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Abstract. Radial basis function(RBF) networks have been proved to
be a universal approximator when enough hidden nodes are given and
proper parameters are selected. Conventional algorithms for RBF net-
works training, including two-stage methods and gradient-based algo-
rithms, cost much computation and have difficulty to determine the
network size. In this paper, a new greedy incremental(GI) algorithm
is proposed which constructs the RBF network by adding hidden node
one by one; Each added hidden node is trained once and then fixed. The
parameters of each added hidden node are trained in a greedy way to
approximate the local area around the pattern with the biggest error
magnitude. The center and weight are determined by local regression,
the width is tuned iteratively with a simple rule. The proposed greedy
incremental algorithm is tested on some practical experiments and com-
pared with other popular algorithms. The experiments results illustrated
the GI algorithm could approximate the function universally with high
efficiency and robustness.

Keywords: radial basis function networks, constructive learning, greedy
incremental algorithm.

1 Introduction

Because of the simple topology structure and the ability to approximate complex
nonlinear mappings from the input-output data, radial basis function(RBF) net-
work was broadly used in classification and function approximation area [1,2,3].
It has been proved to be a universal approximator for any continuous target
function when sufficient hidden nodes are provided [4]. As analyzed and com-
pared with other neural networks and fuzzy systems, RBF networks have better
generalization ability and tolerance to input noiseand perform better in regular
function approximation [5,6]. Based on these properties and the simple topol-
ogy structure, RBF networks are widely applied for solving various industrial
application problems, such as fault diagnosis [7,8] and image processing [9,10].

A typical RBF network consists of a hidden layer with non-linear RBF ac-
tivation function and a linear output layer (Fig. 1). Adjustable parameters of
RBF networks include hidden layer parameters (centers and widths) and output
weights connecting hidden layer and output layer.
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Fig. 1. Architecture of RBF network

Original approach for training RBF networks is to take all the training samples
as centers and preset the width of all the hidden nodes. Only the output weights
are trained with least squares regression or gradient-based methods. However,
this algorithm could lead to overfitting and is also not practical for real world
approximation problems. In order to achieve high accuracy with compact RBF
networks, centers and widths are further selected or adjusted with different al-
gorithms. Moody and Darken [2] used unsupervised self-organized selection to
determine the centers and widths. Support vector machines [11] selected support
vectors from training sets as centers. However, the search space is too restricted
since the widths are fixed and centers are subset of the discrete training samples.

Alternative method is to train all the parameters simultaneously. Some gra-
dient based optimization algorithms were proposed for RBF networks training
[12,13]. To improve the slow convergence rate of first order gradient, recently,
T. Xie et al. presented an improved second order(ISO) algorithm [15] based on an
improved Levenber-Marquardt algorithm [14]. Though more compact network
is reached with this algorithm, it costs more time due to expensive gradient
computation.

While most algorithms have to specify the size of the RBF network before
training, it is difficult to determine the network size. To determine the network
size during training, some constructive algorithms were proposed by adding hid-
den node one by one, or batch by batch. T.-Y. Kwok and D.-Y. Yeung trained
each added hidden node with modified Quickprop algorithm by minimizing some
objective functions [21]. Huang et al. proposed a family of extreme learning ma-
chines (ELM) by adding random hidden nodes and training weight only. The
algorithms were shown to be much faster than other general algorithms. How-
ever, much larger network was achieved with these ELMs.
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In this paper, a new greedy incremental (GI) algorithm is proposed to con-
struct the RBF network by adding hidden nodes one by one. Each added hidden
node is trained once and then fixed. The parameters of each added hidden node
are trained in a greedy way to approximate the local area around the pattern
with the biggest error magnitude. The center and weight are determined by lo-
cal regression; the width is tuned iteratively with a simple rule. The proposed
algorithm is very simple and can construct a compact RBF network for approx-
imation speedily.

The paper is organized as following. In Section 2, computation fundamen-
tals of RBF networks are briefly introduced. Section 3 presents the proposed
GI algorithm for the RBF networks training. Section 4 gives several practical
benchmarks for function approximation. Experiment results are compared with
other popular algorithms. In section 5, a brief conclusion is given and future
work is introduced.

