
Chapter 3
Seismic Performance of Tuned Mass Dampers
with Uncertain Parameters

C. Adam, M. Oberguggenberger, and B. Schmelzer

Abstract This chapter addresses the seismic performance of Tuned Mass Dampers
(TMDs). In the design of a TMD, two types of uncertainty are relevant: the
stochastic excitation modeling the earthquake, and the inherent uncertainty of
internal parameters of the damping device and the subsoil. Modeling the excita-
tion by a continuous-time stochastic process the structure-damper system can be
described by a linear system of stochastic differential equations. The response is a
stochastic process depending on the uncertain parameters of the damping device and
the subsoil. These uncertainties are modeled by random sets, i.e., interval-valued
random variables. A framework is presented here that admits the combination of
these two types of uncertainty leading to a set-valued stochastic process, which
is interpreted as containing the true system response. The approach is applied to
show how the efficiency of TMDs can be realistically assessed in the presence
of uncertainty. The main focus of this paper is on non-stationary models for the
excitation based on colored noise multiplied by a prescribed intensity function.
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3.1 Introduction

The protection of vibration-prone structures against excessive dynamic response
can be accomplished with various passive, active, and semi-active measures,
depending on the complexity of the problem, available resources, expected lifespan,
available technological standard, environmental conditions, etc. [31, 32]. Since
these structures exhibit in general low inherent damping, the installation of a
Tuned Mass Damper (TMD) [8] is one effective classical measure to add damping.
A TMD is a simple vibratory mechanical device with a single dynamic degree-of-
freedom (SDOF) of either mass-spring-dashpot or a pendulum-dashpot type. When
appropriately designed, the kinetic energy is transferred from the vibrating structure
to the TMD, where it is subsequently dissipated through its viscous element. From
the perspective of its weight added to the structure, visual appearance, and space
considerations the maximum mass ratio, i.e. the ratio of TMD mass and effective
structural mass, is limited in general to 8 %. The efficiency of this device depends
on appropriate tuning of its system parameters and on the frequency content of the
excitation.

In current engineering practice, TMDs are frequently used to reduce narrow-
band structural vibrations induced by wind, traffic, machines, etc. For the tuning of
TMD system parameters and prediction of the actual response reduction analytic
relations are readily available [8, 14, 40]. However, the efficiency of a TMD to
mitigate broad-band earthquake-induced structural vibrations is a topic that is still
controversially discussed [5, 13, 17, 26]. Nonetheless, the seismic behavior of a
TMD aimed at particularly protecting the building against narrow-band vibrations
(excited, e.g., by wind) needs to be assessed reliably if the building is located in an
earthquake environment [37]. For example, the stroke, i.e., the peak displacement
of the TMD, must not exceed a certain design limit when subjected to severe
earthquake excitation with low probability of occurrence [18,39]. Consequently, one
objective of this paper is to provide a fundamental study of the seismic performance
of a TMD attached to a vibration-prone load-bearing structure that can be modeled
as SDOF system.

Seismic assessment of a TMD should consider the quantification of aleatory and
epistemic uncertainties. The record-to-record variability of the earthquake excitation
is the source of aleatory uncertainty. One option to capture the aleatory uncertainty
of the structure-TMD interaction system is to evaluate the responses to several base
accelerations with overall characteristic properties recorded during real earthquakes.
Based on this approach recent studies [1, 37, 38] have revealed that a TMD reduces
the root mean square response effectively, depending on the mass ratio, inherent
structural damping, and fundamental structural frequency. However, it was also
shown that a TMD might be less avid to decrease the seismic peak response.
Additionally, in [37] analytic approximations of the response quantities for design
purposes have been derived. Analytic stochastic excitation modeling of earthquake
records (see e.g. [25]) is an alternative approach to capture aleatory uncertainty that
is more feasible if the earthquake hazard is not well defined.
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Epistemic uncertainties result from the lack of knowledge of internal parameters
as well as from approximations to reality of the underlying mechanical model. Here
the effect of detuned TMD parameters comes into play, which can be traced back to
their internal uncertainty. Structural and TMD parameters can only be determined
within certain bounds, and they may be subject to change in the course of time. For
example, the stiffness of the soil, and as consequence, natural frequencies of the
vibration-prone structure depend on environmental conditions such as temperature
and moisture.

In this paper, a framework is presented that admits the combination of stochastic
processes (i.e., the earthquake excitation) and interval type parameter uncertainty
modeled by random sets (i.e., epistemic uncertainty). In particular, modeling the
excitation by a continuous-time stochastic process the structure-TMD system is
described by a linear system of stochastic differential equations. The system
response is a stochastic process depending on the uncertain parameters of the
damping device and the subsoil. These uncertainties are modeled by random sets,
i.e., finitely many intervals each coming with a probability weight. The approach
is applied to show how the efficiency of passive damping mechanisms can be
realistically assessed in the presence of uncertainty. In contrast to a previous
study [29], where the ground motion was modeled by white noise, in the following
colored noise based on the Kanai–Tajimi power spectral density function [15, 34]
describes the base acceleration, which is more realistic for earthquake excitation.
Preliminary results of the present study have been presented in [28].

