
Chapter 4
Sensitivity and Reliability Analysis
of Engineering Structures: Sampling
Based Methods

M. Oberguggenberger

Abstract This chapter intends to present an overview of Monte Carlo-type methods
currently in use in the probabilistic analysis of large engineering structures. It starts
with an introduction to the generation of multi-dimensional random quantities. Next,
spatially distributed random properties, e.g., material or geometrical properties in
continuum mechanics, are modeled as random fields. Approximations to random
fields by means of Karhunen–Loève expansion and polynomial chaos expansion are
introduced. These tools are employed to study the response of continuous structures
with loads, material or geometrical properties given by random fields. The main
focus is on sensitivity analysis of large engineering structures, where small Monte
Carlo sample sizes are mandatory. The transition to reliability is undertaken by
means of the concept of tolerance intervals. Further, current sampling methods for
accurate reliability estimates are discussed, and practical applications are presented.

4.1 Introduction

Engineering structures are usually modelled as input–output maps: the response
Y is a function Y D g.X1; : : : ; Xn/ of input parameters .X1; : : : ; Xn/ like
material properties, geometry, boundary conditions, and driving forces (dynamic or
distributed loads, noise). It has been acknowledged since a long time that both the
structural model (given by the function g) and the input parameters are uncertain.
Traditionally, uncertainties have been dealt with by employing safety factors. That
is, the traditional codes would require that the load carrying capacity of the structure
exceeds the design loads by a certain factor > 1, typically 1.35 for permanent loads
(such as dead weight) and 1.5–2.0 for temporary loads.

M. Oberguggenberger (�)
Unit of Engineering Mathematics, University of Innsbruck, Technikerstr. 13, A6020 Innsbruck,
Austria
e-mail: Michael.Oberguggenberger@uibk.ac.at

G. Hofstetter (ed.), Computational Engineering, DOI 10.1007/978-3-319-05933-4__4,
© Springer International Publishing Switzerland 2014

85

mailto:Michael.Oberguggenberger@uibk.ac.at


86 M. Oberguggenberger

This state of affairs is unsatisfactory in as much as no information about
the actual distance to failure can be extracted. The desire for a more analytical
description of the uncertainties led to the introduction of the probabilistic safety
concept in civil engineering, initiated by the pioneering work of Freudenthal
[17], Bolotin [6], and others in the 1950s. Starting with the 1980s and 1990s,
the European engineering codes have been changed into probability based codes.
By now, this is the standard in civil engineering (see, e.g., EN 1990:2002 [15])—
interestingly, the civil engineering community has been far ahead of the other
engineering fields in adopting the probabilistic point of view.

Under this point of view, every relevant parameter of the engineering model is
a random variable. There is no absolute safety, but rather a probability of failure.
As a consequence, more information than just the nominal parameter values must be
entered in the model, namely a description of the statistical distribution of the input.
Further, the response is no longer deterministic, but rather a random variable, whose
distribution must be computed in order to describe the behavior of the structure as
well as the probability that certain limits are exceeded (described by a limit state
function).

In practical applications, the structure is usually represented by a finite element
model. These models are generally large, computationally costly, and partially black
boxes. Practically, Monte Carlo simulation is the only way to numerically compute
the statistics of the system response. Thereby, an artificial sample of X1; : : : ; Xn,
a data matrix of size N � n, is generated and N values of y D g.x1; : : : ; xn/ are
calculated, producing a sample of size N of the response Y , which in turn can be
evaluated statistically. This approach raises the computational cost dramatically, and
so the need for cost-saving algorithms arises.

An adequate understanding of the uncertainties in an engineering task requires a
number of actions, among them reflection about the choice of model and the failure
mechanisms; assessing the variability of input and output variables and model
parameters; sensitivity analysis (i.e., the determination of the relative influence
of individual input parameters on the response); assessing the reliability of the
structure. This involves a variety of activities to be performed, from laboratory
experiments, data collection to model validation.

The reader is alerted that in the present contribution, only the comparatively
narrow part of the numerical calculation of sensitivities and of reliability is
addressed. As suggested in the title, the focus is on sampling based methods. In view
of the need to employ as few model evaluations as possible, the choice of the
sample becomes an important issue. This is dealt with under the heading design
of experiment in Sect. 4.2. In due course, metamodels will be encountered there as
well. Section 4.3 is devoted to the simulation of random fields, that is, spatially
distributed random input. Section 4.4 starts off with sensitivity analysis, of interest
in itself, but also the basis for model reduction. This becomes useful in Sect. 4.5,
where reliability analysis is addressed. In Sect. 4.6, the concepts will be illustrated
using a model from aerospace engineering, supplied by our industrial partner Intales
GmbH Engineering Solutions.
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The methods presented here have been developed, adapted, and implemented in a
number of joint research projects with Intales GmbH Engineering Solutions.1 Note
that approaches to uncertainty analysis going beyond probability theory, such as
interval analysis or the combination of both approaches in the form of random sets,
are not addressed here. One instance of such a hybrid approach is in Chap. 3 of this
volume. For further information the reader is referred to the recent surveys [4, 36].

4.2 Design of Experiment

In this section, the task of simulating the output Y D g.X1; : : : ; Xn/ of an
input–output function applied to random input .X1; : : : ; Xn/ will be addressed.
Direct Monte Carlo simulation consists in generating a sample x1; : : : ; xN of
the n-dimensional random variable .X1; : : : ; Xn/, collected in an N � n-matrix.2

The sample has to be generated in such a way that the columns are statistically
independent and each of them is distributed according to the distribution of the
corresponding random variable. We are not going to detail this step—most scientific
software packages come with a pseudorandom number generator that can produce
high dimensional independent samples of most familiar statistical distributions [42]
of sufficiently large size (the crucial question of accuracy will be addressed below).
The term design of experiment refers to the choice of the sample so as to achieve
certain desirable additional properties.

Subsequently, each sampled row xj D .xji; : : : ; xjn/ is sent through the input–
output map to produce a sample yj D g.xj1; : : : ; xjn/, j D 1; : : : ; N of the
output Y .

The complete information about the statistical properties of the output Y is
contained in its cumulative distribution function

FY .y/ D P.Y � y/ D P.g.X1; : : : ; Xn/ � y/

which in turn can be written as an expectation value, namely as

FY .y/ D E
�
h.Y /

� D E
�
h.g.X1; : : : ; Xn/

�

where h is the indicator function of the interval .�1; y�, i.e., h.z/ D 1 for
z � y and 0 otherwise. Similarly, all statistical properties of the output Y can

1ICONA-project 2006–2008, supported by TransIT Innsbruck, ACOSTA-project 2008–2010,
supported by The Austrian Research Promotion Agency, MDP-NE 2011–2013, supported by
Astrium GmbH; main partners: Intales GmbH Engineering Solutions, Institute of Basic Sciences
in Engineering Science and Institute of Mathematics, University of Innsbruck, Czech Technical
University in Prague.
2We follow the common statistical practice that random variables are denoted by capital letters,
while their realizations are denoted by small letters.
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be formulated in terms of expectation values of functions of Y . For example, the
moments of Y are obtained by choosing h.z/ D zm, m D 1; 2; 3; : : :. The core of
Monte Carlo simulation is that these expectation values can be approximated by the
corresponding sample mean, that is,

E
�
h.Y /

� � h.Y / D 1

N

NX

jD1

h.yj / D 1

N

NX

jD1

h
�
g.xji; : : : ; xjn/

�
:

By construction, y1; : : : ; yN is an independent random sample, hence statistical
sampling theory tells us that the variance of the estimator h.Y / is given by

V
�
h.Y /

� D 1

N
V
�
h.Y /

� D C2

N

where C2 is the variance of h.Y / D h
�
g.X1; : : : ; Xn/

�
, a fixed number depending

only on h, g, and the given distribution of .X1; : : : ; Xn/. Thus the mean error of a
Monte Carlo estimate is of order 1=

p
N . For methods to generate random samples

leading to a numerical error approximately below prescribed bounds see [19].
We note in passing that replacing the pseudorandom numbers by quasirandom

numbers, generated from the so-called low-discrepancy sequences, allows one
to improve the mean square error to order .logN/n=N , but demonstrably not
further [13,34]. Rather than going into design of experiment based on quasirandom
numbers, two sampling plans will be addressed which are of bigger importance in
our setting.

