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Preface

Aiming at the design and analysis of complex engineering systems, computational
engineering combines engineering sciences, mathematics, and computer science.
It comprises the development, application, and validation of computational models
as well as the visualization of simulation results. Taking advantage of continuing
advances in computer hardware, software technology, and numerical algorithms,
computational engineering plays an increasingly important role in the development
and operation of engineering products and systems.

The book provides an overview of the broad spectrum of research activities
within the framework of the research center Computational Engineering at the
University of Innsbruck. The topics covered focus on mathematical modeling,
numerical simulation, and experimental validation in several fields of engineering
sciences. In particular, constitutive models and their implementation into finite
element codes, sensitivity and reliability analysis of engineering structures including
applications in aerospace engineering and earthquake engineering, multi-phase
models and multi-scale models in civil engineering, applications of scientific
computing in urban water management and numerical simulations in hydraulic
engineering, and—last but not least—the application of a genetic algorithm for the
registration of laser scanner point clouds in geoinformation science are presented.

The research center Computational Engineering is part of the research focal point
Scientific Computing at the University of Innsbruck. The latter integrates research
activities of the University of Innsbruck in the fields of information technology
and e-science. As the success in those scientific disciplines crucially depends on
the powerful computer hardware, the financial support by the Austrian Federal
Ministry of Science and Research (BMWF) within the framework of the University
Infrastructure Program is gratefully acknowledged.

Innsbruck, Austria Günter Hofstetter
February 2014
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Chapter 1
Constitutive Models in Finite Element Codes

W. Fellin and A. Ostermann

Abstract In finite element simulations the constitutive information is usually
handled by a user-supplied subroutine. For a prescribed strain increment, this
subroutine provides the finite element code with the corresponding stress increment
and the Jacobian, which is required to build the consistent tangent operator.
We propose an approach that relieves the user from computing and coding the
Jacobian information. Instead, this information is computed automatically together
with the stress increment. This approach requires reliable and efficient numerical
integration. In particular, adaptivity and automatic error control are highly desirable
features. Such integrators are presented in this article. The underlying ideas
of the approach are first elucidated at simple one-dimensional problems from
geotechnics. However, it is also discussed how this concept can be used in a
fully three-dimensional framework. We expect that this new approach will strongly
enhance the development of constitutive models and help to identify the most
appropriate ones.

1.1 Introduction

Challenging problems in computational inelasticity are usually tackled by an
incremental finite element approach: the load is applied in discrete steps and
the equilibrium equations are solved after each load increment. In geotechnical
applications, however, the actual use of finite element codes is often restricted
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constitutive
subroutine

FE − program FE − program

interface module

constitutive
subroutine

simplified

a bFig. 1.1 Classical structure
of a co-simulation approach
(a). The new structure based
on an interface module (b)

by the fact that state-of-the-art soil models are not implemented in commercial
programs. Although finite element programs offer, in general, an interface for using
an own material model, the actual implementation is often a time-consuming task.
We believe that developers and users of advanced constitutive models should not be
burdened with all the numerical details of such an implementation.1

For reasons of flexibility, standard finite element programs use a co-simulation
approach: the equilibrium equations are solved with the help of an iterative
algorithm in the finite element package, and the necessary constitutive information
is obtained through an interface from a user-supplied subroutine which implements
the constitutive relation, see Fig. 1.1a. In this way new models can be added to
existing and well-established finite element packages.

At the interface, the finite element code proposes a strain increment�" for which
the constitutive model has to supply the corresponding stress increment �T as well
as the derivative of the stress increment with respect to the strain increment

@�T
@�"

: (1.1)

This Jacobian information is the constitutive part of the consistent tangent operator.
It is well known that any inconsistency with the stress-update algorithm of the
constitutive model will spoil the quadratic convergence of Newton’s method in the
iterative solution of the initial-boundary value problem (see [18]). A consequence
will be computational inefficiency. For simple material models, the Jacobian can
be found analytically by differentiation of the constitutive equations. For more
complicated constitutive models, however, this can be a tedious task and it is
sometimes even not feasible. A remedy is numerical differentiation.

1By the term implementation we understand the whole process of developing the interface module:
selecting an appropriate integration scheme, coding the scheme, and testing it at the levels of
integration points, elements, and full initial-boundary value problems.
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The aim of this article is to convince the reader that the constitutive subroutine
should be split up into two parts (see Fig. 1.1b). On the one hand, the former
constitutive subroutine gets simplified and just provides the constitutive equation.
On the other hand, a new interface module takes care of the integration procedure
and provides in addition the Jacobian and, if desired, sensitivity information (for
the latter, see [9]). This approach requires general purpose integration schemes that
are not tailored to a specific constitutive equation. We propose here fully adaptive
second-order integrators. Depending on whether the problem is non-stiff or stiff,
an explicit or a semi-implicit integrator is recommended. For index 2 problems
that arise in the plastic case, a half-explicit integrator is our method of choice.
By controlling the local error, these integrators automatically select an appropriate
step size for the sub-stepping procedure.

In the spirit of [18] we first explain the underlying ideas and the basic properties
of the integrators at simple one-dimensional problems. In the last part of this
paper, however, we extend our approach to the fully 3D case (see Sect. 1.6). We
expect that the chosen approach will strongly enhance the development of new
constitutive models. Increasing the number of available models will eventually
initiate a competitive selection of the most appropriate ones.

1.2 The Merits and Pitfalls of One-Dimensional
Considerations

One-dimensional considerations are often simple and easy to follow, in general.
Therefore, they are very useful for getting a first understanding of complex
approaches and for laying a solid basis for proceeding to the three-dimensional
reality. However, one has to bear in mind that a one-dimensional world does not
really exist. Every one-dimensional model is just a reduction of a fully three-
dimensional one, endowed with certain boundary conditions.

Let us consider a cylindrical sample of cohesive soil like clay. We can simply
load this sample on the top with an increasing force F and measure the displacement
of the top s, see Fig. 1.2a. Such a test is called uniaxial compression test. When a
pressure is applied at the cylinder surface, the test is called triaxial test. We can
also enclose the specimen in a rigid hollow cylinder and prohibit thereby the lateral
extension of the specimen while compressing it vertically, see Fig. 1.2b. Then it is
called confined uniaxial compression test, or oedometer test.

The results of both uniaxial compression tests can be plotted as a relation
between the applied force and the measured displacement, see Fig. 1.3. The stiffness
increases with displacement in the confined case but decreases in the unconfined
one. A maximum possible load will eventually be reached in the unconfined
case, which, however, is not the case for a confined sample. Obviously, the
evolution of lateral confining stresses will cause this drastic change in behavior from
unconfined to confined conditions. The sample will laterally extend in an unconfined
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F

s
F

a

b

Fig. 1.2 Uniaxial
compression tests.
(a) Unconfined. (b) Confined

s

F
confined

unconfined

Fig. 1.3 Results of uniaxial
compression tests

experiment, which is prohibited in the confined situation. The boundary conditions
thus completely change the material behavior that is found in a one-dimensional
relationship between forces and displacements.

The simplest constitutive model is linear elasticity. For such a model the stress–
strain relationship in the unconfined case reads

� D E" (1.2)

with Young’s modulus E. In the confined cases it is

� D Es" (1.3)

with the stiffness modulus

Es D E
1 � �

.1C �/.1 � 2�/ : (1.4)

Here, the effect of lateral confinement enters via Poisson’s ratio �, which is the
negative ratio of the lateral to the vertical strain in the unconfined case. Note that
the stiffness modulus is higher than Young’s modulus. For example, for steel with
� D 0:3 we have Es D 1:35E.

To conclude, it is not possible to derive one-dimensional constitutive models
that fully describe the material behavior. However, some essential properties can
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be captured. Moreover, in the context of this article, the computational approaches
for constitutive models can be explained much simpler.

1.3 Time Integration of Pure Rate Equations

In this section we present constitutive models of the rate type and discuss their
numerical integration. We focus on adaptivity and discuss explicit and semi-implicit
integration schemes for non-stiff and stiff problems, respectively.

1.3.1 Pure Rate Equation

Some constitutive models, like hypoplasticity for soil [14, 15], are of the rate type.
Such models are relations between the objective stress rate T̊ of the effective
Cauchy stress [19], on the one hand, and the effective Cauchy stress T, the Eulerian
stretching D, and some additional state or internal variables Q on the other hand,

T̊ D h.T;D;Q/ : (1.5)

The additional state variables obey a further set of evolution equations

Q̊ D k.T;D;Q/ : (1.6)

A one-dimensional version of hypoplasticity for oedometric boundary conditions
reads as follows (see [3, 4, 8]):

PT D h.T;D/ D C1TD C C2T jDj : (1.7)

In the one-dimensional case, the objective time rate of the stress is equal to the total
time derivative of the stress, and the stretching D is equal to the total derivative of
the logarithmic (Hencky) strain (see [10]), i.e., D D P". An example of the behavior
of this model is given in Fig. 1.4a.

A one-dimensional version of (1.5) that is suitable for triaxial boundary condi-
tions is given in [3, 4],

PT1 D C1.T1 C T2/D1 C C2.T1 � T2/jD1j (1.8)

with T1 being the vertical stress evolving due to the vertical compression with
stretching D1 under constant lateral stresses T2 D T3. An example of the behavior
of this model is given in Fig. 1.5.

To enlarge the stiffness for small strains the concept of intergranular strain was
developed [16]. It can be used as an add-on with all hypoplastic relations. To employ
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Fig. 1.4 Confined uniaxial compression tests: results of a loading / unloading / reloading cycle
with the hypoplastic model and a given strain history: " (%): 0, �1:0, �0:9, �1:2; material
constants: C1 D �775, C2 D �433, mr D 5, R D 10�4; initial values: T0 D 3:4 kPa and
ı0 D �R. (a) Without intergranular strain (1.7). (b) With intergranular strain (1.12)
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Fig. 1.5 Triaxial compression tests: results of a loading / unloading / reloading cycle with the
hypoplastic model (1.8): C1 D �50, C2 D �100, T2 D �100 kPa; initial values: T1 D T2. (a)
Large strain cycle without intergranular strain (1.8). (b) Small strain cycle without intergranular
strain (�is) and with intergranular strain (Cis): mr D 5, R D 10�4, ı0 D �R

this concept in our one-dimensional models, we use a general form of hypoplastic
relations

PT D LD CN jDj ; (1.9)

e.g., with

L D C1T and N D C2T (1.10)

for oedometric boundary conditions.
The intergranular strain is introduced as additional state variable Q D ı obeying

the evolution equation

Pı D
8
<

:

�

1 � jıj
R

�

D for ı �D > 0 ;

D for ı �D � 0 :

(1.11)
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Here, R is a material constant which bounds the intergranular strain �R � ı � R.
The stress rate is

PT D MD ; (1.12)

with M being a linear combination of N and L

M D
(
.mR � �mR C �/LC �N jıj

ı
for ı �D > 0 ;

mRL for ı �D � 0
(1.13)

with � D jıj=R, and mR denoting an additional material constant.
In the case of compression (where D < 0) the intergranular strain eventually

approaches the limit ı D �R and � D 1. For further compression (ı �D � 0) the
equation of the stress rate, (1.12) with (1.13), reduces to the original hypoplastic
relation (1.9)

PT D MD D LD CN
jıj
ı
D D LD CN jDj ; (1.14)

since jıj=ı D �1 and �D D jDj for D < 0. An example of the behavior of this
model is given in Fig. 1.4b.

The two evolution equations (1.12) and (1.11) constitute a system of coupled
differential equations of the form

PT D h.T; ı;D/ ; (1.15a)

Pı D k.ı;D/ : (1.15b)

We will use the generic notation

y0.�/ D f
�
y.�/

�
(1.16)

for the numerical treatment of such systems. The prime denotes differentiation with
respect to the independent variable � . The vector y collects all state and additional
state variables, i.e., for (1.15)

�
y1
y2

�

D
�
T

ı

�

;

�
f1
f2

�

D
�
h.T; ı;D/

k.ı;D/

�

D
�
h.y1; y2;D/

k.y2;D/

�

: (1.17)

Note that the stretching D is regarded here as a given parameter and not as a
variable.
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1.3.2 Explicit Integration

The integration of initial value problems2 of differential equations

y0.�/ D f.y.�//; (1.18a)

y.0/ D y0 (1.18b)

can be an involved task. Apart from very particular situations, a closed form solution
will not be available. Therefore, one has to resort to numerical methods. For a
prescribed step size ��n and a given approximation yn to y.�/ at time � D �n,
a numerical method provides an approximation ynC1 at time �nC1 D �n C ��n.
Starting from the given initial value at time �0 D 0, the method computes numerical
approximations to the solution at discrete times �1, �2, �3, . . .

The integration of the constitutive equations of rate type is just a subtask in
a complex finite element simulation. Needless to say that this subtask should be
carried out in a reliable and efficient way. Explicit schemes construct the numerical
approximation by using explicit evaluations of the right-hand side of (1.18) only,
in contrast to implicit methods, which also require evaluations at initially unknown
states.3 The simplest representative of explicit schemes for solving (1.18) is the
explicit (or forward) Euler method.

1.3.2.1 Explicit Euler Method

In quite a few areas of science and engineering, the explicit Euler method

ynC1 D yn C��nf.yn/ (1.19)

is still employed for the numerical integration of (1.18), sometimes even with a
prescribed constant step size ��n D �� . The use of the explicit Euler scheme is
mainly motivated by the simple structure of (1.19), which allows a straightforward
implementation. The main shortcomings of this method are the following ones:

1. The explicit Euler method is of first order only. This means that halving the step
size will reduce the global errors by a factor of two, only. As a consequence, the
method might require a large number of steps to meet the prescribed accuracy
requirements.

2In the theory of initial value problems, it is common to call the independent variable � time. We
will follow this tradition in our article. In all the applications we have in mind, however, the role
of � is not that of a physical time but of a variable that parameterizes the loading and unloading
processes.
3These states are then to be determined by some iterative process, which might be time consuming.
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2. It does not supply an estimate of the committed errors. Such an error estimate,
however, is indispensable for selecting the time step size ��n adaptively.

3. It is not suited for stiff problems.

These are the reasons why we propose here other schemes.

1.3.2.2 Richardson Extrapolation of the Explicit Euler Method

Starting from simple Euler steps, we will construct a second-order method by
a procedure called extrapolation. Although Richardson extrapolation is a general
means to increase the order of numerical approximations, we will illustrate it here
just for our particular situation.

Let yn be the numerical approximation at time �n and z.�/ the exact solution
of (1.18a) satisfying z.�n/ D yn, see Fig. 1.6. For our construction, we need to
perform an Euler step of length ��n

u D yn C��nf.yn/; (1.20a)

and two consecutive Euler steps of length ��n=2

v D yn C ��n

2
f.yn/; w D vn C ��n

2
f.vn/: (1.20b)

We note that this requires two evaluations of the right-hand side function f.
The Taylor expansion of the solution z with initial value z.�n/ D yn is given by

z.�nC1/ D z.�n/C��nz0.�n/C ��2n
2

z00.�n/C O.��3n/

D yn C��nf.yn/C ��2n
2

f0.yn/f.yn/C O.��3n/;

(1.21)

where we have used the differential equation (1.18a) and its derivative

z00.�/ D d

d�
z0.�/ D d

d�
f
�
z.�/

� D f0
�
z.�/

�
z0.�/ D f0

�
z.�/

�
f
�
z.�/

�

with f0 denoting the Jacobian of f. The Taylor expansion of w is given by

w D vn C ��n

2
f.vn/

D yn C ��n

2
f.yn/C ��n

2
f
�

yn C ��n

2
f.yn/

�

D yn C��nf.yn/C ��2n
4

f0.yn/f.yn/C O.��3n/:

(1.22)
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n+1n

y

y( n)

yn

y( )

z( )

yn+1

w

u

v

Fig. 1.6 Euler step u, half
steps v and w, and the
extrapolated value ynC1

Comparing the expansion (1.21) with (1.20a) and (1.22), respectively, shows that
both, u and w are first-order approximations to z.�nC1/:

u D z.�nC1/ � 1

2
f0.yn/f.yn/��2n C O.��3n/; (1.23a)

w D z.�nC1/ � 1

4
f0.yn/f.yn/��2n C O.��3n/: (1.23b)

Now, the idea is to take the combination

ynC1 D 2w � u; (1.24)

which eliminates the leading error terms in (1.23). The resulting method (1.20),
(1.24) is called Richardson extrapolation of the explicit Euler method.

The difference to the local solution

ynC1 � z.�nC1/ D O.��3n/ (1.25)

is called local error of the method. A standard argument [11] now shows that the
resulting method is second-order convergent.

For later reference, we reformulate (1.24) as a two-stage Runge–Kutta method

Yn;1 D yn ;

Yn;2 D yn C��na21f.Yn;1/ ;

ynC1 D yn C��nb1f.Yn;1/C��nb2f.Yn;2/ :

(1.26)

For the choice a21 D 1
2
, b1 D 0, and b2 D 1, the above method coincides with

Richardson extrapolation of the explicit Euler method, since v D Yn;2 and

2w � u D 2v C��nf.v/ � yn ���nf.yn/

D yn C��nf.Yn;2/ :

We note that this method was already proposed by Runge in 1895 (see [11]).
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1.3.3 Adaptivity and Error Control

Apart from its better accuracy, the auxiliary states computed in the extrapolation
process can also be used to estimate the local error, that is, the error committed
in one step. Although this information cannot be used directly to bound the global
error, it is nevertheless very useful to determine an appropriate step size sequence
for the integration. Our approach outlined in this section is that of [5, 7, 11].

The term

C D 1

2
kf0.yn/f.yn/k

is the norm of the leading error term in (1.23a). In order to estimate this term, we
take the following difference of the auxiliary states (1.20)

EST D kw � uk � C

2
��2n : (1.27)

The estimated error EST is correct up to the third-order terms in��n, see (1.22). For
a user-supplied tolerance TOL, the optimal step size ��opt in the present step would
have been

C

2
��2opt D TOL : (1.28)

To compute ��opt, we divide (1.28) by (1.27) to eliminate C . This gives an
approximation for the optimal step size

��opt � ��n

r
TOL

EST
:

With these ingredients, we build up a simple step size control. Starting from the
accepted state yn and the predicted step size��n, we compute the states u, v, w, and
from this the error estimate EST as in (1.27). Further, we compute a new step size
according to

��new D ��n � min

�

�I; max

�

�D; 0:9 �
r

TOL

EST

��

; (1.29)

where the constants �D and �I limit the step size change (maximum decrease and
increase, respectively). A common choice is �D D 0:2 and �I D 2. If the estimated
error EST is smaller than the prescribed tolerance TOL, the step is accepted

ynC1 D 2w � u



12 W. Fellin and A. Ostermann

and the next step size is chosen as ��nC1 D ��new. If the estimated error EST is
larger than TOL, however, we reject the step and redo it with ��n D ��new. The
factor 0.9 in (1.29) is a safety factor that accounts for the neglected higher-order
terms of (1.27).

For making the first step, the method requires a starting step size. The choice is
not very critical, as a viable step size will be determined by the code automatically,
as described above.

The error in (1.27) can be estimated in any norm. A common choice is the
maximum norm

kw � uk D max
iD1;:::;m

ˇ
ˇ
ˇ
ˇ
wi � ui
si

ˇ
ˇ
ˇ
ˇ (1.30)

with the scaling factors

si D ai C ri � max
� j.yn/i j ; j.ynC1/i j

�
:

The parameters ai and ri are used to fine-tune the error estimate. Taking ai D 0 and
ri D 1 results in a relative error estimate. This is important when the absolute value
of the corresponding quantity (a stress component, for example) gets considerably
larger than 1. On the other hand, this choice is dangerous whenever the solution gets
close to zero. In the latter case, the absolute error should be controlled.

Let AERRi be the lowest resolution of component i requested by the user. Then
the choice

ai D AERRi

TOL
(1.31)

has the following implication. Whenever the first log10.TOL�1/ digits of the solution
are correct or the absolute error jwi � vi j is less than AERRi for all i the step is
accepted. Otherwise, the error control will enforce the integrator to reject the step.
A one-dimensional example illustrating the effect of AERR on the step size selection
is given in Table 1.1.

1.3.4 Implicit Integration

In contrast to explicit methods, implicit schemes require the evaluation of the right-
hand side of (1.18a) at states that are still to be computed during the step. An
archetypical example is the implicit (or backward) Euler method

ynC1 D yn C��nf.ynC1/: (1.32)

In order to determine the sought-after state ynC1, one has to solve a system of
nonlinear equations. In principle, this can be done by fixed-point iteration or
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Table 1.1 One-dimensional example (m D 1) of error control with TOL D 10�3 and r D 1: the
step is accepted or rejected depending on the size of AERR

v w AERR D 10 AERR D 1

100,005 100,000 Accepted Accepted
10,005 10,000 Accepted Accepted
1,005 1,000 Accepted Rejected

105 100 Accepted Rejected

by some Newton-type iterations. Note, however, that fixed-point iteration only
converges if the (local) Lipschitz constant of f times the step size��n is smaller than
one. This is not always the case in applications, but can be enforced by choosing a
small time step size. However, such a choice makes the integrator less efficient.

There are situations in which implicit methods perform better, sometimes
tremendously better, than explicit ones. Such problems are called stiff. In this
situation, Newton-type iterations have to be employed to determine the state ynC1.

1.3.4.1 Implicit Euler Method

In order to investigate some properties of the implicit Euler method, we use Taylor
expansion of the right-hand side of (1.32). This yields

ynC1 D yn C��nf.ynC1/

D yn C��nf
�
yn C��nf.ynC1/

�

D yn C��nf.yn/C��2n f0.yn/f.ynC1/C O.��3n/

D yn C��nf.yn/C��2n f0.yn/f.yn/C O.��3n/:

(1.33)

Comparing this expansion with (1.20a) and (1.21) shows at once that the implicit
Euler method has the same accuracy as the explicit one; the leading error term is
just of opposite sign. This shows that one cannot expect higher accuracy by using
the implicit Euler method. The main difference to the explicit Euler scheme is its
better stability properties for stiff problems. For a detailed discussion, we refer to
the literature (see, e.g., the monograph [12]).

1.3.5 Semi-Implicit Integration

Due to the lack of stability, explicit integrators are forced to use unreasonably
small time steps when integrating stiff problems. As a consequence, they become
computationally inefficient. A remedy would be to resort to implicit methods.
However, the required solution of nonlinear systems of equations by Newton-type
methods can be a time-consuming task, which again will harm the overall efficiency.
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A viable compromise between small time steps and expensive iterations are
so-called semi-implicit methods. The semi-implicit Euler method

ynC1 D yn C��nf.yn/C��nf0.yn/.ynC1 � yn/ (1.34)

can be seen as the result of one Newton iteration applied to (1.32). The method can
be written equivalently as

�
I ���nf0.yn/

	
.ynC1 � yn/ D ��nf.yn/ : (1.35)

In contrast to the implicit Euler method, it only requires the solution of linear
systems of equations.

1.3.5.1 Richardson Extrapolation of the Semi-Implicit Euler Method

Again, one can use Richardson extrapolation to improve the order and accuracy of
the semi-implicit Euler scheme. We start off from the basic integration step

�
I ���nf0.yn/

	
.u � yn/ D ��nf.yn/ (1.36a)

which defines the state u. Next, we construct the auxiliary states v and w by
performing two consecutive steps with half the step size

h
I � ��n

2
f0.yn/

i
.v � yn/ D ��n

2
f.yn/; (1.36b)

h
I � ��n

2
f0.yn/

i
.w � v/ D ��n

2
f.v/ : (1.36c)

In order to save computational time, we have used the same Jacobian f0.yn/ in all
three steps. Note that

�
I ��� f0.y/

	�1 D I C�� f0.y/C O.��2/:

Taylor expansion now shows that

u D yn C��nf.yn/C��2n f0.yn/f.yn/C O.��3n/ ;

v D yn C ��n

2
f.yn/C ��2n

4
f0.yn/f.yn/C O.��3n/ ;

w D v C ��n

2
f.v/C ��2n

4
f0.yn/f.v/C O.��3n/

D yn C��nf.yn/C 3��2n
4

f0.yn/f.yn/C O.��3n/ :

(1.37)
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These expansions reveal at once that the extrapolated value

ynC1 D 2w � u (1.38)

approximates the (local) solution z.�/ with initial value z.�n/ D yn by one order
higher than the semi-implicit Euler method

ynC1 � znC1 D O.��3n/ :

The resulting method (1.36), (1.38) is consequently a second-order method. It is
called Richardson extrapolation of the semi-implicit Euler method.

Error control and step size selection for this method are performed in exactly the
same way as for the Richardson extrapolation of the explicit Euler method.

1.3.6 Examples

We consider first a one-dimensional compression test with the one-dimensional
hypoplastic model (1.7) for loading (D < 0)

PT D h.T;D/ D .C1 � C2/TD D KTD D KT P" (1.39)

with the constant K D �2;000 and the initial stress T .0/ D T0 D �100 kPa.
Starting from that initial stress and the initial strain ".0/ D 0, the analytic time
integration of (1.39) yields

T .t/ D T0e
KDt D T0e

K" : (1.40)

The stress at the end of a strain increment �" D " � ".0/ D �1:1513�10�3 is

T an D T0e
K" D �100 � e2�1:1513 D �1;000 kPa : (1.41)

For comparing the numerical results T num with the analytical solution (1.41), the
relative error

err T D T num � T an

T an
(1.42)

is used. The required step sizes for various numerical integration schemes to achieve
the same relative error in stress are summarized in Table 1.2.

Next we investigate the behavior of two adaptive methods for solving the
equation of intergranular strains (1.11). For ı � D > 0 this is known to be a
numerically stiff differential equation. The analytic solution for ı.0/ D 0 is given by

ı.t/ D R

�

1 � exp
�Dt
R

�

(1.43)
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Table 1.2 Numerical time integration of (1.39): required steps to achieve the same relative error
err T D ˙1:3�10�3
Numerical method Required steps Rejected steps

Explicit Euler 2,000 –
Implicit Euler 2,000 –
Semi-implicit integration 2,000 –
Adaptive explicit Richardson 40 3
Adaptive semi-implicit Richardson 42 3

The error tolerances of the adaptive methods are: TOL D 10�3, AERR D 10�6. Rejected steps
occur in these methods since the initial step size is chosen to be the whole strain increment, i.e., an
integration with one step was initially tried

for ı > 0 and D > 0, and

ı.t/ D �R
�

1 � exp
Dt

R

�

(1.44)

for ı < 0 and D < 0. Evaluating (1.44) for a strain of " D 8�10�3 yields an
intergranular strain ı that deviates from R by less than 10�16, i.e., numerically, it
holds ı D �R. Integrating (1.11) up to the same strain takes 51 steps with the
adaptive explicit Richardson method and only 16 steps with the adaptive semi-
implicit Richardson method. The relative errors are �4:7�10�3 and 2:2�10�10,
respectively. As both methods start with the whole strain as initial step size, some
steps are rejected at the starting point, namely 5 for the explicit and 8 for the
semi-implicit method. The chosen error tolerances are the same as in the previous
example.

1.4 Extensions to Elasto-Plastic Models

In this section, we extend our investigation to elasto-plastic models. In mathematical
formulation, we obtain differential-algebraic systems of index 2. For their numerical
integration, we propose a half-explicit Runge–Kutta method of order two.

1.4.1 Nonlinear Elasticity, Nonlinear Isotropic Hardening

Elasto-plastic models are based on the assumption of an additive decomposition of
the total strain

" D "e C "p ; (1.45)
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where "e denotes the elastic and "p the plastic strain (see, e.g., [18]). The stress
response in a linear elastic model is

T D E"e D E." � "p/ (1.46)

with the elastic modulus E. This relation, written in rate form, is

PT D E.D �Dp/ ; (1.47)

where Dp denotes the plastic stretching. A yield function fY is defined to
distinguish between elastic and plastic behavior. For an ideal plastic model this
function has the form

fY .T / D jT j � TY � 0 (1.48)

with the yield stress TY . If T < TY , i.e. f .T / < 0, the response is purely
elastic and the plastic stretching is zero, Dp D 0. If f .T / D 0 two cases are
possible: loading or unloading. Loading takes place if an elastic trial step (Dp D 0)
would enlarge jT j. This can be formulated in our one-dimensional model simple as
D � T > 0. For loading the plastic stretching evolves according to

Dp D �
@fY

@T
D � signT (1.49)

with � > 0, while the stress remains on the yield surface, i.e. T .t/ D TY or

PfY .T / D 0 : (1.50)

In the case of unloading, here D � T < 0, the response is purely elastic. Note
that (1.49) generally holds if � D 0 is used in elastic steps.

Isotropic hardening can be modeled with an additional state variable ˛ � 0which
increases during plastic flow and modifies the yield condition to

fY .T; ˛/ D jT j � .TY CK˛/ � 0 (1.51)

with the plastic modulus K. The evolution of ˛ can simply be

P̨ D jDpj ; (1.52)

which is a linear hardening model. We will use a nonlinear hardening model with
an evolution equation similar to that of the intergranular strain

P̨ D
h
1 � ˛

R

i
jDpj : (1.53)
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Fig. 1.7 Unconfined uniaxial compression tests: loading (D < 1) with an elasto-plastic model:
nonlinear elasticity (1.55) and nonlinear isotropic hardening (1.53). The material constants are:
E D 50; 000 kPa, K D 2; 000 kPa, TY D 200 kPa, Rf D 0:75, R D 0:01. (a) Stress–strain
relationship. (b) Evolution of the hardening parameter ˛

In the case of loading and fY .T; ˛/ D 0 (plastic flow) the stress must remain on the
growing yield surface, i.e.,

PfY .T; ˛/ D 0 ; (1.54)

and the plastic flow is again defined by (1.49), see [18].
Some elasto-plastic models in geotechnical engineering employ nonlinear elastic

relations to model a nonlinear stress–strain response in the first loading. For
example, the hardening soil model [17] makes use of the hyperbolic relation of
Duncan and Chang [2]. Such a relation can be formulated in a one-dimensional
model as

PT D E

�

1 �Rf T
TY

�2

.D �Dp/ (1.55)

with TY =Rf being the asymptote of the hyperbolic stress–strain relation. The behav-
ior of such a model combined with nonlinear hardening is shown in Fig. 1.7. The
unloading / reloading behavior of soil does not show the same strong nonlinearity as
the first loading. To model this, linear elasticity is used in such cases, with a Young’s
modulus Eur > E, which is used when the actual stress is lower than the stress ever
been applied, i.e. jT j < max jT .t/j.

For the numerical treatment of the constitutive model we again rewrite the
evolution equations in generic form. In case of fY D 0 and further loading, we
obtain a so-called index 2 problem, a combination of differential equations and
nonlinear constraints:

y0 D f.y; z/ ; (1.56a)

0 D g.y/ : (1.56b)

Let us illustrate this general form with the help of the example that we just
discussed. Using (1.55), (1.49), and (1.53) we set
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y D
�
y1
y2

�

D
�
T

˛

�

; z D � ; (1.57)

f D
�
f1
f2

�

D
"

E


1 �Rf y1

TY

�2
.D � � signy1/

�
1 � y2

R

	
�

#

; (1.58)

and from (1.51) we obtain

g D fY .y1; y2/ D jy1j � .TY CKy2/ : (1.59)

The elastic case (first loading as long as fY < 0) can be integrated using (1.16)
from the pure rate models with f defined in (1.58) and � D 0. For unloading and
reloading we can again use (1.58) with � D 0 but have to assign Rf D 0 and
E D Eur.

1.4.2 Event Location

When switching from a nonlinear elastic to a plastic region, one has to determine the
transition point with sufficient accuracy in order not to spoil the overall accuracy.
This is done by event location. Let g be a state-dependent function that changes sign
at the sought-after transition point. Then one has to integrate the elastic problem

y0.�/ D f
�
y.�/

�
(1.60)

as long as g
�
y.�/

�
< 0. A simple strategy consists in integrating (1.60) until

the numerical solution indicates a sign change of g. Assume that g.yn/ < 0,
but g.ynC1/ > 0, which indicates that the transition takes place in the time
interval Œ�n; �nC1	. The simplest possibility to determine the transition time and its
state is using an interpolation procedure. Recall that we are given yn and ynC1.
These two values, together with the derivative f.yn/ determine uniquely a quadratic
interpolation polynomial.

Let 
 D .� � �n/=��n. Then this Hermitian interpolation polynomial has the
form

p.
/ D a C 
b C 
.
 � 1/c; 0 � 
 � 1; (1.61)

where the coefficients a, b, and c are determined by the interpolation conditions

p.0/ D a D yn ;

p.1/ D a C b D ynC1 ; b D ynC1 � yn ;

p0.0/ D b � c D ��nf.yn/ ; c D ynC1 � yn ���nf.yn/ :
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Inserting these values into (1.61) gives

p.
/ D yn C 

�
ynC1 � yn

�C 
.
 � 1/�ynC1 � yn ���nf.yn/
�
; (1.62)

which is a second-order approximation to y.�nC
��n/, if the underlying integration
scheme is of second order. Any root finding algorithm can be used to determine a
root 
? of g

�
p.
/

�
in Œ0; 1	. Since the evaluation of (1.62) is cheap, the bisection

algorithm is efficient and reliable. The detected root finally provides us with a
second-order approximation to the transition time �? D �nC 
?��n and the sought-
after state y? D p.
?/ with g.y?/ D 0.

1.4.3 Time Integration of Index 2 Problems

We have seen in Sect. 1.4.1 that the following combination of differential and
nonlinear equations

y0.�/ D f
�
y.�/; z.�/

�
; (1.63a)

0 D g
�
y.�/

�
(1.63b)

arises in the description of elasto-plastic models. We always assume that the initial
value y.0/ D y0 is consistent with the problem, in particular that the constraint
g.y0/ D 0 is satisfied. The above problem is a differential equation for the state
variables y that, in addition, have to fulfil a constraint. This is made possible by the
nonlinear control variable z.

Differentiating the constraint (1.63b) with respect to � and inserting the differen-
tial equation yields a nonlinear system of equations

d

d�
g.y.�// D @g

@y

�
y.�/

�
y0.�/ D @g

@y

�
y.�/

�
f
�
y.�/; z.�/

� D 0 ; (1.64)

which can be solved (locally) uniquely for z.�/, if the so-called index 2 condition

det

�
@g
@y
.y/

@f
@z
.y; z/

�

¤ 0 (1.65)

is satisfied. In such a situation, (1.63) is called an index 2 problem.
In the literature (see, e.g., [12, Chap. 7]), several methods for solving (1.63)

are proposed. Obviously, explicit methods fail to preserve the constraint (1.63b).
Therefore, we consider half-explicit schemes (see [12, Chap. 7.6]).
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1.4.3.1 Half-Explicit Euler Method for Index 2 Problems

Starting off from a given step size ��n and a consistent approximation yn to the
solution of (1.63) at � D �n, we define the sought-after approximation ynC1 at time
�nC1 by an explicit Euler step

ynC1 D yn C��nf.yn; znC1/ (1.66a)

with a control znC1 still to be determined. In order to guarantee that the numerical
solution obeys the constraint (1.63b), we require that

g
�
ynC1

� D 0: (1.66b)

Inserting (1.66a) into (1.66b) gives

G.znC1/ D g
�
yn C��nf.yn; znC1/

� D 0; (1.67)

which has, due to (1.65), a locally unique solution znC1. We propose to solve
the system G.z/ D 0 by some Newton-type iteration. Finally, the sought-after
approximation ynC1 is obtained from (1.66a).

1.4.3.2 An Adaptive Second-Order Method

In the same way as before, a second-order method with the option to control the
local error can be constructed from the above half-explicit Euler scheme. However,
it is simpler to generalize the underlying idea of method (1.66) directly to Runge–
Kutta schemes, see [12, Chap. 7.6]. Starting from (1.26), we define the method

Yn;1 D yn ;

Yn;2 D yn C��na21f.Yn;1;Zn;1/ ;

0 D g.Yn;2/ ;

ynC1 D yn C��nb1f.Yn;1;Zn;1/C��nb2f.Yn;2;Zn;2/ ;

0 D g.ynC1/ :

(1.68)

Again, we make the choice a21 D 1
2
, b1 D 0, and b2 D 1, which results in a second-

order method. With this choice, the vector 2Yn;2�Yn;1 is a first-order approximation
to the exact solution (it is actually a slight perturbation of (1.66)). Therefore, we can
use

EST D kynC1 � 2Yn;2 C Yn;1k

as an error estimate. The step size selection is then done as explained in Sect. 1.3.3.
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Fig. 1.8 Numerical integration of an elasto-plastic model: nonlinear elasticity (1.55) and nonlinear
isotropic hardening (1.53) with the adaptive half-explicit Runge–Kutta method of order two. Time
steps are denoted by circles. Material constants: E D 50; 000 kPa, K D 2; 000 kPa, TY D
200 kPa, Rf D 0:75, R D 0:01; numerical parameter: AERR D 10�6, which is also used as
tolerance for the Newton iterations. (a) TOL D 10�3. (b) TOL D 10�3. (c) TOL D 10�2. (d)
TOL D 10�2

1.4.4 Example

We apply the above described method to the elasto-plastic model of Sect. 1.4.1. The
result of the numerical integration with the half-explicit Runge–Kutta method is
shown in Fig. 1.8. The adaptivity of the step size can be seen in Fig. 1.8a, c, where
the step size increases until the end of the test. The setting of TOL clearly influences
the total amount of taken steps. Dense output is used for the event location fY D 0.
The cutting of the last elastic step can be clearly seen in Fig. 1.8b.

1.5 Consistent Tangent Operator

In the following we discuss some aspects of the consistent tangent operator, and we
recall its purpose in finite element methods. For the sake of simplicity, we restrict our
presentation to a finite element discretization with one element only. More elements
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(t)T

d

x

Fig. 1.9 Discretization with
one finite element

are treated in [8, 18]. We consider a bar (see Fig. 1.9) with one global degree of
freedom, namely the nodal displacement d at the end of the bar. There the bar is
loaded by a boundary stress T .

In the finite element literature a common way of writing the equilibrium
condition is

F int � F ext D 0 ; (1.69)

where the external force vector F ext is a function of the load T , and the internal
force vector F int is a function of the internal stress T . In the case of one element
with linear shape functions this reduces to

T � T D 0 : (1.70)

1.5.1 Incremental Loading

In nonlinear finite element calculations the load is applied in increments at discrete
times tnC1 D tn C �tn. Let us start with the equilibrated body at time t D tn with
given internal stress Tn. Thus

F int.Tn/ � F ext.T n/ D Tn � T n D 0 (1.71)

holds.
During the time increment the load is changed from T n by the load increment to

T nC1 D T nC�T n. Our task is to find the updated displacement dnC1 D dnC�dn
and the stress TnC1 such that (1) the body is equilibrated at time tnC1

TnC1 � T nC1 D 0 ; (1.72)

and (2) the stress update is compatible with the constitutive model.
The standard solution strategy is an iterative one: the equilibrium equation is

solved with the help of a finite element package, and the constitutive model with
a solver for ordinary differential equations. The relevant information is passed
between these two solvers. The process is iterated until convergence,
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1.5.2 The Equilibrium Iteration

We choose a displacement increment�dn. Starting from the equilibrated body with
the known displacement dn, we calculate the nodal displacement at the end of the
increment

dnC1 D dn C�dn : (1.73)

The strain in the element at the end of the increment follows from geometrical
relations, e.g., the logarithmic strain is

"nC1 D ln

�
l0 C dnC1

l0

�

(1.74)

with l0 being the initial length of the bar. The element is deformed by the strain
increment

�"n D "nC1 � "n ; (1.75)

where "n is known. The stress increment�Tn follows from a time integration of the
constitutive model PTn D h.Tn;Dn/ with the stretching Dn D �"n=�tn. The new
stress is given by

TnC1 D Tn C�Tn : (1.76)

Inserting this new stress in the equilibrium equation (1.72) generally results in a
nonzero right-hand side, the so-called residual R

TnC1 � T nC1 D R.dnC1/ : (1.77)

Note that TnC1 is a nonlinear function of dnC1 due to the nonlinear constitutive
model. Thus R is also a nonlinear function of dnC1. We will use Newton’s method
to find the correct displacement increment, i.e., a zero of R.

1.5.3 Newton’s Method

Denote the first guess of the new displacement with d0nC1. This displacement will
cause a stress T 0nC1 which is computed with the help of (1.74)–(1.76). Inserting
the result into (1.77) gives the first residual R.d0nC1/, see Fig. 1.10. Note that the
function R can be evaluated at prescribed points, and an analytic formula, however,
is not available, in general.
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Fig. 1.10 Newton’s method

In order to improve our guess, we replace the function R by its tangent at d0nC1.
The slope of this tangent is given by

R0.d0nC1/ D tan˛ ; (1.78)

where ˛ is the angle of intersection with the axis. The tangent intersects the axis
at d1nC1 (see Fig. 1.10), which determines an improved iterate. In order to get an
explicit formula for d1nC1, we consider the triangle with angle ˛ in Fig. 1.10. From
the relation

tan˛ D R.d0nC1/
d0nC1 � d1nC1

; (1.79)

we easily find an explicit representation of the next iterate

d1nC1 D d0nC1 �R0.d0nC1/�1R.d0nC1/ : (1.80)

The derivative of the residual R0.dknC1/ is called consistent tangent of the kth
equilibrium iteration, as it is consistent with Newton’s method. If any other gradient
is used, the quadratic convergence of the method is lost.

1.5.4 Consistent Tangent

To calculate the consistent tangent in the kth equilibrium iteration, we have to
differentiate the equilibrium equation (1.77) with respect to dnC1, knowing that the
external force F ext D T nC1 is independent of dnC1. We evaluate this derivative at
dknC1 and get

dR.dnC1/
d dnC1

ˇ
ˇ
ˇ
ˇ
dk
nC1

D R0.dknC1/ D
@T knC1
@"knC1
„ƒ‚…
material

� @"
k
nC1

@dknC1
„ƒ‚…
geometry

: (1.81)
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The derivative of the stress with respect to the strain is a material information,
which has to be provided by the constitutive relation. The derivative of the strain
with respect to the nodal displacement is a geometrical information, which has to
be provided by the finite element program. For the logarithmic strain (1.74), this
quantity is

@"knC1
@dknC1

D 1

l0 C dnC1
: (1.82)

In a finite element framework, (1.81) is an element consistent tangent which has
to be assembled to a global consistent tangent stiffness [8, 18].

1.5.5 The Jacobian

The material information on the element level that is required to build the consistent
tangent operator (1.81) is the so-called Jacobian

@TnC1
@"nC1

D @.TnC1 � Tn/
@."nC1 � "n/ D @�T

@�"
: (1.83)

The Jacobian has to be provided by the subroutine that supplies the constitutive
model for the finite element code.

We consider the one-dimensional compression test with the one-dimensional
hypoplastic model for loading (1.39) to explain how the Jacobian can be calculated
for a constitutive model of the rate type.

1.5.6 Analytical Solution

In this simple example the Jacobian can be found analytically by differentiation. The
analytic result of the time integration of the material model is stated in (1.40). From
this we deduce that the stress increment for a given strain increment �" D D�t is
given by

�T D T .�t/ � T0 D T0
�
eK�" � 1� : (1.84)

The analytic Jacobian is the derivative of the stress increment with respect to the
strain increment, i.e.

@�T

@�"
D KT0e

K�" D KT0e
KD�t : (1.85)



1 Constitutive Models in Finite Element Codes 27
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1.5.7 Numerical Time Integration

The numerical time integration of (1.39) with one explicit Euler step results in
the stress increment �T num D KT0�" (straight line with slope KT0 in Fig. 1.11),
which is different from the analytic solution (1.40) (solid curved line in Fig. 1.11).
Calculating the tangent of the constitutive model at the end of the time step will
result in the gradient of the dashed line K.T0 C�T num/. The Jacobian required by
the finite element code, however, is the gradient of the numerical scheme (straight
line) C D @�T

@�"
D KT0. We see clearly that the Jacobian and the constitutive tangent

are different, even in one-dimensional cases.

1.5.8 Variational Equation

The Jacobian depends on the numerical time integration scheme, i.e., we have to
differentiate the numerically computed stress with respect to the strain increment.
This can be performed with the help of the variational equation of the constitutive
model.

We differentiate the constitutive model PT D h.T;D/ with respect to the
stretching D using the chain rule

d

d t

@T

@D
D @h

@T

@T

@D
C @h

@D
: (1.86)

Replacing the right-hand side by (1.39) we arrive at

d

d t

@T

@D
D KD

@T

@D
C KT : (1.87)

Next we denote @T=@D by C and end up with

d

d t
C D KDC C KT; (1.88)

which is a differential equation for C .
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Equations (1.39) and (1.88) form a coupled system of differential equations. They
have to be solved together with the initial conditions

T .0/ D T0 (1.89a)

C.0/ D @T

@D
.0/ D @T0

@D
D 0 : (1.89b)

The last identity follows from the fact that T .0/ D T0 is the initial condition and
therefore independent of D.

1.5.9 Analytic Solution of Stress Update and Jacobian

In this simple case, we can solve (1.39) and (1.88), (1.89) analytically

T .t/ D T0e
KDt ; (1.90)

C.t/ D KT0te
KDt : (1.91)

At the end of the time increment �t we get the stress update

T .�t/ D T0e
KD�t D T0e

K�" D �T C T0 (1.92)

and

C.�t/ D KT0�te
KD�t D �tKT0e

K�" : (1.93)

Comparing this with (1.85), we see that

C.�t/

�t
D @�T

@�"
; (1.94)

i.e., we have found the Jacobian.

1.5.10 Numerical Approximation of the Jacobian

Working out the Jacobian analytically for a complex constitutive model can be
a tedious task or sometimes even not feasible. Thus we want to use a numerical
approximation. For a small variation # we define the approximation B by

d

d t
B D 1

#



h.T C #B;D C #/ � h.T;D/

�
: (1.95)
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Taylor expansion shows that B satisfies the differential equation

d

d t
B D @h

@T
B C @h

@D
C O.#/ ;

which is a good approximation to the variational equation for small # .
For our example, substituting (1.39) yields

d

d t
B D 1

#



KT � .D C #/CK#B � .D C #/ � KTD

�

D KB � .D C #/C KT : (1.96)

Comparing (1.96) with (1.88) we see that B D C for # ! 0. If # is sufficiently
small, B.�t/=�t will be thus a good approximation to the Jacobian.

1.5.11 Example

We investigate a simple but illustrative example to study some numerical aspects.
We assume small strains and use the one-dimensional hypoplastic model (1.7) to
simulate loading in a one-dimensional compression test (1.39) with the constant
K D �2;000 and the initial stress T0 D �100 kPa. The loading is T D �1;000 kPa.
We are searching an " such that the integration of (1.39) yields an internal stress T
which equals the external load T . It is therefore convenient to consider T also as a
function of ". The initial-boundary value problem (1.70) to be solved reads then

T ."/ � T D 0 : (1.97)

The analytic solution of problem (1.97), (1.39) is given by

"an D 1

K
ln
T

T0
D �1:1513 � 10�3 : (1.98)

This is obtained from the analytic solution of the time integration of the material
model (1.40) with " D Dt and the chosen constants.

Equation (1.97) can be solved numerically with standard Newton’s method

"iC1 D "i �
�

dT i

d"i

��1
Ri ; (1.99)

where

Ri D T ."i / � T (1.100)
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Fig. 1.12 Dependence of the residual R on the numerical method. Here the explicit Euler method
was chosen with the number of steps as a parameter. The results are compared with the analytic
one

denotes the residual in iteration i . The consistent tangent dT i=d"i is calculated
together with the numerical stress T i D T ."i / by integrating (1.39), (1.88), (1.89)
with explicit methods (Sect. 1.3.2). As starting value of the iteration, "0 D 10�3 was
chosen.

It is important to realize that the residual R as function of the strain " depends on
the time integration method, because " depends on the time integration method, see
Fig. 1.12.

The residual obtained with analytical time integration is

Ran D T an."/ � T D T0e
K" � T : (1.101)

The residual calculated with the numerical time integration is a composition of the
integrator, e.g., for one and two steps explicit Euler steps

R1 step D T0 C T0K" � T ; (1.102)

R2 steps D T0 C T0K"=2C .T0 C T0K"=2/K"=2 � T : (1.103)

If the step size sequence for the time integration is kept fixed in all Newton
iterations, we stay on the same numerical approximation Rnum and thus quadratic
convergence to the zero of Rnum is achieved, see Fig. 1.13.

However, we change the problem, i.e., switch from Rnum to a neighboring QRnum,
whenever we change the step size sequence from one Newton iteration to the other.
The change of the step size sequence can be due to the error control of the time
integrator. Such a behavior is illustrated in Fig. 1.13 by the sequence "0; "1; Q"2, etc.
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The iteration might thus become quite irregular whenever the numerical solution is
very close to the exact one. However, this is no problem at all since such a numerical
solution is accurate enough anyway and should therefore be accepted. In any case,
the solution obtained with a fixed step size sequence is not better than the adaptive
one. It is only a zero of Rnum which, in general, is different from "an.

We study this in detail for the Newton iterations in our example, see Fig. 1.14.
The analytic function of the residual (1.101) appears as a straight line Ran in this
double logarithmic diagram. The composition of 10 Euler steps results in the curve
R10 steps. The circles on this curve denote the results of each Newton iteration (Ri ,
10 Steps). The convergence is quadratic (the vertical distance between the circles is
approximately doubled in each iteration), but the error is large, compare Table 1.3.

Using an adaptive time integration scheme, we end up with a much more accurate
solution, see Table 1.3 and Fig. 1.14: Ri ; TOL D 10�3 and Ri ; TOL D 10�7 (both
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Table 1.3 Newton iteration of (1.97) with numerical time integration of (1.39), err " D "num
�"an

"an

10 Euler steps Extrapolated Euler, TOL D 10�10

It. No. Ri It. No. Ri

1 380:8 1 261:1

2 �124:6 2 �52:07
3 �6:040 3 �1:267
4 �1:629� 10�2 4 �8:024� 10�4
5 �1:195� 10�7 5 �3:218� 10�10
6 �5:573� 10�18 6 4:629� 10�20
err " �0:124 err " �5:400� 10�11

with AERR D 10�6). The Newton iteration shows quadratic convergence when the
numerical residual Ri is near the analytic residual Ran. We loose the quadratic
convergence when the residual is of the same order as the tolerance of the time
integration. However, the solution " is then near the analytic one and the iteration
can be stopped.