2 Computational Fundamentals

Since an approximation problem with multiple outputs can be divided into sev-
eral independent approximation task with unique output, in this paper, we are
focusing on the function approximation with single output. Before describing
the algorithm details, several common indices and notations are introduced. As-
sume the algorithms discussed in this paper are all aiming at approximating a
training set {(xp, yp) | xp ∈ RD, yp ∈ R, p = 1, 2, . . . , P}, where there are P
training patterns with D-dimension input and scalar output, (xp, yp) denote the
pth input and output.

As shown in figure 1, a conventional RBF network has fixed architecture with
three layers: an input layer, a hidden layer with RBF activation function and a
linear output layer. Activation function of RBF networks can be different radial
basis functions, including multiquadric, inverse quadratic function, etc. In this
paper, we used the popular gaussian function as activation function of the RBF
network.

g(x) = exp

(
−‖x− c‖2

σ2

)
, x, c ∈ RD, σ ∈ R+ (1)

in which, ‖ · ‖ represents Euclidean distance, c, σ are center and width of the
RBF node.

The output of the RBF network is calculated by summing multiplication of
hidden layer and output weights. The output of a RBF network with n hidden
nodes can be described as,

y =
n∑

i=1

βigi(x) (2)

in which, βi is the weight connecting the ith hidden node and the output node.

3 The Greedy Incremental Algorithm

In this section, the proposed Greedy Incremental(GI) algorithm is introduced.
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3.1 Constructive algorithm

The proposed GI algorithm is a constructive algorithm for RBF network training.
The constructive algorithm is a general method for a single layer feedforward
network (SLFN) with any kernels. One advantage of constructive algorithms is
that the network size can be determined while training. The algorithm starts
from a SLFN with zero hidden neuron and constructs the SLFN by adding
hidden nodes one by one. Each hidden node is trained supervised according to
errors of previous SLFN and then fixed. Thus the training of whole SLFN is
simplified into a sequence of single neuron training.

Assume the current SLFN has n hidden nodes, the errors of current SLFN
are E = [e1, e2, . . . , eP ]

T . To approximate the errors with the new added neu-
ron gn+1(α,x), one is trying to tune its parameters α and output weight β to
minimize the sum squared error(SSE).

S(α, βn+1) =

P∑
p=1

(ep − βn+1gn+1(α,xp))
2 (3)

in which, S(·) is the SSE, α are parameters of the neurons to be tuned.
In order to minimize the objective function SSE, the neuron’s parameters α

and its output weight β can be optimized independently. From equation (3), one
can observe that SSE is a convex function of output weight β, it achieves its
minima while α is fixed and,

βn+1 =

∑P
p=1 epgn+1(xp)∑P
p=1 g

2
n+1(xp)

. (4)

For other parameters (α) tuning, T.-Y. Kwok and D.-Y. Yeung [21] proposed
a modified Quickprop algorithm to minimize the objective function. However,
gradient computatoin still cost much time. Huang et al. presented an incremental
extreme learning machine (I-ELM) [17] which generated random parameters for
the single neuron and only determined output weight using (4). Though it is very
fast, the I-ELM algorithm also resulted in a very large SLFN. Taking advantage
of local property of RBF node, the proposed GI algorithm tuned the new added
node in a greedy way to approximate a local area around the pattern with biggest
error magnitude. The parameters of the added node and the output weight are
all tuned in simple method.

3.2 Center and Weight

The proposed GI algorithm is a greedy process. In order to make each added
new hidden node contribute most to the network, each time the new node was
attempt to approximate the local area around the pattern with biggest error
magnitude. The center and weight of the new node can be determined by simple
regression with the local training sets.
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Filter the local sets. While approximating the previous RBF network’s resid-
ual error E = [e1, e2, . . . , eP ]

T with a single RBF node, it is not necessary to
consider all the training patterns. Because of the local property of gaussian func-
tion, one only need consider a local area in the input space for the single RBF
training. The GI algorithm in this paper focuses on the local area around the
pattern with biggest residual error magnitude. To filter these local sets, one can
preset parameters K and τ and do the following process:

1. find the pattern with biggest error magnitude |ek|, note the pattern as
A(xA, eA);

2. find the subset(T ) of the training set, whose elements are K nearest neigh-
bors of A.

