how this is done, we define the moment

curve as the set of points M(t) = (t, t2, t3), with t ∈ R. Suppose that S consists of
n points chosen from the moment curve. We claim that the Delaunay triangulation
of S contains all

(n
2

)
edges, which is clearly the maximum number possible. To see

this, we observe that any sphere intersects the moment curve in at most four points.
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Fig. 4.5 Delaunay triangulation of sites that lie on two it skew lines

Indeed, we can write a sphere as the set of points that satisfy

(x1 − A)2 + (x2 − B)2 + (x3 − C)2 − R2 = 0.

Substituting t for x1, t2 for x2, and t3 for x3, we get a polynomial equation of
degree 6:

0 = (t − A)2 + (t2 − B)2 + (t3 − C)2 − R2

= t6 + t4 − 2Ct3 + (1 − 2B)t2 − 2At + (A2 + B2 + C2 − R2).

A theorem of Descartes asserts that the number of roots is bounded from above by
the number of sign changes when we read the coefficients in sequence.1 Here we
have 1, 0, 1, −2C , 1−2B, −2A, and A2 + B2 +C2 − R2. No matter how we choose
A, B,C, R, we cannot have more than four sign changes, which implies the claimed
upper bound on the number of intersections.

Why does this imply that the Delaunay triangulation of S has
(n

2

)
edges? To prove

this, let t1 < t2 < · · · < tn be the parameters that define the n sites. For any four
indices 1 ≤ i < i + 1 < j < j + 1 ≤ n, we consider the sphere that passes through
the four corresponding points. It intersects the moment curve in these four points and
in no others. It follows that the segments between M(ti ) and M(ti+1) and between
M(t j ) and M(t j+1) lie inside the sphere, and the other three segments along the
moment curve lie outside the sphere. Hence, the tetrahedron spanned by the four
points belongs to the Delaunay triangulation. Every one of the

(n
2

)
edges belongs

to at least one such tetrahedron and therefore also to the Delaunay triangulation, as
claimed.

1 This is known as Descarte’s sign rule and was first described in his La Géométrie, which was
published in 1637 as an appendix to his Discour de la méthod, where he presents his method for
obtaining clarity on any subject.



Part I
Tessellations

Exercises

Question 1. (20 points). Why are there only five Platonic solids? Did we miss
some, or is there a reason there is not a sixth one?
Question 2. (20 points). No two edges of the Delaunay triangulation of a finite set
of points in the plane cross each other. Give a convincing argument why this is the
case.
Question 3. (20 points). All faces of an embedding of a maximal planar graph with
three or more vertices in the plane are bounded by exactly tree edges. Give a
convincing argument that this is the case.

HINT you might find Kuratowski’s Theorem on planar graphs useful, which
says, among other things, that the complete graph of 5 vertices is not planar.
Question 4. (20 points). Let S be a finite set of sites in R

2, each with a real weight.
Show that every region in the Apollonius diagram of S is connected.
Question 5. (20 points). Let a ¼ ða1; a2Þ; b ¼ ðb1; b2Þ; x ¼ ðx1; x2Þ be three points

in R
2. Prove that a, b, x form a left-turn iff det

1 a1 a2

1 b1 b2

1 x1 x2

2
4

3
5[ 0.

Question 6. (20 ¼ 10þ 10 points). Consider the Delaunay triangulation of the
BCC lattice inR3. Recall that it consists of congruent copies of only one tetrahedron,
which has two long edges (of length 2) and four short edges (of length

ffiffiffi
3
p

).

(a) Draw the four tetrahedra in the star of a long edge and highlight the link of
the long edge.

(b) Draw the six tetrahedra in the star of a short edge and highlight the link of
the short edge.



Part II
Complexes

Similar to the tessellations of Euclidean space introduced in Chap. 1 there are
several equivalent ways to describe alpha shapes. This is perhaps the hallmark of
an interesting concept, as it guarantees connections in multiple directions. Of
major importance in this course are the bridges between geometry, topology, and
applications in biology. We will see that alpha shapes provide substantial con-
tributions to all three of these bridges.

http://dx.doi.org/10.1007/978-3-319-05957-0_1
http://dx.doi.org/10.1007/978-3-319-05957-0_1


Chapter 5
Alpha Complexes

The original motivation for the concept of alpha shapes was the desire to develop a
concrete version of the intuitive notion of ‘shape’ of a finite point set. Starting from
this idea, we explore connections to Voronoi diagrams and Delaunay triangulations.

5.1 Jarvis’ Construction

In an early approach, Jarvis defines the shape of a point set procedurally, as the output
of a generalized convex hull algorithm [1]. Letting S be a finite set of sites in R

2, we
can construct the convex hull by rotating a line about the set; see Fig. 5.1. Assuming
general position, we begin by letting s be the leftmost site. Drawing a vertical line
L through s and oriented downward, we see that all sites lie to the left of L , so s is
indeed a vertex of the convex hull. Using s as a pivot, we rotate L in a ccw order until
it hits another site, t . All sites other than s and t lie to the left of L , implying that st
is an edge of the convex hull. We repeat this step now using t as the pivot. Each step
gives a new edge of the convex hull, and the algorithm halts when it returns to the
initial site, s.

What else we can do by wrapping the set? For example, we can construct non-
convex shapes if we shorten the rotating line to a line segment of fixed length [2]. This
works if the sites are nicely distributed, as in Fig. 5.1, but can get the line segment
lost and return a sequence of sites that cannot be reasonably called its shape. Another
shortcoming is that this algorithm necessarily constructs only one closed curve, while
two closed curves might be more appropriate for the example at hand; see Fig. 5.2.

5.2 The Alpha Shape

A theoretically and practically more satisfying solution to constructing the shape of
a finite set can be based on empty disks [3]. Letting α ≥ 0 be a fixed radius, we write
Dx (α) for the closed disk with center x √ R

2 and radius α. It is empty if it contains
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Fig. 5.1 Left illustration of Jarvis’ convex hull algorithm. Right the generalization to constructing
shapes obtained by shortening the line to a line segment

α

Fig. 5.2 A set of points sampling the letter ‘R’, with its α-hull on the left and its α-shape on the
right

no site: Dx (α) ◦ S = ≤. The α-hull of S is the complement of the union of empty
disks of radius α; see Fig. 5.2. Setting α to zero, we get the set of points, and setting
it to infinity, we get the convex hull.

The curved edges of the α-hull can sometimes be annoying. This motivates us to
draw them straight, which results in the α-shape of S. We will give an alternative
definition shortly, which will eliminate any remaining ambiguities. In contrast to the
α-hull, the α-shape is a polyhedron in the general sense: it does not have to be convex,
and it can have different intrinsic dimension at different places. For example, the
α-shape in Fig. 5.2 is mostly 2-dimensional except it has a 1-dimensional extension
at the right leg. If S contains a site that is further than distance 2α from any other site,
then this point is isolated and forms a locally 0-dimensional portion of the α-shape.
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Fig. 5.3 Left the union of disks of radius α of the same points as in Fig. 5.2. Right the Voronoi
decomposition of the union

5.3 Union of Disks

A point x is the center of an empty disk of radius α iff it is further than α from every
site. To make this relationship concrete, we construct the union of disks of radius α

centered at the sites:

US(α) =
⋃

s√S

Ds(α); (5.1)

see Fig. 5.3. This union is the complement of the set of centers of the empty disks.
We can therefore expect that the boundaries of the α-hull and the union of disks
are related. Indeed, for each circular arc of US(α), we have a vertex of the α-hull,
and for each vertex of US(α), we have a circular arc of the α-hull. In its details,
this relationship is troubled by arcs in the boundary of the α-hull that intersect and
partially or completely erase one another. An example are the two circular arcs that
connect the right leg of the ‘R’ to its last site. Since they lie inside each other’s empty
disks, they do not belong to the α-hull.

5.4 Voronoi Decomposition

To get a cleaner relationship between the union of disks and the α-shape, we need an
unambiguous definition of the latter. For this, we overlay the union of disks with the
Voronoi diagram, effectively decomposing the union into convex regions; see Fig. 5.3.
To formalize this idea, we write Rs(α) = Vs ◦ Ds(α) and note that this is a convex
set because it is the intersection of convex sets. Furthermore, US(α) = ⋃

s√S Rs(α).
In words, the regions Rs cover the union, but in contrast to the disks, which also cover
the union, they do this without overlap. More specifically, the common intersection
of the regions is limited to shared edges and vertices. Following the recipe for the
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Fig. 5.4 The α-complex is
superimposed on the union of
disks, which is decomposed
into convex regions by the
Voronoi diagram

Fig. 5.5 While the inter-
section of any two regions
is non-empty, the common
intersection of all three
regions is empty because
α is smaller than the radius of
the circumcircle. Accordingly,
the α-complex contains the
three edges but not the triangle
spanned by the three sites

Delaunay triangulation, we construct the α-complex by drawing an edge between
two sites if their regions intersect in a common edge, and by drawing a triangle
between three sites if their regions intersect in a common point; see Fig. 5.4. For ease
of reference, we denote the resulting complex by AS(α), or by A(α) if the set of sites
is understood. For example, A(0) is the set of sites without any additional structure,
and A(∞) is the Delaunay triangulation of S. We now formally define the α-shape
as the union of simplices in the α-complex.

Note that the global connectivity of the union of disks in Fig. 5.4 is that same as
that of the α-complex and of the α-shape: all three are connected and have a single
hole. This is not a coincidence but rather a consequence of the Nerve Theorem, which
will be discussed later in this course.
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5.5 Filtration

Next we vary α and consider the complete range of possible values, which is from
0 to ∞. For α < α∀, we have Ds(α) ∩ Ds(α

∀) and therefore Rs(α) ∩ Rs(α
∀).

Recall that st is an edge in the α-complex iff Rs(α) ◦ Rt (α) ⊆= ≤. Since the regions
grow with the radius, this implies Rs(α

∀) ◦ Rt (α
∀) ⊆= ≤, and therefore st is also an

edge in the α∀-complex. Similarly, every triangle in the α-complex belongs to the
α∀-complex. In summary, A(α) ∩ A(α∀) whenever α ⇒ α∀. It thus makes sense to
ask—for each vertex, edge, and triangle σ in the Delaunay triangulation—what the
smallest value of α is for which σ belongs to A(α). Denoting this value by ασ , we
can construct the α-complex simply by collecting all vertices, edges, and triangles
that have a value not larger than α:

A(α) = {σ √ K | ασ ⇒ α}, (5.2)

where K is the Delaunay triangulation of S. Computing this value is easiest for the
vertices, since we have αs = 0 for every s √ S. It is also easy for triangles, for which
αstu is the radius of the circumcircle; see Fig. 5.5. The computation of the smallest
α-value is slightly more difficult for edges. Here, we distinguish between two cases.
First, the edge st may intersect the dual Voronoi edge in its interior; as in Fig. 5.5. In
this case, st belongs to the α-complex as soon as the two disks meet, which happens
when the radius reaches half the distance between the sites: αst = 1

2∪s − t∪. If st
is shared by the triangles stu and stv in K , then the condition of st intersecting
the dual Voronoi edge in its interior is equivalent to having acute angles at u and v.
This leads us to the second case in which one of these two angles is obtuse, say the
angle at u. Then it is not enough that the two disks meet; they also need to reach the
Voronoi edge, which happens when the triangle stu enters the α-complex. Hence,
αst = αstu . Now that we have the threshold value for every vertex, edge, and triangle
in the Delaunay triangulation, we can sort them such that

ασ1 ⇒ ασ2 ⇒ . . . ⇒ ασn . (5.3)

The corresponding sequence of simplices is called a filter. Here, we make sure that
every simplex is preceded by its faces. We get this from the formulas already, since
the value of every edge is smaller than or equal to the values of the triangles it belongs
to. However, in case the value of the edge is equal to that of an incident triangle, we
make sure we order the edge before the triangle. With this, every prefix of the filter
is a complex. Writing Kj for the collection of simplices σi with i ⇒ j , we get an
increasing sequence of complexes,

≤ = K0 ∩ K1 ∩ . . . ∩ Kn = K . (5.4)

We call such an increasing sequence as a filtration. The not necessarily contiguous
subsequence of alpha complexes is sometimes referred to as the alpha complex
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filtration of the set S. This and other filtrations will play an important role in later
sections, when we talk about persistent homology.

5.6 Space-Filling Models of Proteins

A major application of alpha complexes are proteins and other molecules modeled
as unions of balls [4]. One such model is the van der Waals diagram of a protein.
It is based on the van der Waals force, which is weakly attractive at short distance
between the atoms, and turns into a strongly repulsive force if we push the atoms
closer together. The diagram is obtained by taking the union of the balls centered at
the atoms in which the radii are chosen so that the atoms are at equilibrium when the
balls touch.