1.6 Fully Three-Dimensional Formulation

The methods of the previous sections can easily be generalized to two and three-
dimensional problems. We have worked out this approach in several articles [5,7,8].
However, in order to make the present article self-contained, we repeat here the main
line of argumentation.

The equilibrium equations together with the constitutive model form a coupled
system of equations. A steady-state solution of this system is usually obtained by
operator splitting: the equilibrium equations are solved with the help of a finite
element package, and the constitutive model with a solver for ordinary differential
equations. To distinguish between the stress in the finite element program and that
in the time integration of the constitutive model, we denote these stresses with �

and T, respectively.

1.6.1 Consistent Tangent Operator, Jacobian

We start from an equilibrium at time tn and apply a strain increment�" over the time
window�t . For the given initial stress tensor T.0/ D � .tn/ and the strain increment,
the constitutive subroutine has to provide the new stress tensor � .tnC�t/ D T.�t/
at time tnC1 D tn C�t as well as its derivative with respect to the strain increment

@��

@�"
D @� .tn C�t/

@�"
: (1.104)
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Due to the incremental form of the solution procedure, the temporal rate of the strain
tensor is not known as a function of time. Only its mean value over the chosen time
window �t

D D �"

�t
(1.105)

is available for use in the constitutive model. Assuming that the finite element
program only needs the co-rotational parts, e.g. [1], we have to solve the following
system of differential equations for 0 � t � �t

d

dt
T D h.T;D;Q/ ; T.0/ D � .tn/ ;

d

dt
Q D k.T;D;Q/ ; Q.0/ D Q0 :

(1.106)

Here, Q denotes the additional state variables, and Q0 are their values at time tn.
Differentiation of (1.106) with respect to D yields the variational equations

d

dt

@T
@D

D @h
@T

� @T
@D

C @h
@Q

� @Q
@D

C @h
@D

;
@T
@D
.0/ D 0 ;

d

dt

@Q
@D

D @k
@T

� @T
@D

C @k
@Q

� @Q
@D

C @k
@D

;
@Q
@D
.0/ D 0 :

(1.107)

Let �� D � .tn C�t/ � � .tn/. In order to get

@��

@�"
D @� .tn C�t/

@�"
D 1

�t
� @T
@D
.�t/ ; (1.108)

system (1.107) has to be solved simultaneously with system (1.106). Due to the
complicated structure of our constitutive model, the calculation (and implemen-
tation) of the expressions appearing on the right-hand side of (1.107) might be a
tedious task. We therefore strongly recommend to replace (1.107) by the following
approximation which is obtained by numerical differentiation

d

dt
Bij D 1

#



h.T C #Bij;D C #Vij;Q C #Gij/ � h.T;D;Q/

�
;

d

dt
Gij D 1

#



k.T C #Bij;D C #Vij;Q C #Gij/ � k.T;D;Q/

� (1.109)

with Bij.0/ D 0 and Gij.0/ D 0 for 1 � i � j � 3, see (1.95). Here, Vij denotes
the standard basis tensor

Vij D .ıikıj`/
3
k;`D1 (1.110)
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with ıik D 1 if i D k and ıik D 0 else. A Taylor series expansion of the right-hand
side of (1.109) shows that

Bij D @T
@Dij

C O.#/ : (1.111)

Thus the six tensors Bij are good approximations to the Jacobian for # suitably
chosen [7]. We propose to solve (1.106) and (1.109) simultaneously with the same
numerical method (as described subsequently). This guarantees the consistency of
the derivatives.

1.6.2 Adaptive Time Integration

We have to solve the coupled system (1.106) and (1.109) with Richardson extrapo-
lation of the explicit Euler scheme. Collecting all the variables of our problem in a
super-vector

y D �
T11; T22; T33; T12; T13; T23;

.B11/11; .B11/22; .B11/33; .B11/12; .B11/13; .B11/23;

.B22/11; : : : ; .B22/23; .B33/11; : : : ; .B23/23;

Q1; : : : ;Qm; .G11/1; : : : ; .G11/m; .G22/1; : : : ; .G23/m
	T

(1.112)

and denoting the right-hand sides of (1.106) and (1.109) by f, we obtain the initial
value problem

d

d t
y.t/ D f.y.t// ; y.0/ D y0 given : (1.113)

The integration of this system is performed as explained in the Sect. 1.3.

1.6.3 Application to Hypoplasticity

The use of explicit and semi-implicit adaptive integration schemes in combination
with a numerical computation of the Jacobian was investigated in detail in [5, 6].
There we used hypoplasticity with intergranular strain (see “Appendix: Hypoplastic
Models”) in a finite element framework. As the evolution equations for the
intergranular strain constitute a numerically stiff problem, the semi-implicit method
turned out to be superior in element tests like the drained and undrained triaxial tests
(see Figs. 1.15 and 1.16). This is in line with the one-dimensional investigation in
Sect. 1.3.6.
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However, the situation changes, when typical problems from geotechnical
applications are considered. In such finite element calculations, large deformations
typically take place in small regions only, and small deformations have to be
expected in the rest of the computational domain. Due to this fact, only few
integration steps have to be taken in most of the elements. The savings (in terms of
steps) of the semi-implicit method are then too small to counterbalance the higher
computational cost.

In summary, the adaptive explicit method turned out to be the best choice for
integrating hypoplasticity with intergranular strain in geotechnical applications.
Switching to semi-implicit integration in numerically stiff regions is worth thinking
about. However, as these regions are typically small and any switch algorithm will
take some extra time, the effect on the overall performance is assumed to be small.

1.6.4 Application to Elasto-Plasticity

Here we show the applicability of the numerical time integration strategies to
an extended von Mises elasto-plastic model. For the sake of simplicity we will
formulate the model in principal stresses, which is sufficient as we will calculate
the stress response of an unconfined compression test. We extend the linear elastic
perfectly plastic von Mises model by nonlinear elasticity in a Duncan–Chang
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formulation and nonlinear isotropic hardening with an evolution equation like the
hypoplastic intergranular strain.

The yield function reads

fY .T; ˛/ D T ? � .TY CK˛/ (1.114)

with

T ? D
p
3J2 D 1p

2

p
.T1 � T2/2 C .T2 � T3/2 C .T3 � T1/2 ; (1.115)

where J2 is the second invariant of the deviatoric stresses. The time rate of the stress
is given by

PT D
�

1 �Rf T
?

TY

�2

C�1.D � Dp/ ; (1.116)

where we have used the following vector notation for stress and stretching

T D
2

4
T1
T2
T3

3

5 ; D D
2

4
D1

D2

D3

3

5 : (1.117)

The elastic stiffness matrix in (1.116) is

C�1 D E

.1C �/.1 � 2�/

2

4
1 � � � �

� 1 � � �

� � 1 � �

3

5 ; (1.118)

and the plastic stretching has the form

Dp D �
@fY

@T
(1.119)

with

@fY

@T
D 1

2.TY CK˛/

2

4
2T1 � T2 � T3
2T2 � T3 � T1
2T3 � T1 � T2

3

5 : (1.120)

For fY < 0, the multiplier has the value � D 0. For fY D 0 and further loading, it
has to be calculated from the condition

PfY D
�
@fY

@T

�T
PT C @fY

@˛
P̨ D 0 (1.121)
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Fig. 1.17 Unconfined uniaxial compression test with extended von Mises plasticity. Material
constants: E D 50;000 kPa, � D 0:3,K D 2;000 kPa, TY D 200 kPa, Rf D 0:75, R D 0:01. (a)
Vertical stress T1, horizontal stresses T2 and T3. (b) Volumetric strain

for the given stretching D. The time rate of the hardening variable is given by

P̨ D
h
1 � ˛

R

i
kDpk : (1.122)

Setting

y D

2

6
6
4

T1
T2
T3
˛

3

7
7
5 ; z D � ; (1.123)

and

g D fY .y/ (1.124)

gives the material equations in the form of a standard index 2 problem (1.63). In
this form, they can be integrated with the above proposed methods. The results of
such an integration with the half-explicit Euler method is shown in Fig. 1.17. The
evolution of the internal variables and the yield function is shown in Fig. 1.18. In
the region where fY D 0 an index 2 problem has been solved.

1.7 Conclusion

Finite element programs need the consistent tangent operator to achieve quadratic
convergence in the equilibrium iterations. The constitutive part of this operator is
the Jacobian, which has to be provided by the user. In this article, we have proposed



38 W. Fellin and A. Ostermann

−10−8−6−4−20
−200

−150

−100

−50

0

50

f Y
 [k

P
a]

ε
1
 [%])

−10−8−6−4−20
0

0.2

0.4

0.6

0.8

1

γ

ε
1
 [%]

−10−8−6−4−20
0

0.002

0.004

0.006

0.008

0.01

α

ε
1
 [%]

a

b c

Fig. 1.18 Yield function and internal variables of the calculation in Fig. 1.17. (a) Yield function.
(b) Plastic multiplier. (c) Hardening variable

an approach that relieves the user from computing and coding this information for
every newly developed constitutive relation. We have shown a way how this Jaco-
bian information can be computed together with the stress increments. The method
is based on numerical integration of the variational equation, which themselves
are set up automatically by numerical differentiation. The whole approach requires
adaptive and efficient time integration. For this purpose, we have presented three
integrators, each of them covering a different situation: an explicit method for non-
stiff problems, a semi-implicit method for stiff problems, and a half-explicit method
for index 2 problems, which appear in plastic problems. Several numerical examples
illustrate our approach.

Appendix: Hypoplastic Models

For the sake of completeness, we outline the used hypoplastic model and the
parameters used for our calculations. Tensors of second order are denoted with
bold letters (e.g., D;T; ı;N) and tensors of fourth order with calligraphic letters
(e.g., L ;M ). Different kinds of tensorial multiplication are used: TD D TijDkl ,
T W D D TijDij, L W D D LijklDkl , T �D D TijDjk . The Euclidian norm of a tensor
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is kDk D p
DijDij. Unit tensors of second and fourth orders are denoted by I and

I , respectively.

A.1 Basic Model

The basic hypoplastic model was proposed in [20]:

T̊ D L .T; e/ W D C N.T; e/kDk (1.125)

with the linear term

L D fs
1

OT W OT


F 2I C a2 OT OT

�
(1.126)

and the nonlinear term

N D fsfd
aF

OT W OT

 OT C OT��

: (1.127)

The employed stress variables are defined as follows

OT D T
tr T

; OT� D OT � 1

3
I :

The factors for pressure and density dependency (barotropy and pyknotropy) are
given by

a D
p
3.3 � sin'c/

2
p
2 sin'c

; fd D
�
e � ed
ec � ed

�˛

;

fs D hs

n


ei

e

�ˇ 1C ei

ei

��tr T
hs

�1�n "
3C a2 � ap3

�
ei0 � ed0
ec0 � ed0

�˛
#�1

:

The factor F for adapting the deviatoric yield surface to that of Matsuoka–
Nakai is

F D
s
1

8
tan2  C 2 � tan2  

2Cp
2 tan cos 3


� 1

2
p
2

tan 

with

tan D p
3
�
� OT��� and cos 3
 D �p6 tr . OT� � OT� � OT�

/
� OT� W OT�	3=2 :
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The void ratios are assumed to fulfill the compression model

ei

ei0
D ec

ec0
D ed

ed0
D exp

�

�
��tr T

hs

�n�

: (1.128)

This hypoplastic relation has eight parameters: the critical friction angle 'c , the
granular hardness hs , the void ratios ei0, ec0, and ed0, and the exponents n, ˛, and
ˇ. They can be determined easily from simple index and element tests [13].

Since the mass is assumed to remain constant, the evolution of the void ratio e is
described by

Pe D .1C e/ tr D : (1.129)

A.2 Extended Hypoplastic Model

The here used extended version of hypoplasticity with intergranular strain was
proposed in [16]. The general stress–strain relation is written as

T̊ D M W D ; (1.130)

where M is a fourth-order tensor that represents the stiffness. It depends on the
hypoplastic tensors L .T; e/ and N.T; e/ and is defined as follows:

M D �
��mT C .1 � ��/mR

	
L C

(
��.1 �mT /L W Oı Oı C ��N Oı for Oı W D > 0 ;

��.mR �mT /L W Oı Oı for Oı W D � 0 ;

(1.131)

where ı is the intergranular strain, and mR, mT , �, and R denote material
parameters. The normalized magnitude of ı is defined as

� D kık
R

: (1.132)

Further, the direction of the intergranular strain ı is set

Oı D


ı=kık for ı ¤ 0 ;
0 for ı D 0 :

(1.133)

The evolution equation of the intergranular strain tensor ı is postulated as

Vı D
(
.I � Oı Oı�ˇr / W D for Oı W D > 0 ;

D for Oı W D � 0 ;
(1.134)
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Table 1.4 Parameters for the basic model

'c.
ı/ hs(kPa) n ed0 ec0 ei0 ˛ ˇ

33 1�106 0:25 0:55 0:95 1:05 0:25 1:50

Table 1.5 Parameters for the
extended model

R mR mT ˇr �

1�10�4 5:0 2:0 0:5 6:0

where Vı is the objective rate of intergranular strain and the exponent ˇr is a material
parameter.

For a monotonic continuation of straining with D � Oı, the stiffness is

M D L C N Oı : (1.135)

Note that D D OıkDk and N Oı W D D NkDk in this case. Thus we obtain the basic
hypoplastic equation (1.125).

A.3 Material Parameters

The parameters used in all calculations are listed in Tables 1.4 and 1.5.
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Chapter 2
Barodesy: The Next Generation of Hypoplastic
Constitutive Models for Soils

D. Kolymbas

Abstract Barodesy is, like hypoplasticity, a frame for an evolution equation where
the stress rate is expressed as tensorial function of stress, stretching and other
parameters like void ratio. This equation being non-linear and non-integrable allows
to express the path-dependent evolution of stress with deformation. The specific
feature of barodesy is that it is based on two very simple theorems on asymptotic
behavior of sand. The first theorem states that proportional strain paths starting
from the stress-free state lead to proportional stress paths. Barodesy shows that this
can be easily modeled with an exponential mapping. The second theorem refers
to proportional strain paths starting form a non-vanishing stress state. They lead
asymptotically to proportional stress paths that would have been obtained starting at
the stress free state. Barodesy models this by adding a simple term in the constitutive
relation, and this is now the complete new constitutive relation. The so obtained
mathematical relation allows to embed in a simple and elegant way many known
principles of soil mechanics, allowing additionally for some asymptotic effects due
to cyclic loading. The striking simplicity of the new model not only facilitates its
application in numerical applications but also offers a frame for understanding the
behavior of soil and granular matter, in general. Moreover, it offers a good starting
point for further investigations towards open problems such as rate sensitivity and
behavior at small strains.

2.1 Introduction

Barodesy is a completely new frame of constitutive models for soils. In this article
the structure of the new theory is outlined; the presentation of special applications
and the results of simulations are left for a forthcoming paper. The present article
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refers to sand, barodesy, however, holds also for clay, as shown in the PhD thesis of
Gertraud Medicus (in preparation). Clay, being also a particulate material consisting
of minute particles has a behaviour very similar to sand. However, there are some
differences that mainly arise from the fact that the stiffness of sand in monotonic
compression is much higher than that of virgin consolidated clay.

2.2 Empirical Basis of Barodesy

Of basic importance for the following is the notion of a proportional path.
Proportional stress and strain paths are characterized by constant ratios of the
principal values �1 W �2 W �3 and "1 W "2 W "3, respectively.

There are two basic experimental findings for sand:

1. Starting from the stress-free state, proportional strain paths lead to proportional
stress paths.

2. Starting from a non-vanishing stress state and applying a proportional strain
path leads asymptotically to the proportional stress path that would be obtained
starting from the stress-free state.

The two rules stated above are inferred by Goldscheider from his test results
obtained with rectilinear extensions of sand [5]. These tests have been carried out
in a so-called true triaxial apparatus. This apparatus allows to apply rectilinear
extensions (i.e. motions without rotation of the principal axes of deformation)
independently in all three directions of space.

Besides these rules, the generally observed lack of an elastic regime in soils
contradicts a basic ingredient of the theory of plasticity.

2.3 Early Quests for Alternatives to Plasticity Theory

The theory of plasticity, based on the notions of yield surface, flow rule, consistency,
decomposition of strain into elastic and plastic parts, etc. was for a long time the only
mathematical tool to describe irreversible deformation. Thus, also soil mechanics
has been developed along the principles of this theory. The first consistent model
for soil, the Cam-Clay model is a particular plasticity theory adapted to clay.
However, several researchers have called to depart from plasticity. In 1973 Palmer
and Pearce published a paper titled “Plasticity theory without yield surfaces” [18].
Some sentences of this paper deserve being quoted here:

It was quite natural that the idea of a yield surface should assume such importance in a
theory built on experience with metals, since in most metals yield occurs at a fairly well-
defined stress level. . . .
In soil mechanics the status of the yield surface concept is quite different, both in theory
and experiment. . .
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. . . strain measurements in clay depend on direct observation of boundary displacements,
so that only quite large strain increments are reliably measurable, creep and pore-pressure
diffusion confuse results. . .
. . . yield surface motions during strain-hardening are often too complex for the results to be
helpful in constructing usable stress–strain relations.
Might it be possible to resolve this (dilemma) by constructing a different kind of plasticity
model, in which the yield surface concept had been dropped or relegated to a minor role?
. . . it might be useful to idealise clay as a material in which the yield surface has shrunk to
a point, so that all deformations are plastic and any changes of stress from the current state
will produce plastic strain increments.

Palmer and Pearce present in their paper a concept for a plasticity theory without
yield surfaces. This concept is based on two postulates by Ilyushin which are, in a
sense, precursors of Goldscheider’s theorems:

Isotropy postulate: If the strain path is rotated in strain space, then the cor-
responding stress path is rotated by the same amount. This
postulate has nothing to do with isotropy, since it considers
rotations in the strain and stress spaces, not in the natural
space. It is controversial and certainly not valid in the full
stress and strain spaces. It is only approximately valid in the
deviatoric subspace: This postulate implies that the deviatoric
directions of proportional strain and stress paths coincide.
This is, however, not true, according to experimental results
by Goldscheider [5].

Delay postulate: The stress at some instant in a loading history does not depend
on the whole previous history, but only on the last part of
it. This is a postulate of fading memory and is similar to
Goldscheider’s second theorem.

Based on Ilyushin’s postulates, Palmer and Pearce present the following concept:

The deviatoric stress has two components. The magnitude of the first component is a
function of the octahedral shear strain, and its direction coincides with the principal strain
vector (referring strain to an isotropically-consolidated initial state). The magnitude of the
second component is constant, and its direction coincides with the current strain rate . . .
Reversal of the strain path would reverse the second component but not the first . . .

The very last sentence strongly resembles to a basic concept of hypoplasticity
and barodesy, to which presumably the authors would have concluded, had they
used rate equations instead of finite ones.

2.4 Barodesy and Hypoplasticity

Constitutive models can’t be derived from general principles, because they have
to describe specific features of particular materials. Thus, besides intuition, trial
and error is a basic tool in developing constitutive models. In hypoplasticity, trial
and error has been guided by general principles of objectivity and representation



46 D. Kolymbas

theorems for tensor-valued functions. In barodesy, the amount of trial and error has
been further reduced in favour of reasoning on asymptotic behaviour of granulates.
Asymptotic states are attractive not only from conceptual reasons but also from
the experimental viewpoint: If we consider long monotonic deformations, initial
disturbances, related, for example, to sample preparation, fade out and do no more
influence the measurements.

Barodesy can be seen as a hypoplastic implementation of the Critical States
Concept. Previous attempts to incorporate Critical States into hypoplasticity have
been published e.g. by Bauer [1], Gudehus [6], Herle and Kolymbas [7], Masin
[16], Niemunis [17], and Wu et al. [21]. As in the original proposal by the author
[9, 10], they are composed of two parts, the one being linear and the other non-
linear in D. Barodesy is also composed of two parts, neither of which is linear in
the stretching tensor D. The response envelopes of hypoplastic versions are ellipses,
whereas in barodesy they have a similar form but are not ellipses. As these features
are not essential, the author believes that the mathematical structure of barodesy
is appealing and capable of useful extensions. Clearly, all mathematical models
(including elastoplastic ones) succeeding to describe the same object, e.g. soil, must
include a common mathematical kernel, which is however still hidden.

2.4.1 About the Name “Barodesy”

One should not be fast in introducing new names, as too many neologisms create
confusion. However, sometimes new names are needed to denote ideas that are
really new. There is an abundance of elastic and plastic concepts equipped with
prefixes such as hypo-, para-, hyper- etc. Therefore, the author suggests to avoid
using the words elasticity and plasticity (to the extend the latter is associated with
notions such as yield surface, elastic regime etc., originally created for metals),
since they are not the only framework to describe granular materials such as soil.
It should be admitted that soil behaviour can—in principle—also be described
in the framework of the theory of elastoplasticity. The author believes, however,
that yield surfaces and the other concepts of plasticity theory may prejudice our
perception and sometimes obscure soil mechanics, which suffers from the long
lasting fragmentation in constitutive modelling [11]. Hypoplasticities have been
developed, independently of each other, in California [3], Karlsruhe and Grenoble
[2]. The Grenoble and Karlsruhe branches are inherently related. The California and
the Karlsruhe/Grenoble perceptions of hypoplasticity have nothing in common but
the name, the first one being designed in the frame of elastoplasticiy. It should be
stressed that there is no use in seeking rigorous definitions of what is hypoplasticity.
Taking that a constitutive relation is a mathematical expression being continuously
developed, any attempt to provide a strict definition and distinctive characteristics
ends up in a sterile exercise of dogmatism. As for the Karlsruhe branch, many
different versions have emanated since the publication of the first proposal by
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the author in 1977.1 This proposal was motivated by the quest to describe the
mechanical behaviour of soil on the basis of Rational Mechanics without any
recourse to the formalism of elastoplasticity.

The new approach presented in this paper pays tribute to a basic idea of
Gudehus, who guided the research team in Karlsruhe in the years 1973–2006:
Asymptotic states, as represented by proportional strain paths, are attractors and
play a paramount role in mechanics of granulates. In this paper is shown that almost
the entire constitutive relation for granulates can be derived from the consideration
of proportional paths. The here presented theory, which yields a variety of more
or less realistic predictions, is based on a few reasonable assumptions. Therefore it
claims generality and deserves a new name. The name barodesy has been coined
motivated by the fact that granular materials gain their stiffness (ı"��& D bond,
hence stiffening, hardening) from externally applied pressure (ˇ˛�o& ). Thus, the
names “barodesy” and “barodetic” are proposed for granular materials to distinguish
them from what traditionally is denoted as “elastic” or “plastic”.

2.5 Symbols and Notation

The notation in the “Non-Linear Field Theories of Mechanics” [19] is mainly
followed in this article. Compared to the notation of tensors with indices, the
symbolic notation facilitates insight into the prevailing relationships.

T: Cauchy-stress. Its principal components are denoted with �1; �2; �3.
D: Stretching tensor, i.e. the symmetric part of the velocity gradient

rv. It can be set approximately equal to the strain rate, Dij � P"ij.
e: Void ratio, i.e. the ratio Vp=Vs , where Vp and Vs are the volumes

of pores and solids (grains), respectively.
exponent 0: Denotes normalization of a tensor A, i.e. A0 WD A=jAj, with

jAj WD p
trA2.

� : jTj
P": jDj

: trD0

PT: Time rate of stress. In the general case, PT should be replaced by a
co-rotational stress rate T̊. For rectilinear extensions it is T̊ 	 PT.

c1; c2; c3; c4: Material constants.

1The first versions were not yet named “hypoplastic”.
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2.6 Proportional Paths A

Let us first consider proportional strain paths starting from the stress-free state. Such
paths can be volume-decreasing (we will call them “consolidations”), characterized
by trD < 0, or volume preserving (“isochoric” or “undrained”), characterized by
trD D 0, or volumes increasing, characterized by trD > 0. Clearly, the latter are
not feasible with cohesionless sand. Let us denote with R a tensor that has the
direction of a proportional stress path. The question arises, how R depends on the
direction of the corresponding proportional strain path. The latter is characterized
by the direction of stretching D, i.e. by the normalized stretching D0. How can we
determine the relation R.D0/? This question can be easily answered if we observe
that all consolidations are mapped into a specific part of the principal stress space
formed by the stress components �1, �2 and �3. This part is the octant, where all
principal stresses are compressive, i.e. negative. Hence, the product �1�2�3 must
also be negative. Now, for a proportional stress path we have �i D �R.Di/,
� > 0; i D 1; 2; 3:2 Thus, the following condition must hold:

R1.D1/R2.D2/R3.D3/ < 0 for trD D D1 CD2 CD3 < 0 : (2.1)

This implies that R1.D1/R2.D2/R3.D3/ must be a function of D1 C D2 C D3, a
requirement which is fulfilled by the exponential mapping

R.D/ D exp.c1D0/ : (2.2)

Equation (2.2) maps all volume-reducing (trD < 0) proportional strain paths into
a cone in the stress space with appex at T D 0, which can be called the R-cone.
Its boundary is the critical state surface and corresponds to paths with trD D 0.
Consider the intersection of the R-cone with a plane trT D const, as shown in
Fig. 2.1. This curve expresses the critical limit state in a so-called deviatoric plane
in the stress space. The mathematical representation of this curve can be easily
derived from Eq. (2.2): For isochoric deformations (trD0 D 0) we can eliminate
D0 from (2.2) and obtain:

D0 D 1

c1
ln.�R/ : (2.3)

The requirement trD0 D 0 results in ln.�R1R2R3/ D 0 or R1R2R3 D �1. From
the additional requirement jD0j D 1 we obtain:

.lnR1/
2 C .lnR2/

2 C .lnR3/
2 D c21 : (2.4)

2Herein, Di are the principal values of D, and Rj .Di / are the principal values of R(D).
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σ1 σ2

σ3

Fig. 2.1 Cross section of the R-cone with a deviatoric plane. Numerically obtained with Eq. (2.2)
in the following way: the shown curve collects stress states that correspond to isochoric stretchings
D0; trD0 D 0. For any such stretching, Eq. (2.2) yields a stress ray T D �R; � > 0. Its intersection
with a �-plane (trT D const) is a point of the shown curve

For the here considered proportional paths holds: T D �R, 0 < � < 1, hence
we can replace in this equation R by T=� and obtain finally the equation of critical
states in the stress space:

�

ln
T1

3
p
T1T2T3

�2

C
�

ln
T2

3
p
T1T2T3

�2

C
�

ln
T3

3
p
T1T2T3

�2

D c21 : (2.5)

Equation (2.5) is homogeneous of the zero-th degree in T and describes thus a
conical surface in the stress space with apex at T D 0. Its intersection with a plane
trT D const is shown in Fig. 2.1. Note that its shape practically coincides [4] with
the curve obtained by the expression of Matsuoka and Nakai:

.T1 C T2 C T3/.T1T2 C T1T3 C T2T3/

T1T2T3
D const: (2.6)

Equation (2.2) also relates the critical friction angle with K0, the so-called
coefficient of earth pressure at rest. We consider a critical state and use the
abbreviation Kc WD .1 � sin'c/=.1C sin'c/. The equation R2=R1 D Kc yields:

c1 D
r
2

3
lnKc: (2.7)

Now we consider an oedometric proportional stress path. The corresponding
stretching is

D D
0

@
�1 0 0
0 0 0

0 0 0

1

A : (2.8)
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Herewith we obtain:

K0 D T2

T1
D R2

R1
D exp.0/

exp.�c1/ D exp.c1/ D exp.ln.K
p
2=3

c // D K
p
2=3

c : (2.9)

2.7 Proportional Paths B

Now we start from a stress state T ¤ 0 and apply the stretching D. In order to
asymptotically approach the corresponding proportional stress path T D �R.D/,
the stress rate PT must point to the point �1R.D/, i.e.

T C � PT D �1R.D/; (2.10)

where the positive constants �;�1 and � need not be further specified here. If we
eliminate PT we obtain an evolution equation for the stress:

PT D �1R.D/C �2T (2.11)

with appropriately defined scalar quantities �1 and �2. Equation (2.11) is the final
general form of the barodetic constitutive relation. To comply with barotropy,
pyknotropy and rate independence of sand, �1 and �2 are further specified, such
that the barodetic constitutive equation for sand obtains the following specific form:

PT D h.�/ � .f R0 C gT0/ � P"; (2.12)

where f and g are functions of the stress and the void ratio. In the sequel it will be
shown how all known concepts of soil mechanics can be cast in the frame given by
Eq. (2.12).

2.8 Limit States

A limit state is obtained when the stiffness vanishes:

PT D 0: (2.13)

Considering stress–strain curves, the limit states are manifested either as peak or
residual limit states, where the curve obtains a horizontal slope. In barodesy (see
Eq. (2.12)), yield is modeled by the equation

f R0 C gT0 D 0: (2.14)
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This tensorial equation implies two equations:

1. The flow rule

R0 D T0: (2.15)

Note that R depends on D. Thus, the flow rule gives (via an implicit equation)
the direction of strain that pertains to a limit state T.

2. The scalar equation

f C g D 0; (2.16)

which takes into account the actual void ratio e and the stress magnitude � . This
scalar equation somehow corresponds to the yield surface of plasticity theory.

2.9 Incremental Non-Linearity

Incremental non-linearity (or “non-linearity in the small”) means different stiff-
nesses at loading and unloading and, in general, irreversible or hysteretic mechanical
behaviour. Both, elastoplastic and hypoplastic relations comprise incremental non-
linearity. The elastoplastic approach consists in introducing two different stiffnesses,
one for loading and one for unloading. A criterion has to be added to distinguish
when we have loading and when unloading. In the frame of hypoplasticity a unique
expression for the stress rate (or stiffness) is used, and the distinction between
loading and unloading is accomplished by the non-linearity of this equation. In
barodesy, the difference of stiffness at loading and unloading is modelled by the
fact that the second term gT0 in Eq. (2.12) is not changed if D is switched to �D,
whereas the first term (i.e. f R0) undergoes a change.

2.10 Consolidations and Critical States

Noting that T0 D R0 holds true for proportional paths, we obtain from Eq. (2.12)

PT D h.�/ T0 .f C g/ P": (2.17)

For proportional paths holds also PT D P�T0, hence Eq. (2.12) reduces to

P� D h.�/ .f C g/ P": (2.18)
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The quantities f , g and, hence, f C g are functions (still to be defined) of the void
ratio e, the stress magnitude � and of 
, introduced in Sect. 2.5, which is a measure
of dilatancy.

Vanishing stiffness for critical states implies f C g D 0 for 
 D 0. Hence, we
can set

f C g D c2
: (2.19)

We require Eq. (2.19) to be valid not only for critical states but also for all
consolidations, i.e. for proportional paths with � < 0. Introducing Eq. (2.19)
into (2.18) we obtain:

P� D h.�/ c2 
 P"; (2.20)

Using


 P" D trD
P" P" D trD D Pe

1C e
; (2.21)

we obtain for consolidations:

P� D h.�/ c2
Pe

1C e
: (2.22)

It follows that the slope of the e vs. � curves is the same for oedometric, hydrostatic
and, in general, for all consolidations. Adapting h.�/, and thus Eq. (2.22), to a
compression curve from a laboratory test allows to determine the compression curve
e D �.�/. If we choose

h D �c3 ; (2.23)

we obtain

e D �.�/ D .1C e0/ exp
�1�c3

.1 � c3/c2 � 1 (2.24)

with c2 < 0.
The incremental stiffness of compression tests, in particular of oedometric

compression tests, denoted by Es WD d�1=d"1, is known to be stress-dependent
according to a relation attributed to Ohde and/or Janbu [8]:

Es D Es0

�
�

�0

�w

: (2.25)
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With d�1 D �d�=
q

1C 2K2
0 and d"1 D de=.1C e/ we obtain from Eq. (2.22):

Es D �c2
q

1C 2K2
0

�c3 D �c2�c30q

1C 2K2
0

�
�

�0

�c3
(2.26)

in accordance with Eq. (2.25). A typical value for c3 is ca. 0.5.
As said, the equation f Cg D 0 or f Cg D c2� expresses for � D 0 the critical

state line (CSL) e � ec.�/ D 0. Thus, we can set

f C g D c2
 C c4.ec.�/ � e/: (2.27)

For peak limit states we also have f C g D 0. This can be fulfilled by Eq. (2.27) if
e < ec for c2� < 0, i.e. for dilatant deformation with trD> 0.

For Eq. (2.27) to be also valid for consolidations (i.e. to obtain f C g D c2�,
cf. Eq. (2.22)) we have to require that e � ec.�/ vanishes for consolidations, see
Eq. (2.24). For this to hold, we have to require:

ec.�/ D �.�/: (2.28)

In other words, the dependence of the critical void ratio ec on stress � is given
by the same function that holds for consolidations (i.e. proportional compressions).
Of course, the initial void ratio �.0/ must be appropriately chosen in each case.
Note that the general opinion in soil mechanics is not unique in that question. Many
authors accept that the dependence ec.�/ is the same as in compression tests, other
authors contradict this view. Barodesy leads to the acceptance of this view.

However, it has to be admitted, that the CSL is hard to determine by experiments.
Wood [20] writes:

The paths of tests on loose and dense samples head towards a somewhat diffuse, but clearly
pressure dependent, zone of critical void ratios.

The final step in determining the barodetic constitutive equation consists in
partitioning equation (2.27) into f and g by setting, e.g.

f D c2
 � c4e; (2.29)

g D c4ec.�/: (2.30)

2.11 Cyclic Loading, Limit Cycles and Shake-Down

Proportional paths are not the only attractors in the constitutive relation presented
so far. Being ordinary differential equations, constitutive relations “of the rate
type” [19] may exhibit also limit cycles or cyclic orbits as further attractors. In
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fact, Eq. (2.12) exhibits periodic orbits (limit cycles) at cyclic loading. In terms of
mechanics, this effect is related to “shake-down” and means that stress cycles lead
asymptotically to cyclic changes of void ratio. In case of, for example, oedometric
deformation (but not for conventional triaxial tests), this implies also cyclic strain,
i.e. strains due to cyclic stress are bounded, i.e. they do not increase to infinity.
Generally, shake-down is one of the possible responses of sand to cyclic loading,
the other one being “incremental collapse” (i.e. unlimited growth of strain with
increasing number of cycles). It is yet unclear when exactly shake-down and
when incremental collapse are to be expected. However, Eq. (2.12) exhibits shake-
down (and periodic orbits) e.g. at cyclic oedometric loading: If the axial stress
component �1 is periodically changed between a lower and an upper limit, then
the corresponding radial stress component �2, which is bounded, will also become
cyclic, i.e. a limit cycle will eventually be obtained in the stress space.3

Cyclic stress, asymptotically obtained with strain cycles of infinitesimally small
amplitude, is related with the void ratio Le, which can be called the cyclic void ratio.
Little is known from experiments on the dependence of Le on actual stress T and on
the direction D0 of strain cycles.

Considering strain cycles with infinitesimal amplitude with the constitutive
relation (2.12) and denoting with “C” and “�” loading and unloading, respectively,
it is observed that at a limit cycle must hold: PTC D � PT�. Hence, the condition for
cyclic response reads

.f CR0C C f �R0�/C .gC C g�/T0 D 0: (2.31)

This equation constitutes a relation between the direction of the strain amplitude, D,
the cyclic void ratio Le and the stress �T0, around which the stress oscillation occurs.
Eliminating T0 from Eq. (2.31) yields:

T0 D �1
gC C g�

.f CR0C C f �R0�/: (2.32)

Using this equation and the additional condition jT0j D 1 makes it possible to
determine for a given D0 the stress direction T0 of the corresponding cyclic state
and also the pertaining cyclic void ratio Le.�/. A discussion of Eq. (2.32) is left for a
future paper.

It should be added that the here presented model still exhibits ratcheting at cycles
of small amplitude, e.g. in conventional triaxial tests.

3Integrity of grains (or permanence of the grain size distribution) has not been assumed for the
derivation of the constitutive relation so far. In fact, a constitutive relation that does not contain
any measure for the strength of grains presupposes that grain crushing does not occur. In reality,
however, grain crushing is inevitable, especially at higher stresses. The corresponding changes of
the grain size distribution curve are hard to measure.
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2.12 Significance of Barodesy

Compared with the “classical” elastoplastic approaches, Eq. (2.12) constitutes a
substantial change of paradigm and introduces not only new concepts but also a
remarkable simplicity in a field of paramount complexity4 dominated by a “morass
of equations”. Equation (2.12) is a convincing implementation of Noll’s5 program
to formulate a constitutive equation as a rate equation of the type PT D h.T;D/,
and the importance of this achievement is enhanced by the fact that Eq. (2.12) is
derived from general properties of sand. The implications of Eq. (2.12) are amazing.
Despite its simplicity it captures almost every aspect of the behaviour of granular
materials: stress dependent stiffness, hysteretic behaviour, dilatancy, contractancy,
hardening up to the peak and subsequent softening to critical states, stress–strain
curves and stress-paths for all types of tests, including drained and undrained triaxial
tests. In a series of papers [12–15] are shown simulation results including drained
and undrained triaxial tests with loose and dense sand, cyclic oedometric tests and
cyclic simple shear tests with constant normal stress and constant volume. The range
of applicability is huge, as it covers all particulate materials such as soils, granulates
and powders. Such materials are addressed not only by geotechnical engineering
but also by many other technological branches, such as offshore, mining, petroleum
engineering, metallurgy, chemical and food industry.

2.13 Open Questions

Despite its simplicity and elegance, the present version of barodesy cannot cover all
aspects of sand behaviour. The memory is still contained only in the actual stress T
and the actual porosity e, and this is not sufficient to cover all aspects of re-loading,
in particular the so-called aspects of “small strain stiffness”. Though, it is interesting
to note how many aspects of memory can be covered with T and e.

The barodetic equations are homogeneous of the first degree in the stretching D
and, hence, rate-independent. To change this, the degree of homogeneity has to be
modified.

4“Many properties of sand are equally puzzling to science as the big bang is”, Neue Zuercher
Zeitung, 13.2.2008.
5A prominent representative of a school of thought called Rational Mechanics. The main reference
is the classical book “The Non-Linear Field Theories of Mechanics” [19].
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Chapter 3
Seismic Performance of Tuned Mass Dampers
with Uncertain Parameters

C. Adam, M. Oberguggenberger, and B. Schmelzer

Abstract This chapter addresses the seismic performance of Tuned Mass Dampers
(TMDs). In the design of a TMD, two types of uncertainty are relevant: the
stochastic excitation modeling the earthquake, and the inherent uncertainty of
internal parameters of the damping device and the subsoil. Modeling the excita-
tion by a continuous-time stochastic process the structure-damper system can be
described by a linear system of stochastic differential equations. The response is a
stochastic process depending on the uncertain parameters of the damping device and
the subsoil. These uncertainties are modeled by random sets, i.e., interval-valued
random variables. A framework is presented here that admits the combination of
these two types of uncertainty leading to a set-valued stochastic process, which
is interpreted as containing the true system response. The approach is applied to
show how the efficiency of TMDs can be realistically assessed in the presence
of uncertainty. The main focus of this paper is on non-stationary models for the
excitation based on colored noise multiplied by a prescribed intensity function.
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3.1 Introduction

The protection of vibration-prone structures against excessive dynamic response
can be accomplished with various passive, active, and semi-active measures,
depending on the complexity of the problem, available resources, expected lifespan,
available technological standard, environmental conditions, etc. [31, 32]. Since
these structures exhibit in general low inherent damping, the installation of a
Tuned Mass Damper (TMD) [8] is one effective classical measure to add damping.
A TMD is a simple vibratory mechanical device with a single dynamic degree-of-
freedom (SDOF) of either mass-spring-dashpot or a pendulum-dashpot type. When
appropriately designed, the kinetic energy is transferred from the vibrating structure
to the TMD, where it is subsequently dissipated through its viscous element. From
the perspective of its weight added to the structure, visual appearance, and space
considerations the maximum mass ratio, i.e. the ratio of TMD mass and effective
structural mass, is limited in general to 8 %. The efficiency of this device depends
on appropriate tuning of its system parameters and on the frequency content of the
excitation.

In current engineering practice, TMDs are frequently used to reduce narrow-
band structural vibrations induced by wind, traffic, machines, etc. For the tuning of
TMD system parameters and prediction of the actual response reduction analytic
relations are readily available [8, 14, 40]. However, the efficiency of a TMD to
mitigate broad-band earthquake-induced structural vibrations is a topic that is still
controversially discussed [5, 13, 17, 26]. Nonetheless, the seismic behavior of a
TMD aimed at particularly protecting the building against narrow-band vibrations
(excited, e.g., by wind) needs to be assessed reliably if the building is located in an
earthquake environment [37]. For example, the stroke, i.e., the peak displacement
of the TMD, must not exceed a certain design limit when subjected to severe
earthquake excitation with low probability of occurrence [18,39]. Consequently, one
objective of this paper is to provide a fundamental study of the seismic performance
of a TMD attached to a vibration-prone load-bearing structure that can be modeled
as SDOF system.

Seismic assessment of a TMD should consider the quantification of aleatory and
epistemic uncertainties. The record-to-record variability of the earthquake excitation
is the source of aleatory uncertainty. One option to capture the aleatory uncertainty
of the structure-TMD interaction system is to evaluate the responses to several base
accelerations with overall characteristic properties recorded during real earthquakes.
Based on this approach recent studies [1, 37, 38] have revealed that a TMD reduces
the root mean square response effectively, depending on the mass ratio, inherent
structural damping, and fundamental structural frequency. However, it was also
shown that a TMD might be less avid to decrease the seismic peak response.
Additionally, in [37] analytic approximations of the response quantities for design
purposes have been derived. Analytic stochastic excitation modeling of earthquake
records (see e.g. [25]) is an alternative approach to capture aleatory uncertainty that
is more feasible if the earthquake hazard is not well defined.
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Epistemic uncertainties result from the lack of knowledge of internal parameters
as well as from approximations to reality of the underlying mechanical model. Here
the effect of detuned TMD parameters comes into play, which can be traced back to
their internal uncertainty. Structural and TMD parameters can only be determined
within certain bounds, and they may be subject to change in the course of time. For
example, the stiffness of the soil, and as consequence, natural frequencies of the
vibration-prone structure depend on environmental conditions such as temperature
and moisture.

In this paper, a framework is presented that admits the combination of stochastic
processes (i.e., the earthquake excitation) and interval type parameter uncertainty
modeled by random sets (i.e., epistemic uncertainty). In particular, modeling the
excitation by a continuous-time stochastic process the structure-TMD system is
described by a linear system of stochastic differential equations. The system
response is a stochastic process depending on the uncertain parameters of the
damping device and the subsoil. These uncertainties are modeled by random sets,
i.e., finitely many intervals each coming with a probability weight. The approach
is applied to show how the efficiency of passive damping mechanisms can be
realistically assessed in the presence of uncertainty. In contrast to a previous
study [29], where the ground motion was modeled by white noise, in the following
colored noise based on the Kanai–Tajimi power spectral density function [15, 34]
describes the base acceleration, which is more realistic for earthquake excitation.
Preliminary results of the present study have been presented in [28].

3.2 Mechanical Model

This study discusses the vibration mitigation of earthquake excited linear elastic
load-bearing structures, whose dynamic response is primarily governed by the
fundamental mode. In general, the mechanical model of an SDOF oscillator
represents this category of structures with sufficient accuracy. Subsequently, ms,
ks, and cs represent lumped mass, stiffness, and viscous damping parameter of this
main system. A second SDOF oscillator with lumped mass md .
 ms/, stiffness
parameter kd, and viscous damping parameter cd serves as TMD. Combined in series
this yields the non-classically damped system shown in Fig. 3.1 with two dynamic
degrees-of-freedom, expressed by the displacement xs of the structure and of the
TMD xd, both measured relative to the base displacement xg. When subjected to
base acceleration Rxg, the coupled equations of motion of this system read as follows:

M
� Rxs

Rxd

�

C C
� Pxs

Pxd

�

C K
�
xs

xd

�

D
��1
��

�

Rxg (3.1)

where

M D
�
1 0

0 �

�

; C D
�
2
s!s C 2
d!d� �2
d!d�

�2
d!d� 2
d!d�

�

; K D
�
!2s C !2d� �!2d�
�!2d� !2d�

�
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Fig. 3.1 Mechanical model
of an SDOF vibration-prone
structure equipped with a
TMD

The variable � denotes the mass ratio,

� D md

ms

!s and !d are the natural circular frequencies, and 
s and 
d denote the non-
dimensional damping coefficients of the stand-alone main system and the detuned
TMD, respectively,

!s D
s
ks

ms
; !d D

s
kd

md
; 
s D cs

2!sms
; 
d D cd

2!dmd

For an effective reduction of the structural response xs the parameters of the
TMD, i.e., the damping coefficient 
d and the frequency ratio ı,

ı D !d

!s
(3.2)

must be tuned “optimally.” In general, optimal TMD parameters depend on the type
of excitation (harmonic, white noise, etc.) and on the considered response quantity
to be optimized (relative or absolute structural displacement or acceleration), see
e.g., [3,8,14]. For stationary Gaussian white noise base excitation of an SDOF main
system without inherent structural damping (i.e., 
s D 0) the following analytic
expressions of optimal TMD parameters have been derived,

ıopt D
p
1 � �=2
1C �

; 
d;opt D
s

�.1 � �=4/
4.1C �/.1 � �=2/ (3.3)
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assuming that the variance of the stationary relative displacement xs is minimized,
e.g., [3] and [32, p. 234]. Tuning of a TMD according to these expressions
minimizes the variance of the relative displacement xs of the SDOF main system.

3.3 Modeling of the Earthquake Excitation

As outlined in the introduction, base excitation is modeled by a stochastic process.
An R

d -valued stochastic process x on a time interval Œ0; t 	 assigns to each point of
time t a random variable x.t/, defined on a probability space ˝ with its � -algebra
˙ of measurable sets and the probability measure P . The process is specified if
the finite dimensional joint distributions of all random variables x.t/, t 2 Œ0; t 	

are known. A one-dimensional Brownian motion (Wiener process) b is defined
for t 2 Œ0;1/ as follows: each b.t/ is a Gaussian variable with mean zero and
variance t . Further, the covariance of b.t1/ and b.t2/ equals min.t1; t2/ and b.0/ D 0.
The corresponding probability space is denoted by .˝b;˙b; Pb/. Here and in the
sequel variable �b is reserved for the elements of the space ˝b with a similar
convention for the other probability spaces.

Continuous time white noise Pb is the weak derivative of Brownian motion. It is
a generalized process with mean zero, infinite variance, and zero covariance. It is
formalized here by means of Itô’s integral, for which the reader is referred to the
literature, e.g., [2, 22].

Systems of ordinary differential equations with white noise excitation are
handled as Itô stochastic differential equations (SDEs):

dx.t/ D f
�
t; x.t/

�
dt C g

�
t; x.t/

�
db.t/

interpreted as the integral equation

x.t/ D x0 C
tZ

0

f
�
s; x.s/

�
ds C

tZ

0

g
�
s; x.s/

�
db.s/

where time t ranges in some finite time interval Œ0; t 	, x0 is a random variable
representing the initial value, f; g W Œ0; t 	 � R

d ! R
d are coefficient functions,

and b is a one-dimensional Wiener process on .˝b;˙b; Pb/. Their solutions are
stochastic processes with continuous trajectories.

In [29] the authors have used white noise to model the base acceleration, for the
sake of simplicity. White noise is—due to its covariance structure—a stationary
process with a constant power spectral density. Hence, all frequencies appear
equally in the base acceleration, which is a contradiction to the properties of most
recorded ground motions. Furthermore, the infinite variance can actually not be
interpreted physically. Thus, the main goal of the present paper is to use a more
realistic model for ground acceleration.
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Fig. 3.2 Left subplot: power spectral density for Kanai–Tajimi model, !g D 5 rad=s, 
g D 0:9,
S0 D 1; right subplot: intensity function

In the literature (see, e.g., [4, 24, 33]) one can often find a model proposed by
Kanai and Tajimi [15,34]. In their approach the base acceleration of the earth surface
layer is approximated by the absolute acceleration of a linear SDOF oscillator
excited by white noise. The corresponding equation of motion reads as follows

Rz.t/C 2
g!gPz.t/C !2g z.t/ D �Pb.t/
where !g and 
g are, respectively, the natural circular frequency and non-
dimensional damping coefficient of the oscillator corresponding to the properties of
the subsoil. The above equation can be written as a two-dimensional linear system
of stochastic differential equations,

dz.t/ D
"
0 1

�!2g �2
g!g

#

z.t/ dt C
�
0

�1
�

db.t/

where z D Œz; Pz	T. The ground acceleration is then modeled by the absolute
acceleration of the oscillator, that is Rxg D Rz C Pb, which results in the following
stochastic process

Rxg.t/ D �2
g!gPz.t/ � !2g z.t/ (3.4)

Its power spectral density is given by the equation

S.!/ D S0
!4g C 4
2g!

2
g!

2

.!2g � !2/2 C 4
2g!
2
g!

2
(3.5)

where S0 is the (constant) power spectral density of white noise. Obviously, the
spectral density S is not constant and thus represents a special type of colored noise.
The left picture in Fig. 3.2 shows a plot of the power spectral density for the soil
parameters !g D 5 rad=s, 
g D 0:9, and for the uniform spectral density S0 D 1.

Note that the process given by Eq. (3.4) is (asymptotically) stationary. However,
it is a well-known fact that the base acceleration of earthquakes is non-stationary.
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Typically, at the beginning of the earthquake, amplitudes of the base acceleration
are increasing. After a period of quasi-stationary strong motion, amplitudes are
decreasing again. Thus, it seems reasonable to multiply the process from Eq. (3.4)
with some intensity function I corresponding to the non-stationary behavior of the
base acceleration (see, e.g., [6]). This leads to the following model for Rxg:

Rxg.t/ D I.t/
� � 2
g!gPz.t/ � !2g z.t/

�
(3.6)

As suggested in [24] the intensity function plotted in the right-hand side picture
of Fig. 3.2 is used: During the first 15% of the total duration of the earthquake, I
increases linearly from 0 to 1. After a constant period over 30% of the earthquake
duration, I decreases in a quadratic manner.