3. In subset T , filter a subset S, whose residual errors are in the range (τeA, eA).

Fig. 2. A 1 dimension example of filtering the local set, K = 200, τ = 0.5. (1) Find
point with biggest error magitude A. (2) Filter K nearest neighbors of max point
A.(red points) (3) Among red points, filter the points with residual error bigger than
τeA. (above the horizon line)

Local Regression. After above 3 steps, local set around the max point is
filtered as S, assume the indices of S are {j1, j2, . . . , jS}. Using these patterns,
we can determine optimal center and weight for the new node directly with local
regression.

In order to approximate the previous RBF network’s residual error ES =
[ej1 , ej2 , ..., ejS ]

T with (1) multiplied by its output weight βn+1, we are actually
solving the following equations,

βn+1 exp

(
−‖xp − c‖2

σ2

)
= ep, p = j1, j2, . . . , jS (5)
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Since the residual errors of local set S are in the range (τeA, eA), which means
they are with the same sign, βn+1 should also be the same sign. So for each
pattern in the local set S, we can derive (5) as,

− 1

σ2

D∑
d=1

x2
p,d +

2

σ2

D∑
d=1

cdxp,d − 1

σ2

D∑
d=1

c2d + ln |βn+1| = ln |ep| (6)

in which, xp,d denotes the dth dimension of the pth pattern, cd is the dth dimen-
sion of the center c. The equation is actually a standard linear regression format,

Xw = b, (7)

in which

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑D
d=1 x

2
j1,d

xj1,1 xj1,2 · · · 1

∑D
d=1 x

2
j2,d

xj2,1 xj2,2 · · · 1

...
...

...
. . . 1

∑D
d=1 x

2
jS ,d xjS ,1 xjS ,2 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

w =

[
− 1

σ2
, 2

c1
σ2

, 2
c2
σ2

, . . . , 2
cD
σ2

, − 1

σ2

D∑
d=1

c2d + ln |β|
]T

(9)

b = [ln |ej1 |, ln |ej2 |, . . . , ln |ejS |]T (10)

For the linear regression (7), we can easily get the optimal w,

w =
(
XTX

)−1

XTb (11)

Combined with (9), we can determine all the parameters of the new hidden
nodes (center c, width σ and output weight β). However, because the above
approximation only used filtered local set S, global convergence of the entire
RBF network is not guaranteed. On the other hand, for a gaussian function,
parameters determining peak location (center and height) are local parameters
while the width is more related to its global character. So the proposed GI
algorithm used the center c and output weight β from above computation and
tunes the width in another simple rule.

3.3 Width

As center and weight are determined by local regression, width of the added
hidden node is also necessary to be tuned. As presented by N. Benoudjit et al.
[22], widths play an important role in the RBF networks approximation. The
fast extreme learning machine was also shown to be improved significantly by
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Fig. 3. Approximation result comparison of a 1-dimension example while using differ-
ent width. With the optimal center determined in previous section, all the three cases
use (4) to determine output weight. The red line used the ideal width; the green line
selected a small width; the cyan line picked a big width.

tuning width [20]. The proposed GI algorithm tunes the width of the new added
RBF node using an efficient iterative rule.

As mentioned in section 3.1, output weight is quite easy to determine by (4)
once center and width are fixed. Since sum squared error (SSE) shown in (3) is a
convex function of weight (βn+1), the optimal weight can also guarantee SSE to
be decreasing while adding more hidden nodes. That means, formula (4) could
guarantee the constructive algorithm’s global convergence. However, given a bad
width, approximation result is still far from optimal. Fig. 3 shows a 1-dimension
example.

