
Á. Rocha et al. (eds.), New Perspectives in Information Systems and Technologies, Volume 2,
Advances in Intelligent Systems and Computing 276,

121

DOI: 10.1007/978-3-319-05948-8_12, © Springer International Publishing Switzerland 2014

Discrimination of Class Inheritance Hierarchies –
A Vector Approach

B. Ramachandra Reddy and Aparajita Ojha

PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur,
Dumna Airport Road, P.O. Khamaria, Jabalpur, 482005, India

{brreddy,aojha}@iiitdmj.ac.in

Abstract. Numerous inheritance metrics have been proposed and studied in the
literature with a view to understand the effect of inheritance on software
performance and maintainability. These metrics are meant to depict the
inheritance structures of classes and related issues. However, in spite of a large
number of inheritance metrics introduced by researchers, there is no standard
set of metrics that could discriminate the class hierarchies to decipher or predict
the change-proneness, defect-proneness of classes or issues that could
effectively address maintainability, testability and reusability of class
hierarchies. In fact, very different hierarchical structures lead to the same values
of some standard inheritance metrics, resulting in lack of discrimination
anomaly (LDA). In an effort to address this problem, three specific metrics
have been studied from the point of view of providing an insight into
inheritance patterns present in the software systems and their effect on
maintainability. Empirical analysis shows that different class hierarchies can be
distinguished using the trio – average depth of inheritance, specialization ratio
and reuse ratio.

Keywords: Inheritance Metrics, Class Hierarchies, Software Maintainability.

1 Introduction

Metrics play an important role in measuring the software quality, cost, complexity,
maintenance efforts and many other important attributes affecting the overall software
performance. If these issues are addressed and analyzed properly at design level, they
lead to more efficient and cost effective software development and maintenance.
Numerous metrics have been proposed over a period of two decades to assess
different software attributes such as size, inheritance, cohesion, coupling, testing
efforts, and maintainability. Metric suites that have been widely studied and applied
successfully for object oriented software include CK metrics suite [1] and MOOD
metrics suite [2]. However, there is no standard set of rules that helps a software
developer or a project manager in selecting specific metrics that would be more useful
for a particular development. Further, these metrics often provide overlapping
information. But, the use of multiple metrics becomes inevitable for large and
complex software systems. This, in its turn, generates large data sets, making it

122 B.R. Reddy and A. Ojha

extremely unmanageable to analyze and interpret. Experience suggests that better
inferences can be drawn by using only a small set of metrics.

Inheritance patterns present in an object oriented software system greatly affect the
overall performance and maintainability of the system. Numerous metrics have been
proposed by researchers and developers that measure different aspects of inheritance
present in a software. Depth of inheritance (DIT), number of children (NOC), average
inheritance depth (AID), specialization ratio (SR) and reuse ratio (R) metrics are some
of the most commonly used metrics in quantifying the effect of inheritance. Use of
inheritance metrics has claimed to reduce the maintenance efforts and enhance the
reliability [3]. In an interesting study, Daly et al [4] have concluded that software
systems having 3-levels of inheritance are easier to maintain than 0-level inheritance,
but deeper levels of inheritance adversely affect the maintainability.

People have performed various empirical studies on design measures for object
oriented software development (see for example, ([7], [8], [9], [10], [11], [12], [14],
[15], [19], [22], [23], [25] and [26]). Briand et al [12] have studied relationships
between coupling, cohesion, inheritance and the probability of fault detection in
software. Through an empirical analysis, they conclude that accurate models can be
built to predict fault-prone classes. They also show that in general, the frequency of
method invocations and the depth of inheritance hierarchies are the prime factors
leading to fault-proneness in the system, apart from class size. Cartwright and
Shepperd [11] investigated the effect of inheritance on a specific industrial object
oriented system and found that classes in an inheritance structures were
approximately three times more defect-prone compared to those classes that did not
participate in inheritance structure. Further, they were able to build useful prediction
systems for size and number of defects based upon simple counts such as number of
events or number of states per class. Similar studies were also made by Harrison et. al
and Wi Li [16, 4] with a view to understand the inheritance effects on modifiability
and maintainability of object oriented systems. Dallal [14] has applied the concept of
class flattening to inherited classes for improving the internal quality of attributes
such as size, cohesion and coupling. Elish [15] has empirically evaluated that DIT and
NOC are good metrics for finding the fault tolerance, maintainability and reusability
in aspect oriented systems.

