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Abstract. We give survey of polynomial and matrix perturbation re-
sults that are necessary to understand and develop the invariant subspace
perturbation theorem we investigate in details. The main purpose of this
note is to point out special features of that result such as computability
and sharpness. We tested our perturbation estimate on several matrices.
The numerical results indicate a high precision and also the possibility
of further development for theory and applications.
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1 Introduction

The eigenvalue problem of matrices is very important in theory and applications
and raises many questions. The eigenvalue problem and the polynomial equations
are intertwined via the characteristic polynomial. The matrix and polynomial
perturbations have been studied from many aspects and the subject has quite
an enormous literature (see, e.g. [25], [37], [5], [1]).

Here we are seeking for numerically computable perturbation estimates for in-
variant subspaces. In Sections 2 and 3 we recall those basic results and concepts
we need for our investigations and also provide comparisons as well. In Section
4 we present computable estimates for the perturbation of invariant subspaces
of unreduced Hessenberg matrices. The last section contains the details of com-
putation and examples of numerical testing with some conclusions.

2 Polynomial Perturbation Results

The first computable estimate for the perturbation of polynomial zeros was given
by Ostrowski [28] in 1940. He later extended this result to matrices using the
fact that their characteristic polynomials are sufficiently close for perturbations
small enough [29],[30].

Theorem 1 (Ostrowski [28]). Let p(z) = zn + a1z
n−1 + · · ·+ an and q(z) =

zn + b1z
n−1 + · · · + bn. For any root xi of p (z), there exists a root yj of q (z)
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such that

|xi − yj | ≤
{

n∑
k=1

|ak − bk|γn−k

}1/n

, (1)

where γ = 2max1≤k≤n{|ak|1/k, |bk|1/k}. Furthermore, the roots of p and q can
be enumerated as α1, . . . , αn and β, . . . , βn, respectively, in such a way that

max
i

|αi − βi| ≤ (2n− 1)

{
n∑

k=1

|ak − bk|γn−k

}1/n

. (2)

If |aj − bj | ≤ ε, j = 1, . . . , n, then maxi |αi − βi| = O
(
ε1/n

)
. This basic result

is widely used in the literature as a final state of the art (see, e.g. [34], [9]).
However, Beauzamy significantly improved the estimate in 1999. For polynomial

p (z) =
∑n

j=0 ajz
n−j , define the Bombieri-norm as [p]B =

(∑n
j=0 |aj |2 /

(
n
j

))1/2
.

Theorem 2 (Beauzamy [3]). Let k ≥ 1 be an integer, p (z) and q (z) be two
polynomials of degree n, with [p− q]B ≤ ε. If xi is any zero of p (z) with multi-
plicity k, there exists a zero yj of q (z), with

|xi − yj| ≤

⎛
⎜⎝ n!

(n− k)!

(
1 + |xi|2

)n/2
∣∣q(k) (xi)

∣∣
⎞
⎟⎠

1/k

ε1/k. (3)

If

ε ≤ (n− k)!

2n!

∣∣p(k) (xi)
∣∣(

1 + |xi|2
)n−k

2

, (4)

then (3) implies

|xi − yj| ≤

⎛
⎜⎝ 2n!

(n− k)!

(
1 + |xi|2

)n/2
∣∣p(k) (xi)

∣∣
⎞
⎟⎠

1/k

ε1/k. (5)

This result of local character implies that in the neighborhood of a zero xi

of multiplicity k < n the order of perturbation is O
(
ε1/k
)
, which is definitely

better than O
(
ε1/n

)
(ε → 0), if p (z) has at least two different zeros.

Inspired by Beauzamy’s result we developed the following estimate in a dif-
ferent way [14].

Theorem 3 ([14]). Assume that p (z) = zn+a1z
n−1+ · · ·+an−1z+an has the

distinct roots z1, . . . , zk with multiplicity n1, . . . , nk. Let p̃ (z) = zn + ã1z
n−1 +

· · ·+ ãn−1z + ãn be a perturbation of p with ãi = ai + εi, |εi| ≤ ε, i = 1, . . . , n.
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For 0 < ε < ε′, there exist constants γi (i = 1, . . . , k) depending only on p (z)
such that disk

|z − zi| ≤ ri =

(
2 (ni)!γiε∣∣p(ni) (zi)

∣∣
)1/ni

(i = 1, . . . , k) (6)

contains exactly ni zeros of the perturbed polynomial p̃ (z) provided that ri <
1
2 min� �=j |z� − zj|.

