
Chapter 31
The Basic Multi-Project Scheduling Problem

José Fernando Gonçalves, Jorge José de Magalhães Mendes,
and Mauricio G.C. Resende

Abstract In this chapter the Basic Multi-Project Scheduling Problem (BMPSP) is
described, an overview of the literature on multi-project scheduling is provided, and
a solution approach based on a biased random-key genetic algorithm (BRKGA) is
presented. The BMPSP consists in finding a schedule for all the activities belonging
to all the projects taking into account the precedence constraints and the availability
of resources, while minimizing some measure of performance. The representation of
the problem is based on random keys. The BRKGA generates priorities, delay times,
and release dates, which are used by a heuristic decoder procedure to construct
parameterized active schedules. The performance of the proposed approach is
validated on a set of randomly generated problems.

Keywords Genetic algorithm • Meta-heuristics • Multi-project scheduling •
Random keys

31.1 Introduction

Managing multiple projects is a complex decision-making process, where a number
of projects must share concurrently a set of limited resources. Examples of multi-
project environments are new product development, multi-product manufacturing,
infrastructure constructions, and maintenance of systems.
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The basic multi-project scheduling problem (BMPSP) can be considered an
extension of the well-known resource constrained project scheduling problem
(RCPSP) where two or more projects which require the same scarce resources are
scheduled simultaneously.

There are two main distinguished research fields in multi-project scheduling—the
static and the dynamic project environment (Dumond and Mabert 1988). In this
chapter we assume a closed project portfolio, which does not change over time.
The BMPSP in a static environment has been studied, amongst others, by Fendley
(1968), Pritsker et al. (1969), Kurtulus and Davis (1982), Kurtulus and Narula
(1985), Lawrence and Morton (1993), Lova et al. (2000), Lova and Tormos (2001,
2002), Gonçalves et al. (2008), Krüger and Scholl (2010), Browning and Yassine
(2010), Kumanam and Raja (2011), and Cai and Li (2012).

The existing solution methods apply either a single- or a multi-project approach.
The single-project approach is equivalent to the RCPSP, since it merges all projects
of the multi-project into an artificial super-project with dummy start and end
activities. The multi-project approach keeps the projects separate. The approach
considered in this chapter uses a single-project approach.

Scheduling involves the allocation of the given resources to projects to determine
the start and completion times of a set of detailed activities. There may be multiple
projects contending for limited resources, which makes the solution process more
complex. The allocation of scarce resources then becomes a major objective of the
problem and several compromises have to be made to solve the problem to the
desired level of near-optimality.

In this chapter, we present a biased random-key genetic algorithm (BRKGA)
approach to solve the BMPSP. The remainder of the chapter is organized as follows.
Section 31.2 describes the problem and presents a conceptual model and Sect. 31.3
reviews the literature. Section 31.4 describes the approach used to solve the
BMPSP. Section 31.5 describes the parameterized schedule-generation procedure
and Sect. 31.6 reports on some computational experiments. Concluding remarks are
made in Sect. 31.7.

31.2 Problem Description

The BMPSP consists of a set Q of projects, where each project q 2 Q is composed
of activities j 2 Vq , where activities ˛q and !q are dummies and represent,
respectively, the initial and final activities of project q. Let V be the set of all
activities and let R D f1; : : : ; Kg represent the set of renewable resources. While
being processed, activity j 2 V requires rjk units of resource k 2 R during each
time instant of its non-preemptable duration pj . Resource k 2 R has a limited
availability of Rk at any point in time. Parameters pj , rjk, and Rk are assumed to be
non-negative and deterministic. The activities are interrelated by the following two
kinds of constraints:
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• Precedence constraints, which force each activity i 2 V to be scheduled after all
predecessor activities j 2 Pred.i/ are completed;

• Resource constraints, which assure that the processing of the activities is subject
to the availability of resources with limited capacities.

For the start and end activities of each project q, we have, for all q 2 Q, that

p˛q D pwq D 0 and r˛qk D rwqk D 0 .k 2 R/

Activities 0 and nC1 are dummy activities, have no duration, and correspond to the
start and end of all projects.