Aggarwal et. al [10] have investigated twenty two different object oriented metrics
proposed by various researchers and have made an empirical study of some of the
selected metrics that provide sufficient information for interpretation. Metrics
providing overlapping information are excluded from the set. Mishra [7] has recently
introduced two inheritance complexity metrics, namely Class Complexity due to
Inheritance (CCI) and Average Complexity of a program due to Inheritance (ACI).
These metrics are claimed to represent the complexity due to inheritance in a more
efficient way. More recently, Makkar et. al [19] have proposed an inheritance metric
based on reusability of UML based software design. They have presented an
empirical analysis of the proposed metric against existing reusability based
inheritance metrics.

With the growing complexities of inheritance relationships and polymorphism in
large object-oriented software systems, it is becoming increasingly important to

 Discrimination of Class Inheritance Hierarchies – A Vector Approach 123

concentrate on measures that capture the dynamic behavior of the system. Han [20] et.
al have proposed a Behavioral Dependency Measure (BDM) for improving the
accuracy over existing metrics when predicting change-prone classes. With the help
of a case study, they demonstrate that BDM is a complementary indicator for change-
proneness when the system contains complex inheritance relationships and associated
polymorphism. Results of the case study show that the BDM can be used for model-
based change-proneness prediction.

In spite of a large number of inheritance metrics introduced by researchers, there is
no standard set of metrics that could discriminate the class hierarchies to decipher or
predict the change-proneness, defect-proneness of classes or issues that could
effectively address maintainability of the system and reusability of class hierarchies.
Dallal [13] has recently made an interesting study on cohesion metrics and has
demonstrated that most of the metrics reflect the same cohesion values for classes
having same number of methods and attributes but distinct connectivity patterns of
cohesive interactions (CPCI). This results in incorrect interpretation of the degrees of
cohesion of various classes. This is termed as lack of discrimination anomaly (LDA)
problem. To resolve the problem, Dallal et. al [13] have proposed a discrimination
metric and a simulation-based methodology to measure the discriminative power of
cohesion metrics. The proposed metric measures the probability that a given cohesion
metric will generate distinct cohesion values for classes having same number of
methods and attributes but different CPCIs. Motivated by the work, we have made an
empirical analysis of various available class inheritance hierarchy metrics. A tool
“ClassIN” is developed to study the inheritance patterns inbuilt in Java projects. Like
the cohesion metrics, inheritance metrics also suffer from LDA problem. This
contribution focuses on identifying distinctive features in class hierarchies of a
software system having same inheritance metric values. In this paper, we propose a
vector valued metric ‘Discrimination of Inheritance Pattern Vector’ (DIPV), to
resolve the discrimination anomaly to some extent. This measure proves to be quite
useful in improving the understandability of class hierarchies present in a software
system. The metric captures the distinction that a particular hierarchy possesses from
others. The three measures that we have chosen for defining DIPV are average depth
of inheritance, specialization ratio and reuse ratio. This trio gives a good insight of the
class hierarchies and related issues such as testing efforts and maintainability.

The paper is organized as follows. Section 2 presents an overview of some of the
well-known inheritance metrics. The problem of lack of discrimination anomaly for
inheritance metrics is also presented in this section. In Section 3, a new approach for
discriminating the inheritance pattern in a software system is presented using the trio
named DIPV (a vector valued metric). An Empirical analysis is also presented in this
section using ClassIN tool. The tool helps in identifying inheritance patterns present
in a software system with special emphasis on the software attributes such as depth
and breadth of class hierarchies. This facilitates in visualizing the general inheritance
pattern present in the system.

124 B.R. Reddy and A. Ojha

2 Inheritance Metrics and Lack of Discrimination Anomaly

Inheritance metrics measure the depth, width and relative inheritance values reflecting
the inheritance patterns in an object oriented system. Inheritance metrics are broadly
classified into two types - class level inheritance metrics and class hierarchy metrics.
The Class level inheritance metrics represents the inheritance values of individual
class, whereas the class hierarchy metrics represents hierarchal structure of the related
classes. Table 1 lists metrics that are commonly used for determining class level
inheritance and class hierarchy level inheritance.