Latin Hypercube Sampling The first issue is stratified sampling that is designed to
avoid random clustering and produces sampled points with a balanced distribution
over the parameter space. A prominent and easy-to-implement method of stratified
sampling is Latin hypercube sampling. To obtain a sample of size N , the Latin
hypercube sampling plan divides the range of each variable Xi into N disjoint
subintervals of equal probability. First, N values of each variable Xi , i D 1; : : : ; n,
belonging to the respective subintervals are randomly selected. Then the N values
for X1 are randomly paired without replacement with the N values for X2. The
resulting pairs are then randomly combined with the N values of X3 and so on,
until a set of N n-tuples is obtained. This set forms the Latin hypercube sample.
The advantage of Latin hypercube sampling is that sampled points are evenly
distributed through design space, thereby hitting also regions of low probability
possibly important for the input–output map which might be missed by direct Monte
Carlo simulation. A Latin hypercube estimate is not necessarily more accurate than
a standard Monte Carlo estimate at given N , but it can be shown that the variance of
a Latin hypercube estimator is asymptotically smaller than the variance of the direct
Monte Carlo estimator, and possibly markedly smaller when the input–output map
is partially monotonic [53].
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Correlation Control The second issue is correlation control, which is an essential
ingredient in Monte Carlo simulation with small sample sizes (say, around N D 100

or less). As the reader may easily verify, the rows of an independently sampled
matrix X D .xij; i D 1; : : : ; N I j D 1; : : : n/ of independent random variables
X1; : : : ; Xn may turn out to have correlation coefficients up to 20 % in practice,
when N is that small (this undesirable effect disappears for N � 1;000). Thanks
to an empirical method due to Iman and Conover [21], it is possible to rearrange
the entries of the sampled matrix in such a way that the new columns are nearly
uncorrelated. In fact, the method allows one to construct a matrix X� of any desired
correlation structure K. This is done as follows. The van der Waerden matrix W is
defined by

W D

0

B
@

w.1/
1 : : : w.n/

1
:::

:::

w.1/
N : : : w.n/

N

1

C
A

where each column consists of a random permutation of the van der Waerden scores

˚�1
� j

N C 1

�
; j D 1; : : : ; N:

Here ˚ denotes the standard normal cumulative distribution function. Starting with
the Cholesky factorizations

K D PPT; �W D QQT;

with the correlation matrix �W of W, one can prove that

W� D WQ�TPT

has the target correlation structure K. Empirical investigations [21] showed that the
rank correlation matrix of the resulting matrix W� is nearly the same, i.e., �W � �
RW � . Therefore, rearranging the values in the columns of X corresponding to the
rank order of the columns in W� leads to a matrix X� which approximately has the
desired correlation structure:

�X� D �W � � RW � D K:

Further improvement can usually be achieved by iteration of the procedure. It should
be noted that the described method of correlation control does not destroy the Latin
hypercube structure of a sample and thus can be directly combined with Latin
hypercube sampling. The efficiency of correlation control in dependence on the
number of input variables has been studied in [37].
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In all simulations presented in this paper, Latin hypercube sampling and
correlation control have been routinely implemented.

Bootstrap Resampling The result of a Monte Carlo simulation is a single estimate
h.Y / of one or more desired quantities h.Y /. One would like to be able to assess the
accuracy of the estimate, i.e., the variance of the estimator, confidence intervals, etc.,
without additional calls of the expensive input–output map. A cost-saving method to
achieve this is bootstrap resampling [14, 50]. The bootstrapping procedure consists
in repeatedly drawing from the same sample with replacement to obtain new
samples of the same size N . To obtain B D 1;000, say, bootstrap samples of size N ,
one proceeds as follows.

From the original data sample, e.g., h.y1/; : : : ; h.yN /, of size N one randomly
draws N -times, so that each realization has equal probability of being drawn. The
results are combined to produce a bootstrap sample of size N (note that some
entries of the bootstrap sample may be repetitions of realizations of the original
data sample). This is repeated B D 1;000 times. The B D 1;000 bootstrap samples
now are used to compute B D 1;000 realizations of h.Y /, say, and the distribution
of h.Y / can be estimated in this way. The reason why this works is that each
bootstrap sample has a distribution which approximates the empirical distribution
of the original sample.

In this way, the generation of a multitude of samples of the same distribution
is mimicked and allows one to assess the variability of the individual sample
estimators. For example, confidence intervals for h.Y / can be either obtained by
computing the percentiles of the B D 1;000 estimates of h.Y /, or approximated by
a Student’s t-distribution based on the empirical standard deviation of those values.

Metamodels Also known as surrogate models or response surfaces, metamodels
attempt to save computational cost by approximating the input–output function
by a simpler (deterministic) function. Typically, such an approximation is based
on evaluating the input–output function at a smaller number of design points and
suitable extrapolation. Large size Monte Carlo simulation can then be performed
with the metamodel with little computational cost. Metamodels obtained by linear
regression with possibly nonlinear shape functions have the advantage that the
powerful diagnostic methods of regression analysis can be used. For example,
partial coefficients of determination admit to quantify the relative importance of
input variables with respect to the variability of the output in nonparametric ways
[28, 32, 39]. Other metamodels are based on radial basis functions, smoothing
splines, or Kriging (i.e., variance minimizing piecewise linear extrapolation); see,
e.g., [25, 45]. The accuracy of a metamodel crucially depends on the degree of
smoothness of the input–output function. Metamodels cannot be used, e.g., to
accurately describe nonlinear bifurcation as in buckling analysis. On the other hand,
given a sufficiently smooth model, the accuracy of a metamodel can be controlled
by sequential design of experiment, in which additional design points are added in
regions of lower accuracy, optimizing both the global error and the space filling
properties of the experimental design, see, e.g., [23].
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Stochastic Response Surfaces If the input variables .X1; : : : ; Xn/ are Gaussian or
have been transformed into standard Gaussian variables, the input–output function
can be seen as a function on standard Gaussian space and approximated by a
response surface on that space. As an illustration, consider the univariate case of a
single random variable X with distribution function F.x/. The transformed random
variable U D ˚�1.F.X// has a standard Gaussian distribution. This transformation
reduces the input–output map to a function of the Gaussian variable U as well, by
means of Y.U / D g

�
F �1.˚.U //

�
. For example, if X has a normal distribution with

mean � and variance �2, the transformation is simply X D F �1.˚.U // D �C�U .
Recall that the Hermite polynomials hn.u/ form an orthonormal basis in the space

of square integrable functions on the real line with respect to the Gaussian density
e�u2=2 du=

p
2� . The (normalized) Hermite polynomials are given by the recursion

hnC1.u/ D up
nC 1

hn.u/C n
p
n.nC 1/

hn�1.u/

with h0.u/ D 1, h1.u/ D u. Every function Y.U / of a Gaussian variable U such that
Y.U / has finite second moments has a convergent Hermite expansion of the form