The BMPSP consists in finding a schedule for all the activities taking into
account precedence constraints and the availability of resources, while minimizing
some measure of performance. Let Cj represent the finish time of activity j 2 V . A
schedule can be represented by a vector of finish times (C1; : : : ; CnC1/. Let A .t/ be
the set of activities being processed at time t . The conceptual model of the BMPSP
can be described as

Min. Measure of Performance . C1; : : : ; Cn / (31.1)

s.t.

Ci � Cj � pj .j 2 V I i 2 Pred.j // (31.2)
P

j 2A .t/

rjk � Rk .k 2 RI t � 0/ (31.3)

Cj � 0 .j 2 V / (31.4)

According to objective (31.1) we seek to minimize some performance measure.
Constraints (31.2) impose the precedence relations between activities, and con-
straints (31.3) limit the resource usage imposed by the activities being processed
at time t to the available capacity. Finally, constraints (31.4) force the finish times
to be non-negative.

A variety of measures of performance have been used for the BMPSP. Mini-
mization of project duration has been used widely (Baker 1974). Other measures
of performance include: minimization of total project delay, lateness, or tardiness
(Kurtulus and Davis 1982), minimization of average project delay (Lova and
Tormos 2001), minimization of total lateness or lateness penalty (Kurtulus 1985),
minimization of the overall project cost (Talbot 1982), minimization the total
cost of delay (Kurtulus and Narula 1985), and maximization of the resource
leveling (Woodworth and Willie 1975). In this chapter, we seek to minimize a
measure of performance which involves the due date (tardiness), starting time
(earliness), and work in process (flow time) of each project (Gonçalves et al. 2008).
This performance measure simultaneously incorporates three criteria: tardiness,
earliness, and flow time and is described below. The following notation will be used:
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Opq : Target duration for project q.
dq: Due date for project q.
Cq : Conclusion date for project q in the generated schedule.
Sq: Start date for project q in the generated schedule.
Tq: Tardiness of project q D max

˚
Cq � dq ; 0

�
.

Eq: Earliness of project q D max
˚
dq � Cq ; 0

�
.

FDq : Flow time deviation for project q D max
˚
Cq � Sq � Opq; 0

�
.

LBq
0: Critical path length of project q.

the performance measure is defined as

wT
X

q

T
3
q C wE

X

q

E
2
q C wFD

X

q

FD2
q (31.5)

where wT , wF , and wFD are parameters defined by the decision maker. Note that
the tardiness has an exponent equal to 3 because in the real-world it is considered
more important than the earliness or the flow-time (which have an exponent equal
to 2). To overcome the problem of not knowing the target duration of a project in a
real-world situation, we replace

wT
X

q

FD2
q by wT

X

q

�
Cq � Sq

�2

LBq
0

In the above model, the constraints for the resources are expressed by condition
(31.3). However, there are others types of constraints related with the start of a
project which cannot be modeled by that condition. To be able to model this kind of
constraint, we add

C˛q � ESq .q 2 Q/

to the model, where ESq represents earliest release date for project q. These
constraints are enforced in the model implicitly by assigning to the initial activity of
each project a duration ESq � ESq , i.e.,

p˛q D ESq � ESq .q 2 Q/

31.3 Literature Review

The BMPSP is a generalization of the RCPSP. Blazewicz et al. (1983) show that the
RCPSP, as a generalization of the classical job shop scheduling problem, belongs
to the class of N P-hard optimization problems. Therefore the BMPSP, as a
generalization of the RCPSP, is also N P-hard.
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Exact methods to solve the BMPSP are proposed in the literature. The pioneering
work of multi-project scheduling by Pritsker et al. (1969) proposed a zero-
one programming approach. Mohanthy and Siddiq (1989) studied the problem
of assigning due dates to the projects in a multi-project environment. Drexl
(1991) considered a non-preemptive variant of the resource-constrained assignment
problem using a hybrid branch-and-bound/dynamic programming algorithm with a
Monte Carlo-type upper bounding heuristic. Deckro et al. (1991) formulated the
BMPSP as a block angular general integer programming model and employed
a decomposition approach to solve large problems. Vercellis (1994) describes a
Lagrangian decomposition technique for solving multi-project planning problems
with resource constraints and alternative modes of performing each activity in the
projects.

Several approaches to the BMPSP using heuristic methods have been proposed
in the literature. For example, Fendley (1968) used multi-projects with three and
five projects and considered three efficiency measurements in the computational
analysis. Kurtulus and Davis (1982) designed multi-project instances whose projects
have between 34 and 63 activities and resource requirements for each activity
between two and six units.