3.2 Mechanical Model

This study discusses the vibration mitigation of earthquake excited linear elastic
load-bearing structures, whose dynamic response is primarily governed by the
fundamental mode. In general, the mechanical model of an SDOF oscillator
represents this category of structures with sufficient accuracy. Subsequently, ms,
ks, and cs represent lumped mass, stiffness, and viscous damping parameter of this
main system. A second SDOF oscillator with lumped mass md .� ms/, stiffness
parameter kd, and viscous damping parameter cd serves as TMD. Combined in series
this yields the non-classically damped system shown in Fig. 3.1 with two dynamic
degrees-of-freedom, expressed by the displacement xs of the structure and of the
TMD xd, both measured relative to the base displacement xg. When subjected to
base acceleration Rxg, the coupled equations of motion of this system read as follows:
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Fig. 3.1 Mechanical model
of an SDOF vibration-prone
structure equipped with a
TMD

The variable � denotes the mass ratio,

� D md

ms

!s and !d are the natural circular frequencies, and �s and �d denote the non-
dimensional damping coefficients of the stand-alone main system and the detuned
TMD, respectively,

!s D
s

ks
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; !d D

s
kd

md
; �s D cs

2!sms
; �d D cd

2!dmd

For an effective reduction of the structural response xs the parameters of the
TMD, i.e., the damping coefficient �d and the frequency ratio ı,

ı D !d

!s
(3.2)

must be tuned “optimally.” In general, optimal TMD parameters depend on the type
of excitation (harmonic, white noise, etc.) and on the considered response quantity
to be optimized (relative or absolute structural displacement or acceleration), see
e.g., [3,8,14]. For stationary Gaussian white noise base excitation of an SDOF main
system without inherent structural damping (i.e., �s D 0) the following analytic
expressions of optimal TMD parameters have been derived,

ıopt D
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; �d;opt D

s
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4.1C �/.1 � �=2/
(3.3)
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assuming that the variance of the stationary relative displacement xs is minimized,
e.g., [3] and [32, p. 234]. Tuning of a TMD according to these expressions
minimizes the variance of the relative displacement xs of the SDOF main system.

3.3 Modeling of the Earthquake Excitation

As outlined in the introduction, base excitation is modeled by a stochastic process.
An R

d -valued stochastic process x on a time interval Œ0; t � assigns to each point of
time t a random variable x.t/, defined on a probability space ˝ with its � -algebra
˙ of measurable sets and the probability measure P . The process is specified if
the finite dimensional joint distributions of all random variables x.t/, t 2 Œ0; t �

are known. A one-dimensional Brownian motion (Wiener process) b is defined
for t 2 Œ0;1/ as follows: each b.t/ is a Gaussian variable with mean zero and
variance t . Further, the covariance of b.t1/ and b.t2/ equals min.t1; t2/ and b.0/ D 0.
The corresponding probability space is denoted by .˝b;˙b; Pb/. Here and in the
sequel variable �b is reserved for the elements of the space ˝b with a similar
convention for the other probability spaces.

Continuous time white noise Pb is the weak derivative of Brownian motion. It is
a generalized process with mean zero, infinite variance, and zero covariance. It is
formalized here by means of Itô’s integral, for which the reader is referred to the
literature, e.g., [2, 22].

Systems of ordinary differential equations with white noise excitation are
handled as Itô stochastic differential equations (SDEs):

dx.t/ D f
�
t; x.t/

�
dt C g

�
t; x.t/

�
db.t/

interpreted as the integral equation

x.t/ D x0 C
tZ

0

f
�
s; x.s/

�
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tZ
0

g
�
s; x.s/

�
db.s/

where time t ranges in some finite time interval Œ0; t �, x0 is a random variable
representing the initial value, f; g W Œ0; t � � R

d ! R
d are coefficient functions,

and b is a one-dimensional Wiener process on .˝b;˙b; Pb/. Their solutions are
stochastic processes with continuous trajectories.

In [29] the authors have used white noise to model the base acceleration, for the
sake of simplicity. White noise is—due to its covariance structure—a stationary
process with a constant power spectral density. Hence, all frequencies appear
equally in the base acceleration, which is a contradiction to the properties of most
recorded ground motions. Furthermore, the infinite variance can actually not be
interpreted physically. Thus, the main goal of the present paper is to use a more
realistic model for ground acceleration.
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Fig. 3.2 Left subplot: power spectral density for Kanai–Tajimi model, !g D 5 rad=s, �g D 0:9,
S0 D 1; right subplot: intensity function

In the literature (see, e.g., [4, 24, 33]) one can often find a model proposed by
Kanai and Tajimi [15,34]. In their approach the base acceleration of the earth surface
layer is approximated by the absolute acceleration of a linear SDOF oscillator
excited by white noise. The corresponding equation of motion reads as follows

Rz.t/C 2�g!gPz.t/C !2
g z.t/ D �Pb.t/

where !g and �g are, respectively, the natural circular frequency and non-
dimensional damping coefficient of the oscillator corresponding to the properties of
the subsoil. The above equation can be written as a two-dimensional linear system
of stochastic differential equations,

dz.t/ D
"
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�!2
g �2�g!g

#
z.t/ dt C

�
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�1
�

db.t/

where z D Œz; Pz�T. The ground acceleration is then modeled by the absolute
acceleration of the oscillator, that is Rxg D Rz C Pb, which results in the following
stochastic process

Rxg.t/ D �2�g!gPz.t/ � !2
g z.t/ (3.4)

Its power spectral density is given by the equation

S.!/ D S0

!4
g C 4�2g!

