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1 Introduction

Tool wear and tool breakage are two important aspects of the metal cutting
process that are not well understood. Tool wear has a strong effect on both the
dimensional accuracy and the surface finish of the workpiece. Wear can reach
values that lead to catastrophic failure of the tool, resulting in high forces which
in turn may damage the workpiece or even the machine tool. This fact stresses
the importance of tool monitoring.

Various methods for tool wear sensing have been proposed and evaluated in
the past but none of them proved to be universally successful due to the complex
nature of the cutting processes. There are two methods for online tool condi-
tion monitoring in machining processes. These methods have been classified into
direct (optical, radioactive and electrical resistance, etc.) and indirect (acoustic
emission, motor current, cutting force, vibration, etc.) sensing methods accord-
ing to the sensors used. Recent investigations focus on the development of the
methods which monitor the cutting process indirectly by measuring parameters
such as tool vibration, force cutting, acoustic emission, motor current, etc.

The applied indirect methods suffer from the fact that not only the wear but
other process parameters also influence the measurement results. These are the
workpiece and tool materials, the geometry of the cutting tool and the techno-
logical parameters: cutting speed, feed and depth of cutting.

In order to improve the decision about the tools condition the majority of
applications rely on various signal sources at the same time and merge them after
filtering out unavoidable noises inherent to cutting and extracting the features
carrying information about the . Obvious solutions for fusion of the sensory
signals are the artificial neural networks and fuzzy rule-based systems.

Fig. 1. The signal processing chain of a tool monitoring system
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An artificial neural network consists of a number of identical processing units
usually structured in two to four layers. The fundamental processing element
is the perceptron, which calculates the weighted sum of its input, and passes
the result through a non-linear threshold function: a simple signum function, a
hyperbolic tangent or the sigmoid. The non-linear behaviour of the threshold
function allows a neural network to extend the reach of pattern classification
capabilities into the domain of generalised non-linear functions.

Fuzzy logic is a convenient way to map an input space to an output space.
The mapping provides a basis from which decisions can be made. The process
of fuzzy inference involves membership functions, fuzzy logic operators, and if-
then rules. A membership function is a curve that defines how each point in
the input space is mapped to a membership value (or degree of membership)
between 0 and 1. There are two types of fuzzy inference systems Mamdani-type
and Sugeno-type.

2 Overview of the Various Signals Generated by
Machining

Forces and Torque in Cutting Processes. Torque, drift and feed force
with the strain measurement are all measures of cutting forces and are strongly
depend on the tool wear. These dynamic parameters generally increase as the
tool gradually wears due to the increasing friction between tool and workpiece.

Monitoring the torque and thrust force is the most common method to collect
information about the amount of tool wear in drilling. Cutting forces are affected
by experimental conditions such as cutting speed and feed, workpiece material
and type of the tool.

AE Signal Associated with a Cutting Process. Machine tool operators
have for a long time used their ears as a means of monitoring the cutting process.
Skilled machine tool operators are able to judge the change of the tool condition
especially the variation of tool wear and an emerging tool failure. They are also
able to predict surface the finish simply by listening to the cutting process. The
term acoustic emission refers to the release of strain energy in the form of elastic
waves associated with the deformation in the frequency range of 20− 2000 kHz
[1].

The various sources of acoustic emission in machining are listed below:

– plastic deformation and shear of work material
– deformation and sliding friction at the chip-tool surface
– sliding friction at the tool flank
– chip breaking and their impact on the cutting tool or workpiece
– normal and abnormal wear of the tool
– mechanical and thermal crack of the tool

In conventional machining, acoustic emission is largely due to rubbing and fric-
tion at shear zone. In the precision machining, however, it is believed that the
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majority of AE signal generation is generated through the interaction of the
tool tip with microstructural features of the workpiece, such as voids, inclusions,
grain boundaries, and bulk dislocation interactions in the shear zone [2,3,8].

Fig. 2. AE sources at various stages of material removal

There are two types of acoustic emissions: the high amplitude, somewhat
erretic, low frequency type called the burst emission which is generally associated
with surface events, such as slip line formation and surface microcracks and the
lower amplitude, steady and high frequency type called continuous emission that
is generally associated with internal mechanism activity.

In recent years many researchers have investigated AE signals from metal cut-
ting processes and their feasibility for in-process monitoring of tool conditions.
The majority of the publications deal with the monitoring and supervision of
turning and milling. One important goal of studying the AE from metal-cutting
processes has been understanding the toolwear related AE variations and evalu-
ating their capability for in-process monitoring of the tool condition. Two pos-
sibilities have been identified. One is the increase of the level AE energy (the
RMS value of the signal) with increase of the flank wear. The other one is the
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increase of the density and event counts (the number of events) exceeding a
certain threshold.

Iwata and Morikawi [10] observed that the RMS voltage of the AE signal
increased significantly as the carbide tool wore during the machining of carbon
steel workpiece. They reported that flank wear has a more significant effect on
the average RMS value than the change of cutting speed. Later it was found
that cutting speed has a major influence in increasing the average RMS level
and that the magnitude of the average AE signal increases abruptly as the tool
wear penetrates through the coating of coated tools.