Different types of atoms affect neighboring atoms differently, which leads to
different radii. For example, hydrogen atoms are the smallest, with carbon, oxygen,
and nitrogen atoms represented by somewhat larger balls. This motivates the concept
of weighted alpha complexes, which are defined analogous to weighted Voronoi
diagrams and weighted Delaunay triangulations. To be specific, we have a finite set
of sites with real weights, and we recall that the bisector of two sites under the power
distance is the set of points x that satisfy ∪x − s∪2 − ws = ∪x − t∪2 − wt . We have
shown that the bisector is a straight line. If we add the same constant, α2, to the
weights, then the bisector stays the same. We therefore define Ds(α) as the disk with
center s and radius

√
ws + α2. We note that the radius depends on the weight as

well as on α. We could therefore drop α and change all weights. We prefer to keep
the weights fixed and modify the complex by varying the parameter, thus stressing
that we use only one degree of freedom. Observe that the radius in the weighted
case agrees with the definition in the unweighted case, when it is α. To construct the
weighted α-complex of S, we take the union of the disks Ds(α), for all s √ S, we
decompose the union into convex regions using the weighted Voronoi diagram, and
we take the dual, as before.

If we choose the weights so that the radii agree with the van der Waals forces,
we get the weighted 0-complex as the dual of the van der Waals diagram. There are
reasons to also consider non-zero values of α. One is the solvent accessible diagram
in which the van der Waals radii are increased by about 1.4 Angstrom, which is
the radius used to approximate a water molecule. The diagram thus represents the
interaction between the protein and solvent, which is water. Indeed, if we represent a
water molecule by the ball with center x and radius 1.4 Angstrom, then this molecule
is not yet repelled by the protein iff x lies outside the solvent accessible model. For
other solvents, we would modify the radius by different amounts. A word or caution
is in order: increasing all radii by the same amount relates to the Apollonius and
not the power diagram. Indeed, only if we increase all squared weights by the same
amount—which for reasons of compatibility with the unweighted case is denoted as
α2—we preserve the power diagram.
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Chapter 6
Holes

Being possibly non-convex, alpha shapes can have many interesting features, some of
which that are best classified as types of holes. We begin with the easy 2-dimensional
case, noting that the types and structure of holes gets progressively more complicated
as the dimension increases.

6.1 Holes in the Plane

There is really only one type of hole a connected α-shape in R
2 can have, namely a

bounded connected component of the complement. We refer to such a hole as a void.
For example, most uppercase letters have no void, and only one has two voids:

C E F G H I J K L M N S T U V W X Y Z; A D O P Q R; B.

If we allow for non-connected shapes, we can have a second type of hole: a gap
between components. Among the lowercase letters, most a connected but two are
not:

c f h k l m n r s t u v w x y z; a b d e o p q; g; i j.

In everyday language, we call things a hole even if they are not holes in the topological
sense at all, such as for example the ‘holes in the road’. (I am less sure about the
‘holes in our memory’.) They are referred to as cavities, which are local depressions
in the shape. Recall that teeth sometimes develop such, which can be painful. Their
counterpart are protrusions, which are local extensions of the shape. In the planar
case, we may define cavities by looking at the components of the convex hull minus
the shape; see Fig. 6.1. Each cavity is a shape itself, and we can apply the same
method, which would then identify cavities of the cavity, which are protrusions of
the shape. Iterating this way, we get a hierarchical family of cavities and protrusions.

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 41
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Fig. 6.1 A connected shape
with two voids and five cavi-
ties

However, we do not advocate this classification since in three dimensions, the convex
hull minus the shape can easily be connected, in which case this method fails to
separate different cavities from each other.

6.2 Filtration by Thickening

Another approach to cavities makes use of the 1-parameter family we get by thicken-
ing the initial shape or point set. Let S be a finite set of sites, recall thatU(α) = US(α)

is the union of disks of radius α centered at the sites, and note that U(α) ≥ U(α√)
whenever α ◦ α√. We may grow the radius continuously and watch how the shape
changes. For the regularly arranged points in Fig. 6.2, the shapes in this family are
all geometrically different but most are topologically the same:

1. For small radii, the disks are disjoint, so US has as many components as there are
sites;

2. When α reaches half the distance between contiguous sites, US becomes con-
nected;

3. There is one big gap, and when α reaches half its size, then US closes up and
forms a void;

4. When α reaches the radius of the circle on which the sites are placed, then the
hole fills up, and US becomes a topological disk.

Writing 2c1 for the distance between two contiguous sites, 2c2 for the size of the
gap on the right, and c3 for the radius of the circle passing through the sites, we have
0 < α0 < c1 < α1 < c2 < α2 < c3 < α3 < ≤. Similar to the alpha complex
filtration introduced in Chap. 5, we consider the growing sequence of shapes U(α),
for α from 0 to ≤.

http://dx.doi.org/10.1007/978-3-319-05957-0_5
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Fig. 6.2 Eleven points arranged in the shape of the letter C. Left apart from the points, we see four
unions of disks, with radii α0 < α1 < α2 < α3. Right the second union, for radius α1, and the
pocket in blue

6.3 Pockets

This filtration enriches the shape description as we can now keep track of the holes
as they appear and disappear during the thickening process. Indeed, the history of
changes depends on the details of the original shape. Using this insight, we define
a pocket of a shape as a subset of the complement that becomes a void before it
disappears. To makes this into an unambiguous concept, we need a flow that identifies
the subset of the complement that becomes the void. Using the flow normal to the
boundary of the evolving shape, we get the pocket of U(α1) in part delimited by the
straight edge connecting the centers whose disks meet to form the void; see Fig. 6.2.
Indeed, this edge divides the flow, with points close to and to the left of the edge
flowing into the void, while points close to and to the right of the edge recede to
infinity. The same pocket already exists in U(α) for α < α1, or, more precisely, U(α)

has a pocket that contains the pocket of U(α1). We refer to [1] for more details, in
particular about the more interesting 3-dimensional case.

Determining the existence of pockets, or counting them, is easier than drawing
their precise shape. Specifically, each time we see a void appear in the filtration, we
can read it as the witness of a pocket in preceding shapes. Tracking the changing
topology in a filtration can be done with homology, as we will see later.



44 6 Holes

Fig. 6.3 Iterative construction of a branched peptide or a Brownian tree. The shaded arcs consist
of the candidate points for the attachment of the next disk

6.4 Iterative Stochastic Construction

Let us look at materials modeled as configurations of atoms represented by spherical
balls. For now we stay in two dimensions. A branched peptide is grown from an
initial unit disk by randomly adding one unit disk at a time. The i-th disk is added
such that

(i) It touches the union of the first i − 1 disks in precisely one point;
(ii) Every possible such point is equally likely to be chosen for the attachment.

The candidate points form open intervals on the boundary of the union of the first
i − 1 disks. As illustrated in Fig. 6.3, we construct them by forming the union of
disks with twice the radius and projecting the arcs of the boundary onto the circles
bounding the corresponding smaller circles. Next consider a Brownian tree, which
is constructed the same way, except that the probability of attachment is not the
same for every candidate point. Specifically, the i-th unit disk follows a random
path from far away until it hits one of the first i − 1 disks. For example, if there
is a pocket whose opening is narrower than the diameter of the new disk, then the
probability of attachment inside that pocket is zero. In Fig. 6.3, we have two such
pockets corresponding to the voids in the union of larger disks.

6.5 Hierarchical Pocket Structure

By construction, both the branched peptides and the Brownian trees are topologically
simple: they are connected and have no holes. Nevertheless, we will see that topology
can be used to tell them apart. The most obvious difference between the two structures
is the number and size of their pockets. It is plausible that Brownian trees have
large pockets protected by narrow openings, while branched peptides have no large
pockets. To see whether this intuition is correct, we consider two large structures
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Fig. 6.4 A branched peptide on the left and a Brownian tree on the right. The diagrams show the
number of pockets whose half-age exceeds a threshold x

and summarize their analysis, which can be found in [2]. To quantify their pocket
structure, we count the voids in the filtration obtained by thickening. Specifically,
we call 1

2 (b + d) the half-age of a void born at the radius b and dying at the radius
d. Let F(x) be the number of voids with half-age at least x . As shown in Fig. 6.4,
the branched peptide has more voids with large half-age and fewer voids with small
half-age, which seems to contradict our intuition. Does it?

A closer look at the functions, drawn in log–log scale, shows that the graph for the
branched peptide can be approximated by a straight line. The approximation fails for
small and large mean-age, which is to be expected since we are dealing with a finite
size example. In contrast, the graph for the Brownian tree has no good approximation
by a straight line. This implies that the structure of the Brownian tree is unlikely to
be self-similar on any scale, even if only in a statistical sense.

6.6 Tunnels

Let us venture one dimension up, to 3-dimensional space. An alpha shape in R
3 can

have voids and gaps, but it can also have tunnels, like open doors and windows, or
prison escape routes. Curiously, tunnels are much more difficult to count than voids
and components. What is, for example, the number of tunnels formed by the edge
skeleton of the cube? We will later argue that the answer is 5. Indeed, if we flatten
the skeleton and draw it in the plane, we get 5 holes. A possibly more convincing
argument why the answer should be 5 will be furnished by the homology groups to
be introduced in Chap. 10.

In the case of a long and possibly narrow tunnel, we can use pockets to give it
a geometric identity. Indeed, if we thicken the shape, the tunnel may be cut off the
outside at two or more places, defining the space enclosed by these openings as a
pocket with more than one mouth. Pockets have been defined and implemented as
part of the 3-dimensional alpha shape software [3], and they have found applications
in the study of protein structure [4]. Using this software, we can construct α-shapes
of zeolites, which are periodic molecular structures used in oil refinery. On the left

http://dx.doi.org/10.1007/978-3-319-05957-0_10
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Fig. 6.5 Left the alpha shape of a zeolite. Right the pockets of the zeolite

in Fig. 6.5, we see tunnels going in parallel through the entire structure. On the right,
we see the pockets of the same structure. Many of them have two mouths and can
thus be identified as geometric representations of tunnels. In later sections, we will
use the ranks of homology groups to count tunnels or, more precisely, to measure the
size of a basis that generates all possible ways to pass through the shape following
tunnels.
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Chapter 7
Area Formulas

Perhaps surprisingly, α-complexes are useful in measuring a union of balls in two and
higher dimensions. In the study of proteins and other biomolecules, this connection is
the basis of the fastest precise algorithms for the volume, surface area, and derivatives
of space-filling models of molecular structures.

7.1 Space-Filling Models

The central dogma of biology asserts that strings of DNA get transcribed into RNA
molecules, which then get translated into proteins, the work-horses of living organ-
isms. Each protein consists of a backbone, which is decorated by a sequence of
amino acids—we can think of it as a word over a 20-letter alphabet. Upon creation,
the protein folds up to a tightly packed geometric structure. Importantly, the process
is repeatable: the same sequence of amino acids folds up into the same structure.
Since we know the DNA of many organisms in great detail, we know the chemical
structure of many proteins, but only for a small fraction do we also know the geo-
metric structure. Similarly, we have very incomplete knowledge of which proteins
interact with each other, which depends on their shapes. The tasks of predicting the
geometric from the chemical structure, and of predicting interaction from geomet-
ric structure are known as protein folding and protein docking. Both are important
challenges in structural molecular biology.

A common representation of a protein, but also of RNA and DNA, is the space-
filling model; see Fig. 7.1. Each atom is represented by a ball, with the radius chosen to
approximate the range of the weakly attractive van der Walls force, or 1.4 Angstrom
larger to model the interaction with water molecules; see also Chap. 5. Measure-
ments of space-filling models are used as ingredients in the force that drives the
simulation of the folding process. For example, some amino acids are hydrophobic
while others are hydrophilic. We are therefore interested in the surface area, weighted
by hydrophobicity factors, and the derivative of the same under continuous motion.
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Fig. 7.1 The space-filling
representation of a short piece
of DNA. Note how the helix
forms two grooves on opposite
sides of the ribbon

We will not discuss the area derivative formulas, which are more advanced [1] but
otherwise based on the same principles to be presented here.

7.2 Principle of Inclusion-Exclusion

To simplify the exposition, we limit ourselves to two dimensions, where the equiva-
lent of volume of a space filling model is the area of a union of disks. Let S be a finite
set of sites in R

2, and consider the union of disks of radius α centered at the sites. As
before, we write U(α) = ⋃

s≥S Ds(α) for the union, and we write area(U(α)) for its
area. Suppose we have a function f : R2 √ R such that

f (x) =
{

1 if x ≥ U(α),

0 if x ◦≥ U(α),

which in mathematical jargon is called the indicator function of the union. Then we
can compute the area by integration:

area(U(α)) =
∫

x≥R2

f (x) dx . (7.1)

To construct such a function, let Sx ≤ S contain all sites for which x ≥ Ds(α).
Suppose Sx consists of m sites. Then it has

(m
k

)
subsets of size 0 ∞ k ∞ m. The

alternating sum gives (1 − 1)m = ∑m
k=0(−1)k

(m
k

)
, which is zero. Hence,

f (x) = m −
(

m

2

)
+ · · · ±

(
m

m

)
= 1. (7.2)
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Fig. 7.2 The union of four
disks, with the intersection
of two and of all four disks
highlighted
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In words, if we count the disks that contain x , subtract the pairs whose intersections
contain x , add the triplets whose common intersections contain x , etc., then we get
1, as desired. Integrating over the plane, the contribution of a disk is its area, the
contribution of a pair is minus the area of its intersection, etc. Writing this as a
formula, we get the area of U(α) as the integral of f (x):

Long PIE Formula The area of the union of disks of radius α centered at the sites
in S is

area(U(α)) =
∑

∀◦=T ∩S

(−1)|T |−1 · area

(
⋂

s≥T

Ds(α)

)
.