2
g!

2

.!2
g � !2/2 C 4�2g!

2
g!

2
(3.5)

where S0 is the (constant) power spectral density of white noise. Obviously, the
spectral density S is not constant and thus represents a special type of colored noise.
The left picture in Fig. 3.2 shows a plot of the power spectral density for the soil
parameters !g D 5 rad=s, �g D 0:9, and for the uniform spectral density S0 D 1.

Note that the process given by Eq. (3.4) is (asymptotically) stationary. However,
it is a well-known fact that the base acceleration of earthquakes is non-stationary.
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Typically, at the beginning of the earthquake, amplitudes of the base acceleration
are increasing. After a period of quasi-stationary strong motion, amplitudes are
decreasing again. Thus, it seems reasonable to multiply the process from Eq. (3.4)
with some intensity function I corresponding to the non-stationary behavior of the
base acceleration (see, e.g., [6]). This leads to the following model for Rxg:

Rxg.t/ D I.t/
� � 2�g!gPz.t/ � !2

g z.t/
�

(3.6)

As suggested in [24] the intensity function plotted in the right-hand side picture
of Fig. 3.2 is used: During the first 15% of the total duration of the earthquake, I
increases linearly from 0 to 1. After a constant period over 30% of the earthquake
duration, I decreases in a quadratic manner.

Rewriting the coupled equations of motion from (3.1) as a system of first order,
and introducing the stochastic process (3.6) for the base acceleration leads to the
following six-dimensional linear system of stochastic differential equations:

dx.t/ D F.t/x.t/ dt C g db.t/ (3.7)

where x D Œxs; xd; z; Pxs; Pxd; Pz�T, g D Œ0; 0; 0; 0; 0;�1�T and

F.t/ D

2
66666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�!2
s � !2

d� !2
d� �!2

gI.t/ �2�s!s � 2�d!d� 2�d!d� �2�g!gI.t/

!2
d �!2

d �!2
gI.t/ 2�d!d �2�d!d �2�g!gI.t/

0 0 �!2
g 0 0 �2�g!g

3
77777775

Note that all parameters of the model are contained in the system matrix F.
Furthermore, F is time-dependent because of the intensity function I . This contrasts
the situation considered in [29], where the system matrix does not depend on time.

For reasons of comparison, the response of the system without TMD is consid-
ered, too. In this case the motion of the corresponding SDOF oscillator is described
by the equation

RQxs C 2�s!s PQxs C !2
s Qxs D �Rxg

Substituting the stochastic process (3.6) for Rxg leads to the first order SDE system
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where Qx D Œxs; z; Pxs; Pz�T. In both systems (3.7) and (3.8) the initial values are
assumed to be zero.

3.4 Modeling of the Parameter Uncertainty

The epistemic parameter uncertainty is accounted for by means of random sets.
In general, a random set is a set-valued random variable satisfying certain measura-
bility conditions. The simplest case arises when the underlying probability space is
finite. In this case, one speaks of finite random sets or Dempster–Shafer structures.
Such a structure is given by finitely many subsets Ai ; i D 1; : : : ; n of a given set
A, called the focal elements, each of which comes with a probability weight pi ,P

pi D 1.
For example, each set Ai could be the result of an interval-valued measurement

and pi its relative frequency in a sample. Alternatively, the sets Ai could be ranges
of a variable obtained from source number i with relative credibility pi .

As a random set, a Dempster–Shafer structure is viewed as given by an n-point
probability space ˝A D f1; 2; : : : ; ng with probability masses fp1; p2; : : : ; png. The
assignment i ! Ai is the defining set-valued random variable.

Following Dempster and Shafer [7, 30], two important set functions are intro-
duced: the lower probability and the upper probability of an event B are defined by

P .B/ D
X
Ai�B

pi ; P .B/ D
X

Ai\B¤;
pi (3.9)

A good visualization of a random set can be given through its contour function
on the basic space A, assigning each singleton a its upper probability:

a ! P .fag/ (3.10)

It is simply obtained by adding the probability weights pi of those focal elements
Ai to which a belongs. Figure 3.3 shows a random set and the resulting contour
function where weights have been chosen as p1 D 1=2; p2 D 1=3; p3 D 1=6.

In the sequel, random sets are needed that are defined on an arbitrary probability
space .˝A; ˙A; PA/ and whose values are subsets of p-dimensional coordinate
space A D R

p . More precisely, random compact intervals are used, that is, random
variables

A W ˝A ! Ic.A/

where Ic.A/ denotes the set of all non-empty compact intervals in A. Random
compact intervals are used since they have and imply advantageous theoretical
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Fig. 3.3 A random set and its contour function; the three dots on the vertical axis symbolize the
underlying three-point probability space

properties (e.g., concerning measurability, see [19]). In analogy to (3.9) the lower
probability and the upper probability of an event B are defined as

P .B/DPA.f�A 2 ˝A WA.�A/ � Bg/; P .B/DPA.f�A 2 ˝A WA.�A/ \ B ¤ ;g/
(3.11)

The event B may be taken as any Borel measurable subset of A. The contour
function is given by (3.10).