Note that the order of perturbation bound is given by the multiplicity ni of
the nearest root zi. It also follows that the perturbation of simple roots is of
order O (ε). The estimates of Theorems 2 and 3 are compared in [14].

3 Eigenvalue and Subspace Perturbations of Matrices

Ostrowski [29], [30] proved the first computable bound for the perturbations of
matrix eigenvalues as well using Theorem 1.

Theorem 4 (Ostrowski [29], [30]). Let A = [aij ]
n
i,j=1, B = [bij ]

n
i,j=1 be two

matrices and

ϕ (λ) ≡ |A− λI| = 0, ψ (λ) ≡ |B − λI| = 0 (7)

the corresponding characteristic polynomials and equations. Denote the zeros of
ϕ (λ) by λi and those of ψ (λ) by μi. Put

M = max (|aij | , |bij |) (i, j = 1, . . . , n) , (8)

1

nM

∑
i,j

|aij − bij | = δ. (9)

Then to every root μi of ψ (λ) belongs to a certain root λi of ϕ (λ) such that we
have

|μi − λi| ≤ (n+ 2)Mδ1/n. (10)

Furthermore, for a suitable ordering of λi and μi we have

|μi − λi| ≤ 2 (n+ 1)
2
Mδ1/n. (11)

We need the concept of eigenvalue variation.

Definition 1. Let A,B ∈ Cn×n. Assume that σ (A) = {λ1, . . . , λn} and σ (B) =
{μ1, . . . , μn}. Let Sn be the set of all permutations of {1, 2, . . . , n}. The eigen-
value variation of A and B is defined by

v (A,B) = min
π∈Sn

{
max

i

∣∣μπ(i) − λi

∣∣} . (12)
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v (A,B) is also called the (optimal) matching distance between the eigenval-
ues of A and B (see, e.g. [37] or [5]). The next result is a reformulation and
improvement of Ostrowski’s matrix perturbation theorem although the order of
estimate is the same.

Theorem 5 (Bhatia, Elsner, Krause [4]). Let A,E ∈ Cn×n. Then

v (A,A+ E) ≤ 4× 2−1/n (‖A‖+ ‖A+ E‖)1−1/n ‖E‖1/n . (13)

The above results suggest an O
(
ε1/n

)
size perturbation of the eigenvalues

(ε = ‖E‖). However, Bauer and Fike proved the following result in 1960.

Theorem 6 (Bauer, Fike, [2]). If A is diagonalizable, i.e., A = XΛX−1 with
Λ =diag(λ1 (A) , . . . , λn (A)), then to each λi (A+ E) there is a λj (A) such that

|λi (A+ E)− λj (A)| ≤ ‖X‖∥∥X−1
∥∥ ‖E‖

using any norm for which ‖Λ‖ = maxi |λi (A)|.
Hence for diagonalizable matrices the perturbation order of eigenvalues is

O (ε) (ε = ‖E‖), which is much better than O
(
ε1/n

)
. For normal matrices this

bound is even better since X can be unitary matrix with a norm 1.
The Bauer-Fike theorem indicates a significant difference between the polyno-

mials and matrices. While Theorems 2 and 3 are sharp and in generally cannot be
improved, the Bauer-Fike theorems guarantees that the eigenvalue perturbations
of diagonalizable matrices are of order O (ε) independently of the multiplicities
of eigenvalues.

For non-normal matrices, Henrici [21] was the first to extend the Bauer-Fike
result. His result was improved by Chu [8].

Let Jk (λ) ∈ Ck×k be an upper Jordan block. For any A ∈ Cn×n, there exists
a nonsingular matrix X such that

X−1AX = diag (Jn1 (λ1) , Jn2 (λ2) , . . . , Jnk
(λk)) (14)

and
∑k

j=1 nj = n. The eigenvalues λi, i = 1, . . . , k are not necessarily distinct.
Denote by gm (c) the unique nonnegative real zero of equation

φm (x) =

m∑
�=1

x� = c (c ≥ 0). (15)

Function gm (c) is strictly monotone increasing and

min
{
c/m, m

√
c/m

}
≤ gm (c) ≤ m

√
c (16)

(for proof, see Henrici [21]).