Rewriting the coupled equations of motion from (3.1) as a system of first order,
and introducing the stochastic process (3.6) for the base acceleration leads to the
following six-dimensional linear system of stochastic differential equations:

dx.t/ D F.t/x.t/ dt C g db.t/ (3.7)

where x D Œxs; xd; z; Pxs; Pxd; Pz	T, g D Œ0; 0; 0; 0; 0;�1	T and

F.t/ D

2
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Note that all parameters of the model are contained in the system matrix F.
Furthermore, F is time-dependent because of the intensity function I . This contrasts
the situation considered in [29], where the system matrix does not depend on time.

For reasons of comparison, the response of the system without TMD is consid-
ered, too. In this case the motion of the corresponding SDOF oscillator is described
by the equation

RQxs C 2
s!s PQxs C !2s Qxs D �Rxg

Substituting the stochastic process (3.6) for Rxg leads to the first order SDE system

dQx.t/ D

2

6
6
6
4

0 0 1 0

0 0 1 0

�!2s �!2g �2
s!s �2
g!g

0 �!2g 0 �2
g!g

3

7
7
7
5
Qx.t/ dt C

2

6
6
4

0

0

0
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3

7
7
5 db.t/ (3.8)
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where Qx D Œxs; z; Pxs; Pz	T. In both systems (3.7) and (3.8) the initial values are
assumed to be zero.

3.4 Modeling of the Parameter Uncertainty

The epistemic parameter uncertainty is accounted for by means of random sets.
In general, a random set is a set-valued random variable satisfying certain measura-
bility conditions. The simplest case arises when the underlying probability space is
finite. In this case, one speaks of finite random sets or Dempster–Shafer structures.
Such a structure is given by finitely many subsets Ai ; i D 1; : : : ; n of a given set
A, called the focal elements, each of which comes with a probability weight pi ,P
pi D 1.
For example, each set Ai could be the result of an interval-valued measurement

and pi its relative frequency in a sample. Alternatively, the sets Ai could be ranges
of a variable obtained from source number i with relative credibility pi .

As a random set, a Dempster–Shafer structure is viewed as given by an n-point
probability space˝A D f1; 2; : : : ; ng with probability masses fp1; p2; : : : ; png. The
assignment i ! Ai is the defining set-valued random variable.

Following Dempster and Shafer [7, 30], two important set functions are intro-
duced: the lower probability and the upper probability of an event B are defined by

P .B/ D
X

Ai�B
pi ; P .B/ D

X

Ai\B¤;
pi (3.9)

A good visualization of a random set can be given through its contour function
on the basic space A, assigning each singleton a its upper probability:

a! P .fag/ (3.10)

It is simply obtained by adding the probability weights pi of those focal elements
Ai to which a belongs. Figure 3.3 shows a random set and the resulting contour
function where weights have been chosen as p1 D 1=2; p2 D 1=3; p3 D 1=6.

In the sequel, random sets are needed that are defined on an arbitrary probability
space .˝A; ˙A; PA/ and whose values are subsets of p-dimensional coordinate
space A D R

p . More precisely, random compact intervals are used, that is, random
variables

A W ˝A ! Ic.A/

where Ic.A/ denotes the set of all non-empty compact intervals in A. Random
compact intervals are used since they have and imply advantageous theoretical
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Fig. 3.3 A random set and its contour function; the three dots on the vertical axis symbolize the
underlying three-point probability space

properties (e.g., concerning measurability, see [19]). In analogy to (3.9) the lower
probability and the upper probability of an event B are defined as

P .B/DPA.f�A 2 ˝A WA.�A/ � Bg/; P .B/DPA.f�A 2 ˝A WA.�A/ \ B ¤ ;g/
(3.11)

The event B may be taken as any Borel measurable subset of A. The contour
function is given by (3.10).

For further details on interpretations and applications the reader is referred to the
articles [10–12, 21, 35, 36] as well as to the monographs [19, 20].

3.4.1 Two Examples of Random Sets for Uncertainty Modeling

In [29] random sets constructed from Tchebycheff’s inequality have been used,
which require only minimal information about the parameters. More precisely,
let a be an uncertain parameter preliminarily viewed as a random variable with
expectation (or nominal) value a and variance �2. Then one can define a random set
A on ˝A D .0; 1	 by setting

A.�/ D �
a � �p

�
; aC �p

�

	
; � 2 ˝A (3.12)

where˝A D .0; 1	 is equipped with the uniform probability distribution. It has been
argued in [29] that a focal elementA.�/may be viewed as an approximate two-sided
.1��/-fractile range for the parameter a. Furthermore, it has been explained how to
compute � from a probabilistic estimate about the range of the parameter. Figure 3.4
shows the contour function of a generic Tchebycheff random set.

In view of the shape of its contour function, it is obvious that a Tchebycheff
random set is an appropriate model for parameter uncertainty when a parameter can
take arbitrary (real) values, and negative deviations from the expectation or nominal
value seem as likely as positive deviations. In case the parameter range is strictly
bounded on (only) one side of the nominal value, it might be better to choose a
random set whose contour function reflects this asymmetry.
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Fig. 3.4 Left subplot: a generic Tchebycheff random set; right subplot: a triangular random set

One possibility is to use a random set whose contour function has a triangular
shape. The latter is then determined by a nominal value a and the lower and upper
bounds `, u of the parameter range. Such a random set can be defined on˝A D Œ0; 1	

by setting

A.�/ D �
`C .a � `/�; u � .u � a/�	; � 2 Œ0; 1	

where ˝A D Œ0; 1	 is equipped with the uniform probability distribution. The right
picture in Fig. 3.4 shows the contour function of a triangular random set.

3.5 Combination of Stochastic Excitation and Parameter
Uncertainty

In the previous two sections it has been demonstrated how to model the base accel-
eration by stochastic processes and how to use random sets to model (epistemic)
parameter uncertainty. The purpose of this section is to demonstrate how the two
types of uncertainty can be combined to obtain set-valued assessments of the TMD
performance.

As it has been shown at the end of Sect. 3.3, the motion of the combined
structure-damper system is described by the linear system of SDEs (3.7), where the
parameters �, 
s, !s, 
d, !d, 
g, !g appear in the system matrix F. In Sect. 3.6,
various of these parameters are assumed to be uncertain, and random intervals
presented in Sect. 3.4 are used. Note that this is in contrast to [29], where only
TMD parameters were assumed to be uncertain. Corresponding to the situation, the
tuple of uncertain parameters is denoted by a. The linear system (3.7) then reads

dxa.t/ D F.t; a/xa.t/ dt C g db.t/

where fxa.t/gt2Œ0;t 	 denotes the solution process corresponding to parameter value a.
As a first indicator for the performance of the TMD the displacement xs of

the structure is considered. More precisely, xs is scaled by the largest structural
displacement Qxs when no TMD is attached. This leads to a map y defined on the
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time interval, the set of possible parameter values A, and the probability space ˝b

of Brownian motion:

ya.t; �b/ D xs;a.t; �b/

maxt2Œ0;t 	 j Qxs;a.t; �b/j

The latter can be seen as a non-dimensional displacement.
The aim is now to combine both kinds of uncertainty. To this end, the set-valued

function

Y.t; �/ D fya.t; �b/ W a 2 A.�A/g (3.13)

is introduced, where .t; �/ 2 Œ0; t 	 � ˝ and .˝;˙;P / denotes the product
probability space

.˝;˙;P / D .˝A �˝b;˙A ˝˙b; PA ˝ Pb/

This definition means that for each time t and each element � D .�A; �b/ of the
product space ˝ the corresponding values of the non-dimensional displacement
are merged to one set Y.t; �/, which is interpreted as containing the true value of
the structural non-dimensional displacement. Note that Y is a set-valued stochastic
process, that is, at each time t one has a random set Y.t/, whose values are compact
intervals in R. For further details the reader is referred to [27], where the theory of
this approach has been developed.

For reasons of comparison the non-dimensional displacement Qy of the structure
without TMD

Qya.t; �b/ D Qxs;a.t; �b/

maxt2Œ0;t 	 j Qxs;a.t; �b/j

is also considered. If parameters of the base acceleration are assumed to be
uncertain, a set-valued process QY can be defined from the processes Qya in a similar
manner as in Eq. (3.13). Furthermore, the absolute values of the non-dimensional
displacements ya are of interest, too, resulting in the set-valued process

jY j.t; �/ D fjya.t; �b/j W a 2 A.�A/g

The reader is referred to [29] for equations of the boundary processes of j QY j and
their mean value functions.

A central concern is the effectiveness of the TMD, that is, to which extent the
dynamic response xs is reduced compared to the response Qxs when no TMD is
attached. In the single-valued case the peak response reduction coefficient and the
root mean square (RMS) response reduction coefficient are considered
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rm;a.�b/ D maxt2Œ0;t 	 jxs;a.t; �b/j
maxt2Œ0;t 	 j Qxs;a.t; �b/j ; rq;a.�b/ D

v
u
u
t

R t
0
xs;a.t; �b/2 dt

R t
0
Qxs;a.t; �b/2 dt

For each parameter value a and for each path of the Brownian motion, the map
rm;a represents the reduction of the peak displacement of the structure, whereas rq;a

computes the quadratic-mean reduction (over time) of xs;a. Similar as in Eq. (3.13)
these maps can be extended to the set-valued reduction coefficients Rm and Rq

defined by

Rm.�/ D frm;a.�b/ W a 2 A.�A/g; Rq.�/ D frq;a.�b/ W a 2 A.�A/g

whose values are compact subintervals of the unit interval Œ0; 1	.
The stroke of the TMD is an important design parameter to assure the efficiency

of the TMD, and to avoid damage of the TMD and/or of the main structure.
It represents the TMD peak displacement with respect to its attachment point at
the main structure. As with the reduction coefficients rm;a and rq;a the displacement
Qxs of the structure without TMD is used for normalization. Thus, the equation for
the stroke coefficient reads as follows [37]

da.�b/ D maxt2Œ0;t 	 jxs;a.t; �b/ � xd;a.t; �b/j
maxt2Œ0;t 	 j Qxs;a.t; �b/j

Similar as in Eq. (3.13) one can define the set-valued stroke coefficient D by

D.�/ D fda.�b/ W a 2 A.�A/g

whose values are compact intervals.

3.6 Numerical Simulation and Results

Subsequently, results of numerical simulations are presented. Unless otherwise
stated, the results are based on the following nominal values: mass ratio � D 0:05,
structural inherent damping 
s D 0:005, soil frequency !g D 5 rad=s (soil period
Tg � 1:26 s), soil damping 
g D 0:9. The latter soil values correspond to soil class
C according to Eurocode 8, see [9] and [23]. For the nominal values of the TMD
parameters !d and 
d the optimal values given by Eqs. (3.2) and (3.3) are used.

For each tuple of parameter values approximations are computed using the Order
2 Implicit Strong Taylor Scheme (see [16]). Each simulation involves 500 sample
functions of Brownian motion, and (constant) step size�t of the time discretization
is chosen as min.Ts; Tg/=12 if min.Ts; Tg/ < 1, or 1=20 otherwise.
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3.6.1 Parametric Studies

In this section the results of parametric studies are presented in an effort to reveal
how the expectation values of the reduction coefficients and the stroke coefficient
are influenced by structural and soil parameters �, Ts, 
s, Tg, and 
g, respectively.
In each study the structural period Ts D 2�=!s is varied in the range from 0:05

to 5 s. Additionally, one of the remaining parameters is varied while the other
parameters are fixed to their nominal values. For each output variable a line plot
(with the structural period Ts on the abscissa and one of the response quantities rm,
rq, d on the ordinate) and a contour plot are presented.1 All results are compared to
the outcomes based on white noise base excitation.

Figure 3.5 shows the expected values of the peak and RMS displacement
reduction coefficients rm and rq and the stroke coefficient d , respectively, for Ts

and Tg varying in the range from 0:05 to 5 s. The bold black lines in the left pictures
represent the results for white noise base acceleration (further investigated in [29]),
whereas the thin (and partially marked) lines correspond to colored noise excitation
for various values of the soil period Tg while fixing the soil damping 
g to the
value 0:9.

Obviously, reduction coefficients rm and rq increase with increasing Tg

particularly for short period structures, which means that the TMD is less effective
for longer soil periods. However, the stroke coefficient is almost not affected by
variation of Tg. The results of this figure suggest that for small structural periods
Ts the TMD performance for colored noise excitation is worse than for white noise
excitation. This behavior is coherent with computations accomplished with real
earthquake records (see [37, 38]) and is due to the fact that the power spectral
density (3.5) yields small values for high frequencies (small periods), whereas in
the white noise case all frequencies equally likely appear. Another observation
is that the smaller the soil period Tg the better the reduction plot approaches the
white noise curve. For Tg D 0:05 s the expectations of the reduction coefficients
actually coincide with those of the white noise case. Again, this can be explained
by considering the spectral density of the colored noise process: If !g ! 1
(or equivalently Tg ! 0) then S.!/ ! S0 for all !, that is, S converges to a
constant spectral density, and this corresponds to white noise.

Figure 3.6 depicts the reduction and stroke coefficients for nominal soil fre-
quency !g D 5 rad=s (Tg � 1:26 s) and varying soil damping 
g ranging from 0:3 to
0:95. It is remarkable that for a structural period of approximately 1:12 s all values
of 
g lead to the same reduction. In the structural period range larger than this period
the considered response quantities remain almost unaffected by the variation of soil
damping. However, in the lower period range RMS and peak reduction coefficients
increase considerably with decreasing soil damping, i.e., the TMD becomes less
effective.

1In the sequel, we shall denote the reduction and stroke coefficients simply by rm, rq, d in place of
rm;a, rq;a, da, unless explicit reference to a specific tuple of parameters a is required.
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Fig. 3.5 Expectations of reduction coefficients rm, rq and stroke coefficient d , based on white
noise excitation (wn) and colored noise excitation for 
g D 0:9 and various values of Tg [in (s)]

Figure 3.7 shows the behavior of the output variables rm, rq, and d under
variation of mass ratio � in the range of 0:5–8% based on colored noise excitation
with nominal soil parameters (!g D 5 rad=s, 
g D 0:9). One can see that all
three output variables decrease when � increases. This confirms the well-known
fact that for larger mass ratios structural displacement is reduced more efficiently
and the stroke coefficient is smaller. It is remarkable that for small mass ratios
(0:5% and 1%) the stroke coefficient depends on the structural period in a non-
monotonic manner. From Fig. 3.8 one can conclude that in the case of white noise
excitation results are very similar to those based on colored noise excitation, except
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Fig. 3.6 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on white noise excitation and colored noise excitation for !g D 5 rad=s (Tg � 1:26 s) and various
values of 
g

for small structural periods, which is coherent with the results displayed in Figs. 3.5
and 3.6. Comparing the results of Figs. 3.7 and 3.8 with outcomes of a study [37]
based on a set of recorded ground motions, reveals that not only the dependency
of the considered response variables on various structural parameters is the same
for the stochastic soil model used here and for real ground motions. These response
quantities are even of the same order of magnitude. The approach of this study is
thus confirmed.

In Fig. 3.9 results for rm, rq, and d are plotted when the structural damping
coefficient 
s is varied in the range of 0:5–5%, mass ratio � D 5%, and the
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Fig. 3.7 Expectations of reduction coefficients rm, rq and stroke coefficient d based on colored
noise excitation (!g D 5 rad=s, 
g D 0:9) for 
s D 0:005 and various values of �, respectively

Kanai–Tajimi model with nominal soil parameters (!g D 5 rad=s, 
g D 0:9) is
used. It is readily observed that all three output variables increase when 
s increases.
This means that higher inherent structural damping leads to lower effectiveness
of the TMD to reduce the response and to a larger stroke relative to the peak
displacement of the main system. This outcome is obvious because the main system
becomes less-vibration prone the larger the inherent damping is. From Fig. 3.10 one
can see once more that in the case of white noise excitation results are very similar
to those based on colored noise excitation, except for small structural periods.
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Fig. 3.8 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on white noise excitation for 
s D 0:005 and various values of �

3.6.2 Set-Valued TMD Parameters

In this subsection the mass ratio �, the structural inherent damping 
s, and the soil
parameters !g and 
g are fixed to their nominal values whereas the TMD parameters
!d and 
d are assumed to be uncertain. In a first simulation, a Tchebycheff random
set A is used only for !d, and 
d is assumed to take its nominal value. Concerning
the variability it is assumed that the actual value of !d lies in a range of ˙40% of
its nominal value with 99% certainty. As explained in [29] this leads to a coefficient
of variation of 0:04, that is, � D 0:04!d. Corresponding to Eq. (3.12) the focal
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Fig. 3.9 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on colored noise excitation (!g D 5 rad=s, 
g D 0:9) for � D 0:05 and various values of 
s

elements are obtained as

A.�A/ D
h
!d



1 � 0:04p

�A

�
; !d



1C 0:04p

�A

�i

where �A 2 .0; 1	. For the numerical simulation the random set is approximated by
a finite random set consisting of the ten focal elements obtained for �A;j D .j=10/2,
j D 1; : : : ; 10. The corresponding weights are then given by p1 D 0:01, pj D
�A;j � �A;j�1 D .2j � 1/=100, j D 2; : : : ; 10. This leads to a better approximation
(with respect to the upper and lower probability) than choosing �A;j equidistantly
from .0; 1	.
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Fig. 3.10 Expectations of reduction coefficients rm, rq and stroke coefficient d , respectively, based
on white noise excitation for � D 0:05 and various values of 
s

Figure 3.11 shows the expectation of the peak and RMS displacement reduction
coefficients and the expectation of the stroke coefficient for 11 different values of
the structural period Ts, namely, 0.05, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 (values
in seconds). The outer (bold) lines in the pictures are the interval bounds of the
expectation of the set-valued reduction coefficientsRm,Rq and the set-valued stroke
coefficientD, respectively. The central (marked) lines represent the output obtained
for the optimal parameter value !d.

Figure 3.12 is obtained by using a Tchebycheff random set for the TMD damping
coefficient 
d with coefficient of variation of 0:04 and fixing !d to its optimal value.
It seems that varying 
d has almost no influence on the reduction coefficients, which
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Fig. 3.11 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain TMD frequency !d; middle subplot: bounds of set-valued RMS displacement reduction
coefficientRq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain TMD frequency !d; right subplot: bounds of set-valued stroke
coefficient D (outer lines), stroke coefficient da (central line) for different values of Ts, and
uncertain TMD frequency !d

Fig. 3.12 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain TMD damping 
d; middle subplot: bounds of set-valued RMS displacement reduction
coefficientRq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain TMD damping 
d; right subplot: bounds of set-valued stroke coefficient
D (outer lines), stroke coefficient da (central line) for different values of Ts, and uncertain TMD
damping 
d

is coherent with the outcomes of [37, 38] based on real recorded ground motions.
However, the stroke coefficient is influenced by 
d in a similar manner as by !d, i.e.,
the bounds of the set-valued stroke coefficient are only slightly tighter as in the right
picture of Fig. 3.11.

In a further simulation, for both TMD parameters !d and 
d Tchebycheff random
sets are used. Their approximations are combined to a two-dimensional random set
by taking the cartesian product of each of the focal elements of the first with each
of the focal elements of the second random set and multiplying the corresponding
probability weights. This results in a finite random set consisting of 100 rectangular
focal elements. In Fig. 3.13 the expectations of the reduction coefficients and the
stroke coefficient are depicted. The plots of the reduction coefficients look very
similar to the ones in Fig. 3.11, which emphasizes that the impact of TMD damping

d on the reduction coefficient is small.
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Fig. 3.13 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain TMD parameters !d, 
d; middle subplot: bounds of set-valued RMS displacement
reduction coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line)
for different values of Ts, and uncertain TMD parameters !d, 
d; right subplot: bounds of set-
valued stroke coefficient D (outer lines), stroke coefficient da (central line) for different values of
Ts, and uncertain TMD parameters !d, 
d

From all three figures one can see that the RMS displacement reduction
coefficients are smaller than the peak displacement reduction coefficients. This is
due to the fact that in the left pictures only the peak displacements of the trajectories
are compared. These maximum displacements usually appear during the period of
strong ground motion (where the intensity function equals 1). On the other hand,
for the RMS displacement reduction all the displacements observed during the time
interval are taken into account. Furthermore, one can observe that the bounds of the
set-valued stroke coefficient are much wider than for the reduction coefficients, and
that the stroke coefficient da induced by the optimal values of the TMD parameters
are close to the upper bound of the set-valued stroke coefficient. These results lead to
the well-known conclusion that the optimal TMD parameters from Eq. (3.3) lead to
a large stroke, but by variation of the TMD parameters the stroke can be diminished
considerably while the efficiency of the TMD is only deteriorating slightly, see,
e.g., [37] .

Figure 3.14 shows the bounds of sample functions of the non-dimensional
displacement Y of the load-bearing structure (bold lines) obtained by choosing
two particular focal elements, a particular path of the ground motion process,
and Ts D 1 s. Thin lines represent the corresponding sample functions of the
non-dimensional displacement ya obtained for the nominal parameter values a D
.!d; 
d/ and the non-dimensional structural displacement Qy when no TMD is
attached. In the left subplot of Fig. 3.15 the mean value functions of jY j, jyaj
and j Qyj for Ts D 1 s are plotted. One can see that during the phase of strong
ground motion the displacements of the load-bearing system damped by the TMD
are fluctuating around a constant value. Due to the increased damping by the
TMD, these displacements decay much more quickly than the displacements of
the TMD-free system after the end of the strong motion period. The right-hand
subplot of Fig. 3.15 depicts for each time the probability that the non-dimensional
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Fig. 3.14 Bounds of a sample function of the non-dimensional structural displacement Y (bold
lines) and sample functions of ya (central thin line) and Qy (outer thin line) for Ts D 1 s and two
different focal elements for uncertain TMD parameters !d, 
d

Fig. 3.15 Left subplot: mean value functions of the absolute values of the non-dimensional
structural displacement jY j (bold lines), jyaj (central thin line) and j Qyj (outer thin line) for
Ts D 1 s, and uncertain TMD parameters !d, 
d; right subplot: upper and lower probabilities
of Œ0:5;1/ for jY j (bold lines), probabilities of jyaj > 0:5 (central thin line) and j Qyj > 0:5 (outer
thin line), TMD parameters !d and 
d uncertain

displacement exceeds the value 0:5. For the set-valued process jY j this corresponds
to the upper and lower probabilities of the interval Œ0:5;1/ (see Eq. (3.11)).

3.6.3 Set-Valued Soil Parameters

In this subsection, results of simulations are discussed when random sets are used
for the soil parameters !g, 
g whereas the mass ratio, the structural damping, and
the TMD parameters are fixed to their nominal values.

Figure 3.16 shows the expectations of the reduction coefficients and the stroke
coefficient for soil damping 
g D 0:9 and a Tchebycheff random set with nominal
soil frequency !g D 5 rad=s. The coefficient of variation used for !g is 0:04.
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Fig. 3.16 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain soil frequency !g; middle subplot: bounds of set-valued RMS displacement reduction
coefficientRq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain soil frequency !g; right subplot: bounds of set-valued stroke coefficient
D (outer lines), stroke coefficient da (central line) for different values of Ts, and uncertain soil
frequency !g

Fig. 3.17 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts, and
uncertain soil damping 
g; middle subplot: bounds of set-valued RMS displacement reduction
coefficientRq (outer lines), RMS displacement reduction coefficient rq;a (central line) for different
values of Ts, and uncertain soil damping 
g; right subplot: bounds of set-valued stroke coefficient
D (outer lines), stroke coefficient da (central line) for different values of Ts, and uncertain soil
damping 
g

Obviously, varying !g changes the reduction coefficients only slightly whereas the
stroke coefficient is affected considerably. One can further consider the case where
!g D 5 rad=s and a random set is used for 
g. As before the nominal value of 0:9
is employed for soil damping 
g. Concerning the variability it is assumed that 
g

can take values from 0:3 to 0:95; note that 
g is bounded by 1. This range does
not lie symmetrically around the nominal value, and thus it is not appropriate to
use a Tchebycheff random set. However, it seems reasonable to utilize a triangular
random set instead as shown in Fig. 3.4, right subplot. The latter is approximated
by the finite random set obtained by the choices �A;j D 0:01 C 0:11 � .j � 1/,
j D 1; : : : ; 10, with probability weights p1 D 0:01, pj D 0:11, j D 2; : : : ; 10.
Figure 3.17 depicts the expectations of the resulting reduction coefficients and the
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Fig. 3.18 Left subplot: bounds of set-valued peak displacement reduction coefficient Rm (outer
lines), peak displacement reduction coefficient rm;a (central line) for different values of Ts,
and uncertain soil parameters !g, 
g; middle subplot: bounds of set-valued RMS displacement
reduction coefficient Rq (outer lines), RMS displacement reduction coefficient rq;a (central line)
for different values of Ts, and uncertain soil parameters !g, 
g; right subplot: bounds of set-valued
stroke coefficient D (outer lines), stroke coefficient da (central line) for different values of Ts, and
uncertain soil parameters !g, 
g

Fig. 3.19 Bounds of sample functions of the non-dimensional structural displacement Y (bold
lines), sample functions of ya (central thin line) and bounds of sample functions of QY (outer thin
lines) for Ts D 1 s and two different focal elements for uncertain soil parameters !g, 
g

stroke coefficient. Obviously, for the reduction coefficients significant deviations
from the nominal values can only be recognized for structural periods Ts up to 1 s.
For larger values of Ts the bounds of the set-valued reduction coefficients more
or less coincide with the reductions computed with the nominal values. Similar to
Fig. 3.16 the stroke coefficient varies considerably. Very similar outcomes are found
when using random sets for both parameters !g and 
g (see Fig. 3.18). Figure 3.19
shows sample functions, and in Fig. 3.20 mean value functions and exceedance
probabilities are plotted.
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Fig. 3.20 Left subplot: mean value functions of the absolute values of non-dimensional structural
displacement jY j (bold lines), jyaj (central thin line) and j QY j (outer thin lines) for Ts D 1 s, soil
parameters !g and 
g uncertain; right subplot: upper and lower probabilities of Œ0:5;1/ for jY j
(bold lines) and j QY j (outer thin lines), probabilities of jyaj > 0:5 (central thin line), soil parameters
!g and 
g uncertain

3.7 Conclusion

In this paper a framework to assess the seismic performance of Tuned Mass
Dampers (TMDs) in presence of parameter uncertainty has been presented.
A stochastic process, based on the Kanai–Tajimi power spectral density function,
models earthquake excitation. This constitutes a more realistic excitation model
than white noise used in an earlier study [29]. Random sets have been used to
describe the uncertainty of the ground parameters and the TMD parameters, which
can (in practice) not be tuned optimally. The benefit is an adequate assessment
of response reduction coefficients of the main system and the stroke coefficient
of the TMD system. The interval-valued description of the behavior of the TMD
system is more informative and reliable than a purely stochastic description with
single-valued outputs.

Based on this methodology a parametric study has been conducted to quantify the
efficiency of a TMD to reduce the seismic response of a vibration-prone structure
that can be modeled sufficiently accurately as a single degree-of-freedom oscillator.
The results derived are coherent with the outcomes of a similar parametric study
[37] that is, however, based on a set of recorded earthquake ground motions. The
considered response quantities are both qualitatively and quantitatively comparable,
and thus the analytical expression for seismic TMD design presented in [37] is
confirmed. Beneficially, the utilized stochastic ground motion model allows one to
study the effect of a targeted variation of specific ground motion parameters on the
TMD performance, as it has been conducted here.
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Chapter 4
Sensitivity and Reliability Analysis
of Engineering Structures: Sampling
Based Methods

M. Oberguggenberger

Abstract This chapter intends to present an overview of Monte Carlo-type methods
currently in use in the probabilistic analysis of large engineering structures. It starts
with an introduction to the generation of multi-dimensional random quantities. Next,
spatially distributed random properties, e.g., material or geometrical properties in
continuum mechanics, are modeled as random fields. Approximations to random
fields by means of Karhunen–Loève expansion and polynomial chaos expansion are
introduced. These tools are employed to study the response of continuous structures
with loads, material or geometrical properties given by random fields. The main
focus is on sensitivity analysis of large engineering structures, where small Monte
Carlo sample sizes are mandatory. The transition to reliability is undertaken by
means of the concept of tolerance intervals. Further, current sampling methods for
accurate reliability estimates are discussed, and practical applications are presented.

4.1 Introduction

Engineering structures are usually modelled as input–output maps: the response
Y is a function Y D g.X1; : : : ; Xn/ of input parameters .X1; : : : ; Xn/ like
material properties, geometry, boundary conditions, and driving forces (dynamic or
distributed loads, noise). It has been acknowledged since a long time that both the
structural model (given by the function g) and the input parameters are uncertain.
Traditionally, uncertainties have been dealt with by employing safety factors. That
is, the traditional codes would require that the load carrying capacity of the structure
exceeds the design loads by a certain factor > 1, typically 1.35 for permanent loads
(such as dead weight) and 1.5–2.0 for temporary loads.
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This state of affairs is unsatisfactory in as much as no information about
the actual distance to failure can be extracted. The desire for a more analytical
description of the uncertainties led to the introduction of the probabilistic safety
concept in civil engineering, initiated by the pioneering work of Freudenthal
[17], Bolotin [6], and others in the 1950s. Starting with the 1980s and 1990s,
the European engineering codes have been changed into probability based codes.
By now, this is the standard in civil engineering (see, e.g., EN 1990:2002 [15])—
interestingly, the civil engineering community has been far ahead of the other
engineering fields in adopting the probabilistic point of view.

Under this point of view, every relevant parameter of the engineering model is
a random variable. There is no absolute safety, but rather a probability of failure.
As a consequence, more information than just the nominal parameter values must be
entered in the model, namely a description of the statistical distribution of the input.
Further, the response is no longer deterministic, but rather a random variable, whose
distribution must be computed in order to describe the behavior of the structure as
well as the probability that certain limits are exceeded (described by a limit state
function).

In practical applications, the structure is usually represented by a finite element
model. These models are generally large, computationally costly, and partially black
boxes. Practically, Monte Carlo simulation is the only way to numerically compute
the statistics of the system response. Thereby, an artificial sample of X1; : : : ; Xn,
a data matrix of size N � n, is generated and N values of y D g.x1; : : : ; xn/ are
calculated, producing a sample of size N of the response Y , which in turn can be
evaluated statistically. This approach raises the computational cost dramatically, and
so the need for cost-saving algorithms arises.

An adequate understanding of the uncertainties in an engineering task requires a
number of actions, among them reflection about the choice of model and the failure
mechanisms; assessing the variability of input and output variables and model
parameters; sensitivity analysis (i.e., the determination of the relative influence
of individual input parameters on the response); assessing the reliability of the
structure. This involves a variety of activities to be performed, from laboratory
experiments, data collection to model validation.

The reader is alerted that in the present contribution, only the comparatively
narrow part of the numerical calculation of sensitivities and of reliability is
addressed. As suggested in the title, the focus is on sampling based methods. In view
of the need to employ as few model evaluations as possible, the choice of the
sample becomes an important issue. This is dealt with under the heading design
of experiment in Sect. 4.2. In due course, metamodels will be encountered there as
well. Section 4.3 is devoted to the simulation of random fields, that is, spatially
distributed random input. Section 4.4 starts off with sensitivity analysis, of interest
in itself, but also the basis for model reduction. This becomes useful in Sect. 4.5,
where reliability analysis is addressed. In Sect. 4.6, the concepts will be illustrated
using a model from aerospace engineering, supplied by our industrial partner Intales
GmbH Engineering Solutions.
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The methods presented here have been developed, adapted, and implemented in a
number of joint research projects with Intales GmbH Engineering Solutions.1 Note
that approaches to uncertainty analysis going beyond probability theory, such as
interval analysis or the combination of both approaches in the form of random sets,
are not addressed here. One instance of such a hybrid approach is in Chap. 3 of this
volume. For further information the reader is referred to the recent surveys [4, 36].

4.2 Design of Experiment

In this section, the task of simulating the output Y D g.X1; : : : ; Xn/ of an
input–output function applied to random input .X1; : : : ; Xn/ will be addressed.
Direct Monte Carlo simulation consists in generating a sample x1; : : : ; xN of
the n-dimensional random variable .X1; : : : ; Xn/, collected in an N � n-matrix.2

The sample has to be generated in such a way that the columns are statistically
independent and each of them is distributed according to the distribution of the
corresponding random variable. We are not going to detail this step—most scientific
software packages come with a pseudorandom number generator that can produce
high dimensional independent samples of most familiar statistical distributions [42]
of sufficiently large size (the crucial question of accuracy will be addressed below).
The term design of experiment refers to the choice of the sample so as to achieve
certain desirable additional properties.

Subsequently, each sampled row xj D .xji; : : : ; xjn/ is sent through the input–
output map to produce a sample yj D g.xj1; : : : ; xjn/, j D 1; : : : ; N of the
output Y .

The complete information about the statistical properties of the output Y is
contained in its cumulative distribution function

FY .y/ D P.Y � y/ D P.g.X1; : : : ; Xn/ � y/

which in turn can be written as an expectation value, namely as

FY .y/ D E
�
h.Y /

� D E
�
h.g.X1; : : : ; Xn/

�

where h is the indicator function of the interval .�1; y	, i.e., h.z/ D 1 for
z � y and 0 otherwise. Similarly, all statistical properties of the output Y can

1ICONA-project 2006–2008, supported by TransIT Innsbruck, ACOSTA-project 2008–2010,
supported by The Austrian Research Promotion Agency, MDP-NE 2011–2013, supported by
Astrium GmbH; main partners: Intales GmbH Engineering Solutions, Institute of Basic Sciences
in Engineering Science and Institute of Mathematics, University of Innsbruck, Czech Technical
University in Prague.
2We follow the common statistical practice that random variables are denoted by capital letters,
while their realizations are denoted by small letters.
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be formulated in terms of expectation values of functions of Y . For example, the
moments of Y are obtained by choosing h.z/ D zm, m D 1; 2; 3; : : :. The core of
Monte Carlo simulation is that these expectation values can be approximated by the
corresponding sample mean, that is,

E
�
h.Y /

� � h.Y / D 1

N

NX

jD1
h.yj / D 1

N

NX

jD1
h
�
g.xji; : : : ; xjn/

�
:

By construction, y1; : : : ; yN is an independent random sample, hence statistical
sampling theory tells us that the variance of the estimator h.Y / is given by

V
�
h.Y /

� D 1

N
V
�
h.Y /

� D C2

N

where C2 is the variance of h.Y / D h
�
g.X1; : : : ; Xn/

�
, a fixed number depending

only on h, g, and the given distribution of .X1; : : : ; Xn/. Thus the mean error of a
Monte Carlo estimate is of order 1=

p
N . For methods to generate random samples

leading to a numerical error approximately below prescribed bounds see [19].
We note in passing that replacing the pseudorandom numbers by quasirandom

numbers, generated from the so-called low-discrepancy sequences, allows one
to improve the mean square error to order .logN/n=N , but demonstrably not
further [13,34]. Rather than going into design of experiment based on quasirandom
numbers, two sampling plans will be addressed which are of bigger importance in
our setting.

Latin Hypercube Sampling The first issue is stratified sampling that is designed to
avoid random clustering and produces sampled points with a balanced distribution
over the parameter space. A prominent and easy-to-implement method of stratified
sampling is Latin hypercube sampling. To obtain a sample of size N , the Latin
hypercube sampling plan divides the range of each variable Xi into N disjoint
subintervals of equal probability. First, N values of each variable Xi , i D 1; : : : ; n,
belonging to the respective subintervals are randomly selected. Then the N values
for X1 are randomly paired without replacement with the N values for X2. The
resulting pairs are then randomly combined with the N values of X3 and so on,
until a set of N n-tuples is obtained. This set forms the Latin hypercube sample.
The advantage of Latin hypercube sampling is that sampled points are evenly
distributed through design space, thereby hitting also regions of low probability
possibly important for the input–output map which might be missed by direct Monte
Carlo simulation. A Latin hypercube estimate is not necessarily more accurate than
a standard Monte Carlo estimate at givenN , but it can be shown that the variance of
a Latin hypercube estimator is asymptotically smaller than the variance of the direct
Monte Carlo estimator, and possibly markedly smaller when the input–output map
is partially monotonic [53].



4 Sensitivity and Reliability Analysis: Sampling Based Methods 89

Correlation Control The second issue is correlation control, which is an essential
ingredient in Monte Carlo simulation with small sample sizes (say, aroundN D 100

or less). As the reader may easily verify, the rows of an independently sampled
matrix X D .xij; i D 1; : : : ; N I j D 1; : : : n/ of independent random variables
X1; : : : ; Xn may turn out to have correlation coefficients up to 20 % in practice,
when N is that small (this undesirable effect disappears for N � 1;000). Thanks
to an empirical method due to Iman and Conover [21], it is possible to rearrange
the entries of the sampled matrix in such a way that the new columns are nearly
uncorrelated. In fact, the method allows one to construct a matrix X� of any desired
correlation structure K. This is done as follows. The van der Waerden matrix W is
defined by

W D

0

B
@

w.1/1 : : : w.n/1
:::

:::

w.1/N : : : w.n/N

1

C
A

where each column consists of a random permutation of the van der Waerden scores

˚�1
 j

N C 1

�
; j D 1; : : : ; N:

Here ˚ denotes the standard normal cumulative distribution function. Starting with
the Cholesky factorizations

K D PPT; �W D QQT;

with the correlation matrix �W of W, one can prove that

W� D WQ�TPT

has the target correlation structure K. Empirical investigations [21] showed that the
rank correlation matrix of the resulting matrix W� is nearly the same, i.e., �W � �
RW � . Therefore, rearranging the values in the columns of X corresponding to the
rank order of the columns in W� leads to a matrix X� which approximately has the
desired correlation structure:

�X� D �W � � RW � D K:

Further improvement can usually be achieved by iteration of the procedure. It should
be noted that the described method of correlation control does not destroy the Latin
hypercube structure of a sample and thus can be directly combined with Latin
hypercube sampling. The efficiency of correlation control in dependence on the
number of input variables has been studied in [37].
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In all simulations presented in this paper, Latin hypercube sampling and
correlation control have been routinely implemented.

Bootstrap Resampling The result of a Monte Carlo simulation is a single estimate
h.Y / of one or more desired quantities h.Y /. One would like to be able to assess the
accuracy of the estimate, i.e., the variance of the estimator, confidence intervals, etc.,
without additional calls of the expensive input–output map. A cost-saving method to
achieve this is bootstrap resampling [14, 50]. The bootstrapping procedure consists
in repeatedly drawing from the same sample with replacement to obtain new
samples of the same sizeN . To obtainB D 1;000, say, bootstrap samples of sizeN ,
one proceeds as follows.

From the original data sample, e.g., h.y1/; : : : ; h.yN /, of size N one randomly
draws N -times, so that each realization has equal probability of being drawn. The
results are combined to produce a bootstrap sample of size N (note that some
entries of the bootstrap sample may be repetitions of realizations of the original
data sample). This is repeated B D 1;000 times. The B D 1;000 bootstrap samples
now are used to compute B D 1;000 realizations of h.Y /, say, and the distribution
of h.Y / can be estimated in this way. The reason why this works is that each
bootstrap sample has a distribution which approximates the empirical distribution
of the original sample.

In this way, the generation of a multitude of samples of the same distribution
is mimicked and allows one to assess the variability of the individual sample
estimators. For example, confidence intervals for h.Y / can be either obtained by
computing the percentiles of the B D 1;000 estimates of h.Y /, or approximated by
a Student’s t-distribution based on the empirical standard deviation of those values.

Metamodels Also known as surrogate models or response surfaces, metamodels
attempt to save computational cost by approximating the input–output function
by a simpler (deterministic) function. Typically, such an approximation is based
on evaluating the input–output function at a smaller number of design points and
suitable extrapolation. Large size Monte Carlo simulation can then be performed
with the metamodel with little computational cost. Metamodels obtained by linear
regression with possibly nonlinear shape functions have the advantage that the
powerful diagnostic methods of regression analysis can be used. For example,
partial coefficients of determination admit to quantify the relative importance of
input variables with respect to the variability of the output in nonparametric ways
[28, 32, 39]. Other metamodels are based on radial basis functions, smoothing
splines, or Kriging (i.e., variance minimizing piecewise linear extrapolation); see,
e.g., [25, 45]. The accuracy of a metamodel crucially depends on the degree of
smoothness of the input–output function. Metamodels cannot be used, e.g., to
accurately describe nonlinear bifurcation as in buckling analysis. On the other hand,
given a sufficiently smooth model, the accuracy of a metamodel can be controlled
by sequential design of experiment, in which additional design points are added in
regions of lower accuracy, optimizing both the global error and the space filling
properties of the experimental design, see, e.g., [23].
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Stochastic Response Surfaces If the input variables .X1; : : : ; Xn/ are Gaussian or
have been transformed into standard Gaussian variables, the input–output function
can be seen as a function on standard Gaussian space and approximated by a
response surface on that space. As an illustration, consider the univariate case of a
single random variable X with distribution function F.x/. The transformed random
variableU D ˚�1.F.X// has a standard Gaussian distribution. This transformation
reduces the input–output map to a function of the Gaussian variable U as well, by
means of Y.U / D g

�
F �1.˚.U //

�
. For example, ifX has a normal distribution with

mean � and variance �2, the transformation is simplyX D F �1.˚.U // D �C�U .
Recall that the Hermite polynomials hn.u/ form an orthonormal basis in the space

of square integrable functions on the real line with respect to the Gaussian density
e�u2=2 du=

p
2� . The (normalized) Hermite polynomials are given by the recursion

hnC1.u/ D up
nC 1

hn.u/C n
p
n.nC 1/

hn�1.u/

with h0.u/ D 1, h1.u/ D u. Every function Y.U / of a Gaussian variable U such that
Y.U / has finite second moments has a convergent Hermite expansion of the form

Y.U / D
1X

kD0
ckhk.U /:

The coefficients ck can be obtained as the inner product E.Y.U /hn.U //; alterna-
tively, collocation and regression can be used to numerically compute them. More
precisely, choose finitely many points �1; : : : ; �m in the domain of the input–output
map g. Compute collocation points uj D ˚�1.F.�j // on the real line. Record
the outputs yj D g.�j / D g

�
F �1.˚.uj //

�
. Evaluate the coefficients c1; : : : ; cM

of a truncated Hermite expansion by linear regression on the data .uj ; yj / with
the Hermite functions hk , k D 1; : : : ;M , as shape functions. This concludes the
construction of a stochastic response surface YM .U / for the input–output function,
given as a truncated Hermite series. Monte Carlo simulation is now done at no cost
by sampling a standard Gaussian variable U and evaluating YM.U /.

Note that this procedure requires only m evaluations of the costly input–output
map on the points �1; : : : ; �m. The rest of the burden is put on the transformation
U D ˚�1.F.X//, thus parametric studies with differently distributed X , for
example, with varying mean and variance, can be easily undertaken. In the one-
dimensional case a low value of M , say around ten, and twice the number of
collocation points usually suffices. For an application of this method, see, e.g., [35].

As is well-known, the procedure can be generalized to multiple expansions of
functions of infinitely many Gaussian variables, known as the polynomial chaos
expansion; the reader is referred to e.g., [18, 29].
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4.3 Random Fields

Material and geometrical properties (e.g., modulus of elasticity, thickness) of a
structure may vary randomly from point to point. Such a behavior can be captured
by means of random fields, that is, stochastic processes that assign a random variable
q.x/ to every point x in a region in space. Usually, random fields are chosen so as
to have continuous or even differentiable realizations, as opposed to random noise
in stochastic mechanics. To define the field, the joint distributions of the values
at any finite number of points q.x1/; : : : ; q.xk/ should be specified. If the random
field is stationary (i.e., the finite dimensional distributions are translation invariant)
and Gaussian, it is completely specified by the mean value �q D E.q.x// and the
second moments, i.e., the covariance COV.q.x/; q.y// for any two points x; y. Due
to stationarity, the covariance depends only on the distance ı D jx�yj of the points
and is of the form

COV.q.x/; q.y// D C.x; y/ D �2c.ı/

with the variance �2 and the autocorrelation function c.ı/. A frequently used
autocorrelation function is of the form

c.ı/ D exp
� � jıj=`�; (4.1)

where ` is the so-called correlation length. The indicator function of the interval
Œ�`; `	 might be taken as a crude autocorrelation function with correlation equal to
1 for ı in the interval and 0 outside. The area under the curve (4.1) is the same as
the area under this indicator function, whence the name correlation length. Other
autocorrelation functions in use may be of Gaussian type, in higher dimensions also
with anisotropic distance measure.

If measurement data are available, the autocorrelation function can be estimated
from the empirical covariance matrix by arranging the values along the distance ı
of the measured points and fitting a shape function as in (4.1), thereby estimating
�2 and `.

In order to simulate a random field, one discretizes the region under consideration
with grid points xi , i D 1; : : : ;M , measures the distance between the grid points
xi , and sets up a covariance matrix C D .Cij; i; j D 1; : : : ;M/ whose values are
computed from (4.1) where ı is the distance between xi and xj . In case the random
field is Gaussian, there are at least three methods to generate realizations of the field.

The first method is the standard simulation method for correlated Gaussian
variables. It is based on the Cholesky factorization C D AAT. If Y is an
M -dimensional Gaussian random variable with mean zero and independent compo-
nents (i.e., its covariance matrix E.YYT/ D I, the identity matrix), then X D AY is
a mean-zero Gaussian random variable whose covariance matrix is C. This follows
from the simple identities

E.XXT/ D E.AYYTAT/ D AE.YYT/AT D AIAT D C:
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Accordingly, starting from a realization of the M -dimensional standard Gaussian
random variable Y, the transformation X D �q C AY yields a realization of the
desired random field q.x/ in the grid points, i.e., Xi D q.xi /. This is repeated N
times to obtain a Monte Carlo sample of the random field. It should be noted that this
method works in any space dimension; it just requires enumerating the grid points
and keeping track of their distance. The disadvantage of this method is that one
cannot easily keep track of the error in terms of the number of grid points, that is,
the accuracy of the autocovariance function of the simulated field.

The second method is advantageous in this respect. It is based on the Karhunen–
Loève expansion of the field. In fact, the eigenvalue problem

Z

C.x; y/'k.y/ dy D �k'k.x/

where C.x; y/ is the autocovariance function of the random field, has a sequence of
positive eigenvalues �k and orthonormal eigenfunctions 'k.x/ (orthonormality in
mean square). Then

q.x/ D
1X

kD1

p
�k�k'k.x/ (4.2)

where the �k are uncorrelated random variables with unit variance, see, e.g., [30].
If the process is Gaussian, the �k are independent and distributed according to the
standard normal distribution N .0; 1/.

For the numerical simulation, the spatial region is again discretized by a
grid and the 'k are taken, e.g., piecewise constant on the grid elements. The
eigenvalue problem becomes a matrix eigenvalue problem, and the series (4.2),
with approximate eigenvalues and eigenfunctions, truncated after a finite number
M of terms, can be used for Monte Carlo simulation of the field trajectories.
Here the mean square error due to truncation after M terms is just the sum of
the neglected eigenvalues; the discretization error can be estimated through the
numerical integration error and its propagation through eigenvalue problems [5].
A further advantage of the method is that it can be directly based on a finite element
discretization [46]. However, changing the field parameters, e.g., the correlation
length, requires solving the eigenvalue problem with a different matrix anew, which
can be costly.

This disadvantage is avoided in the third method, which is applicable in one
space dimension. It is based on the observation that the autocorrelation function
(4.1) coincides with the autocorrelation function of an Ornstein–Uhlenbeck process,
namely the solution process of the Langevin stochastic differential equation

dq.x/ D � 1
`
q.x/C

q
2
`
� dw.x/; q.0/ � N .0; �2/; (4.3)
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where w.x/ denotes Wiener process on the real line, see e.g. [2]. Solutions of
sufficient accuracy can be easily simulated from discrete white noise input by means
of an explicit Euler scheme at little cost [26].

4.4 Sensitivity Analysis

Sensitivity analysis is a core ingredient in understanding the behavior of a structural
model. It aims at determining the input parameters that have the largest influence on
critical output. In addition, it can be used as a first step in reliability analysis or in
optimizing structural properties.

Sensitivity analysis does not necessarily require knowledge of the probabilistic
properties of the input and thus is a nonparametric method. If the input–output
function is explicitly given and sufficiently smooth, one may use partial derivatives
to assess the sensitivity, see, e.g., [40, 45]. In the context we envisage, the input–
output function may be non-differentiable and a black box, in addition. For this
reason we focus on derivative-free methods of sensitivity analysis, that is, on
sampling based methods. The strategy is to produce a sample of the input data
.X1; : : : ; Xn/, to compute a sample of the output Y and to analyze the statistical
input–output relations or the relations between different output quantities. For all
variables, we take a uniform distribution centered around the nominal values �j
with a spread of a certain equal percentage, say ˙15%. Equally scaled spread and
uniform distributions are chosen to avoid distortion of the relative weights of the
input variables. If information about the actual statistical distribution of one or the
other input variable is known, this knowledge first does not enter in the sensitivity
analysis, but may be considered in a second stage.

The computationally least expensive methods are correlation based, which will
be described first. An explorative analysis usually starts with inspecting scatterplots
of individual variables vs. output. To obtain a refined diagnosis, methods are
needed that quantify the correlations, assess their significance, and possibly remove
hidden influences of the co-variates on the correlation between a given input
variable and the output variable. The simplest indicator is the Pearson correlation
coefficient (CC). It detects linear relationships between input and output. To recall
the definition, assume given a sample xj1; : : : ; xjn, and yj , j D 1; : : : ; N of the
n-dimensional input and the corresponding output. Denote the mean values by xi
and y, respectively. The empirical Pearson correlation coefficient of input number i
with the output is defined as

r.xi ; y/ D
PN

jD1.xji � xi /.yj � y/
qPN

jD1.xji � xi /2PN
jD1.yj � y/2

:

It turns out that the correlation coefficient does not isolate the effect of xi on
the output y, but is influenced by the co-variates (inputs with numbers k ¤ i ),
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especially when they have a nonzero correlation with xi . Regression based indices
may be used to mitigate this effect.