Y.U / D
1X

kD0

ckhk.U /:

The coefficients ck can be obtained as the inner product E.Y.U /hn.U //; alterna-
tively, collocation and regression can be used to numerically compute them. More
precisely, choose finitely many points �1; : : : ; �m in the domain of the input–output
map g. Compute collocation points uj D ˚�1.F.�j // on the real line. Record
the outputs yj D g.�j / D g

�
F �1.˚.uj //

�
. Evaluate the coefficients c1; : : : ; cM

of a truncated Hermite expansion by linear regression on the data .uj ; yj / with
the Hermite functions hk , k D 1; : : : ;M , as shape functions. This concludes the
construction of a stochastic response surface YM .U / for the input–output function,
given as a truncated Hermite series. Monte Carlo simulation is now done at no cost
by sampling a standard Gaussian variable U and evaluating YM.U /.

Note that this procedure requires only m evaluations of the costly input–output
map on the points �1; : : : ; �m. The rest of the burden is put on the transformation
U D ˚�1.F.X//, thus parametric studies with differently distributed X , for
example, with varying mean and variance, can be easily undertaken. In the one-
dimensional case a low value of M , say around ten, and twice the number of
collocation points usually suffices. For an application of this method, see, e.g., [35].

As is well-known, the procedure can be generalized to multiple expansions of
functions of infinitely many Gaussian variables, known as the polynomial chaos
expansion; the reader is referred to e.g., [18, 29].
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4.3 Random Fields

Material and geometrical properties (e.g., modulus of elasticity, thickness) of a
structure may vary randomly from point to point. Such a behavior can be captured
by means of random fields, that is, stochastic processes that assign a random variable
q.x/ to every point x in a region in space. Usually, random fields are chosen so as
to have continuous or even differentiable realizations, as opposed to random noise
in stochastic mechanics. To define the field, the joint distributions of the values
at any finite number of points q.x1/; : : : ; q.xk/ should be specified. If the random
field is stationary (i.e., the finite dimensional distributions are translation invariant)
and Gaussian, it is completely specified by the mean value �q D E.q.x// and the
second moments, i.e., the covariance COV.q.x/; q.y// for any two points x; y. Due
to stationarity, the covariance depends only on the distance ı D jx�yj of the points
and is of the form

COV.q.x/; q.y// D C.x; y/ D �2c.ı/

with the variance �2 and the autocorrelation function c.ı/. A frequently used
autocorrelation function is of the form

c.ı/ D exp
� � jıj=`�; (4.1)

where ` is the so-called correlation length. The indicator function of the interval
Œ�`; `� might be taken as a crude autocorrelation function with correlation equal to
1 for ı in the interval and 0 outside. The area under the curve (4.1) is the same as
the area under this indicator function, whence the name correlation length. Other
autocorrelation functions in use may be of Gaussian type, in higher dimensions also
with anisotropic distance measure.

If measurement data are available, the autocorrelation function can be estimated
from the empirical covariance matrix by arranging the values along the distance ı

of the measured points and fitting a shape function as in (4.1), thereby estimating
�2 and `.

In order to simulate a random field, one discretizes the region under consideration
with grid points xi , i D 1; : : : ;M , measures the distance between the grid points
xi , and sets up a covariance matrix C D .Cij; i; j D 1; : : : ;M/ whose values are
computed from (4.1) where ı is the distance between xi and xj . In case the random
field is Gaussian, there are at least three methods to generate realizations of the field.

The first method is the standard simulation method for correlated Gaussian
variables. It is based on the Cholesky factorization C D AAT. If Y is an
M -dimensional Gaussian random variable with mean zero and independent compo-
nents (i.e., its covariance matrix E.YYT/ D I, the identity matrix), then X D AY is
a mean-zero Gaussian random variable whose covariance matrix is C. This follows
from the simple identities

E.XXT/ D E.AYYTAT/ D AE.YYT/AT D AIAT D C:



4 Sensitivity and Reliability Analysis: Sampling Based Methods 93

Accordingly, starting from a realization of the M -dimensional standard Gaussian
random variable Y, the transformation X D �q C AY yields a realization of the
desired random field q.x/ in the grid points, i.e., Xi D q.xi /. This is repeated N

times to obtain a Monte Carlo sample of the random field. It should be noted that this
method works in any space dimension; it just requires enumerating the grid points
and keeping track of their distance. The disadvantage of this method is that one
cannot easily keep track of the error in terms of the number of grid points, that is,
the accuracy of the autocovariance function of the simulated field.

The second method is advantageous in this respect. It is based on the Karhunen–
Loève expansion of the field. In fact, the eigenvalue problem

Z
C.x; y/'k.y/ dy D �k'k.x/

where C.x; y/ is the autocovariance function of the random field, has a sequence of
positive eigenvalues �k and orthonormal eigenfunctions 'k.x/ (orthonormality in
mean square). Then

q.x/ D
1X

kD1

p
�k�k'k.x/ (4.2)

where the �k are uncorrelated random variables with unit variance, see, e.g., [30].
If the process is Gaussian, the �k are independent and distributed according to the
standard normal distribution N .0; 1/.

For the numerical simulation, the spatial region is again discretized by a
grid and the 'k are taken, e.g., piecewise constant on the grid elements. The
eigenvalue problem becomes a matrix eigenvalue problem, and the series (4.2),
with approximate eigenvalues and eigenfunctions, truncated after a finite number
M of terms, can be used for Monte Carlo simulation of the field trajectories.
Here the mean square error due to truncation after M terms is just the sum of
the neglected eigenvalues; the discretization error can be estimated through the
numerical integration error and its propagation through eigenvalue problems [5].
A further advantage of the method is that it can be directly based on a finite element
discretization [46]. However, changing the field parameters, e.g., the correlation
length, requires solving the eigenvalue problem with a different matrix anew, which
can be costly.

This disadvantage is avoided in the third method, which is applicable in one
space dimension. It is based on the observation that the autocorrelation function
(4.1) coincides with the autocorrelation function of an Ornstein–Uhlenbeck process,
namely the solution process of the Langevin stochastic differential equation

dq.x/ D � 1
`
q.x/C

q
2
`
� dw.x/; q.0/ � N .0; �2/; (4.3)
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where w.x/ denotes Wiener process on the real line, see e.g. [2]. Solutions of
sufficient accuracy can be easily simulated from discrete white noise input by means
of an explicit Euler scheme at little cost [26].

4.4 Sensitivity Analysis

Sensitivity analysis is a core ingredient in understanding the behavior of a structural
model. It aims at determining the input parameters that have the largest influence on
critical output. In addition, it can be used as a first step in reliability analysis or in
optimizing structural properties.

Sensitivity analysis does not necessarily require knowledge of the probabilistic
properties of the input and thus is a nonparametric method. If the input–output
function is explicitly given and sufficiently smooth, one may use partial derivatives
to assess the sensitivity, see, e.g., [40, 45]. In the context we envisage, the input–
output function may be non-differentiable and a black box, in addition. For this
reason we focus on derivative-free methods of sensitivity analysis, that is, on
sampling based methods. The strategy is to produce a sample of the input data
.X1; : : : ; Xn/, to compute a sample of the output Y and to analyze the statistical
input–output relations or the relations between different output quantities. For all
variables, we take a uniform distribution centered around the nominal values �j

with a spread of a certain equal percentage, say ˙15%. Equally scaled spread and
uniform distributions are chosen to avoid distortion of the relative weights of the
input variables. If information about the actual statistical distribution of one or the
other input variable is known, this knowledge first does not enter in the sensitivity
analysis, but may be considered in a second stage.

