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Abstract. The fuzzy decision systems contain fuzzified input and out-
puts parameters sequentially in premises and consequences of the deci-
sions rules. The interrelationship of those can be very different from the
basic relations described with if. . . then rules till the correlations of input
parameters described with cognitive maps. The paper gives a summary
of the fuzzy parameters’ inter-relationship investigated by the authors in
recent years based on fundamental results published by Imre J. Rudas,
or investigated in joint works with him.
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1 Introduction

The interrelationship of the system parameters of fuzzy decision making system
can be very different from the basic relations between parameters of premises
and parameters of consequences of the if. . . then rules till the correlations and
quantitative representation of relationships of input parameters from the set of
premises.

Fuzzy decision making systems can be constructed from if A then B types
of rules, where A and B are fuzzified system parameters and the mathematical
background of the calculation is based on the definition of fuzzy relations and
basic binary opera-tions of t-norms and conorms [9].

In the last few decades in fuzzy control systems the Mamdani type of decision
model is widely used, and beyond the min and max operators others are also
investigated in theoretical and practical environment in order to increase the
efficiency of the system operation.

The basic interrelationship of the fuzzy system parameters is this one, the
relationship between the t-norm or conorm operators or other aggregation op-
erators applied in fuzzy based approximate reasoning methods. Uninorms, and
especially generalized distance based operators, introduced by Rudas [1] continue
to bring new possibilities in fuzzy systems models. Distance-based operators as
the basic operators applied in approximate reasoning resulted investigation of
similarity measures of fuzzy sets and residuum of those special operators [2].
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Other investigations are focused on the representation of distance based oper-
ators in the group of uninorms and general aggregation operators. Considering
that the uninorms are parameter-dependent norms, it is possible to investigate
the behavior of the fuzzy decision making or control system by changing or
sliding the parameter values [3].

In complex systems it is very important to recognize the measure of interac-
tion and the measure of importance of the system parameters. This knowledge
can help one to construct the structure of the decision system. The models in-
vestigated by the authors and summarized in this paper are related to the risk
management systems, and the studied methods are the hierarchical construction
of decision making model and the AHP model [4].

2 Distance Base Operators

2.1 Definition and Special Properties

The distance-based operators can be expressed by means of the min and max
operators as follows [5]:

– the maximum distance minimum operator with respect to e ∈ [0, 1] is defined
as

Tmax
e = maxmin

e =

⎧
⎨

⎩

max(x, y) if y > 2e− x
min(x, y) if y < 2e− x
min(x, y) if y = 2e− x

(1)

– the minimum distance minimum operator with respect to e ∈ [0, 1] is defined
as

Tmin
e = minmin

e =

⎧
⎨

⎩

max(x, y) if y > 2e− x
min(x, y) if y < 2e− x
max(x, y) if y = 2e− x

(2)

– the maximum distance maximum operator with respect to e ∈ [0, 1] is defined
as

Smax
e = maxmax

e =

⎧
⎨

⎩

max(x, y) if y > 2e− x
min(x, y) if y < 2e− x
max(x, y) if y = 2e− x

(3)

– the minimum distance maximum operator with respect to e ∈ [0, 1] is defined
as

Smin
e = minmax

e =

⎧
⎨

⎩

min(x, y) if y > 2e− x
max(x, y) if y < 2e− x
max(x, y) if y = 2e− x

(4)

The modified distance based operators described above are changed in the
boundary condition for neutral element e:

– the maximum distance minimum operator and the maximum distance max-
imum operator with respect to e ∈ ]0, 1],
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– the minimum distance minimum operator and the minimum distance maxi-
mum operator with respect to e ∈ [0, 1[.

The distance-based operators have the following properties :

– maxmin
e and maxmax

e are uninorms,
– the dual operator of the uninorm maxmin

e is maxmax
1−e , and

– the dual operator of the uninorm maxmax
e is maxmin

1−e.

Based on results from [6] we conclude:
Operator maxmin

0.5 is a conjunctive left-continuous idempotent uninorm with
neutral element e ∈ ]0, 1] with the super-involutive decreasing unary operator

g(x) = 2e− x = 2 · 0.5− x ⇒ g(x) = 1− x.

Operator minmax
0.5 is a disjunctive right-continuous idempotent uninorm with

neutral element e ∈ ]0, 1] with the sub-involutive decreasing unary operator [2]

g(x) = 2e− x = 2 · 0.5− x ⇒ g(x) = 1− x.