Table 1. Inheritance metrics

Inheritance Metrics Description
a. Class Metrics
Depth of Inheritance (DIT) Maximum length from the node to root.
Number of Children(NOC) Number of immediate descendents of the class.
Number of Ancestor classes (NAC) Total number of super classes of the class.

Number of Descendent classes (NDC) Total number of subclasses of the class.

Total Children Count(TCC) Number of Subclasses of the class.

Total progeny Count(TPC)
Number of classes that inherit directly or indirectly
from a class.

Total Parents count (TPAC)
Number of super-classes from which the given class
inherits directly.

Number of Methods Inherited (NMI) Number of methods inherited by the class.
Number of Attributes Inherited (NAI) Number of attributes inherited by the class.

Class-to-leaf depth (CLD)
The maximum length of the path from a class to a
leaf.

b. Class Hierarchy Metrics

Maximum DIT (MaxDIT)
Maximum of the DIT values obtained for each class
of the class hierarchy.

Average Inheritance Depth (AID) Sum of depths of classes/Total number of classes.
Number of children for a component
(NOCC)

Number of children of all the classes in the
component.

Total length of inheritance chain (TLI)
Total number of edges in an inheritance hierarchy
graph (number of classes inherited)

Specialization Ratio (S)
Ratio of number of subclasses to the number of
super classes.

Reuse Ratio (U)
Ratio of number of super classes to the total number
of classes.

Method Inheritance Factor (MIF)
Ratio of number of inherited methods in a class to
the number of visible methods in a class.

Attribute Inheritance Factor (AIF)
Ratio of number of inherited attributes in a class to
the number of visible attributes in a class.

DIT and NOC are most commonly used class level metrics. While these metrics do

give some idea on the inheritance complexity of a system, they do not discriminate
between different hierarchical patterns. AIF, MIF metrics do provide some insight
into the internal structure of a hierarchy. Specialization ratio and reuse ratio are

 Discrimination of Class Inheritance Hierarchies – A Vector Approach 125

commonly used for discriminating the class hierarchies. However, in many instances,
these metric values turn out to be the same for relatively very different inheritance
patterns. Although class hierarchies can be understood to some extent using
specialization ratio, reuse ratio and average inheritance depth, none of the measures
alone is capable of providing a good understanding of the inherent hierarchies. In
what follows, we shall present some specific cases that exhibit the LDA in class
hierarchy inheritance metrics.

Consider the metric MaxDIT defined by

max { ()}iC KMaxDIT DIT Ci∈=

where Ci is a class in a class hierarchy K. Note that MaxDIT [21] for all the three
hierarchies in Figure 1 turns out to be 2, but the three hierarchies have different
structures. MaxDIT does not indicate any inheritance pattern and the relative
overriding complexities. Moving onto Average Depth of Inheritance (AID), it is
defined by

()

i
i

DIT C
AID

TC
=



where TC denotes total number of classes in the hierarchy. AID is a ratio of sum of
DIT values to the total number of classes. It may be noted that AID value for Figure
1(a) is 1.5 and is 1.33 for hierarchies shown in Figure 1(b) and 1(c). Hence this also
does not give any clear picture of the hierarchical structure present in a module.
Turning to the metric NOCC [21], all the class hierarchies shown in Figures 1 have
the same value 5.

Thus, the possibility of discriminating class hierarchies using NOCC is very low.
Similarly, the TLI metric (total length of inheritance chain) value for all the
hierarchies of Figure 1 is 5. The Specialization Ratio S (Table 1) gives some idea
about the width of class hierarchy, higher the specialization ratio, wider would be the
class hierarchy. The hierarchy having higher value of S is considered to be better than
that having value close to 1. The specialization ratio for hierarchies of Figure 1(a) and
1(b) is the same and is equal to 2.5, while for Figure 1(c) it turns out to be 1.67.

Fig. 1. Class hierarchies

 C1

C2

C3 C4 C5 C6

C1

C3C2

C4 C5 C6

C1

C3C2

C4 C5 C6

126 B.R. Reddy and A. Ojha

Another related ratio that helps in discriminating different hierarchies is the Reuse
Ratio U (Table 1). The reuse ratio is always less than 1. The higher reuse ratio reflects
that the system is having deep hierarchy and high reuse value. The reuse ratio for
hierarchies of Figure 1(a) and 1(b) is 0.33, 0.33, while the same for 1(c) turns out to
be 0.5.