This formula holds for much more general sets than disks and is known as the
principle of inclusion-exclusion.

7.3 Independent Disks

The Long PIE Formula has two shortcomings that make it difficult to use. First, each
term can be complicated to compute itself, and second there are exponentially many
terms, possibly all non-zero. Fortunately, it is possible to shorten the formula without
sacrificing its correctness. To explain this, we first identify redundant terms in the
formula for the four disks in Fig. 7.2. Writing b = area(B), bc = area(B ⊆ C), etc.,
the area of B ⇒ C ⇒ D ⇒ E is

b + c + d + e − bc − bd − be − cd − ce − de + bcd + bce + bde + cde − bcde.

From Fig. 7.2, we see that −cd + bcd + cde − bcde = 0, so we can remove the four
terms and get a shorter formula. The reason for the existence of redundant terms that
can be cancelled is the dependence of the disks in the last term.
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Fig. 7.3 The four triplets of disks whose pairs are independent. Except for the first, each configu-
ration exists for equal-sized disks

We call a collection U independent if for every subset V ∩ U there exists a point
x that is contained in all disks in V but in none of the disks in U − V . A collection
consisting of only one disk is always independent: we can choose x inside or outside
the disk. A collection of two disks is independent if they have a non-empty common
intersection but neither disk contains the other. Clearly, a collection of three disks
can only be independent if every subcollection of two disks is independent. There
are four triplets whose pairs are independent, all drawn in Fig. 7.3. Only the last of
the four triplets is independent. The first is not because one disk is contained in the
union of the other two, the second is not because one disk contains the intersection
of the other two, and the third is not because the common intersection of the three
disks is empty.

7.4 Substitution

A collection of four or more disks is never independent, as a straightforward count-
ing argument shows. A collection of n disks has 2n subsets, so when we draw the
bounding circles, we need 2n regions, each contained in a different maximal subset.
Drawing three circles, we can indeed get 23 = 8 regions, namely for the config-
urations in Fig. 7.3. Adding a fourth circle, it intersects the first three in at most 6
points, which decompose the circle into 6 arcs. Each arc decomposes a region into
two. Starting with 8 regions, we thus reach at most 8 + 6 = 14, which is too small
for independence.

Whenever we have a dependent collection of disks, we can replace the correspond-
ing term in the inclusion-exclusion formula by terms involving fewer disks [2]. In
the example of four disks depicted in Fig. 7.2, we replace bcde by bcd + cde − cd.
To see why this is possible, we write the areas of the intersections in terms of the
areas of the regions in the arrangement of circles:
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b = x1 + x5 + x8 + x9 + x11 + x12 + x13,

· · ·
bc = x5 + x9 + x12 + x13,

· · ·
· · ·

bcde = x13.

In the dependent case, we have fewer variables than equations. In the above case,
we have 15 equations in 13 variables. It follows that some rows of the matrix that
represents this system of equations are equal to linear combinations of other rows.

7.5 Full Subcomplexes

Instead of studying the details of the substitution process, we give a description of
the final result in terms of the simplices in the α-complex. Assume the sites in S are
in general position and write A = A(α) for the α-complex of S. Let x be any point
in the plane, and let Sx ∩ S be the subset of sites whose disks of radius α contain x ,
as before. Note that Sx is a subset of the vertices of A, and we get the corresponding
full subcomplex, Ax , by adding the edges and triangles in A whose vertices belong
to Sx . It is dual to the collection of Voronoi regions generated by the sites in Sx .
As illustrated in Fig. 7.4, the union of the disks with centers in Sx is star-convex.
More precisely, for each point y in the union, the entire line segment connecting x
to y is contained in the union. Similarly, the union of the Voronoi regions generated
by the sites in Sx is star-convex, and so is the intersection of this union with the
union of disks. The full subcomplex, Ax , is the nerve of the decomposition of this
intersection into restricted Voronoi regions. Since the intersection is contractible, the
Nerve Theorem implies that Ax is contractible. It follows that the Euler characteristic
(the number of vertices minus the number of edges plus the number of triangles) of
the full subcomplex is

χ(Ax ) =
{

1 if Sx ◦= ∀,

0 if Sx = ∀.
(7.3)

Since this is true for every point in the plane, we can set f (x) = χ(Ax ) and
compute the area of the union of disks by integration, as before. To collect the con-
tributions, we iterate over all vertices, edges, and triangles of A:

Short PIE Formula The area of the union of disks of radius α centered at the sites
in S is
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Fig. 7.4 The Voronoi dia-
gram of 11 sites and the
full subcomplex of the alpha
complex defined by the four
sites whose disks contain the
point x

x

areaU(α) =
∑

σ≥A

(−1)dim σ · area

(
⋂

s≥σ

Ds(α)

)
.

In the plane, A has at most a constant times n = |S| simplices, and each simplex
corresponds to an independent collection of disks. We thus have a formula with few
and simple terms. The formula generalizes to higher dimensions, and to collections
of balls with different radii [3]. The summation can also be done over all simplices of
the Delaunay triangulation, and while this sum contains redundant terms, the result
is still correct [4].
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Part II
Complexes

Exercises

Question 1. (20 ¼ 10þ 10 points). Let S be a finite set of points in R
2, s and t two

points in S, and a positive real number. Recall that DtðaÞ is the a-disk centered at
s 2 S;Vs is the Voronoi region of s, and RSðaÞ ¼ DsðaÞ \ VS.

(a) Prove that every point x 2 Vs \ DtðaÞ is contained in DSðaÞ,
(b) Prove [s2S DsðaÞ ¼ [s2S RsðaÞ.

Question 2. (20 ¼ 10þ 10 points). Let S be a finite set of sites in general position
in R

2. Let stu and stv be two triangles in the Delaunay triangulation, and denote the
angles at u and v inside these triangles by u and w. Recall that an acute angle is
smaller than 90� and an obtuse angle is larger than 90�.

(a) Show that at most one of u and w is obtuse.
(b) Is it possible that both u and w are obtuse if the sites are weighted and we are

talking about the weighted Delaunay triangulation?

Question 3. (20 ¼ 10þ 10 points). Consider the 26 uppercase letters of the
Roman alphabet, each drawn in a simple font, without any fancy extras.

(a) Classify each uppercase letter in terms of its symmetries.
HINT a symmetry is a transformation (here: rotation, or reflection) that leaves

the letter unchanged. For example, ‘‘A’’ has a vertical symmetry axis, while ‘‘C’’
has a horizontal symmetry axis, and ‘‘S’’ has neither but is centrally symmetric.

(b) Which of the uppercase letters have no hole but develop holes as they get
thickened?



Question 4. (20 ¼ 10þ 10 points). Let S be a finite set of points in R
2, consider

the union of disks with radius a centered at the points, and write L(a) for the total
length of the boundary.

(a) Prove Lð2aÞ� 2LðaÞ.
(b) Is it true that LðaÞ� Lð2aÞ for all choices of S and a?

Question 5. (20 points). Let S be a finite set of points in R
2 and a positive real

number. Prove that the common intersection of the disks with radius a centered at
the points in S is nonempty iff there exists a disk of radius a (not necessarily
centered at a point in S) that contains all points in S.
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Part III
Homology

Gently shifting from geometry to topology, we introduce simplicial complexes as a
general representation of shapes and spaces. The transition comes with an
increased emphasis on connectivity. Contrary to a widely held belief, this does not
imply that topology is not useful to distinguish intricate shapes with simple global
connectivity, such as human faces and root systems of plants. Evidence to support
this claim will be given in the next part, whose topic is persistent homology. This
part focuses on the homology of individual topological spaces, which is a classic
topic in algebraic topology.



Chapter 8
Topological Spaces

In geometry, we can decide which points are near and which are far by computing
distance. In topology, no such notion is available and distance is replaced by the
weaker concept of neighborhoods. A full treatment of this idea is beyond the scope
of this course. Indeed, we are motivated to side-step the technical difficulties by
restricting ourselves to spaces in which connectivity can be defined by elementary
means. The primary tool to achieve this goal are simplicial complexes.

8.1 Topology and Topology Equivalence

Let X be a set of points. A topology of X is a collection of subsets, called open sets,
such that

(i) X is open and the empty set is open;
(ii) the intersection of any two open sets is open;

(iii) the union of any family of open sets is open.

The setX together with the topology is called a topological space. By a neighborhood
of a point we mean an open set that contains that point. For example, the plane
together with the topology generated by the Euclidean metric is a topological space.
To construct it, we call the set of points at distance less than r > 0 from a point x ≥ R

2

an open disk. Taking finite intersections and arbitrary unions of open disks, we get a
collection of open sets that satisfies the above three conditions. It is usually referred
to as the Euclidean topology of the plane. Similarly, we can construct topologies for
subsets of the plane. Consider for example the unit disk, B2 = {x ≥ R

2 | √x√ ◦ 1}.
The topology inherited from the topology of the plane consists of all intersections
of open sets with B

2. Thus, B2 together with the topology inherited from R
2 is a

topological space.
A function from one topological space to another is continuous if the preimage

of every open set is open. This is derived from the familiar notion of continuity in
calculus. A homeomorphism between two topological spaces is a bijective function
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Fig. 8.1 Left the cylinder. Right the Möbius strip

f : X ≤ Y such that f and f −1 are both continuous. If such a function exists,
then X and Y are said to be homeomorphic, or topologically equivalent, or they have
the same topology type, and this is denoted by writing X ∞ Y. An embedding is a
function g : X ≤ Ywhose restriction to the image, g(X) ∀ Y, is a homeomorphism.
For example, the open disk is homeomorphic to the plane. To prove this, we introduce
S

1 = {x ≥ R
2 | √x√ = 1} and note that B2 − S

1 is the prototypical open disk. The
function f : B2 − S

1 ≤ R
2 defined by f (x) = x

1−√x√ is bijective and bicontinuous

implying that B2 − S
1 ∞ R

2. While f is a homeomorphism between the open disk
and the plane, the identity defined by g(x) = x is an embedding of the open disk in
the plane.

The basic question in topology is to classify spaces up to topology type. For
example, most coffee cups have the same type as the solid torus, which is a ball with
a handle. However, this is a difficult undertaking in general, with known answers
restricted to very limited situations.

8.2 2-Manifolds

Perhaps the best known family for which a complete classification into topological
types is known are the compact surfaces. We define a 2-manifold (without boundary)
as a topological space X for which every point x ≥ X has an open neighborhood
homeomorphic to R

2. As mentioned earlier, this is equivalent to saying that x has
an open disk neighborhood. If the 2-manifold is connected and compact, then we
sometimes call it a compact surface. Similarly, a 2-manifold with (possibly empty)
boundary is a topological space Y for which every point y ≥ Y has a neighborhood
homeomorphic to R

2 or to H
2 = {x = (x1, x2) | x1 ∩ 0}. The boundary of a

2-manifold with boundary is necessarily a 1-manifold, that is: a collection of closed
curves. For example, the cylinder is a 2-manifold with boundary, and its boundary
consists of two closed curves. As illustrated in Fig. 8.1, it can be constructed from a
square by gluing the left edge to the right edge.
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Fig. 8.2 From left to right: the torus, the Klein bottle, the projective plane, and the sphere

If we glue the same two edges with reversed orientation, as shown in Fig. 8.1 on
the right, then we get the Möbius strip. In contrast to the cylinder, it is non-orientable,
by which we mean that it is not possible to assign an unambiguous orientation (cw
or ccw) to every point. Indeed, we can walk from a point x—standing on one side
of the Möbius strip—to the same point x—standing on the other side of surface. A
cw orientation observed at the first visit appears as a ccw orientation at the second
visit. This implies that the surface has really only one side, and the two sides make
sense only locally.

We can also glue the top to the bottom edge so that all boundary is removed and
we get a compact surface. Doing this the obvious way, as shown in Fig. 8.2 on the
left, we get the torus, and with one reversed orientation, as in the second picture,
we get the Klein bottle. If we reverse the direction for both pairs of glued edges,
as in the third picture, we get the projective plane. Finally, if we glue the top edge
to the left, and the bottom edge to the right, as in Fig. 8.2 on the right, we get the
sphere. The torus and the sphere can be embedded in R

3, so we are quite familiar
with their curved appearance, but the Klein bottle and the projective plane cannot,
which is perhaps the reason why they are more difficult to imagine. The projective
plane seems most difficult to imagine of all, so we offer an alternative construction.
Starting with the sphere, S2 = {x ≥ R

3 | √x√ = 1}, we call points x and −x
antipodal. Gluing the antipodal points in pairs gives the projective plane. This recipe
glues the northern hemisphere to the southern hemisphere, and it glues the equator
to itself, like wrapping a hair-band twice around a pony-tail.

