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Abstract. Software architectures that allow researchers to explore advanced 
modeling by scaling horizontally in the cloud can lead to new insights and 
improved accuracy of modeling results. We propose a generalized highly 
scalable information system architecture that researchers can employ in 
predictive analytics research for working with both historical data and real-time 
temporally structured big data. The proposed architecture is fully automated and 
uses the same analytical software for both training and live predictions.  
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1 Introduction 

Development of big data analytics enabled solutions are being driven by unstructured 
data, surprisingly little is done in open sourced development of processing structured 
big data. Structured data is often considered, mischievously so, as data at rest perhaps 
due to its usual implementation as a state storage. In the world of big data analytics, it 
is not enough to simply analyze historical or at rest data, instead this must be done in a 
(near) real-time environment. The term real-time environment means something 
slightly different depending on the context, here we refer to an event being triggered 
when new data exists and how the system consequently handles that data 
automatically.  We concur with the argument that a big data model’s excellence can 
only be shown after it has been employed in an online environment [1][2]. In [3] it is 
claimed that "Advancing the cloud from a computation and data management 
infrastructure to a pervasive and scalable data analytics platform requires new models, 
tools, and technologies that support the implementation of dynamic data analysis 
algorithms." The process of integrating disparate data sources (external and/or internal 
origin), continuously preprocessing data for validity or other purposes, and transporting 
data to processing nodes is such a delicate and often limiting step in the workflow that 
a model’s performance can only be known after this step has been completed. Quite 
few predictive models exist that have an ability for online learning; this adds a 
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requirement for models employed in a live environment to be re-trained if/once their 
effectiveness diminishes. This self or auto tuning is an integral part of any real-time 
automated analytical system. 

We propose a generalized scalable software architecture based on predictive 
analytics for working with structured (near) real-time and historical data. The 
structured data we refer to can originate from a multitude of sources like sensor data, 
machine or user interface, financial data or any other source of online data with a 
temporal structure, commonly referred to in programming terms as data tuples. The 
proposed architecture will be able to take advantage of resources from both a public 
cloud infrastructure and private cloud providers [4]. We set a requirement that data 
processing activities should be fully automated once the system user has initiated 
model training. The architecture should automatically handle scaling on available 
resources, perform feature extraction, carry out model training, initiate auto tuning, 
and do live prediction.  

We focus on the information system architecture and make the assumption that 
global memory is not usually required for analytical models that consume temporally 
structured big data. The contribution we bring is an understanding of a generalized 
light-weight scalable architecture for designing actual analytical information systems 
that can be used in collaboration with modern decision support systems. Our 
architecture allows the researcher to take almost any off-the-self model that can be 
encapsulated as an executable binary and deploy it as a scalable predictive analytics 
information system. By making extensive use of cloud computing in order to be able to 
scale sufficiently, we can employ an ensemble of ensembles of different machine 
learning models to achieve a good prediction rate [5]. We primarily narrow the type of 
forecasting models we use to those using supervised learning, e.g. Support Vector 
Machines [6] or Neural Networks [7]. This does not however exclude the use of 
unsupervised or reinforcement based learning methods provided a model and training 
error calculation can be automatized. 

2 Related Research 

Analytical Information Systems have recently received a great deal of attention from 
academics, open source community, as well as industry [8][9][10][11][12]. Also 
standardization steps in big data analytics have been taken [13]. The driving force 
behind related software design has been the Service Oriented Architecture (SOA) [14] 
approach, which has become an industry de-facto standard for building cloud based, 
loosely-coupled “X as a Service” enabled data sharing software modules.  

The open source community tools for processing and storing big data [15], e.g. 
technologies such as Hadoop [16] and PIG [17], are mainly focusing on unstructured 
data and on extending the MapReduce programming model [18]. The MapReduce 
programming model assists the developer in segmenting data into smaller pieces and 
process them on the node were data resides, instead of moving data to a second node 
for processing. This consequently reduces processing time for large data sets. 

In the case of handling structured big data, as temporal data often is, more 
traditional methods are still often applied, such as queuing methods and clustered 
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relational databases, with data then moved to separate nodes for processing. The field 
of structured data analytics is dominated by proprietary software companies such as 
IBM [19] and SAP (e.g. SAP HANA [20]). From the perspective of start-ups, small 
and medium enterprises and academics the cost structure for such solutions is a 
significant barrier. Recommendations in [3] for future cloud-based data analytics 
research include development of “scalable higher-level models and tools” and the use 
of the Web and cloud services for “worldwide integration of multiple data analytics 
frameworks”. 