2.2 Distance-Based Group of Operator in Fuzzy Inference
Mechanism

In control theory much of the knowledge of a controller can be stated in the form
of if-then rules, involving some variables. The fuzzy theory and fuzzy logic control
has been carried out searching for different mathematical models in order to
supply these rules. The Mamdani type of decision model is widely used in control
problems. In this model the IF x is A THEN y is B rule is modeled just as an
connection between so called rule premise: x is A, and rule consequence: y is B,
where A and B are fuzzy sets, and sequentially x is the rule input variable from
the universeX , and y is the rule output variable from universe Y . The connection
is represented by t-norm types of operators. From set of if . . . then . . . rules
the rule base system is constructed describing the system behavior. When the
system works, the influence of the system input is investigated based on the given
rule base. This influence is represented by the system output. The algorithm and
mathematical calculation of the actual system output is the inference mechanism.
One of the widely used methods for inference calculation in fuzzy control theory
is the generalized modus ponens (GMP). The system output y is B′ (similar to
rule output) is obtained when the proposition are: the rule

IF x is A THEN y is B,

and the system input x is A′ (similar to rule premise).
In Mamdani type of inference the general rule consequence for the i-th rule

from the rule base system is obtained by

B′
i(y) = sup

x∈X

(

T 1
(
A′(x), T 2

(
Ai(x), Bi(y)

))
)

, x ∈ X, y ∈ Y. (5)
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The connection T 1 and T 2 are generally defined, and they can be some type
of fuzzy conjunctive operators.

If we use the same T operator instead of T 1 and T 2 operators, based on the
t-norm operators’ properties, from the above expression follows

B′
i(y) = sup

x∈X

(

T
(
A′(x), T

(
Ai(x), Bi(y)

))
)

. (6)

Generally speaking, the consequence (rule output) is given with a fuzzy set
B′(y), which is derived from rule consequence B(y), as a cut of the B(y). This
cut,

DOFi = sup
x∈X

T
(
A′(x), Ai(x)

)
(7)

is the generalized degree of firing level of the rule, considering actual rule base
input A′(x), and usually depends on the covering over A(x) and A′(x). But first
of all it depends on the sup of the membership function of T (A′(x), A(x)). Rule
base output B′

out is an aggregation of all rule consequences B′
i(y) from the rule

base. As aggregation operator a disjunctive operator (conorm) is usually used.

B′
out = S

(

B′
n(y), S

(

B′
n−1(y), S

(
. . . S

(
B′

2(y), B
′
1(y)

)
. . .

))
)

. (8)

If in the application a crisp output yout is needed, it is constructed as a crisp value
calculated with a defuzzification method, from rule base output, for example with
the center of gravity method, given by

yout =

∫

Y

B′
out · y dy

∫

Y

B′
out dy

. (9)

It can be concluded, that in decision making approximate reasoning the (T, S)
pair of operators are used.

Instead of the operators T and S an operator from the group of distance-based
operators can be chosen. Considering the structure of distance based operators,
namely that they are constructed by the min and max operators; it was worth
trying to move away from the strictly applied max (disjunctive) and min (con-
junctive) operator pair in approximate reasoning. Therefore, in a simulation sys-
tems different operators from the group of distance based operators were applied
as disjunctive and conjunctive ones. Moreover, the distance based operators are
parameterized by the parameter e, therefore the program, which performs the
task of decision making in the simulation system, has global, optional, variables
(Con, Dis, e), where Con is the operator applied by GMP, and the Dis is the
aggregation operator for the calculation of the B′

out.
The neutral element of the Con operator is the parameter e, and the neutral

element of the Dis operator is the parameter 1− e. Details about the simulation
results can be found in [3]. Hence and because by the simulation the triple (Con,
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Dis, e) can be chosen by even running of the simulation system, it enables the
parameters to be set at every running of the system in order to achieve greater
efficiency.

Although the minimum plays an exceptional role in fuzzy control theory, there
are situations requiring new models. In system control one would intuitively
expect: to make the powerful coincidence between fuzzy sets stronger, and the
weak coincidence even weaker. The distance-based operators group satisfy these
properties, but the covering over A(x) and A′(x) are not really reflected by the
sup of the membership function for example if we use minmax

e to calculate degree
of firing as minmax

e

(
A′(x), Ai(x)

)
.

Hence, and because of the properties of distance-based operators, it was
unreason-able to use the classical degree of firing (7), to give expression of the
coincidence of the rule premise (fuzzy set A), and system input (fuzzy set A′),
therefore a Degree of Coincidence (Doc) for those fuzzy sets has been initi-
ated. This is actually the propor-tion of area under membership function of the
distance-based intersection of those fuzzy sets, and the area under membership
function of their union (using max as the fuzzy union).

Doci =

∫

X

minmax
e

(
Ai(x), A

′(x)
)
dx

∫

X

max
(
Ai(x), A′(x)

)
dx

(10)

This definition has two advantages:

– it considers the whole measure of coincidence of Ai and A′, and not only the
“height”, the sup of the coincidence, and

– the rule output is weighted with a measure of coincidence of Ai and A′ in
each rule.

How to get the rule output?
The rule output can be the cut of the rule consequence, in this case

B′
i(y) = min

(
Doci, Bi(y)

)
. (11)

Despite the fact that Mamdani’s approach is not entirely based on compositional
rule of inference, it is nevertheless very effective in fuzzy approximate reasoning.
Because of this it is possible to apply several t-norms, or, as in considered case,
distance based operators. This leads to further tasks and problems. The problem
of the measurement of covering over of the rule premise and rule input is partly
solved with the degree of coincidence. But in any case there must be a system
of conditions that is to be satisfied by the new model of inference mechanism in
fuzzy systems [8].