A brief recall of linear regression is in order. The goal of linear regression
analysis is to fit a linear model y D ˇ0 C ˇ1x1 C ˇ2x2 C : : : C ˇnxn to the data,
that is, each value yj is to be approximated by

yj D ˇ0 C ˇ1xj1 C ˇ2xj2 C : : :C ˇnxjn C "j ; j D 1; : : : ; N

with the errors "j . The estimated coefficients Ǒ
0; Ǒ1; : : : ; Ǒn are obtained as the

solution of the minimization problem

L.ˇ0; ˇ1; : : : ; ˇn/ D
NX

jD1
"2j ! min :

The values predicted by the model and the residuals are, respectively,

Oyj D Ǒ
0 C Ǒ

1xj1 C : : :C Ǒ
nxjn; ej D yj � Oyj ;

j D 1; : : : ; N . If there is no linear relation between input and output, the best
prediction is the mean value y, in which case the residuals coincide with the
measured data yj , centered at the mean. The other extreme is that the data points
yj already lie on a hyperplane yj D ˇ0 C ˇ1xj1 C ˇ2xj2 C : : :C ˇnxjn, in which
case the best prediction is simply the data point, Oyj D yj , and the residuals are
identically equal to zero.

It can be shown that the total square variability of y can be partitioned into two
summands:

NX

jD1
.yj � y/2 D

NX

jD1
. Oyj � y/2 C

NX

jD1
.yj � Oyj /2:

The coefficient of determination is defined as R2 D PN
jD1. Oyj � y/2

ıPN
jD1

.yj � y/2. By what has been said above about the residuals, it equals 1 if the
data points already lie on a hyperplane and 0 when no linear relationship between
input and output exists, and in general measures the explanatory power of the fitted
regression model.

The regression coefficients as such cannot be used as indicators of the influence
of the corresponding variables, because they are scale dependent. Rather, the
standardized regression coefficients (SRC) can be used. These are the regression
coefficients of the centered and normalized model, where the data xji are replaced by

.xji �xi /
ıqPN

jD1.xji � xi /2, and similarly for the yj . In case the n input columns
xj1; : : : ; xjn, j D 1; : : : ; N are uncorrelated, the SRCs coincide with the CCs.
In general, the expression for the CCs has an additional summand which depends
on the correlated co-variates.
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A more effective removal of the influence of the co-variates is achieved through
the partial correlation coefficients (PCCs). The partial correlation between xi and
y, given the set of co-variates xXi D fx1; : : : ; xi�1; xiC1; : : : ; xng is defined as the
correlation between the two residuals obtained by regressing xi on xXi and y on
xXi , respectively. That is, one first constructs the two regression models

Oxi D Ǫ0 C
X

k¤i
Ǫkxk; Oy D Ǒ

0 C
X

k¤i
Ǒ
kxk;

obtaining the residuals ei and e with components

eji D xji � Oxji; ej D yj � Oyj ;
j D 1; : : : ; N . By construction, the residuals eji and ej are those parts of xi and
y that remain after subtraction of the predicted linear part depending on xXi . Thus
the PCC �.ei ; e/ quantifies the linear relationship between xi and y after removal of
any part of the variation due to the linear influence of the co-variates xXi .

The advantage of the PCCs is that they are more discriminating. In fact, if
the input–output map is a truly linear function and the input parameters are
uncorrelated, then the PCC of an input variable that enters with a non-zero
coefficient is equal to plus or minus one. In reality, input–output maps are not ideally
linear functions and so the effect is somewhat moderated. Still the PCCs are an
accentuating measure of influence.

If the input–output function is decidedly nonlinear, but monotonic, sensitivities
are better detected when one applies a rank transformation to the data. That is, the
data xj1; : : : ; xjn, and yj , j D 1; : : : ; N are ordered and only their rank information
is kept. This leads to the Spearman rank correlation coefficients (RCC), the
standardized rank regression coefficients (SRRC), and the partial rank correlation
coefficients (PRCC). Having the computed Monte Carlo sample xj1; : : : ; xjn, and
yj at hand, the calculation of the various coefficients produces no additional cost,
thus it is recommended to evaluate all six of them to have a better overview.
Finally, bootstrap resampling allows one to compute confidence intervals. If zero
is outside the confidence interval, the corresponding coefficient can be considered
to be significantly different from zero, and the corresponding input variable is
classified as having a non-negligible influence on the output. The degree of influence
can then be classified according to the magnitude of the six coefficients.

Alternative methods of sensitivity analysis are variance based. Pinching strate-
gies consist in freezing individual variables at their central value and studying the
change of variability in the output. If one produces a sample with Xi fixed to its
nominal value �i , the reduction in variance says something about the influence of
Xi on Y :

V.g.X1; : : : ; Xi�1; �i ; XiC1; : : : ; Xn//
V.g.X1; : : : ; Xn//
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In fact, this is the proportion of total variance not explained byXi . As can already be
seen from the formulation, this strategy is costly because for each pinched variable
a new Monte Carlo simulation is required.

A more sophisticated method is the partition of variance according to the groups
of variables, the Sobol’ indices introduced in [51,52]. It is based on an expansion of
the input–output function into summands of increasing dimensionality.

For a survey of sampling based methods in sensitivity analysis, see [20].

4.5 Reliability Analysis

The central concept of reliability analysis is the failure probability. The system
is considered in a failed state if a certain combination of the input parameters
.X1; : : : ; Xn/ and the output Y exceeds an admissible range. For the present
purpose it is not necessary to distinguish into favorable (resistance increasing)
and unfavorable (load or stress exerting) influences, as is done in the European
civil engineering codes [15] with their partial safety factors, critical values and
design values. Since Y is a function of the inputs .X1; : : : ; Xn/, which subsume all
random influences on the structure, failure can be described by a limit state function
˚.X1; : : : ; Xn/ of the input alone. Failure is usually defined by ˚.X1; : : : ; Xn/ < 0,
while ˚.X1; : : : ; Xn/ � 0 signifies a safe state. The failure region is the subset of
design space (the domain of the input parameters) resulting in violation of the limit
state condition, i.e.,

F D f.x1; : : : ; xn/ W ˚.x1; : : : ; xn/ < 0g:

Then

pf D P
�
.X1; : : : ; Xn/ 2 F

� D P
�
˚.X1; : : : ; Xn/ < 0

�

is the failure probability;R D 1�pf is the reliability of the structure. Occasionally
it is useful to describe failure as a ratio of actual and admissible values, leading to a
failure region of the form �.x1; : : : ; xn/ > 1. To determine the probability pf , the
types and parameters of the probability distributions of .X1; : : : ; Xn/ are needed.
As opposed to sensitivity analysis, this requires detailed information about the
statistical properties of the input parameters, obtained from experiments or previous
studies.

The acceptable value of the failure probability depends on the circumstances. The
civil engineering codes require that the designed structure obtains an instantaneous
probability of failure of pf D 10�6 and a long-term failure probability of pf D
10�5. To credibly estimate tail probabilities of such a small magnitude, a lot of
information is needed. In addition, if time dependent reliability is to be assessed,
failure rates and the additional parameters of the time-dependent reliability function
are required. The problems arising from this concept of failure probability have
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been discussed at many places, including the codes themselves [15, Annex C4(3)],
see also [16, 36] and references therein. In technological development phases in
aerospace engineering, a failure probability in the range of pf D 10�3 may be
acceptable, especially if it is not used as an absolute measure, but as an objective
function in optimization (reliability based optimization).

Having performed a Monte Carlo sensitivity analysis of the model output Y D
g.X1; : : : ; Xn/, the question comes to mind if one could not use the generated sam-
ple for getting reliability estimates of the structure. This is indeed the case, albeit at a
possibly low accuracy due to the small sample size of the sensitivity analysis. There
are two ways of exploiting the existing sample. One way is by means of tolerance
intervals to estimate credible upper and lower bounds for the output Y ; another
way is by reweighting the generated sample of .X1; : : : ; Xn/ so as to mimic input
distributions other than the uniform distributions used in the sensitivity analysis.

Tolerance Intervals While confidence intervals give an estimate for the distribu-
tion parameters � of a random quantity Y , a tolerance interval gives an estimate of
the range of possible observations of Y . More precisely, one wants to compute an
interval Œa; b	 that contains a certain proportion p, say p D 90%, of the population
with a given confidence level 1� ˛, say 1� ˛ D 95%. A non-parametric approach
based on order statistics is especially attractive, since it is applicable without
knowledge of the type of statistical distribution of Y . In fact, given whatever sample
of whatever random variable, one may estimate the proportion p of the population
that lies within the sample maximum Ymax (the largest value in the sample) and the
sample minimum Ymin with a given confidence 1�˛, depending only on the sample
size N . In this situation, the interval Œa; b	 D ŒYmin; Ymax	 is given and N is known.
Thus depending on the desired confidence level, the proportion p lying within the
boundaries Œa; b	 can be computed.

The derivation of a one-sided non-parametric tolerance interval with upper
boundary the sample maximum is particularly easy, using only combinatorics.
In fact, a proportion p of the population lies in the interval .�1; Ymax	 with
confidence 1 � ˛ if the relation

pN D ˛

holds. This can be seen as follows. Denote byQp the p-th quantile of Y . This means
that P.Y � Qp/ D p. On the other hand, the interval .�1; Ymax	 contains at least
the proportion p of the population if Qp � Ymax. Thus it is required that

P.Qp � Ymax/ � 1 � ˛:

But P.Qp � Ymax/ D 1 � P.Ymax < Qp/. Observe that Ymax < Qp if and only
if each of the N independent realizations of Y in the sample is below Qp , i.e.,
Yj < Qp for j D 1; : : : ; N . By definition, the probability of the event Yj < Qp is
exactly p. Collecting terms, one arrives at 1 � P.Ymax < Qp/ D 1 � pN , whence
the assertion.
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Table 4.1 Required sample
size N for one-sided
tolerance intervals at
confidence 1� ˛

1� ˛ p D 0:90 p D 0:95 p D 0:99

0.90 22 45 230
0.95 29 59 299
0.99 44 90 459

From there, universally valid estimates of the sample size N required so that a
proportion p of values lies under the sample maximum at confidence 1 � ˛ can
be established, see e.g. Table 4.1. The same formula applies to one-sided intervals
of the form ŒYmin;1/. Tolerance intervals with various proportions and confidence
levels are tabulated, e.g., in the ISO standard [22]. For the theory, see, e.g., [27].

Monte Carlo Reweighting As outlined in Sect. 4.2, the goal of Monte Carlo
simulation is to estimate expectation values E

�
h.Y /

� D E
�
h.g.X1; : : : ; Xn//

�

of functions of the model output. Suppose we have already generated a sample
.xji; : : : ; xjn/ and computed the outputs yj , j D 1; : : : ; N , where the sample has
been generated according to a certain probability distribution of the input, say with
probability density f .x1; : : : ; xn/. Is it possible to use the same sample to estimate
E
�
h. QY /� D E

�
h.g. QX1; : : : ; QXn//

�
where the QXj are random variables defined on the

same range as theXj , but with another probability distribution, say with probability
density '.x1; : : : ; xn/? To understand the positive answer, it is useful to write the
expectation E

�
h. QY /� as an integral:

E
�
h.g. QX1; : : : ; QXn//

� D
Z

� � �
Z

h.g.x1; : : : ; xn//'.x1; : : : ; xn/ dx1 � � � dxn

D
Z

� � �
Z

h.g.x1; : : : ; xn//
'.x1; : : : ; xn/

f .x1; : : : ; xn/

�f .x1; : : : ; xn/ dx1 � � � dxn
D E



h.g.X1; : : : ; Xn//

'.X1; : : : ; Xn/

f .X1; : : : ; Xn/

�
:

This shows that the computation of the new expectation value can be accomplished
by computing the old expectation value of the input–output function, multiplied by
a weight—the quotient of the two densities. In terms of Monte Carlo simulation,
one has to compute

E
�
h. QY /� � 1

N

NX

jD1
h
�
g.xji; : : : ; xjn/

� '.xji; : : : ; xjn/

f .xji; : : : ; xjn/
:

This causes no additional effort, because one can reuse the expensive computation of
h
�
g.xji; : : : ; xjn/

�
. The accuracy of the method depends on the degree of similarity

of the old and the new distribution.
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A typical application could consist in reusing the sample from the sensitivity
analysis, based on uniform distributions, and place truncated Gaussians on the
intervals. This concludes the remarks about what can be extracted from the
sensitivity analysis towards a reliability assessment.

Importance Sampling When estimating failure probabilities of low value, one
cannot expect that the rather small sample sizes of sensitivity analysis suffice.
In fact, a standard Monte Carlo estimate of the failure probability is of the form

pf � 1

N

NX

jD1
�F .xj1; : : : ; xjn/

where �F equals one if .xj1; : : : ; xjn/ 2 F and zero otherwise. It thus can be seen
as the mean value of an N -fold repetition of a zero-one experiment with success
probability pf . The variance of the Monte Carlo estimator of pf is hence given
by pf .1 � pf /=N , whence the mean estimation error is approximately equal to
p
pf =N . This means that an accuracy of ˛ � 100% requires a sample size of N �

1=.˛pf /. Consequently, cost-saving methods need to be devised, two of which shall
be discussed here.

The first one is importance sampling. As seen above, the probability of failure is
estimated by counting the number of realizations of the input variables .X1; : : : ; Xn/
that fall into the failure region. Since this number is expected to be small compared
to the total number of simulated points, the probability density f .x1; : : : ; xn/ of the
input variables will be small on F . The idea of importance sampling is to generate
a sample of another distribution, say with probability density '.x1; : : : ; xn/, which
may be concentrated in the region F . The idea is similar to Monte Carlo
reweighting, but this time a different sample is produced to begin with. In fact,

pf D E
�
�F .X1; : : : ; Xn/

� D
Z

� � �
Z

�F .x1; : : : ; xn/f .x1; : : : ; xn/ dx1 � � � dxn

D
Z

� � �
Z

�F .x1; : : : ; xn/
f .x1; : : : ; xn/

'.x1; : : : ; xn/
'.x1; : : : ; xn/ dx1 � � � dxn

D E


�F . QX1; : : : ; QXn/f .

QX1; : : : ; QXn/
'. QX1; : : : ; QXn/

�

where the random variables . QX1; : : : ; QXn/ have the probability density '.x1; : : : ; xn/.
This leads to the following prescription. First, choose a probability density function
'.x1; : : : ; xn/ concentrated in the failure region. Next, generate a random sample
.zji; : : : ; zjn/ according to the corresponding probability distribution. Finally,
estimate the failure probability by

pf � 1

N

NX

jD1
�F .zji; : : : ; zjn/

f .zji; : : : ; zjn/

'.zji; : : : ; zjn/
:
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Of course, this begs the question how to find a probability density '.x1; : : : ; xn/
concentrated in the failure region. After all, the failure region unfolds itself only
after Monte Carlo evaluation of the limit state function. Various proposals have been
made in this respect, notably Bucher’s adaptive sampling [7, 9]. This method starts
with a pilot simulation with increased variance of the input variables (to rapidly
produce a number of points in the failure region) and then uses certain shifted
Gaussians as weight functions.

An interesting proposal has recently been made by Schwarz [49], developed
for the situation where the input variables are supported in intervals (as, e.g., the
uniform distributions used in sensitivity analysis or transformations thereof). There
are two ingredients. First, one may expect that—in most cases—the failure region is
concentrated in points near the boundaries of the intervals. Second, input variables
with a larger influence on the output should have a larger weight. The starting point
of the procedure is a sensitivity analysis with moderate sample size, from which
the most important input variables and their correlation coefficients with the output
are determined. Then a parametrized family of weight functions is placed on the
input intervals, where the weight is just 1 for the unimportant parameters and is
shifted more and more towards the boundaries of the input intervals, the larger the
correlation.

Subset Simulation The subset simulation method was introduced by Au and Beck
in [3]. The idea is to approximate the failure region F by a sequence of larger
regions F D Fm � Fm�1 � : : : � F1 � F0 and to compute the failure
probability by a product of conditional probabilities

pf D P.F / D P.FmjFm�1/P.Fm�1jFm�2/ : : : P.F1jF0/P.F0/

where F D Fm and F0 is the starting region. These conditional probabilities are
appreciably larger than the failure probability and hence easier to simulate with
smaller samples. In this case it is useful to describe the failure region by means of
a ratio based limit state function F D f.x1; : : : ; xn/ W �.x1; : : : ; xn/ > 1g. The
intermediate regions are chosen of the form Fi D f.x1; : : : ; xn/ W �.x1; : : : ; xn/ >
˛ig with 0 < ˛0 < ˛1 < : : : < ˛m D 1. In fact, the choice of ˛i is often made
during the simulation such that P.Fi

ˇ
ˇFi�1/ has a fixed value, say p0 between 0.1

and 0.3, and the regions Fi are constructed recursively. The conditional distribution
P.�jFi / is just the original distribution, restricted to Fi and scaled by P.Fi /. The
latter probability is unknown a priori. This suggests to use the Metropolis–Hastings
algorithm, a Markov chain Monte Carlo algorithm, which requires knowledge of the
sampling distribution only up to a multiplicative factor (see below).

In the sequel, it is assumed that at each level i , a sample of size N is generated.
The algorithm is initiated by generating a sample of the original distribution using
standard Monte Carlo simulation. From this sample, the worst p0 �100% realizations
are declared to belong to F0. More precisely, the sample is ordered according
to the � -values. The threshold level ˛0 is chosen as the .1 � p0/N -th largest
value among the � -values attained in the sample, and F0 is defined to be the set
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f.x1; : : : ; xn/ W �.x1; : : : ; xn/ > ˛0g. Further, P.F0/ D p0. In the next step, one or
more of the points in F0 is/are chosen as the initial point (root) of a Markov chain
whose elements are distributed according to P.�jF0/, this way generating a second
sample of size N . Again, the worst p0 � 100% realizations are declared to belong to
F1, and ˛1 is chosen as the .1�p0/N -th largest value among the � -values attained
in the second sample, and so on. The simulation stops at the first level m at which
the � -values of the worst p0 � 100% bigger than 1. At this stage P.FmjFm�1/ is
estimated by M=N where M is the number of failed realizations in the last sample.
Finally, pf is estimated as pm0 �M=N .

Before discussing some details of the algorithm, a short introduction to Markov
chain Monte Carlo simulation is in order. The ideas can be best explicated at
the hand of the original Metropolis algorithm for simulating a one-dimensional
distribution �.x/. The goal is to generate a realization �0; �1; �2; : : : ; �N of a Markov
chain whose stationary distribution is �.x/. Since the chain will converge to the
stationary distribution as N ! 1, the end-pieces �M ; : : : ; �N are approximately
distributed according to � (for large M and N ).

The algorithm proceeds as follows. Choose a transition kernel q.x; y/ (proposal
distribution) such that q.x; y/ D q.y; x/ for all x; y. (Often it is taken of the form
q.x; y/ D p.x � y/ where p is a nowhere vanishing probability density.) Choose
an initial distribution p.0/.x/.

• Sample a value �0 from p.0/.
• For k D 1; : : : ; N

Sample a value � from the proposal distribution q.�k�1; �/.
Compute the ratio r D �.�/

�.�k�1/
.

– If r � 1, the value � is accepted; set �k D �k�1.
– If r < 1, the value � is accepted with probability r and rejected with

probability 1 � r .

Draw a random number 
 from the uniform distribution on Œ0; 1	.

– If 
 � r , set �k D �.
– If 
 > r , set �k D �k�1.

• �0; �1; : : : ; �N has �.x/ as limiting distribution as N ! 1.

Observe that only the ratio r enters in the computation, so knowledge of �.x/ is
only required up to a multiplicative factor. The Metropolis–Hastings algorithm is
similar, but the proposal distribution is not required to be symmetric. More theory
can be found in [42].

If the distribution �.x1; : : : ; xn/ is multidimensional, it is advantageous to
change only one coordinate in each step in order to keep the number of rejected trials
at a moderate level. In its application to subset simulation, the target distribution
is P.�jFi�1/ in each level. Thus one has to check whether �k 2 Fi�1 for
acceptance, in addition. By construction, each root of the generated Markov chain
is already distributed according to P.�jFi�1/. It can be shown [3] that the elements
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of the whole chain at level i are not only asymptotically but also perfectly
distributed according to P.�jFi�1/. As can be seen, there are a lot of screws that
can be adjusted: choice of the proposal distribution, optimal acceptance/rejection
rate, number and length of chains generated in level i—with the possibility of
parallelization, choice of p0, and so on. Based on many recommendations to be
found in the literature, subset simulation has developed into an efficient method for
estimating failure probabilities. A critical comparison of various simulation methods
in reliability analysis can be found in [47, 48].

4.6 Application

This section is devoted to demonstrating the methods at work in a practical
application from aerospace engineering, namely in a finite element model of the
frontskirt of the ARIANE 5 launcher. The frontskirt is the part of the launcher
that connects the tanks section with the payload section and also has to support
the booster loads. It consists of a light weight shell structure reinforced by struts.
The full finite element model is composed of shell elements and solid elements,
altogether with two million degrees of freedom. The models have been supplied
by Intales GmbH Engineering Solutions (see Footnote 1). Models of varying
complexity and material properties with up to 130 input and a similar number of
output parameters have been analyzed.

For the sake of presentation, we shall focus on a smaller finite element model
keeping the global structure with about ninety thousand degrees of freedom.
Figure 4.1 depicts the model schematically; it is composed of two hemispheres
and three cylinders, one of which is made up of composite material. The shadings
indicate thickness variations of the tank skin, described by a random field. Booster
loads are introduced at two opposite locations in the upper cylinder (not shown
in Fig. 4.1). A selection of seventeen input parameters (all loads characterizing
various flight scenarios) will be considered; their meaning is described in Table 4.2.
As a representative output we start with the load proportionality factor (LPF), a
decisive variable indicating buckling failure. It is defined as the limiting value in
an incremental procedure in which the mechanical loads during a flight scenario
are increased step by step until breakdown of the structure is reached. In the full
model, the LPF is computed by means of a path following procedure that follows
bifurcations until material failure occurs. In the simplified computations presented
here, no distinction of bifurcation or material failure was made, so that the terminal
value of the LPF was taken as that value at which the finite element program failed to
converge. What concerns the computational effort, a single run of the input–output
function computing the LPF in Abaqus takes around 1 h on a personal computer and
10 min on the supercomputer Leo-III of the University of Innsbruck.

Sensitivity Analysis As a basis for the sensitivity analysis, a sample of size
N D 100 of the n D 17 input parameters was generated. Each parameter was taken
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Fig. 4.1 Simplified finite element model of frontskirt; shadings show random field (thickness of
tank skin) [12]

Table 4.2 Description of
input parameters no. 1–17
with their nominal values

i Parameter Xi Mean �i
1 Initial temperature 293K
2 Step1 thermal loading cylinder1 450K
3 Step1 thermal loading cylinder2 350K
4 Step1 thermal loading cylinder3 150K
5 Step1 thermal loading sphere1 150K
6 Step1 thermal loading sphere2 110K
7 Step2 hydrostatic pressure cylinder3 0:4MPa
8 Step2 hydrostatic pressure sphere1 0:4MPa
9 Step2 hydrostatic pressure sphere2 0:4MPa
10 Step3 aerodynamic pressure �0:05MPa
11 Step4 booster loads y-direction node1 40;000N
12 Step4 booster loads y-direction node2 20;000N
13 Step4 booster loads z-direction node1 3:e6N
14 Step4 booster loads z-direction node2 1:e6N
15 Step4 mechanical loads x-direction 100N
16 Step4 mechanical loads y-direction 50N
17 Step4 mechanical loads z-direction 300N

Table 4.3 Sample statistics of simulated load proportionality factor

Mean Minimum Maximum Standard deviation Spread

3.5335 3.4468 3.6457 0.1989 ˙3%

uniformly distributed around its nominal value listed in Table 4.2 with a spread
of ˙15%. Latin hypercube sampling and correlation control was employed. The
statistics of the computed LPF are listed in Table 4.3.

The scatterplot of Fig. 4.2 gives a first impression of the influence of the input
variables on the output. It is quite clearly seen that input parameter no. 13 (booster
loads) exerts a big influence, whereas the diagrams for the other parameters are less
conclusive. To quantify the influences, the six different correlation indices CC, PCC,
SRC, RCC, PRCC, SPRC were computed. (A complete list of the values has been
published in [38].) As an example, the PRCCs of the 17 input parameters vs. the
LPF are visualized in Fig. 4.3 (left).
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Fig. 4.2 Scatterplots of 17 input variables vs. output (LPF) [24, 38]

Fig. 4.3 Partial rank correlation coefficients (left) and 95 % bootstrap confidence intervals (right)
[24, 38]

The resulting sensitivity indices induce a ranking of the input parameters
according to their influence on the output. Note that the accuracy of the estimate
for the correlation coefficients is in the range of 1=

p
N � 100% D 10%; this

suffices to determine the ranking and confirms the observation that one can get along
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Table 4.4 Ranks of the
significant input parameters
Xi according to the six
measures of correlation
input–output

i CC PCC SRC RCC PRCC SRCC

1 3 3 4 4
3 2 2 2 2
9 5 5
13 1 1 1 1 1 1
14 4 4 3 3

with small sample sizes for an assertive sensitivity analysis. To check whether the
computed correlation indices are significantly different from zero, bootstrap 95%-
confidence intervals were computed (with bootstrap sample size B D 5;000). As a
basis for an overall assessment of the ranking, only those sensitivity estimates with
a resultant confidence interval not including 0 have been regarded as significant.
As an example, bootstrap confidence intervals for the PRCCs are displayed in
Fig. 4.3 (right). Accordingly, only the PRCCs of the parameters X1, X3, X9, X13,
andX14 test to be nonzero. The ranks of those parameters that tested to be significant
according to at least one of the six indices are listed in Table 4.4. The table gives
a good impression of the sensitivity assessment—if a single scale is required, one
might use the average ranks.

Coefficient of Determination As discussed in Sects. 4.2 and 4.4, metamodels can
be used to further quantify the influence of selected parameters. One way to achieve
this is to fit a linear regression model

Y D ˇ0 C ˇ1X1 C � � � C ˇnXn

and then to compute the partial coefficients of determination. The sequential partial
coefficient of determination of variable Xi is computed by first fitting the model
Y D ˇ0 C ˇ1X1 C � � � C ˇnXi�1, then adjoining the variable Xi and recording
the increase in the coefficient of determination R2. Averaging all partial coefficients
of determination which can be obtained by adding the variable Xi to all possible
combinations of the already included variables leads to a non-parametric measure
of the contribution of variable Xi to the explanatory power of the model. The
procedure is explained, e.g., in [28, 39]. The result can be conveniently displayed
in the form of a pie chart. As an example, a linear model for the LPF has been
set up with input parameters nos. 1, 3, 4, 7, 9, 13, 14. It resulted in the assessment
of the influences depicted in Fig. 4.4, taken from [43]. The eminent influence of
parameter X13 is once more confirmed. In the figure, the label Res refers to the
residual proportion which remains unexplained through the linear model.

Random Fields In order to investigate the effect of geometric and material
imperfections, the thickness, modulus of elasticity and yield stress were disturbed by
two-dimensional random fields with an autocovariance function of the form (4.1).
The distance function on the cylinders was taken as the sum of the axial and
radial distance, whereas on the spheres, it was taken as the sum of the latitude and
altitude, multiplied by the radius. A routine extracting the distances from the finite
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Fig. 4.4 Pie chart of relative explanatory power of LPF through various input variables [43]

Fig. 4.5 Plots of histogram and cumulative distribution function of LPF produced by random
loads, no imperfections (left) and with random field turned on (right). Vertical line indicates LPF
corresponding to nominal input values [41]

element grid was implemented by [41]. The nominal values were 1 mm (thickness),
70,000 MPa (modulus of elasticity), 320 MPa (yield stress) for the first sphere, with
similar values for the other components of the frontskirt. A coefficient of variation
of 10 % was applied throughout. In a parametric study, the correlation lengths were
varied between 60 mm (corresponding to the dimension of two elements of the grid)
and 1,600 mm, with various combinations in the two respective directions. Random
fields were generated by means of the Karhunen–Loève expansion.

In a first investigation, the different effects of the random imperfections and the
17 random loads on the LPF were studied. Figure 4.5 shows one of the results, with
a sample size of N D 100 both for loads and realizations of the random fields.
The correlation lengths were set to 188.5 mm in all angular directions (cylinders
and spheres), while the correlation length in axial direction was taken 450 and
900 mm for the cylinders. In the left figure, the distribution of the LPF is shown
with the random loads from the sensitivity analysis, but with material and geometric
properties kept at their nominal value. In the right figure, the random field is turned
on, in addition. One can see that the random field has a stabilizing effect (larger
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Fig. 4.6 Spatial distribution of influence (measured by CC) of element-wise yield stress (left) and
thickness (right) on the LPF, based on random field simulation [41]

Table 4.5 Proportion p of LPFs lying above LPFmin D 3:4468 at confidence level 1� ˛

1� ˛ 90 % 95 % 99 % 99.9 %

p 97.7 % 97.1 % 95.5 % 93.3 %

values of LPF are attained), but at the same time increases the uncertainty of the
outcome.

Interestingly, the application of random fields admits a structurally localized
study of the correlations. After all, a realization of the random field induces a
realization of the modelled quantity (e.g., thickness) in each element of the FE-grid.
Thus one can do a standard sensitivity analysis with these variables. For example,
cylinder no. 3 has 2,500 elements; the random field simulation produces N D 100

realizations of the 2,500 grid values of the thickness, elasticity modulus, yield stress.
The spatial distribution of the influence on the LPF can thus be visualized. Figure 4.6
shows such a distribution in terms of the Pearson CC for the yield stress (left) and
the thickness (right). In the same way, localized correlations of different output
variables can be pictured.

Tolerance Intervals As a first step from sensitivity to reliability, tolerance intervals
for the LPF can be established. Recall from Table 4.3 that the minimal sampled LPF
was at LPFmin D 3:4468. Based on the formula pN D ˛ with N D 100, one
can assess the proportions p of the possibly attainable LPF-values with a given
confidence 1 � ˛. The results are summarized in Table 4.5.

Reliability Analysis In order to test various simulation methods for reliability, a
benchmark study of the small launcher model was undertaken by [49], from where
all results and tables in this paragraph are taken. For this study, an extended list of
35 input parameters was used. As a limit state function, a combination of allowable
limits in the equivalent plastic strain (PEEQ), principal stress in the composite part
(SP), and the absolute value of the smallest eigenvalue (EV) was employed:

�.x/ D max



PEEQ.x/
0:07

;
SP.x/
180

;
0:001

EV.x/

�
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with failure defined by �.x/ > 1, x D .x1; : : : ; x35/. The three criteria correspond
to plastification in the metallic part, rupture in the composite part, and buckling of
the structure.

A reference brute force Monte Carlo simulation of size N D 5;000 was
undertaken on the supercomputer Leo-III, with three strands in parallel. As in the
previous sensitivity analysis, the 35 input variables were taken uniformly distributed
on an interval of spread ˙15% around their nominal values. The resulting failure
probability turned out to be pf D 0:0116. A 95 % bootstrap confidence interval
was computed (bootstrap sample size B D 5;000) as Œ0:0088; 0:0146	. A sensitivity
analysis with the sample revealed that only 10 of the 35 parameters had a significant
influence on the failure criterion � , measured at a 90 % confidence level.

Next, an investigation was undertaken whether an estimate in the same range
could be obtained with a smaller sample size by subset simulation or by importance
sampling. Subset simulation was undertaken with p0 D 0:2 (see Sect. 4.5).
Since p30 D 0:008 is already smaller than the intended failure probability, three
levels F0;F1;F2 suffice for the subset simulation algorithm. Experiments were
undertaken with sample size N D 900 and N D 300 for each level. Recall that
20 % of the generated points 20 % of the generated points of Fi�1 are assigned to
Fi in each step. Since these points can be reused when going from level i � 1 to
level i , the total number of generated points in the three levels is 2; 340 and 780,
respectively. Further, it was tested whether including all 35 input influential ones
in the simulation changes the value of the failure probability. In addition, bootstrap
confidence intervals for the failure probability were computed.

To keep results comparable, the importance sampling procedure was done with
a sample size N D 780. The method described in Sect. 4.5 was employed, by
which the weights are computed in dependence on the magnitude of the correlation
coefficient of the respective input parameter with the � -value. This required the
actual simulation to be preceded by a sensitivity analysis. The sensitivity analysis
was done with a sample of size 99, so that a sample size of 681 remained for
the importance sampling part. Correlation control was employed when simulat-
ing the input data. It was tested whether weighting of all parameters or weighting
only the parameters significant at the 90 % level changes the outcome.

The joint results are recorded in Table 4.6. Here NR refers to the total number of
realizations computed in the simulation, NV denotes the number of activated vari-
ables (subset simulation), respectively weighted variables (importance sampling);
pf is the failure probability and 95 % BSL/BSU refers to the lower/upper bound of
the 95 % bootstrap confidence interval for pf .

We conclude this section by reporting on a reweighting experiment. As a basis,
the sample of size N D 5;000 of the reference Monte Carlo simulation was
taken. The uniformly distributed input was replaced, using reweighting, by truncated
Gaussians. The mean values of the Gaussian distributions were taken as the interval
midpoints, the variance was computed from assumed coefficients of variation
(between 7.5 and 15 %), the truncation was effected at the interval endpoints. The
change from uniform distributions to mid-pieces of Gaussians resulted in quite a
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Table 4.6 Comparison of results of six different simulation procedures for the failure probabil-
ity [49]

Monte Carlo Subset Subset Subset Importance Importance

NR 5,000 2,340 780 780 780 780
NV 35 35 35 10 35 10
pf 0.0116 0.0130 0.0155 0.0120 0.0108 0.0124
95 % BSL 0.009 0.010 0.010 0.008 0.006 0.007
95 % BSU 0.015 0.016 0.022 0.017 0.019 0.019

change of the failure probability, namely to pf D 0:0019 with a 95 % bootstrap
confidence interval Œ0:001; 0:003	.

4.7 Conclusion

The purpose of this chapter was twofold. On the one hand, it served to describe
current core methods of Monte Carlo simulation, from design of experiment,
random fields, metamodelling to concepts of sensitivity and reliability analysis. On
the other hand, the chapter demonstrated the implementation of those methods in
joint research projects with Intales GmbH Engineering Solutions over the past years.

A number of themes have deliberately not been addressed in order to keep the
presentation concise. These include simulation of correlated input using copulas
[33], also implemented in the mentioned projects [44], Bayesian methods of relia-
bility analysis [31], Bayesian estimates of the distribution of the failure probability
[49, 54], and optimization for finding worst case parameter combinations [12].
Further, the discussion of asymptotic sampling [8], though implemented in our
toolbox [49], was omitted because its presentation would have required to go into
some details about the safety index and FORM (the first order reliability method).

Acknowledgements The development, adaptation, and implementation in the mentioned research
projects is chiefly due to the essential contributions of Christoph Aichinger, Vincent De Groof,
Julian King, Katharina Riedinger, Helene Roth, and Martin Schwarz [1, 10, 11, 24, 41, 44, 49].
Many ideas have been developed in discussions with Barbara Goller and Herbert Haller of Intales
GmbH, whose continuous support I gratefully acknowledge.

References

1. Aichinger, C.: Monte Carlo methods in iterative solvers. Diploma thesis, University of
Innsbruck, Austria (2010)

2. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York
(1974)

3. Au, S.-K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset
simulation. Probab. Eng. Mech. 16, 263–277 (2001)



4 Sensitivity and Reliability Analysis: Sampling Based Methods 111

4. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analysis. Mech.
Syst. Signal Process. 37, 4–29 (2013)

5. Bhatia, R.: Perturbation Bounds for Matrix Eigenvalues. Longman, Harlow (1987)
6. Bolotin, V.V.: Statistical Methods in Structural Mechanics. Holden-Day, San Francisco (1969)
7. Bucher, C.: Adaptive sampling: an iterative fast Monte Carlo procedure. Struct. Saf. 5, 119–126

(1988)
8. Bucher, C.: Asymptotic sampling for high-dimensional reliability analysis. Probab. Eng. Mech.

24, 504–510 (2009)
9. Bucher, C.: Computational Analysis of Randomness in Structural Mechanics. CRC

Press/Balkema, Leiden (2009)
10. De Groof, V., Oberguggenberger, M., Haller, H., Degenhardt, R., Kling, A.: Quantitative

assessment of random field models in finite element buckling analyses of composite cylinders.
In: Eberhardsteiner, J., Böhm, H.J., Rammerstorfer, F.G. (eds.) CD-ROM Proceedings of the
6th European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2012), Vienna University of Technology, Wien (2012)

11. De Groof, V., Oberguggenberger, M., Haller, H., Degenhardt, R., Kling, A.: A case study of
random field models applied to thin-walled composite cylinders in finite element analysis. In:
Deodatis, G., Ellingwood, B.R., Frangopol, D.M. (eds.) Safety, Reliability, Risk and Life-Cycle
Performance of Structures and Infrastructures, p. 379. CRC Press/Balkema, Leiden (2013)

12. De Groof, V., Oberguggenberger, M., Prackwieser, M., Schwarz, M.: Reliability analysis of
shell structures. In: Barden, M., Ostermann, A. (eds.) Scientific Computing @ uibk, pp. 39–42.
Innsbruck University Press, Innsbruck (2013)

13. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-
Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

14. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York
(1993)

15. European Committee for Standardization: EN 1990:2002. Eurocode: Basis of Structural
Design. CEN, Brussels (2002)

16. Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R.: Analyzing Uncertainty in Civil
Engineering. Springer, Berlin (2005)

17. Freudenthal, A.N.: Safety and the probability of structural failure. Trans. ASCE 121,
1337–1397 (1956)

18. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer,
New York (1991)

19. Graham, C., Talay, D.: Stochastic Simulation and Monte Carlo Methods: Mathematical
Foundations Of Stochastic Simulations. Springer, Berlin (2013)

20. Helton, J.C., Johnson, J.D., Sallaberry, C.J., Storlie, C.B.: Survey of sampling-based methods
for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)

21. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among
input variables. Commun. Stat. Simul. Comput. 11, 311–334 (1982)

22. International Standard: ISO 16269-6:2005. Statistical Interpretation of Data: Part 6: Determi-
nation of Statistical Tolerance Intervals. ISO, Geneva (2005)
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Chapter 5
Multi-Phase Models in Civil Engineering

P. Gamnitzer, M. Aschaber, and G. Hofstetter

Abstract Some problems in civil engineering require the consideration of inter-
actions between solids and fluids and/or between different physical phenomena,
like thermal, hygral or chemical processes, for an appropriate description of the
material behaviour and of the structural response. This chapter deals with the
current developments of multi-phase models focusing on soils and concrete. The
latter materials are characterized by a certain degree of permeability allowing liquid
or gaseous phases to enter the pore space and to interact with the surrounding
solid phase. Since the resulting interactions between the different phases may
have a strong impact on the structural behaviour, they have to be accounted for
appropriately in numerical models.

5.1 Introduction

Commonly, in civil engineering it is sufficient to model the mechanical material
behaviour by appropriate stress–strain relations, frequently derived on the basis
of plasticity theory, damage theory or combinations of the former theories, for
predicting the structural response. However, some problems require considering
additional physical phenomena, like thermal, hygral and/or chemical processes, and
interactions between different physical processes for an appropriate description of
the material behaviour and of the structural response.
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In this context multi-phase models allow to properly take into account coupling
effects of different physical processes in a consistent manner and offer the advantage
to simultaneously compute all unknowns on the basis of one coupled numerical
model.

This chapter focuses on the application of multi-phase models to numerical
simulations in civil engineering, in particular, in geotechnical engineering and
concrete engineering. In the former case the behaviour of partially saturated
soils, including the special case of water saturated soils, is modelled. Presented
applications refer to the prediction of ground settlements, induced by lowering the
groundwater table, and to the prediction of the instability of an earth dam due
to leaking. In the latter case concrete is modelled as a porous material, the pores
filled with water, dry air and water vapour. The described application concerns the
behaviour of concrete overlays, which are used for the strengthening of existing
structures. In this context the interactions between hardening of the overlay, drying
due to moisture transfer to the environment and the mechanical behaviour are
of interest. All presented applications have in common the formulation of the
basic governing equations. Hence, at first the primary unknowns together with
the thermodynamic state variables, followed by the governing equations, will be
summarized briefly.

5.2 Primary Unknowns and Thermodynamic State Variables

For multi-phase approaches, describing partially saturated porous materials, the
current state of a system depends on a set of primary unknowns, which for the
present applications consist of

• the displacements us ,
• the pressure in the gaseous phase pg ,
• the capillary pressure pc .

If thermal effects are included, then the primary unknowns are supplemented by the
temperature T . For the applications discussed in this contribution, it is reasonable
to assume the system to be in local thermodynamic equilibrium.

Several derived state variables for liquid phases can be obtained from the primary
unknowns. The laws of physics and the empirical relations for determining the
derived state variables are summarized subsequently, following [14, 15].

The pressure of the water phase is determined by

pw .pg; pc/ D pg � pc : (5.1)

The density of water in the porous medium can be approximated using the state
equation for bulk (free) liquid water:

�w .pg; pc; T / D �w
0

�
1 � ˛water

T .T � T0/C Cw .p
w .pg; pc/ � p0/

�
: (5.2)
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If the pore water is considered to be incompressible, as it is recommended for
instance in [14], this equation takes the form

�w .T / D �w
0

�
1 � ˛water

T .T � T0/
�
: (5.3)

Required constants are the water density �w
0 D 999:84 kg=m3 at reference

temperature T0 D 273:15K and reference air pressure p0 D 101;325Pa, the
temperature-dependent thermal expansion coefficient of water ˛water

T , for which in
[14] a value between 0:68 � 10�4 K�1 (at T0) and 1:01 � 10�3 K�1 (at 420K) is
proposed, and the isothermal compressibility of water Cw D 4:58 � 10�10 1=Pa.
The pressure of the vapour phase is determined from the primary unknowns using
the Kelvin–Laplace equation

pgw .pc; pg; T / D pgw;sat .T / � exp

�

� pcMw

�w .pg; pc; T /RT

�

(5.4)

with Mw D 18 g=mol and R D 8:314 J=.mol � K/ denoting the molar mass of water
and the universal gas constant, respectively. The Kelvin–Laplace equation (5.4)
relates the actual vapour pressure pgw to the corresponding saturated vapour
pressure pgw;sat. The latter is a function of temperature and can be computed from
the vapour pressure pgw;sat

0 D 2:3 kPa at 293:15K by means of the Clausius–
Clapeyron equation

pgw;sat .T / D p
gw;sat
0 � exp

�

�Mw ��Hvap .T /

R
�
�
1

T
� 1

293:15K

��

: (5.5)

In (5.5) the specific enthalpy of evaporation is approximated according to the
empirical Watson formula

�Hvap .T / D 267:2 �
�
647:3K � T

K

�0:38 �
kJ

kg

�

: (5.6)

Furthermore, water vapour is assumed to be an ideal gas and, thus, its density

�gw .pc; pg; T / D Mwp
gw .pc; pg; T /

R T
(5.7)

is obtained from the ideal gas equation.
The pressure of the dry air fraction of the gas phase is defined according to

Dalton’s law:

pga .pc; pg; T / D pg � pgw .pc; pg; T / : (5.8)
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By analogy to (5.7) the dry air density is given as

�ga .pc; pg; T / D Map
ga .pc; pg; T /

R T
: (5.9)

Since the gas phase is a mixture of vapour and dry air, the resulting combined gas
density reads as

�g D �gw C �ga : (5.10)

If the ideal gas equation is assumed also to hold for the mixture of water vapour and
dry air, then its pressure and the molar mass are determined as

pg D �g
R

Mg

T (5.11)

and

Mg D MaMw�
g

Ma�gw CMw�ga
: (5.12)

5.3 Governing Equations

The balance equations contain a number of volume fractions. They result from
the derivation of the macroscopic balance equations from the microscopic balance
equations. Usually, they are expressed in terms of porosity and fluid saturation [24].
The porosity

n D V � Vs
V

(5.13)

describes the ratio of the total volume minus the volume occupied by the solid phase,
V � Vs , to the total volume V . The degrees of water and gas saturation

Sw D Vw

V � Vs ; Sg D Vg

V � Vs D 1 � Sw (5.14)

are defined as the ratio of the volume occupied by the respective fluid phase to the
volume occupied by all fluid phases. Equations (5.13) and (5.14) are derived from a
representative cell of the multi-phase material.

Commonly, the empirical relation according to [27]

Sw .p
c/ D Srw C .Ssw � Srw/

 

1C
�
pc

pcb

� 1
1�m

!�m
(5.15)
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between capillary pressure and the degree of water saturation is employed. Srw and
Ssw denote the residual and maximum degree of water saturation and pcb and m
represent the air entry value and a fitting parameter.

5.3.1 Balance Laws

The balance laws are summarized along the lines of [15, 19]. They consist of the
mass balance equations for each phase and the balance of momentum equation
and the enthalpy balance equation for the multi-phase mixture. In a first step
the mass balance equations are formulated in terms of the unknown relative
velocities between the individual phases. In a second step they will be closed by
approximations for the fluid fluxes, which can also be found in the above mentioned
publications. Based on the density of the solid phase �s , the velocity vs D dus=dt
of the solid phase, and a mass exchange term Pmhydr, the balance equation for the
solid phase can be derived as

Pmhydr D @

@t

ˇ
ˇ
ˇ
ˇ
Xs

Œ.1 � n/ �s	C .r ı vs/ Œ.1 � n/ �s	 : (5.16)

The operator @
@t

ˇ
ˇ
Xs


 indicates the time derivative to be taken with respect to a fixed
position Xs in the (undeformed) structural reference configuration. Later on, for
applications to concrete overlays, the mass exchange term Pmhydr will be identified
with mass exchange due to chemical reaction/hydration processes in concrete.
The mass balance for the solid phase is commonly used for eliminating the time
derivative of the porosity in the balance equations for the fluid phases [15].

For the water phase, the balance equation is obtained as

� Pmhydr � Pmvap D @

@t

ˇ
ˇ
ˇ
ˇ
Xs

.nSw�
w/C .r ı vs/ ŒnSw�

w	C

Cr ı .nSw�
w .vw � vs// : (5.17)

Again, although being a balance law for the apparent fluid density in the current
configuration, it is stated with respect to the (undeformed) structural configuration.
Equation (5.17) is formulated in terms of the water velocity vw and a second mass
exchange term Pmvap accounting for the phase transition of water to water vapour.

The mass balance of dry air is derived as

0 D @

@t

ˇ
ˇ
ˇ
ˇ
Xs

�
nSg�

ga
�C .r ı vs/

�
nSg�

ga
	

Cr ı �nSg�
ga .vga � vg/

�Cr ı �nSg�
ga .vg � vs/

�
: (5.18)
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It contains the velocity vga of dry air, and, furthermore, is augmented by the averaged
velocity of the gaseous phase

vg D 1

�g
.�gavga C �gwvgw/ (5.19)

with vgw denoting the velocity of the vapour phase. Last but not least, the mass
balance for the vapour phase is obtained as

Pmvap D @

@t

ˇ
ˇ
ˇ
ˇ
Xs

�
nSg�

gw
�C .r ı vs/

�
nSg�

gw
�

Cr ı �nSg�gw .vgw � vg/
�Cr ı �nSg�gw .vg � vs/

�
: (5.20)

By analogy to (5.17), (5.20) is augmented by the averaged velocity of the gas phase
vg . As usual, both mass balances for dry air and vapour are stated with respect to the
(undeformed) structural reference configuration. The mass-balance equation of the
vapour phase can be used for eliminating Pmvap from the mass balance of the water
phase.

Quasistatic equilibrium is expressed by the balance of momentum equation

r ı � C �g D 0 : (5.21)

In (5.21) g denotes the gravitational acceleration,

� D .1 � n/ �s C n
�
Sw�

w C Sg�
g
�

(5.22)

is the averaged density of the three-phase mixture and � represents the Cauchy-
stress. Tensile stresses are assumed to be positive. The solid skeleton density is
assumed to depend only on temperature:

�s D �s0 � exp .�˛T .T � T0// : (5.23)

The system of balance equations is completed by the enthalpy balance of the
three-phase mixture

Pmhydr�Hhyd � Pmvap�Hvap D
h
C s
p .1 � n/ �s C C w

p nSw�
w C Cg

p nSg�
g
i @

@t

ˇ
ˇ
ˇ
ˇ
Xs

T

C
h
C w
p .nSw�

w .vw � vs//C Cg
p

�
nSg�

g .vg � vs/
�i ı rT

Cr ı Œq .T /	 : (5.24)
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In (5.24) C s
p , C w

p , and Cg
p are the heat capacities of the individual phases. The flux

q .T / accounts for the thermal conductivity of the three-phase material, and �Hhyd

and �Hvap are the specific enthalpies of hydration and vapourization.

5.3.2 Flux Approximations and Stress State Variables

The balance laws, introduced in the previous subsection, contain a number of up to
now unspecified flux terms, i.e.,

• mass fluxes of dry air and water vapour with respect to the gas phase caused by
diffusive processes,

• mass fluxes of water and gas due to the relative motion of the fluid phases with
respect to the solid skeleton,

• thermal fluxes driven by temperature gradients,
• fluxes of momentum, i.e., stresses.

In a porous medium, the individual phases contribute to the total stress present in
the balance of momentum equation (5.21). Aiming at the formulation of constitutive
equations, the total stress can be decomposed into an effective stress � eff, related to
the solid matrix deformations, and a hydrostatic pressure

ps D .pg � patm/ � �Bishop .Sw/ p
c ; (5.25)

which accounts for the pressure exerted by the pore fluids on the solid matrix. Thus,

� D � eff � ˛Biotp
s 1 (5.26)

with the Biot coefficient ˛Biot D 1 � K=Ks accounting for the compressibility of
the grains, where K and Ks are the bulk moduli of the solid skeleton and the solid
grains.

In (5.25) patm represents the atmospheric air pressure, and �Bishop .Sw/ is the
generalized, saturation dependent Bishop-parameter.