For further details on interpretations and applications the reader is referred to the
articles [10–12, 21, 35, 36] as well as to the monographs [19, 20].

3.4.1 Two Examples of Random Sets for Uncertainty Modeling

In [29] random sets constructed from Tchebycheff’s inequality have been used,
which require only minimal information about the parameters. More precisely,
let a be an uncertain parameter preliminarily viewed as a random variable with
expectation (or nominal) value a and variance �2. Then one can define a random set
A on ˝A D .0; 1� by setting

A.�/ D �
a � �p

�
; aC �p

�

�
; � 2 ˝A (3.12)

where ˝A D .0; 1� is equipped with the uniform probability distribution. It has been
argued in [29] that a focal element A.�/ may be viewed as an approximate two-sided
.1��/-fractile range for the parameter a. Furthermore, it has been explained how to
compute � from a probabilistic estimate about the range of the parameter. Figure 3.4
shows the contour function of a generic Tchebycheff random set.

In view of the shape of its contour function, it is obvious that a Tchebycheff
random set is an appropriate model for parameter uncertainty when a parameter can
take arbitrary (real) values, and negative deviations from the expectation or nominal
value seem as likely as positive deviations. In case the parameter range is strictly
bounded on (only) one side of the nominal value, it might be better to choose a
random set whose contour function reflects this asymmetry.
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Fig. 3.4 Left subplot: a generic Tchebycheff random set; right subplot: a triangular random set

One possibility is to use a random set whose contour function has a triangular
shape. The latter is then determined by a nominal value a and the lower and upper
bounds `, u of the parameter range. Such a random set can be defined on ˝A D Œ0; 1�

by setting

A.�/ D �
`C .a � `/�; u � .u � a/�

�
; � 2 Œ0; 1�

where ˝A D Œ0; 1� is equipped with the uniform probability distribution. The right
picture in Fig. 3.4 shows the contour function of a triangular random set.

3.5 Combination of Stochastic Excitation and Parameter
Uncertainty

In the previous two sections it has been demonstrated how to model the base accel-
eration by stochastic processes and how to use random sets to model (epistemic)
parameter uncertainty. The purpose of this section is to demonstrate how the two
types of uncertainty can be combined to obtain set-valued assessments of the TMD
performance.

As it has been shown at the end of Sect. 3.3, the motion of the combined
structure-damper system is described by the linear system of SDEs (3.7), where the
parameters �, �s, !s, �d, !d, �g, !g appear in the system matrix F. In Sect. 3.6,
various of these parameters are assumed to be uncertain, and random intervals
presented in Sect. 3.4 are used. Note that this is in contrast to [29], where only
TMD parameters were assumed to be uncertain. Corresponding to the situation, the
tuple of uncertain parameters is denoted by a. The linear system (3.7) then reads

dxa.t/ D F.t; a/xa.t/ dt C g db.t/

where fxa.t/gt2Œ0;t � denotes the solution process corresponding to parameter value a.
As a first indicator for the performance of the TMD the displacement xs of

the structure is considered. More precisely, xs is scaled by the largest structural
displacement Qxs when no TMD is attached. This leads to a map y defined on the



3 Seismic Performance of Tuned Mass Dampers with Uncertain Parameters 67

time interval, the set of possible parameter values A, and the probability space ˝b

of Brownian motion:

ya.t; �b/ D xs;a.t; �b/

maxt2Œ0;t � j Qxs;a.t; �b/j

The latter can be seen as a non-dimensional displacement.
The aim is now to combine both kinds of uncertainty. To this end, the set-valued

function

Y.t; �/ D fya.t; �b/ W a 2 A.�A/g (3.13)

is introduced, where .t; �/ 2 Œ0; t � � ˝ and .˝;˙;P / denotes the product
probability space

.˝;˙;P / D .˝A �˝b;˙A ˝˙b; PA ˝ Pb/

This definition means that for each time t and each element � D .�A; �b/ of the
product space ˝ the corresponding values of the non-dimensional displacement
are merged to one set Y.t; �/, which is interpreted as containing the true value of
the structural non-dimensional displacement. Note that Y is a set-valued stochastic
process, that is, at each time t one has a random set Y.t/, whose values are compact
intervals in R. For further details the reader is referred to [27], where the theory of
this approach has been developed.

For reasons of comparison the non-dimensional displacement Qy of the structure
without TMD

Qya.t; �b/ D Qxs;a.t; �b/

maxt2Œ0;t � j Qxs;a.t; �b/j

is also considered. If parameters of the base acceleration are assumed to be
uncertain, a set-valued process QY can be defined from the processes Qya in a similar
manner as in Eq. (3.13). Furthermore, the absolute values of the non-dimensional
displacements ya are of interest, too, resulting in the set-valued process

jY j.t; �/ D fjya.t; �b/j W a 2 A.�A/g

The reader is referred to [29] for equations of the boundary processes of j QY j and
their mean value functions.