From the figure, one can observe that the optimal approximation results from
a proper width which makes the weight calculated by (4) match the optimal
weight we get by local regression (point B in the figure). Though the three cases’
approximation results look very different, the area under them are similar. In
fact, to minimize SSE, a thinner gaussian with a bigger height would always be
better than a thinner gaussian with a smaller height; a fatter gaussian with a
smaller height would always be better than the one with a bigger height. So the
proposed GI algorithm approaches a start width to optimal by equaling its area
to the new gaussian with a new width and our optimal weight.

Lemma 1. The area or integration of a D-dimension gaussian function with
width σ, output weight β is,

Area =
√
πDβσD (12)

Assume in previous section, we get the optimal center copt and weight βopt.
Given the width in the tth iteration σt, the weight calculated from (4)
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using σt notes as βt, for the (t+ 1)th iteration, we equal the new gaussian’s
area whose {width,weight} = {σt+1, βopt} to the old gaussian’s area whose
{width,weight} = {σt, βt},

√
πDβoptσ

D
t+1 =

√
πDβtσ

D
t (13)

from which, we can get the update rule of width,

σt+1 = D

√
βt

βopt
σt (14)

While updating width of the added RBF node with (4) (14), it is approaching
to the optimal one.

3.4 Pseudo Code

Since all the parameters (center, width, weight) are trained in simple process, the
proposed GI algorithm could approximate functions very efficiently. The pseudo
code of the whole training process can be seen below.

Given a D-dimension training set with P patterns {X,Y}.

Desired error is d, maximum number of RBF nodes is N.

Initialize n = 0.

while n<N and SSE>d

1. n = n + 1

2. pick max point A

3. filter local set around A as S

4. use points in S following (7)-(11) do regression, get

optimal center(c) and weight(ww)

5. fix center as c, initialize width as sgm0, calculate new

weight ww0 with (4), set a threshold th

while |ww0-ww|>th

(1) update new width sgm1 with (14)

(2) use sgm1 to calculate weight ww1 with (4)

(3) sgm0 = sgm1

(4) ww0 = ww1

endwhile // optimal width is sgm0

6. calculate output y of the new RBF node

(center=c, width=sgm0, weight=ww)

7. update error: err = err - y, calculate SSE

endwhile

4 Experiments

In this section, several highly nonlinear functions with noise are given to test the
efficiency of the proposed GI algorithm. The experiments results are compared



A Greedy Incremental Algorithm 153

with other popular RBF algorithms, including support vector regression (SVR)
[11], extreme learning machines (ELM) [17,18,19].

The testing environment consists of: Windows 7 Enterprise 64-bit operating
system, Intel R© CoreTM 2 Quad CPU Q8400 2.67GHz processor, 4.00GB RAM,
MATLAB R2012a platform.

4.1 Peaks Function

Peaks function is a popular 2-dimension nonlinear benchmark for approximation
test. In this paper, we used normalized format of peaks function (15). Fig. 4
shows the mesh plot of the peaks function.

z =(0.3 + 1.8x+ 2.7x2) exp(−1− 6y − 9x2 − 9y2)−
(0.6x− 27x3 − 243y5) exp(−9x2 − 9y2)−
1

30
exp(−1− 6x− 9x2 − 9y2)

(15)

In the experiment, 2000 points were generated randomly in the range [−1, 1]
as training sets and another 1000 points generated in the same way as testing
sets. All the patterns were added a guassian noise with variance Var = 0.01.
The RBF network was trained with the given training set by the GI algorithm
and some other popular RBF algorithms, including extreme learning machines
(ELM) and support vector machine (SVM) for regression.