8.3 Classification of Compact Surfaces

We use the Euler characteristic and the orientability of a surface for classification. To
define the former, we decompose the surface into triangles, making sure that any two
meet in a shared edge, or a shared vertex, or not at all. Then we compute the Euler
characteristic as the alternating sum of simplices: number of vertices minus number
of edges plus number of triangles. The four triangulations shown in Fig. 8.3 all have
27 edges and 18 triangles, but they differ in the number of vertices, which from left
to right is 9, 9, 10, 11. It follows that χ = 0, 0, 1, 2 for the torus, the Klein bottle,
the projective plane, and the sphere. Remembering that the torus and the sphere are
orientable, and the Klein bottle and the projective plane are not, we use these two
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Fig. 8.3 From left to right: triangulations of the torus, the Klein bottle, the projective plane, and
the sphere. Only one copy of each vertex and one copy of each edge is shown

Fig. 8.4 The double torus obtained by forming the connected sum of two tori

pieces of information to tell the four surfaces apart. As observed about a century ago
in [1, 2], the method extends to all compact surfaces. It is worth mentioning that
such a classification is out of reach for 4-manifolds since it is undecidable whether
two triangulated 4-manifolds are homeomorphic [3]. To explain this extension, we
write T

2 for the torus, K2 for the Klein bottle, P2 for the projective plane, and S
2

for the sphere. Assuming triangulations, we can form the connected sum of two by
removing a triangle in each and gluing their boundaries to each other; see Fig. 8.4.

Denoting this operation by #, we observe that forming the connected sum with S
2

does not change the topological type. However, forming the connected sum with any
of the other three surfaces does change the type. In all three cases, it changes the Euler
characteristic, and if we start with an orientable surface and form the connected sum
with the projective plane or the Klein bottle, it changes the surface from orientable
to non-orientable. Define

Tn = T
2#T2# . . . #T2, (8.1)

Pn = P
2#P2# . . . #P2 (8.2)

by iterating the connected sum n − 1 ∩ 0 times each. The Euler characteristic of
the resulting spaces is χ(Tn) = 2 − 2n and χ(Pn) = 2 − n. Note that all Tn are
orientable and all Pn are non-orientable.

Classification Theorem Two connected, compact 2-manifolds (without bound-
ary) are homeomorphic iff they have the same Euler characteristic and they are both
orientable or both non-orientable.

This result amounts to saying that the sphere together with the two infinite families
defined in (8.1) and (8.2) exhaust all compact surfaces. Note that it also says that
K

2 ∞ P
2#P2.
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8.4 Simplicial Complexes

We are now more formal about the decompositions of surfaces into triangles. This is
also a good moment to drop the restriction to two dimensions. A set of k + 1 points,
u0, u1, . . . , uk , is affinely independent if the k vectors, u1 −u0, u2 −u0, . . . , uk −u0,
are linearly independent. A k-simplex is the convex hull of k +1 affinely independent
points. Writing σ for the k-simplex, we call k = dim σ its dimension, and u0 to uk its
vertices. Simplices of dimension 0, 1, 2, 3 are usually referred to as vertices, edges,
triangles, tetrahedra. A face of σ is a simplex spanned by a subset of the vertices of
σ. Since a set of k + 1 elements has

(k+1
α+1

)
subsets of size α + 1, σ has this number

of α-faces, for 0 ◦ α ◦ k. The total number of faces is therefore

k∑

α=0

(
k + 1

α + 1

)
= 2k+1 − 1, (8.3)

the number of subsets minus 1 because we do not count the empty set. Sometimes it
is convenient to call ⊆ a face of σ, namely the unique (−1)-face, but we will refrain
from this practice. When we triangulate a surface, we choose the triangles such that
they have only proper intersections. Similarly, we define a simplicial complex as a
finite collection of simplices, K , such that

(i) for every simplex σ ≥ K , every face of σ is in K ;
(ii) for every two simplices σ, τ ≥ K , the intersection, σ ⇒ τ , is either empty or a

face of both simplices.

If the intersection of two simplices is a common face, then (i) implies that it is
a simplex in K . The dimension of K is the largest dimension of any simplex in
K . A subcomplex is a subset of the simplices that is itself a simplicial complex.
The Euler characteristic of K is the alternating sum of simplex numbers: χ(K ) =
s0 − s1 + s2 − . . . ± sk , where k is the dimension of K and si is the number of
i-simplices, for 0 ◦ i ◦ k.

8.5 Triangulations

Until now, we have avoided any mention of the space in which the simplicial complex
lives. Clearly, k + 1 points in R

d can be affinely independent only if k ◦ d. Suppose
K is a simplicial complex in R

d . The underlying space of K is the union of the
simplices,

|| K || =
⋃

σ≥K

σ, (8.4)
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Fig. 8.5 Triangulation of the
sphere. Each triangle of the
octahedron projects centrally
to a spherical triangle that
covers an eighth of the sphere

together with the topology inherited from the Euclidean topology of Rd . We recall
that this means that the open sets in || K || are the intersections of the open sets in R

d

with the underlying space. Note that the underlying space is a set of points, while
the simplicial complex is a set of simplices. Sometimes, this difference is important
but more often than not, it is convenient to ignore it. A triangulation of a space X is
a simplicial complex, K , whose underlying space is homeomorphic to X.

Many times we talk about a topological space, we do so in reference to a trian-
gulation of the space. It therefore pays off to elaborate on the concept by showing a
few examples of spaces and triangulations. The simplicial complexes consisting of
18 triangles and their edges and vertices depicted in Fig. 8.3 are triangulations of the
torus, the Klein bottle, the projective plane, and the sphere. We note a few pitfalls that
need to be avoided when constructing a triangulation. For example, the triangulation
of the square used for the torus on the left does not work for the sphere, because the
identification of boundary edges would render some of the diagonal edges invalid,
namely the ones for which the endpoints are the same. Similarly, the identification
would render some edges the same, which is not allowed since the simplicial complex
is a set and not a multi-set. Another popular method for constructing a triangulation
is by projection. Take for example any convex polytope in R

3 whose faces are all
triangles, such as the octahedron. Fixing a point in the interior of the polytope as the
origin, the central projection from the boundary of the polytope to the sphere is a
homeomorphism; see Fig. 8.5.
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Chapter 9
Homology Groups

Given a topological space, its homology is a formal, algebraic way to talk about its
connectivity. Better known than the homology groups are their ranks, which are the
Betti numbers of the space. In contrast to most other topological formalisms that
capture connectivity, homology groups have fast algorithms.

9.1 Little Creatures

We motivate the sequence definitions needed to construct homology groups with a
simple example: the 2-dimensional torus. Embedding it in R

3, it looks like a tire
filled with air; see Fig. 9.1. Imagine the torus finely triangulated, too fine to show
the vertices and edges. There is a large population of little creatures that explore
the surfacethrough traveling. After some time, they all deliver a report describing in
great detail the traveled path. Some never get back to where they started, and we find
their reports not very useful in determining anything about the global connectivity
of the surface. Many return to their original position, and from each we get a closed
path as the record of the trip. There is a large number of records, some similar and
some different. To bring order into the collection, we first select the closed paths that
surround a piece of real estate. A closed path that does not fall into this category has the
property that the real estate on its left is mysteriously connected to the real estate on
its right. To find out, we consult the open path records we have prematurely labeled
as useless for our exploration. But there are too many closed paths in the second
category, so we further simplify by grouping closed paths that together surround a
piece of real estate.

After this elaborate classification effort, we get the closed paths separated into four
categories. In the first, all paths surround real estate, and in each of the other three,
every pair of closed paths surrounds real estate. Strangely, there is also a relationship
between the latter three categories: picking one closed path from each, the triplet
again surrounds real estate, as shown in Fig. 9.1.
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Fig. 9.1 The torus embedded in R
3. Of the six paths, one surrounds real estate by itself, two form

a pair with a ring-shaped piece of real estate between them, and three collaborate to surround a
complicated piece of real estate that reaches all the way around the torus

(0,0,1)

(0,1,0)

(1,0,0)

Fig. 9.2 Vector space interpretation of the chain group

9.2 Chain Groups

To formalize the exploration effort, we now sort the records into an algebraic struc-
ture. First, we specify what exactly these records are. Assuming a simplicial complex,
K , a p-chain is a subset of the p-simplices in K . To relate this concept to our moti-
vating example, we set p = 1, but we no longer insist that a chain is connected.
Indeed, we can think of a chain as the travel record of a team of little creatures.
This is useful because we may want to combine teams and their records to form new
records. Formally, the sum of two p-chains is the symmetric difference between the
two sets of p-simplices, which is again a p-chain. We write (Cp,+) for the thus
constructed group of p-chains, or usually just Cp.

Before we continue, we point out that Cp may be large but it has the simple
structure of a vector space. This vector space is generated by the sp p-simplices in
K , which we draw as the unit coordinate vectors of this sp-dimensional space. Each
coordinate takes only two values: 0 or 1, so the vector space consists of the vertices
of the sp-dimensional unit cube; see Fig. 9.2.
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9.3 Chain Complex

To prepare the next step, we define the boundary of a p-simplex as the set of (p −1)-
faces. There are p+1 of them. The boundary of a p-chain is the sum of the boundaries
of its p-simplices: ∂pc = ∑

σ≥c ∂pσ. Note that the boundary is a (p − 1)-chain.
Hence, we can formalize this operation as a map between vector spaces:

∂p : Cp √ Cp−1, (9.1)

called the p-th boundary map or boundary homomorphism. Indeed, it has the property
of a homomorphism, namely that the map commutes with the group operation: ∂p(c+
c◦) = ∂pc+∂pc◦. If we now line up the groups and the maps, we get the chain complex
of K :

. . .
∂p+2−√ Cp+1

∂p+1−√ Cp
∂p−√ Cp−1

∂p−1−√ . . . . (9.2)

Only the groups of dimension 0 ≤ p ≤ dim K are non-trivial, but it is convenient to
add trivial groups at both ends so we do not have to worry about where the line ends.
Doing so requires that the entire group of 0-chains maps to 0, but this makes sense
because the boundary of a vertex is empty in any case. Similarly, we will usually
drop the index and not distinguish between maps in different dimensions.

Note that for p ∞ 2, every (p − 2)-face of a p-simplex, σ, belongs to exactly
two (p − 1)-faces. Hence, ∂∂σ = 0, and this also holds for p < 2. It follows that
applying the boundary map twice to a chain gives 0. This may be obvious but it is
important so we state it explicitly.

Fundamental Lemma ∂∂c = 0.

9.4 Cycles and Boundaries

Next, we focus on chains that close up, like the closed paths traveled by our little
creatures. A p-cycle is a p-chain whose boundary is empty. Since the boundary
map commutes with the group operation, the sum of two cycles is again a cycle:
∂(z + z◦) = ∂z + ∂z◦ = 0. We use this as a reminder that a cycle does not need to
be connected, and its components may cross one another. The p-cycles thus form
a subgroup of the p-chains, denoted as Zp, for every dimension p. Recall that the
kernel of a map is everything in the domain that maps to 0, so Zp = ker ∂p; see
Fig. 9.3. Recall that for p = 0, the entire chain group maps to zero. This implies
Z0 = ker ∂0 = C0.

A special type of cycle is obtained by taking the boundary of a higher-dimensional
chain. A p-boundary is the boundary of a (p + 1)-chain: b = ∂p+1c, and since
∂b = ∂∂c = 0, the p-boundary is indeed a p-cycle. Similarly, if b◦ = ∂p+1c◦ then
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∂p+1 ∂p

0

Bp+1

Zp+1

Cp+1

0

Bp

Zp

Cp

0

Bp−1

Zp−1

Cp−1

Fig. 9.3 Three consecutive groups in the chain complex. The cycle and boundary subgroups are
shown as kernels and images of the boundary maps

B1

z + B1y + B1

z + y + B1

Fig. 9.4 Partition of the first cycle group of the torus into homology classes

b + b◦ = ∂p+1(c + c◦), so the sum of two p-boundaries is again a p-boundary.
In other words, the p-boundaries form a subgroup of the p-cycles, as indicated in
Fig. 9.3. We denote this subgroup by Bp. Recall that the image of a map consists of
all elements in the range reached by elements in the domain. Hence, Bp = im ∂p+1.

9.5 Homology

The boundary group collects all records that—in the language of our motivational
example—surround real estate. We still have to categorize the cycles that do not
bound. The idea is to not distinguish between two such cycles if they differ only by
a boundary. In other words, we say z, z◦ ≥ Zp are equivalent if there exists b ≥ Bp

such that z = z◦ + b. Since this implies the existence of c ≥ Cp+1 with ∂c = b, we
conclude that z − z◦ = z + z◦ is the boundary of a (p + 1)-chain. In this case, we
write z ∀ z◦ and say that z and z◦ are homologous.