Heat fluxes are modelled by Fourier’s law

q D ��effrT (5.27)

where �eff denotes the effective thermal conductivity. For wet materials, the latter
can be obtained from the thermal conductivity at dry conditions, �dry, using, for
instance, the relation provided in [15] for concrete:

�eff D �dry .T / �
�

1C 4n�wSw

.1 � n/�s
�

: (5.28)
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Darcy type flow of water and gas with respect to the solid skeleton is assumed,
i.e.,

nSw .vw � vs/ D kw;relK

�w
.�rpw C �wg/ (5.29)

and

nSg .vg � vs/ D kg;relK

�g
.�rpg C �gg/ : (5.30)

The involved material parameters are the intrinsic permeability of the solid skeleton
K, the relative permeabilities kw;rel and kg;rel which account for the change in
permeability with the degree of water saturation, and the dynamic viscosities
of the gas and water phase. The latter are temperature dependent and can be
computed according to [14]. The relationship between dynamic water viscosity and
temperature reads as

�w .T / D 0:6612

�
T � 229K

K

��1:562
ŒPa � s	 : (5.31)

For the gas phase, the dynamic viscosity depends on additional thermodynamic state
variables. It can be computed from the dynamic viscosities of dry air and water
vapour according to

�g .p
c; pg; T / D �gw .T /C

�
�ga .T / � �gw .T /

�
�
pga .pc; pg; T /

pg

�0:608

:

(5.32)

In (5.32) the temperature dependence of the dynamic viscosities of water vapour
and of dry air is approximated by

�gw .T / D �0gw C ˛v .T � T0/ (5.33)

and

�ga .T / D �0ga C ˛a .T � T0/C ˇa .T � T0/2 ; (5.34)

respectively, with the dynamic viscosities at reference temperature �0gw D 8:85 �
10�8 Pa �s for water vapour and �0ga D 17:17 �10�6 Pa �s for dry air and the constants
˛v D 3:53 � 10�9 .Pa � s/=K for water vapour, ˛a D 4:73 � 10�8 .Pa � s/=K, and
ˇa D 2:22 � 10�11 .Pa � s/=K2 for dry air.

The relative permeabilities are defined based on the effective degree of saturation

Se D Sw � Srw
Ssw � Srw

; (5.35)
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as in [17] by

kw;rel D
p
Se

�

1 �
�

1 � S 1
m
e

�m�2

(5.36)

and

kg;rel D
p
1 � Se

�

1 � S 1
m
e

�2m

: (5.37)

Equations (5.36) and (5.37) are based on a non-hysteretic capillary pressure-saturat-
ion function according to (5.15) and can already be found in a similar form for
three-phase flow in [22], for instance. In practice, for the applications described
below, a minimum value for the relative air permeability is assumed for numerical
reasons, see for instance [23].

Finally, the relative flow of water vapour with respect to the gas phase is assumed
to be of Fickian diffusion type [24]:

�
nSg�

gw
	
.vgw � vg/ D ��gDgw

g r
�
�gw

�g

�

(5.38)

with the diffusion coefficient according to [14]

Dgw
g .T; pgpc/ D n .1 � Sw .p

c// fS D0

p0

pg

�
T

T0

�1:667

: (5.39)

It is computed from the diffusion coefficient D0 D 2:58 � 10�5 m2=s for free
diffusion of vapour in air at reference temperature, supplemented by the term
n .1 � Sw .p

c// fS including the structure coefficient fS , which provides a modi-
fication for vapour diffusion in porous media.

By definition of the velocity of the gas phase according to (5.19), (5.38) also
describes the relative flow of dry air with respect to the gas phase:

�
nSg�

ga
	
.vga � vg/ D � �nSg�

gw
	
.vgw � vg/ : (5.40)

5.4 Application to Geotechnical Engineering

In soil mechanics the soil grains are commonly assumed as incompressible, i.e.,
˛Biot D 1 in (5.26). In this case volumetric strains of the soil are solely related
to changes in porosity. For the Bishop-parameter in (5.25), a common approach is
to use the thermodynamically consistent choice �Bishop .Sw/ D Sw, see [24]. The
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corresponding momentum balance equation then follows from (5.21) and (5.26)
together with (5.25) as

r ı f� eff � Œ.pg � patm/ � Swp
c	 1g C �g D 0 : (5.41)

In many geotechnical applications it is furthermore admissible to neglect all
exchange terms as well as the influence of temperature variations and the presence
of the vapour phase. This gives rise to a simplified three-phase model based on a
reduced set of balance equations, which consists of the equilibrium equation (5.41)
and the three mass balance equations (5.16), (5.17) and (5.18) for the solid, water,
and gas phase, respectively. Inserting the fluxes (5.29) and (5.30), the mass balances
are obtained as

@

@t

ˇ
ˇ
ˇ
ˇ
Xs

n D .r ı vs/ .1 � n/ ; (5.42)

n
@

@t

ˇ
ˇ
ˇ
ˇ
Xs

.Sw�
w/C.r ı vs/ ŒSw�

w	�rı
�
kw;rel�

wK

�w
.rpw � �wg/

�

D 0 : (5.43)

n
@

@t

ˇ
ˇ
ˇ
ˇ
Xs

�
Sg�

g
�C.r ı vs/
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At this stage, a constitutive law providing a closure for the effective stress is the
only missing link to complete the three-phase framework. However, soils exhibit a
quite complex constitutive behaviour, depending on the stress state and the capillary
pressure. A model for describing the latter will be presented in Sect. 5.4.1.

For simplicity, in what follows small strains and small deformations are assumed.
Thus, the strain " is given by

" D .rus/C .rus/T

2
; (5.45)

using a sign convention that associates compaction with negative strain values. The
volumetric strain "V follows from (5.45) as

"V D tr ."/ D r ı us : (5.46)

By taking the time derivative of (5.46), a relation between volumetric strain rate and
solid velocity divergence is obtained,
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Note that for this approximation the small deformation assumption is crucial, since
it allows to interchange the time derivative with respect to the structural frame of
reference with the spatial divergence operator. Equation (5.47) can be used to restate
the mass balance equation for the solid phase as

1

1 � n � @
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Xs
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ˇ
ˇ
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"V : (5.48)

Furthermore, in geotechnics, it is popular to replace the porosity by the specific
volume v D 1=.1�n/. In terms of the latter, the mass balance equation for the solid
phase (5.48) can be restated as
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5.4.1 A Modified Cap Model for Unsaturated and Saturated
Soil

The modified cap model for partially saturated soils, including the limiting case of
water saturated soils, is a further development of the model from [18], which is an
extension of the original cap model, proposed in [8], to partially saturated soils. It is
characterized by [12, 13]

• nonlinear elastic behaviour,
• a yield surface enclosing the elastic domain in water saturated conditions,
• evolution of the yield surface depending on the capillary pressure,
• a non-associated flow rule for the plastic strain rate,
• a hardening rule for the cap.

The elastic response is described in rate form, separately for the volumetric part
I eff
1 D tr .� eff/ and the deviatoric part of the effective stress s D � eff � 1

3
I eff
1 � 1:
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The (inverse) elastic volumetric stiffness parameter �E and the shear modulus G
are constants. "pV D tr

�
"P
�

is the volumetric part of the plastic strain tensor "P .
Furthermore, e D " � 1

3
"V � 1 and eP D "P � 1

3
"
p
V � 1 denote the deviatoric parts

of the total strain tensor and the plastic strain tensor, respectively. In the present
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1

θ = tan θ̂

0κsc

fCc(pc = 0) = 0

fShear(pc = 0) = 0

Xsc

θ̂

‖s‖

α Ieff
1

fCap(pc = 0) = 0

Fig. 5.1 The elastic domain at full saturation (grey) is bounded by three segments, defined by the
three yield functions fShear, fCap, and fCc

form, the volumetric part of the elastic law does not support tensile stress states, i.e.
positive values of I eff

1 cannot be represented.
The yield surface at water saturated conditions is formulated in the I eff

1 -ksk-
space in the framework of multi-surface plasticity. The three parts of the yield
surface consist of a linear shear failure envelope (index Shear), an elliptic hardening
cap (index Cap) and a circular transition zone between the hardening cap and the
shear failure envelope (index Cc), the latter ensuring a smooth transition between
the former yield functions [9] . The material parameters, defining the shape of the
elastic domain at full saturation, are the ellipticity parameter R for the cap surface,
the slope parameter 
 for the shear envelope and the cohesion parameter ˛. Please
note that in contrast to the classical approach, in the current smooth model the
effective cohesion is slightly larger due to the smoothing of the corner between shear
failure envelope and cap. The shape and size of the elastic domain also depend on
the position of the centre of the ellipsoidal hardening cap �sc, which serves as a
hardening parameter. �sc can be converted to the volumetric preconsolidation stress
at full saturation X sc. The zero-isosurfaces of the yield functions at full saturation
together with the described parameters are depicted in Fig. 5.1.

The change of the yield surface with capillary pressure is governed by two
relationships. The first one defines an increase in cohesion with increasing values
of pc , and the second one, the load-collapse yield curve, defines the change in
preconsolidation stress with pc . The two relationships used in the present model
are postulated using net stresses and are then transferred to effective stresses using
a smoothed conversion function Fn defined by

Fn .p
c/ D

(
3pc �

h
Sw .p

c/ � 1C 2pc

L
� .pc/2

L2

i
; 0 � pc < L ;

3pc � Sw .p
c/ ; L � pc:

(5.52)
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pc

Fn

L

3pc · Sw (pc) − 1 + 2pc
L
− (pc)2

L2

3pc · Sw (pc)

pc

L

Fs

k · pc − θFn (pc)

2k
L · (pc)2 · 1 − pc

2L − θFn (pc)

Fig. 5.2 Left: The modified conversion function Fn (5.52) (blue) from net stress to effective
stress space. The sketched example was generated using L D 0:15MPa and the Van Genuchten
parameters pcb D 0:09MPa, m D 0:55, Srw D 0:1, and Ssw D 0:9. Right: Schematic plot of the
(smoothed) function Fs (5.56) defining the increase in cohesion with pc

For pc larger than the user-defined parameter L, Fn provides the exact conversion
of the first invariant of net stress to the first invariant of effective stress via

I eff
1 D I net

1 � Fn .pc/ : (5.53)

As depicted on the left side of Fig. 5.2, for values of the capillary pressure smaller
than L the transformation is modified by a polynomial smoothing such that

@Fn

@pc
.pc D 0/ D 0 :

Based on this conversion, the load collapse yield curve in the modified cap model,
describing the evolution of the effective preconsolidation stressX eff as a function of
capillary pressure, reads as

X eff .�sc; pc/ D Xnet .�sc; pc/ � Fn .pc/ (5.54)

with

Xnet .�sc; pc/ D
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�2.pc�pcmax/
2

!

; pc < pcmax ;

X sc .�sc/ �Xc ; pcmax � pc:

(5.55)

The parameter Xc defines the maximum increase in hydrostatic compressive
strength with increasing values of pc . The maximum is reached at pcmax, and �2

is a positive parameter controlling how fast the increase in compressive strength
takes place, see Fig. 5.3 for a visualization. Up to smoothness corrections, Xnet

is equivalent to the load collapse curve in net stress space. The definition of the
load collapse yield curve (5.54) together with (5.55) was motivated by experimental
data in [20]. It features a smooth, differentiable transition to full saturation. The
assumption of the increase in preconsolidation pressure with pc independent of the
current value of �sc is rather simplistic and, hence, it will not be valid for arbitrary
ranges of pc and �sc. However, it allows a reasonable fit to experimental data from
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Inet
1

pc
max

Xsc

Xsc − Xc Xnet = Xeff + Fn

pc

Fig. 5.3 General design of
the load collapse yield curve
in net stresses

both [5,20]. In addition, it enables an improved representation of wetting paths plus
an increased robustness due to the smoothness, see [12, 13].

The cohesion is assumed to basically increase proportionally to capillary pres-
sure, augmented by a smoothing term for pc < L. The respective function Fs is
given by

Fs .p
c/ D

(
2k
L
� .pc/2 �



1 � pc

2L

�
� 
Fn .pc/ ; 0 � pc < L ;

k�c �
Fn .pc/ ; L � pc:
(5.56)

k is a proportionality parameter and Fs is defined such that the derivative at pc D 0

vanishes, see the right side of Fig. 5.2. Using these relationships, the three yield
functions defining the yield surface read as
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The dependence of the shape of the elastic domain on the Lode angle # is described
by (see, e.g., [7, 10, 18])
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; cos .3#/ D �3
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I
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(5.60)

in terms of the parameters ! and �. The Lode angle # can be computed from the
second and third invariant of the deviatoric part of the effective stress, I eff;s

2 and
I

eff;s
3 . Equation (5.60) is visualized in Fig. 5.4. It accounts for the fact that for a
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Fig. 5.4 Plots for the function L .#/ and the shape of the yield surface in a deviatoric plane for
! D 0:6 and � D �0:2 (polar plot of 0-isosurface)
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Fig. 5.5 The elastic domain at partial saturation corresponding to a particular capillary pressure pc

given deviatoric plane the material strength on compressive meridians is higher
than on tensile meridians. In (5.59) �eff determines the position of the centre of
the ellipsoidal cap at capillary pressure pc . It can be obtained from X eff .�sc; pc/

according to (5.54) together with (5.55) based on the ellipsoidal shape of the cap
using the equation (see Fig. 5.5)

�eff .�sc; pc/ D X eff .�sc; pc/CR � Œ˛ C Fs .p
c/	

1CR

: (5.61)

The boundary of the elastic domain is visualized in Fig. 5.6. The figure emphasizes
the smooth transition from partial saturation, where capillary pressure influences
the material behaviour, to full saturation, where the effective stress is the only stress
state variable required for the description of the material response. In all three modes
of plastic loading, the plastic strain rate is derived by a non-associated flow rule:
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Fig. 5.6 Contour plot of the yield surface in I eff
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with P�Cap, P�Cc, and P�Shear denoting the plastic multipliers and the plastic potentials
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Perfect plasticity is assumed for the shear failure envelope mode and for the
circular region between shear failure envelope and cap. Hardening on the cap is
governed by the hardening law
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By analogy to the Barcelona Basic model [1] the volumetric plastic strain rate
is assumed to be proportional to the rate of change of preconsolidation stress
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Fig. 5.7 The evolution of the
proportionality parameter �
in the hardening law with pc ;
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approach to the original
formulation

(transferred to net stress space). The proportionality factor, depending on the
capillary pressure, is given by

� .pc/ D �0 �


.1 � r/ .1C ˇpc/ e�ˇpc C r

�
: (5.69)

It is a smoothed version of the parameter used in [1], based on the material
parameters �0 at full saturation, r for the residual value of the proportionality
parameter at infinite pc , and ˇ controlling the exponential decrease from the value
at full saturation to the residual value (see also Fig. 5.7).

5.4.2 A Model Problem for Ground Settlements

Changes of the groundwater table, as they are caused, for instance, by pumping,
typically result in ground settlements. The reliable prediction of the latter is essential
for assessing the serviceability and safety of property in affected areas. The model
problem, described in the current section, is intended to highlight the capabilities
of the three-phase approach for predicting such effects. It refers to a soil column of
10 m height with the groundwater table located 3 m below the surface. Geometric
properties and boundary conditions are outlined in Fig. 5.8. Initially both, the air
pressure and water pressure distribution, are assumed to be linear, corresponding
to hydrostatic equilibrium. Displacements are zero at the bottom of the column.
Horizontal displacements are assumed to vanish throughout the domain. At the
top surface the atmospheric air pressure defines a constant air pressure boundary
condition of Dirichlet type. The vertical boundaries of the column are assumed
to be impermeable. Thus, the water content in the column is controlled only by
a prescribed mass flux of water across the bottom boundary.

The parameters for the three-phase problem are summarized in Table 5.1, while
material parameters for the employed cap model are listed in Table 5.2.

The problem is solved numerically using a finite element approach based on a
coarse 2D discretization consisting of ten elements with quadratic serendipity shape
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Fig. 5.8 Geometry and boundary conditions for the model problem

Table 5.1 Parameters of the three-phase formulation for the model problem

Gravitational acceleration g 9:81 m=s2

Atmospheric air pressure patm 101;300 Pa

Dynamic viscosity water �w 1:0 � 10�3 Pa�s
Dynamic viscosity gas (air) �g 1:75 � 10�5 Pa � s
Compressibility water Cw 4:58 � 10�10 1=Pa
Density water �w 1;000 kg=m3

Density air �g 1:3 kg=m3

Initial porosity n 0:5 �
Density solid grains �s 2;500 kg=m3

Residual saturation Srw 0:25 �
Maximum saturation Ssw 0:95 �
Air entry value pcb 5 � 104 Pa
Van-Genuchten fitting parameter m 0:33 �
Intrinsic permeability at max. saturation K 1:5 � 10�12 m2

functions for displacements and linear shape functions for capillary pressure and air
pressure. The employed FE-formulation is based on a weak form of the governing
balance equations for momentum and mass together with the constitutive relations
for the individual phases. The algorithmic treatment of the cap model is based on a
return mapping algorithm, which only requires solving a scalar nonlinear equation
at the material point level.
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Table 5.2 Cap model parameters for the model problem

(Inverse) volumetric stiffness parameter �E 0:015 �
Shear modulus G 1 � 107 Pa

Ellipticity parameter for the cap R 2:25 �
Friction angle 
 0:3 �
Cohesion parameter ˛ 0:0 Pa

First shape factor (shape in dev. planes) ! 0:8 �
Second shape factor (shape in dev. planes) � �0:2 �
First hardening law parameter �0 0:1 �
Second hardening law parameter ˇ 3:6 � 10�5 1=Pa
Third hardening law parameter r 0:2 �
Cohesion-increase parameter k 1:0 �
First parameter LC curve Xc 1 � 105 Pa
Second parameter LC curve �2 0:02 �
Third parameter LC curve pcmax 4:4 � 105 Pa

Parameter defining smoothing interval L 3:0 � 105 Pa

Fig. 5.9 Time-dependent
water flux density across the
bottom surface of the soil
column

In an initial step, preceding the actual simulation, the gravity load is applied for
determining the effective stress distribution such that for the given initial capillary
(or water) pressure and air pressure fields static equilibrium for the gravity load is
obtained. After equilibration, the displacements are reset yielding the final initial
state for the subsequent computation. Hence, in addition to the initial stresses, the
results at t D 0 days include plastic strains and a non-uniform distribution of the
hardening parameter, originating from the gravity step. The results are depicted in
the leftmost columns of Figs. 5.10, 5.11, 5.12, 5.13, and 5.14.

In a first phase of the computation dewatering of the ground is modelled by a
constant water mass outflow across the bottom boundary of qw D 0:25 kg=.m2h/
for 100 days (Fig. 5.9). By this procedure, the ground water table is lowered by
4.6 m. In a second phase, the mass flux is reverted yielding a constant water mass
influx of qw D 0:25 kg=.m2h/ for the remaining 69 days, see Fig. 5.9. As a result,
the water table in the column is rising again.
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Fig. 5.10 Distribution of the vertical total stress in the soil column at selected time instants

The presented results include distributions of (i) the vertical total stress
(Fig. 5.10), (ii) the vertical effective stress (Fig. 5.11), (iii) capillary pressure
(Fig. 5.12), (iv) the vertical plastic strain (Fig. 5.13) and (v) the hardening parameter
(Fig. 5.14), each (I) at the initial state, (II) at the lowest level of the ground water
table, (III) at the re-attained original level of the groundwater table after dewatering
and subsequent watering, and (IV) at a significantly higher ground water table than
the initial level. In all figures, the results are visualized on the unscaled, deformed
configuration with the white line indicating the current position of the groundwater
table. It corresponds to the zero isosurface of the capillary pressure, see Fig. 5.12.

The grey shadowed region in the background of the figures indicates the initial
shape of the column. By looking at Figs. 5.10, 5.11, 5.12, 5.13, and 5.14 irreversible
compaction of the soil column during drawdown of the water table can be observed.
At t D 100 days larger values of the plastic strains (Fig. 5.13) and of the hardening
parameter (Fig. 5.14) are clearly visible compared to the respective initial values.

The computed behaviour is natural by looking at the distribution of the vertical
effective stress in Fig. 5.11. If the water table is lowered, then the hydrostatic uplift
is reduced, which results in higher (compressive) effective stresses acting on the
soil skeleton. The higher compressive effective stresses are associated with plastic
material response in the hardening cap mode (Fig. 5.15). By means of the capillary
pressure distribution (Fig. 5.12), the effective stress (Fig. 5.11) can be converted to
total stress. The vertical total stress is visualized in Fig. 5.10, clearly demonstrating
the zero-stress boundary condition at the top of the column.
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Fig. 5.11 Distribution of the vertical effective stress in the soil column at selected time instants
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Fig. 5.12 Distribution of the capillary pressure in the soil column at selected time instants
(negative values represent water pressure)
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Fig. 5.13 Distribution of the vertical plastic strain in the soil column at selected time instants
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Fig. 5.14 Distribution of the hardening parameter in the soil column at selected time instants
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Fig. 5.15 Mode of material response at selected time instants

When rewatering the column up to the initial level, the soil skeleton is unloaded
and, thus, the material response during this time period is elastic, as can be seen
in the two plots in the middle of Fig. 5.15. Because of irreversible settlements the
amount of water required to re-attain the initial water table is smaller than the
amount of water that has been extracted before. If the water table is rising beyond
the initial level, then wetting-induced plastic deformations can be observed in the
region above the initial water table, as can be seen in Fig. 5.15.

5.4.3 Shear Failure of an Embankment Dam

In this section, a failure scenario for an embankment dam will be examined. It
concerns slope instability caused by water leakage through the dam. The model
problem to be analysed in the following originally was proposed in [11], employing
a similar three-phase approach, however, in combination with a single-yield-surface
material model, introduced in [10], without considering capillary pressure as a
second stress state variable.

The problem is analysed assuming plane strain conditions. The geometry of the
dam is depicted in Fig. 5.16. As proposed in [11], the permeability of the dam
(material A) is chosen higher than the one of the subsoil (material B). For simplicity,
all other three-phase parameters are assumed to be equal for both materials. They
are summarized in Tables 5.3 and 5.4.
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Fig. 5.16 Geometry of the embankment dam

Table 5.3 Parameters of the three-phase formulation for the dam problem

Acceleration of gravity g 9:81 m=s2

Temperature T0 293:0 K

Atmospheric air pressure patm 101;300 Pa

Hydraulic conductivity for water (A) .�wgK/=�w 1:0 � 10�5 m=s
Hydraulic conductivity for gas (A) .�ggK/=�g 1:0 � 10�6 m=s
Hydraulic conductivity for water (B) .�wgK/=�w 1:0 � 10�8 m=s
Hydraulic conductivity for gas (B) .�ggK/=�g 1:0 � 10�9 m=s

Compressibility water Cw 4:58 � 10�10 1=Pa
Reference density water �w 1;000 kg=m3

Initial porosity n 0:5 �
Density solid grains �s 2;700 kg=m3

Maximum saturation Ssw 1:0 �
Residual saturation Srw 0:25 �
Air entry value pcb 9 � 104 Pa
Van-Genuchten fitting parameter m 0:55 �

Initially, the reservoir is empty. After 10 days, the water table in the reservoir
is assumed to have reached its final position at a level of 8 m. For simplicity, the
impoundment is modelled by assuming a linear water pressure distribution between
0 and 8 m above the ground surface and only the amplitude of the respective
distribution is increased gradually such that it matches the correct hydrostatic water
pressure distribution after 10 days.

Atmospheric air pressure boundary conditions are applied at the upper surface
of the structure. Zero capillary pressure boundary conditions are applied at the
horizontal ground surface in the downstream region, fixing the water table to the
ground surface. Furthermore, water pressure boundary conditions and correspond-
ing surface tractions are prescribed at the upstream face of the dam and at the bottom
of the reservoir. Displacements in both directions are fixed at the bottom of the
domain. The vertical boundaries of the discretized domain are assumed to be fixed
in horizontal direction. The bottom and the left vertical boundary of the domain
are assumed to be impermeable. For the right vertical boundary, a hydrostatic water
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Table 5.4 Cap model parameters for the dam problem

(Inverse) volumetric stiffness parameter �E 0:011 �
Shear modulus G 5:6 � 106 Pa

Ellipticity parameter for the cap R 3:0 �
Friction angle 
 0:16 �
Cohesion parameter ˛ 2:5 � 104 Pa

First shape factor (shape in dev. planes) ! 0:6 �
Second shape factor (shape in dev. planes) � �0:229 �
First hardening law parameter �0 0:041 �
Second hardening law parameter ˇ 1:908 � 10�6 1=Pa
Third hardening law parameter r 0:8;390 �
Cohesion-increase parameter k 0:6 �
First parameter LC curve Xc 1:47 � 106 Pa
Second parameter LC curve �2 0:0;679 �
Third parameter LC curve pcmax 1:2 � 106 Pa

Parameter defining smoothing interval L 3:0 � 105 Pa

pressure distribution is assumed. Since water is assumed leaking through the dam
in the course of the computation, for the whole downstream face of the dam a
drainage boundary condition is applied. The latter is active only when water is
leaking through the dam. In that case it is equivalent to a penalty type flux boundary
condition that enforces zero capillary pressure at the respective part of the surface.

The employed computational approach is the same as the one for the ground
settlement model problem in the previous subsection. The structured FE-mesh,
which is partly shown in Fig. 5.17, consists of 9,156 elements, characterized
by quadratic serendipity shape functions for the displacements and linear shape
functions for capillary pressure and air pressure with altogether 27,845 nodes and
74,380 unknowns.

Similar to the model problem of the previous section, a gravity initialization step
precedes the actual computation. In order to closely match the yield surface used in
[11] with the one of the cap model, an initial absolute value of 4:8 � 102 kPa for the
hardening parameter is assumed. A comparison of the respective yield surfaces is
shown in Fig. 5.18. In Figs. 5.19 and 5.20 the distributions of capillary pressure and
excess air pressure (referred to the atmospheric air pressure) are displayed at three
selected time instances. Obviously, significant excess air pressure is present only
in the initial time period of the numerical simulation. It is caused by the sudden
change in boundary conditions. The evolution of the norm of the plastic strain
tensor is shown in Fig. 5.21 together with the evolution of the groundwater table
in the dam body. Due to the impoundment the water table in the dam body is rising
gradually and finally leaking at the toe of the downstream face occurs. The rising
water pressure in the dam body causes the effective hydrostatic compressive stress to
decrease. Due to the comparably large initial value of the hardening parameter and
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Fig. 5.17 Detail of the structured FE-mesh of the dam body
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Fig. 5.18 Comparison of the yield surfaces at water saturated conditions for the cap model (blue,
solid line) and for the soil model used in [11] (black, dashed line) [in kPa]

the small value of the friction angle, the shear failure envelope mode is the dominant
plastic mode throughout the simulation as shown in Fig. 5.22 for an example step.
In Fig. 5.21, the formation of a shear band can be recognized, which is in agreement
with results shown in [11]. Similar to what is reported in [11], the formation of
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Fig. 5.21 Distribution of the norm of the plastic strain, indicating the formation of a shear band;
the white curves represent the phreatic surface

Fig. 5.22 Representative distribution of the active modes of the cap model (the dominant plastic
mode is the shear failure envelope mode)

the shear band is initiated at the toe of the dam at the downstream face and is
characterized by a curved shape (Fig. 5.23). The plastic deformations are associated
with significant displacements, which are visualized in Fig. 5.24.

5.5 Multi-Phase Model for Concrete

For a three-phase model of concrete, a number of additional physical processes,
not present in the analysis of the geotechnical problems presented in the previous
subsection, have to be taken into account. They include, for instance, changes in
material properties due to chemical reactions, i.e. hydration, thermal expansion and
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Fig. 5.23 Close-up view of the shear band
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Fig. 5.24 Norm of the final solid displacements indicating slope instability

time dependent behaviour like creep and shrinkage. In order to account for these
physical processes, it is important to include temperature as an additional state
variable in the analysis, to view the gas phase as a mixture of dry air and water
vapour and to include mass exchange terms in the balance laws for the solid phase,
the water phase and the vapour phase.
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5.5.1 Constitutive Law for Concrete

The constitutive law, relating effective stresses and strains, is stated in rate form as
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Newly introduced strains are the volumetric strains "T and "CH related to tem-
perature variations and chemical reactions during hydration (autogenous shrinkage
strains), respectively, and the creep strains "C . Although not considered in the
numerical example below, plastic strains "P are also included in (5.70) for
completeness. Furthermore, changes in the elastic properties due to hydration are
accounted for via the term @
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For the thermal strains, the linear relationship
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with ˛T as the thermal expansion coefficient is employed. Similarly, expansion due
to hydration is governed by
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with �hydr and ˛CH as the degree of hydration and the expansion coefficient due to
hydration, respectively.

The reaction law for the degree of hydration is given as [16]
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with the empirical parameter a and the hydration activation energyEa. As in [15,16]
the normalized chemical affinity
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(5.74)

is adopted from [6]. It exclusively depends on �hydr and the constant parameters
�1, A1, A2, N�. The rate of the degree of hydration (5.73) furthermore depends on
the relative humidity ' D pgw=pgw;sat and temperature.
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Creep strains "C are modelled according to the microprestress solidification
theory by Bazant [2], see also [16].

Assuming a passive gas phase, i.e., pg D patm, the relation between total and
effective stress (5.26) together with (5.25) is simplified to

� D � eff C ˛Biot �Bishop .Sw/ p
c1 : (5.75)

Since drying causes an increase of the capillary pressure, from (5.75) together with
the constitutive relations a volumetric compaction of concrete is obtained. Hence,
departing from a fully saturated state, characterized by pc D 0, the drying shrinkage
strain at a partially saturated state with pc ¤ 0 is obtained by means of the bulk
modulus K of the solid skeleton as

"SH D �˛Biot �Bishop .Sw/

3K
pc 1 : (5.76)

The combined parameter ˛Biot �Bishop .Sw/ can be determined from measurement
data for the ultimate isothermal drying shrinkage strain in fully matured concrete
samples, which are dried departing from full saturation, i.e. pc D 0, to lower
levels of saturation, corresponding to pc > 0. Thus, drying shrinkage strains
are not treated explicitly in the material law but are rather a consequence of the
(constitutive) effective stress assumption.

Aging elasticity is taken into account based on the effective age or maturity of
concrete as it was defined in [3],
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According to [21], the current value of the modulus of elasticity is then computed as

E .tmat/ D E � exp
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�
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tmat

���

: (5.78)

Here, Os is a material parameter and s denotes time in seconds. Poisson’s ratio is
assumed to remain constant.

5.5.2 Numerical Simulation of the Behaviour of Concrete
Overlays

A frequently employed method for strengthening existing RC structures is to add
a concrete overlay. The behaviour of the overlay and, hence, of the strengthened
structure is affected by drying shrinkage, in particular, by the shrinkage strains of
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Fig. 5.25 Measured (continuous lines) and computed mass water content (dashed lines) in the
concrete overlay at selected ages of the overlay

the overlay developing during the first days and weeks [4], which are restrained by
the substrate concrete.

For investigating the overlay behaviour due to drying shrinkage, a laboratory
test program was conducted [25]. A 90 mm thick concrete overlay, made of normal
strength concrete, was added to a prismatic concrete specimen with dimensions of
800� 300� 300mm. Before placing of the concrete overlay, the substrate concrete,
i.e., the top surface of the prismatic concrete specimen, was prepared by high-
pressure water jetting. It resulted in a sharp increase of the mass water content in the
superficial zone of the specimen. Subsequently, the overlay was placed, the lateral
surfaces were sealed and its top surface was exposed to a relative humidity of 65 %.
The mass water content distributions in the overlay were measured during drying.
They were determined by a calibrating curve for the respective concrete, relating
electrolytic resistances, measured by Multi-Ring-Sensors, to the mass water content.

The measured mass water content distributions in the concrete overlay at selected
time instants are displayed by the continuous lines in Fig. 5.25. The measured
longitudinal strain (i.e., the strain in the direction of the longest edge of the
specimen) at the top surface of the overlay is depicted by the continuous line in
Fig. 5.26.

The hygric and also the drying shrinkage properties of the overlay concrete were
obtained from tests on thin concrete slices with dimensions of 110 � 110 � 6mm
made of the same concrete mixture. After moist curing for 81 days the concrete
slices were exposed to drying at different values of relative humidity between 100
and 50 %, and the mass water content and the ultimate drying shrinkage strains were
determined. From the measurement data, the intrinsic permeability K in (5.29) and
(5.30), the structure coefficient fS in (5.39), the air entry value pcb and the fitting
parameter m in (5.15) are obtained as K D 3:0 � 10�21 m2, fS D n2.1 � Sw/

9=2,
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Fig. 5.26 Measured (continuous line) and computed evolution (dashed line) of the longitudinal
strain at the top surface of the concrete overlay

pcb D 13; 362MPa and m D 0:313, respectively. Detailed information is provided
in [26]. The combined parameter ˛Biot �Bishop .Sw/ in (5.76) can be obtained from
a measured relationship between drying shrinkage strain and relative humidity. For
instance, in [26], a linear function of the degree of water saturation is determined
based on a least-squares fit to data measured at four levels of relative humidity:

˛Biot �Bishop .Sw/ D 0:9765Sw � 0:1086 : (5.79)

According to (5.75) in the multi-phase concrete model, proposed in [16], capil-
lary pressure evolving during drying produces a hydrostatic effective compressive
stress acting on the solid matrix. The latter stress, in turn, causes creep strains.
However, in the example of this section, these creep strains are not yet considered.

With the material parameters at hand, a numerical simulation of the described lab
test is performed. The numerical model of one quarter of the prismatic specimen,
representing the substrate concrete and the overlay, consists of 2,856 3D finite
elements with quadratic interpolation of the displacements and linear interpolation
of temperature and capillary pressure.

In the numerical simulation the following steps are considered: (1) drying of the
substrate concrete, (2) high-pressure water pressure jetting of the top surface of the
substrate concrete, (3) placement of the concrete overlay and hardening of the latter,
exposing its top surface to a relative humidity of 65 % after 12 h of moist curing.

The computed distributions of the mass water content in the overlay are shown at
selected time instants during drying by the dashed lines in Fig. 5.25. The computed
evolution of the longitudinal strain at the top surface of the concrete overlay is
depicted by the dashed line in Fig. 5.26. The computed positive values of the
longitudinal strain during the first few days are caused by the temperature increase
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Fig. 5.27 Predicted response of the overlay after 2 weeks of hardening and drying: (a) drying
shrinkage strains, (b) total and (c) effective stresses in longitudinal direction

due to hydration. Since the measurements were started about 1 day after casting, the
subsequent strain measurements are referred to this time instant and, hence, at least
part of the thermal strain is not included in the measured strain.

The deformations of the overlay (magnified by a factor of 1,000) after 2 weeks of
hardening and drying are displayed in Fig. 5.27. The shrinkage strains of the overlay,
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predicted according to (5.76), are depicted in Fig. 5.27a, and the respective distri-
butions of the total stress and the effective stress, acting in longitudinal direction of
the overlay, are shown in Fig. 5.27b,c. From the latter, the difference between total
and effective stresses can be interpreted. Whereas at the top surface the predicted
total longitudinal stresses are tensile stresses because of the restrained deformations
due to drying shrinkage, the respective effective stresses are compressive stresses,
which follows from (5.75) by the acting capillary pressure. Not shown in Fig. 5.27
are the predicted effective tensile stresses along the outer boundary of the interface
between old and new concrete in the direction normal to the interface.

5.6 Summary and Conclusions

In this contribution, applications of multi-phase models in geotechnical engineering
and concrete engineering were presented. In both cases, the ability to account for
the presence of water and air inside porous solids and the capability to account for
coupling effects between the different phases significantly enhanced the spectrum
of mechanical responses that could be represented. They include, for instance,
wetting induced ground settlements in geotechnical engineering as well as drying
shrinkage in concrete engineering. Despite of the common three-phase nature of the
applications presented, problem specific challenges can be observed. For instance,
the hydration process of concrete at early ages makes consideration of temperature
changes and of the vapour phase indispensable. Furthermore, in the presented
framework collapse upon wetting for soils can only be modelled if an appropriate,
capillary pressure dependent, material model is used, e.g. the improved elastic-
plastic cap model described in Sect. 5.4.1 being a suitable option. Even common
parameters for both applications like the intrinsic permeability may vary orders of
magnitude between concrete and soils or between different soil types.

Future research will include work on efficient and robust algorithms for the
solution of the coupled three-phase problem. In particular, this involves solution
strategies at three different levels: (1) the material point level where robust and
efficient return-mapping algorithms are required, (2) the nonlinear solution process
level for the coupled system of governing equations for which globalization
strategies that ensure convergence in case of not ideally chosen initial values
are to be explored and (3) the linear solution level where possible benefits of
iterative solvers and preconditioners have to be investigated. Furthermore, a more
thorough investigation of creep for concrete overlays will be performed, allowing
better predictions of drying-induced cracking in structures strengthened by concrete
overlays.
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Chapter 6
Concrete Structures Subjected to Fire Loading:
From Thermo-Mechanical Modeling of Strain
Behavior of Concrete Towards Structural Safety
Assessment

T. Ring, M. Zeiml, and R. Lackner

Abstract In this chapter, results obtained within a 4-year research project on the
safety of underground structures subjected to fire loading are presented. For this
project, a consortium consisting of three scientific partners (Vienna University of
Technology, University of Innsbruck, University of Natural Resources and Life
Sciences, Vienna) and eight industrial partners (ÖBB-Infrastruktur AG, ASFINAG,
Wiener Linien, Arge Bautech, VÖZFI, Büro Dr. Lindlbauer, Schimetta Consult, ZT
Reissmann) was established. Whereas the mentioned research project followed a
holistic approach, covering simulation of the fire event, experimental investigation
of concrete and concrete structures at high temperatures, and modeling and simula-
tion work at both the material and the structural scale (Amouzandeh, Development
and application of a computational fluid dynamics code to predict the thermal impact
of underground structures in case of fire, Ph.D. thesis, Vienna University of Technol-
ogy, Vienna, 2012; Ring et al. Brandversuche zum Abplatz- und Strukturverhalten
von Tunnel mit Rechtecksquerschnitt [Fire experiments investigating the spalling
and structural behavior of rectangular tunnels], Technical Report, Vienna University
of Technology and Vereinigung der österreichischen Zementindustrie (VÖZFI),
Vienna, 2012; Ring, Experimental characterization and modeling of concrete at high
temperatures: Structural safety assessment of different tunnel cross-sections sub-
jected to fire loading, Ph.D. thesis, Vienna University of Technology, Vienna, 2012;
Zhang, Simulations for durability assessment of concrete structures: multifield
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framework and strong discontinuity embedded approach, Ph.D. thesis, Vienna
University of Technology, Vienna, 2013), this chapter focuses on one aspect of the
project, namely modeling and simulation of the behavior of concrete and concrete
structures under combined thermal and mechanical loading:

1. First, a micromechanical model taking the composite nature of concrete into
account is presented. Based on experimental results obtained for cement paste
and aggregate subjected to thermal/mechanical loading, a two-scale model
formulated within the framework of continuum micromechanics is developed,
giving access to the effective elastic and thermal-dilation properties of concrete
as a function of temperature.

2. In a second step, these model-based properties are considered within a differen-
tial formulation of the underlying stress–strain law, accounting for the influence
of mechanical loading on the thermal-strain evolution. The proposed microme-
chanical approach and its implementation are validated by experimental results
obtained from concrete specimens subjected to combined thermo-mechanical
loading.

3. Finally, the effect of the underlying model assumptions at the structural scale is
illustrated by means of the safety assessment of underground support structures
under fire attack.

The obtained results are nowadays considered in the formulation of standards and
guidelines for the assessment of the safety of underground structures subjected
to fire loading (ÖBV-Richtlinie: Fire protection with concrete for underground
traffic infrastructure [Erhöhter baulicher Brandschutz mit Beton für unterirdische
Verkehrsbauwerke], Austrian Society for Construction Technology, Vienna, 2013).

6.1 Introduction

Concrete subjected to combined mechanical and thermal loading exhibits a certain
path dependence explained by the dependence of physical processes on the actual
stress state within the material (see [3, 8, 10, 18, 25, 26, 28]). This path dependence
of heated concrete (highlighted in Fig. 6.1) is often related to the introduction of
so-called load induced thermal strains (LITS).

The main findings reported in the literature with respect to LITS are:

1. LITS are found only in concrete subjected to first thermal loading [12].
2. The rate of heating (ranging from 0.2 to 5 ıC/min) and the water/cement ratio

showed only minor influence on LITS [25].
3. The aggregate type has no significant influence in the development of LITS,

linking LITS to processes taking place within the cement paste [12].
4. LITS are practically unaffected by the type of cement blend, suggesting that it

takes place in a common gel or C-S-H structure [12].
5. LITS seem to increase linearly with the applied stress level (see Fig. 6.2) [3].
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Fig. 6.1 Path dependence of
combined mechanical and
thermal loading according to
[27]; the application of the
same thermal and mechanical
loading applied in different
order leads to the same
temperature and stress level
(Tmax D 400 ıC and
� D 0:45 � fc;0) but to
different experimentally
observed strains—compare
points A and B

Fig. 6.2 Load dependency of
LITS obtained from different
experiments [8, 12, 27]
(s D �=fc;0 W level of
loading)

Based on these experimental findings, several formulations for LITS can be
found in the open literature, ranging from an approach to model LITS within creep
of heated concrete [25] over considering LITS via empirical relations [26], to strain-
rate formulations for LITS as proposed in [18, 27].

In recent years, micromechanics-based models for concrete have been published
in the open literature (e.g., [6, 16]) taking the composite nature of concrete into
account. On the one hand, these models were developed in order to identify the
behavior of C-S-H at elevated temperatures [6] using nanoindentation. On the other
hand, a multiscale model for the determination of the effective stiffness of concrete
at high temperatures was proposed in [16].

In the present work, recently published micromechanics-based models [14, 21]
are adopted to the description of the change of elastic properties and the thermal
dilation of heated concrete. For this purpose, experimental studies on concrete and
cement-paste specimens were conducted, and the respective experimental results
are presented in Sect. 6.2. In Sect. 6.3, the micromechanic-based model is presented
with possible modes of implementation of the underlying stress–strain behavior
which is discussed in Sect. 6.4. The so-obtained formulations for the consideration
of the combined thermo-mechanical behavior of concrete and their effect within the
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analysis of concrete structures subjected to fire loading are highlighted in Sect. 6.5.
Concluding remarks are given in Sect. 6.6.

6.2 Experimental Observation

In addition to the existing experimental data available in the open literature,
experiments were performed in order to assess the combined thermo-mechanical
behavior as well as the elastic properties of concrete under temperature loading.
The experiments were conducted in a radiant electric oven which is used to apply the
thermal loading (see Fig. 6.3). The cylindrical oven is built around the mechanical
testing device, allowing to perform tests under combined thermal and mechanical
loading. The cylindrical specimens had a dimension of 100 mm in diameter and a
height of 200 mm. In order to monitor the deformations of the heated specimen,
steel rings are mounted with steel bars transferring the deformation of the specimen
to the outside of the oven (axial direction). In the radial direction, steel bars,
directly pointing from the specimen to the outside of the oven, give access to the
radial deformation. In the course of the experiments, the specimens are subjected to
constant uniaxial loading and heated up to 800 ıC with a heating rate of 1 ıC/min.

In order to identify the elastic properties of the heated specimens, additional test
with modulated mechanical and steadily increasing thermal load was considered
within the test program (see [22] for details).

6.2.1 Deformation Under Thermo-Mechanical Loading

In Fig. 6.4, the evolution of strain in axial direction for cement paste1 subjected
to different levels of mechanical loading (s D 100 � �a=fc;0 D 0, 5, 10, 20, and
30 %, where fc;0 D 42.6 MPa) is presented, indicating the load dependency of
deformations in case of increasing temperature loading.

With increasing load level, the compaction of cement paste in axial direction
and the expansion in radial direction increase, especially at higher temperatures.
While the behavior of strains below 500 ıC is mainly driven by the degradation of
C-S-H- and C-H-phases (see [7, 29]), at temperatures between 500 and 600 ıC an
abrupt change of the evolution of strain is observed for s > 5 %, which is attributed
to the development of macro-cracks in longitudinal direction of the cement-paste
specimen.

Figure 6.5 shows the evolution of strain in axial and radial direction for concrete
specimens under combined mechanical (s D 100 � �a=fc;0 D 0, 10, 20, 30, 40,
50, and 60 %, where fc;0 D 39.1 MPa) and thermal loading. The observed change

1For details on the underlying mix-design, the reader is referred to [22]
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Fig. 6.3 Used device for thermo-mechanical testing (see [22] for details)

a b

Fig. 6.4 Cement paste: (a) temperature curve (1 ıC/min) and mechanical loading (s D 100 �
�a=fc;0 D 0 to 30 %, with initial compressive strength fc;0 D 42.6 MPa); (b) evolution of axial
strain as a function of temperature [22]

in the strain evolution between 550 and 620 ıC results from the quartz transition at
573 ıC. The evolution of axial strain presented in Fig. 6.5b decreases with increasing
mechanical loading. At higher load levels (s � 40 %), the concrete specimens fail
before the final temperature of 800 ıC is reached.

6.2.2 Behavior of Siliceous Material

Since concrete with a high content of siliceous aggregates (89 % in total, consisting
of 68 % quartz and 21 % feldspar) was investigated in the previous subsection, the
thermal strain behavior as well as the evolution of elastic properties is included in
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a b

Fig. 6.5 Concrete: (a) temperature curve (1 ıC/min) and mechanical loading (s D 100 ��a=fc;0 D
0 to 60 %, with the initial compressive strength fc;0 D 39.1 MPa); (b) evolution of axial strain as a
function of temperature [22]

Sect. 6.3, with the respective experimental results taken from [11, 15]. The thermal-
strain evolution of quartz reported in [11] is shown in Fig. 6.9, indicating quartz
transition at 573 ıC. For T > 573 ıC, the evolution of the thermal strain exhibits a
plateau at 1.72 %. The elastic properties of quartz (Young’s modulus and Poisson’s
ratio) as a function of temperature were determined in [15] using ultrasonic tests.
Both free-thermal strain and elastic properties of quartz will be essential in the
following section dealing with the micromechanical modeling of concrete behavior
under combined thermo-mechanical loading.

6.3 Micromechanical Model

In order to capture the influence of the constituents of concrete on the overall
behavior, a micromechanical model is proposed, consisting of aggregates, cement
paste, and pore space (see Fig. 6.6). Hereby, one portion of the air voids is already
contained within the cement paste, while an additional portion of air voids is
introduced by the mixing process of aggregates and cement paste (see Fig. 6.7a).

Accordingly, the proposed micromechanical model comprises two scales in
addition to the macroscale:

• At Scale I, cement-paste composite (pore space, hydration products) and
additional pores introduced during the mixing process build up the material
microstructure. At this scale, the experimentally determined behavior for cement
paste (see [22], for details) is considered.

• At Scale II, the aggregate phase is employed into the homogenized material of
Scale I.
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Fig. 6.6 Micromechanical model of concrete

Fig. 6.7 Evolution of volume fractions for heated concrete

Within this micromechanical framework, both the effective elastic and thermal-
dilation properties of heated concrete are determined using continuum microme-
chanics (based on Mori Tanaka [17], applied in [20]).

6.3.1 Effective Elastic Properties

The effective shear and bulk modulus, Geff and Keff, are given as:

Geff D

X

r

frGr

�

1C ˇ

�
Gr

Gm
� 1

���1

X

r

fr

�

1C ˇ

�
Gr

Gm
� 1

���1 (6.1)
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Fig. 6.8 Effective Young’s
modulus obtained from
micromechanical model for
unloaded concrete (s D 0 %)
compared to experimental
results (initial volume
fractions: fp = 0.05, fc =
0.25, fa = 0.70) and to
decrease of stiffness
according to CEB [4]

and

Keff D

X

r

frKr

�

1C ˛

�
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� 1
���1

X

r

fr

�

1C ˛

�
Kr

Km

� 1
���1 ; (6.2)

with r 2 fporous cement paste (matrix), additional pore space (inclusion)} at Scale I
and r 2 fhomogenized material of Scale I (matrix), aggregates (inclusion)} at
Scale II. The coefficients ˛ and ˇ are defined as

˛ D 3Km

3Km C 4Gm
and ˇ D 6.Km C 2Gm/

5.3Km C 4Gm/
: (6.3)

In Eqs. (6.1) to (6.3), the index m refers to the matrix phase, while ˛ and ˇ
represent the volumetric and deviatoric part of the Eshelby tensor S , specialized for
the case of spherical inclusions. Furthermore, fr [–] refers to the volume fraction of
the r-th material phase, which is determined from the concrete mix-design, with
1,860 kg/m3 siliceous material, 330 kg cement/fly ash, and 185 kg water. Under
the assumption of complete hydration, the initial volume fractions (prior to fire
loading) for the investigated concrete mixture are set to fp=fc=fa D 0.05 / 0.25
/ 0.7 (additional pore space (p)/porous cement paste (c)/aggregate (a), see Fig. 6.7).

As the material behavior (Young’s modulus, Poisson’s ratio) of porous cement
paste is taken from the conducted experiments (see [22]), changes associated with
dehydration are already considered in the cement-paste phase (see, e.g., [2, 13]).

The model response from Scale II, giving the effective Young’s modulus (Eeff)
for s D 0 %, is presented in Fig. 6.8, showing good agreement with experimental
observations, especially for temperatures up to 200 ıC.