The computationally least expensive methods are correlation based, which will
be described first. An explorative analysis usually starts with inspecting scatterplots
of individual variables vs. output. To obtain a refined diagnosis, methods are
needed that quantify the correlations, assess their significance, and possibly remove
hidden influences of the co-variates on the correlation between a given input
variable and the output variable. The simplest indicator is the Pearson correlation
coefficient (CC). It detects linear relationships between input and output. To recall
the definition, assume given a sample xj1; : : : ; xjn, and yj , j D 1; : : : ; N of the
n-dimensional input and the corresponding output. Denote the mean values by xi

and y, respectively. The empirical Pearson correlation coefficient of input number i
with the output is defined as

r.xi ; y/ D
PN

jD1.xji � xi /.yj � y/
qPN

jD1.xji � xi /2
PN

jD1.yj � y/2
:

It turns out that the correlation coefficient does not isolate the effect of xi on
the output y, but is influenced by the co-variates (inputs with numbers k ¤ i ),
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especially when they have a nonzero correlation with xi . Regression based indices
may be used to mitigate this effect.

A brief recall of linear regression is in order. The goal of linear regression
analysis is to fit a linear model y D ˇ0 C ˇ1x1 C ˇ2x2 C : : : C ˇnxn to the data,
that is, each value yj is to be approximated by

yj D ˇ0 C ˇ1xj1 C ˇ2xj2 C : : :C ˇnxjn C "j ; j D 1; : : : ; N

with the errors "j . The estimated coefficients Ǒ
0; Ǒ1; : : : ; Ǒn are obtained as the

solution of the minimization problem

L.ˇ0; ˇ1; : : : ; ˇn/ D
NX

jD1

"2j ! min :

The values predicted by the model and the residuals are, respectively,

Oyj D Ǒ
0 C Ǒ

1xj1 C : : :C Ǒ
nxjn; ej D yj � Oyj ;

j D 1; : : : ; N . If there is no linear relation between input and output, the best
prediction is the mean value y, in which case the residuals coincide with the
measured data yj , centered at the mean. The other extreme is that the data points
yj already lie on a hyperplane yj D ˇ0 C ˇ1xj1 C ˇ2xj2 C : : :C ˇnxjn, in which
case the best prediction is simply the data point, Oyj D yj , and the residuals are
identically equal to zero.

It can be shown that the total square variability of y can be partitioned into two
summands:

NX

jD1

.yj � y/2 D
NX

jD1

. Oyj � y/2 C
NX

jD1

.yj � Oyj /2:

The coefficient of determination is defined as R2 D PN
jD1. Oyj � y/2

ıPN
jD1

.yj � y/2. By what has been said above about the residuals, it equals 1 if the
data points already lie on a hyperplane and 0 when no linear relationship between
input and output exists, and in general measures the explanatory power of the fitted
regression model.

The regression coefficients as such cannot be used as indicators of the influence
of the corresponding variables, because they are scale dependent. Rather, the
standardized regression coefficients (SRC) can be used. These are the regression
coefficients of the centered and normalized model, where the data xji are replaced by

.xji �xi /
ıqPN

jD1.xji � xi /2, and similarly for the yj . In case the n input columns
xj1; : : : ; xjn, j D 1; : : : ; N are uncorrelated, the SRCs coincide with the CCs.
In general, the expression for the CCs has an additional summand which depends
on the correlated co-variates.
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A more effective removal of the influence of the co-variates is achieved through
the partial correlation coefficients (PCCs). The partial correlation between xi and
y, given the set of co-variates xXi D fx1; : : : ; xi�1; xiC1; : : : ; xng is defined as the
correlation between the two residuals obtained by regressing xi on xXi and y on
xXi , respectively. That is, one first constructs the two regression models

Oxi D Ǫ0 C
X

k¤i

Ǫkxk; Oy D Ǒ
0 C

X

k¤i

Ǒ
kxk;

obtaining the residuals ei and e with components

eji D xji � Oxji; ej D yj � Oyj ;
j D 1; : : : ; N . By construction, the residuals eji and ej are those parts of xi and
y that remain after subtraction of the predicted linear part depending on xXi . Thus
the PCC �.ei ; e/ quantifies the linear relationship between xi and y after removal of
any part of the variation due to the linear influence of the co-variates xXi .

The advantage of the PCCs is that they are more discriminating. In fact, if
the input–output map is a truly linear function and the input parameters are
uncorrelated, then the PCC of an input variable that enters with a non-zero
coefficient is equal to plus or minus one. In reality, input–output maps are not ideally
linear functions and so the effect is somewhat moderated. Still the PCCs are an
accentuating measure of influence.

If the input–output function is decidedly nonlinear, but monotonic, sensitivities
are better detected when one applies a rank transformation to the data. That is, the
data xj1; : : : ; xjn, and yj , j D 1; : : : ; N are ordered and only their rank information
is kept. This leads to the Spearman rank correlation coefficients (RCC), the
standardized rank regression coefficients (SRRC), and the partial rank correlation
coefficients (PRCC). Having the computed Monte Carlo sample xj1; : : : ; xjn, and
yj at hand, the calculation of the various coefficients produces no additional cost,
thus it is recommended to evaluate all six of them to have a better overview.
Finally, bootstrap resampling allows one to compute confidence intervals. If zero
is outside the confidence interval, the corresponding coefficient can be considered
to be significantly different from zero, and the corresponding input variable is
classified as having a non-negligible influence on the output. The degree of influence
can then be classified according to the magnitude of the six coefficients.

Alternative methods of sensitivity analysis are variance based. Pinching strate-
gies consist in freezing individual variables at their central value and studying the
change of variability in the output. If one produces a sample with Xi fixed to its
nominal value �i , the reduction in variance says something about the influence of
Xi on Y :

V.g.X1; : : : ; Xi�1; �i ; XiC1; : : : ; Xn//

V.g.X1; : : : ; Xn//
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In fact, this is the proportion of total variance not explained by Xi . As can already be
seen from the formulation, this strategy is costly because for each pinched variable
a new Monte Carlo simulation is required.

A more sophisticated method is the partition of variance according to the groups
of variables, the Sobol’ indices introduced in [51,52]. It is based on an expansion of
the input–output function into summands of increasing dimensionality.

For a survey of sampling based methods in sensitivity analysis, see [20].