We can now categorize the cycles into equivalence classes, called homology
classes; see Fig. 9.4. One such class is Bp, another is z + Bp, where z is a p-cycle
not in Bp. Note that z◦ ≥ z + Bp iff z and z◦ are homologous. Hence, z ≥ z◦ + Bp, so
it really does not matter whether we use z or z◦ to represent the class. The homology
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classes that partition Zp are the elements of the p-th homology group, and we write
Hp = Zp/Bp, where taking the quotient is the algebraic way of saying that we
partition into equivalence classes. Homology classes can also be added, simply by
choosing representatives and adding them: (z + Bp) + (y + Bp) = (z + y) + Bp.
Indeed, if z◦ and y◦ are different representatives of the same classes, then z◦ = z + b1
and y◦ = y + b2, and therefore

(z◦ + y◦) + Bp = (z + y + b1 + b2) + Bp (9.3)

= (z + y) + Bp. (9.4)

In other words, Hp together with the addition operation forms again a group, and in
the particular case in which we add chains by taking the symmetric difference, it is
a vector space. The rank of the p-th homology group is called the p-th Betti number
of K : βp = rank Hp. Recall that the elements in Hp are classes of size 2r , where
r = rank Bp. Since the classes partition Zp, we have

2rank Zp = 2rank Bp · 2rank Hp , (9.5)

and therefore βp = rank Zp − rank Bp. This rank is a measure of the difference
between the p-th cycle group and the p-th boundary group.

9.6 Euler-Poincaré Formula

Recall that the Euler characteristic of the simplicial complex is χ = s0 − s1 + s2 −
· · ·±sk , where k = dim K . Recall also that sp = rank Cp. We may partition the chain
group by calling two chains equivalent if they differ by a cycle. The resulting quotient
is known as the coimage of the map: coi ∂p = Cp/Zp. All chains in an equivalence
class map to the same (p − 1)-boundary, which implies rank coi ∂p = rank Bp−1
and therefore rank Cp = rank Zp + rank Bp−1. We use this equation to rewrite the
Euler characteristic:

χ =
k∑

p=0

(−1)p (
rank Zp + rank Bp−1

)
(9.6)

=
k∑

p=0

(−1)p (
rank Zp − rank Bp

)
(9.7)

=
k∑

p=0

(−1)pβp. (9.8)
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In words, the Euler characteristic is equal to the alternating sum of Betti numbers.
This result is known as the Euler-Poincaré Formula. It was established by Henri
Poincaré, who thus achieved a vast generalization of Euler’s relation, which was
originally perceived for convex polytopes in R

3. See [1] for a discussion of the
mathematical effort that culminated in Poincaré’s proof.

It is important to note that the Betti numbers do not depend on the triangulation
but only on the triangulated space. While this is not obvious, it is true and justifies
the practice to speak of the Betti numbers of the space and the Euler characteristic of
the space, rather than of the triangulation. Similarly, we can talk about the homology
groups of the space. However, here we need to mention that the groups depend
on the triangulation; after all, the simplices are the elements of the cycles, which
are the elements of the classes. Nonetheless, the homology groups of two different
triangulations, K and L , of the same space are isomorphic to each other: Hp(K ) ∩
Hp(L). By this we mean that there is a bijection between the classes that commutes
with the group operations.

9.7 Some Computations

To comprehend the meaning of the Betti numbers, it is helpful to know what they
are for a few spaces we understand. We begin with a general statement about the
meaning of the zeroth Betti number.

Claim A β0 is the number of connected components.

Proof Recall that H0 = Z0/B0 and assume first that there is only one component.
Every set of vertices is a cycle, hence the size of Z0 is 2s0 . Every even number of
vertices is a boundary, and every odd set is not, which implies that the size of B0 is
2s0−1. Finally, β0 = s0 − (s0 −1) = 1, as claimed. The argument for j > 1 the cycle
group. The size of the cycle group is still 2s0 . For a set of vertices to be a boundary,
it needs to have an even number of vertices in each component. Writing ni for the
number of vertices in the i-th component, the number of boundaries is therefore

2n1−1 · 2n2−1 · · · · · 2n j −1 = 2s0− j . (9.9)

The rank of the zeroth homology group is therefore β0 = s0 − (s0 − j) = j , as
claimed. �

Next, we consider two special spaces.

Claim B The non-zero Betti numbers of the torus and the Klein bottle are β0 = 1,
β1 = 2, and β2 = 1.

The proof is not very difficult, in particular for p = 0, 2. For p = 1, we use the
help of our little creatures, and we put them to work on the Klein bottle for which
they generate the same result. Claim B illustrates the limitations of the discrimina-
tive power of homology groups. In particular, using modulo 2 arithmetic, homology
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cannot distinguish between the torus and the Klein bottle. This is not necessarily a
drawback. However, it is worth mentioning that the standard coefficients for homol-
ogy are integers, and with them the first homology groups are different: isomorphic
to Z ⊆ Z for the torus and to Z ⊆ Z2 for the Klein bottle. We chose Z

2 coefficients
for two reasons: they simplify the exposition by not requiring the simplices to be ori-
ented, and they have homology groups that are vector spaces, which will be important
when we discuss persistent homology groups.

Reference

1. Lakatos I (1976) Proofs and refutations: the logic of mathematical discovery. Cambridge Uni-
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Chapter 10
Complex Construction

There are not many ways to automatically construct interesting topological spaces,
and by ‘interesting’ we mean spaces that go beyond the designed ones, such as the
ball, and the sphere. Taking the nerve of a collection of sets is one such method, and
we have seen examples: the Delaunay triangulation and the alpha complex. There, we
did not have to worry about the embedding in Euclidean space, but in general we do.

10.1 Abstract Simplicial Complexes

It is often convenient to talk about a simplicial complex abstractly, without reference
to its realization in a Euclidean space. Suppose we have a finite collection of elements,
which can be anything but we call them vertices. An abstract simplicial complex is
a system of subcollection, A, such that α ≥ A and β √ α imply β ≥ A. This
is the abstract equivalent of Condition (i) for simplicial complexes. There is no
abstract equivalent of Condition (ii). The sets α are called abstract simplices. The
dimension of an abstract simplex is one less than its cardinality, and the dimension
of A is the maximum dimension of any of its abstract simplices. We can draw A in
Euclidean space by mapping each vertex to a point in R

d , and mapping each abstract
k-simplex to the convex hull of the k+1 corresponding points. If this drawing satisfies
Conditions (i) and (ii) of a simplicial complex, then we call it a geometric realization
of A. For example, a 1-dimensional abstract simplicial complex is a graph, and a
geometric realization is a straight-line embedding of the graph. Given an abstract
simplicial complex, we ask whether it has a geometric realization in R

d . The answer
is in the affirmative if d is large enough.

Geometric Realization Theorem Any abstract simplicial complex of dimension k
has a geometric realization in R

2k+1.

For k = 1, the theorem says that every graph can be geometrically realized in R
3.

Indeed, if we place the vertices in general position, with no four points lie on a
common plane, then no two edges can cross. Sometimes, 2k + 1 is best possible.

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 73
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Fig. 10.1 With time, the
homotopy moves f (x) to
g(x). The half-way function,
1
2 f + 1

2 g, shrinks the annulus
to half its width

f (x) = x

g(x) = x
x

For example, the graph with 5 vertices and all 10 edges cannot be drawn without
crossing in R

2. Hence, 2k +1 = 3 dimensions are necessary to geometrically realize
this graph. A generalization of this example to a k-dimensional abstract simplicial
complex that has no geometric realization in R

2k can be found in [1].

10.2 Homotopy

We may compare two spaces by deforming one to the other, without gluing or cutting.
We begin with deforming maps. Let f, g : X ◦ Y be continuous maps from one
topological spaces to another. A homotopy between f and g is a continuous map
H : X × [0, 1] ◦ Y for which H(x, 0) = f (x) and H(x, 1) = g(x) for all x ≥ X.
The two functions are homotopic if a homotopy exists. It is reasonable to think of the
second variable as time, going from 0 to 1, and to consider the 1-parameter family
of functions ft : X ◦ Y defined by ft (x) = H(x, t), which interpolates between
f0 = f and f1 = g.

As example, we consider two functions from the annulus to itself. Let X =
{x ≥ R

2 | 1 ≤ ∞x∞ ≤ 3}, and define f, g : X ◦ X by setting f (x) = x and
g(x) = x/∞x∞; see Fig. 10.1. To show that f and g are homotopic, we construct
H : X × [0, 1] ◦ X by setting

H(x, t) = (1 − t) f (x) + tg(x). (10.1)

We have f0 = f and f1 = g by construction. It is also clear that H is well defined,
and that it is continuous.
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10.3 Homotopy Equivalence

To compare two spaces, we construct two homotopies, both involving the identity
map. Specifically, X and Y are homotopy equivalent if there exist continuous func-
tions a : X ◦ Y and b : Y ◦ X such that b ∀ a is homotopic to idX : X ◦ X and
a ∀ b is homotopic to idY : Y ◦ Y. In this case, we also say that X and Y have the
same homotopy type, and we write X ∩ Y. We already did most of the work to show
that the annulus, X, has the same homotopy type as the circle, Y = S

1. Let a map the
point x ≥ X to the point a(x) = x/∞x∞ in Y, and let b be the canonical embedding
of the circle in the annulus, that is: b(y) = y ≥ X. We proved earlier that g = b ∀ a
and idX are homotopic. To see the other direction, we note that f = a ∀ b is the
identity on the circle: f = idY, which is stronger than f and idY being homotopic.
It follows that the annulus has the homotopy type of the circle. Even simpler than
the circle is the point, and a space that has the homotopy type of the point is said to
be contractible. For example, the disk is contractible, and so is every tree.

We note that being homotopy equivalent is weaker than being homeomorphic.
Indeed, the annulus and the circle have the same homotopy type but not the same
topology type. The two notions are different because the former permits a local
change of dimension while the latter does not. On the other hand, having isomorphic
homology groups is yet weaker than having the same homotopy type:

X ⊆ Y =⇒ X ∩ Y =⇒ Hp(X) ∩ Hp(Y), (10.2)

for all dimensions p. To compute the Betti numbers of X, we may therefore find a
homotopy equivalent space Y and compute its Betti numbers.

10.4 Nerves

We are now ready to introduce the announced construction of simplicial complexes
from arbitrary collections of sets. We prefer finite, so let X be a finite collection of
sets. The nerve of X is the system of subcollections of X whose sets have a non-empty
common intersection:

Nrv X =
{
∪ �= V √ X |

⋂
V �= ∪

}
. (10.3)

Here, we use a short-form for taking the intersection of all sets in a collection:⋂
V = ⋂

v≥V v. We note that the nerve is an abstract simplicial complex because
V ≥ Nrv X and U √ V implies U ≥ Nrv X . To make this more clear, we call the
singleton sets in the nerve abstract vertices, the pairs abstract edges, etc.

As mentioned earlier, the Delaunay triangulation of a point set is the nerve of the
collection of Voronoi regions. More precisely, the Delaunay triangulation is the geo-
metric realization of the nerve obtained by mapping each Voronoi region to the point
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Fig. 10.2 Two contractible
regions whose union is a
disk with two holes. The
nerve consists of two vertices
connected by an edge, which
has a different homotopy type

that generates the region. Here it is important that the points are in general position,
else the dimension of the nerve can be higher than that of the ambient Euclidean
space. A geometric realization in this space would then be impossible. However,
we can always go to higher-dimensional Euclidean spaces to construct geometric
realizations. Independent of the realization, the nerve has the same homotopy type
as the union.

Nerve Theorem If all sets in X are closed and triangulable, and all non-empty
common intersections of the sets are contractible, then Nrv X and

⋃
X have the

same homotopy type.

If all sets in X are convex, then their non-empty common intersections are convex
and therefore contractible. This is the situation for restricted Voronoi regions, so
the Nerve Theorem implies that the alpha complex has the same homotopy type as
the union of balls it represents. It follows that it has isomorphic homology groups
and therefore the same Betti numbers. If the sets are not convex then be aware
that the contractibility of the sets themselves is not sufficient to conclude homotopy
equivalence. To get an example, it suffices to have two contractible regions overlap
in multiple locations, as in Fig. 10.2. We note that the example is similar to Fig. 3.2,
which shows two regions in an Apollonius diagram.

10.5 Čech Complexes

Suppose we simplify the construction of the alpha complex by intersecting the disks
directly, without first restricting them to the corresponding Voronoi regions. To
describe this more formally, let S be a finite set of points in R

2, let r ≥ 0 be a
real number, and write Ds(r) for the disk with center s and radius r , as before. The
Čech complex is isomorphic to the nerve of the disks:

Čech(r) = {∪ �= T √ S |
⋂

s≥T

Ds(r) �= ∪}. (10.4)

http://dx.doi.org/10.1007/978-3-319-05957-0_3
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Fig. 10.3 The Vietoris-Rips
complex of six points equally
spaced on the unit circle and
a parameter

√
3/2 < r < 1.