A central concern is the effectiveness of the TMD, that is, to which extent the
dynamic response xs is reduced compared to the response Qxs when no TMD is
attached. In the single-valued case the peak response reduction coefficient and the
root mean square (RMS) response reduction coefficient are considered
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rm;a.�b/ D maxt2Œ0;t � jxs;a.t; �b/j
maxt2Œ0;t � j Qxs;a.t; �b/j ; rq;a.�b/ D

vuutR t

0
xs;a.t; �b/2 dtR t

0
Qxs;a.t; �b/2 dt

For each parameter value a and for each path of the Brownian motion, the map
rm;a represents the reduction of the peak displacement of the structure, whereas rq;a

computes the quadratic-mean reduction (over time) of xs;a. Similar as in Eq. (3.13)
these maps can be extended to the set-valued reduction coefficients Rm and Rq

defined by

Rm.�/ D frm;a.�b/ W a 2 A.�A/g; Rq.�/ D frq;a.�b/ W a 2 A.�A/g

whose values are compact subintervals of the unit interval Œ0; 1�.
The stroke of the TMD is an important design parameter to assure the efficiency

of the TMD, and to avoid damage of the TMD and/or of the main structure.
It represents the TMD peak displacement with respect to its attachment point at
the main structure. As with the reduction coefficients rm;a and rq;a the displacement
Qxs of the structure without TMD is used for normalization. Thus, the equation for
the stroke coefficient reads as follows [37]

da.�b/ D maxt2Œ0;t � jxs;a.t; �b/ � xd;a.t; �b/j
maxt2Œ0;t � j Qxs;a.t; �b/j

Similar as in Eq. (3.13) one can define the set-valued stroke coefficient D by

D.�/ D fda.�b/ W a 2 A.�A/g

whose values are compact intervals.

3.6 Numerical Simulation and Results

Subsequently, results of numerical simulations are presented. Unless otherwise
stated, the results are based on the following nominal values: mass ratio � D 0:05,
structural inherent damping �s D 0:005, soil frequency !g D 5 rad=s (soil period
Tg � 1:26 s), soil damping �g D 0:9. The latter soil values correspond to soil class
C according to Eurocode 8, see [9] and [23]. For the nominal values of the TMD
parameters !d and �d the optimal values given by Eqs. (3.2) and (3.3) are used.

For each tuple of parameter values approximations are computed using the Order
2 Implicit Strong Taylor Scheme (see [16]). Each simulation involves 500 sample
functions of Brownian motion, and (constant) step size �t of the time discretization
is chosen as min.Ts; Tg/=12 if min.Ts; Tg/ < 1, or 1=20 otherwise.



3 Seismic Performance of Tuned Mass Dampers with Uncertain Parameters 69

3.6.1 Parametric Studies

In this section the results of parametric studies are presented in an effort to reveal
how the expectation values of the reduction coefficients and the stroke coefficient
are influenced by structural and soil parameters �, Ts, �s, Tg, and �g, respectively.
In each study the structural period Ts D 2�=!s is varied in the range from 0:05

to 5 s. Additionally, one of the remaining parameters is varied while the other
parameters are fixed to their nominal values. For each output variable a line plot
(with the structural period Ts on the abscissa and one of the response quantities rm,
rq, d on the ordinate) and a contour plot are presented.1 All results are compared to
the outcomes based on white noise base excitation.

Figure 3.5 shows the expected values of the peak and RMS displacement
reduction coefficients rm and rq and the stroke coefficient d , respectively, for Ts

and Tg varying in the range from 0:05 to 5 s. The bold black lines in the left pictures
represent the results for white noise base acceleration (further investigated in [29]),
whereas the thin (and partially marked) lines correspond to colored noise excitation
for various values of the soil period Tg while fixing the soil damping �g to the
value 0:9.

Obviously, reduction coefficients rm and rq increase with increasing Tg

particularly for short period structures, which means that the TMD is less effective
for longer soil periods. However, the stroke coefficient is almost not affected by
variation of Tg. The results of this figure suggest that for small structural periods
Ts the TMD performance for colored noise excitation is worse than for white noise
excitation. This behavior is coherent with computations accomplished with real
earthquake records (see [37, 38]) and is due to the fact that the power spectral
density (3.5) yields small values for high frequencies (small periods), whereas in
the white noise case all frequencies equally likely appear. Another observation
is that the smaller the soil period Tg the better the reduction plot approaches the
white noise curve. For Tg D 0:05 s the expectations of the reduction coefficients
actually coincide with those of the white noise case. Again, this can be explained
by considering the spectral density of the colored noise process: If !g ! 1
(or equivalently Tg ! 0) then S.!/ ! S0 for all !, that is, S converges to a
constant spectral density, and this corresponds to white noise.