4.5 Reliability Analysis

The central concept of reliability analysis is the failure probability. The system
is considered in a failed state if a certain combination of the input parameters
.X1; : : : ; Xn/ and the output Y exceeds an admissible range. For the present
purpose it is not necessary to distinguish into favorable (resistance increasing)
and unfavorable (load or stress exerting) influences, as is done in the European
civil engineering codes [15] with their partial safety factors, critical values and
design values. Since Y is a function of the inputs .X1; : : : ; Xn/, which subsume all
random influences on the structure, failure can be described by a limit state function
˚.X1; : : : ; Xn/ of the input alone. Failure is usually defined by ˚.X1; : : : ; Xn/ < 0,
while ˚.X1; : : : ; Xn/ � 0 signifies a safe state. The failure region is the subset of
design space (the domain of the input parameters) resulting in violation of the limit
state condition, i.e.,

F D f.x1; : : : ; xn/ W ˚.x1; : : : ; xn/ < 0g:

Then

pf D P
�
.X1; : : : ; Xn/ 2 F

� D P
�
˚.X1; : : : ; Xn/ < 0

�

is the failure probability; R D 1�pf is the reliability of the structure. Occasionally
it is useful to describe failure as a ratio of actual and admissible values, leading to a
failure region of the form 	.x1; : : : ; xn/ > 1. To determine the probability pf , the
types and parameters of the probability distributions of .X1; : : : ; Xn/ are needed.
As opposed to sensitivity analysis, this requires detailed information about the
statistical properties of the input parameters, obtained from experiments or previous
studies.

The acceptable value of the failure probability depends on the circumstances. The
civil engineering codes require that the designed structure obtains an instantaneous
probability of failure of pf D 10�6 and a long-term failure probability of pf D
10�5. To credibly estimate tail probabilities of such a small magnitude, a lot of
information is needed. In addition, if time dependent reliability is to be assessed,
failure rates and the additional parameters of the time-dependent reliability function
are required. The problems arising from this concept of failure probability have
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been discussed at many places, including the codes themselves [15, Annex C4(3)],
see also [16, 36] and references therein. In technological development phases in
aerospace engineering, a failure probability in the range of pf D 10�3 may be
acceptable, especially if it is not used as an absolute measure, but as an objective
function in optimization (reliability based optimization).

Having performed a Monte Carlo sensitivity analysis of the model output Y D
g.X1; : : : ; Xn/, the question comes to mind if one could not use the generated sam-
ple for getting reliability estimates of the structure. This is indeed the case, albeit at a
possibly low accuracy due to the small sample size of the sensitivity analysis. There
are two ways of exploiting the existing sample. One way is by means of tolerance
intervals to estimate credible upper and lower bounds for the output Y ; another
way is by reweighting the generated sample of .X1; : : : ; Xn/ so as to mimic input
distributions other than the uniform distributions used in the sensitivity analysis.

Tolerance Intervals While confidence intervals give an estimate for the distribu-
tion parameters � of a random quantity Y , a tolerance interval gives an estimate of
the range of possible observations of Y . More precisely, one wants to compute an
interval Œa; b� that contains a certain proportion p, say p D 90%, of the population
with a given confidence level 1� ˛, say 1� ˛ D 95%. A non-parametric approach
based on order statistics is especially attractive, since it is applicable without
knowledge of the type of statistical distribution of Y . In fact, given whatever sample
of whatever random variable, one may estimate the proportion p of the population
that lies within the sample maximum Ymax (the largest value in the sample) and the
sample minimum Ymin with a given confidence 1�˛, depending only on the sample
size N . In this situation, the interval Œa; b� D ŒYmin; Ymax� is given and N is known.
Thus depending on the desired confidence level, the proportion p lying within the
boundaries Œa; b� can be computed.

The derivation of a one-sided non-parametric tolerance interval with upper
boundary the sample maximum is particularly easy, using only combinatorics.
In fact, a proportion p of the population lies in the interval .�1; Ymax� with
confidence 1 � ˛ if the relation

pN D ˛

holds. This can be seen as follows. Denote by Qp the p-th quantile of Y . This means
that P.Y � Qp/ D p. On the other hand, the interval .�1; Ymax� contains at least
the proportion p of the population if Qp � Ymax. Thus it is required that

P.Qp � Ymax/ � 1 � ˛:

But P.Qp � Ymax/ D 1 � P.Ymax < Qp/. Observe that Ymax < Qp if and only
if each of the N independent realizations of Y in the sample is below Qp , i.e.,
Yj < Qp for j D 1; : : : ; N . By definition, the probability of the event Yj < Qp is
exactly p. Collecting terms, one arrives at 1 � P.Ymax < Qp/ D 1 � pN , whence
the assertion.
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Table 4.1 Required sample
size N for one-sided
tolerance intervals at
confidence 1� ˛

1� ˛ p D 0:90 p D 0:95 p D 0:99

0.90 22 45 230
0.95 29 59 299
0.99 44 90 459

From there, universally valid estimates of the sample size N required so that a
proportion p of values lies under the sample maximum at confidence 1 � ˛ can
be established, see e.g. Table 4.1. The same formula applies to one-sided intervals
of the form ŒYmin;1/. Tolerance intervals with various proportions and confidence
levels are tabulated, e.g., in the ISO standard [22]. For the theory, see, e.g., [27].

Monte Carlo Reweighting As outlined in Sect. 4.2, the goal of Monte Carlo
simulation is to estimate expectation values E

�
h.Y /

� D E
�
h.g.X1; : : : ; Xn//

�

of functions of the model output. Suppose we have already generated a sample
.xji; : : : ; xjn/ and computed the outputs yj , j D 1; : : : ; N , where the sample has
been generated according to a certain probability distribution of the input, say with
probability density f .x1; : : : ; xn/. Is it possible to use the same sample to estimate
E
�
h. QY /

� D E
�
h.g. QX1; : : : ; QXn//

�
where the QXj are random variables defined on the

same range as the Xj , but with another probability distribution, say with probability
density '.x1; : : : ; xn/? To understand the positive answer, it is useful to write the
expectation E

�
h. QY /

�
as an integral:

E
�
h.g. QX1; : : : ; QXn//

� D
Z

� � �
Z

h.g.x1; : : : ; xn//'.x1; : : : ; xn/ dx1 � � � dxn

D
Z

� � �
Z

h.g.x1; : : : ; xn//
'.x1; : : : ; xn/

f .x1; : : : ; xn/

�f .x1; : : : ; xn/ dx1 � � � dxn
D E

�
h.g.X1; : : : ; Xn//

'.X1; : : : ; Xn/

f .X1; : : : ; Xn/

�
:

This shows that the computation of the new expectation value can be accomplished
by computing the old expectation value of the input–output function, multiplied by
a weight—the quotient of the two densities. In terms of Monte Carlo simulation,
one has to compute

E
�
h. QY /

� � 1

N

NX

jD1

h
�
g.xji; : : : ; xjn/

� '.xji; : : : ; xjn/

f .xji; : : : ; xjn/
:

This causes no additional effort, because one can reuse the expensive computation of
h
�
g.xji; : : : ; xjn/

�
. The accuracy of the method depends on the degree of similarity

of the old and the new distribution.
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A typical application could consist in reusing the sample from the sensitivity
analysis, based on uniform distributions, and place truncated Gaussians on the
intervals. This concludes the remarks about what can be extracted from the
sensitivity analysis towards a reliability assessment.

Importance Sampling When estimating failure probabilities of low value, one
cannot expect that the rather small sample sizes of sensitivity analysis suffice.
In fact, a standard Monte Carlo estimate of the failure probability is of the form

pf � 1

N

NX

jD1


F .xj1; : : : ; xjn/

where 
F equals one if .xj1; : : : ; xjn/ 2 F and zero otherwise. It thus can be seen
as the mean value of an N -fold repetition of a zero-one experiment with success
probability pf . The variance of the Monte Carlo estimator of pf is hence given
by pf .1 � pf /=N , whence the mean estimation error is approximately equal top
pf =N . This means that an accuracy of ˛ � 100% requires a sample size of N �

1=.˛pf /. Consequently, cost-saving methods need to be devised, two of which shall
be discussed here.