For a given input fuzzy set A′(x), in a mathematical-logical sense, the output
fuzzy set B′

i(y) in one rule, can be generated with the expression

B′
i(y) = max

(
Bi(y),

√
1−Doci

)
. (12)
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It is easy to prove, that Doci ∈ [0, 1], and Doci = 1 if Ai and A′ cover over
each other, and Doci = 0 if Ai and A′ have no point of contact.

Several pairs of distance-based operators have been tried out in a simulation
system for a control problem, with special emphasis on the pairs

(
Tmax
e , Smax

1−e

)

and
(
Tmin
e , Smin

1−e

)
.

The choosing of pairs
(
Tmax
e , Smax

1−e

)
and

(
Tmin
e , Smin

1−e

)
by the simulation, using

the same e value, gives results with negligible difference. So it was sufficient trying
out the pairs

(
Tmax
e , Smax

1−e

)
for example. The choosing of the pair

(
Tmax
e , Smax

1−e

)
,

where e is near zero, return in short time the desired state of the system, but it is
not stable. If e is near 1, the situation is known, because it develops to choosing
of pair (min,max). The desired state is obtained easier, and the systems stay
stable. It can be observed, that continual sliding of e from zero to 1 results
continual improvement in stability, and continual increasing time of obtaining
desired state in the system. The choosing of pair (Tmax

0.5 , Smax
0.5 ) gives acceptable

result by both criteria [7].

3 Interrelationship of the Input Parameters in Complex
Systems

A risk model is a multi-parameter and multi-criteria decision making system. The
complexity of the systems increases the runtime factor by the decision, and the
large system parameter set has not a user-friend transparency. The traditional
well-known models work without management of the uncertainties. The com-
plexity and uncertainties in those systems raise the necessity of soft computing
based models. The use of fuzzy sets to describe the risk factors and fuzzy-based
decision techniques to help incorporate inherent imprecision, uncertainties and
subjectivity of available data, as well as to propagate these attributes throughout
the model, yield more realistic results. The structural modeling of risk and disas-
ter management is case-specific, but the hierarchical model is widely applied. The
system characteristics are as follows: it is a multi-parametrical, multi-criteria de-
cision process, where the input parameters are the measured risk factors, and the
multi-criteria rules of the system behaviors are included in the decision process.
The Analytical Hierarchy Process (AHP) expands this complex system with the
pairwise comparison of the factors’ importance and interaction [10].

The techniques used in risk management have been taken from other areas
of system management. The first step is the identification of risks and potential
risks to the system operation at all levels. Evaluation, the measure and structural
systematization of the identified risks, is the next step. Measurement is defined
by how serious the risks are in terms of consequences and the likelihood of
occurrence. It can be a qualitative or quantitative description of their effects
on the environment. Plan and control are the next stages to prepare the risk
management system. This can include the development of response actions to
these risks, and the applied decision or reasoning method. Monitoring and review
will ensure that the risk management process is dynamic and continuous, with
correct verification and validity control.
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Generally, the risk management system in its preliminary form is a know-
ledge-based model, where objective and subjective knowledge is included in the
decision process. Considering the possible uncertainties and imprecision, and the
large number or quantitative description of the parameters, we can conclude that
the fuzzy set theory extended with the AHP matrixes manage complexity [11].

Fuzzy-based risk management models assume that the risk factors are fuzzified
(because of their uncertainties or linguistic representation); furthermore the risk
man-agement and risk level calculation statements are represented in the form of
if premises then conclusion rule forms, and the risk factor calculation or output
decision (summarized output) is obtained using fuzzy approximate reasoning
methods. Considering the fuzzy logic and fuzzy set theory results, there are
further possibilities to extend fuzzy-based risk management models modeling
risk factors with type-2 fuzzy sets, representing the level of the uncertainties of
the membership values, or using special, problem-oriented types of operators in
the fuzzy decision making process [4].

The hierarchical or multilevel construction of the decision process, the grouped
structural systematization of the factors, with the possibility of gaining some sub-
systems, depending on their importance or other significant environment char-
acteristics or on laying emphasis on risk management actors, is a possible way
to manage the complexity of the system [12].

4 The Present and Planned Further Works

The recent works of the authors of this paper are related to the interrelation-
ship of fuzzy decision system parameters based on the fuzzy cognitive maps of
them. It is obvious that the AHP matrix and weights of fuzzy cognitive maps
have a similar role in the relationship description of the system parameters,
but the determination, and later the tuning of them offers new challenges for
as the experts. Current active fields of investigation regarding interrelationship
description of the fuzzy system parameters includes risk management, medical
diagnostic problems and the student work evaluation.
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