It consists of eight triangles
connected like the faces of an
octahedron

Even if the points are in general position, the radius may be large enough so that the
complex has dimension larger than 2. For this to happen, it suffices that four disks
have a non-empty common intersection, such as in Fig. 7.2. Nevertheless, the Nerve
Theorem implies that the Čech complex has the same homotopy type as the union
of disks. Similarly, the Nerve Theorem implies that the alpha complex for radius
r , denoted as A(r), has the same homotopy type as the union of disks. Since
homotopy equivalence is transitive—every equivalence relation is—this implies
|| A(r) || ∩ || Čech(r) ||. Note also that A(r) is isomorphic to a subcomplex of Čech(r),
simply because the restricted disks are subsets of the unrestricted disks.

It might be interesting to study the structure of the extra simplices in the Čech
complex. How does it relate to the substitution method that reduces a long Pie formula
to a short Pie formula; see Chap. 7.

10.6 Vietoris-Rips Complexes

To construct the Čech complex, we need to test whether a collection of disks has a
non-empty intersection, which can be difficult or, in some metric spaces, impossible.
We now define a complex that needs only the distances between the points in S for
its construction. Letting r ≥ 0 be a real number, the Vietoris-Rips complex of S and
r , denoted as Vietoris-Rips(r), consists of all abstract simplices in 2S whose vertices
are at most a distance 2r from one another. In other words, we connect any two
vertices at distance at most 2r from each other by an edge, and we add a triangle or
higher-dimensional simplex to the complex if all its edges are in the complex; see
Fig. 10.3.

While the Vietoris-Rips complex is easy to construct, it generally does not have the
homotopy type of the union of disks of radius r . Indeed, for the 6 points in Fig. 10.3,
the disks with radius r form an annulus, which has β0 = β1 = 1 and βp = 0 for
all p �= 0, 1. In contrast, the Vietoris-Rips complex triangulates a 2-sphere, which
has β0 = β2 = 1 and β1 = 0. This example suggests that Vietoris-Rips complexes
can have topological artifacts that do not show up in the data. While this is true, the
artifacts are limited.

http://dx.doi.org/10.1007/978-3-319-05957-0_7
http://dx.doi.org/10.1007/978-3-319-05957-0_7
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Vietoris-Rips Lemma Let S be a finite set inR2. Then Ĉech(r) √ V ietoris-Rips(r)

√ Čech(r’), where r ′ is 2
√

3
3 = 1.154 . . . times r .

Proof The first containment is obvious because Čech(r) and Vietoris-Rips(r) have
the same edges. For the second containment, we note that the equilateral triangle

with edges of length 2r has a circumcircle of radius r ′ = 2
√

3r
3 . If three points lin

on this circle, then their disks of radius r ′ have a non-empty common intersection,
so the triangle belongs to Čech(r ′). The longest of the three edges connecting the
points has length at least 2r , implying that all triangles in Vietoris-Rips(r) have a
circumcircle of radius at most r ′. This implies the second claimed containment. �

Reference
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Part III
Homology

Exercises

Question 1. (20 ¼ 10þ 10 points). Recall the conditions (i) and (ii) in the
definition of a simplicial complex.

(a) Give a small collection of simplices that violates (i) but not (ii).
(b) Give a small collection of simplices that violates (ii) but not (i).

Question 2. (20 ¼ 10þ 10 points). Let K be a triangulation of a compact surface,
and let L be another triangulation obtained by refining K. In other words, each
simplex in L is contained in a simplex in K.

(a) Determine the Euler characteristic of a simplicial complex that triangulates
B

2.
(b) Use the result in (a) to prove that K and L have the same Euler characteristic.

Question 3. (20 ¼ 10þ 10 points). Consider the one-dimensional simplicial
complex with vertices A, B, C, D, E and edges AB, AC, AD, BE, CE, DE.

(a) What are the ranks of C1;Z1 and B0?
(b) How many 1-chains have the same boundary? In other words, how many

elements of C1 map to the same element in B0?

Question 4. (20 ¼ 10þ 10 points). Recall the four 2-manifolds depicted in Figs.
9.2 and 9.3.

(a) What are the Betti numbers of the projective plane?
(b) What are the Betti numbers of the double torus, T2 ¼ T

2#T
2?

http://dx.doi.org/10.1007/978-3-319-05957-0_9
http://dx.doi.org/10.1007/978-3-319-05957-0_9


Question 5. (20 ¼ 7þ 7þ 6 points). Let A2
n be a two-dimensional abstract

simplicial complex with n vertices and
n
3

� �
triangles. Determine the largest value

of n such that A2
n has a geometric realization

(a) in R
2;

(b) in R
3;

(c) in R
5.

Question 6. (20 ¼ 6þ 7þ 7 points). Let A be an abstract simplicial complex, and
v, w vertices not in A. The suspension of A consists of all simplices of A together with
{v}, {w}, and all simplices of the form a [ fvg and a [ fwg; for a 2 A.

(a) Verify that the suspension of A is an abstract simplicial complex.
(b) Describe the space triangulated by the suspension of S1.
(c) What are the Betti numbers of the suspension of the letter B?
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Part IV
Persistence

Persistent homology addresses a major weakness of homology, namely its
instability under small changes. Reconstructing a tire by scanning its surface and
connecting the millions of points into a triangulation, we expect a torus, but if we
miss only one percent of one percent of the triangles, the first Betti number will be
in the hundreds rather than equal to two. The theory of persistence is inspired by
Morse theory and related to spectral sequences, both topics studied in topology. It
adds a quantitative component to the Betti numbers that is stable under
perturbations. Perhaps most importantly, it captures the various scales under
which a dataset can be interpreted in one consistent formalism.



Chapter 11
Filtrations

Complicated shapes and data sets—in particular those that occur in nature—have
different appearance depending on the resolution of the observation. Accordingly,
persistence measures holes in terms of the range of scales at which they appear [1].
To begin, we need a representation of the data at different scale levels.

11.1 Alpha Complex Filtration

A filtration is an increasing sequence of topological spaces, each contained in the
next. An example is the filtration already introduced in Chap. 5. Let S be a finite
set of points in general position in R

3, perhaps the centers of the atoms making up
the Gramicidin protein, and write K for its Delaunay triangulation. We recall the
basic steps in the construction of the filtration of alpha complexes, four of which are
displayed in Fig. 11.1. For each simplex α ∈ K , there is a real number σα such that
α belongs to the σ-complex of S iff σα ≤ σ. We index the n = s0 + s1 + s2 + s3
simplices such that σα1 ≤ σα2 ≤ · · · ≤ σαn , calling the corresponding sequence
of simplices a filter if every simplex is preceded by its faces. To achieve this for
the Delaunay triangulation, we only need to make sure that ties in the ordering are
broken such that lower-dimensional simplices precede higher-dimensional simplices.
Assuming a filter, we let K j be the collection of the first j simplices, noting that it
is a simplicial complex for every j . The increasing sequence of complexes,

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K (11.1)

is called a flat filtration because any two contiguous complexes differ by only one
simplex. Every σ-complex belongs to the flat filtration, but not every complex in
(11.1) is an σ-complex. In other words, the alpha complex filtration is a subsequence
of (11.1) and it is generally not flat.

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 83
SpringerBriefs in Mathematical Methods, DOI: 10.1007/978-3-319-05957-0_11,
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Fig. 11.1 Four alpha complexes of the Gramicidin protein. It functions as an ion channel embedded
in a cell membrane

11.2 Incremental Algorithm

Since consecutive complexes in (11.1) are very similar, it is not surprising that it is
easy to compute the Betti numbers of K j+1 if we know the Betti numbers of K j .
Indeed, there is only one additional simplex, α j+1, and we just need to determine how
the addition of that simplex affects the connectivity of K j . Starting with the empty
complex, we compute the Betti numbers by adding one simplex at a time. Since our
complexes are geometrically realized in R

3, only the first three Betti numbers are
possibly non-zero.

β0 = β1 = β2 = 0;
for j = 0 to n − 1 do

p = dim α j+1;
if α j+1 ∈ z ∈ Zp(K j+1) then βp = βp + 1

else βp−1 = βp−1 − 1
endif

endfor.

In the original publication [2], this algorithm was used for flat filtrations inR3, where
p-simplices that belong to p-cycles can be recognized in almost constant time. More
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Fig. 11.2 Part of the interface to the alpha shape software showing log2(β1 + 1) as a function of
the index along the alpha complex filtration of the Gramicidin protein

precisely, the time for a decision is the inverse of Ackermann’s function of n, which
is at most 6 unless n is unimaginably large. The connection is that each decision can
be reduced to a few operations in a union-find data structure; see [3]. This is most
easily seen for p = 1, when α j+1 is an edge. It belongs to a 1-cycle in K j+1 iff its
two endpoints belong to the same component in K j . Storing the components as sets
of vertices, we can decide whether or not this is the case by two find operations.
If the two endpoints belong to different components, we follow up with a union
operation that merges them into one.

11.3 Topological Noise

Having a fast algorithm for computing the Betti numbers of all complexes in a
filtration, we try it out on the points marking the centers of the atoms of the Gramicidin
protein displayed in Fig. 11.1. While we might have expected a single tunnel for a
good fraction of the complexes, we get a few tens of tunnels almost always. The graph
in Fig. 11.2 shows the first Betti number as a function of the index in the filtration.
At the marked position, we have β1(K530) = 34.

It seems daunting to extract the one tunnel that is responsible for the functioning
as an ion channel. The missing information is when a tunnel is born and when it dies.
Adding this information, we produce β1 as a function of the index and the index
persistence, which is defined as the absolute difference between the index at the
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Fig. 11.3 Graph of log2(β1 + 1), the number of persistent tunnels in log-scale for the Gramicidin
protein. The index in the filtration varies from left to right and the persistence from back to front

birth and the index at the death; see Fig. 11.3. We see a single triangular plateau in
the graph of the function that reaches significantly further to the front than anything
else; it corresponds to the channel that passes long-side through the protein.

11.4 Birth and Death

We now address the eternal question of birth and death. The starting point is a
sequence of homomorphisms connecting the homology groups of the complexes in
the filtration. For i ≤ j , Ki is a subcomplex of K j , which can be written as an
injective map f i, j : Ki ↪→ K j . It maps a simplex in Ki to the same simplex in K j ,
which is why it is called the inclusion map. It carries over to an inclusion map on the
p-cycles, f i, j

p : Zp(Ki ) ↪→ Zp(K j ). This in turn induces a map on homology:

ϕ
i, j
p : Hp(Ki ) → Hp(K j ), (11.2)

which generally is not an inclusion map. Specifically, if γ is a class in Hp(Ki ), and

z ∈ Zp(Ki ) is a representative cycle, we let ϕ
i, j
p (γ ) be the class in Hp(K j ) that

contains f i, j
p (z). It should be clear that the definition of ϕ

i, j
p does not depend on the

choice of representative. It takes a p-cycle in Ki and pushes it forward to K j . For

example, if γ surrounds a hole in Ki that fills up at the time we reach K j , then ϕ
i, j
p

maps γ to 0 ∈ Hp(K j ). The image of ϕ
i, j
p is called a persistent homology group.

It contains all p-dimensional homology classes that have representatives already
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γ

Fig. 11.4 The class γ is born at Ki and dies entering K j+1

present in Ki . The corresponding persistent Betti number is the rank of the persistent
homology group. It counts the p-dimensional holes that exist all the way from Ki

to K j . For a particular class, we are interested in the smallest index i and the largest
index j such that the class is non-trivial within the entire interval from Ki to K j . This
motivates the following definitions, which are illustrated in Fig. 11.4. We say a class
γ ∈ Hp(Ki ) is born at Ki if γ is not in the image of ϕ

i−1,i
p , and a class born at Ki dies

entering K j+1 if ϕ
i, j
p (γ ) is not in the image of ϕ

i−1, j
p but ϕ

i, j+1
p (γ ) is in the image

of ϕ
i−1, j+1
p . The index persistence of γ is j − i + 1. In most applications, we have

a function that governs the construction of the filtration, and we call the difference
between the function values at the birth and the death the persistence of the class. In
an alpha complex filtration, this would be the function that maps each simplex, α , to
the threshold, σα , beyond which the simplex belongs to the σ-complex.