The first one is importance sampling. As seen above, the probability of failure is
estimated by counting the number of realizations of the input variables .X1; : : : ; Xn/

that fall into the failure region. Since this number is expected to be small compared
to the total number of simulated points, the probability density f .x1; : : : ; xn/ of the
input variables will be small on F . The idea of importance sampling is to generate
a sample of another distribution, say with probability density '.x1; : : : ; xn/, which
may be concentrated in the region F . The idea is similar to Monte Carlo
reweighting, but this time a different sample is produced to begin with. In fact,

pf D E
�

F .X1; : : : ; Xn/

� D
Z

� � �
Z


F .x1; : : : ; xn/f .x1; : : : ; xn/ dx1 � � � dxn

D
Z

� � �
Z


F .x1; : : : ; xn/
f .x1; : : : ; xn/

'.x1; : : : ; xn/
'.x1; : : : ; xn/ dx1 � � � dxn

D E
�

F . QX1; : : : ; QXn/

f . QX1; : : : ; QXn/

'. QX1; : : : ; QXn/

�

where the random variables . QX1; : : : ; QXn/ have the probability density '.x1; : : : ; xn/.
This leads to the following prescription. First, choose a probability density function
'.x1; : : : ; xn/ concentrated in the failure region. Next, generate a random sample
.zji; : : : ; zjn/ according to the corresponding probability distribution. Finally,
estimate the failure probability by

pf � 1

N

NX

jD1


F .zji; : : : ; zjn/
f .zji; : : : ; zjn/

'.zji; : : : ; zjn/
:
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Of course, this begs the question how to find a probability density '.x1; : : : ; xn/

concentrated in the failure region. After all, the failure region unfolds itself only
after Monte Carlo evaluation of the limit state function. Various proposals have been
made in this respect, notably Bucher’s adaptive sampling [7, 9]. This method starts
with a pilot simulation with increased variance of the input variables (to rapidly
produce a number of points in the failure region) and then uses certain shifted
Gaussians as weight functions.

An interesting proposal has recently been made by Schwarz [49], developed
for the situation where the input variables are supported in intervals (as, e.g., the
uniform distributions used in sensitivity analysis or transformations thereof). There
are two ingredients. First, one may expect that—in most cases—the failure region is
concentrated in points near the boundaries of the intervals. Second, input variables
with a larger influence on the output should have a larger weight. The starting point
of the procedure is a sensitivity analysis with moderate sample size, from which
the most important input variables and their correlation coefficients with the output
are determined. Then a parametrized family of weight functions is placed on the
input intervals, where the weight is just 1 for the unimportant parameters and is
shifted more and more towards the boundaries of the input intervals, the larger the
correlation.

Subset Simulation The subset simulation method was introduced by Au and Beck
in [3]. The idea is to approximate the failure region F by a sequence of larger
regions F D Fm 	 Fm�1 	 : : : 	 F1 	 F0 and to compute the failure
probability by a product of conditional probabilities

pf D P.F / D P.FmjFm�1/P.Fm�1jFm�2/ : : : P.F1jF0/P.F0/

where F D Fm and F0 is the starting region. These conditional probabilities are
appreciably larger than the failure probability and hence easier to simulate with
smaller samples. In this case it is useful to describe the failure region by means of
a ratio based limit state function F D f.x1; : : : ; xn/ W 	.x1; : : : ; xn/ > 1g. The
intermediate regions are chosen of the form Fi D f.x1; : : : ; xn/ W 	.x1; : : : ; xn/ >

˛ig with 0 < ˛0 < ˛1 < : : : < ˛m D 1. In fact, the choice of ˛i is often made
during the simulation such that P.Fi

ˇ̌
Fi�1/ has a fixed value, say p0 between 0.1

and 0.3, and the regions Fi are constructed recursively. The conditional distribution
P.�jFi / is just the original distribution, restricted to Fi and scaled by P.Fi /. The
latter probability is unknown a priori. This suggests to use the Metropolis–Hastings
algorithm, a Markov chain Monte Carlo algorithm, which requires knowledge of the
sampling distribution only up to a multiplicative factor (see below).

In the sequel, it is assumed that at each level i , a sample of size N is generated.
The algorithm is initiated by generating a sample of the original distribution using
standard Monte Carlo simulation. From this sample, the worst p0 �100% realizations
are declared to belong to F0. More precisely, the sample is ordered according
to the 	 -values. The threshold level ˛0 is chosen as the .1 � p0/N -th largest
value among the 	 -values attained in the sample, and F0 is defined to be the set
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f.x1; : : : ; xn/ W 	.x1; : : : ; xn/ > ˛0g. Further, P.F0/ D p0. In the next step, one or
more of the points in F0 is/are chosen as the initial point (root) of a Markov chain
whose elements are distributed according to P.�jF0/, this way generating a second
sample of size N . Again, the worst p0 � 100% realizations are declared to belong to
F1, and ˛1 is chosen as the .1�p0/N -th largest value among the 	 -values attained
in the second sample, and so on. The simulation stops at the first level m at which
the 	 -values of the worst p0 � 100% bigger than 1. At this stage P.FmjFm�1/ is
estimated by M=N where M is the number of failed realizations in the last sample.
Finally, pf is estimated as pm

0 �M=N .
Before discussing some details of the algorithm, a short introduction to Markov

chain Monte Carlo simulation is in order. The ideas can be best explicated at
the hand of the original Metropolis algorithm for simulating a one-dimensional
distribution �.x/. The goal is to generate a realization �0; �1; �2; : : : ; �N of a Markov
chain whose stationary distribution is �.x/. Since the chain will converge to the
stationary distribution as N ! 1, the end-pieces �M ; : : : ; �N are approximately
distributed according to � (for large M and N ).

The algorithm proceeds as follows. Choose a transition kernel q.x; y/ (proposal
distribution) such that q.x; y/ D q.y; x/ for all x; y. (Often it is taken of the form
q.x; y/ D p.x � y/ where p is a nowhere vanishing probability density.) Choose
an initial distribution p.0/.x/.

• Sample a value �0 from p.0/.
• For k D 1; : : : ; N

Sample a value � from the proposal distribution q.�k�1; �/.
Compute the ratio r D �.�/

�.�k�1/
.

– If r � 1, the value � is accepted; set �k D �k�1.
– If r < 1, the value � is accepted with probability r and rejected with

probability 1 � r .

Draw a random number � from the uniform distribution on Œ0; 1�.

– If � � r , set �k D �.
– If � > r , set �k D �k�1.

• �0; �1; : : : ; �N has �.x/ as limiting distribution as N ! 1.

Observe that only the ratio r enters in the computation, so knowledge of �.x/ is
only required up to a multiplicative factor. The Metropolis–Hastings algorithm is
similar, but the proposal distribution is not required to be symmetric. More theory
can be found in [42].

If the distribution �.x1; : : : ; xn/ is multidimensional, it is advantageous to
change only one coordinate in each step in order to keep the number of rejected trials
at a moderate level. In its application to subset simulation, the target distribution
is P.�jFi�1/ in each level. Thus one has to check whether �k 2 Fi�1 for
acceptance, in addition. By construction, each root of the generated Markov chain
is already distributed according to P.�jFi�1/. It can be shown [3] that the elements
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of the whole chain at level i are not only asymptotically but also perfectly
distributed according to P.�jFi�1/. As can be seen, there are a lot of screws that
can be adjusted: choice of the proposal distribution, optimal acceptance/rejection
rate, number and length of chains generated in level i—with the possibility of
parallelization, choice of p0, and so on. Based on many recommendations to be
found in the literature, subset simulation has developed into an efficient method for
estimating failure probabilities. A critical comparison of various simulation methods
in reliability analysis can be found in [47, 48].