3 Defining a Scalable Analytics Architecture 

Scalable architectures usually refers to an ability to add and employ either more 
processing power in a parallel fashion or adding more storage capacity. In this paper 
we mainly refer to adding more processing power by adding more computing 
instances, i.e. scaling horizontally. Scalable architectures have been used by academics 
(in particular) in natural sciences for a long time, predominantly using data at rest as 
input data. For example weather forecasting is often based on a time interval update 
frequency instead of being data driven, hence considered being a batch driven 
architecture requiring manual operation or a scheduler [21]. 

Scalable architectures exist for both grid computing and for cloud computing 
[22][23], here we focus on cloud computing. A cloud computing architecture is built 
upon several layers. On the top there is an application layer containing the user defined 
software, and at the bottom there is a fabric layer providing access to compute 
resources, storage resources, and network resources. Under the application layer there 
is a unified resource layer containing “resources that have been abstracted/encapsulated 
(usually by virtualization) so that they can be exposed to upper layer and end users as 
integrated resources” and a platform layer adding a collection of specialized tools, 
middleware and services on top of the virtual resources that provide a development 
and/or deployment platform [24]. Our architecture integrates with Amazons platform 
layer often referred to as Amazons Platform as a Service (PaaS) [25]. 

From an information system point of view the architectures required for handling 
event driven systems and batch driven systems are quite dissimilar. When a system is 
event driven it is assumed that computations are only and always initiated when new 
events, e.g. data, exist. However, when developing analytical systems the definition is 
not always so clear cut. Consider e.g. predicting a high volume financial instrument, 
here the model input update frequency can be measured in nanoseconds. Thus, 
preformatting data into more manageable update cycles is often a requirement as 
model throughput (i.e. forecasts) is usually measured in times order of magnitudes 
greater. There are different techniques for adapting the update cycle; often the simplest 
form is that data points are combined for a certain time resolution, e.g. 0.1 seconds and 
only updated values are sent forward. This case requires the real-time processing part 
of the system to be a data listener and allows for an event based programming model. 
However, the model training part is still driven by a type of command collection, due 
to that most forecasting models are not trained in an online manner. The training 
process itself is pre-determined by the system user when defining the model setup. As 
the requirement on a typical analytical system is to be able to handle both data at rest 
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as well as real-time data, we defined two separate work flow processes: model training 
workflow and live prediction workflow. 

3.1 Model Training Workflow Using Data at Rest 

In the following sub-chapter we discuss a workflow for how machine learning models 
learn a behavior without manual assistance, based on historical data. Our training 
workflow includes four main phases, namely model creation, data feature extraction, 
model learning and model verification. In Figure 1 we show the model training process 
for using historical data. Data as represented in Figure 1 (accessed from the Data 
Gateway) has been pre-processed for validity and other preformatting techniques such 
as time boxing and adjusted for required granularity, i.e. time resolution. The data 
feature extraction block refers to techniques such as component analysis, technical 
analysis or normalization as required by the system user. While data is being prepared, 
an asynchronous flow initializes contact to the worker nodes in the public or private 
cloud (hereafter referred to as cloud when no differentiation is needed). These worker 
instances will be started manually with a pre-prepared image containing required 
software (e.g. correct software versions, security and our base client service that starts 
automatically with the instance), in order for the system user to have full control over 
all simultaneously running instances. 

 

Fig. 1. Model training workflow using data at rest 

We have defined two identification means for initiating contact to worker instances 
depending on if they are in the cloud subnet of the model or not. In the former case the 
new instances are detected when they come into existence and consequently initiate 
handshaking. Once the initial handshake is performed necessary binaries defined by 
the developer and used by worker instances to process data are transferred to the 
worker nodes. We refer to these binaries henceforth as agents. In the latter case, when 
worker instances are outside the cloud subnet of the model, they contact the model 
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through a predetermined address. The agents automatically subscribe to the worker 
instance monitoring service in order to receive jobs.  

Here we define one type of agent, but this construct allows us the possibility to use 
different types of agents. Assume that the underlying worker instances are different, 
one instance having a powerful Graphical Processing Unit (GPU) and other don’t, then 
we can assign different binaries to each, optimized for the specific hardware. Once an 
agent receives its data, the process of training a model commences. The primary reason 
to differentiate between model, agent and worker instance is that the worker instance 
represents the virtualized cloud instance (including our base client service), the model 
is the serialized network representation, while the agent is the generic binary with 
ability to report status, listen to data events and execute models as defined in the data 
event. A data event refers to a new or updated input variable, however, the actual data 
packages sent to the worker instances vary depending on type of job. In the case of a 
training job the data package includes all the input data a model needs in a fully 
preprocessed format as well as model metadata. The input data for training can be of 
considerable size and is therefore transferred in a compressed format. 