11.5 Barcodes

It is time for a concrete example. Consider the construction of the simplicial complex
consisting of a single tetrahedron and its faces, as illustrated in Fig. 11.5. Note the
three Betti numbers given at each stage of the construction. From each stage to the
next, exactly one Betti number changes, and it changes by ±1. This is in agreement
with the incremental algorithm, whose case analysis distinguishes between births
and deaths. The missing piece of information is the pairing of births and deaths,
as provided by the definition of persistent homology groups. We illustrate this by
drawing the 16 events from left to right in Fig. 11.6. Pairing up the births and deaths,
as described, we get a set of intervals or bars, which is called the barcode of the
filtration. Each bar represents a class in one of the homology groups and thus has a
definite dimension. One bar in our example does not end. It represents the component
that is born at the beginning and does not die.
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Fig. 11.5 Constructing a tetrahedron one simplex at a time. The three numbers are β0, β1, β2, in
this sequence. Two homology classes exists during the interval of four highlighted steps
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Fig. 11.6 The barcode of the filtration in Fig. 11.5. Two bars span the shaded interval from i = 9
to j = 12

11.6 Persistence Diagrams

The number of bars tends to get large with more complicated shapes and filtrations.
For these more complicated cases, a representation as points in the plane is more
convenient. For example, we can replace each bar by the top vertex of the right-
angled, isosceles triangle above the bar, as in Fig. 11.7. Usually, we draw all points
in one diagram, labeling them by the dimension of the classes they represent.
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Fig. 11.7 The persistence diagram of the filtration in Fig. 11.5. One point is at infinity, and together
with one other point, it lies inside the V-shaped region defined by i = 9 and j = 12

Given a persistence diagram, we ask how we can read off the Betti numbers of
the complexes in the filtration or, more generally, the persistent Betti numbers of the
images of the maps between the homology groups. We describe how this works for
the more general case. The rank of the image of Hp(Ki ) in Hp(K j ) is the number
of classes that are born at or before Ki and that die entering K j+1 or later. Drawing
the half-open V-shaped region whose lowest point is (i + j, j − i), we can count the
points labeled with dimension p to get the desired rank.
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Chapter 12
PL Functions

Other than from alpha, Čech, and Vietoris-Rips complexes, we get filtrations from
real-valued functions on topological spaces. The computationally most convenient
form are the lower star filtrations of piecewise linear maps, which we introduce in
this section. We will use them to formulate an important property of persistence
diagrams, namely their stability under small perturbations. We begin with standard
material on piecewise linear functions.

12.1 Piecewise Linear Interpolation

Functions on a topological space are conveniently constructed using a triangula-
tion. To explain how this works, we recall that the k-simplex spanned by points
u1, u2, . . . , uk+1 consists of all points x = ⎡k+1

i=1 λi ui , with
⎡k+1

i=1 λi = 1 and
λi ≥ 0 for all i . The λi are the barycentric coordinates of x ; see Fig. 12.1. Suppose
the k-simplex belongs to a simplicial complex, K , with vertices ui , for 1 √ i √ n,
and that we have a function value, f (ui ), for each. To extend these values to the
points x of the k-simplex, we set λi = 0, for k + 2 √ i √ n, and define

f (x) =
n⎣

i=1

λi f (ui ). (12.1)

Doing this for all points x ◦ || K ||, we get a continuous, piecewise linear function
f : || K || ≤ R. We call f a PL function, tacitly assuming that it is linear—and not
just piecewise linear—on each simplex.
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Fig. 12.1 A triangle with 7
of its points labeled by their
barycentric coordinates: the 3
vertices, the midpoints of the
3 edges, and the centroid or
barycenter
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1
2)

(12,
1
2, 0)

(0, 12,
1
2)

(13,
1
3,

1
3)

u2 =(0 , 0, 1)

− − − −

− −

− − −

12.2 Sublevel Sets

For the remainder of this section, we assume that K is a simplicial complex, and
f : || K || ≤ R is a PL function. For convenience, we also assume that the vertices
have distinct function values, so we can sort them as f (u1) < f (u2) < · · · < f (un).
Given a value v ◦ R, the level set, f −1(v), consists of all points x ◦ || K || that map
to that value. Similarly, the sublevel set and the superlevel set are f −1(−∞, v] and
f −1[v,∞). For the time being, we are primarily interested in the sublevel sets, which
form a filtration:

∀ ∩ f −1(−∞, v] ∩ f −1(−∞, w] ∩ || K ||, (12.2)

for any v √ w. It is not difficult to see that the sublevel set can change its homotopy
type only at the function value of a vertex. To unify the different cases of this claim,
we set f (u0) = −∞ and f (un+1) = ∞.

Lemma A Let v,w ◦ R and 0 √ i √ n such that f (ui ) √ v √ w < f (ui+1). Then
the sublevel sets have the same homotopy type: f −1(−∞, v] ⊆ f −1(−∞, w].
We omit the proof, which is similar to that of the next claim.

12.3 Full Subcomplexes

To formulate it, let Ki be the full subcomplex of K that contains the vertices u1 to ui

but not ui+1 to un . The Ki form again a filtration. In contrast to (12.2), the filtration
of the full subcomplexes is finite. Nevertheless, the two are closely related.

Lemma B Let v ◦ R and 0 √ i √ n such that f (ui ) √ v < f (ui+1). Then the full
subcomplex and the sublevel set have the same homotopy type: || Ki || ⊆ f −1(−∞, v].
Proof A good picture says it all. We therefore draw a simplicial complex in the

plane, a sublevel set, and the full subcomplex defined by the vertices in this sublevel
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Fig. 12.2 From inside out: the full subcomplex, the remainder of the sublevel set, and the remainder
of the simplicial complex. The division of the sublevel set into two zones illustrates the deformation
used to prove the homotopy equivalence

set; see Fig. 12.2. The portion of the sublevel set that is not contained in || Ki || can
be partitioned into line segments that connect the boundaries of the two. Writing
X = f −1(−∞, v], we introduce ft : X ≤ X that shrinks each of these line segments
to 1 − t times its original length, namely the piece of this length that contains the
endpoint in || Ki ||. Naturally, the restriction of ft to || Ki || is the identity.

It is now easy to prove that X and || Ki || have the same homotopy type. Set a :
X ≤ || Ki || by defining a(x) = f1(x), for all x ◦ X, and let b : || Ki || ≤ X be the
inclusion map. Then b ⇒ a is homotopic to idX, as shown above, and a ⇒ b is equal
to the identity on || Ki ||. �

The result of Lemma B motivates the following construction. Recall that the star
of a vertex, u, contains all simplices that share u. The lower star of u is the subset
of simplices in the star whose vertices have function values smaller than or equal to
f (u). Since we assumed that all vertices have distinct function values, each simplex
belongs to a unique lower star, namely to that of the vertex with largest function
value. It follows that Ki is the disjoint union of the lower stars of the vertices u1 to
ui , and we can construct Ki+1 by adding the simplices in the lower star of ui+1 to
Ki . This is the reason we call the sequence of the Ki the lower star filtration of f .

12.4 PL 2-Manifolds

For the time being, let us assume that K triangulates a 2-manifold (without boundary).
In this case, the star of a vertex, u, has the topology of an open disk. Recall that the
link of u is the collection of faces of the star that do not belong to the star themselves;
it has the topology of a circle. Similarly, we define the lower link of u as the full
subcomplex of the link whose vertices satisfy f (v) < f (u). In other words, the
lower link contains all simplices in the link whose points all have function value less
than f (u). We call u a regular vertex if the lower link is non-empty and connected.
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Fig. 12.3 From left to right: the lower star and lower link of a regular vertex, a minimum, a 1-fold
saddle, a maximum

x

y y

x

u0

u1
u

Fig. 12.4 Splitting a monkey or 2-fold saddle into two simple saddles

Otherwise, u is a critical vertex, and f (u) is a critical value. Among the critical
vertices, we distinguish between a minimum (the lower link is empty), a maximum
(the lower link is the entire circle), and a k-fold saddle (the lower link has k + 1 ≥ 2
components); see Fig. 12.3.

If u is a k-fold saddle, for k ≥ 2, we can split it into k simple or 1-fold saddles. As
illustrated in Fig. 12.4, we take points x and y in the link such that f (x) < f (u) <

f (y) and at least one component of the lower link lies between x and y. We replace
u by two vertices, u0 and u1, and we connect u0 with the ccw arc from x to y and
u1 with the ccw arc from y to x . The function values at the new vertices are chosen
close to f (u) but slightly different from each other. The result is a j-fold saddle, u0,
and an α-fold saddle, u1, with j + α = k and j, α ≥ 1. Repeating this operation, we
eventually get k simple saddles.

12.5 Alternating Sum

Suppose now that we have split all multiple saddles so that the only critical vertices
are minima, simple saddles, and maxima. With this simplification, we are ready to
follow the lead of traditional Morse theory [1] and define the index of a critical vertex:

ix(u) =
⎤
⎦

⎢

0 if u is a minimum,

1 if u is a simple saddle,
2 if u is a maximum.

(12.3)
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Fig. 12.5 Left the graph of a function on the circle. Right the corresponding persistence diagram,
with the diamonds specifying a neighborhood of the diagram

It is easy to prove that the alternating sum of the critical vertices is the same as the
alternating sum of the Betti numbers, namely the Euler characteristic. Let cp be the
number of critical vertices of index p.

Lemma C χ(K ) = ⎡
p≥0(−1)pcp.

Proof We sort the vertices in the order of increasing function values, and construct K
by adding the lower stars of the vertices in this sequence. Let Ki be the union of the
lower stars of u1 through ui , as before. If ui+1 is a regular vertex, then its lower star
has one vertex, α edges, and α − 1 triangles. Adding this lower star does not change
the Euler characteristic: χ(Ki+1) = χ(Ki ). For the three types of critical vertices,
we have χ(Ki+1) = χ(Ki ) + (−1)ix(ui+1), as required. Indeed, for a minimum we
have just one vertex, for a simple saddle we have one vertex and two more edges than
triangles, and for a maximum we have one vertex and the same number of edges and
triangles. �

We note that the claimed equation is one of the Morse inequalities that relate
the number of critical points of different indices with the Betti numbers of different
dimensions. These inequalities can be found in any textbook on Morse Theory, as
well as in [2].

12.6 Bottleneck Distance

We now return to the concept of persistence and, in particular, to persistence diagrams
and their stability under perturbations. Let f : || K || ≤ R be a PL function and write
F = Dgm( f ) for the persistence diagram of the filtration of sublevel sets. Suppose
we have a second PL function, g : || K || ≤ R, with persistence diagram G =
Dgm(g). We measure the distance between the functions by taking the maximum
difference between function values:

∪ f − g∪∞ = max
x◦X

| f (x) − g(x)|. (12.4)
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We would like to say that if g is near f , then the two have similar shape. This is not
true if we characterize shape in terms of the critical points since they can move a
far distance by a small perturbation, in particular if they are located on relatively flat
regions of the function. The critical values are better suited as stable descriptors, by
they can appear and disappear. More interestingly, the critical values form a stable
shape description even after pairing them to give the points in the persistence diagram.
To make this more concrete, we need the bottleneck distance between two diagrams,
which is the length of the longest edge in a perfect matching:

W∞(F, G) = inf
μ:F≤G

max
A◦F

∪A − μ(A)∪∞, (12.5)

where the infimum is over all bijections from F to G. Here, we are allowed to borrow
points from the horizontal axis to form bijections if the two diagrams do not have
the same number of points, or when this can shorten the longest edge. Note that we
measure the distance between two points, A and μ(A), by the maximum absolute
difference between their birth-values and their death-values. To justify the name, we
observe that the bottleneck distance satisfies the axioms of a metric:

1. W∞(F, G) = 0 iff F = G;
2. W∞(F, G) = W∞(G, F);
3. W∞(F, H) √ W∞(F, G) + W∞(G, H),

in which H is the persistence diagram of a third function on the same domain.

12.7 Stability

We are now ready to state the claim of stability for PL functions.

Stability Theorem Let f and g be PL functions with persistence diagrams F and
G. Then W∞(F, G) √ ∪ f − g∪∞.

In the original publication [3], this result is formulated for the more general class
of tame functions, whose sublevel sets have finite rank homology groups and which
have only finitely many homological critical values. A more elementary proof can
be found in [4].

We remark that the inequality in the Stability Theorem is true if we substitute the
Hausdorff distance for the bottleneck distance between diagrams, but this would be a
substantially weaker result. Note also that the upper bound on the bottleneck distance
cannot be complemented by a similar lower bound. Indeed, completely different
functions can have identical persistence diagrams. This should not be surprising
since topologically different spaces can have isomorphic homology groups.
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Chapter 13
Matrix Reduction

We have seen how mathematical reasoning can be used to compute persistent
homology for simple filtrations. In this section, we present a more generally applica-
ble computer algorithm that constructs persistence diagrams through matrix reduc-
tion. It can be viewed as a common extension of the incremental algorithm, discussed
two sections ago, and the classic normal form algorithm, which can also be found in
standard texts on algebraic topology [1].