Theorem 7 (Chu [8]). If A ∈ Cn×n has the Jordan canonical form (14), then
for any μ ∈ σ (A+ E) there exists λj ∈ σ (A) such that

|μ− λj | ≤ 1/gnj (1/θ) ≤ max
{
njθ, (njθ)

1/nj

}
(17)

holds with θ =
∥∥X−1EX

∥∥
2
.
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The result indicates an O
(
ε1/ni

)
perturbation of the eigenvalue λi having

multiplicity ni in the Jordan form (14) like in the polynomial case. One can
replace nj by m = maxi ni, the maximum size of Jordan blocks, which might be
less than the algebraic multiplicity of the eigenvalue λj . For k ≥ 2, this estimate
corresponds to those of Theorems 2 and 3 and is asymptotically better than
those of Ostrowski-Elsner type. The result can be rephrased as

v (A,A+ E) ≤ (2n− 1) /gm (1/θ) ≤ (2n− 1)max
{
mθ, (mθ)

1/m
}
, (18)

wherem = maxi ni and θ =
∥∥X−1EX

∥∥
2
. The result also follows from a Hoffman-

Wielandt type theorem of Song [35] (see also [14]).
Note that perturbation bounds of Theorems 2, 3 and 7 are sharp and cannot

be improved generally.
The use of Theorem 7 and the companion matrix of polynomials yield the

following polynomial perturbation theorem of global character [14].
Assume that p(z) = zn + a1z

n−1 + · · · + an−1z + an has the distinct zeros
z1, . . . , zk with multiplicity n1, . . . , nk. Then the Jordan form of its companion
matrix

C = C (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 −an
1 0 0

1
. . .

. . .
. . .

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

is given by

C = ΠV JV −1ΠT , (20)

where Π = [en, en−1, . . . , e2, e1], J =diag(Jn1 (z1) , . . . , Jnk
(zk)) and

V = [V1, . . . , Vk] (Vi ∈ C
n×ni), (Vi)pq =

⎧⎨
⎩

0, if p < q

(
p−1
q−1

)
zp−q
i , if p ≥ q

(21)

(see, e.g. [39], [40], [31] or [17]). The matrix V is called the confluent Vander-
monde matrix. The companion matrix is diagonalizable by similarity if and only
if all its zeros are distinct, i.e., k = n and ni = 1 (i = 1, . . . , n), when V is the
common Vandermonde matrix. Kittaneh [26] proved that C is normal (unitary)
if and only if p (z) = zn + an with |an| = 1

Theorem 8. ([14]). Assume that p (z) = zn+a1z
n−1+ · · ·+an−1z+an has the

distinct roots z1, . . . , zk with multiplicity n1, . . . , nk. Let p̃ (z) = zn + ã1z
n−1 +

· · ·+ ãn−1z + ãn be a perturbation of p with ãi = ai + εi, |εi| ≤ ε, i = 1, . . . , n.
For any root z̃i of p̃ (z), there exists a root zj of p (z) such that

|z̃i − zj| ≤ max
{
njθ, (njθ)

1/nj

}
(22)



246 A. Galántai

with θ =
∥∥V −1ΔV

∥∥
2
and Δ = −enw

T (wT = [εn, εn−1, . . . , ε1]). There also
exists a permutation π ∈ Sn such that for i = 1, . . . , n,

∣∣z̃π(i) − zi
∣∣ ≤ (2n− 1)max

{
mθ, (mθ)1/m

}
, (23)

where m = maxi ni.

Since θ = O (ε), perturbation bounds (22) and (23) are of order O
(
ε1/nj

)
and O

(
ε1/m

)
, respectively.

The perturbation of invariant subspaces is a much more complicated matter
than the perturbation of eigenvalues (see, e.g. Davis, Kahan [10] or [37], [5]).
A subspace M ⊂ Cn is an invariant subspace of A if Ax ∈ M for every x ∈
M. Particularly, each eigenvector x spans a one dimensional invariant subspace
V = {αx | α ∈ C}. For the theory of invariant subspaces we refer to Gohberg,
Lancaster and Rodman [18].

For Hermitan matrices there are other type of eigenvalue perturbation esti-
mates that are related to subspace perturbations (see, e.g. [5], [32]). An example
of such estimates is the following.