Figure 3.6 depicts the reduction and stroke coefficients for nominal soil fre-
quency !g D 5 rad=s (Tg � 1:26 s) and varying soil damping �g ranging from 0:3 to
0:95. It is remarkable that for a structural period of approximately 1:12 s all values
of �g lead to the same reduction. In the structural period range larger than this period
the considered response quantities remain almost unaffected by the variation of soil
damping. However, in the lower period range RMS and peak reduction coefficients
increase considerably with decreasing soil damping, i.e., the TMD becomes less
effective.

1In the sequel, we shall denote the reduction and stroke coefficients simply by rm, rq, d in place of
rm;a, rq;a, da, unless explicit reference to a specific tuple of parameters a is required.
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Fig. 3.5 Expectations of reduction coefficients rm, rq and stroke coefficient d , based on white
noise excitation (wn) and colored noise excitation for �g D 0:9 and various values of Tg [in (s)]

Figure 3.7 shows the behavior of the output variables rm, rq, and d under
variation of mass ratio � in the range of 0:5–8% based on colored noise excitation
with nominal soil parameters (!g D 5 rad=s, �g D 0:9). One can see that all
three output variables decrease when � increases. This confirms the well-known
fact that for larger mass ratios structural displacement is reduced more efficiently
and the stroke coefficient is smaller. It is remarkable that for small mass ratios
(0:5% and 1%) the stroke coefficient depends on the structural period in a non-
monotonic manner. From Fig. 3.8 one can conclude that in the case of white noise
excitation results are very similar to those based on colored noise excitation, except
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Fig. 3.6 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on white noise excitation and colored noise excitation for !g D 5 rad=s (Tg � 1:26 s) and various
values of �g

for small structural periods, which is coherent with the results displayed in Figs. 3.5
and 3.6. Comparing the results of Figs. 3.7 and 3.8 with outcomes of a study [37]
based on a set of recorded ground motions, reveals that not only the dependency
of the considered response variables on various structural parameters is the same
for the stochastic soil model used here and for real ground motions. These response
quantities are even of the same order of magnitude. The approach of this study is
thus confirmed.

In Fig. 3.9 results for rm, rq, and d are plotted when the structural damping
coefficient �s is varied in the range of 0:5–5%, mass ratio � D 5%, and the
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Fig. 3.7 Expectations of reduction coefficients rm, rq and stroke coefficient d based on colored
noise excitation (!g D 5 rad=s, �g D 0:9) for �s D 0:005 and various values of �, respectively

Kanai–Tajimi model with nominal soil parameters (!g D 5 rad=s, �g D 0:9) is
used. It is readily observed that all three output variables increase when �s increases.
This means that higher inherent structural damping leads to lower effectiveness
of the TMD to reduce the response and to a larger stroke relative to the peak
displacement of the main system. This outcome is obvious because the main system
becomes less-vibration prone the larger the inherent damping is. From Fig. 3.10 one
can see once more that in the case of white noise excitation results are very similar
to those based on colored noise excitation, except for small structural periods.
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Fig. 3.8 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on white noise excitation for �s D 0:005 and various values of �

3.6.2 Set-Valued TMD Parameters

In this subsection the mass ratio �, the structural inherent damping �s, and the soil
parameters !g and �g are fixed to their nominal values whereas the TMD parameters
!d and �d are assumed to be uncertain. In a first simulation, a Tchebycheff random
set A is used only for !d, and �d is assumed to take its nominal value. Concerning
the variability it is assumed that the actual value of !d lies in a range of ˙40% of
its nominal value with 99% certainty. As explained in [29] this leads to a coefficient
of variation of 0:04, that is, � D 0:04!d. Corresponding to Eq. (3.12) the focal
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Fig. 3.9 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on colored noise excitation (!g D 5 rad=s, �g D 0:9) for � D 0:05 and various values of �s

elements are obtained as

A.�A/ D
h
!d

�
1 � 0:04p

�A

	
; !d

�
1C 0:04p

�A

	i

where �A 2 .0; 1�. For the numerical simulation the random set is approximated by
a finite random set consisting of the ten focal elements obtained for �A;j D .j=10/2,
j D 1; : : : ; 10. The corresponding weights are then given by p1 D 0:01, pj D
�A;j � �A;j�1 D .2j � 1/=100, j D 2; : : : ; 10. This leads to a better approximation
(with respect to the upper and lower probability) than choosing �A;j equidistantly
from .0; 1�.



3 Seismic Performance of Tuned Mass Dampers with Uncertain Parameters 75

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

structural period T
s
 [s]

pe
ak

 d
is

pl
. r

ed
. c

oe
ff.

 r m
 [−

]

ζ
s
=0.005

ζ
s
=0.01

ζ
s
=0.02

ζ
s
=0.03

ζ
s
=0.05

structural period T
s
 [s]

da
m

pi
ng

 c
oe

ff.
 ζ

s [−
]

1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

structural period T
s
 [s]

R
M

S
 d

is
pl

. r
ed

. c
oe

ff.
 r q [−

]

ζ
s
=0.005

ζ
s
=0.01

ζ
s
=0.02

ζ
s
=0.03

ζ
s
=0.05

structural period T
s
 [s]

da
m

pi
ng

 c
oe

ff.
 ζ

s [−
]

1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

0.4

0.5

0.6

0.7

structural period T
s
 [s]

da
m

pi
ng

 c
oe

ff.
 ζ

s [−
]

1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

1.4

1.6

1.8

2

2.2

Fig. 3.10 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on white noise excitation for � D 0:05 and various values of �s

Figure 3.11 shows the expectation of the peak and RMS displacement reduction
coefficients and the expectation of the stroke coefficient for 11 different values of
the structural period Ts, namely, 0.05, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 (values
in seconds). The outer (bold) lines in the pictures are the interval bounds of the
expectation of the set-valued reduction coefficients Rm, Rq and the set-valued stroke
coefficient D, respectively. The central (marked) lines represent the output obtained
for the optimal parameter value !d.