Table 6.1 summarizes the evolution of the effective elastic properties obtained
from the micromechanical model.
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Table 6.1 Effective elastic
properties obtained from
micromechanical model for
unloaded concrete (s D 0 %)

Temperature Keff Geff �eff Eeff

(ıC) (GPa) (GPa) (–) (GPa)

20 19.4 16.4 0.17 38.3
100 17.9 15.2 0.17 35.5
200 15.1 12.9 0.17 30.1
300 9.8 8.6 0.16 19.9
400 4.9 4.6 0.15 10.5
450 4.4 4.1 0.14 9.4
500 3.5 3.3 0.15 7.5
550 2.5 2.2 0.15 5.1
573 2.3 2.1 0.14 4.9
600 2.9 2.2 0.19 5.3
650 2.8 2.1 0.21 5.6
700 3.4 2.3 0.22 5.8
800 2.5 1.8 0.22 4.4

Fig. 6.9 Comparison of
experimentally obtained free
thermal strain (s D 0 %) with
prediction by
micromechanical model
together with experimentally
obtained thermal strain of the
constituents (aggregates,
cement paste), serving as
model input

6.3.2 Effective (Free) Thermal Strain

When aggregates and cement paste are heated, they show a significant discrepancy
in their thermal-dilation behavior (see Fig. 6.9). While siliceous aggregates are
expanding during heating, cement paste is turning from expansion into shrinkage
at 250 ıC, which is explained by the continuous dehydration of cement paste [5,25].
Using the morphology of the proposed micromechanical framework (Fig. 6.6), the
effective thermal strain is given by (see Appendix A)

"th
eff D "th

m C .1 � fmhAiVm/ Ki

Keff
."th
i � "th

m/ ; (6.4)

where "th
i and Ki are the thermal strain and bulk modulus of the inclusion phase i

(additional pore space at Scale I, aggregates at Scale II), respectively. Furthermore,
the indexm refers to the matrix phase at the respective scale. Figure 6.9 contains the
evolution of the effective thermal strain obtained from the proposed micromechani-
cal model, showing excellent agreement with the experimental data. As indicated in
Fig. 6.9, the free thermal strain is mainly driven by the behavior of the aggregates.
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a b

Fig. 6.10 (a) Evolution of free thermal strain of concrete, "th; (b) evolution of "lits for different
load levels according to Eq. (6.6) (s D �=fc;0 D 10, 20, 30, 40, 50, and 60 %); k D 2.35; "th taken
from Fig. 6.10a

6.4 Implementation

In the open literature, the load-dependent part of thermal strains of concrete is often
referred to as “Load Induced Thermal Strains” (LITS). LITS may be considered by
an additional strain (see, e.g., [27]), reading

" D "el.T; �/C "th.T /C "lits.T; �/; (6.5)

where "el and "th represent the elastic strain and the free thermal strain (see "th

in Fig. 6.10a), respectively. Commonly, the stress-dependence of LITS introduced
in Eq. (6.5) is considered by empirical relations, such as the Thelandersson-
approach [27]:

"lits D k
�

fc;0
"th.T / ; (6.6)

where k is a parameter depending on the type of loading (k D 2:35 for uniaxial
loading, k D 1:7 for biaxial loading [27]) and � /fc;0 accounts for the influence
of the load level, giving a linear dependence of LITS on the applied stress (see
Fig. 6.18b). For determination of LITS, the micromechanical model response for "th

given in Fig. 6.10a is used.
Introducing the LITS-compliance tensor lits, "lits given in Eq. (6.6) may be

formulated in a more general form, reading

"lits D lits.T / W � : (6.7)
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Fig. 6.11 Evolution of axial strain of concrete: Thelandersson-approach (Eq. (6.6) with k D 2.35)
compared with experimental results

Combining Eqs. (6.5) and (6.7), the stress–strain law for heated concrete becomes

� D W "el D W
�

" � "th � lits W �
�

: (6.8)

Reformulation of Eq. (6.8) gives

" D � C lits
� W � C "th ; (6.9)

where D �1 represents the elastic compliance tensor. Setting lits D k vol"th=

fc;0, the Thelandersson-approach given in Eq. (6.6) is recovered. For the special
case of axisymmetric conditions (axial and radial stress and strain components), the
overall compliance tensor in Eq. (6.9) becomes

C lits D 1

E

�
1 ��
�� 1

�

C k
"th

fc;0

�
1 0

0 1

�

(6.10)

giving the axial strain "a in case of uniaxial loading, with the radial stress �r D 0, as

"a D
�
1

E
C k

"th

fc;0

�

�a C "th : (6.11)

Comparison between the experimental results presented in Sect. 6.2 with the
results from Eq. (6.11) reveals a significant deviation between the model response
and experimental results, especially in the low-temperature regime (see Fig. 6.11).

In order to improve the agreement between model response and experimental
data, the level of loading �=fc;0 in Eq. (6.6) is reformulated, relating the stress to the
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Fig. 6.12 Experimentally obtained normalized compressive strength of concrete as a function of
temperature [23]

Fig. 6.13 Evolution of axial strain of concrete: modified Thelandersson-approach (Eq. (6.13) with
k D 0.4) compared with experimental results (fc.T / taken from Fig. 6.12)

actual compressive strength fc.T / (see Fig. 6.12). Accordingly, lits in Eq. (6.7)
becomes

lits D k vol"th=fc.T / ; (6.12)

giving the axial strain in case of uniaxial loading as

"a D
�
1

E
C k

"th

fc.T /

�

�a C "th : (6.13)

With this modification, the model response shows an improved agreement with the
experimental results, especially in the low and medium temperature regime (see
Fig. 6.13). The temperature dependent compressive strength fc.T / was investigated
in the literature [1,12], highlighting a stress dependence of fc.T /. For mechanically
preloaded fire-exposed specimens the compressive strength was found to be higher
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than for mechanically unloaded concrete. More recent investigations concerning
the stress dependence of the compressive strength at 250 ıC can be found in [19].
However, no stress dependence for the compressive strength fc.T / is considered in
the proposed model up to now.

So far, the model was applied and validated by means of experimental data only
for constant mechanical loading. In real-life applications, however, the amount of
mechanical loading certainly changes with time, e.g., in case of unloading, the
elastic deformation (with "el D W � ) vanishes. LITS deformations, on the other
hand, account for the path-dependence of thermo-mechanical loading of heated
concrete and must therefore remain. Accordingly, in contrast to the total formulation
for the elastic strain "el D W � , a differential form is adopted for LITS, reading

d"lits D d lits W � ; (6.14)

with the actual stress tensor � affecting the differential change of LITS via d lits.
Replacing the differential changes in Eq. (6.14) by finite changes within the time
increment nC 1, one gets:

�nC1 D nC1 W
�
"nC1 � "th

nC1 �
�
"lits
n C�"lits

�	

�nC1 D nC1 W
�
"nC1 � "th

nC1 � "lits
n �� lits W �nC1

	
; (6.15)

where the incremental change of the LITS-compliance tensor is determined from
� lits D lits

nC1 � lits
n . Rewriting Eq. (6.15) for the case of stress-driven situations

(such as in case of axisymmetric uniaxial loading) gives

"nC1 D nC1 W �nC1 C "th
nC1 C "lits

n C�"lits : (6.16)

with

�"lits D �
lits
nC1 � lits

n

� W �nC1 : (6.17)

It can be seen in Fig. 6.14, that the agreement of the proposed incremental model
with experimental data is equally good as the total formulation (see Fig. 6.13).

In order to validate the proposed differential formulation of LITS, experiments
with changing load levels were performed and compared to the respective model
response, considering both the modified total (Eq. (6.13)) and the differential
formulation (Eq. (6.16)):

1. Within the first experiment, the level of loading is increased in four steps (see
Fig. 6.15a). Starting from s D 10 %, the load level is increased in three steps to
20, 30, and finally 40 %.

2. In the second experiment, the level of loading is first increased (from s D 20–
40 %) and then reduced to zero loading (s D 0%) (see Fig. 6.16a).
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Fig. 6.14 Evolution of axial strain of concrete: differential formulation (Eq. (6.16) with k D 0.4)
compared with experimental results

a b

Fig. 6.15 Experiment 1: (a) temperature curve (1 ıC/min) and mechanical loading (from 10, 20,
30, to 40 %); (b) evolution of axial strain

3. During the third experiment, the initial level of loading (s D 40 %) is decreased
(s D 10 %) and finally increased (s D 30 %) (see Fig. 6.17a).

4. During the fourth experiment, the initial level of loading (s D 50 %) is linearly
decreased to s D 0 % between 400 and 670 ıC and again linearly increased up to
s D 20 % at 770 ıC (see Fig. 6.18a).

For all experiments, the better agreement with the experimentally obtained strain
is found when using the proposed differential formulation (Eq. (6.16)). The response
of the modified total formulation (Eq. (6.13)), strongly deviating from the exper-
imental results, shows the largest error in case of mechanical unloading in the
high-temperature regime.
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a b

Fig. 6.16 Experiment 2: (a) temperature curve (1 ıC/min) and mechanical loading (from 20, 40,
to 0 %); (b) evolution of axial strain

a b

Fig. 6.17 Experiment 3: (a) temperature curve (1 ıC/min) and mechanical loading (from 40, 10,
to 30 %); (b) evolution of axial strain

ba

Fig. 6.18 Experiment 4: (a) temperature curve (1 ıC/min) and mechanical loading (linear
decrease from 50 to 0 % and linear increase from 0 to 20 %); (b) evolution of axial strain
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a b
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Fig. 6.19 Rectangular tunnel cross-section: (a) geometric properties and (b) applied temperature
loading within the tunnel (applied to side wall and ceiling of the frame)

6.5 Finite-Element Implementation and Numerical Results

In this section, the differential formulation for the strain behavior of heated
concrete outlined in the previous section is implemented into a finite element (FE)
program [24]. In contrast to the stress-driven uniaxial stress situation encountered
in the LITS experiments, strain increments are given by the underlying incremental-
iterative solution procedure in nonlinear FE analysis, while the stress state �nC1
at the end of the respective time increment needs to be determined. According to
Eq. (6.18), �nC1 is given by

�nC1 D
�

nC1 C� lits
	�1 W �"nC1 � "th

nC1 � "lits
n

	
: (6.18)

In order to highlight the effect of the underlying LITS formulation, the proposed
material model is used within the numerical analysis of a rectangular tunnel cross-
section subjected to fire loading. The geometric properties of the considered tunnel
cross-section are presented in Fig. 6.19a. The thermal loading within the cross-
section is obtained from a coupled thermo-hydro-chemical analysis [30], using the
prescribed temperature loading within the tunnel shown in Fig. 6.19b.

In order to determine the influence of LITS on the structural response, three
different material models are considered:

• Model 1 (no LITS): No consideration of LITS;
• Model 2 (TOT): Modified total formulation of LITS based on the Thelandersson-

approach [27] (Eq. (6.13));
• Model 3 (DIFF): Differential formulation of LITS (Eq. (6.18)).

While LITS are considered only in case of compressive loading of concrete,
the tensile stresses are limited in all considered models (Model 1 to 3) using
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a b

Fig. 6.20 Comparison of numerical results (model 1 to 3): stress distributions at (a) tfire D 20 and
(b) tfire D 170 min

a Rankine failure criterion, with ft .T / D 1=10fc.T / (according to [24]). The
micromechanics-based Young’s modulus (see Fig. 6.8) and free thermal strain (see
Fig. 6.9) are employed. For the simulation of the reinforcement, a 1-D elasto-plastic
material model was chosen, considering degradation of stiffness and yield-strength
according to [9] (see [23] for details).

In the underlying fire scenario, a cooling phase is included (see Fig. 6.19b).
During the heating phase, the evolution of the material properties is determined
based on the temperature dependence shown in Fig. 6.12. During cooling the
material properties (Young’s modulus, compression/tensile strength) are dependent
upon the maximum temperature reached. Since LITS were observed to take place
during the first heating only [12], LITS are considered only during heating. In the
course of cooling, no change of LITS take place.

In Fig. 6.20, stress distributions at the top of the rectangular tunnel cross-section
for different time instants (tfire D 0, 20, 170 min) are presented.

Model 1 (no LITS) gives comparably high compressive stresses, even exceeding
the compressive strength of concrete fc.T /. Model 2 (TOT) results in a reduction
in the stress build-up nevertheless, the stresses still exceed the compressive strength
of concrete. Finally, Model 3 (DIFF) further reduces the compressive stresses which
stay below the temperature-dependent compressive strength.

Figure 6.21 shows the deformation of the tunnel cross-section, with the defor-
mation history in the symmetry axis at the top of the tunnel given in Fig. 6.21a and
deformation patterns of the whole cross-section given in Fig. 6.21b.

The largest restraint occurs for Model 1 (no LITS), resulting in large regions
with plastic deformations within the reinforcement. On the other hand, the model
response for Model 3 (DIFF) shows no plastic deformations of the reinforcement at
all since the stress build-up due to thermal loading is considerably reduced by LITS,
resulting in less loading of the concrete and, thus, the reinforcement bars.

Finally, the influence of the different models on the evolution of bending
moments is presented in Fig. 6.22. In case of Model 3, the thermally induced
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a b

Fig. 6.21 Comparison of numerical results (model 1 to 3): (a) deformation history at top of the
tunnel; (b) deformation pattern of the whole cross-section at tfire D 170 min

a b

Fig. 6.22 Comparison of bending-moment distribution obtained with model 1 to 3 at (a) tfire D
20 min and (b) tfire D 170 min

bending moments are reduced, resulting from lower stresses within the cross-
section. On the other hand, totally neglecting the effect of LITS leads to the highest
bending moments. For Model 3, the maximum bending moment at tfire D 170 min is
reduced (see Fig. 6.22), indicating—based on the more realistic material model for
heated concrete—a higher safety of the underlying tunnel design.
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6.6 Concluding Remarks

Within this chapter, a differential strain formulation allowing the description of the
path dependence of the strain behavior of concrete (LITS) in case of combined
thermo-mechanical loading is presented. The underlying material parameters for
concrete (Young’s modulus, Poisson’s ratio, free thermal strain) are determined
using a micromechanical model. Based on experimental observations highlighting
the influence of the level of loading on the strain behavior of heated concrete, the
developed material model was validated. Finally, the effect of different modes of
consideration of LITS on the structural response of a rectangular tunnel cross-
section was assessed. Based on the obtained results, the following conclusions can
be drawn:

• Effect of plasticity: The introduction of the differential formulation to consider
LITS reduces compressive stresses induced by thermal restraint within concrete
which then remain below the respective ultimate compressive strength. In case
of tensile loading, LITS were not considered but a Rankine-type plasticity model
was used for the simulation of tensile cracking of concrete.

• Loading of reinforcement: Due to the smaller stress build-up obtained from the
proposed differential formulation, the stresses in the reinforcement are reduced,
leading to less plastic deformations and, thus, an increase of the integrity of the
tunnel-support structure.

• Reduction of bending moment: Originating from the reduced stress build-up
obtained from the differential formulation, the maximum bending moment was
reduced, indicating a higher structural safety of the tunnel-support structure when
subjected to fire.

The presented approach of improved modeling of the material behavior of
concrete under temperature loading, enabling a more realistic prediction of
the thermally induced stress build-up within the concrete lining in the event
of fire, provides a proper basis for the realistic structural safety assessment
and design.
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Appendix: Effective Prescribed Strains in Two-Phase
Materials

According to [14], the effective strain Eeff is related to the prescribed strain N" in the
material phases as:

KeffEeff D hA W K W N"iV : (6.19)

Considering a two-phase material with matrix m and inclusion i , with

N" D N"m in Vm ; N" D N"i in Vi ; (6.20)

N"i may be substituted by

N"i D N"m C�N"i : (6.21)

Rewriting Eq. (6.19) and considering Eq. (6.21) gives

KeffEeff D hA W KiV N"m C fi hA W KiVi�N"i : (6.22)

Considering Keff D hA W KiV in Eq. (6.22), one gets

Eeff D N"m C fi hAiVi
Ki

Keff
.N"i � N"m/ ; (6.23)

where hAiV i is given in [14].
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Chapter 7
Scientific Computing in Urban Water
Management

R. Sitzenfrei, M. Kleidorfer, M. Meister, G. Burger, C. Urich, M. Mair,
and W. Rauch

Abstract Urban water management is concerned with the supply of drinking
water to households and industry and the discharge of stormwater and waste
water from the urban environment. The system is highly dynamic and driven by
meteorology, urban development, change in land use and technological innovations.
Key mechanisms in urban water systems are on the one hand the transport of water
and substances in the environment and the pipe network and on the other hand the
conversion of substances due to physical and biochemical processes. Urban water
management thus requires computer simulations in time (ranging typically from
hours to years) and space (one to three dimensions). With the models becoming
more and more complex by simulation at detailed spatio-temporal scale and by
simulating whole urban environments, the limits of traditional numerical methods
have been reached. In this chapter three emerging topics in scientific computing in
urban water management are discussed and the need for advanced software methods
is exemplified.

7.1 Introduction

Urban water management is concerned with the supply of drinking water to
households and industry and the discharge of stormwater and waste water from the
urban environment. Key mechanisms in urban water systems are on the one hand
the transport of water and substances in the environment and the pipe network and
on the other hand the conversion of substances due to physical and biochemical
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processes. Urban water management thus requires computer simulations in time
(ranging typically from hours to years) and space (one to three dimensions).

The requirements for urban water management like hygiene, economics,
environment protection, etc. resulted in traditional engineering design (centralized
network systems based on pipes and nodes). The evolvement of such a system is
highly dynamic and driven by meteorology, urban development, change in land use
and technological innovations [62] or climate change [24].

Traditionally, in the design process and assessment of water networks, different
parts of the networks were regarded separately and frequently even by analytical
equations and/or empirical relations. But in the last decades and assisted with
increasing computer power, the assessment of water networks is proceeding from
investigations on different, separate parts (e.g. a single catchment with a combined
sewer overflow (CSO) structure or waste water treatment plant (WWTP)) to a
numerical, model-based view on the entire network system [48]. Going one step
further, in the 1990s, integrated models were developed and applied. In these models
different sub-systems/models (i.e. sewer, CSO, WWTP and receiving water) are
combined to integrated approaches in order to assess water pollution in the receiving
water (e.g. [20]).

Usually, in such approaches, the engineering system (i.e. network structure) and
its boundary conditions (e.g. dry weather flow, drained area, etc.) are kept static.
Therefore, the spatial dynamic drivers of urban water systems (i.e. cities) are not
considered explicitly, but only as multipliers for expected future conditions (e.g.
prospective demand, population growth, etc.)

New developments in data management and increasing availability of digital
data enabled engineers to use GIS-software and raster-based spatial distributed
data for their investigations. Among others, raster-based GIS-data can be used
to obtain input parameters for numerical network simulations (e.g. topography,
impervious area from processing ortho-photos, land-use and population densities).
For example, Sitzenfrei et al. [60] presented a procedure for automatic generation of
water distribution networks based on GIS data topography and population densities.
Also, simulation engines are integrated in GIS-software environment to use the
capabilities of GIS-software for visualization, data processing and data modification
combined with different hydraulic simulation models. This even enables to inves-
tigate different infrastructure systems in a comprehensive approach (multi-utility,
e.g. Mike Urban, [7, 59]). Only an interlinked digital description of a city enables
new comprehensive investigations and the identification of coherences. With such an
integrated “Digital City” [53] interlinked infrastructure systems can be investigated
(e.g. water supply under consideration of water saving strategies or water reuse and
the impact on the sewer system [55]). Further, this helps not only to test plausibility
of data (intersection and alignment of different data, etc.) but also to complement
insufficient data sets with e.g. stochastic approaches [31] or inverse modelling. But
taking this approach one step further, the question arises: are the network-based
descriptions and models still necessary respectively advantageous for up-coming
modelling tasks? To face challenges of climate change and future developments,
decentralized solution for on-site water reuse strategies are increasingly developed,
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investigated and implemented [33]. Especially for simulation and analysis of the
spatial dimensions of decentralized solutions (rain-water infiltration, water and
rain-water reuse, etc.), the network-based models are not effective.

Spatially enhanced integrated modelling approaches (including infrastructure,
land use and population models) allow novel insights how dynamic urban systems
work and to identify system coherences [42]. Recent research focuses on the
integration of urban simulation models in the assessments of water infrastructure
systems to integrated urban simulation approaches (e.g. [8,56,58] or [45]). Therein,
the infrastructure models (e.g. water distribution system or combined sewer system
and WWTP) are coupled with urban simulation tools for dynamic simulation of
population development under consideration of socio-economic issues. For these
investigations and for an interactive consideration of time dynamics in the sub-
models, spatially distributed information on parameters is required. Therefore,
raster-based models (e.g. based on local water balances with regional interactions)
are in this context more capable to model especially decentralized systems and
to enable spatially distributed, time dynamic interactions. The transition from
centralized systems to decentralized systems is an important part, respectively,
and the coexistence and functionality of both systems has to be investigated (e.g.
rainwater harvesting and water distribution system).

In this chapter we will focus on three issues that have been in the centre of
scientific attendance for the last decade. The first topic, the estimation of possible
solutions for water management in megacities requires the spatially distributed,
dynamic and grid-based simulation of the evolution of public water infrastructure
under consideration of changes (e.g. climate, global, environment, economy, land
use). Currently, these simulations can be realized with the help of frameworks
for integrated modelling like, e.g. “DynaMind”—a workflow engine especially
designed for urban water management simulations.

Second topic is the utilization of multicore facilities in software for simulating
the dynamics in water networks. The basic features of parallel coded network
simulations are discussed for standard public domain software tools in the field that
is SWMM for drainage systems and EPANET for water supply networks.

Third, smoothed particle hydrodynamics (SPH) is presented as an alternative
numerical method to explore fluid flow phenomena in urban water management
based on the simulation of particle movement that can easily be extended towards
multiphase flow phenomena, solids transport and bioconversion processes. Thus
SPH could potentially be the core numerical engine to simulate fluxes and processes
in the complete water infrastructure on a very detailed level.

7.2 From Water Networks to an Integrated Assessment
of Urban Water Systems

To identify different steps of model complexity and also to evaluate the according
model requirements a literature review is used. Based on this, different levels of
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modelling approaches are outlined/defined and their advantages and disadvantages
are pointed out, respectively.

7.2.1 State-of-the-Art Modelling Approaches

Traditionally individual parts of the drainage systems were calculated by engineers
independently with simplified or empirical equations (empirical Manning equation
for open channel flows, time area method, etc.). Among others, the software tool
SWMM enabled modelling of the entire sewage system and the tool is increas-
ingly developed (starting from 1973 to the current version SWMM5 [51]). With
increasing computer power but also with progressing understanding of the relevant
mechanism in the different sub-parts of wastewater systems, integrated models
are developed which couple different sub-systems of the urban (waste)water cycle
(e.g. [20]). In the last few years, the requirement of integrated water management
approaches increased and new modelling approaches were developed and applied.
Hardy et al. [19] developed an integrated water management approach (UrbanCycle)
to investigate urbanization in the context of efficiency of the implemented technical
systems. Especially, for regions with high climatic variability, changes in boundary
conditions can possibly produce highly inefficient technical solutions of the urban
water management systems. Traditionally, investigations are performed with top–
down approaches, but for interacting systems new approaches are required [19].
UrbanCycle is a modelling framework for an integrated view on water supply,
wastewater and stormwater solutions which aims to model interacting systems from
bottom up. Therefore, clusters for allotments represent the water cycle/reuse at that
scale. For a performance assessment, these clusters are connected to headwork
systems (e.g. main trunks, etc.). Doglioni et al. [8] developed another integrated
framework to model interactions of the urban water systems with urban expansion.
The developed integrated framework dynamically couples a land use change model,
a sewer simulation model and a wastewater treatment plant (WWTP) model to an
integrated approach. For the infrastructure (sewage system and WWTP) no dynamic
update (redesign over time) was regarded. Therewith, the impact of urban expansion
on the existing sewage system (node-based) and the WWTP were investigated.
A multi-agent model combined with a cellular automata-based model was used
to model the (raster-based) urban expansion and population dynamics. But for
coupling of the raster-based information of the urban development model the
spatially distributed information was abstracted to the node based representation
of the sewage network and no information feedback and therefore no infrastructure
adaptation was regarded.

All these integrated approaches couple different models with data generalization
from raster-based to node-based information and vice versa, respectively and work
on different modelling scale (i.e. allotment cluster, head network level). In general,
such approaches bring up the problem of data abstraction and generalization.
Especially for integrated models with population and land-use dynamics, informa-
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tion feedback through the coupled models is crucial. There is also an increasing
requirement of new modelling approaches from another research field. Brown
et al. [3] formulated a transitions framework for urban water systems to describe
the historical and future scenarios of water management in Australian cities.
Therein, different steps of the transition from traditional urban water systems
(centralized water supply and sewage) to integrated urban water cycles (fit for
purpose water sources, i.e. water sources with different qualities are appropriately
used) and sustainable water management are defined. The framework encompasses
six transition steps to an adaptive, water sensitive city. For the transition to such
water sensitive cities, integrated modelling approaches including dynamic socio-
economic issues and decentralized solutions are required.

For environmental processes [44] described the need for integrated assessment
and modelling of such systems. Interdisciplinarity is described to be the key to
address environmental problems of the twenty-first century [43]. Modelling the
water cycle with taking into account socio-economic processes is a challenging
task. Especially, investigations based on agent based modelling techniques have
the potential to manage such spatially distributed and dynamic systems [36]. Also,
investigations on the impact of climate change have to be done on a large temporal
scale. To estimate, e.g. the impact of climate change on our environment requires
therefore the inclusion of the temporal change of demography and infrastructure in
the investigations. For example, Barth et al. [2] investigated these aspects on the
rural Upper Danube Catchment with a multi-actor simulation framework denoted
DANUBIA including agent-based approaches. To assess the impact on the entire
water cycle in that approach, scenario analyses were performed with this modelling
framework. Therein a raster-based modelling concept (proxel concept) was used for
a description of interdisciplinary interactions. Each raster cell (i.e. each proxel) is
connected to other proxels through fluxes [29]. In the approach a 1 km proxel size
is used for (mesoscale) modelling of land surface and socio-economic processes.

The European FP7 project “PREPARED enabling change” aims to develop a
software tool for modelling an integrated urban water management cycle. This
includes the technical water systems as well as socio-technical dynamics (urban
development, socio-economic transition, etc.). The project aims to model inter-
actions of water infrastructure including decentralized solutions, (multi-utility
assessment) including urban development, dynamic adaptation of technical urban
water systems under consideration of socio-economic transitions.

7.2.2 Raster-Based and Node-Based Models

With raster-based models, the available spatial information can be directly used
(see Fig. 7.1). There is no need of data generalization or abstraction (abstraction
for node-based models). This helps to cut down calculation time in terms of
feedback loops (computation time of data conversion) but also assists to evaluate
decentralized systems (e.g. rain-water harvesting).
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Fig. 7.1 Node-based and raster-based models in context with a “Digital City” description
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Fig. 7.2 Different modelling approaches for urban water systems

7.2.3 Definition of a Framework for Modelling Approaches

In the following, different steps of model complexity to evaluate urban water
systems are identified. Therewith, the shift in approaches to assess water systems
is described and discussed. Further, the theoretical framework of an integrated
“Digital City” [53] to comprehensively assess urban water systems on a raster-based
description of the investigation areas is characterized (see Fig. 7.2).

1. Single structures of systems are investigated (traditionally with “paper and
pencil” based methods). Detailed information on a specific structure is required
and therefore very case specific, local results are obtained. With these approaches
no holistic view can be obtained. Traditionally, such investigations are performed
due to either limited computer power or because of very specific questions
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(e.g. specific design issues). In regulatory guidelines (e.g. in Austrian guideline
for design of CSOs) there has already been a shift in the requirements for
assessment of such systems. While the former guideline focuses on design of
specific CSO structures [40], the new version aims already on an assessment of
the entire combined sewer system performance [23, 41].

2. Entire systems/processes are investigated (e.g. sewer network, water distribution
system or WWTP, etc.). But still, each system is assessed separately and only the
performance of the specific system (network, etc.) is simulated. But there is no
holistic view, and no broader assessment of the entire water systems (no system
interconnections).

3. Integrated urban water methods couple models of different sub-processes to an
integrated approach. By coupling different sub-systems to such an integrated
assessment helps to understand and identify holistic system coherences like real
time control for combined sewers and oxygen depletion in the receiving water.
Also coupled water supply and urban drainage models can be used to assess low
flow conditions [54].

4. GIS-assisted integrated infrastructure systems (different infrastructure models,
are embedded in a GIS environment as, e.g. provided in the software Mike
Urban or Hystem-Extran). The rising amount of available digital data enables
engineers to use GIS-software and raster-based spatially distributed data for
their investigations. Especially for data intersection, multi-utility interactions,
data verification, plausibility tests these new approaches have comprehensive
potential. Going one step further, population models are integrated in holistic
modelling approaches to investigate dynamic interactions. For raster-based
population models, this requires extensive calculation time for data conversions
and dynamic feedback loops.

5. The Digital City approach denotes integrated urban systems (interlinked
infrastructure and urban simulation models for population dynamics with socio-
economics, etc.) combined with raster-based models and data management.
This allows both the consideration of decentralized systems and spatio-
temporal interactions and the dynamic feedback of population models to
water infrastructure. The spatial resolution requirements to model such
systems node-based are (especially for larger systems) at least a significant
computational burden and sometimes even prohibitive for available computer
power. Approaches including urban dynamics with data conversion (raster to
node-based data conversion and vice versa) represent a pre-stage of such a
“Digital City”. Fully raster-based models respectively also fully vector based
descriptions on the other hand enable comprehensive and extensive investigations
of the urban system. For consideration of socio-economic processes in a
detailed spatio-temporal model (e.g. impact of general conditions/constraints
on the choice of technical solutions) such approaches are a prerequisite.
For traditional network based system description such an assessment is only
feasible with transfer functions/data conversion. One of the main advantages
of the “Digital City” are the interfaces and linkage with GIS approaches that
can be implemented with ease. Since there is a direct interface, neither data
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Fig. 7.3 Workflow of an integrated urban environment used in DAnCE4Water

conversion nor generalization (loss of spatial information) is required. The
software implementation of concepts can be realized with fewer efforts which
offer more opportunities to model interactions. The “Digital City” represents an
easier way to model spatial correlations of different technical systems. Primarily
in the context of decentralized solutions there are strong linkages between
the drainage efficiency, groundwater recharge and high water impacts. The
“Digital City” meets requirements of upcoming modelling tasks such as efficient
integration of population models, but has yet not been applied.

7.2.4 Assessment Tools and Applications

As discussed by [6] traditional GIS systems are unsuited to model dynamic urban
systems due to their limitations to represent time. Therefore, to model the evolution
of a city spatially explicitly, new software tools are required. The open source
software tool DynaMind [63] provides such a modelling environment to create
dynamic urban simulations. Like in GIS the urban system is represented with
simple geometric objects (nodes, edges, faces) and raster data. Linking of these data
enables the representation of complex objects like buildings or combined drainage
networks. These objects are altered by means of data encapsulated modules. To
create a module, DynaMind provides easy to use interfaces (CCC and Python) to
accessed/modified spatial data during the run time. DynaMind comes already with
a set of modules for data import/export and basic GIS functionality (spatial joining,
etc.) as well as more complex modules that enable the procedural generation of
parcels, buildings or sewer and drainage systems [64]. It also provides interfaces
to external hydraulic solvers like SWMM [51] and CityDrain3 [4]. These modules
can be linked together to describe a complex workflow in the urban environment.
Figure 7.3 conceptually shows the workflow of an application [49] to describe the
evolution of the urban environment and its water infrastructure.

DynaMind enables the procedural evolution of cities and their water infrastruc-
ture under numerous future scenarios to identify possible development strategies.
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Fig. 7.4 Procedural evolution of Innsbruck, Austria with DynaMind

This can be used to test, e.g. the robustness of a climate change adaptation strategy.
Figure 7.4 exemplarily shows one out of 1,200 realizations for the City of Innsbruck,
Austria.

7.3 Utilization of Multicore Facilities in Software
for Simulating Complexity and Dynamics
in Urban Water Management

In the following section different strategies to improve the computational perfor-
mance of urban water models are presented. This is required to take advantage of
recent developments in information technologies as the development of multicore
processors to deal with upcoming challenges for urban water systems.

7.3.1 Requirements for Simulations in Urban Water
Management

Urban water management requires computer simulations in time (timeframe ranging
typically from hours to years) and space (one to three dimensions). The models
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typically include both physical/biochemical process descriptions as socio-economy
considerations of water infrastructure planning and operation. Urban water models
have to be calibrated and validated on measurement data and parameter values
have to be determined during model calibration. This process is a mathematical
optimization problem aiming to minimize the deviations between measured data
and model output [26]. This means that multiple model runs are required before
a model can be used in any planning process. With models and their applications
becoming more and more complex by either tackling processes at a detailed spatial
scale, simulating whole urban environments or performing numerous model runs
for scenario or uncertainty studies, boundaries of traditional numerical solutions
are reached.

For example, comprehensive simulation studies to determine the uncertainty
bounds of model outputs (expressed as confidence intervals) require between 1,000
and 30,000 iterations [11]. Currently such studies are only possible for relatively
simple models with a short model runtime (e.g. conceptual models with coarse
spatial resolution). Uncertainties of more complex models are usually expressed in
scenario uncertainties investigating only a limited number of different scenarios.
Such scenarios can be future conditions as impact of climate change or urban
development [24], or parameter scenarios [30]. Therefore for each analysed scenario
one model run is required.

Depending on the application, different strategies for performance improve-
ment are possible. One possibility is to try to reduce the number of required
iterations by improving the calibration/uncertainty algorithm, e.g. by reducing the
parameter space which has to be investigated or by improving parameter sampling
strategies [10]. Another possibility is to try to reduce the computational time
of the iterations by different parallelization strategies ranging from batch level
parallelization to model level parallelization [32]. In the following different methods
of performance improvements are presented.

7.3.2 Model Level Parallelization

With batch level parallel strategies, a high factor of scalability and efficiency can
be achieved (an overview of batch level parallelism can be found in Sect. 7.3.3).
Nevertheless, in certain scenarios batch level parallelism is not an option or cannot
be used because of certain constraints. In such scenarios parallelization must
be targeted at deeper levels. The parallelization level discussed in the following
subsections is based on the models itself. Performance enhancements in this layer
also benefit users of single model call scenarios.

Parallelization at the model level is typically more involved than batch level
parallelization. This is because knowledge of the internal mathematical procedure
is necessary. Changes to the source code of the model, which could potentially
introduce new defects especially in the case of parallel and concurrent program-
ming, are needed. It is often the case that the current mathematical formulation
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or programming model does not allow to parallelize the model. The biggest
obstacle in model level parallelization is that changes to the source code are needed
and therefore the source code must be available. This is different to batch level
parallelization where the whole application is treated as a black box and can be
called from the operating system level. In this case no changes of the model itself
are needed.

The following sections show three different scenarios of model level
parallelizations. Each of them shows a different approach of parallelization which
makes them very interesting candidates for describing model level parallelizations.
The first one is the storm water management model (SWMM) from the US-EPA for
hydrodynamic sewer modelling. It is used for urban rainfall run-off simulations. The
second model is EPANET, again from the US-EPA. It is used for water distribution
network simulations. Models from the US-EPA are publicly funded and therefore
the source code is open source. The third one is CityDrain3 for conceptual sewer
modelling. With its simplified mathematical formulations of an urban drainage
system it is possible to run long-term effect simulations of urban drainage systems
(several decades) in a short manner of simulation run-time.

7.3.2.1 Parallel Flow Routing in SWMM 5.0

Due to its open source code and robust model implementation SWMM 5.0 is
a very popular tool for engineers and scientists in the field of urban drainage
modelling [51]. SWMM solves the 1D shallow water equations for flow routing
in sewers—also known as the Saint Venant Equations (SVE) [52]. Parallelization
of this model was imagined to be very complex. Reason for this was that the
complexity of the SVE did not allow to outline a parallel algorithm implementation
beforehand. The second reason was that the code was totally unknown and that it
was ported from Fortran. Further it has a long history of revisions and bug fixes.

With these preconditions a very pragmatic approach for parallelization was
chosen. The first step was to find the code segments that contribute the most CPU
time. A profiling tool showed that the method findConduitFlow, responsible for
calculating flow through the conduits using a finite difference scheme for solving the
SVE, takes the most time. This function is called for every conduit in the system in a
loop. Because the order of calculations for the conduit was not critical (the order was
as taken from the input file) it seemed as if the calculations were independent and
therefore a possible candidate for parallelization. After a review of the mathematical
formulations it was clear that the flow was calculated based on boundary conditions
upstream and downstream. These boundary conditions are calculated beforehand
and therefore the loop around findConduitFlow could be and was parallelized.

After several iterations of finding and fixing concurrent memory accesses,
introduced by the parallelization, a speedup of around ten on a twelve core machine
was achieved. Contrary to initial estimates and despite the uncertain preconditions
of the project very good results were achieved in the manner of weeks.
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7.3.2.2 Implementation of Parallel Solvers in EPANET 2.0

The EPANET model for the calculation of water distribution systems is based on
a graph of nodes with a certain demand and links (pipes) with a corresponding
roughness of the represented pipe. Together with reservoirs and tanks as boundary
conditions a system of non-linear equations is formulated in a Jacobian matrix and
solved using the iterative Newton–Raphson method. The pressure at each node is the
result of such a simulation. The pressure of the node influences the flow through the
pipes and vice versa. At each iteration step the Jacobian matrix needs to be solved
until pressure and pipe flow are stable [50].

Solving of the Jacobian matrix is the most time demanding task in EPANET.
Profiling assured this although the updating of the coefficients, which involves a lot
of pipe flow calculations, takes more time than expected. A lot of fast and parallel
solvers, even for graphical processing units (GPUs), are available for solving such
symmetric positive definite systems. Speeding up EPANET was imagined to be as
easy as replacing the hand crafted old solver with a call to a new parallel and highly
optimized one. Because such systems are highly parallel a GPU solver was targeted.

Seven solvers, including parallel sparse direct and iterative solvers for multicore
CPUs and many-core GPUs, were tested on a range of artificial and real world
water distribution networks. The outcome of this research is that the solver currently
implemented in EPANET, a solver that was published in a book 32 years ago [14],
is still the fastest one.

Linear systems from graphs are typically sparse. The algorithmic complexity of
a sparse solver does not only depend on the problem size, which is the case for
dense solvers. The complexity depends on the sparsity and the sparse pattern of
the problem. Systems from water distribution networks, although, are very sparse.
The ratio between the size of the system and the number of non-zeros is typically
around two. The fact that water distribution systems are very sparse and typically
very small, dimensions in the range of 104, makes them not a good target for high
performance solvers which aim at systems that begin at dimensions of 106.

7.3.2.3 CityDrain3: Parallel Conceptual Sewer Modelling

CityDrain3 (CD3) is the successor of CITY DRAIN II (CD2) a very popular
conceptual integrated urban drainage modelling (IUDM) toolkit. Although CD2 is,
as SWMM, a simulation toolkit for urban drainage modelling (UDM), the modelling
approach is very different. CD2 uses a lumped, conceptual cause–effect approach.
CD2 is used for long-term simulation for which such a modelling approach is
favoured due its lower computational requirements.

CD2 was implemented using Matlab/Simulink access to the internal simulation
core and therefore parallelization of it was not possible. Because of this and the
fact that a CD2 version free of Matlab/Simulink has additional advantages, it was
rewritten into CD3 which follows the same modelling principles but uses CCC as
its implementation base.
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In CD3 the wastewater cycle is modelled as a directed acyclic graph where each
node represents an element of the wastewater cycle and links represent data/flow
transfer between nodes. Links have therefore no computational aspects assigned.
A node can be e.g. a sewer, a catchment, a wastewater treatment plant or a river
stretch. Because of the conceptual nature the precondition of a node is the outflow
of its upstream connected nodes. A parallelization strategy in the same manner as in
SWMM is therefore not possible.

Several strategies were implemented to exploit parallelization in such conceptual
IUDM simulations. The first one exploits the fact that a wastewater system is often
in the shape of a tree with lots of independent streams that eventually merge at the
WWTP. At each source, typically a catchment, a thread can be started. Although this
offers a way of parallelization it is very limited with regards to parallel workload.
A second strategy exploits the fact that parallelization can be pipelined through the
time steps. This is possible because the length of a time step is fixed and known
before hand [4].

The rewrite of CD2 from an interpreted general purpose simulation framework
into a tailor made, native and parallelized rewrite in CCC made CD3 up to 40 times
faster.

7.3.3 Performance Improvement by Batch-Level Parallelism

In urban water management modelling the chosen parallelization technology and
especially the level of which parallelization is realized in the source code is
strongly depending on the modelling aim and existing modelling software used.
In the previous Sect. 7.3.2 already existing and newly developed software tools and
their parallelization strategy were described. Here the performance improvement
according to computational efficiency and speedup on multi/many-core systems
within one model simulation run was the motivation.

Another interesting research field in urban water management is to assess the
sensitivity of system components according to specific performance indicators.
Under the scope of this book following two different applications can be identified
which are:

• Assess the sensitivity and impact of a model parameter (e.g. roughness of
conduits within a hydrodynamic sewer model) on model simulation results (e.g.
water level at junctions) [25].

• Assess the vulnerability and consequences of existing systems according to
hazardous events (e.g. pipe bursts within a water supply system due to deep
temperatures [35] or a sewer pipe collapse due to deterioration [27, 34]).
Moreover cascading effects can be assessed where the first hazardous event (e.g.
failure of a source and therefore change in pressure regime) is the trigger for
another hazardous event (e.g. the pipe burst) [57].
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From the programmers and model developers perspective this application can be
realized by (1) modelling the needed adaption within an original model (e.g. pipe
burst of one specific pipe), (2) simulate the model and (3) access the consequences
of the adaption with global performance indicators (PI) by comparing simulation
results from the adapted model with the original model. Repeating steps (1)–(3) for
all components within a system, vulnerable/senstive sites according to a specific
hazard can be identified.

One might immediately realize that testing each component within a system
against such hazardous events needs many different model runs. As each test is
independent from each other all model simulations can be run in parallel moreover
this parallelism is in theory embarrassingly parallel (batch-level parallelism). Many
existing model software products in this field (e.g. EPANET2 and SWMM5) have
grown over time and therefore often have no parallel implementation. In this kind
of application one huge advantage is that the original model simulation code can be
used and at the same time multicore systems can be utilized. The only limiting factor
is data communication during the evaluation of all PIs which leads to a non-linear
speedup.

Performance tests showed that this parallelization strategy in combination with
the software presented earlier has a speedup of 12 by using twelve threads at
batch-level and one thread at the model level. By using one thread at the batch-
level and 12 threads at model level a speedup of only four can be achieved.
More investigations with other model simulation software products (e.g. EPANET)
showed that this parallelization strategy is a good alternative to speeding up the
previously described applications. Moreover if the model software comes already
with a parallel implementation (e.g. parallel version of SWMM 5.0, Sect. 7.3.2.1—
Model level parallelism) and at the same time parallel executing these models,
investigations showed that the best CPU-load efficiency can be achieved by only
applying parallelism at the batch-level [32].

7.4 SPH: An Alternative Numerical Method to Explore Fluid
Phenomena

7.4.1 Motivation and Aim

SPH is a computational fluid dynamics (CFD) method for solving fluid flows.
In Layman’s terms in SPH a fluid is represented by a myriad of small spheres
which are referred to as particles. As the movement of particles is governed by
the continuum equation of fluid dynamics, the overall picture resembles the true
hydrodynamic phenomena. By statistically weighting the influence of each particle’s
neighbourhood (see Fig. 7.5), the equations of motion reduce to a set of ordinary
differential equations which are easy to understand and implement [37].
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Fig. 7.5 Comparison between Eulerian and Lagrangian movement (left) for an SPH particle with
five neighbours (right)

SPH was introduced, at the same time, by [15, 28] to solve astrophysical
problems. In contrast to conventional grid based CFD methods, SPH is a fully
Lagrangian meshless method such that each particle is free to move and carries
physical parameters like mass, velocity and density. SPH has been applied to a wide
range of problems in the fields of material science, oceanography and volcanology.
However, the core application area of SPH is fluid mechanics, in particular transport
phenomena [61], free surface [16, 38] and multiphase flows [5].

Compared to conventional CFD methods, SPH has various advantages owing
to its Lagrangian nature (see Fig. 7.5). Namely, advection is treated exactly and
conservation laws of mass, linear respectively angular momentum and energy
are satisfied. In addition, SPH is a physically correct numerical scheme and can
be formulated without empirical parameters such that the effort of calibration is
minimized. Hence, once the SPH model is set up, it is reasonably simple to account
for complex hydrodynamic phenomena like multiphase flow and transport of solid
objects. However, the physical correctness of the method requires comparable large
computational demand, which can be reduced by relaxing physical requirements.
For example, for some practical applications it is sufficient to approximate incom-
pressible fluids by slightly compressible analogues. Through this approach, which
is referred to as weakly compressible SPH, the solution of a pressure Poisson
equation is substituted by a simple equation of state and hence computational cost
is significantly reduced.

Nonetheless, further reduction in simulation time is required for practical
applications of SPH. This is achieved by parallelization of the method, which is
simplified by the fact that the numerical scheme itself is highly parallel. SPH has
already been implemented on highly parallel computing devices like graphics pro-
cessing units [18]. In particular, an efficient parallel solution for finding neighbours,
which is the process that requires most computational power, was found [17, 22].
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7.4.2 SPH for Sewer Modelling

Over the last three decades, urban drainage modelling evolved from simple models
to high complexity [47]. While state of the art methods for one dimensional
hydrodynamic simulations in pipe networks exist, recently more complicated CFD
methods have been applied to simulate specific structures [12]. However, modelling
of pollution transport and sewer solids is still an unresolved issue. Both deterministic
and conceptual models failed to convincingly explain the underlying phenomena
(see e.g. [9]). In this respect there is a perspective for a novel, deterministic
numerical method as represented by SPH.

SPH has several advantages which makes it a viable alternative to solving
the simplified St. Venant equations, which are used in state of the art sewer
hydraulic simulation models. First of all, the method is inherently three dimensional,
while a reduction to two dimensions is simple but only motivated by limitations
in computational power. Therefore, complex hydraulic structures can be easily
modelled. Secondly, as the continuum equations of fluid mechanics can be used
as governing SPH equations, it is possible to model pressure effects in pipes
which are currently bypassed by the Preissman Slot [46]. Thirdly, extension of
SPH to multiphase flow and solid transport phenomena is much simpler than the
conventional Eulerian methods. Especially, the application of SPH to the latter field
gives a whole new angle to tackle the problem of pollution transport in drainage
systems. However, the challenge of huge computational burden for simulating SPH
sewers remains. In particular, it is unclear whether the SPH method is applicable for
real world pipe networks, but stringent parallel coding and use of novel technology
like graphics processing units could open a pathway. Based on present results we
foresee a huge potential of the method, whilst significant obstacles still need to be
tackled.

7.4.3 SPH for Wastewater Treatment Simulations

As with sewer modelling, multiphase and transport phenomena are the key chal-
lenges for numerical simulations of wastewater treatment processes. Since con-
ventional CFD methods are not particularly suitable for these problems, currently
the fluid dynamics are neglected in the well-established activated sludge models
(ASM) [21]. Even though the biological kinetics are successfully modelled with
this approach, local effects are neglected. Hence, a wastewater tank is assumed
to be completely mixed at all times and therefore the hydraulics are effectively
uncoupled from biological processes. Whilst the development of SPH is not yet
advanced enough to accurately simulate air, sludge and water phases at the same
time, it is required to separate the discussion of aeration and sedimentation tanks.

Aeration processes can be modelled as two-phase air water flow, but this is
challenging since huge density differences cause rapid movement at the phase
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interface which gives rise to instabilities in the SPH formalism. Recently, a
simple two-phase SPH algorithm has been proposed to cure this problem [39]. In
combination with adding an oxygen concentration parameter, which is evolved by
an advective diffusion equation [1], the local dissolved oxygen concentration is
accounted for correctly. As this key parameter governs the differential equations
of the ASM model, the local oxygen concentration provides a coupling interface
between the local hydraulics and the biological kinetics. This approach improves
the present ASM model and is the first step to advance to a full-scale three-phase
model.

Similar to aeration tanks, sedimentation processes are well described by two-
phase SPH. In contrast to air water flow the solid phase is not modelled as a weakly
compressible fluid phase, but sediments are considered as a slightly compressible
pseudo-Newtonian fluid. Thereby, the Newtonian constitutive equation has to be
modified [13] and a yield criterion is required to correctly account for sediment-fluid
scouring at the phase interface. Both the Mohr-Coulomb and the Drucker-Prager
criterion yield satisfactory results, but the latter method is slightly preferred [13].

7.5 Conclusions and Outlook

Scientific computing in urban water management is widespread. This chapter
mainly summarizes current research activities at the Unit of Environmental Engi-
neering within the framework of the research center “Computational Engineering”
at the University of Innsbruck focusing on currently challenging issues. The first
topic of the chapter reviews increasing complexity of assessing urban water systems
respectively describes the shift to city scale analysis. In particular it is outlined
how increasing computer power over the last decades changed the way of how
system analysis in urban water management is performed. In traditional engineering
approaches the complexity of the problem is reduced in order to obtain an applicable
mathematical problem description. For that an in depth understanding of the that
particular (sub-)system is necessary. The application of such a description but
also simulation models can usually be applied in research and practice. Increasing
computer power enables us to integrate and couple models with more and more
complexity. Different existing models and extensive amount of data can be used for
comprehensive analysis which produces an effusive amount of results data. With
that the complexity of the engineering task is shifted to analysis of the result data.
Such tasks are therefore usually research applications. Nonetheless, such analysis
deepens the system understanding and helps also to obtain system coherences
which have been usually overlooked. The second topic demonstrates the utilization
of multicore facilities in software for simulating such complex systems related
to urban water management. In that section it is outlined which parallelization
approaches are required in order to speed up different kinds of simulation models in
urban water management. This work aims to reduce computation time for existing
research tasks and also practical applications. The third topic discusses alternative



190 R. Sitzenfrei et al.

numerical methods SPH to explore fluid phenomena in urban water management.
That approach can easily be extended towards multiphase flow phenomena, solids
transport and bioconversion processes and shows therefore great potential in future.
Thus SPH could potentially be the core numerical engine to simulate fluxes and
processes in the complete water infrastructure on a very detailed level.
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Chapter 8
Numerical Simulations in Hydraulic
Engineering

R. Gabl, B. Gems, M. Plörer, R. Klar, T. Gschnitzer, S. Achleitner,
and M. Aufleger

Abstract The main focus of the chapter is to present various case studies, showing
the link between Computational Fluid Dynamics (CFD) and traditional scale model
tests in the laboratory. The goal is to illustrate the possibilities and limitations when
coupling these two different methods in the context of hydraulic engineering appli-
cations. The topics range from hydraulic investigations where numerical simulations
are a vital tool for model validation (optimisation and quantification of local head
losses, the capacity of a spillway and as a third example impulse waves caused by an
avalanche), to modelling of debris flow and log jam processes, including bed load
transport issues. The use of such hybrid approaches can contribute to cost-saving
and realisation of more complex investigations in shorter time.

8.1 Introduction

Numerical methods in the field of Computational Fluid Dynamics (CFD) are a
very powerful and important tool for hydraulics and hydraulic engineering. Case
dependent 1D-, 2D- and 3D-numerical approaches are applied. Various academic
and commercial codes are available.