Given that the training process is fully automated we make use of both a verification 
data set and an evaluation out-of-sample training data set for calculating model error 
rate. The verification data set is usually a pre-training data sample. We continue 
training till we can confirm that a certain training iteration delivered the lowest in- and 
out-of-sample training error, in order to minimize the risk of overfitting. We perform a 
comparison of the verification and training error to determine the convergence point, 
when they combined reached their minimum. Once the model training is considered to 
have reached its minimum training error we perform a second out-of-sample test of the 
best iterations found that we refer to as evaluation, using data from post in-sample data 
to determine the models most recent performance and ultimately which iteration to 
choose. See Figure 2 for a graphical representation of data segmenting. The evaluation 
is also performed continuously and as a part of the second workflow process to 
determine the model’s continued health. The trained models are then serialized along 
with their respective metadata. Status messages (identified by dotted lines in Figure 1) 
are also continuously sent from certain process blocks to a reporting user interface. 

 

Fig. 2. Data segmenting 

3.2 Live Prediction Workflow Using Real-Time Data 

This chapter describes the differences in processing based on real-time data compared 
to historical data. Figure 3 shows the workflow for live prediction using real-time 
data. Once the system user has chosen a certain model set (ensemble) to be deployed 
and agents are available, the jobs are distributed randomly among the spare agents. To 
achieve this we implement a queue of jobs (i.e. new data events) that are sent along to 
agents that indicate they are free. In case the queue contains jobs that are outdated, 
which implies we have a performance bottleneck, the job gets canceled automatically. 
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Jobs become outdated once the point in time they are supposed to be forecasting to 
has passed. A data event during live prediction includes, in addition to the input data 
needed for prediction, network weights and metadata required for processing. 

When a job has been processed the result is collected centrally for both calculating a 
new ensemble vote as well as to determine if a certain model has been performing 
badly and needs to be retrained. For automation purposes (i.e. not requiring human 
intervention during training, live prediction and model retraining) we consider using an 
ensemble of models as a requirement. This technique is also known as voting by 
committee. Considering the reported success of deep learning and convolutional 
networks [26] we employ an analogous type of network specialization, although not 
hierarchical, called ensemble of ensembles. This machine learning technique enables 
developers to use both different models as well as feature inputs, and then combine 
them through a voting mechanism. This network specialization can be used in order to 
enhance weak signals or characteristics in data that otherwise might disappear as noise 
or in significance to other more prominent data features. There are several techniques 
for calculating an ensemble vote, we chose to use out-of-sample evaluation data for 
determining the relevance of each model. This allows us to evaluate each model’s 
performance in regards to its recent forecast and based on the evaluation error rate 
determine its voting rights.   

 

Fig. 3. Live prediction workflow 

Our architecture’s ability to continuously update and improve itself is based on the 
decision of retraining a certain individual model as a result of its recent performance. 
We use a number of previous predictions and define a threshold for how large the error 
rate is allowed to be. E.g. if >50 % of the last 1000 predictions are faulty we initialize 
the training of a new model based on the same input variables and model parameters, 
but with the most recent data. For a theoretical background of employing ensembles 
and the various setups and combination techniques used, see [27]. 
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4 Proposed Architecture 

Based on the two workflow models we can derive three different components that will 
be central for the system. First we identify a client component which allows the 
system user control over model training and execution as well as management of 
cloud instances. The client can be run locally outside the cloud and takes the form of a 
graphical user interface. The second component we identify is a server component. 
The server component acts as a central node responsible for interfacing with the client 
component, extracting features from data sources, maintaining efficient distribution of 
new jobs and collecting and processing of modeling forecast results as defined. The 
third identified component is the agent, responsible for performing various jobs sent 
to it by the server component. 

4.1 Component Identification 

Based on the analysis we can define a component diagram, identifying the sub-
components and interfaces for the server component, see Figure 4. Our goal is to create 
a unified design for both the training process and live predictions and through a 
polymorphic interface switch between them. One of the challenges faced was to solve 
how feature extraction is handled in both cases, here defined as Data Generator. More 
on this presented in next subchapter. The Job Engine component handles the job queue 
and allows for two types of jobs to be entered into the queue. It also maintains a current 
list of available agents. When an agent disappears without notification, it will be 
detected once the monitoring service stops receiving updates from the agent. The 
agents send status messages continuously that are used to determine the health of each 
agent. When a disappearance of an agent is detected the job queue is notified. In case 
of an unreported job that had been associated with the disappeared agent is discovered, 
the job is resent to another agent. 
 