Figure 3.12 is obtained by using a Tchebycheff random set for the TMD damping
coefficient �d with coefficient of variation of 0:04 and fixing !d to its optimal value.
It seems that varying �d has almost no influence on the reduction coefficients, which
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Fig. 3.11 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain TMD frequency !d; middle subplot: bounds of set-valued RMS displacement reduction
coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain TMD frequency !d; right subplot: bounds of set-valued stroke
coefficient D (outer lines), stroke coefficient da (central line) for different values of Ts, and
uncertain TMD frequency !d

Fig. 3.12 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain TMD damping �d; middle subplot: bounds of set-valued RMS displacement reduction
coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain TMD damping �d; right subplot: bounds of set-valued stroke coefficient
D (outer lines), stroke coefficient da (central line) for different values of Ts, and uncertain TMD
damping �d

is coherent with the outcomes of [37, 38] based on real recorded ground motions.
However, the stroke coefficient is influenced by �d in a similar manner as by !d, i.e.,
the bounds of the set-valued stroke coefficient are only slightly tighter as in the right
picture of Fig. 3.11.

In a further simulation, for both TMD parameters !d and �d Tchebycheff random
sets are used. Their approximations are combined to a two-dimensional random set
by taking the cartesian product of each of the focal elements of the first with each
of the focal elements of the second random set and multiplying the corresponding
probability weights. This results in a finite random set consisting of 100 rectangular
focal elements. In Fig. 3.13 the expectations of the reduction coefficients and the
stroke coefficient are depicted. The plots of the reduction coefficients look very
similar to the ones in Fig. 3.11, which emphasizes that the impact of TMD damping
�d on the reduction coefficient is small.



3 Seismic Performance of Tuned Mass Dampers with Uncertain Parameters 77

Fig. 3.13 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain TMD parameters !d, �d; middle subplot: bounds of set-valued RMS displacement
reduction coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line)
for different values of Ts, and uncertain TMD parameters !d, �d; right subplot: bounds of set-
valued stroke coefficient D (outer lines), stroke coefficient da (central line) for different values of
Ts, and uncertain TMD parameters !d, �d

From all three figures one can see that the RMS displacement reduction
coefficients are smaller than the peak displacement reduction coefficients. This is
due to the fact that in the left pictures only the peak displacements of the trajectories
are compared. These maximum displacements usually appear during the period of
strong ground motion (where the intensity function equals 1). On the other hand,
for the RMS displacement reduction all the displacements observed during the time
interval are taken into account. Furthermore, one can observe that the bounds of the
set-valued stroke coefficient are much wider than for the reduction coefficients, and
that the stroke coefficient da induced by the optimal values of the TMD parameters
are close to the upper bound of the set-valued stroke coefficient. These results lead to
the well-known conclusion that the optimal TMD parameters from Eq. (3.3) lead to
a large stroke, but by variation of the TMD parameters the stroke can be diminished
considerably while the efficiency of the TMD is only deteriorating slightly, see,
e.g., [37] .

Figure 3.14 shows the bounds of sample functions of the non-dimensional
displacement Y of the load-bearing structure (bold lines) obtained by choosing
two particular focal elements, a particular path of the ground motion process,
and Ts D 1 s. Thin lines represent the corresponding sample functions of the
non-dimensional displacement ya obtained for the nominal parameter values a D
.!d; �d/ and the non-dimensional structural displacement Qy when no TMD is
attached. In the left subplot of Fig. 3.15 the mean value functions of jY j, jyaj
and j Qyj for Ts D 1 s are plotted. One can see that during the phase of strong
ground motion the displacements of the load-bearing system damped by the TMD
are fluctuating around a constant value. Due to the increased damping by the
TMD, these displacements decay much more quickly than the displacements of
the TMD-free system after the end of the strong motion period. The right-hand
subplot of Fig. 3.15 depicts for each time the probability that the non-dimensional
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Fig. 3.14 Bounds of a sample function of the non-dimensional structural displacement Y (bold
lines) and sample functions of ya (central thin line) and Qy (outer thin line) for Ts D 1 s and two
different focal elements for uncertain TMD parameters !d, �d

Fig. 3.15 Left subplot: mean value functions of the absolute values of the non-dimensional
structural displacement jY j (bold lines), jyaj (central thin line) and j Qyj (outer thin line) for
Ts D 1 s, and uncertain TMD parameters !d, �d; right subplot: upper and lower probabilities
of Œ0:5;1/ for jY j (bold lines), probabilities of jyaj > 0:5 (central thin line) and j Qyj > 0:5 (outer
thin line), TMD parameters !d and �d uncertain

displacement exceeds the value 0:5. For the set-valued process jY j this corresponds
to the upper and lower probabilities of the interval Œ0:5;1/ (see Eq. (3.11)).