Assume that A ∈ Cn×n is Hermitian with eigenvalues λ1 ≥ · · · ≥ λn. If X has
orthonormal columns that span an invariant subspace S of A and M = XHAX ,
then AX − XM = 0. Assume that the columns of X span an approximate
invariant subspace Ŝ of A. Then the residual matrix R = AX−XM is expected
to be small. Assume that the eigenvalues of M are μ1 ≥ · · · ≥ μk and n − k
eigenvalues are well separated from the eigenvalues of M , that is a number
δ > 0 exists such that exactly n − k eigenvalues of A lie outside the interval
[μk − δ, μ1 + δ]. Then the following result holds.

Theorem 9 (Stewart [36]). If ρ = ‖R‖ /δ < 1, then there is an index j such
that λj , . . . , λj+k−1 ∈ (μk − δ, μ1 + δ) and

|μi − λj+i−1| ≤ 1

1− ρ2
‖R‖2
δ

(i = 1, . . . , k) . (24)

For nonnormal matrices Kahan, Parlett and Jiang [24] pointed out that “the
norms of residuals of the approximate eigenvectors are not themselves sufficient
information to bound an approximate eigenvalue”.

The perturbation of invariant subspaces is measured by the Jordan or canon-
ical angles between two subspaces. For definition and computation of canoni-
cal angles, we refer to [12], [13] or [19]. The kth subspace angle between the
subspaces M and N will be denoted by θk (M,N ), where k = 1, . . . , j and
j = min {dim (M) , dim (N )} .

For Hermitan or normal matrices there are several estimates for the canonical
angles given in various forms including quantities such as residual and/or sepa-
ration, which are difficult to compute in general (see, e.g. [10], [5], [32], [27]). In
order to give some insight we recall a result of Ipsen [23] for general matrices,
which is close to the results of the subsequent sections at least in character.
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Let the perturbed matrix A+E have an invariant subspace M̂, whose dimen-
sion is not necessarily the same as that of M. Let P and P̂ denote the orthogonal
projectors onto M and M̂, respectively. The absolute separation between A and
A+ E is defined by

abssep=abssep{A,A+E} = min
‖Z‖=1, PZ ̂P=Z

‖PAZ − Z (A+ E)P‖ . (25)

Theorem 10 (Ipsen [23]). If abssep> 0 then

max
i

sin θi

(
M,M̂

)
≤ ‖E‖ /abssep. (26)

Next we give a result on the perturbation of the invariant subspaces of unre-
duced Hessenberg matrices that provides a bound for subspace angles without
using any concept of separation.

4 Perturbation Results for Hessenberg Matrices

A matrix is called nonderogatory if exactly one Jordan block may belong to each
eigenvalue. A matrix is nonderogatory if and only if it is similar to an unreduced
upper Hessenberg matrix. The upper Hessenberg matrix H ∈ Cn×n is said to be
unreduced, if all hi+1,i elements are nonzero. If H is unreduced, then the last
and first entries of the right and left eigenvectors, respectively are nonzero.

Define vectors x, y ∈ Cn such that yHe1 = eTnx = 1 and

(H − λI)x = p(λ)e1, (27)

yH(H − λI) = p(λ)eTn (28)

hold, where λ is real or complex scalar. Here p (λ) is the characteristic polynomial
of H , which can be easily evaluated at any λ in a numerically stable way from
any of the above equations by the Hyman’s method (see [40], [41], [22] or [15]).

The following properties hold (see [15]).

Lemma 1. The components of x and y are polynomials in λ : xn−j and y1+j

have degree j (j = 0, 1, . . . , n− 1). The polynomial p(λ) is of order n.