Kurtulus and Narula (1985) studied penalties due to project delay. Dumond and
Mabert (1988) studied the problem of assigning due dates to the projects in a multi-
project environment. Tsubakitani and Deckro (1990) proposed a heuristic for multi-
project scheduling with resource constraints using the Kurtulus and Davis (1982)
approach to select appropriate heuristic decision rules. Bock and Patterson (1990)
designed a computational experiment based on the work of Dumond and Mabert
(1988) with three factors. Lawrence and Morton (1993) studied the due date setting
problem of scheduling multiple resource-constrained projects with the objective of
minimizing weighted tardiness costs. Shankar and Nagi (1996) proposed a two-level
hierarchical approach consisting of the planning and scheduling stages.

Özdamar et al. (1998) examined different dispatching rules for the tardiness
and the net present value objective embedded in a multi-pass heuristic. Ash (1999)
proposed a deterministic simulation scheme using available project data to choose
an activity scheduling heuristic which not only allows for the establishment of
good project schedules, but determines a priori which resources will be assigned
to specific project activities.

Lova et al. (2000) developed a multi-criteria heuristic that, lexicographically,
improves two criteria: a temporal criterion (mean project delay in relation to the
unconstrained critical path duration or multi-project duration increase) and a non-
temporal criterion (project splitting, in-process inventory, resource leveling, or idle
resources) that can be chosen by the user.

Mendes (2003) presents a genetic algorithm that uses a random-key representa-
tion and a modified parallel schedule-generation scheme (SGS).
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31.4 Biased Random-Key Genetic Algorithm

We begin this section with an overview of the proposed solution process. This is
followed by a discussion of the biased random-key genetic algorithm, including
detailed descriptions of the solution encoding and decoding, evolutionary process,
and fitness function.

31.4.1 Overview

Considering the difficulty to solve real-world problems with exact methods, a new
solution approach is developed that combines a genetic algorithm with a schedule-
generation scheme (SGS) that creates parameterized active schedules. The SGS
constructs a schedule based on the priorities and delay times of the activities, and
the release dates of the projects.

The role of the genetic algorithm (GA) is to evolve the encoded solutions, or
chromosomes, which encode the vectors of priorities (˘ ) and delays (�) of the
activities and the vector of project release dates (ES). For each chromosome, the
following phases are applied to decode the chromosome:

1. Decoding of the priorities. This phase transforms a part of the chromosome
supplied by the genetic algorithm into the vector of activity priorities (˘ ).

2. Decoding of the delay times. This phase transforms a part of the chromosome
supplied by the genetic algorithm into the vector of activity delays (�).

3. Decoding of the release dates. This phase transforms a part of the chromosome
supplied by the genetic algorithm into the vector of project release dates (ES).

4. Schedule generation. This phase makes use of ˘ , �, and ES, generated in the
previous phases, and constructs parameterized active schedules.

5. Fitness evaluation: This phase computes the fitness of the solution (or measure
of quality of the schedule) according to Eq. (31.5).

Figure 31.1 illustrates the sequence of steps applied to each chromosome generated
by the BRKGA.

The remainder of this section details the genetic algorithm, the decoding
procedure, and the SGS

31.4.2 Biased Random-Key Genetic Algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
for solving problems like sequencing, whose solutions can be encoded as permu-
tation vectors, were introduced in Bean (1994). In an RKGA, chromosomes are
represented as vectors of randomly generated real numbers in the interval Œ0; 1�.
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Fig. 31.1 Architecture of the algorithm

The decoder, a deterministic algorithm, takes as input a chromosome and associates
with it a solution of the combinatorial optimization problem for which an objective
value or fitness can be computed.

Random key GAs are particularly attractive for sequencing problems and/or
when the chromosomes have several parts (see, for example, Gonçalves and
Almeida 2002; Gonçalves and Resende 2004; Gonçalves and Sousa 2011). Unlike
traditional GAs, which need to use special repair procedures to handle permutations
or sequences, RKGAs move all the feasibility issues into the objective evaluation
procedure and guarantee that all offspring formed by crossover correspond to
feasible solutions. When the chromosomes have several parts, traditional GAs
need to use different genetic operators for each part. However, since RKGAs use
parametrized uniform crossovers (instead of the traditional one-point or two-point
crossover), they do not need to have different genetic operators for each part.