13.1 Boundary Matrices

The input to the algorithm are the boundary maps represented by binary matrices.
Recall that the p- and (p − 1)-simplices form bases of the vector spaces of p- and
(p − 1)-chains. The p-th boundary map is fully specified by the p-th boundary
matrix,

∂p = ∂p[1 . . . sp−1, 1 . . . sp], (13.1)

whose columns correspond to the p-simplices, whose rows correspond to the (p−1)-
simplices, and whose entries record the face relation, with ∂p[i, j] = 1 if the i-th
(p − 1)-simplex is a face of the j-th p-simplex, and ∂p[i, j] = 0, otherwise. For
example, the four boundary matrices of the tetrahedron are

∂0 = ⎡
0 0 0 0

⎣
, (13.2)

∂1 =

⎤

⎦⎦⎢

1 0 1 0 1 0
0 1 0 1 1 0
1 1 0 0 0 1
0 0 1 1 0 1

⎥

 , (13.3)

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 99
SpringerBriefs in Mathematical Methods, DOI: 10.1007/978-3-319-05957-0_13,
© The Author(s) 2014
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∂2 =

⎤

⎦⎦⎦⎦⎦⎦⎢

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0
1 0 0 1
0 1 1 0

⎥


, (13.4)

∂3 =

⎤

⎦⎦⎢

1
1
1
1

⎥

 . (13.5)

We use standard row and column operations to reduce each matrix to normal form.
By this we mean a matrix that is entirely zero, except for an initial segment of the
diagonal, which consists of 1s. Since we use modulo 2 arithmetic, it is easy enough
to get the matrices into this form. For the four boundary matrices above, we get

R0 = ⎡
0 0 0 0

⎣
. (13.6)

R1 =

⎤

⎦⎦⎢

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎥

 , (13.7)

R2 =

⎤

⎦⎦⎦⎦⎦⎦⎢

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎥


, (13.8)

R3 =

⎤

⎦⎦⎢

1
0
0
0

⎥

 . (13.9)

The dimensions of the null-spaces are the ranks of the cycle groups, the number of
1s in the diagonals are the ranks of the boundary groups in one lower dimension, and
we get the Betti numbers by subtraction Table 13.1:

Table 13.1 The ranks of the
cycle and boundary groups
and the Betti numbers of the
tetrahedron

p = 0 p = 1 p = 2 p = 3

rank Zp 4 3 1 0
rank Bp 3 3 1 0
βp 1 0 0 0
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13.2 Reduction Algorithm

To compute the Betti numbers, we need no particular ordering on the simplices, but
for computing persistence, the ordering is essential. We therefore modify the classic
algorithm in two ways, storing all boundary maps in one big matrix, and using
only left-to-right column additions and no row operations. These are not enough to
transform the matrix into normal form, but we will see that they suffice to give the
needed rank information.

Let σ1 to σn be the filter, and write ∂ = ∂[1 . . . n, 1 . . . n] for the big boundary
matrix, with ∂[i, j] = 1 if dim σi = dim σ j −1 and σi is a face of σ j , and ∂[i, j] = 0,
otherwise. The algorithm reduces the matrix by iterating through the columns from
left to right. It zeroes out a column j from bottom to top, to the extent possible. To
explain this, we set pivot( j) equal to the maximum row index for which column j
has a non-zero entry. We set pivot( j) = 0 is the entire column is zero.

R = ∂;
for j = 1 to n do
while ≥k < j with pivot(k) = pivot( j) √= 0 do

add column k to column j
endwhile

endfor.

We call the resulting matrix reduced because each row contains at most one pivot.
We shortly discuss why the pivots are significant.

While the above pseudo-code states only two loops explicitly, there are really
three. The innermost loop adds two columns of length n in time proportional to n.
The middle loop searches for a column to the left of column j that has the pivot
in the same row. It iterates until no such column can be found, and at each step,
the pivot of column j moves up by at least one position. It follows that we iterate
fewer than n times. Finally, the outer loop iterates over n columns. The total running
time of the algorithm is therefore at most cubic in the number of simplices. All fast
implementations of this algorithm use sparse matrix representations of ∂ and R.
While ∂ is necessarily sparse, it is not clear that R inherits this property, but very
often it does. Already the original publication on persistent homology [2] used a
sparse matrix representation in which the columns are stored as lists that store only
the non-zero entries. The availability of fast software is indeed an important factor
in the success of the mathematical framework within applied communities.

13.3 Translation to Barcode

We illustrate the algorithm with an example, first turning the filtration in Fig. 11.1
into a single boundary matrix. We recall that we have a sequence of 15 simplices
that correspond to the rows and the columns of the boundary matrix; see Fig. 13.1.

http://dx.doi.org/10.1007/978-3-319-05957-0_11
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Fig. 13.1 The big boundary matrix of the filtration of the tetrahedron in Fig. 11.5
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Fig. 13.2 The reduced boundary matrix with lowest non-zero entries highlighted. The stacks of
column indices at the top indicate the left-to-right column additions used to reduce the matrix

It should be clear that even just storing this matrix is a waste of resources because
most entries are zero. However, the algorithm is easiest to explain for the full matrix,
and we worry about speeding up the algorithm later.

http://dx.doi.org/10.1007/978-3-319-05957-0_11
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The above matrix is small enough that we can run the algorithm by hand, dis-
playing the result in Fig. 13.2. Each zero column is a cycle, adding to the rank of the
corresponding cycle group. Together with the pivots, they encode all the information
we need. The meaning of a pivot in row i and column j + 1 is that the addition of σi

creates a class that the addition of σ j+1 destroys. In other words, there is a homology
class born at Ki that dies entering K j+1. The dimension of the class is the dimension
of σi . To translate this information into the barcode, we draw an interval from i to
j + 1 for every pivot in row i and column j + 1, and we draw an interval from i to
infinity if column i is zero but row i does not contain any pivot.

Translating the reduced matrix in Fig. 13.2 gives the barcode in Fig. 11.2. This is
perhaps easiest to see by translating the reduced matrix into the persistence diagram
in Fig. 11.3. To do this, we rotate the matrix by 45◦ in a ccw order so that its diagonal
lies horizontal. The pivots become the points in the diagram, and we just need to add
points at infinity for zero columns that do not correspond to pivots.

13.4 Uniqueness of Pivots

The number of pivots is the rank of the reduced matrix. Since column operations do
not alter the rank, this number is also the rank of the initial boundary matrix. More
than the number, we now show that the pivots themselves are unique and do not
depend on the sequence of column operations used to reduce the matrix. To prove
this, we consider lower-left submatrices ∂

j
i obtained from ∂ by deleting the first i −1

rows and the last n − j columns. For example, ∂ = ∂n
1 . Taking the alternating sum

of the ranks of four submatrices gives

r∂(i, j + 1) = rank ∂
j+1
i + rank ∂

j
i+1 − rank ∂

j
i − rank ∂

j+1
i+1 .

Substituting R for ∂, we get again submatrices and alternating sums of ranks. Since
left-to-right column additions do not alter the ranks of any of these submatrices,
rank ∂

j
i = rank R j

i . Writing

A = rank R j+1
i , B = rank R j

i ,

C = rank R j+1
i+1 , D = rank R j

i+1,

we therefore have r∂(i, j + 1) = rR(i, j + 1) = A − B + C − D; see Fig. 13.3.

Pivot Uniqueness Lemma An entry R[i, j + 1] is the pivot of column j + 1 in the
reduced boundary matrix iff r∂(i, j + 1) = 1.

Proof Since r∂ = rR , it suffices to show pivot( j + 1) = i iff rR(i, j + 1) = 1. We
prove this in a case analysis, making use of the fact that the non-zero columns in R
and any of its lower-left submatrices are linearly independent.

http://dx.doi.org/10.1007/978-3-319-05957-0_11
http://dx.doi.org/10.1007/978-3-319-05957-0_11
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i
i + 1

j j
+
1

AB
CD

Fig. 13.3 Four submatrices of ∂ or of R, and their ranks

First, assume pivot( j + 1) = i . Since the last column is non-zero, we have A −
B = 1. If we now delete the top row from R j+1

i , then the last column is zero, implying
C − D = 0. Hence, rR(i, j +1) = 1, as required. Second, assume pivot( j + 1) √= i .
If pivot( j + 1) < i , then the last column is zero, and we get A − B = C − D = 0.
Else if pivot( j + 1) > i , then the last column is non-zero, even after deleting the top
row, and we again get A − B = C − D = 0. The claimed result follows. �

An off-shot of this analysis is an explanation why the reduction algorithm does
not continue the elimination of non-zero entries above the pivots.

13.5 Alternative Algorithm

The Pivot Uniqueness Lemma can also be used to justify variants of the algorithm.
For example, we could use the current column to reduce future columns, as opposed
to using past columns to reduce the current column.

R = ∂;
for j = 1 to n do

i = pivot( j);
for α = j + 1 to n do
if R[i, α] = 1 then add column j to column α endif

endfor
endfor.

This works provided we stipulate that R[0, α] = 0 for all columns α. The running
time is similar to the earlier algorithm, namely at most cubic in the number of
simplices. While the resulting reduced matrices computed by the two algorithms
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may be different, the Pivot Uniqueness Lemma implies that the sets of pivots are the
same. This is comforting because it confirms that the persistence diagram is uniquely
defined by the filtration and does not depend on the algorithm that computes it.
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Part IV
Persistence

Exercises

Question 1. (20 ¼ 6þ 7þ 7 points). Let S be the set of points A ¼ ð�1; 0; 0Þ;
B ¼ ð1; 0; 0Þ; C ¼ ð0;�1; 0Þ; D ¼ ð0; 1; 0Þ; E ¼ ð0; 0;�1Þ; Fð0; 0; 1Þ in R

3. Note
that the convex hull of S is a regular octahedron.

(a) Draw the simplicial complex, K, whose vertices are the six points in S, that
contain the edge connecting (±1, 0, 0), and whose underlying space is the convex
hull of S?

(b) List the simplices of K such that r precedes s either because dim r\dim s
or because the dimensions are equal and the ordering of the vertices, sorted by
name, is lexicographically smaller for r.

(c) Draw the barcode and the persistence diagram of the filtration defined by the
filter in (b).

Question 2. (20 ¼ 6þ 7þ 7 points). Let S be a set of n points in general position
in R

2.

(a) Show that the number of different alpha complexes of S is less than 5n.
(b) Show that the number of different Vietoris–Rips complexes of S is less than n2.
(c) Show that the number of different Čech complexes of S is less than n3.

Question 3. (20 ¼ 10þ 10 points). The dunce cap is a two-dimensional
topological space obtained by gluing the three edges of a triangle, as shown in
Fig. 1.

(a) Draw a triangulation of the dunce cap (making sure that the identification of
vertices and edges on the boundary of the triangle does not violate basic properties
of a simplicial complex).

(b) Compute the Betti numbers of the dunce cap.

Question 4. (20 ¼ 6þ 7þ 7 points). Let A, B, C three vertices of a triangle, Pick
two numbers S, T [ [0, 1], independently and uniformly at random from the unit



interval, and set s ¼ minfS;Tg and t ¼ maxfS;Tg. Finally, define a ¼ s; b ¼
t � s; c ¼ 1� t, interpreting them as the barycentric coordinates of the point
x ¼ aAþ bBþ cC.

(a) What is the probability that S and T are both smaller than or equal to 1
2? Draw

the corresponding region of points in the triangle?
(b) What are the expected values of a; b; c?
(c) Prove that x is chosen uniformly at random from the triangle.

Question 5. (20 ¼ 10þ 10 points). Let X ¼ ðb; dÞ and X0 ¼ ðb0; d0Þ be points in
the plane. The L1 -and L1 -distances between them are k X � X0 k1 ¼j b� b0 j
þ j d � d0 j; k X � X0 k1 ¼ maxfj b� b0 j; j d � d0 jg:

(a) Draw the unit disk (the points at distance at most 1 from the origin) under
both definitions of distance.

(b) Define A ¼ ðbþ d; d � bÞ and A0 ¼ ðb0 þ d0; d0 � b0Þ. Prove k A� A0 k1
¼ 2k X � X0 k1:
Question 6. (20 points). Recall the two matrix reduction algorithms for persistent
homology given in Chap. 13. Construct a boundary matrix such that the two
algorithms produce different reduced matrices.

Fig. 1 The dunce cap.
Gluing the left to the bottom
edge, we get a cone with a
rim and a seam. Gluing the
rim to the seam, we get the
dunce cap, which is perhaps
similar to a snail house
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Epilogue

We hope the reader has enjoyed the material arranged in this short book. There are
two chapters in Discrete and Computational Geometry and two chapters in Com-
putational Algebraic Topology. There is no clear border separating these fields,
and we make an effort to further blur the difference and convey that there are three
complementing ingredients: geometry, topology, and algorithms, and leaving any
one out is to the detriment of the others.

For the reader who asks herself where to go from here, we mention a few texts that
develop the threads we started in various directions. There are several established
texts in Computational Geometry, and we recommend [1] because it is currently
most representative of the field, and [2] because it focuses on Voronoi and Delaunay
diagrams. The field of Computational Topology is considerably younger, and we
mention [3] because of its focus on algebraic algorithms for homology, and [4] as a
general text in the area. The field of Algorithms is a core subject within computer
science, and we recommend [5] for a broad representation of the field, and [6] for
an in-depth treatment of the data structures which are instrumental to obtain fast
algorithms. Within Discrete Geometry, we recommend [7] for a modern treatment
of convex polytopes, and [8] for its focus on circles, spheres, and transformations.
The mathematical forerunners of the topological material in this book can be found
in Morse Theory [9] and [10], in Differential Topology [11] and [12], and most
importantly in Algebraic Topology [13] and [14]. In this context, we mention [15]
which makes an effort to introduce the novice to the beauty of algebraic topology.
This text is recommended if you are not yet acquainted to the way of thinking in
topology, which at first may seem strange but soon becomes so natural that is seems
strange it was strange at first.

H. Edelsbrunner, A Short Course in Computational Geometry and Topology, 109
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