Lemma 2. The k-th derivative of y, x and p(λ) with respect to λ satisfy the
relations

(H − λI)x(k) = kx(k−1) + p(k) (λ) e1, k = 0, 1, . . . (29)

and

y(k)H (H − λI) = ky(k−1)H + p(k) (λ) eTn , k = 0, 1, . . . , (30)

where y(k)H denotes the conjugate transpose of y(k) and differentiation is done
componentwise.
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Lemma 3.
p(k)(λ) = −kyHx(k−1) = −ky(k−1)Hx, k > 0 (31)

Define

X(r, λ) =

[
x (λ) , x′ (λ) ,

1

2!
x′′ (λ) , . . . ,

1

(r − 1)!
x(r−1) (λ)

]
. (32)

It was shown in [15], that if λi is an eigenvalue of H with multiplicity ni, then
the columns of matrix X (ni, λi) are the right generalized eigenvectors belonging
to λi and they span the corresponding invariant subspace. Gohberg, Lancaster
and Rodman [18] showed that such an invariant subspace of dimension ni can
define additionally ni − 1 different invariant subspaces of smaller dimension.
However, with respect to an eigenvalue, we shall think on the invariant subspace
of maximal dimension in the following. Observe that for s < r,

X (r, λ) =

[
X (s, λ) ,

1

s!
x(s) (λ) , . . . ,

1

(r − 1)!
x(r−1) (λ)

]
(33)

and R (X (j, λ)) ⊂ R (X (�, λ)) for j < �. We proved the following results in [16].

Theorem 11 ([16]). Assume that both H ∈ Cn×n and its perturbation Ĥ =
H+E are unreduced upper Hessenberg matrices for ‖E‖ (‖E‖ ≤ ε) small enough.
Assume that λi is an eigenvalue of H with multiplicity ni and μi is a nearby
eigenvalue of Ĥ with multiplicity mi (1 ≤ mi ≤ ni). Let P be the orthogonal

projection on R (X (ni, λi)), X1 = X (mi, λi), X̂1 = X̂ (mi, μi) and ΔX1 =

X̂1−X1. If θk denotes the kth subspace angle between the corresponding invariant

subspaces R (X (ni, λi)) and R
(
X̂ (mi, μi)

)
, then for k = 1, . . . ,mi,

0 ≤ sin θk ≤
(
2
∥∥∥(XH

1 X1

)−1
∥∥∥)1/2 ‖(I − P )ΔX1‖ . (34)

Corollary 1. There exists a constant C > 0 such that

0 ≤ sin θk ≤
(
2
∥∥∥(XH

1 X1

)−1
∥∥∥)1/2 ‖ΔX1‖ ≤ Cε1/ni (k = 1, . . . ,mi). (35)

Corollary 2. Under the conditions of Theorem 11

sin θk = O
(
(μi − λi)

ni−mi+1
)
= O

(
ε

ni−mi+1

ni

)
(36)

for k = 1, . . . ,mi.

The first corollary is a consequence of the perturbation theorems of Sections 2
and 3. It is somewhat crude in view of Corollary 2 but corresponds to the classic
eigenvalue perturbation results. It proves that invariant subspace perturbation
is continuous in a sense. It also indicates a positive distance from the set of
derogatory matrices (for other approach, see Gohberg, Lancaster, Rodman [18],
and Gracia, de Hoyos, Velasco [20]).
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The second corollary is based upon a refined estimate of (I − P )ΔX1 and
it is somewhat surprising. If an eigenvalue λ of multiplicity ni splits up into ni

simple ones, then sin θ1 = O (ε) in contrast to the eigenvalue perturbation, which
might be of O

(
ε1/ni

)
. Examples show the possibility of even better perturbation

results [16].
The results of this section were extended to dense perturbations of Hessenberg

matrices and general nonderogatory matrices as well [16].
The aim of this paper is to show the computational character and goodness

of the above results. Details of computations and numerical testing will be pre-
sented in the next section.

5 The Computational Algorithm and Testing

We need to compute the matrix X(r, λ) for a given H , λ and r, where

x (λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...

...

...
xn−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(k) (λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(k)
1
...

x
(k)
n−k

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

First we consider equation (H − λI)x = p (λ) e1. The nth row of the system
is

hn,n−1xn−1 + (hnn − λ) = 0.

For 1 < i < n, the ith row is given by

hi,i−1xi−1 + (hii − λ) xi + hi,i+1xi+1 + · · ·+ hi,n−1xn−1 + hin = 0.