A RKGA evolves a population of random-key vectors over a number of
generations (iterations). The initial population is made up of � init

pop vectors of nkey

random keys. Each component of the solution vector, or random key, is generated
independently at random in the real interval Œ0; 1�. Next, the fitness of each
individual is computed by the decoder in generation g, the population is partitioned
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into two groups of individuals: a small group of nelit < � init
pop=2 elite individuals,

i.e., those with the best fitness values, and the remaining set of � init
pop � nelit non-

elite individuals. To evolve the population of generation g, a new generation of
individuals is produced. All elite individuals of the population of generation g

are copied without modification to the population of generation g C 1. RKGAs

implement mutation by introducing mutants into the population. A mutant is a
vector of random keys generated in the same way in which an element of the initial
population is generated. At each generation, a small number nmut < � init

pop=2 of
mutants is introduced into the population. With nelit C nmut individuals accounted
for in the population of generation g C 1, � init

pop � nelit � nmut additional individuals
need to be generated to complete the � init

pop individuals that make up population gC1.
This is done by producing � init

pop � nelit � nmut offspring solutions through the process
of mating or crossover.

A biased random-key genetic algorithm, or BRKGA (Gonçalves and Resende
2011a), differs from a RKGA in the way parents are selected for mating. While in
the RKGA of Bean (1994) both parents are selected at random from the entire current
population, in a BRKGA each offspring is generated combining a parent selected at
random from the elite partition in the current population and one selected at random
from the rest of the population. Repetition in the selection of a mate is allowed and
therefore an individual can produce more than one offspring in the same generation.
As in RKGAs, parameterized uniform crossover (Spears and Dejong 1991) is used to
implement mating in BRKGAs. Let �elit be the probability that an offspring inherits
the vector component of its elite parent. Recall that nkey denotes the number of
components in the solution vector of an individual. For l D 1; : : : ; nkey; the l-th
component c.l/ of the offspring vector c takes on the value of the l-th component
e.l/ of the elite parent e with probability �elit and the value of the l-th component
Ne.l/ of the non-elite parent Ne with probability 1 � �elit.

When the next population is complete, i.e., when it has � init
pop individuals,

fitness values are computed for all of the newly created random-key vectors and
the population is partitioned into elite and non-elite individuals to start a new
generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous nkey-dimensional hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated.

To specify a biased random-key genetic algorithm, we simply need to specify
how solutions are encoded and decoded and how their corresponding fitness values
are computed. We specify our algorithm next by first showing how the resource-
constrained multi-project scheduling solutions are encoded and then decoded and
how their fitness evaluation is performed.
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31.4.3 Chromosome Representation

A chromosome represents a solution to the problem and is encoded as a vector of
random keys. In a direct representation, a chromosome represents a solution of the
original problem, and is usually called genotype, while in an indirect representation
it does not and special procedures are needed to derive a solution from it usually
called phenotype.

In the present context, the direct use of schedules as chromosomes is too
complicated to represent and manipulate. In particular, it is difficult to develop
corresponding crossover and mutation operations. Instead, solutions are represented
indirectly by parameters that are later used by a schedule generator to obtain
a solution. To obtain the solution (phenotype) we use the parameterized active
schedule generator described in Sect. 31.5. Each solution chromosome is made of
2n C m genes, where n is the number of activities and m is the number of projects:

Chromosome D .gene1; : : : ; genen„ ƒ‚ …
Priorities

; genenC1; : : : ; gene2n„ ƒ‚ …
Delay Times

; gene2nC1; : : : ; gene2nCm„ ƒ‚ …
Release Dates

/

The first n genes are used to determine the priorities of each activity. The genes
n C 1 to 2n are used to determine the delay time used at each of the n iterations
of the scheduling procedure, which schedules one activity per iteration. The last m

genes are used to determine the release dates of each of the m projects.

31.4.4 Decoding of the Activity Priorities

As mentioned in Sect. 31.4.3, the first n genes are used to obtain activity priorities.
Activity priorities are values between 0 and 1. The higher the value, the higher the
priority will be. Below, we present the decoding procedure for the activity priorities.