 

Fig. 4. System component diagram 
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4.2 Data Processing 

As can be seen from the component diagram the server component defines the 
network topology as a star network and not a fully distributed network. The reasoning 
for creating a star topology is that network training is such a computationally 
dominating task that from a parallelization perspective we assume there is not much 
gain by creating a fully distributed network. It’s important to remember that when 
working with structural big data the data volume compared to unstructured big data is 
much smaller. Historical temporally structured big data is usually confined to sizes 
less than 10GB. Most current forecasting models struggle in training when presented 
with too much data, so researchers often want to reduce this even further. 

When exceeding a data volume size of 10GB feature extraction becomes a more 
time consuming task that might be sped up by distributing the processing to agents. 
As we are using ensembles it means we can typically have about 20-30 models of the 
exact same setup sharing the same input data. Therefore feature extraction activity 
should be connected to the models and only performed once. In a fully distributed 
network were all activities such as model training, live forecasting and feature 
extraction are distributed to worker instances we recommend using an indexer with a 
lookup service for connecting the different types of tasks. 

Performing feature extraction on both historical and real-time data with the same 
underlying algorithms requires that data is always formatted using predetermined data 
tuples that include a required amount of data elements and using the same time 
resolution. For certain algorithms, e.g. normalization algorithms, previous scaling 
values used for historical data must be employed during live prediction as well. These 
types of values must therefore be stored as model metadata during training as they are 
used as well during live prediction. 

4.3 Risk Assessment and System Security 

Defining and implementing a secure system architecture is always important and 
challenging. By prioritizing the type of security risks one wants to avoid, it is possible 
to define the security objectives of the system [28]. The risks identified with highest 
priority were unauthorized access to the system, exposure to physical attacks and 
malicious resource consumption. Therefore our main security objective is to avoid 
financial exposure of an attacker being able to highjack our account resources to run 
their own services. As a consequence we employ the following security controls: 

1. Each system user is required to use a personalized cloud account. 
2. System passwords required for instance control are only entered during 

runtime (through a secured remote desktop connection). 
3. Communication between instances is always encrypted over HTTPS/TLS. 
4. Each instance must use a certificate that is unique for each system user.  
 

We point out that this type of risk assessment must always be performed on an 
individual basis. It should also be noted that if the system is to be handling sensitive 
data then protecting that data from possible exposure should be a prioritized risk.  
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5 Conclusion 

Our main research target is to create a general architecture for predictive analytic 
modeling. The architecture should be flexible both regarding underlying infrastructure 
as well as the software used for data manipulation and modeling. We consider we have 
achieved this by implementing support for both Amazon’s [25] PaaS solution 
(supporting both regular and spot instances) as well as our own private cloud. The 
architecture allows us to extend support to any cloud provider that offers a basic API 
for launching and stopping multiple instances from the same image. We can extend our 
modeling software to use other machine learning libraries by adding a new wrapper 
class. This is possible since we make extensive use of internal interfaces between the 
different software layers and modules. Currently we make use of the Encog machine 
learning framework [29] which scales well on a single node and exists in versions for 
both CPU processing and a limited beta for GPU processing. We implemented support 
for a worker instance to run simultaneous agents sharing its processing resources. 
When having access to powerful instances this becomes a useful feature. Consider 
when the instance has more than one GPU that the underlying analytical software 
cannot take advantage of in a co-operative mode, then two agents can co-exist instead. 
Another similar case is when the machine has both powerful CPU and GPU 
processing, then a desired number of agents can be run on the same instance.  

The contribution of the proposed architecture is in unifying the automatized 
processing of both historical and real-time data for predictive purposes, by utilizing a 
cost-effective cloud computing solution. Working with both historical and real-time 
data allows the researcher to not only determine the statistical significance of the 
forecast on historical data, e.g. when forecasting financial time series the result is often 
compared to the random walk. Forecasting both on historical and real-time data allows 
for a confirmation that correlation in the model error occurs in a separate setting. This 
reduces the significance of the critique that results are not repeatable when forecasting 
dynamic time series. Albeit, this critique can never be fully met as we are dealing with 
future information, still this type of research has the potential to be more trustworthy 
by industry than before. Perhaps the most prominent promise this holds for the science 
community is that researchers can with greater certainty verify that the results do not 
contain common errors that occur by including future data as input to the models. 
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