The relationship between the mean value of the AE signal and the flank was
also studied by Kannetey-Asibu and Dornfeld [7]. They observed that the AE
level change decreases or stops when the flank wear reaches some intermediate
value. This phenomenon was attributed to the rapidly developing crater wear.
Therefore they suggested the skew of the statistical distribution of the RMS
value as a better indicator of the tool wear. Another interesting observation of
this group was that the frequency spectrum contains dominant frequencies at
80 and 150 kHz and that the power spectrum amplitude at these frequencies
increases with the tool wear.

Inasaki and Yonetsu [5] have found that the AE amplitude is independent
of the depth of cut and the feed per revolution but increases continuously with
the increasing cutting speed. For constant cutting speed, AE increases approx-
imately linearly with the flank wear over the whole range of the cutting speed.
The authors reported that the flank wear estimated using the AE signal and
the optically measured values showed very good agreement, with less than 15%
deviation.

Tool wear has also a significant effect on the density of pulse events in the AE
signal. Iwata and Moriwaki [10] observed that the pulse count per cut increases
with increasing flank wear up to about 120 µm and remained constant above
that, but the data showed a significant degree of scatter. Inasaki and Yonetsu
[5] found sudden increase in the even count rate after a tool developed extensive
flank wear and at the same time an increase in the standard deviation of the
count rate at this point. This phenomenon was attributed to the development
of microcracks in the tool. Although the pulse event count seems to be well
correlated to flank wear, many problems inhibit the usage of this relationship in
process monitoring. The major problem is that a system based on this principle
has to be calibrated for each specific machining condition and the selection of
the threshold level for the pulse event count is somewhat arbitrary.

Tool fracture results in a sudden increase of the AE amplitude as it was
already observed by Inasaki and Yonetsu [9]. Analysis of the data from cutting
experiments using various speeds, feeds and depth of cuts also showed that the
ratio of the AE amplitude before and after the breakage exceeds 1.8. Using this
ratio they were able to detect edge chipping with fracture are of about 0.1 mm2.
In case of significantly worn tool this shift decreases. However, by filtering out
the frequencies below 300 kHz the effect of wear can be reduced and even the
detection of microcracks was reported.
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In a recent paper R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld [11] give
an overview of the different approaches to tool condition monitoring. They also
compare them from various points of view. Beside force base detection special
attention is given to acoustic emission based systems and signal fusion techniques
applied in current experimental setups.

Hase [4] describes the application acoustic emission monitoring of the tool
condition in a high precision turning environment they have found that Sensing
contact of cutting tool and workpiece would be possible with high precision of
0.1 µm using the AE technique, the amplitude of the AE signal increases as the
spindle rotating speed and the cutting depth increase, adhesion of the workpiece
material to the rake face of the cutting tool (the formation of built-up edge) can
be identified by detecting a high frequency AE signals of more than 1 MHz. The
same results were achived by S. Min, J. Lidde, N. Raue, D. Dornfeld [9].

Vibration Generated by Machining Processes. Vibrations in machining
can be divided into two groups: dependant and independent of the manufac-
turing process itself. Independent vibration include forced vibration caused by
machine components, e.g. unbalance of rotating parts, inertia forces of recipro-
cating parts and kinematic inaccuracies of drives. Vibration dependant on metal
cutting can demonstrate a number of characteristics as a function of the pro-
cess, e.g. interrupted cutting. The varying cutting forces that occur during metal
cutting may result from non-homogeneity and properties variations in the work
material. Tool engagement conditions during machining play a notable role in
the vibration produced. The self excited vibration characteristic known as chat-
ter is the most renowned type of vibration in machining and it leads to surface
finish deterioration and decrease of tool life. Chatter occurs due to the waviness
regeneration caused by material surface and tool interaction at particular spindle
rotational frequencies, and by mode coupling where relative vibration between
workpiece and tool.

3 Drill Condition Monitoring

3.1 Description of the Solution

Drill wear was classified into seven types: the outher corner wear, the flank wear,
land wear, crater wear, two types of chisel edge wear and chipping on the cutting
edges. Out of the various wear patterns the outer corner wear is considered as
the most appropriate performance index of drill life.

Drilling operation represents approximately 40% of all machining operation.
Therefore the role of monitoring tool condition became important, especially in
case of small twisted drills with diameter in the 0.5 − 5 mm range. Drill wear
can be classified in outer corner wear, flank wear, land wear, crater wear, two
types of chisel edge wear and chipping on the cutting edges. Corner wear is the
best performance index of drill life. As wear cannot be measured directly in the
process, indirect measuring methods have to be applied. For this purpose process
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Fig. 3. Various types of wear on a twist drill

signatures like cutting and trust force, torsional vibration, acoustic emission, etc.
can be used.