Subsequently, two different 3D-numerical software solutions will be presented:
ANSYS-CFX and FLOW-3D. Both are commercial codes and each of them has its
special application area and advantages. Open source codes are rare in this area, but
for example OpenFOAM or TELEMAC-3D could be a suitable choice.

R. Gabl (�) • B. Gems • M. Plörer • R. Klar • T. Gschnitzer • S. Achleitner • M. Aufleger
Unit of Hydraulic Engineering, University of Innsbruck, Technikerstr. 13, A6020 Innsbruck,
Austria
e-mail: Roman.Gabl@uibk.ac.at; Bernhard.Gems@uibk.ac.at; Manuel.Ploerer@uibk.ac.at;
Robert.Klar@uibk.ac.at; Thomas.Gschnitzer@uibk.ac.at; Stefan.Achleitner@uibk.ac.at;
Markus.Aufleger@uibk.ac.at

G. Hofstetter (ed.), Computational Engineering, DOI 10.1007/978-3-319-05933-4__8,
© Springer International Publishing Switzerland 2014

195

mailto:Roman.Gabl@uibk.ac.at
mailto:Bernhard.Gems@uibk.ac.at
mailto:Manuel.Ploerer@uibk.ac.at
mailto:Robert.Klar@uibk.ac.at
mailto:Thomas.Gschnitzer@uibk.ac.at
mailto:Stefan.Achleitner@uibk.ac.at
mailto:Markus.Aufleger@uibk.ac.at


196 R. Gabl et al.

In general, the Navier–Stokes-equation is the foundation of the numerical
modelling concept. Because of the necessary huge amount of calculation power,
direct numerical simulations (DNS) of this equation are only possible for special
research problems. For most engineering cases, each of the values that has to be
calculated is split into a mean part (time average) and its fluctuation. To reduce
the effect of the non-linearity, only the mean values of these equations are solved.
In these so called Reynolds-averaged-Navier–Stokes (RANS) equations, the average
of the fluctuation is zero, but the Reynolds-stress tensors have to be added. To close
this system, further equations have to be provided by the turbulence model [58,73].
Therefore, the complete turbulence is represented by the turbulence model and all
results are mean values. In between of DNS and RANS the large-eddy simulation
(LES) could be classified. Therewith, only a sub-grid scale-model is used and every
bigger Eddy spectrum is resolved [32].

In contrast, the 1D-numerical solutions are based on a mean value of a section on
a flow path. To solve the governing mass and momentum equations, the method of
characteristics (MOC) is a very popular and often used approach for pipeline sys-
tems [27, 28]. Hydraulic System [8] and WANDA [10] are the two most commonly
used software for transient pipe flow (water hammer, surge chamber oscillation)
at the Unit of Hydraulic Engineering at the University of Innsbruck. The finite
difference (FD) and finite volume (FV) methods are alternative ways [27]. Amongst
others, the software HEC-RAS (Hydrologic Engineering Centers River Analysis
System), provided by the US Army Corps of Engineers, uses the FD-method to
calculate free surface flow. The software includes unsteady flow, sediment transport
and water temperature modelling [23, 70].

Based on the 1D-approach, each value is calculated for one section. For the
two presented case studies in Sects. 8.5 and 8.6, a 2D-numerical software has
to be used. With the help of the commercial software HYDRO_AS-2D pure
hydraulic investigations are conducted. In case of bed load transport processes, the
software HYDRO_GS-2D (Version 3.0) is applied. Both are based on the Finite
Volume Method (FV) to solve the Shallow Water Equations [53]. Morphological
changes and bed load transport are modelled using a multi-fraction multi-layer
approach. Mass balancing is performed between three layers: a top mixing layer,
an intermediate subsurface layer and a bottom layer. The grain size distributions
in the mixing and subsurface layers are determined according to Hirano [36]. Bed
load transport is calculated with a multi-fraction application of the Meyer-Peter and
Müller equation [48] including a hiding function as introduced by Hunziker [38,39].
The fast and reliable code is able to describe grain sorting and bed armouring
processes as well as embankment collapses. The effect of transversal bed slopes
and secondary flows on the sediment transport capacity is modelled by well-known
empirical approaches. To create a case study model a multitude of different param-
eters and boundary conditions has to be defined, e.g. a three-dimensional surface
mesh, the total and skin roughness coefficients and the initial grain size distributions
for each node and layer based on field measurements. The 2D-numerical analysis
has successfully been applied to assess such different aspects as for example the
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deposition and flushing of man-made reservoirs, bed morphology changes during
flood events or the long-term morphodynamic evolution of up to 50 km long alpine
river reaches [42, 43].

8.2 Asymmetric Orifice

In general, the main goal of a hydraulic design is to reduce the head losses in
the system in an economic way. Therewith, the transported discharge through the
pipeline or the energy production can be maximised. But for specific cases, a local
head loss is wanted. An example for this could be orifices, which cause a defined
amount of local head loss and are added into the flood discharging tunnel in order to
dissipate energy [41, 46, 74]. A second application is the measurement of discharge
in pipes [1].

Another use for the orifices is to throttle a surge tank of a hydro power
plant. Thereby, the surge tank oscillation is limited in a practical way and the
needed volume in the chambers of the surge tank can be reduced [28, 40]. These
hydraulic parts are sub-classified in (a) symmetric orifice, (b) asymmetric orifice
and (c) reverse flow throttle (also known as vortex chamber diode [31]). The last
two mentioned types of construction provide a different head loss depending on the
flow direction and will be concentrated on.

Every change of the discharge at the turbine has an effect on the flow regime of
the power plant. Especially a fast shut down causes a water hammer, which runs
up the penstock and is reflected at the next free surface. The pressure waves put
a lot more strain on the system than the normal use under static pressure. Thus,
the building costs for a long headrace tunnel can be far smaller if a free surface
is provided by an added surge tank. In addition, the kinetic energy that differs
in the headrace tunnel and the penstock can be compensated by an up- or down-
lift of the free surface as potential energy in the surge tank. Hence, a periodically
changing flow between the surge tank and the reservoir is initiated, which is a slow
mass oscillation in comparison to the fast pressure waves of the water hammer. The
movement is damped by the friction in the system and so a new equilibrium state is
reached in the hydraulic system [40,52]. To avoid unstable configurations, different
criteria were developed in the past. One is the criterion from Thoma [69], which
limits the minimum area of the cross section of the surge chamber.

Modern high-head hydro plants are designed to ensure a free operation
management. Even the most disadvantageous cases of multiple changes in the
hydraulic system should not lead to an overload. The overall aim for the design is
to minimise the required volume in each chamber of the surge tank and to achieve a
new equilibrium state in the hydraulic system as fast as possible. For this reason, the
asymmetric behaviour of the loss quantity with respect to the flow direction through
the throttle is a very useful effect [28]. Therefore, the upward loss is limited so that
the head race tunnel is not overstressed. For the reverse flow situation, increased
losses are added to the system to throttle the oscillation.
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8.2.1 Investigation Area

The presented investigation is part of a research project with the energy producer
TIWAG-Tiroler Wasserkraft AG. In addition to the rebuilding of the penstock after
nearly 50 years of operation, a new surge tank is added to the high-head power
plant Kaunertal (Fig. 8.1). The overall hydraulic system was simulated with the help
of a TIWAG in-house 1D-numerical code. This global simulation was refined by
3D-numerical simulations. In this context, three different parts were investigated:

1. The numerical optimised behaviour of the asymmetric orifice is also validated
with the help of a scale model test.

2. Based on the change from the existing reverse flow throttle [65, 66] to an
asymmetric orifice and other boundary conditions, the capacity to store more
water in the upper chamber has to be increased. Therefore, to the existing upper
chamber of the surge tank a new tunnel is added. It is connected to the existing
tunnel at two points and so a nearly circular system has been construed. The
transient filling and emptying processes including the reflected waves had to be
checked. For this free surface problem the 3D-numerical software FLOW-3D was
used.

3. The flow conditions in the connection of the existing headrace power tunnel to
the newly built penstock and the lower chamber of the surge tank are numerically
simulated (ANSYS-CFX) to look for further optimisation options.

Further information for the last two points is provided in [19,20]. The presented case
study is focused on the quantification and optimisation of an asymmetric orifice.
This throttle is placed on top of a 90ı-elbow between the vertical shaft and the
circular lower chamber of the surge tank (Fig. 8.1). The radius of curvature of the
elbow is chosen with 7.0 m and the cross section from a diameter of 5.0 m (lower
chamber) to 4.0 m, which is the starting section of the asymmetric orifice. The
minimal diameter is 3.1 m and after the throttle, the flow path is expanded to 6.3 m
(diameter of the shaft). The flow through the orifice is limited with 140 m3=s. All
investigations are conducted under steady-state conditions. After this investigation,
the values are used in the global 1D-numerical simulation as a local head loss
coefficient [16].

8.2.2 Basic Equations

For real incompressible fluid the Bernoulli equation:

z1 C p1

� � g C ˛1 � v21
2 � g D hE1 D constant D hE2 D z2 C p2

� � g C ˛2 � v22
2 � g C hv

(8.1)
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Fig. 8.1 Simplified sketch of the surge tank including the flow directions

states that the total energy hE is constant along a steady continuous streamline.
hE is the sum of elevation z, pressure head (which is equal to pressure p divided
by density � and gravity acceleration g) and the kinetic energy based on the
velocity v. The indexes 1 and 2 in this equation mark the different points along the
streamline [3,50]. If the sections are numbered in flow direction, hv is equivalent to
the difference between the energy heights hE1 and hE2.

The kinetic energy flux coefficients ˛1 and ˛2 are correction factors for the
non-uniformity of the realistic cross-sectional velocity distribution. For normal
pipe-flow, the value of ˛ can range between 1.0 and 2.0, the last value representing
a fully developed laminar (parabolic) flow field [71]. To calculate the coefficient,
the complete velocity profile v.A/ has to be known:

˛ D 1

A � v3mean

Z

A

v.A/3dA (8.2)

The measuring of the velocity could not be conducted in the presented scale model
test. Because of the high pressure in the model (up to 7 bar) no transparent part
could be integrated, to use laser Doppler anemometry (LDA) or Particle image
velocimetry (PIV) [51]. As an assumption, ˛1 and ˛2 are assumed to 1.0 [�]. As part
of the Post-Processing of the numerical results, these values are calculated and used
for the quantification of the local head loss coefficient in both model concepts [11].

The elevations of the sections before and after the orifice differ in nature
(Fig. 8.1). For the investigation the symmetry plane is turned into the datum plane
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(90ı rotation around the axis of the lower chamber). Therewith, z1 is equal to z2 and
the difference is zero.

The head loss hv can be split into the part, which is caused by friction between
the two sections, and the actual local head loss of the structure. The observed area
is situated as closely as possible around the orifice, so friction is comparably very
small and can be disregarded. Based on this assumption, the loss hv in Eq. (8.1)
represents the local loss of the orifice. Only in rare cases the head loss is directly
calculated because it also depends on the discharge Q. In general, one of the
following parameters is used: (a) 
 [�] and (b) � .s2=m5/. The connection between
these two coefficients is given by:

hv D 
 � v
2
2

2 � g D � �Q2 (8.3)

The value � is often used for 1D-simulations of surge tanks, but in literature
normally 
 is used, for which the velocity v2 at the downstream section is further
needed for the calculation of hv . In case of higher Reynolds-Numbers, both values
are constants and only depend on the geometry.

In the case of an asymmetric orifice the local head loss coefficient is depending
on the flow direction. Hence, the parameter �DownUp [�] is defined by the ratio of
the �-values and quantifies the asymmetric behaviour. Using the 
-coefficients, an
additional factor depending on the two cross sections in the lower chamber and the
shaft has to be introduced as follows:

�down

�up
D �DownUp D 
down


up
� r4Shaft

r4Lower chamber

(8.4)

The value �DownUp is the main optimisation parameter and should be greater than
2.5 [�] for the newly built asymmetric orifice. For the previous throttle �DownUp

reached up to nearly 50.0 [�] [65, 66], but needed a start-up time which can cause
additional transient effects in the hydraulic system.

The following investigation concentrates on the local head loss coefficient 
 in
one direction. Combining the basic equations (8.1) and (8.3) with respect to the
assumptions for the elevation and the kinetic energy flux coefficient, the local head
loss coefficient 
 can be defined as:


 � v
2
2

2 � g D hV D p1 � p2
� � g C v21 � v22

2 � g (8.5)

) 
 D
�
p1 � p2
�

C v21 � v22
2

�

� 2
v22

(8.6)

Due to the rotation into the datum plane, the value of 
 can be calculated
independently of gravity with Eq. (8.6). The velocity v and the pressure p at both
sections of the pipes are therefore needed. The differential pressure �p is defined
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Fig. 8.2 Scale model test including the additional orifices

as .p1 � p2/ and can be measured with a higher accuracy than each pressure
separately [16].

Using the principle of mass conservation (continuity equation):

Q D v1 � A1 D v2 � A2 (8.7)

the difference
�
v21 � v22

�
can be reduced to a geometrical relation between the cross

sections A1 and A2. Therewith, Eq. (8.6) can be converted and the loss coefficient is
calculated as follows:


 D
 
�p

� �Q2
C
�
A�2
1 � A�2

2

�

2

!

� 2 � A22 (8.8)

All in all, Eq. (8.6) is easy to use in the 3D-numerical simulation but for the
scale model test equation (8.8) is more convenient since the measured values are:
(a) differential pressure �p and (b) discharge Q. It is essential for the calculation
of the local head loss coefficient to know the observational error of each parameter.
Further investigation on this topic can be found in [16].

8.2.3 Modelling Concept

At the beginning of the optimisation process the fixed boundary conditions have to
be defined. In this particular case the diameter of the lower chamber and the shaft
should not be modified. The 90ı-elbow is optimised separately at the end. Thus, the
only variable is the geometry of the last two segments of the orifice. For this, a first
assumption is to be made. Three different tools can be used:

• Tabular values based on the literature or standards
• Scale model test in the laboratory
• Numerical simulations

As part of the research project, a new concept of the complete process was
formulated and tested (Fig. 8.2). For both, the new and the existing concepts, the
starting point are tabular values. If a standardised throttle is used, the exact values
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Fig. 8.3 Scale model test including the additional orifices

for the local head loss coefficient can be found in literature. Especially asymmetric
orifices are non-standard parts and so only a rough estimate can be made based on
these tabular values.

As a next step of the actual concept, these first assumptions are tested in
physical laboratory tests [34, 41]. More and more, numerical simulations are used
as a prearrangement and validation of the scale model test [37]. The new concept
changes the weighting of these two tools. The main model concept should now be
the 3D-numerical simulations, which are validated with the scale model test. The big
advantage of this approach is that the numerics can easily accompany the complete
planning and constructing process.

In addition to this, at an early stage of the investigation, the preliminary numerics
can offer a wide range of geometry variations and help finding a suitable orifice.
Thus, a simplified model can be used. In this particular case, the 90ı-elbow was
reduced to a change in the diameter of the pipe. Only a segment of this axially
symmetric geometry was simulated with ANSYS-CFX [2]. Based on the fully
parameterised geometry, the influence of each length and angle on the local head
loss coefficient could be analysed.

Based on these variations, hypotheses for the future design of asymmetric
orifices could be found [16]. Nine different orifices (Fig. 8.3) are defined and
tested in parallel in the scale model test and with ANSYS-CFX. For this validation
experiment, the numerical simulation of the model including the elbow was done on
the scale of the laboratory test (scale 1:25). Due to the symmetry the geometry could
be reduced to a half model. Each part was verified separately and the comparison
led to a very good agreement of the two model approaches. Hence, the use of the
3D-numerics as well as the hypotheses for the design could be proved and the
optimisation target �DownUp (8.4) of 2.5 [�] could be reached.
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Fig. 8.4 Exemplary numerical results of the optimised asymmetric orifice in downward (left) and
upward (right) flow direction—nature scale, ANSYS-CFX

To check the laboratory results in nature scale, additional numerical simula-
tions were conducted, which allow to asses scale effects in the laboratory tests.
Furthermore, the influences of modifications in the construction of the elbow and
the outer part of the orifice were checked. So the complete detail design process
could be supported by the 3D-numerics. Exemplary results (streamlines) of the last
simulations are shown in Fig. 8.4. The now optimised asymmetric orifice is currently
under construction and in 2015 the complete project should be finished.

8.2.4 Conclusion and Further Research

3D-numerical simulations of such complex and unique hydraulic parts offer an
effective way to quantify the local head loss and check the flow conditions. The
model can be modified and adapted to the need of each planning phase. The
investigation can be done as part of a new design or of a revitalisation project.
Compared to only using assumptions based on tabular values, better results can be
reached.

The simple way to vary the geometry in the numerical model can lead to a
cost-effective optimisation process. Each simulation, independent of the discharge
or geometry changes, needs nearly the same time to calculate. In comparison to
this, the scale model test offers a wide range of discharge variations. If the model
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is built up, only a few seconds are needed to measure a different flow situation.
Based on this fact and the long lasting experience with scale model tests, it is highly
recommended to regularly validate the numerical results based on laboratory tests.

The results of each simulation, which is conducted as part of the presented
research project, are based on the RANS equations. It could be proved that the
mean value of pressure fluctuation could be simulated very accurately [16], but if the
minima and maxima at the time dependent values are needed, the results based on
the measurements of the scale model tests have to be used. Other numerical models,
for example LES, could simulate these fluctuations, but would require a lot more
calculation power and are part of future research.

8.3 Spillway

To prevent an overtopping of the dam caused by an incoming flood in the reservoir,
spillways are used as a safe passage into the downstream river section. These
hydraulic structures can be categorised according to the function (emergency or
service use), to the mode of control (uncontrolled or gated) as well as to typical
hydraulic criteria. Most spillways are built as side channel, overfall, chute, tunnel or
a combination of the mentioned structures. In rare cases, a siphon or a shaft can be
part of a spillway [50, 68].

The quantification of the design flood is an essential part for the dam safety.
All of the different methods are based either upon historical records of maximum
observed floods or on rainfall analysis, which is converted to runoff. Details can
vary depending on the country. In Germany, for example, two discharges have to be
proved based on the DIN 19700-11 (Sect. 4.3). For large dams, the smaller BHQ1 is
calculated with a return period of 1,000 years and the BHQ2 with 10,000 years. The
BHQ1 should pass the reservoir without damage even if the outlet with the highest
capacity has to stay closed (n � 1 rule) [68].

For Austrian dams the BHQ (Bemessungshochwasser) is regulated similarly
to Germany, but with a return period of 5,000 years. The second bigger flood,
also called SHQ (Sicherheitshochwasser), is identical to the probable maximum
flood (PMF) [6]. This is depending on the flood producing catchment areas and
is not a fixed value. With regard to design purpose, it is considered to have the
same 5,000 year rainfall return period, but acting on somewhat more unfavourable
pre-conducting as the BHQ. Therefore, it has to be reviewed and if necessary
corrected [50].

8.3.1 Investigation Area

The presented case study is an uncontrolled side-channel spillway of the balancing
reservoir Enzingerboden located in Austrian Alps owned by the ÖBB-Infrastruktur
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Fig. 8.5 Discretised geometry of the numerical model—FLOW-3D

AG. The capacity of the spillway has to be increased in about additional 100 % of
the actual maximum flow rate to reach the new PMF.

The main part of the spillway is a side-channel, which is placed next to the
dam (Fig. 8.5). The weir is nearly perpendicular to the dam axis and split into
two sections by the entrance to the bottom outlet of the reservoir. Under current
conditions, an unsubmerged overflow could not be maintained for the given new
design flow. Hence, it is necessary to widen the limiting channel and the opening in
the direction of the dam axis. Afterwards, the steep declivity leads to a fast increase
in velocity of the water and at the end of this channel a jump is located.

8.3.2 Modelling Concept

As a first step, the given geometry was tested with 3D-numerics. The new design
flood would cause an overtopping of the dam, thus a redesign of the spillway is an
inevitable consequence. Therefore, a hybrid concept based on two different model
assumptions was used [9, 21]:

1. To find a new geometry of the spillway with respect to maximum allowable water
levels in the reservoir, different options are first investigated with the help of
3D-numerical simulations (Fig. 8.5).

2. For detailed optimisations of the structure and validation of the numerics a scale
model test was built up (Fig. 8.6).
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Fig. 8.6 Scale model test—operating state (left) and without water (right)

For the 3D-numerics the software FLOW-3D [12] was used. This software is
limited to structured rectangular mesh blocks. To simulate a complex geometry,
different blocks can be strung together and nested. The latter is used to refine the
grid locally. In contrast to other software solutions such as ANSYS-CFX [2], which
was used in Sect. 8.2, the discretisation of the geometry in FLOW-3D (also known
as fractional area/volume method or short FAVOR [12]) has to be checked carefully.
The restricted meshing is a disadvantage of FLOW-3D but it is compensated by a
very good simulation of free surface flow. The software does not need to simulate
the air-flow above the free surface and only calculates the velocity field of the water.
To track the surface as a sharp interface moving through the used computational
grid, the Volume of Fluid (VOF) method is used. Furthermore, in case of moving
objects (Sect. 8.4) or small changes in the geometry the grid can stay the same and
so a comparison can easily be made between two variations of the geometry [16].

In Fig. 8.5 the discretised geometry of the 3D-numerical investigation is shown,
which considers a rectangular section of 150 to 70 m of the reservoir. Six mesh
blocks with nearly 4 million cells (50 % of them are active in the simulation)
are defined. The upstream part of the reservoir and the inflow are simulated with
an inflow block, where the discharge is provided from the bottom of the block
(Fig. 8.5). Hence, the water level in the reservoir is depending on the capacity of the
investigated spillway geometry. Different local adaptations such as higher inclines
of different parts in combination with an expansion of the channel were investigated.
At the end of this optimisation process, a geometry could be defined for which the
SHQ with 211 m3=s could safely pass the dam [21]. No further optimisations were
investigated. In addition to a preliminary geometry further findings could be made:

• The velocity in the reservoir before the weir section is very small. Hence, the
geometry of the reservoir has nearly no impact on the capacity of the side
channel.
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• Based on the same reason, the dam geometry can be simplified to a vertical wall.
• The area behind the dam and especially the foundation stay dry in all investigated

cases.
• All optimisations are based on the adding of material.

The first three points allowed a simplification of the model boundaries of the scale
model test. As a result, the lab scale could be improved from 1:25 to the used scale of
1:20 (Froude-model [34]) without additional costs. The complete geometry, which
has to be manufactured, could be reduced to essential and mostly pre-fabricated
parts. Hence, a fast and cost-effective build-up was possible. The last point of the
itemisation is essential for the operation of the model. The existing sealing level and
the ground structure can stay untouched during the complete optimisation process.
Each built-in component and the combinations could be tested under various flow
conditions.

In Fig. 8.6 the picture at the left shows one of the investigated so called noses.
In this area of the slope, existing anchors are situated, which possibly should not
be removed. The scale model test could demonstrate that these built-in components
even improve the behaviour of the spillway and direct the water so that a smaller
heightening of the side walls in the spillway is needed. Beside these optimisations,
the comparison of both model assumptions was conducted. To use the water level in
the reservoir, the maximum difference between both concepts is smaller than 5 cm in
nature scale. In comparison to the up-scaled measurement inaccuracy and especially
to possible wave heights in the reservoir under such extreme circumstances, this
difference is insignificant.

8.3.3 Conclusion and Further Research

The capacity of the spillway could be increased by more than 100 % of the
previous discharge. Therefore, the advantages of both models could be of use. The
3D-numerical model offered a reliable predesign and helped to minimise the start up
effort for the geometric optimisations in physical modelling. Based on the hands-on
optimisation in the scale model test a good and cost-effective way to enlarge the
spillway could be found. The validation based on the comparison of numerics and
scale model test led to a high safety in the chosen design. Especially for such safety-
relevant structures such as a spillway, this combined use can lead to the requested
very high level of safety.

8.4 Avalanche into a Reservoir

Based on the hydro power production, dams play an extremely important role in
alpine catchments. Reservoirs reach the maximum filling very often after the snow
melt in summer. Other smaller dams are used for the production of artificial snow



208 R. Gabl et al.

in the winter. These reservoirs are filled during the summer time and reach the peak
water level in early winter. To guarantee the full energy storage and water amount,
all reservoirs are filled up to a maximum water level considering the necessary
and defined freeboard. To prevent an overtopping by an incoming flood, spillways
are used (Sect. 8.3). Especially in mountain areas, reservoirs are endangered by
potential landslides and surrounding avalanche tracks. Such impacts may generate
impulse waves, which can flood the dam in the worst case [49]. An efficient way to
prevent the effect of impulse waves is to drop the water level in the reservoir. For
hydro power plants, the hydrology in the winter months and the energy production
results in a lower water level. Keeping the water level low results in a decreased
energy production, which affects equally pump storage stations and run-of-river
plants. In addition, also the costs for artificial snow production can increase as a
consequence because a bigger reservoir is needed for the same amount of snow. To
minimise the flooding risks and to optimise the permissible water level, the impact
and the impulse wave in the reservoir are to be predicted as accurately as possible.

Fundamental research on this topic was conducted at the ETH Zürich in the
last years [13, 14, 33, 49, 75] and a manual to calculate such impulse waves was
released [35]. The effect of seven different governing parameters for impulse waves
generation was tested in a physical model [33]:

• water depth of the water body
• slide thickness
• slide impact velocity
• bulk slide volume

• bulk slide density
• slide impact angle
• grain size diameter

The particle size as well as the length of the sliding mass is negligible [13,33,75].
Apart from these main trigger parameters of impulse waves, the wave generation is
also depending on the avalanche track in correlation to the dam and on the reservoirs
topography. Furthermore, the superposition of reflexions could lead to a bigger wave
height than the initial one. In the majority of cases, a single empirical calculation
is therefore not sufficient and further investigations based on scale model tests or
3D-numerics are needed [15, 18].

8.4.1 Investigation Area

The presented project area is the reservoir of a run-of-river plant, which was tested
at a scale of 1:35 (Froude-model [34]) in the laboratory. The investigated structures
were two weir fields with an intake and a fish pass at the orographically right side
of the reservoir. In addition to the hydraulic and sedimentation tests, impulse waves
due to an avalanche impact had to be evaluated. In this particular case, one main
direction of the impact could be defined as well as the slide angle with 30ı.

Figure 8.7 shows the scale model test including the channel to simulate
the avalanche path. The presented investigation was also used as a calibration



8 Numerical Simulations in Hydraulic Engineering 209

Fig. 8.7 Physical scale model (big picture) including the two set-ups (a) golf balls and (b) skate-
board; model for the numerical investigation (small picture)

experiment for the 3D-numerical investigation of such impacts. The simulations
with FLOW-3D are based on laser scan data of the built-up laboratory model. For
comparison of the two model assumptions, water levels at the opposite side of the
impact and in front of the weir were chosen. The points are marked in the small
picture in Fig. 8.7 with the help of staves [18].

8.4.2 Modelling Concept

In the scale model test and the 3D-numerics, two different test set-ups for the
avalanche were defined [17]:

Scale model test:
• P1 golf balls
• P2 skateboard

Numerics:
• N1 particles with initial water
• N2 general moving object

The physical set-up P1 uses 900 single golf balls with a density of about
1,140 kg=m3 and can simulate with its porosity of about additional 25 % an
avalanche density of 600 kg=m3 (Fig. 8.7a). This represents a porous slide mass,
which could be varied by the volume of the golf balls in the start reservoir. A density
of 700 kg=m3 could be reached with the second one, for which a compact moving
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block was mounted on a skateboard (set-up P2). For this the modelled avalanche
height is fixed. The upscaled length of the simulated avalanche head is 170 m
for P1 and 100 m for P2. For both hypotheses, the slide impact velocity could be
determined by varying the distance between the gate in the speed-up channel and
the water surface. All geometric values were used as fixed parameters.

In comparison to the golf balls, three different fluids (water in the reservoir, air
and moving snow on the hillside, which was modelled with the golf balls) would
have to be simulated in the numerical model. FLOW-3D is limited to two different
fluids. Thus, up to 4,800 particles are used as a numerical approach N1, which
have identical density but only one-third of the diameter. First tests showed that the
interaction between particles is not simulated correctly and so the main challenge
was to model the correct movement of particles. Therefore, additional initial water
has to be provided in the channel, which was varied between 0.8 l up to the best
results with about 38 l in model scale.

The skateboard in the physical scale model test is represented as general moving
object (GMO) [7, 12] within the numerical set-up N2. Flow-3D offers two different
models for the calculation of such a GMO. In the prescribed mode, the complete
curve of motion is predefined and only the interaction with the water is calculated.
A two-way interaction is incorporated in the coupled mode. With the latter, in theory
the real behaviour of the floatable skateboard would be simulated, but tests showed
an abnormal bounce after the first contact with the water. Hence, the prescribed
movement was used with a velocity of 3.4 m=s (nearly 20 m=s in nature).

8.4.3 Conclusion and Further Research

Exemplary results for the physical model are shown in Fig. 8.8 and for numerical
simulation in Fig. 8.9. Based on the high impact Froude-numbers, in all cases
the impacts result in a forward collapsed crater [13]. A lower crater height was
generated in case P1 and N1. It is assumed that this is a result of the single
impulse impact of each golf ball (P1) and the mixture of water and particles (N1).
In comparison to this, P2 and N2 have only one big impact, which generates a
nearly doubled wave height at the opposite bank of the reservoir. The interferences
of reflected waves reduce the difference between those two model pairs until the
wave reaches the weir.

The main conclusion of the investigation was that both physical avalanche
models P1 and P2 could be simulated with a very good agreement using numerical
assumptions. The difference between P1 and N1 as well as P2 and N2 was in the
range of few centimetres after the upscale into nature scale. In contrast to this, the
maximum elevation of the free surface near the weir ranges from nearly 1 (P1 and
N1) to 0.6 m in nature scale. Hence, the uncertainty associated to the simulation of
such an avalanche impact can be quantified in the range of decimetres. Consequently
further calibration data is needed to simulate such an avalanche impact into a
reservoir more reliably.
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Fig. 8.8 Physical set-up golf balls (left) and skateboard (right)

Fig. 8.9 Numerical set-up particles (left) and general moving object (right)

8.5 Log Jam Processes

In catchments with considerable forest cover, the entry of large woody debris
into torrents and rivers is a frequently appearing process under torrential hazards
conditions. Erosion on the embankments, landslides, storms and avalanches rep-
resent essential mechanisms causing the input of fresh wood into channels [44].
Both, fresh and dead wood [62]—the latter is already located in the channel or
in the near surroundings (e.g. died off wood, industrial wood)—can be moved
in the channel if the flow forces and water depths enable mobilisation. For
specific hydraulic conditions and wood characteristics, driftwood is threatened to
be blocked at narrow channel sections such as gorges and bridges. The arised
log jam consequently causes a reduction in the cross-sectional area in the channel
and, thus, damming and backflow affects the upstream region of the clogged cross
section. Accordingly, adjoining settlement area and infrastructure are exposed to
a considerable higher flood risk compared to clear-water conditions without any
relevance of driftwood [23, 26, 62].
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A comprehensive understanding of all driftwood-related processes within the
context of protective hydraulic engineering initially requires research in the mech-
anisms of wood entry into the channel, of its mobilisation and of driftwood
transport [47]. Further focusing on the impacts at bridges and narrow spots in the
channel, the knowledge of substantial process parameters regarding topography,
hydraulics and driftwood characteristics is required for the quantification of flood
risk and the analysis of protective measures [5,64]. Damming and backflow effects,
but also clogging probabilities for a variety of specific bridge structures and
topographic conditions need to be determined, each for critical hydraulic conditions
and specific driftwood characteristics [22, 29, 30, 63, 67]. Finally determining the
log-jam-induced flood risk of buildings and infrastructure, flood plain modelling
and the estimation of potential damages are required [23, 26].

Essential requirements for the analysis of bridge clogging processes are a
physically correct modelling of the logs moving within flow and an adequate
simulation of the three-dimensional flow characteristics conditions near by the
bridge structure. On the contrary, flood plain simulations for large settlement areas
require a modelling approach on a larger spatial scale. Three-dimensional flow
effects in the channel mostly have no significant influence there. Considering the
capabilities and the constraints of possible modelling approaches, the simulation of
bridge clogging requires a physical scale model, locally focusing on the processes at
the bridge and in the channel upstream. However, flood plain modelling is generally
accomplished with 2D-hydro- or morphodynamic models.

8.5.1 Modelling Concept

Aiming at a holistic and precise simulation of log jam processes and its effects
on flood risk, a hybrid modelling concept is required, comprising and linking an
experimental model and a 2D-numerical model according to the scheme presented
in Fig. 8.10 [23, 26].

The physical scale model is applied according to Froude’s similarity law.
The log jam characteristics in terms of clogging probabilities and correlations of
backflow and damming are initially determined for a specific set of experimental
arrangements (topography, hydraulics, driftwood characteristics). According to the
scheme illustrated in Fig. 8.10 and the model log characteristics in Fig. 8.11, these
test series are accomplished with the use of artificial logs. They can be either
configured uniformly, ensuring simplified and repeatable experimental conditions,
or feature a more natural non-uniform structure. In order to deliver clogging
probabilities, the tests have to be conducted under the same conditions several
times. Since the transport of floating elements such as driftwood is not implemented
within current 2D-numerical models, bridge structure configuration has to be altered
in the experimental model, which best possibly imitates the delivered log jam
characteristics under clear water conditions. This is done by lowering the lower
bridge deck level or rather occluding a part of the cross-sectional area with baffle
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Fig. 8.10 Modelling concept comprising a physical scale model and a hydro-/morphodynamic
numerical model (modified after [23, 26, 30])

Fig. 8.11 Comparison of prototype and scaled log characteristics

elements. When using an impermeable baffle structure, its height has to be varied
until a match with the log jam tests is gained. For the case of a permeable baffle, the
openness factor has to be fitted (Fig. 8.10).

Within the numerical model HYDRO_AS-2D [53], a bridge deck is generally
defined by determining the upper and lower bridge deck levels. Accordingly,
pressure and weir flow conditions are considered when the water level reaches the
respective deck level. For both flow conditions, the calculation is done empirically
with the following equations [53]:
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Qpressure flow D c � A � b
p
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Therein, Q is the discharge .m3=s/, A is the wetted cross section area .m2/, b
is the width of the bridge deck .m/ and �h denotes the difference in water levels
upstream (hOW ) and downstream (hUW ) the bridge .m/. Further, hW is the upstream
water level .m/, related to the upper bridge deck level, or rather the corresponding
kinetic head .m/. The parameters c and � are dimensionless run-off and weir flow
coefficients.

With the results from experimental modelling with the artificial logs and the
baffle analogy, flood plain modelling is accomplished with a 2D-numerical model,
in which the bridge geometry is adjusted accordingly. The numerical model
either exclusively simulates clear water conditions (e.g. HYDRO_AS-2D [53]) or
additionally considers sediment transport processes (e.g. HYDRO_GS-2D [54]).
Within experimental modelling, sediment transport processes are not yet considered.

8.5.2 Results

Concerning the experimental tests, accomplished in the hydraulic laboratory at
the University of Innsbruck [29, 30], the following parameters/conditions lead to
a general increase in clogging probabilities:

• increasing log lengths
• increasing number of branches
• increasing number of supplied logs, entrainment as a cluster
• increase in water level or rather decreasing freeboard at the bridge structure
• increasing channel gradient in case of pressure (and weir) flow conditions at the

bridge
• decreasing channel gradient for the case that the bridge is not dammed (under

clear water conditions)

The most influential conditions therein are the presence of branches and,
particularly, the manner of wood input at the upstream model boundary. The more
logs are supplied concurrently as a cluster the higher is the clogging probability
of at least one single log. Within the mentioned scale model tests [29, 30], an
inclinable flume with a rectangular shape and gradients between 0 and 3 % was set
up. The model scale was 1:25. Different water levels and flow conditions (Froude
numbers) were tested. The effect of piers was further analysed. Concerning the logs
characteristics, both, uniform logs with and without branches were supplied, each
as single logs and as a cluster (Fig. 8.11). Each test was accomplished several times.
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Fig. 8.12 Impression from experimental modelling

Focusing on the hydraulics, the damming is mainly influenced by the channel
gradient and, by the number of logs clogged at the bridge. On the contrary, the logs
dimensions are of minor significance. In case of supercritical initial flow conditions
a flow transition appears once a log is clogged at the bridge. For subcritical initial
conditions the extent of damming reaches further upstream.

Figure 8.12 exemplarily shows a clogging situation that appeared under subcriti-
cal flow conditions with a supplied cluster of logs with branches. There was no pier
situated at the bridge for this case.

Clogging scenarios may cause a considerable increase in the extent of flooding
and, thus, in the amount of flood related damages [23, 26]. Depending on the
hydrological impact and on the channel capacity, log jams increase the extent of
flooding upstream of the bridge section, whereas downstream, the flood plain rather
decreases since the upstream flood plain has a retention effect. According to this,
the impact of log jam processes on specific elements at risk within the settlement
area is as well depending on the location of the elements compared to the location
of the clogged bridge structure.

8.5.3 Conclusion and Further Research

The simulation of log jam processes within the hybrid modelling concept illustrated
in Fig. 8.10 allows a well-founded determination of the increased flood risk due to
the clogging of bridge structures or narrow spots in the river channels. Within the
physical scale model a detailed insight in the clogging process is provided. However,
the application of a 2D-numerical model enables an extensive impact assessment on
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a large spatial scale. The conduction of the modelling concept not only allows the
estimation of flood risk and potential damages due to clogging processes, it also is
the basis for protective engineering measures, for instance structural measures at the
bridge, practical evacuation plans etc.

Further research activities related to log jam processes deal with the following
issues for instance:

• enlargement of the data base for bridge clogging resulting from the physical
scale model (trapezoidal flume, intrusion of fine particles and bushes in the
entrained cluster of logs, different bridge structures, influence of channel surface
roughness, etc.)

• influence of sediment transport processes on clogging probabilities and structure
of the clogged logs

• further development of numerical models (3D-numerical models, floating
elements, etc.)

• field observation of log jam related processes—data base for model validation
• collecting research results of all relevant research institutions for providing a

common and accessible data base
• analyses of specific protective engineering measures in the physical scale model

and as well in the numerical model

8.6 Sedimentation and Flushing of Alpine Water Intake
Reservoirs

Reservoirs and retention measures in hydro power projects affect the sediment
balance in a river. Interrupting the natural flow conditions, sediments are held back
and sedimentation arises in the reservoir storage. In the Alps mean annual storage
losses are between 0 and 5 % of the stored water volume [72].

Several measures can help to avoid or to reduce storage loss. Most common
methods are sediment bypass, off stream reservoirs or a simple periodic excavation
of the stored material. In narrow V-shaped valleys the pass through method
(sediment flushing) is an appropriate technique for sediment management [56].

8.6.1 Investigation Area and Data Base

The presented research has been realised with the support of the TIWAG-Tiroler
Wasserkraft AG who has projected two water intakes with arch dams in the alpine
valley Ötztal. One of the intakes is projected at the river Gurgler Ache and the
second one is planned at the Venter Ache. Due to the topography (narrow, V-shaped
valleys) the structures are planned as arch dams with overfall spillways and bottom
outlets. The two reservoirs are fed by glaciated headwaters and the mean annual
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Fig. 8.13 Model concept

sedimentation process is an important issue. In addition, sediment supply during
extreme events, which is accompanied by large bed load amounts, has to be
controlled by an effective sediment management. Owing to the topography and the
dam construction with bottom outlet, sediment management via flushing is enabled.

Sedimentation and flushing processes of the water intake Gurgler Ache were
investigated with a 1:30 scaled hydraulic model (H0). The results of the model test
are used to calibrate a 2D-numerical simulation of the water intake in model scale
(M1). The parameters of the calibrated simulation are transferred to a nature scaled
simulation (M2). After validation of the model Gurgler Ache, all parameters are
used for a numerical simulation of the second water intake Venter Ache in nature
scale (Fig. 8.13). Due to the similar dam design, topography and bed load conditions
at the Gurgler Ache and Venter Ache, this method is a permissible approach. The
aim within this method is to avoid a second, cost intensive lab model.

In the experiments and simulations two types of scenarios are modelled. For
the investigation of mean yearly reservoir sedimentation the half annual bed load
and the annual bed load were flushed in the reservoir. Furthermore, sedimentation
processes were modelled which are associated with large flood flow events occurring
within short times. Therefore discharge hydrographs of two historic extreme events
(August 1987 and September 1999) were used. From available discharge series the
return periods of the event 1999 and 1987 were estimated as 100 years (HQ100)
and 50 years (HQ50), respectively [24]. For all given sub-catchments the bed load
transport was calculated, using an approach for transport in steep torrents according
to Rickenmann [59–61] and Bathurst [4]. Bed loads were routed downstream with
a balance routing scheme according to Gems [23, 25]. The results show that the
estimated annual bed load at the location of the projected reservoir Gurgler Ache is
8,300 m3 and the half annual bed load is 4,150 m3. The extreme event 1999 results
in a load of 16,326 m3; at the event 1987 calculations show a bed load of 22,647 m3,
which is almost three times the annual bed load.

The grain size distribution of the bed load is based on a “line by number analysis”
and excavation analysis sampling sediments in the river bed in the study area.
In hydraulic model tests a minimum grain-size of 0.5 mm has to be maintained to



218 R. Gabl et al.

Fig. 8.14 Scheme hydraulic model (H0)(left); numerical simulation (M)(right); (a) overfall
spillway, (b) bottom outlet and water intake, (c) storage facing headwater

avoid cohesive and other disturbing effects, which would influence the test results.
With the scope of numerical simulation, the influence of fine sediments on the
sedimentation and flushing process can be evaluated [55].

8.6.2 Modelling Concept

The lab model is based on the Froude-model approach which is usually used in
modelling hydraulic structures like weirs, open channels or at free surface flow
where gravity forces dominate. The Froude-model implements that the Froude
number in the model is the same as in nature scale [34, 57]. The arch dam structure
includes the operating structures of overfall spillway, bottom outlet and water intake.
Besides the river stretch about 760 m upstream (headwater) and roughly 600 m
downstream of the dam is modelled (Fig. 8.14) [56].
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Table 8.1 Parameter settings for the numerical simulation

Abbrev. Dimension Definition M1 M2

Ml Model scale 30 1
�crit [�] Relative critical bed shear stress 0.03 0.047
ST [�] Sediment transport MPMa MPMa

pr [�] Porosity 0.37 0.37
k1b .m1=3=s/ Roughness river bed (bed value) 45 28
k1t .m1=3=s/ Roughness river bed (total value) 60 28
k2b .m1=3=s/ Roughness terrain (bed value) 70 45
k2t .m1=3=s/ Roughness terrain (total value) 70 45
�max .N=m2/ Maximum bed shear stress 500 500
a MPM; sediment transport according to Meyer-Peter and Müller

The 2D simulations were realised using the numerical software Hydro_ AS-2D/
Hydro_ GS-2D. For discretisation in time, the second order Runge–Kutta scheme is
used, which is a Predictor–Corrector scheme. The implemented algebraic turbulence
model calculates the eddy viscosity depending on shear velocity and water depth.
The friction slope is determined by the Darcy–Weisbach equation [53,54]. The soft-
ware HYDRO_GS-2D uses a fractionated multi grain approach of the transported
bed load. For sediment transport the software uses the bed load transport approach
according to Meyer-Peter and Müller [45]:

mg D 5 � �f �
q

�
0 � g � d3m �

"

�� � Qs

Q
�
�
kst

kr

�3=2

� ��c
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(8.11)

Thereby, the amount of transported sediment mg is a function of the density of
the sediments �f , the gravitational acceleration g and the mean grain size of the
transported sediments dm. Q defines the discharge and Qs is the effective transport
discharge. kst is the Strickler roughness of the bed, while kr defines the Strickler
roughness of the transported grain. The bed shear stress is given by �� and ��c is the
relative critical bed shear stress according to Shields.

As mentioned above, the aim of the presented modelling concept is to use
calibrated parameters from the numerical simulations of the intake Gurgler Ache
for the second water intake Venter Ache. In a first step, the calibration was done
by modelling the water intake in model scale. The grain size distributions of the
added sediments are equal to those in the hydraulic model test, which do not contain
most finest sediment classes. The roughness parameters were taken according to the
terrain material and the river bed in the laboratory model. Roughness parameters
of the calibrated model type M1 were transferred into nature scale to model M2
(Table 8.1). In addition, in the simulations with model type M2 the full grading
curves, including the fine sediments, were set for the bed load.

The calibration of the sedimentation process in the numerics was done using
results from the hydraulic model tests with half annual bed load and the extreme
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Fig. 8.15 Comparison between the physical scale model test H0 (left column) and the numeric
simulation M1 (right column)

event in the year 1987. Within the calibration steps, following criteria were evaluated
(Fig. 8.15) [55]:

1. Relative aggradation heights
2. Distance between the dam and sedimentation front
3. Absolute altitude of the sedimentation front
4. Longitudinal inclination of the sediment body
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For calibrating the flushing process in the simulations observed flushing rates of the
model test were used. The validation was done using a scenario with annual bed
load volume and the extreme event in the year 1999.

8.6.3 Results and Further Research

Numeric simulation became an important tool in hydraulic engineering and is
a vital extension to a hydraulic scale model test. The present study shows that
the sedimentation process at reservoirs can be simulated using 2D-numerics. The
results of the numeric simulations match very well with the results of the physical
scale model test. The first obtained results in modelling the flushing process are
promising, although the reservoir flushing is a highly unsteady process and the
influence of three dimensional effects cannot be modelled with a 2D-simulation.
Nevertheless, there are still differences between the observed flushing rates in
the model test and the numerics. The next step will be a further investigation
by analysing the sediment transport in the 2D simulations to achieve required
improvements in the flushing process [55].
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Chapter 9
A Genetic Algorithm Approach for the Rigorous
Registration of Arbitrary Laser Scanner Point
Clouds

K. Hanke and S. Schenk

Abstract Terrestrial laser scanners have achieved great popularity in the last
decade. Their easy on-site application and the possibility of flexible and high
quality post processing added to their success in several fields such as architectural,
archaeological, and heritage documentation. We present a method for handling
the automatic registration of point clouds which are characterized by significant
noise level, generally imperfect geometry and occlusions. Hereby we combine and
extend already existing and established methods to facilitate the registration of
point clouds without prior pre-processing. Our approach consists—similar to other
methods—of three steps which are scan analysis, pair-wise registration, and global
registration. To handle the abovementioned datasets we propose to use imperfect and
subdivided features, and to implement Genetic Algorithms (GAs). At the same time
our approach can be seen as extension to already known Genetic Algorithms used
for the registration of point clouds. By implementing an adapted version of a Genetic
Algorithm in the classical registration process between rough alignment and fine
registration, we are able to maintain robustness and computational performance also
when registering point clouds of bigger objects characterized by a notably increased
number of points, a significant noise level, and occlusions. We show and discuss
the successful application of the algorithm on a scene which does not consist of
classical geometric primitives such as planes.
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9.1 3D Data Acquisition and Laser Scanning

Terrestrial laser scanners have got a significant standing in the three-dimensional
recording of complex objects. By using a laser beam a terrestrial laser scanner
can digitally capture the surrounding of the measurement device with the modest
expenditure of time. The result is a collection of closely spaced three-dimensional
points, representing the original object’s surface with a discrete point cloud (see
Fig. 9.1). Due to the steady technical improvement of laser scanners and the related
software for analysis of the recorded data, the number of possible application areas
is growing rapidly [63].

Laser scanners were developed and used mainly for digital inventories and
documentation of plants and machinery [21] as well as in the field of manufacturing
and quality control. Nowadays, however, they are increasingly found also in the
documentation of architecture or archaeology [24] and the preservation of cultural
heritage for different purposes.

Objects are generally recorded contactless in form of a “cloud” of dense discrete
points on the measured surface using a focused laser beam. According to [50, p.
23] methods using light for object acquisition can be divided into active and passive
ones. Within the passive process the capturing device (e.g. a digital camera) does not
send out any radiation itself, whereas in an active approach radiation is emitted in a
controlled way (e.g. laser) and its reflectance is being measured. Active methods are
further divided in triangulation- and time-based methods. The latter can then once
more be differentiated into pulse- and phase-based approaches. A description of the
various methods and instruments may be found in [30, p. 17].

As for terrestrial laser scanning methods it is generally distinguished between
static and dynamic laser scanning [30, p. 12]. Static working methods are character-
ized by the fact that during the acquisition process the instrument remains in a fixed
position, while a high point density and a fairly high precision can be achieved.
In dynamic laser scanning, however, the instrument is mounted at a mobile platform
(such as a car or train) and the data acquisition is performed during the motion of this
platform. For small objects, turntables as well as robot arms are in use. A discussion
of the pros and cons of laser scanning is given in [22].

A typical terrestrial laser scanner is designed for average distances of about 2–
200 m and consists of a range of different components. It is generally mounted on
a tripod allowing a rotation of 360ı around the vertical axis. The laser scanner and
the whole data acquisition are controlled by a connected (ragged) mobile computer.
An appropriate generator delivers the necessary power for all components and is
therefore essential for all outdoor applications.
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Fig. 9.1 Typical terrestrial
laser scanner setup

9.2 Registration of Point Clouds

Laser scanning is typically a polar measurement method. Hereby 3D vectors to
the object’s surface are measured from a single survey station (position) of the
measurement instrument (laser scanner); by doing so the spatial angles and distances
from the instrument to the object point are acquired. However, only the part of
the object that is visible from the instrument’s position can be acquired at one
time. To complement the data and get an overall recording of the object several
standpoints of the instrument are necessary to avoid hidden parts and occlusions in
the final data set. To merge these different point sets (“point clouds”) to a joint point
cloud of the surface in a common coordinate system a so-called “registration” is
necessary (see Fig. 9.2). This means that a spatial transformation from the individual
local coordinate systems of the gathered data into an overall global coordinate
system needs to be done. As this task is a non-linear operation the work flow is
generally separated into a rough alignment of the respective single point clouds and
a subsequent fine registration.