An empirical study was performed to analyze the performance of different class
hierarchy metrics using six different projects from sourceforge.net [24]. These
projects are Bloat (12) JActor (9), Oxygene (24), Pandora Project Management (19),
SGLJ (23) and OpenNLP (41). Numbers in the brackets indicate the number of class
hierarchies present in each project. Thus a total number of 128 class hierarchies were
taken to analyze the discriminating power of inheritance metrics. Six metrics, namely
MaxDIT, NOCC, TLI, AID, S, and U were chosen to examine the discriminating
power.

Table 2. Statistics of class hierarchy metrics for 128 classes of six different projects

Metrics Min Max Mean Median Standard Deviation Percentage of
distinct metric
values (%)

Max
DIT 1 5 1.48 1 0.87 3.12

NOCC 1 80 6.9 3 12.63 19.53

TLI 1 80 6.92 3 12.63 19.53

AID 0.5 2.61 1.12 1 0.4 29.68

S 1 69 4.05 2 8.03 24.21

U 0.01 1 0.48 0.36 0.31 20.31

3 Class Hierarchy Metric: A Vector Approach

Let us define the Discrimination of Inheritance Pattern Vector (DIPV) as a triple
using the combination of AID, specialization ratio and reuse ratio as follows.

DIPV = (AID, S, U)
AID provides a good understanding of the inheritance levels present in a given class
hierarchy. But, this alone is insufficient in giving details of inheritance pattern.
Combining it with specialization ratio gives the idea of the breadth of the hierarchy,
whereas the reuse ratio also gives the information about the depth. Thus DIPV gives a
fair amount of indication on the maintenance efforts needed. Comparison of two

DIPV is performed as follows. If) , ,(111 zyxu = and) , ,(222 zyxv = are two

vectors then vu > if and only if one of the following conditions hold (i) 21 xx > (ii)

21 xx = and 1 2y y< (iii) 21 xx = , 21 yy = and 21 zz > . Otherwise .u v<=

 Discrimination of Class Inheritance Hierarchies – A Vector Approach 127

To ascertain better maintainability, we propose the following algorithm.

Algorithm

Input: DIPV1 =) , ,(111 zyx , DIPV2=) , ,(222 zyx
Output: Lower DIPV (lower maintainability)
Begin:

1. If 21 xx > then

2. return DIPV2.
3. else if 21 xx = and 1 2y y< then

4. return DIPV2..
5. else if 21 xx = and 21 yy = and 21 zz >

6. return DIPV2.
7. else
8. return DIPV1.
9. end if.
10. end.

Table 3. LDA cases in some class hierarchies

Class Hierarchy MaxDIT NOCC AID S U AM AU

1 2 3 1 1.5 0.5 2.5 2

2 2 3 1.25 1.5 0.5 2.875 2.25

3 2 4 1.2 1.33 0.6 2.8 2.2

4 2 4 1.2 2 0.4 2.8 2.2

5 2 5 1.5 2.5 0.333 2.5 3.25

6 2 5 1.333 2.5 0.333 2.33 3

7 2 10 1.54 3.33 0.27 3.31 2.54

8 2 10 1.63 5 0.18 3.45 2.63

9 3 6 2.14 2 0.42 4.21 3.14

10 3 6 1.85 1.5 0.57 3.78 2.85

11 3 8 1.88 1.33 0.66 3.83 2.88

12 3 8 1.55 2 0.44 3.33 2.55

13 3 11 1.5 2.75 0.33 3.25 2.5

14 3 11 1.75 2.2 0.41 3.625 2.75

15 4 16 2.117 2.28 0.41 4.17 3.11

16 4 16 1.82 3.2 0.29 3.73 2.82

128 B.R. Reddy and A. Ojha

In order to develop some understanding on the class hierarchy metrics and their
revelation about the inheritance structures, a tool “ClassIN” has been developed in the
present study. The tool aims at finding out various inheritance metrics for Java
projects. We have considered only abstract classes and concrete classes of the projects
in the tool. Using the tool, AID is compared first, lower value gives lower
maintainability and hence, we do not go further to compare the second and third
components. If both AID values are the same then the second and third attributes of
DIPVs are compared to ascertain the breadth and depth of inheritance patterns. Higher
specialization and lower reuse ratio indicate a better design from the maintenance
point of view.