Increasing wear at the outher corner or margins excite torsional vibration
in the worn drill, causing a periodic change in the length of the tool due to its
spiral form, resulting in chip thickness variation. The cutting speed at the outher
corners of the vibrating drill is several times higher than in a stable process. The
wear-induced vibration can be detected using acoustic emission sensors.

For the fusion of sensory signals neural networks is the obvious solution. The
neural network structure used in our investigations was a multilayer feed-forward
neural network that uses the backpropagation learning algorithm. The input
layer has one node for each feature extracted from the raw signature. In the
output layer, the number of perceptrons is determined by the number of possible
classes and their coding.

In our case for monitoring the drill condition the following features have been
used:

– rms value of the power in the band 0− 300 Hz
– rms value of the power in the band 300− 600 Hz
– rms value of the power in the band 600− 1000 Hz
– rms of the power in the band 1000− 1500 Hz
– rms of the power in the band 1000− 1500 Hz
– rms of the power in the band 1500− 2000 Hz

3.2 Experimental Setup

The experimental drill monitoring system was set up on a manually operated
conventional milling machine.

For capturing the acoustic emission and the vibration signals an AKL 85 and
a KD 91 broadband sensor were attached to the workpiece close (50 mm) to the
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Fig. 4. Experimental setup of the drilling process

actual cutting zone. The feed force was measured by a Kistler dynamometer.
The signals were amplified by charge amplifiers.

The acoustic emission signal was directly processed by a Krenz broadband
spectrum analyzer with 2 MHz bandwidth and at the same time the RMS value
was sampled by a data acquisition board on a personal computer. The force and
vibration signals were processed using the same data acquisition board, but with
a much lower sampling rate.

3.3 Experimental Results

The aim of experiments was finding suitable features for tool wear and failure
detection. As the experiments proved, the torsional vibration resulted in dom-
inant frequencies in both the AE and the low frequency vibration spectrum.
The power spectrum of the AE signal has a dominant frequency around 80 kHz
and shows dramatic increase at the end of the tool life. One can also notice the
appearance of a new peak at 100 kHz in the spectrum of the worn tool.

The experiments showed no significant influence of the cutting parameters
and the workpiece material on the place of the dominant frequencies in the AE
spectrum, only their amplitude was effected.

The behaviour of the low frequency vibration signal as function of the tool
wear was also investigated. A rather similar pattern signalling excessive tool
wear and tool failure was found. As it can be seen in Fig.7 there is a dominant
frequency in the spectrum in the neighbourhood of 6.5 kHz. The amplitude of
this peak shows close correlation with the condition of the tool. Moreover, it was
found that the frequency of this peak is independent of the machining parameters
(revolution, feed) and the material of the workpiece.
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Fig. 5. AE spectrum of sharp and worn 1.5 mm diameter twist drill (material KO36
feed 25 mm/min, 2500 rev/min)

Fig. 6. Vibration spectrum of 1.5 mm diameter twist drill (material KO36 feed
25 mm/min, 2500 rev/min)
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The third signal measured during the machining experiments was the feed
force. In the subsequent figure the AE average value shown together with the
value of the feed-force. One can notice the increase of the AE activity as the tool
wears. This trend in the AE activity can be observed even after the toolbreak
when the force falls back to a low value.

Fig. 7. AE activity and feedforce during tool failure

However, at the end of a cut similar signature can be observed even under
normal cutting conditions. This can lead to incorrect recognition of the tool
conditions. To avoid recognition mistakes, information about the signal trend is
incorporated in the decision process.

In our experiment for sensor fusion two types of networks has been used:
multilayer feedforward network and the single category based classifier which is
actually a weighted majority based decision-maker. The tables below summarise
the correct recognition rates, that was achieved, by the two networks in the
various sensor fusion experiments.

Table 1. Correct recognition rate of the multilayer feedforward network

Sensor Combination Correct Recognition Rate

RMS AE + Force 94%
RMS AE + Vibration 72%
Vibration + Force 85%

Table 2. Correct recognition rate of the single category based classifier

Sensor Combination Correct Recognition Rate

RMS AE + Force 96%
RMS AE + Vibration 75%
Vibration + Force 89%
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Table 3. The influence of the number of input features on the correct recognition rate
is given in case of a single category based classifier

Number of Input Features Correct Recognition Rate

2 94%
4 96%
6 96%
8 82%

Table 4. Recognition rate using fuzzy reasoning

Tool condition Recognition Rate

Initial 61%
Normal 89%
Acceptable 81%
Severe 76%
Tool failure 100%

4 Conclusion

An on-line drill wear/failure monitoring system was developed and evaluated
in this study. On the basis of these investigations the following conclusions can
drawn:

– By applying a neural network in combination with an AR time series model
a considerable improvement in the correct tool condition recognition rate
can be achieved.

– The AE RMS + Force signal based tool wear detection system is insensitive
to the changes of the cutting conditions and can operated over a wide range
of cutting parameters.

– It was recognised that for tool wear detection a relatively small neural net-
work works well.

– The single category based classifier has the advantage over the multilayer
feedforward network the in can learn unsupervised which is advantageous in
an industrial environment.
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