We obtain the solution by the following backward substitution algorithm

xn−1 = (λ− hnn) /hn,n−1, (37)

xi−1 = −
⎛
⎝hin + (hii − λ) xi +

n−1∑
j=i+1

hijxj

⎞
⎠ /hi,i−1, i = n− 1, . . . , 2. (38)

This gives the vector x and also p (λ) = eT1 (H − λ)x (λ).
We calculate x(k) (λ) for 0 < k < n using relation

(H − λI) x(k) = kx(k−1) + p(k) (λ) e1, (39)
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which having the form

(H − λI)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(k)
1
...

x
(k)
n−k

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(k−1)
1
...

x
(k−1)
n−k

x
(k−1)
n−k+1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ p(k) (λ) e1 (40)

reduces to a (n− k + 1) × (n− k) problem. The last equation (row n − k + 1)
reads as

hn−k+1,n−kx
(k)
n−k = kx

(k−1)
n−k+1. (41)

Equation i (1 < i < n− k + 1) has the form

hi,i−1x
(k)
i−1 + (hii − λ) x

(k)
i +

n−k∑
j=i+1

hijx
(k)
j = kx

(k−1)
i . (42)

Hence the algorithm is the following

x
(k)
n−k = kx

(k−1)
n−k+1/hn−k+1,n−k, (43)

x
(k)
i−1 =

⎛
⎝kx

(k−1)
i − (hii − λ)x

(k)
i −

n−k∑
j=i+1

hijx
(k)
j

⎞
⎠ /hi,i−1, i = n− k, . . . , 2.

(44)
Thus we obtain x(k) and also p(k) (λ) from the relation eT1 (H − λI) x(k) =
kx(k−1) + p(k) (λ) (substitution into the first row). Observe that for computing
X (r, λ) we do not need to compute p (λ) or p(k) (λ). Since the computations are
performed on the same matrix H − λI in a numerically stable way (see Wilkin-
son [40], [41] or Higham [22]), the whole computation of X (r, λ) is numerically
stable.

For the numerical testing we wrote a Matlab program to compute X (r, λ)
for a given unreduced upper Hessenberg matrix H and eigenvalue λ with known
multiplicity r.

The other essential elements of computing an estimate are provided in Mat-
lab. However, instead of the original subroutine subspace.m for computing the
largest subspace angle, we used subroutines subspace.m and subspacea.mwhich
are due to Andrew Knyazev and can be downloaded from the site MATLAB
Central File Exchange.

We made two different types of numerical testing of our estimate.

1. H and H+E are companion matrices with known zeros (H , H +E and the
zeros are known exactly).
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2. H and H + E are given unreduced Hessenberg matrices with known zeros
and the approximate eigenvalue μi is computed by Matlab’s eig routine.
This routine is based on the QR-algorithm that is backward stable, which
means that it computes the exact eigenvalues of a perturbed matrix A+ E
with ‖E‖ ≈ εmachine ‖A‖ (see Golub, van Loan [19], Tisseur [38] or Kressner
[27]). However, the algorithm does not recognize the multiple eigenvalues
and there are some precision problems as well (see, e.g. [15]).

Next we show some characteristic results of the numerical testing.

Test problem No. 1: H = C (p (z)), H + E = C (p̃ (z)), where p (z) = z3 −
2z2 + z and p̃ (z) = z3 − (2 + ε) z2 + (1 + ε) z − (ε− ε2

)
. H has the single

eigenvalue λ = 0 and the double eigenvalue λ = 1 (n2 = 2). H + E has the
nearby simple eigenvalues λ = ε, λ = 1+

√
ε (m2 = 1) and λ = 1−√

ε. Selecting
λ1 = 1, n1 = 2, μ1 = 1 +

√
ε, m1 = 1 and making elementary calculations we

have

sin θ1

(
R (X (2, 1)) ,R

(
X̂
(
1, 1 +

√
ε
)))

=

=
ε(

42ε+ 6ε2 + 36
√
ε+ 24ε

3
2 + 18

)1/2 = O (ε) ,

which is exactly the bound of Corollary 2.

The following and the subsequent figures show the following quantities versus
‖E‖:

- the exact maxisin(θi) values computed with the routine subspace.m by
Knyazev [red line],

- the ratio maxi sin (θi) / ‖E‖a (a = (ni −mi + 1) /ni) to see if estimate
(36) can be improved [green line],

- the estimates (35) [est1 or cyan dashed line] and (34) [est2 or black
dotted line].

Logarithmic scales are used for both axes.

The results of test problem No. 1 are the following.
These results clearly correspond to the theory. Estimate (35) is indeed crude,

but it is still acceptable.