For the proposed GI algorithm, we set parameters K = 200, τ = 0.5 for
filtering local set, threshold th = 0.01 for width tuning. We used four versions
of extreme learning machines: batch Extreme Learning Machine (ELM) [16]
and try different architecture, Incremental Extreme Learning Machine (I-ELM)

Fig. 4. Peaks function
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Table 1. Comparison of RBF algorithms while approximating peaks function

Algorithm GI ELM I-ELM EI-ELM CI-ELM SVR

training error (RMSE) 0.114 0.1117 0.1966 0.1916 0.1963 0.1142
testing error (RMSE) 0.109 0.1089 0.1912 0.2116 0.1908 0.1107
training time (s) 0.0622 0.801 0.094 0.9206 0.1205 193.7296
# hidden nodes 10 48 200 200 200 764

[17], Enhanced Incremental Extreme Learning Machine (EI-ELM) [18], Convex
Incremental Extreme Learning Machine (CI-ELM) [19]. All the ELMs used RBF
kernel with following format,

g(x) = exp(−λ‖x− c‖2), x, c ∈ RD, λ ∈ R+ (16)

in which, λ is called impact factor. All the ELMs generated random centers in
the range [−1, 1], random impact factors in the range (0, 0.5]. For batch ELM, we
added hidden node one by one from zero and each time did the pseudo inverse.
The EI-ELM algorithm used parameter k = 20.

The paper used LIBSVM [26] to train support vector machine for peaks ap-
proximation. Parameters of SVR (penalty C, impact factor γ) are grid searched
where C ∈ {1, 10, 100, 1000}, γ ∈ {0.001, 0.01, 0.1, 1}. The optimal option was
C = 1000, γ = 1, whose result was shown in Table 1. From the comparison table,
one can see that the proposed GI algorithm worked very efficient to construct a
compact RBF network.

4.2 Control Robot Arm Kinematics

The kinematics problem is a classic industrial application of function approxi-
mation [27]. The purpose of this problem is to simulate the movement of robot’s
end effectors and locate the position when joint angles change. Fig. 5 shows a
2-link planar manipulator.

From the figure, one can calculate the coordinates of the end effector by the
following formula,

x = L1cos(α) + L2cos(α+ β) (17)

y = L1sin(α) + L2sin(α+ β) (18)

In this paper, we fix the two arm lengths (L1, L2) to be 1 and just give the
approximation of the x-coordinate. The y-coordinate can be approximated in a
same way. The surface of x-coordinate is shown in fig. 6.

We generated 40 × 40 points uniformly in the range [−π, π] as training set.
Another 1000 points were generated randomly in the same range for testing.
Both training and testing sets were added white gaussian noise with variance
Var = 0.01. All the algorithms were used in a similar setting to construct an
RBF network for the approximation task. The comparison results are shown
in Table 2. This experiment also illustrated the efficiency of the proposed GI
algorithm.
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Fig. 5. The 2-link planar manipulator

Fig. 6. Mesh plot of x-coordinate versus the two angles α and β

Table 2. Comparison of RBF algorithms while solving kinematics problem

Algorithm GI ELM I-ELM EI-ELM CI-ELM SVR

training error (RMSE) 0.2152 0.1245 0.4925 0.3065 0.5537 0.0796
testing error (RMSE) 0.2074 0.1275 0.4883 0.9984 0.5516 0.1233
training time (s) 0.1581 0.3141 0.1035 0.7888 0.1035 498.0173
# hidden nodes 6 33 200 200 200 738
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5 Conclusion

In this paper, a simple greedy incremental(GI) algorithm was proposed for RBF
network construction. The proposed algorithm is similar to other constructive
algorithm: adding hidden node one by one, each added node is trained once and
then fixed. The training of each added hidden node is divided into 2 steps:

1. filter the training set into a local set S around the pattern with biggest error
magnitude and do local regression to determine optimal center and weight;

2. tune width iteratively using a simple update rule.

Several highly nonlinear practical experiments were given and presented the
efficiency of the proposed GI algorithm, by comparing with other popular RBF
algorithms.

Though the GI algorithm could achieve a compact RBF network efficiently,
a big disadvantage exists. The mechanism of the construcitve algorithm that
training each hidden node once and then fixed is not quite reasonable. The GI
algorithm alone can not achieve high accuracy, either. So further research will
focus on the fine-tuning of the RBF network after training with GI algorithm.
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