Table 3 shows some of the LDA cases of class hierarchies taken the six projects
mentioned in Section 2. In the first and second case, values of MaxDIT and NOCC
are 2 and 3 respectively for both the class hierarchies. Applying the algorithm one
gets the first DIPV. The resultant hierarchy gives lower maintenance cost, low
testability and better reusability. This can also be asserted by looking at the values of
AM and AU, which are precisely the maintainability metrics. In some cases all the
values turn out to be the same. It indicates that both the hierarches have same
maintainability cost.

3.1 Validation of DIPV

After applying DIPV, the algorithm returns either DIPV1 or DIPV2. For the
validation of DIPV results, statistical discriminant analysis test was performed. The
resultant discriminate function is

7.146 1.788* 0.583* 5.536* .iD AID S U=− + + +

The discriminate function coefficients are positively correlated with discriminant
function. So, AID, S and U are suitable for discrimination of class inheritance
hierarchies. More than 61% grouped cases are correctly classified in all the class
hierarchies present in the six mentioned projects from sourceforge.net [24].

Fig. 2. A visualization of DIPVs of class hierarchies

 Discrimination of Class Inheritance Hierarchies – A Vector Approach 129

Figure 2 shows a plot of DIPV for a total of 128 class hierarchies taken from six
projects from sourceforge.net as mentioned in Section 2. For the project Pandora, one
may observe that specialization ratio of one of the class hierarchies is around 70,
while its reuse ratio is well within the limit (0.5) and AID is close to 2. Such
hierarchies may lead to higher maintenance and testing efforts and should be
reviewed at the design level only. Moving onto the class hierarchies of the Project
Oxygen, all the class hierarchies have specialization ratio within the interval range of
[1, 4], highest reuse ratio is 0.6 and the highest AID is 2.25. Thus the project is well
designed; maintenance and testing efforts would be within the manageable limits.
Thus, in general, the triple gives a good understanding of the hierarchical pattern and
helps in visualizing the blueprint of the design for analysis and refinement, if needed.
However, it cannot be claimed that in all cases, DIPV will always give a good insight
on maintainability, reusability or testability. Nonetheless, it may be treated as a
primary measure to identify class hierarchies that may create issues in the project
maintenance.

4 Conclusion

Different inheritance metrics are analyzed for discriminating the class hierarchies to
understand their effect on maintenance efforts. The metrics MaxDIT, AID, reuse
ratio, specialization ratio can be used for discriminating the hierarchies. However, a
single metric does not suffice to give any insight on the inheritance pattern. To
enhance the understanding on the inheritance pattern and related software attributes
such as average depth and breadth of hierarchical structure and their overriding
complexities a vector DIPV has been proposed in this paper. It helps in providing a
better picture of the blueprint of the inheritance pattern present in a software system.
Accordingly, the design could be reviewed from the point of view of maintenance,
testing efforts and reusability. A tool ClassIN is developed to visualize the inheritance
patterns present in a software system. This helps in quick analysis of the software
design and the inheritance patterns used in the system. The tool can be downloaded
from https://sites.google.com/site/brcreddyse/Tools

References

1. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. J. IEEE
Trans. Soft. Eng. 20(6), 476–493 (1994)

2. Harrison, R., Counsell, S.J.: An Evaluation of the Mood set of Object-Oriented Software
Metrics. J. IEEE Trans. Soft. Eng. 21(12), 929–944 (1995)

3. Sheldon, F.T., Jerath, K., Chung, H.: Metrics for Maintainability of Class Inheritance
Hierarchies. J. Soft. Main. and Evol. Res. and Pra. 14(3), 147–160 (2002)

4. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating Inheritance Depth on the
Maintainability of Object-Oriented Software. J. Emp. Soft. Eng. 1, 109–132 (1996)

5. McCabe, T.J.: A Complexity Measure. J. IEEE Trans. Soft. Eng. 2(4), 308–320 (1976)
6. Abreu, F.B., Carapuca, R.: Candidate Metrics for Object-Oriented Software within a