Test problem No. 2: H = C (p), H + E = C (p̃), where p (z) = z5 − z4

and p̃ (z) = (z +
√
ε)

2
(z −√

ε)
2
(z − 1), respectively. Selecting λ1 = 0, n1 = 4,

μ1 =
√
ε, m1 = 2 we obtain by a simple calculation that

sin θ1

(
R (X (4, 0)) ,R

(
X̂
(
2,
√
ε
)))

= 0

and
sin θ2

(
R (X (4, 0)) ,R

(
X̂
(
2,
√
ε
)))

= O
(
ε3/2
)
,

which is definitely better than O
(
ε3/4
)
shown by estimate (36). The computa-

tional results are shown on the next figure.
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Fig. 1. Test problem 1

Estimate (34) is very sharp. The ratio maxi sin (θi) / ‖E‖a indicates that the
perturbation order is much better than estimate (36).

Test problem No. 3: H = C (p), H + E = C (p̃), where

p (z) = (z − 1)
3
(z + 1) (z − 2)

and

p̃ (z) = (z − 1− ε)
2
(z − 1 + ε) (z + 1− ε) (z − 2 + 2ε) .

Here λ1 = 1, n1 = 3, m1 = 1 + ε, m1 = 2 and the computational results are
shown on the next figure.

Here we see again that estimate (34) is very sharp. The maxi sin (θi) / ‖E‖a
ratio indicates again that the perturbation order is much better than estimate
(36). The precision problem shown for the range ‖E‖ � 10−6 is due to the fact,
that the computed numbers are close to machine epsilon.

Test problem No. 4: H = HT
n (α), H +E = HT

n (α+ ε), where Hn (α) is the
Chow matrix [7], [11] defined by

Hn (α) = [hij ]
n
i,j=1 , hij =

⎧⎨
⎩

αi−j+1, i ≥ j
1, i = j − 1
0, i < j − 1

(45)



Perturbation of Invariant Subspaces 253

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Test problem 2

||E||

 

 

sin(theta)

sin(theta)/||E||a

est1
est2
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The Chow matrix can be found in Matlab gallery library. Chow [7] proved that
Hn has m = �n/2� zero eigenvalues and n−m eigenvalues of the form

4α cos2
kπ

n+ 2
(k = 1, . . . , n−m),

where �n/2� stands for the lower integer part of n/2.
The computational results are shown in the next figure for the parameters

n = 8, H = HT
n (1), H +E = HT

n (1 + ε) , λ1 = 0, ni = 4,. Observe that H +E
is also Chow matrix and it also has m zero eigenvalues. We present four cases
(Version 1-Version 4):

1. μ1 is the nearest to 0 eigenvalue of H+E provided by Matlab’s eig routine,
m1 = 1.

2. μ1 is the nearest to 0 eigenvalue of H+E provided by Matlab’s eig routine,
m1 = 4.

3. μ1 is the average of the eigenvalues (of eig) in the zero cluster near to 0,
m1 = 0.

4. μ1 = 0, m1 = 4 (The exact values).

The use of average for clustered (and suspected multiple) eigenvalues was
suggested by Saad [33] (Theorem 3.5). Numerical testing also indicates that
the multiple eigenvalues when perturbed, show a symmetric pattern around the
nonperturbed eigenvalue in the complex plane such that the mean of the errors
is fairly zero [6].

Version 1 corresponds the 1-dimensional invariant subspace X̂ (1, μ1). The
estimate seems to be sharp and it corresponds to theory even if μ1 is only an
approximate eigenvalue of H + E. Verson 2 simply shows that we can not take
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Fig. 4. Test problem 4/Versions 1-2
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Fig. 5. Test problem 4/Versions 3-4

the approximate μ1 as a multiple eigenvalue (for problems with Matlab’s eig

routine, see, e.g. [15]).
Figure 5 indicates that Version 3 gives a definitely much better result in

agreement with Version 4 that uses exact values.
The presented numerical results show the high precision of estimate (34) and

the limits of estimate (35). They also show that the obtained theoretical esti-
mates can be further improved in many cases the reason of which is yet to be
understood.
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13. Galántai, A., Hegedűs, C.J.: Jordan s principal angles in complex vector spaces.

Numerical Linear Algebra with Applications 13, 589–598 (2006)
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