4.6 Application

This section is devoted to demonstrating the methods at work in a practical
application from aerospace engineering, namely in a finite element model of the
frontskirt of the ARIANE 5 launcher. The frontskirt is the part of the launcher
that connects the tanks section with the payload section and also has to support
the booster loads. It consists of a light weight shell structure reinforced by struts.
The full finite element model is composed of shell elements and solid elements,
altogether with two million degrees of freedom. The models have been supplied
by Intales GmbH Engineering Solutions (see Footnote 1). Models of varying
complexity and material properties with up to 130 input and a similar number of
output parameters have been analyzed.

For the sake of presentation, we shall focus on a smaller finite element model
keeping the global structure with about ninety thousand degrees of freedom.
Figure 4.1 depicts the model schematically; it is composed of two hemispheres
and three cylinders, one of which is made up of composite material. The shadings
indicate thickness variations of the tank skin, described by a random field. Booster
loads are introduced at two opposite locations in the upper cylinder (not shown
in Fig. 4.1). A selection of seventeen input parameters (all loads characterizing
various flight scenarios) will be considered; their meaning is described in Table 4.2.
As a representative output we start with the load proportionality factor (LPF), a
decisive variable indicating buckling failure. It is defined as the limiting value in
an incremental procedure in which the mechanical loads during a flight scenario
are increased step by step until breakdown of the structure is reached. In the full
model, the LPF is computed by means of a path following procedure that follows
bifurcations until material failure occurs. In the simplified computations presented
here, no distinction of bifurcation or material failure was made, so that the terminal
value of the LPF was taken as that value at which the finite element program failed to
converge. What concerns the computational effort, a single run of the input–output
function computing the LPF in Abaqus takes around 1 h on a personal computer and
10 min on the supercomputer Leo-III of the University of Innsbruck.

Sensitivity Analysis As a basis for the sensitivity analysis, a sample of size
N D 100 of the n D 17 input parameters was generated. Each parameter was taken
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Fig. 4.1 Simplified finite element model of frontskirt; shadings show random field (thickness of
tank skin) [12]

Table 4.2 Description of
input parameters no. 1–17
with their nominal values

i Parameter Xi Mean �i

1 Initial temperature 293K
2 Step1 thermal loading cylinder1 450K
3 Step1 thermal loading cylinder2 350K
4 Step1 thermal loading cylinder3 150K
5 Step1 thermal loading sphere1 150K
6 Step1 thermal loading sphere2 110K
7 Step2 hydrostatic pressure cylinder3 0:4MPa
8 Step2 hydrostatic pressure sphere1 0:4MPa
9 Step2 hydrostatic pressure sphere2 0:4MPa
10 Step3 aerodynamic pressure �0:05MPa
11 Step4 booster loads y-direction node1 40;000N
12 Step4 booster loads y-direction node2 20;000N
13 Step4 booster loads z-direction node1 3:e6N
14 Step4 booster loads z-direction node2 1:e6N
15 Step4 mechanical loads x-direction 100N
16 Step4 mechanical loads y-direction 50N
17 Step4 mechanical loads z-direction 300N

Table 4.3 Sample statistics of simulated load proportionality factor

Mean Minimum Maximum Standard deviation Spread

3.5335 3.4468 3.6457 0.1989 ˙3%

uniformly distributed around its nominal value listed in Table 4.2 with a spread
of ˙15%. Latin hypercube sampling and correlation control was employed. The
statistics of the computed LPF are listed in Table 4.3.

The scatterplot of Fig. 4.2 gives a first impression of the influence of the input
variables on the output. It is quite clearly seen that input parameter no. 13 (booster
loads) exerts a big influence, whereas the diagrams for the other parameters are less
conclusive. To quantify the influences, the six different correlation indices CC, PCC,
SRC, RCC, PRCC, SPRC were computed. (A complete list of the values has been
published in [38].) As an example, the PRCCs of the 17 input parameters vs. the
LPF are visualized in Fig. 4.3 (left).
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Fig. 4.2 Scatterplots of 17 input variables vs. output (LPF) [24, 38]

Fig. 4.3 Partial rank correlation coefficients (left) and 95 % bootstrap confidence intervals (right)
[24, 38]

The resulting sensitivity indices induce a ranking of the input parameters
according to their influence on the output. Note that the accuracy of the estimate
for the correlation coefficients is in the range of 1=

p
N � 100% D 10%; this

suffices to determine the ranking and confirms the observation that one can get along



106 M. Oberguggenberger

Table 4.4 Ranks of the
significant input parameters
Xi according to the six
measures of correlation
input–output

i CC PCC SRC RCC PRCC SRCC

1 3 3 4 4
3 2 2 2 2
9 5 5
13 1 1 1 1 1 1
14 4 4 3 3

with small sample sizes for an assertive sensitivity analysis. To check whether the
computed correlation indices are significantly different from zero, bootstrap 95%-
confidence intervals were computed (with bootstrap sample size B D 5;000). As a
basis for an overall assessment of the ranking, only those sensitivity estimates with
a resultant confidence interval not including 0 have been regarded as significant.
As an example, bootstrap confidence intervals for the PRCCs are displayed in
Fig. 4.3 (right). Accordingly, only the PRCCs of the parameters X1, X3, X9, X13,
and X14 test to be nonzero. The ranks of those parameters that tested to be significant
according to at least one of the six indices are listed in Table 4.4. The table gives
a good impression of the sensitivity assessment—if a single scale is required, one
might use the average ranks.

Coefficient of Determination As discussed in Sects. 4.2 and 4.4, metamodels can
be used to further quantify the influence of selected parameters. One way to achieve
this is to fit a linear regression model

Y D ˇ0 C ˇ1X1 C � � � C ˇnXn

and then to compute the partial coefficients of determination. The sequential partial
coefficient of determination of variable Xi is computed by first fitting the model
Y D ˇ0 C ˇ1X1 C � � � C ˇnXi�1, then adjoining the variable Xi and recording
the increase in the coefficient of determination R2. Averaging all partial coefficients
of determination which can be obtained by adding the variable Xi to all possible
combinations of the already included variables leads to a non-parametric measure
of the contribution of variable Xi to the explanatory power of the model. The
procedure is explained, e.g., in [28, 39]. The result can be conveniently displayed
in the form of a pie chart. As an example, a linear model for the LPF has been
set up with input parameters nos. 1, 3, 4, 7, 9, 13, 14. It resulted in the assessment
of the influences depicted in Fig. 4.4, taken from [43]. The eminent influence of
parameter X13 is once more confirmed. In the figure, the label Res refers to the
residual proportion which remains unexplained through the linear model.

Random Fields In order to investigate the effect of geometric and material
imperfections, the thickness, modulus of elasticity and yield stress were disturbed by
two-dimensional random fields with an autocovariance function of the form (4.1).
The distance function on the cylinders was taken as the sum of the axial and
radial distance, whereas on the spheres, it was taken as the sum of the latitude and
altitude, multiplied by the radius. A routine extracting the distances from the finite
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Fig. 4.4 Pie chart of relative explanatory power of LPF through various input variables [43]

Fig. 4.5 Plots of histogram and cumulative distribution function of LPF produced by random
loads, no imperfections (left) and with random field turned on (right). Vertical line indicates LPF
corresponding to nominal input values [41]

element grid was implemented by [41]. The nominal values were 1 mm (thickness),
70,000 MPa (modulus of elasticity), 320 MPa (yield stress) for the first sphere, with
similar values for the other components of the frontskirt. A coefficient of variation
of 10 % was applied throughout. In a parametric study, the correlation lengths were
varied between 60 mm (corresponding to the dimension of two elements of the grid)
and 1,600 mm, with various combinations in the two respective directions. Random
fields were generated by means of the Karhunen–Loève expansion.