Taxonomy Framework. J. Sys. and Soft. 26, 87–96 (1994)

130 B.R. Reddy and A. Ojha

7. Mishra, D.: New Inheritance Complexity Metrics for Object-Oriented Software Systems:
An Evaluation with Weyuker’s Properties. J. Comp. and Info. 30(2), 267–293 (2011)

8. Henderson-Sellers, B.: Object Oriented Metrics: Measures of Complexity, pp. 130–132.
Prentice-Hall (1996)

9. Li, W.: Another Metric Suite for Object-Oriented Programming. J. Sys. and Soft. 44,
155–162 (1998)

10. Aggarwal, K.K., Singh, K.A., Malhotra, R.: Empirical Study of Object-Oriented Metrics.
J. Obj. Tech. 5(8), 149–173 (2006)

11. Cartwright, M., Shepperd, M.J.: An Empirical Investigation of an Object-Oriented
Software System. J. IEEE Trans. Soft. Eng. 26(8), 786–796 (2000)

12. Basili, V.R., Briand, L.C., Melo, L.W.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. J. IEEE Trans. Soft. Eng. 22(10), 751–761 (1996)

13. Dallal, J.A.: Measuring the Discriminative Power of Object-Oriented Class Cohesion
Metrics. J. IEEE Trans. Soft. Eng. 37(6), 788–804 (2011)

14. Dallal, J.A.: The impact of Inheritance on the internal Quality Attributes of Java Classes.
Kuw. J. Sci. and Eng. 39(2A), 131–154 (2012)

15. Elish, M.O., AL-Khiaty, M.A., Alshayeb, M.: An Exploratory case study of Aspect-
Oriented Metrics for Fault Proneness, Content and fixing Effort Prediction. Inter. J. Qua.
and Rel. Mana. 30(1), 80–96 (2013)

16. Harrison, R., Counsell, S.J., Nithi, R.: Experimental Assessment of the Effect of
Inheritance on the Maintainability of Object-Oriented Systems. J. Sys. and Soft. 52,
173–179 (2000)

17. Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. J. Sys. and
Soft. 23(2), 111–122 (1993)

18. Zhang, L., Xie, D.: Comments On the applicability of Weyuker’s Property Nine to Object-
Oriented Structural Inheritance Complexity Metrics. J. IEEE Trans. Soft. Eng. 28(5),
526–527 (2002)

19. Makker, G., Chhabra, J.K., Challa, R.K.: Object Oriented Inheritance Metric-Reusability
Perspective. In: International conference on Computing, Electronics and Electrical
Technologies, pp. 852–859 (2012)

20. Han, A., Jeon, S., Bae, D., Hong, J.: Measuring Behavioral Dependency for Improving
Change-Proneness Prediction in UML-based Design Models. J. of Sys. and Soft. 83(2),
222–234 (2010)

21. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining Metrics
for Software Components. In: 5th World Multi-Conference on Systemics, Cybernetics and
Informatics, Florida, vol. XI, pp. 16–23 (2000)

22. Basili, V.R., Briand, L.C., Melo, L.W.: How Reuse Influences Productivity in Object-
Oriented System. Commun. ACM 39(10), 104–116 (1996)

23. Briand, L.C., Wst, J., Daly, J.W., Porter, D.V.: Exploring the Relationships between
Design Measures and Software Quality in Object-Oriented Systems. J. Sys. and
Soft. 51(3), 245–273 (2000)

24. Java Projects, http://www.sourceforge.net
25. Radjenovic, D., Hericko, M., Torkar, R., Zivkovic, A.: Software fault prediction metrics:

A systematic literature review. J. Inf. and Soft. Tech. 55, 1397–1418 (2013)
26. Zhou, Y., Yang, Y., Xu, B., Leung, H., Zhou, X.: Source code size estimation approaches

for object-oriented systems from UML class diagrams: A comparative study. J. Inf. and
Soft. Tech. 56, 220–237 (2014)

	Discrimination of Class Inheritance Hierarchies – A Vector Approach
	1 Introduction
	2 Inheritance Metrics and Lack of Discrimination Anomaly
	3 Class Hierarchy Metric: A Vector Approach
	3.1 Validation of DIPV

	4 Conclusion
	References