3.6.3 Set-Valued Soil Parameters

In this subsection, results of simulations are discussed when random sets are used
for the soil parameters !g, �g whereas the mass ratio, the structural damping, and
the TMD parameters are fixed to their nominal values.

Figure 3.16 shows the expectations of the reduction coefficients and the stroke
coefficient for soil damping �g D 0:9 and a Tchebycheff random set with nominal
soil frequency !g D 5 rad=s. The coefficient of variation used for !g is 0:04.
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Fig. 3.16 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain soil frequency !g; middle subplot: bounds of set-valued RMS displacement reduction
coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain soil frequency !g; right subplot: bounds of set-valued stroke coefficient
D (outer lines), stroke coefficient da (central line) for different values of Ts, and uncertain soil
frequency !g

Fig. 3.17 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain soil damping �g; middle subplot: bounds of set-valued RMS displacement reduction
coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain soil damping �g; right subplot: bounds of set-valued stroke coefficient
D (outer lines), stroke coefficient da (central line) for different values of Ts, and uncertain soil
damping �g

Obviously, varying !g changes the reduction coefficients only slightly whereas the
stroke coefficient is affected considerably. One can further consider the case where
!g D 5 rad=s and a random set is used for �g. As before the nominal value of 0:9
is employed for soil damping �g. Concerning the variability it is assumed that �g

can take values from 0:3 to 0:95; note that �g is bounded by 1. This range does
not lie symmetrically around the nominal value, and thus it is not appropriate to
use a Tchebycheff random set. However, it seems reasonable to utilize a triangular
random set instead as shown in Fig. 3.4, right subplot. The latter is approximated
by the finite random set obtained by the choices �A;j D 0:01 C 0:11 � .j � 1/,
j D 1; : : : ; 10, with probability weights p1 D 0:01, pj D 0:11, j D 2; : : : ; 10.
Figure 3.17 depicts the expectations of the resulting reduction coefficients and the
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Fig. 3.18 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts,
and uncertain soil parameters !g, �g; middle subplot: bounds of set-valued RMS displacement
reduction coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line)
for different values of Ts, and uncertain soil parameters !g, �g; right subplot: bounds of set-valued
stroke coefficient D (outer lines), stroke coefficient da (central line) for different values of Ts, and
uncertain soil parameters !g, �g

Fig. 3.19 Bounds of sample functions of the non-dimensional structural displacement Y (bold
lines), sample functions of ya (central thin line) and bounds of sample functions of QY (outer thin
lines) for Ts D 1 s and two different focal elements for uncertain soil parameters !g, �g

stroke coefficient. Obviously, for the reduction coefficients significant deviations
from the nominal values can only be recognized for structural periods Ts up to 1 s.
For larger values of Ts the bounds of the set-valued reduction coefficients more
or less coincide with the reductions computed with the nominal values. Similar to
Fig. 3.16 the stroke coefficient varies considerably. Very similar outcomes are found
when using random sets for both parameters !g and �g (see Fig. 3.18). Figure 3.19
shows sample functions, and in Fig. 3.20 mean value functions and exceedance
probabilities are plotted.
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Fig. 3.20 Left subplot: mean value functions of the absolute values of non-dimensional structural
displacement jY j (bold lines), jyaj (central thin line) and j QY j (outer thin lines) for Ts D 1 s, soil
parameters !g and �g uncertain; right subplot: upper and lower probabilities of Œ0:5;1/ for jY j
(bold lines) and j QY j (outer thin lines), probabilities of jyaj > 0:5 (central thin line), soil parameters
!g and �g uncertain

3.7 Conclusion

In this paper a framework to assess the seismic performance of Tuned Mass
Dampers (TMDs) in presence of parameter uncertainty has been presented.
A stochastic process, based on the Kanai–Tajimi power spectral density function,
models earthquake excitation. This constitutes a more realistic excitation model
than white noise used in an earlier study [29]. Random sets have been used to
describe the uncertainty of the ground parameters and the TMD parameters, which
can (in practice) not be tuned optimally. The benefit is an adequate assessment
of response reduction coefficients of the main system and the stroke coefficient
of the TMD system. The interval-valued description of the behavior of the TMD
system is more informative and reliable than a purely stochastic description with
single-valued outputs.

Based on this methodology a parametric study has been conducted to quantify the
efficiency of a TMD to reduce the seismic response of a vibration-prone structure
that can be modeled sufficiently accurately as a single degree-of-freedom oscillator.
The results derived are coherent with the outcomes of a similar parametric study
[37] that is, however, based on a set of recorded earthquake ground motions. The
considered response quantities are both qualitatively and quantitatively comparable,
and thus the analytical expression for seismic TMD design presented in [37] is
confirmed. Beneficially, the utilized stochastic ground motion model allows one to
study the effect of a targeted variation of specific ground motion parameters on the
TMD performance, as it has been conducted here.
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