In a first investigation, the different effects of the random imperfections and the
17 random loads on the LPF were studied. Figure 4.5 shows one of the results, with
a sample size of N D 100 both for loads and realizations of the random fields.
The correlation lengths were set to 188.5 mm in all angular directions (cylinders
and spheres), while the correlation length in axial direction was taken 450 and
900 mm for the cylinders. In the left figure, the distribution of the LPF is shown
with the random loads from the sensitivity analysis, but with material and geometric
properties kept at their nominal value. In the right figure, the random field is turned
on, in addition. One can see that the random field has a stabilizing effect (larger
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Fig. 4.6 Spatial distribution of influence (measured by CC) of element-wise yield stress (left) and
thickness (right) on the LPF, based on random field simulation [41]

Table 4.5 Proportion p of LPFs lying above LPFmin D 3:4468 at confidence level 1� ˛

1� ˛ 90 % 95 % 99 % 99.9 %

p 97.7 % 97.1 % 95.5 % 93.3 %

values of LPF are attained), but at the same time increases the uncertainty of the
outcome.

Interestingly, the application of random fields admits a structurally localized
study of the correlations. After all, a realization of the random field induces a
realization of the modelled quantity (e.g., thickness) in each element of the FE-grid.
Thus one can do a standard sensitivity analysis with these variables. For example,
cylinder no. 3 has 2,500 elements; the random field simulation produces N D 100

realizations of the 2,500 grid values of the thickness, elasticity modulus, yield stress.
The spatial distribution of the influence on the LPF can thus be visualized. Figure 4.6
shows such a distribution in terms of the Pearson CC for the yield stress (left) and
the thickness (right). In the same way, localized correlations of different output
variables can be pictured.

Tolerance Intervals As a first step from sensitivity to reliability, tolerance intervals
for the LPF can be established. Recall from Table 4.3 that the minimal sampled LPF
was at LPFmin D 3:4468. Based on the formula pN D ˛ with N D 100, one
can assess the proportions p of the possibly attainable LPF-values with a given
confidence 1 � ˛. The results are summarized in Table 4.5.

Reliability Analysis In order to test various simulation methods for reliability, a
benchmark study of the small launcher model was undertaken by [49], from where
all results and tables in this paragraph are taken. For this study, an extended list of
35 input parameters was used. As a limit state function, a combination of allowable
limits in the equivalent plastic strain (PEEQ), principal stress in the composite part
(SP), and the absolute value of the smallest eigenvalue (EV) was employed:

	.x/ D max

�
PEEQ.x/

0:07
;

SP.x/
180

;
0:001

EV.x/

�
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with failure defined by 	.x/ > 1, x D .x1; : : : ; x35/. The three criteria correspond
to plastification in the metallic part, rupture in the composite part, and buckling of
the structure.

A reference brute force Monte Carlo simulation of size N D 5;000 was
undertaken on the supercomputer Leo-III, with three strands in parallel. As in the
previous sensitivity analysis, the 35 input variables were taken uniformly distributed
on an interval of spread ˙15% around their nominal values. The resulting failure
probability turned out to be pf D 0:0116. A 95 % bootstrap confidence interval
was computed (bootstrap sample size B D 5;000) as Œ0:0088; 0:0146�. A sensitivity
analysis with the sample revealed that only 10 of the 35 parameters had a significant
influence on the failure criterion 	 , measured at a 90 % confidence level.

Next, an investigation was undertaken whether an estimate in the same range
could be obtained with a smaller sample size by subset simulation or by importance
sampling. Subset simulation was undertaken with p0 D 0:2 (see Sect. 4.5).
Since p3

0 D 0:008 is already smaller than the intended failure probability, three
levels F0;F1;F2 suffice for the subset simulation algorithm. Experiments were
undertaken with sample size N D 900 and N D 300 for each level. Recall that
20 % of the generated points 20 % of the generated points of Fi�1 are assigned to
Fi in each step. Since these points can be reused when going from level i � 1 to
level i , the total number of generated points in the three levels is 2; 340 and 780,
respectively. Further, it was tested whether including all 35 input influential ones
in the simulation changes the value of the failure probability. In addition, bootstrap
confidence intervals for the failure probability were computed.

To keep results comparable, the importance sampling procedure was done with
a sample size N D 780. The method described in Sect. 4.5 was employed, by
which the weights are computed in dependence on the magnitude of the correlation
coefficient of the respective input parameter with the 	 -value. This required the
actual simulation to be preceded by a sensitivity analysis. The sensitivity analysis
was done with a sample of size 99, so that a sample size of 681 remained for
the importance sampling part. Correlation control was employed when simulat-
ing the input data. It was tested whether weighting of all parameters or weighting
only the parameters significant at the 90 % level changes the outcome.

The joint results are recorded in Table 4.6. Here NR refers to the total number of
realizations computed in the simulation, NV denotes the number of activated vari-
ables (subset simulation), respectively weighted variables (importance sampling);
pf is the failure probability and 95 % BSL/BSU refers to the lower/upper bound of
the 95 % bootstrap confidence interval for pf .

We conclude this section by reporting on a reweighting experiment. As a basis,
the sample of size N D 5;000 of the reference Monte Carlo simulation was
taken. The uniformly distributed input was replaced, using reweighting, by truncated
Gaussians. The mean values of the Gaussian distributions were taken as the interval
midpoints, the variance was computed from assumed coefficients of variation
(between 7.5 and 15 %), the truncation was effected at the interval endpoints. The
change from uniform distributions to mid-pieces of Gaussians resulted in quite a
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Table 4.6 Comparison of results of six different simulation procedures for the failure probabil-
ity [49]

Monte Carlo Subset Subset Subset Importance Importance

NR 5,000 2,340 780 780 780 780
NV 35 35 35 10 35 10
pf 0.0116 0.0130 0.0155 0.0120 0.0108 0.0124
95 % BSL 0.009 0.010 0.010 0.008 0.006 0.007
95 % BSU 0.015 0.016 0.022 0.017 0.019 0.019

change of the failure probability, namely to pf D 0:0019 with a 95 % bootstrap
confidence interval Œ0:001; 0:003�.

4.7 Conclusion

The purpose of this chapter was twofold. On the one hand, it served to describe
current core methods of Monte Carlo simulation, from design of experiment,
random fields, metamodelling to concepts of sensitivity and reliability analysis. On
the other hand, the chapter demonstrated the implementation of those methods in
joint research projects with Intales GmbH Engineering Solutions over the past years.

A number of themes have deliberately not been addressed in order to keep the
presentation concise. These include simulation of correlated input using copulas
[33], also implemented in the mentioned projects [44], Bayesian methods of relia-
bility analysis [31], Bayesian estimates of the distribution of the failure probability
[49, 54], and optimization for finding worst case parameter combinations [12].
Further, the discussion of asymptotic sampling [8], though implemented in our
toolbox [49], was omitted because its presentation would have required to go into
some details about the safety index and FORM (the first order reliability method).
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