According to [31], this task can be seen as a search for the corresponding
Euclidean motion m and can be expressed as a translation vector t and rotation
matrix R in the form of

m.x/ WD x0 D t C R � x : (9.1)

Hereby x 2 R
3 represents the given coordinates in terms of a three-dimensional

vector and x0 its correspondence after the transformation procedure into the global
coordinate system. Since laser scanner point clouds generally are already measured
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Fig. 9.2 Point cloud registration

in the real world scale of 1:1, no further scaling has to be considered. Similarly to
[51, p. 48] using the vectors

x0 D Œx0; y0; z0	T ; x D Œx; y; z	T ; t D Œtx; ty; tz	
T (9.2)

and rij ; i D 1 : : : 3; j D 1 : : : 3 as the elements of the 3 � 3 rotation matrix R,
Eq. (9.1) can be shown in matrix notation in the form
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In the course of the registration the coordinate transformation (Eq. (9.1) or (9.3))
must be performed and all respective parameters determined for the captured
point clouds. Therefore, a translation vector t and a rotation matrix R have to
be determined separately for each point cloud; so all point clouds can be aligned
optimally and the original object sufficiently and accurately represented in its
entirety.

A robust and widely used method for the determination of the required param-
eters is to use artificial objects in the form of special planar signs, spheres, or
cylinders in the immediate vicinity of the object to be recorded. During the data
acquisition process at least three well spatially distributed targets have to be scanned
additionally from each position. For this step usually a higher point density and
accuracy is used which may take a lot more time. The centers of these targets
are then used as tie points for the determination of the required transformation
parameters in t and R.

By using a sequential procedure, point clouds can be joined one after another or
the positions of all point clouds to each other can be determined simultaneously.
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Although this method is considered to be state-of-the-art, it has unique disadvan-
tages in a number of practical applications.

Setting up the laser scanner and the artificial targets for the scanning of
convoluted or complex objects and surfaces (especially with non-horizontal set-ups
of the laser scanner) may result, for example, in a test of patience to place the three
required artificial targets for each position in a way that they are also visible and
measurable from the next position of the laser scanner. In some cases the immediate
surrounding of an object is accessible only with difficulty or not at all (e.g. for
objects in danger zones), which entirely prevents a wise distribution of artificial
targets over or around the object to be scanned or renders it at least highly difficult.
A further disadvantage is the relatively high cost, not only for the sensible placing
of the targets but also for selecting and scanning them with a high density of points
and increased accuracy.

These steps require in many cases much more time than scanning the actual
object. If the abovementioned procedure is not feasible or provides a “false”
result (because an artificial target was, e.g., moved inadvertently), at least three
possible matching pairs of points in each pair of point clouds have to be hand-
picked manually. These can be used to carry out the rough alignment process
afterwards. Especially if many point clouds are to be registered and in these no
distinctive corners and edges are clearly identifiable, this procedure is extremely
time consuming and prone to errors, and should be used only as a last resort.

The goal of the here presented approach is to provide a concept, which—
without the prior knowledge of approximate solutions and without the use of
artificial targets but by using a Genetic Algorithm—will provide an automatic
registration of overlapping and unordered point clouds, which are characterized by
a significant noise level, imperfect and incomplete geometry, as well as occlusions
and shadowing effects.

9.3 Automatic Registration

Automatic registration strategies are generally classified either into “rough align-
ment” or “fine registration.” Genetic Algorithms are, however, a special case as they
can be adapted to both rough alignment as well as fine registration.

Rough alignment doesn’t need previous knowledge about the relative position of
point clouds, whereas fine registration takes the result of rough alignment and refines
the solution. To encounter the complexity of non-linear registration equations and
enormous data volume, most algorithms are specialized on one of these two tasks.
One of the challenges of rough alignment is that point clouds can be of any size,
shape, or property. It is obvious that with automatic strategies only point clouds
sharing common areas can be registered.

According to [53] algorithms can further be classified into “pair-wise regis-
tration” or “global registration” (multi-view registration). Pair-wise registration
algorithms are specialized in handling two point clouds at the time, whereas a global
registration algorithm registers more or even all point clouds simultaneously.
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9.3.1 Genetic Algorithms

Genetic Algorithms are known to be a nature-inspired heuristic search method
[34, p. 11] reaching great popularity through the work of [32]. According to [55,
p. 46] a Genetic Algorithm (GA) is a computational model of natural evolution
where stronger individuals in a competitive environment are more likely to survive
than weaker ones. The basic principle—the “survival of the fittest”—implements
the concepts of mutation, cross-over, and (natural) selection and was originally
introduced by the English naturalist Charles Darwin (1809–1882).

With Genetic Algorithms, “individuals” represent single solutions to a given
optimization problem, whereas a group of solutions is referred to as “population.”
The fitness (quality) of the individuals is determined by their chromosomes.
Mathematically, such a chromosome is a vector X D Œx1; : : : ; xn	 representing the
characteristic information of the solution as binary or real numbers. Among the
several advantages of Genetic Algorithms is their flexible adaptation to different
optimization tasks and their ability to find approximated solutions also in search
spaces where other methods may fail. Further, the risk of getting stuck at local
optima can be significantly reduced. It has, however, to be added that Genetic Algo-
rithms are generally known to be a fairly intensive technique from a computational
point of view.

9.3.1.1 Search in Correspondence Space

Among the several approaches regarding the use of Genetic Algorithms for point
cloud registration, two common concepts can be identified: those algorithms per-
forming the search in correspondence space and those searching for transformation
parameters in transformation space. A Genetic Algorithm performing the search in
correspondence space is described in [7]. Hereby a single chromosome (individual)
consists of a multi-index linking the point indices of two point clouds. Such an
approach is especially useful when free form-shapes are given and no other ideal
geometrical shapes are available for registration. The quality of each individual is
calculated by a so-called “fitness-function” f which is like a cost function and it is
based in this case on the pair-wise match quality of all linked points; more details
can be found in [7]. According to [53] such Genetic Algorithms can achieve good
results in the rough alignment of point clouds; results that can accordingly be used
for fine registration. It is, however, highly computationally expensive whenever a
large number of points are used.

9.3.1.2 Search in Transformation Space

Whereas searching in correspondence space is based on finding corresponding
point indices, searching for transformation parameters provides a different way of
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encoding a registration solution in the form of X D Œ˛x; ˛y; ˛z; �x;�y;�z	. Hereby
˛x , ˛y , ˛z represent the three Euler angles of the rotation matrix R and �x , �y , �z

the components of the translation vector t. Such a representation is proposed in
similar way for example in [11]; hereby the fitness-function is based on the median
of Euclidean distances. An advanced strategy is discussed in [55]. Given two point
clouds A and B , the fitness-function f is defined by

f.A;B/ D 1

N

NX

iD1
�.ri / (9.4)

where � is the residual term

�.ri / D


ri if ri < d
d if ri � d

: (9.5)

N represents the number of points, d a given threshold and ri the squared Euclidean
distance between a point in point cloud A and its nearest neighbor in point cloud B .
This fitness-function is robust against outliers and therefore suitable for a lot of
cases. To speed up application, a hill-climbing strategy is implemented; moreover
the so-called “surface interpenetration measure (SIM)” helps the Genetic Algorithm
to face fine registration. Overall this approach leads to very good results although
only a few thousand points can be handled effectively.

Some authors extend the search in transformation space by searching also for a
scaling factor S [13] or an unknown overlap factor � . Latter is presented by [40];
hereby the mean squared error e.�/ between two point clouds is minimized while
the overlap � has to be maximized.

9.3.2 Rough Alignment

Rough alignment is used to register point clouds in such a way that a fine registration
algorithm can successfully refine the resulting solutions.

One of the fastest ways to register point clouds is to use a principal component
analysis and match both the barycenters and the main axes of the point clouds. This
method, however, works only if the point clouds share a high degree of overlap.
Only partially overlapping point clouds and occlusions will, in most cases, lead to
completely wrong solutions.

Fischler and Bolles [17] presented the RANSAC (random sampling consensus)
algorithm to detect robustly outliers in given measurement datasets. Chen et al. [9]
extended this method enabling it to find three pairs or corresponding points in two
point clouds which can subsequently be used for their registration. Though the
so-called DARCES algorithm (data-aligned rigidity-constrained exhaustive search)
includes, moreover, geometric compatibility restrictions rendering the approach
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more efficient, the amount of points is still fairly limited in comparison with other
approaches.

Several authors proposed to calculate the so-called point signatures which are
more robust against noise. To identify the signature of a determined point, Chua and
Jarvis [12] intersect the surface of the point cloud with a virtual sphere constructed
in the considered point. The perpendicular distances of the so created curve and
the tangent plane in the examined point can be used for point signature generation.
Similarly [19] use the “integral volume descriptor” which can be determined by
calculating the volume between the virtual sphere and the point cloud’s surface. By
doing this for several sphere radii, the informative value of the point signature can
be increased.

The term “spin image” was coined by [36] and describes a method for generating
a two-dimensional frequency matrix employable for fast point comparison. To
create this matrix in a single point p, the perpendicular distances from all neighbor-
points to the tangent plane in p as well as to the normal vector of p are used. Such
point signatures lose, however, part of their significance in the presence of noise or
when part of the neighborhood is not equally visible from other stations.

Another possibility for point cloud registration arises by using linear elements
(features). Linear features are especially found in architectural datasets and can be
detected directly [62], by intersecting planes [56] or by looking at the borders of
planar elements [37].

Alternatively, the planes themselves are also common features for registration
purposes. Three corresponding pairs of them are necessary for the successful
registration of two point clouds. Planes have the advantage that they are quite robust
against noise, but the three plane pairs have to be linearly independent. Such a
strategy can be found in [6]. He et al. [29] proposed to include the barycenters
of plane patches into the registration process, too. This way only two corresponding
plane patch pairs are needed. To reduce the number of possible combinations, the
area of the plane patches, angles or distances can be taken into account. Problems
may arise if plane patches are partly occluded as different barycenters will emerge.
However, by applying the here proposed concept of imperfect and subdivided
features, this restriction can be evaded.

In several cases additional information about the scanner set-up is available.
According to [61] the zenith direction may be used to reduce the number of needed
plane pairs from two to one. In some cases the same information can also be
recovered from the point cloud contents themselves (e.g., by a dominant ground
plane). Such information can considerably speed up the registration process. Also
the here proposed approach includes the possibility to use such additional data in
the algorithm.

Von Hansen [61] suggested subdividing point clouds into 3D raster cells and
calculating for each grid cell its dominant plane with a RANSAC-algorithm as seen,
e.g., in [58]. By doing so, also large point clouds can be handled very efficiently.
The here presented registration approach can be seen as further development of this
method.
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Fig. 9.3 The ICP-algorithm and its two variants

Especially in the fields of industry a lot of geometrical figures in form of
planes, cylinders, toroids and spheres can be found. Rabbani et al. [48] presented a
registration strategy for such environments including the modeling of the geometric
figures as well as simultaneous registration. In cultural heritage documentation,
however, such figures are less prominent.

9.3.3 Fine Registration

The goal of fine registration is to obtain the most accurate registration solution
possible [53]. One of the most popular fine registration methods employs the
Iterative-Closest-Point algorithm (ICP) presented by [4]. Starting from a given
initial estimation for each point in a first point cloud, the nearest neighbor in a
second point cloud is looked for. According to [33] these correspondences can be
used to realign the point clouds in such a way that the sum of the squared point-
to-point distances between the point clouds is minimized. Executing these steps
iteratively, a convergence of the solution can be expected (see Fig. 9.3). The quality
of the registration result, however, depends on several parameters such as the initial
estimation and the specific properties of the point clouds. A similar algorithm,
not focusing on point-to-point but point-to-plane distances, is presented in [8].
This point-to-plane algorithm adopts so-called “normal shooting” and calculates
the squared distances from a point in A along its normal to a surface in B [28,
pp. 36–37]. There are, however, also simplified versions calculating, e.g., the
distance between a point in A and the tangent plane constructed in its nearest
neighbor point in B . To calculate the realignment matrix after each iteration,
no closed-form solution is available for the point-to-plane algorithm; therefore,
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e.g., the Levenberg–Marquardt algorithm or a linearization has to be applied. The
basic advantage of point-to-plane distances is that, while refining the registration,
translation along the tangent plane of the surface will occur with more likeliness
than with the point-to-point approach (see Fig. 9.3). This can make the algorithm
more robust regarding outliers and decrease the number of iterations necessary for
convergence. An overall quality or behavior judgment is, however, difficult because
the point-to-point as well as the point-to-plane ICP have strengths and weaknesses
which also depend on the specific properties of the given point clouds.

Since the publications of [4] and [8] a lot of attempts were made to render
algorithms faster, more flexible and more robust. Rusinkiewicz and Levoy [52]
summarized the most renowned variants of ICP-algorithms which differ in point
selection, matching, weighting, point rejection, error metric, and minimization of
the error metric. Although all of those suggestions can be implemented into one
algorithm, this does not necessarily lead to higher quality results.

A further challenge when dealing with fine registration is the selection of the
thresholds for search, weighting, and correspondence rejection. This can be partly
avoided by using a statistical approach for the dynamic handling of thresholds [64].
Typical ICP-algorithms allow the fine registration of two point clouds only. Using
velocity vector fields [44] or embedding the generalized procrustes analysis [59],
also multiple point clouds can be registered simultaneously.

The results of ICP-algorithms heavily depend on the selection of correspon-
dences. Gelfand et al. [18] propose to use only correspondences which can
contribute to a geometrically stable solution. Another robust approach for handling
noisy or only partly overlapping measurements uses trimmed least squares and
is described in [10]. Hereby an approximated overlap parameter is calculated by
minimizing an objective function with a Golden Section Search algorithm. For cases
where an enlarged convergence region of the ICP-algorithm is needed [2] presents
the Geometric Primitive ICP, which is based on geometric primitives (surface
normal vectors, curvature, and change of curvature) and neighborhood search.

9.3.4 Imperfect and Subdivided Features

As mentioned above, laser scanners provide an efficient way to capture complex
three-dimensional objects. The achievable quality, however, is still an open question
and depends on several parameters. According to [30, p. 28] the instruments’
accuracies can vary from instrument to instrument. Among the main error sources
for laser scanning there are instrumental errors (laser beam propagation, mixed
edge problem, range-uncertainty, angular uncertainty, axes error), object-related
errors, environmental conditions (temperature, atmosphere, interfering radiation,
distortion from motion), or methodological errors. As illustrated in [23] also surface
properties such as the color contribute to the overall quality of the point cloud. More
information is found in [20, p. 28].
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Fig. 9.4 Scanning a border from different positions

To avoid misunderstandings in this work the following conventions are made.
The “measurement uncertainty” (sensor uncertainty) is the result of all influences
which cause an ideal planar object looking jagged in the captured point cloud. By
scanning surfaces (point-wise as discrete grid) with a lower point density, time and
data volume can be saved. The so-created point clouds of rough surfaces, however,
may seem to follow a random distribution of points (“surface noise”). Together with
measurement uncertainty all these effects are generally referred to as “noise.”

In order to save precious money and time when scanning objects, the amount
of different laser scanner stations is generally held as low as possible. Due to
this reduced number of stations, however, occlusions may occur in an increased
quantity. When there is, e.g., more than one object in the scanning area of the laser
scanner or the object covers itself in parts, such occlusions can arise (see Fig. 9.4).
Moreover, with rough object surfaces important details may get lost. Furthermore,
in many documentation tasks no perfect geometric figures are given. Especially in
rural areas, planes, cylinders, spheres, and other figures are rare. On the contrary,
objects are often composed of complex free-form surfaces. Further, they can be
characterized by the abovementioned noise. This is labeled “imperfect geometry.”
“Incomplete geometry,” however, refers to geometrical elements which are visible
only in part.

The here discussed approach is especially about cases where only a low point
density is given or the quality of borders, edges, and other local details may not be
usable for the registration of point clouds.

9.3.4.1 Imperfect Features

When trying to automatically register point clouds characterized by significant noise
level, imperfect and/or incomplete geometry as well as occlusions, the choice of
a feasible registration strategy can be challenging. In such cases more complex
features like planes instead of single points are generally preferable. This is shown
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Fig. 9.5 Typical problems in data acquisition

in [6, 29], and [61]. Figure 9.5 illustrates typical problems with the generation,
registration and post-processing of point clouds. Especially in urban areas human
built objects consist of parallel planes and thus render registration more taxing.
Moreover, a high noise level and incomplete or incorrectly captured surface areas
can influence negatively on the overall registration process. Incomplete borders
and/or edges may appear differently in point clouds of different stations.

The term “imperfect feature” refers to a characteristic area of a point cloud (e.g.,
plane patch) which can be used for the registration process; one has, however, to
keep in mind that it may misrepresent the original object. Following this indication,
most features in real-life point clouds can be detected only approximately. It thus
makes sense to elaborate an overall registration concept that enables to handle
imperfect features.

9.3.4.2 Subdivided Features

Most objects contain a variety of characteristic features which can be used for
registration purposes. Through a significant noise level, disadvantageous occlusions,
or incomplete datasets the number of such features can get rather low. Therefore, we
propose to subdivide features into smaller parts. Those parts that aren’t influenced
anymore by occlusion or other perturbances are called “subdivided features” and can
be used for the automatic registration. This way a higher robustness of the features
and a greater flexibility can be achieved. The proposed approach differs from the
“complete plane patches (CPP)” mentioned in [29] as we propose to subdivide
features (in this case plane patches) into smaller sub-parts. The subdivision of
point clouds was already mentioned in [61]. Hereby the point clouds are split
into 3D raster cells based on the local coordinate system of each point cloud.
For all cells a dominant plane (surface element) is calculated and neighboring
elements are afterwards grouped to larger plane patches for faster processing. We
suggest developing this approach further and use subdivided features directly for
the automatic registration. At the same time we propose to maintain the concept
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Fig. 9.6 Subdivided features

of imperfect features, so that also not ideal geometric figures can be used in the
registration process.

As we want to increase the chance that subdivided features will be similar in
different point clouds, we identify first all planar patches in a point cloud and
then calculate their barycenters and their principal axes. Based on this information
for each plane patch a local coordinate system for the subdivision is established.
This way fully visible plane patches may have similar subdivided features with
corresponding barycenters (see Fig. 9.6). In this work such cases are called perfect
correspondences, whereas all other cases where barycenters don’t match that well
to a different subdivision are called imperfect correspondences.

Different authors showed that also other geometric elements can be used for the
registration of point clouds. So [56] and [61] used linear elements whereas [47] used
among others cylinders. Also in those cases the concept of imperfect and subdivided
features would be applicable.

9.4 Registration Strategy

Various challenges can be encountered during the automatic registration of point
clouds without known approximations or artificial targets. Not only the huge
quantity of data, but also the direct connection between the aspired correspondences
and the simultaneously looked for transformation parameters is not unproblematic.
GAReg-ISF (“Genetic Algorithm Registration with Imperfect and Subdivided
Features”) represents one possible approach and is described in detail in [54]. It
is especially designed for datasets with a significant noise level, imperfect and
incomplete geometry as well as occlusion. The method consists of three main parts
as seen in Fig. 9.7. Every puzzle piece represents schematically a single point cloud.
Similar algorithm structures are also used in [35] and [61].

First each point cloud is analyzed and characteristic information is gathered.
During the so-called pair-wise registration iteratively two point clouds are registered
with each other. Finally, in the global registration the results of the pair-wise regis-
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Fig. 9.7 Automatic registration strategy

tration are merged to a consistent digital representation of the original object. One
of the big challenges in automatic point cloud registration is that the relationship
between the single point clouds is initially unknown and has to be reconstructed as
well during the registration. The basic objective of our approach is to enable also
the registration of bigger objects with reasonable computational effort. To reach this
target we combined the advantages of already established approaches while trying
to minimize their drawbacks.

9.4.1 Scan Analysis

GAReg-ISF was designed to handle different file types of point clouds. Typically
these files consist each of an unsorted list of single points [30, p. 67] which have
to be pre-processed for later registration. The main import parameters as well as
those for the other registration steps are supplied in GAReg-ISF by an external
configuration file.

As published in [54, p. 73], the single steps of the scan analysis in GAReg-
ISF contain the creation of kd-trees [3] for a faster nearest neighbor search, the
calculation of normal vectors as well as the detection of imperfect and subdivided
features. Also a smoothing of the point clouds is possible whenever the maintenance
of edges and borders [39] is useful for registration purposes.

The huge amount of data is one of the challenges in automatic point cloud
registration. Further, point clouds are typically characterized by varying point
densities which may influence the automatic registration process. Haring [28,
p. 49] e.g. shows a voxel-based approach to reduce the number of points and
generate a homogeneous point density all over the point cloud. A too low point
density, however, means to lose details, whereas a high number of points results in
considerable computational effort.
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By generating a data pyramid, each registration step can be executed with the
most useful point density. As our examples showed [54, p. 135], GAReg-ISF works
well with 20,000–100,000 points with regard to imperfect and subdivided feature
detection and with up to 2,000 points (or features) with regard to the employed
Genetic Algorithm. Similarly, other authors also use 100 [7] up to 10,000 points
[55, p. 85].

For each level in the data pyramid a so-called kd-tree [3] is generated. According
to [28, p. 42] a kd-tree is a data structure for saving points of k-dimensional space
which is especially efficient for nearest neighbor searches. A popular implementa-
tion method can be found in [1].

Most automatic registration algorithms make use of normal vectors to improve
the registration process. For calculating an approximation of the three normal
vectors n1, n2, n3 in a considered point p, first its neighboring points have to be
found. This computationally intensive and time consuming step can be improved by
using the already generated kd-tree or, in cases were during point cloud import a
mesh was created, by implementing region growing. As [47, p. 36] and [2, pp. 62–
63] mention, about 30 points are a good number for normal vector approximation.

Possible approaches for normal vector estimation can be found in [2, p. 47] or
[28, p. 46]. For a given point p its n nearest neighboring points are stored in a list
Np . Next, the barycenter of all the points in Np is calculated and is then used to
form a covariance matrix C according to [43]. Carrying out an eigenvalue analysis,
the eigenvector of the smallest eigenvalue �1 is the normal vector n1 of the best-fit
plane in p. �2 and �3 lead to the normal vectors n2 and n3 which may be used to
form a local coordinate system. GAReg-ISF defines normal vectors as positive if
they look in the direction of the laser scanner position; this approach is mentioned
in [28, p. 46]. It is quite obvious that normal vector estimation may be influenced
by a high noise level.

As [43] show, normal vectors can also be used to get an approximation of
the surface curvature, called “surface variation” �n. It can be calculated for the
neighborhood of a point p by

�n.p/ D �1

�1 C �2 C �3
(9.6)

whereby �i , i D 1; 2; 3 are the eigenvalues of C with �1 � �2 � �3 [43]. In
GAReg-ISF the surface variation is used to find planar (flat) areas.

Generally, two- or three-dimensional geometric features contain more informa-
tion than single points and are therefore preferable in many cases for automatic
registration. In the following sections especially the use of imperfect and subdivided
planar patches is described.

The detection of planes can happen in different forms. Von Hansen [61]
introduces a 3D raster and calculates the dominant plane patch in each raster cell
by using a RANSAC-algorithm before merging neighboring co-planar planes. The
approach is very fast and works also for millions of points [61]. By just looking at
the dominant plane in each raster cell, smaller planes are, however, omitted.
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For objects showing a lot of small planes or complex geometry, region growing or
voxel growing [14] are possible approaches. In GAReg-ISF a simplified method of
the region growing steps described in [60] are used. Hereby all points are first sorted
in a list according to their surface variation. Each point can be seen together with its
normal vector as small plane patch approximating the local surface. A starting point
(starting plane patch) is selected and neighboring points are added as long as they
are compatible with the starting plane patch. If no point can be added anymore, the
planar patch is saved and the next starting point is chosen from the sorted list.

To follow the principle of imperfect features, region growing is executed with
a higher tolerance (typically between two and five times higher) than it would be
necessary. This way also slightly “defective” surfaces can be approximated as planar
patches. The region growing parameters are, however, selected empirically and may
be adjusted by the user.

During region growing also the normal vectors n1, n2, n3 of each detected plane
patch are stored. These can be used to create a local coordinate system with its origin
in the barycenter of the plane patch. Those local coordinate systems are then taken
to subdivide the corresponding planar patches into smaller sub-parts. The difference
between this approach and the method described in [61] is that the subdivision is
not performed on a global coordinate system, but for all planes individually.

By doing so, if a plane is fully visible in other point clouds, subdivision will take
place in equal (or quite similar) manner. In other cases, GAReg-ISF is able to handle
the possible matching uncertainties (see Sect. 9.4.2.2).

9.4.2 Pair-Wise Registration

The automatic registration of point clouds can be described as search process
in six-dimensional space. To solve this complex task a separation of different
registration steps is suggested. It can, for instance, be useful to align first only pairs
of point clouds (pair-wise registration) and then use these pairs to create the digital
representation of an object (global registration).

As discussed in Sect. 9.3, pair-wise registration is generally split into rough
alignment and fine registration. Hereby, rough alignment is often done by using
some kind of features. The results are then optimized during fine registration. By
separating these processes and using specialized algorithms, the overall compu-
tational complexity can be reduced while at the same time the robustness of the
solution is increased. But in case of significant noise level, incomplete and imperfect
geometries, or occlusions, this separation may be problematic. As the features used
during rough alignment can be distorted by the discussed influences, this can lead
to a “wrong” rough solution.

Moreover, in this stage due to the introduced simplifications the “global”
optimum may not be clearly detectable or may seem “worse” than an only local
optimum. If the wrong rough solution is selected for refinement, the fine registration
algorithm is hardly able to identify it and may return completely wrong results.
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An alternative approach includes the use of Genetic Algorithms. They work
on the point cloud itself so there is no restriction to specific geometric figures.
Further, they are known to be quite robust in finding the global optimum in search
space. There is, however, the drawback that Genetic Algorithms are computationally
expensive resulting in not being able to work on the original point cloud but on a
highly reduced one only.

Therefore, we suggest combining the advantages of rough alignment using
geometric features such as plane patches and Genetic Algorithms. First, rough
alignment with imperfect and subdivided features is executed. Afterwards, the
results are used to mark promising areas in search space. By using the knowledge
of rough alignment, the Genetic Algorithm can be applied in a very targeted and
efficient way. Its main task is to improve the quality of the rough registration results
while iteratively reducing their quantity. The aim is to identify the true “global”
optimum on a step by step basis.

As mentioned in Sects. 9.3.4.1 and 9.3.4.2, adopting imperfect and subdivided
features may result in “approximations.” By using a Genetic Algorithm for opti-
mization these are reduced before passing them on to a fine registration algorithm.

There are, however, cases where the rough alignment process is already able to
identify the correct “global” optimum. The Genetic Algorithm will then terminate
early as no improvement of the quality will occur. This case then presents the typical
approach of rough alignment followed directly by fine registration.

9.4.2.1 Rough Alignment

In Sect. 9.4.1 the detection of imperfect features (plane patches) was discussed.
For robust plane patch identification a minimum number of 90 points for each
plane patch was considered feasible; moreover, it was agreed on the fact that each
subdivided part may consist of more than 30 points. Both values can be adapted by
the user to the specific properties of the point cloud.

Rough alignment in GAReg-ISF works on undivided features first and only
afterwards on the subdivided features. This way computation can be speed up. In
case of a high number of plane patches it is thinkable to use only the largest plane
patches (i.e., 50) for rough alignment as proposed in [6]. In our test, however, we
were able to successfully work with all of the detected plane patches.

As [6] show, it is necessary to detect three corresponding plane patch pairs in
two point clouds to form a valid registration solution. When implementing also the
barycenters of the plane patches, however, He et al. [29] state that two corresponding
pairs are sufficient. Nevertheless, with each point cloud containing about 50 plane
patches this results in over three million possible combinations. It is, thus, advisable
to introduce hierarchical testing to reduce the number of possible solutions.

He et al. [29] propose to calculate and compare the angles between the normal
vectors of plane patches in the two point clouds. As threshold a value between 2
and 3ı is mentioned in [6]; in case of rough surfaces also values up to 15ı can be
feasible. Also the plane area [29] or the plane circumference [15] can be compared.
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This will, however, fail, if a part of the (undivided) plane patch is occluded. For
this reason it was omitted in the here presented approach. Further, the laser beam
reflection value (intensity) and the surface variation can be used for eliminating
completely contradictory correspondences.

In a next step the remaining combinations are refined by looking at their
subdivided features (plane patches). As already mentioned, due to the subdivision
of features the maximum distance error between the barycenters of the subdivided
patches is limited, relating to the subdividing raster cell size. Brunnström and
Stoddart [7] propose to compare four invariants between two point pairs and their
normal vectors to eliminate wrong correspondences. The same approach can be
applied also to subdivided plane pairs with their barycenters and their normal
vectors. We set the angle threshold in our tests to 3ı, whereas for the distance half
the raster size was used.

By looking at the neighborhood of each subdivided plane patch a so-called
neighborhood matrix can be created. Basically this is a 3 � 3 matrix containing
information about the relative distribution of points (or areas) in eight different
directions around the subdivided patch (see [54, p. 95] for details). This way features
near borders or edges can be fast identified and wrong correspondences discovered.

For the remaining subdivided plane pair combinations the registration solution
in form of the registration matrix R can be calculated as described in [33] and [6].
Software implementations herefore can be found, e.g., in the “Pointcloud Processing
Toolbox” [46] as well as in commercial software packages like Innovmetric
PolyworksTM.

As [5] show, the solutions with the highest number of overlapping features
don’t necessarily also represent the global optimum of the registration. Due to
approximations and uncertainties the correct solution may look worse than actually
“wrong” solutions. By supplying all results to a Genetic Algorithm, this problem
can effectively be counteracted.

9.4.2.2 Genetic Algorithm

The use of Genetic Algorithms is especially advisable when the search space is par-
ticularly large and contains lots of local optima. They are able to find approximated
solutions where other algorithms may fail. We propose therefore to implement a
Genetic Algorithm right in between rough alignment and fine registration. Rough
alignment identifies promising areas in the search space and enables a more directed
application of the following Genetic Algorithm, thus resulting in higher robustness
and less computation time. The here presented Genetic Algorithm reduces and
refines solutions simultaneously. This way the “correct” solution may become more
apparent and pseudo solutions can be eliminated more efficiently.

The implemented Genetic Algorithm was originally designed for the optimiza-
tion of tunnel designs [49]. Only a small part of the algorithm required is being
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adapted to the registration of point clouds which proves once more the high
flexibility of Genetic Algorithms. The algorithm is able to work with both imperfect
and subdivided features as well as single points. In case of planar patches the former
ones can be represented by their barycenters so that the handling is similar to the
use of single points. Including also normal vectors into the registration process, a
greater robustness can be achieved. By default GAReg-ISF uses the approach with
imperfect and subdivided features as they generally occur in a lower number than
single points which leads to faster processing. It has, however, to be mentioned that
the purpose of the Genetic Algorithm in GAReg-ISF is not fine registration as such
but to serve as intermediation between rough alignment and fine registration.

Most Genetic Algorithms show a typical structure. Our algorithm is designed
similarly to the structure proposed in [55, p. 47]. One of the biggest challenges
is, however, to define a chromosome encoding for the specific task. Similarly
to [55, p. 49], a possible registration solution (individual) is defined by X D
Œ
x; 
y; 
z; tx; ty; tz	, where 
x , 
y , 
z represent the three Euler angles and tx , ty , tz the
components of the translation vector. According to the suggestions in [40] regarding
the drawbacks of Euler angles we substitute them with a rotation quaternion Q
which leads to

X D ŒQ; tx; ty; tz	 : (9.7)

Genetic Algorithms are typically initialized by creating a set of random individuals
(start population). In our approach this step may be skipped in cases where rough
alignment already provides a large set of rough results. If not already done, a kd-tree
is now created to speed up the overall process. All solutions are then evaluated by the
fitness-function (see Eq. (9.4)) and subsequently ordered according to their quality.
Next, highly similar individuals are grouped by comparing their chromosomes;
those showing the highest fitness in each group are used for the start population
whereas the rest is eliminated. The maximum number of generations was set to 200
following [55, p. 55]. An earlier termination of the generation loop will, however,
take place when the solutions converged (see Fig. 9.8) or the quality of the solutions
can’t be improved for five generations.

GAReg-ISF implements several genetic operators. The main purpose of each
operator is to create new individuals (chromosomes) which may be better than
their parent(s). A mutation operator is applied in 10 % of all cases and as for the
other 90 % [55, p. 54] the cross-over operator is chosen. Further, all individuals are
randomly mutated by a chance of 2 % [55, p. 58]. Two different types of mutation
operators are available in GAReg-ISF. The first specializes in the mutation of the
rotation quaternion Q of a parent chromosome and is further subdivided into two
different variants: While one adds a random rotation (with arbitrary rotation axis)
to the quaternion up to a maximum of 10ı, the other restricts the rotation around
the normal vector of a randomly selected feature (plane patch). The second type of
operators mutates the translation elements tx , ty , tz. Also in this case two variants
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Fig. 9.8 Convergence of the solutions

are implemented: one for random translation and another for translation along a
randomly selected plane patch. The maximum size of the translation can be set, i.e.,
to half the size of the subdivided features. To improve the convergence process, all
thresholds are decreased linearly after each generation.

Contrary to the mutation operator, the cross-over operator works with two parent
chromosomes and recombines them to two new ones. Hereby first an interpolation
factor is determined randomly between 0 and 1. Such an interpolation can be done
quite easily for the translation vectors; for the quaternions, e.g., a spherical lineal
interpolation (SLERP) can be used. Most geometric libraries already contain such a
function.

Selection generally serves two different objectives in GAReg-ISF. There is the
selection of genetic operators which is handled by a classical roulette wheel. More
important is the selection of those individuals forming new generations. This is
done by a binary tournament [16, p. 75]. Hereby first two individuals are selected
by a weighted roulette wheel as competitors; individuals with a higher fitness are
more likely to be selected. Subsequently, the selected two individuals are compared
against each other and the one showing the higher fitness is selected for the next
generation. These steps are repeated until the specified size of the new population
(i.e. 100) is reached.

Then again the creation of new individuals is started and the above described
steps are repeated until a termination criterion is met. As already mentioned, this
can be, e.g., the maximum number of generations, the convergence of the solutions
or a combination of both.

9.4.2.3 Fine Registration

Optimized by the Genetic Algorithm, the solutions resulting from rough alignment
are successively processed by a fine registration algorithm. Fine registration,
however, only works with one solution at a time and has to be repeated for all others
consecutively. Therefore the solutions are first sorted according to their quality (see
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Fig. 9.9 Global registration

again Eq. (9.4)); hereby similar solutions are grouped together. Those showing the
highest fitness in each group are passed on. Next, solutions presenting a quality
lower than 10 % or more than that of the best solution are eliminated. This way in
our examples only a couple of solutions remained for fine registration.

Several approaches of fine registration are already discussed in Sect. 9.3.3.
GAReg-ISF implements the improved ICP-algorithm according to [18]. Hereby
only the points contributing to a geometrically stable solution are used for regis-
tration.

There are, however, cases where more than one solution can seem feasible during
pair-wise registration. These are individually refined and passed on to the following
global registration process in which the “correct” solution may be identifiable.

9.4.3 Global Registration

As for the global matching of the already calculated pair-wise results, GAReg-ISF
follows an approach described in [45]. First, the pair-wise results are sorted
according to their quality. Next, the best pair-wise solution is fixed and iteratively
the next pair is added (see Fig. 9.9). To identify globally inconsistent solutions a
visibility check [42] is advisable. Whenever a point cloud is added, the already fixed
point clouds are realigned to avoid the accumulation of errors. Remaining pairs may
be used as control pairs. The result of the global registration step is a set of globally
consistent arranged point clouds.
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9.5 Software Implementation

C-Sharp, an object-oriented programming language developed by Microsoft within
its .NET initiative, allowed the fast and flexible development of GAReg-ISF; it
must, however, be mentioned that this might slightly slow down computationally
expensive calculations. Generally, the automatic registration of point clouds requires
a lot of different geometric calculations. These can be done by using, for example,
SlimDX, a free open source framework based on .NET technologies.

A lot of different software packages are currently available for point cloud
processing and point cloud manipulation. A widely used software for point cloud
processing is Innovmetric PolyworksTM. It provides specialized tools for importing,
triangulating, fine registering, and analyzing point clouds, which can be used by
external programs.

Based on [54], GAReg-ISF was redesigned as a client application which makes
use of different Innovmetric PolyworksTM v10 modules. Several steps during the
automatic point clouds registration are actually done within these modules. This
regards, e.g., the import and the triangulation of the point clouds to create (reduced)
meshes. GAReg-ISF is able to work with point clouds as well as with triangulated
meshes. In the latter case the vertices of the mesh are used as (reduced) “point cloud”
further on.

Also part of the pair-wise fine registration and the iterative realignment of
all point clouds during global matching as well as final merging of the single
point clouds (meshes) and the visualization and output are carried out with
Innovmetric PolyworksTM modules. The software communication hereby is handled
by Microsoft’s Component Object Model (COM) architecture.

9.6 Experimental Results

To evaluate and test the GAReg-ISF approach in reality, several experimental
datasets were used. Beneath some simulated datasets [54], measured data from
architecture, civil, and mining engineering and other fields, especially archaeologi-
cal data from excavations, proved to show very clearly the advantages and power of
the approach presented.

9.6.1 Introduction

The special research program HiMAT (History of Mining Activities in Tyrol and
Adjacent Areas) was established at the University of Innsbruck as an interdisci-
plinary project in 2007. The aim of this international research program was the
analysis of the impact of mining activities on the environment and human society.
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Fig. 9.10 Excavation site with wooden chest

Twelve international institutions of different scientific fields of Natural Sciences, the
Humanities, and Engineering were taking part in this research consortium. During
the HiMAT program, the objective and rigorous documentation of the archaeolog-
ical excavation sites and findings was carried out by the Unit for Surveying and
Geoinformation (see [25] and [26]). In the frame of the HiMAT-Special research
program the involved archaeologists of the internationally well-known German
Mining Museum in Bochum, Germany were able to continue their excavations in the
industrial area alongside the famous main load mining area at the Mitterberg. This
mine can be considered as one of the largest Bronze Age mining districts in Europe.
Aside the mining depressions an extensive area of ore-beneficiation is known [57].
The excavations in 2008 and 2009 uncovered an area of wet beneficiation and an
ore-washery (see Fig. 9.10). In the center of these installations a fully preserved
wooden chest was discovered, in which ore was washed and perhaps heavier,
fine grinded ore residua were concentrated. While the wooden chest is singular
and outstandingly preserved, a complete documentation using different scanning
techniques was desirable.

When the archaeologists found this wooden structure, the condition of the object
was unrivaled. The geometry of the chest seemed undamaged, therefore it was
possible to investigate the Bronze Age mounting techniques of the wooden boards.
The three-dimensional documentation of this site was a top priority, because later
investigation of these mounting methods would have been impossible after the
excavation of the find.

The terrestrial laser scanning data acquisition was accomplished with a Trimble
GX 3D Scanner in October 2009 (see Fig. 9.10). The earliest and the final stage
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of the archaeological site (extension about 5 by 6 m) have been measured. The
first documentation was managed, when the approximately 1.5 � 1.5 m wide and
0.5 m high wooden structure was found. The second data acquisition was before the
beginning of the conservation process. The resolution of the two scans of excavation
layers was 2 mm but the surrounding was scanned with resolution of only 20 mm.
At an average scanner to object distance of 5 m, the single point accuracy proved to
be around 3 mm. These parameters qualified the three-dimensional documentation
of the excavations with the used Trimble GX 3D Scanner [41]. Each attitude of the
instrument was carefully planned to ensure complete coverage of the object. The
two excavation situations were scanned during 2 days from a total of 14 different
positions. The volume of the raw dataset was about 14 million points (see [27] and
[38]).

Accompanying the laser scanning surveys, the wooden chest was recorded also
photogrammetrically with a Nikon D200 calibrated digital camera. The resolution
of the eighty photos of 3;872 � 2;592 pixels provides accurate image data for later
texturing of the achieved 3D object.

9.6.2 Example

The potential and the limits of GAReg-ISF were studied carrying out an experiment
on a dataset captured the second day at the Mitterberg mining area. Archaeological
excavations generally are well-suited for testing automatic registration strategies
(without the use of artificial target spheres) as they usually don’t contain ideal
features such as planes or other perfect geometric elements. Such cases can be
demanding for the automatic registration of point clouds.

The considered excavation extends about 5 by 6 m and is about 1 m deep.
Figure 9.11 gives an overview of the site showing also the position of the six
closest target spheres which were later used for accuracy studies (see Table 9.2).
In overall that day five single laser scans/point clouds (see Fig. 9.12) were taken
from different positions with about 1.1 up to 1.7 million points. The scan resolution
was set to 20 mm at 7 m distance for the excavation and 2 mm for target spheres and
the wooden chest itself. The following steps were fully and automatically managed
by GAReg-ISF. First, the scans were imported and preprocessed by making use
of the IMAlign module of Innovmetric PolyworksTM. As import parameters the
interpolation step (grid sampling step) was predefined with 20 mm, the maximum
angle between the laser beam and the surface with 85ı and the maximum edge
length for the triangles with 300 mm.

Next, triangulation was automatically executed by the Innovmetric IMMerge
module. The parameters were set to 100 mm regarding the maximum search
distance, 20 mm regarding the surface sampling step as well as the maximum
smoothing radius with an overall smoothing level set to medium. The whole import
and the triangulation took about 1 min per scan. The resulting number of vertices and
triangles can be seen in Table 9.1. All further calculations were based on vertices
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Fig. 9.11 Overview with target spheres

Fig. 9.12 Laser scans from different positions

which can be seen themselves as pruned copy of the original point cloud and,
therefore, enabled a faster processing.

Next, the five scans were registered pair-wisely by the GAReg-ISF algorithm,
executing as a first step a scan analysis and generating the imperfect and subdivided
features with a size of 400 mm. Figure 9.13 shows the detected imperfect and
subdivided features of scan 1 and scan 4, whereas Table 9.1 indicates their quantity.
The high quantity of subdivided plane patches in scan 4, however, comes mostly
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Table 9.1 Laser scan details

Scan Points Verticesa Trianglesa Plane patches Subdivided plane patches

1 1,156,482 31;198 56;867 41 208

2 1,176,283 26;894 49;495 35 170

3 1,698,914 59;873 105;227 100 295

4 1,747,802 116;373 196;562 197 533

5 1,142,105 16;787 30;010 38 87

aTriangulated mesh created with Innovmetric PolyworksTM v10

Fig. 9.13 Imperfect and subdivided features of scan 1 and 4

from the surrounding area of the excavation which does not directly contribute to
the registration process. The detected features were then used for a rough pair-wise
alignment and for further processing using Genetic Algorithms. Finally, the best
solutions were fine-registered. In this example, the pair-wise registration of two
scans took between 1 and 5 min on an Intel i5 M460 processor (using a single core
only). When all scans were registered pair-wisely, global registration was executed
as described in Sect. 9.4.3. It has, however, to be mentioned that the global visibility
check [42] was indeed necessary to enable the identification of the correct registered
pairs. The result of the global registration is shown in Fig. 9.14.

9.6.3 Accuracy and Comparison

To test the capabilities of GAReg-ISF algorithm in comparison to “classical”
registration using targets spheres, a number of experiments were conducted on the
dataset of the excavation which can be divided into two main phases.

First, “classical” registration was done using the globally known position of
13 artificial target spheres positioned around the excavation area to calculate the
registration matrices of the five single scans. Hereby an additional overview laser
scan, showing only the 13 spheres with high density, was used to capture the global
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Fig. 9.14 Registered scans

position of the target sphere centers; these served as reference system. Scanning at
least three spheres from each single laser scanner position enabled the registration
of the five single scans (see Fig. 9.12) into the global reference system.

Next, the identical five scans were registered a second time; this time, however,
without any target spheres, but by implementing the automatic registration method
GAReg-ISF. For comparison reasons the hereby generated registration matrices
were applied afterwards to the centers of the six closest target spheres around the
excavation area (see Fig. 9.11) which are given for each scan. The means of the
target sphere centers were used to register the results of GAReg-ISF further into the
established global reference system. Table 9.2 shows the captured sphere centers,
their means, and the standard deviation of both above described methods. It can be
seen that the registration using target spheres leads to standard deviations between
0.04 and 2.09 mm, whereas GAReg-ISF gives values between 0.57 and 5.43 mm.
While the “classical” approach is focused only on the optimization of the target
spheres, GAReg-ISF is working without any spheres but with the surfaces as such;
this also explains the higher standard deviations of GAReg-ISF. Furthermore, it
has to be added that already minimal translations and rotations of the scans have a
bigger influence on the spheres positioned outside around the excavation area. The
spatial discrepancy of both solutions is between 0.20 and 6.33 mm, which clearly
encourages further research.

In a next step, the registered triangulated surfaces of the scans themselves were
analyzed and considered. Hereby the standard deviation and the root mean squared
error (RMSE) were calculated between one scan, which was fixed as reference,
and all others using Innovmetric PolyworksTM. Using a upper threshold distance
of 25 mm, Table 9.3 shows that the standard deviation of the classical registration
ranges between 7.91 and 10.11 mm, and those of GAReg-ISF between 7.80 and
10.27 mm. Similarly, the RMSE of the target sphere registration is between 8.00
and 10.16 mm whereas those of GAReg-ISF are between 7.80 and 10.29 mm. In
four of five scans GAReg-ISF produces lower values with a maximum difference
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Table 9.2 Comparison of the target sphere centers

Registration using 13 target spheres Registration using GAReg-ISFa

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

Sphere 1 1;445:37 8;977:35 349:00 1;441:11 8;970:72 345:62

1;445:33 8;977:28 348:97 1;450:41 8;975:48 348:45

1;445:29 8;977:62 348:01 1;448:37 8;980:04 350:28

Meanb 1;445:33 8;977:41 348:66 1;446:63 8;975:41 348:12

Std. dev. 0:04 0:18 0:57 4:89 4:66 2:35

Sphere 2 5;257:30 7;758:05 60:12 5;250:83 7;761:09 60:62

5;257:63 7;757:24 60:18 5;251:07 7;760:64 60:03

5;256:36 7;756:82 59:98 5;253:11 7;752:87 58:51

Meanb 5;257:10 7;757:37 60:09 5;251:67 7;758:20 59:72

Std. dev. 0:66 0:63 0:10 1:25 4:62 1:09

Sphere 3 4;993:79 6;128:50 �23:30 4;989:71 6;131:15 �22:69
4;994:17 6;127:43 �23:22 4;992:06 6;130:12 �23:49

Meanb 4;993:98 6;127:96 �23:26 4;990:89 6;130:63 �23:09
Std. dev. 0:27 0:76 0:05 1:67 0:73 0:57

Sphere 4 3;665:75 4;610:29 �119:73 3;663:90 4;611:00 �119:16
3;664:53 4;610:69 �119:81 3;666:57 4;609:76 �120:12

Meanb 3;665:14 4;610:49 �119:77 3;665:24 4;610:38 �119:64
Std. dev. 0:86 0:29 0:05 1:89 0:87 0:68

Sphere 5 1;535:99 4;464:69 �110:82 1;534:35 4;462:29 �110:50
1;533:67 4;467:64 �111:15 1;536:12 4;460:88 �111:33

Meanb 1;534:83 4;466:17 �110:99 1;535:24 4;461:59 �110:92
Std. dev. 1:64 2:09 0:23 1:25 1:00 0:59

Sphere 6 211:78 9;472:94 �354:94 218:34 9;472:94 �356:76
211:90 9;474:41 �354:20 216:34 9;480:63 �351:63

Meanb 211:84 9;473:68 �354:57 217:34 9;476:79 �354:20
Std. dev. 0:08 1:04 0:53 1:41 5:43 3:63

aAt the end the resulting registration matrices were applied to the unregistered target spheres
bThe spatial distance between the calculated means for sphere 1 is 5.50 mm, sphere 2: 2.45 mm,
sphere 3: 4.60 mm, sphere 4: 0.20 mm, sphere 5: 4.09 mm, sphere 6: 6.33 mm

Table 9.3 Standard deviations of the surfaces

Registration using 13 target spheres Registration using GAReg-ISF

Referencea Points Std. dev.b RMSEb Points Std. dev.b RMSEb

Scan 1 40,622 8.50 mm 8.52 mm 40,469 8.39 mm 8.39 mm
Scan 2 40,206 8.26 mm 8.43 mm 40,042 7.96 mm 7.96 mm
Scan 3 44,002 7.91 mm 8.00 mm 44,079 7.80 mm 7.80 mm
Scan 4 36,710 8.78 mm 8.96 mm 36,682 8.66 mm 8.76 mm
Scan 5 18,297 10.11 mm 10.16 mm 18,031 10.27 mm 10.29 mm
aThe corresponding scan was fixed as reference and compared to all other scans
bThe upper threshold distance was set to 25 mm
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of 0.30 mm regarding the standard deviation and 0.47 mm of the RMSE. Looking at
the compared quantity of points (resulting from the maximum comparing distance
of 25 mm) one can see that, apart from scan 3, GAReg-ISF uses a slightly lower
number of points. This may have contributed to the results.

In overall, comparing the surfaces gives quite similar results for both methods.
We could prove that GAReg-ISF, due to the use of imperfect and subdivided
features, is able to automatically register also laser scans which don’t consist
of typical geometric elements such as ideal planes, and can achieve results of
comparable quality regarding the registration of surfaces.

9.7 Summary

In this contribution the authors propose a method for the automatic complementary
registration of arbitrary point clouds originating from terrestrial laser scanners
without using artificial targets. The presented approach can be seen as improvement
to the state of the art as it combines aspects of different already well-studied methods
such as feature matching and engineering applications of Genetic Algorithms.
Combining and optimizing the positive facets of these techniques, their application
to the automatic registration of partially occluded point clouds that are indicated by
even significant noise level and imperfect geometry was enabled.

One of the great advantages of the presented concept is the acceptance of “a
certain imperfectness” of the features in the individual datasets and the setup of a
registration framework capable to handle them. The rigorous subdivision of features
into smaller sub-features allows overcoming occlusions at the object and both
robustness and computational performance were increased when registering point
clouds of any size. Together with Genetic Algorithms this was implemented as
clearly targeted step in between classical rough alignment and fine registration.

The provided example shows that the approach of subdivided features is not only
applicable to objects consisting of classical geometric primitives such as planes
(as in most architectural and engineering applications); due to the concession of
imperfect features also scenes consisting of approximated features are manageable.
Within a geometric documentation of an archaeological excavation we proved exem-
plarily that the presented approach is able to reach results of comparable accuracy as
the classical registration using artificial spheres. Even in this complex surrounding it
supplies evidence for the efficiency of the presented overall registration work-flow.
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