Let TFj D dq.j / � lj , represent the slack of activity j where dq.j / is the due date
of the project q to which activity j belongs and lj is the length of the longest-length
path from the beginning of activity j to the end of the project q.j / to which activity
j belongs. Furthermore, let TFmax be the maximum slack for all activities amongst
all projects.

The priority of each activity j is given by an expression which produces priority
values between 70 and 100 % of the normalized slack. The priority of each activity
j is given by the following expression

˘j D TFj

TFmax
� �0:7 C 0:3 � genej

�
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31.4.5 Decoding of the Delays

Genes nC1 to 2n are used to determine the delay times �i , used by each scheduling
iteration i . The delay time for each activity i is calculated by

�i D genei � 1:5 � pmax

where pmax is the maximum duration amongst all activity durations. The factor 1.5
was obtained after experimenting with values between 1.0 and 2.0 in increments of
0.1.

31.4.6 Decoding of the Release Dates

The last m genes of each the chromosome (genes 2n C 1 to 2n C m) are used
to determine the release dates of each project q 2 Q. The following decoding
expression is used to obtain the release date of each project q 2 Q:

ESq D ESq C gene2nCq � �dq � ESq

�

Consequently, the duration of the initial activity of each project q is equal to

p˛q D ESq .q 2 Q/

31.5 Schedule-Generation Procedure

The set of active schedules is usually very large and contains many schedules
with relatively large delay times, having therefore poor quality in terms of the
performance measure. To reduce the solution space, parameterized active schedules,
introduced by Gonçalves and Beirão (1999) and Gonçalves et al. (2005) are used.
The basic idea of parameterized active schedules consists in controlling the delay
time allowed for each activity to encounter. By controlling the maximum delay time
allowed, one can reduce or increase the solution space. A maximum delay time
equal to zero is equivalent to restricting the solution space to non-delay schedules
and a maximum delay time equal to infinity is equivalent to allowing general active
schedules.

The procedure used to construct parameterized active schedules is based on a
schedule-generation scheme that proceeds by time-increments. For each iteration
�, there is a scheduling time t�. All activities which are active at t� form the active
set, i.e.,

A� D ˚
j 2 V j Cj � dj � t� < Cj

�
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Fig. 31.2 Pseudocode to generate parameterized active schedules

The remaining resource capacity of resource k at instant time t� is given by

R
0

k.t�/ D Rk.t�/ �
X

j 2A�

rjk

All activities that have been scheduled up to iteration � are contained in the set C�

and �� denotes the set of finish times of the activities in C�. Let �� be the delay
time associated with the activity being scheduled at iteration �, and let the set D�

comprise all activities which are precedence-feasible in the interval Œt�; t� C ���,
i.e.,

D� D ˚
j 2 V n C��1 j Ci � t� C �� 8i 2 Pred.j /

�

The algorithmic description of the schedule-generation scheme used to generate
parameterized active schedules is given by the pseudocode shown in Fig. 31.2.

The basic idea of parameterized active schedules is incorporated in the selection
step of the procedure, i.e., in the step

j � WD argmax
j 2D�

˚
˘j

�
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The set D� forces the selection to be made only amongst activities which will have
a delay smaller or equal to the maximum allowed delay.

Parameters ˘j (priority of activity j ) and D� (delay for the activity being
scheduled at iteration �) are supplied by the genetic algorithm.

31.6 Computational Results

In the next subsections we present the details of the computational experiments used
to illustrate the effectiveness of the algorithm described in this chapter.

31.6.1 Test Problems

The test problems used in the computational experiments are the ones proposed by
Gonçalves et al. (2008). These test problems have known optimal solutions equal
to zero for the measure of performance described in Sect. 31.2 (i.e., tardiness D 0,
earliness D 0, and flow time deviationD 0).

Five types of multi-project instances were used, with 10, 20, 30, 40, and
50 single-project instances, each with 120 activities. For each problem type, 20
instances were used. Since each single-project instance has 120 activities, we have
that each multi-project instance has 1,200, 2,400, 3,600, 4,800, and 6,000 activities,
respectively. Each activity can use up to four resources. The average number of
overlapping projects in execution can be 3, 6, 9, 12, and 15. Table 31.3 shows the
combinations of the number of overlapping projects used for the problems with 10,
20, 30, 40, and 50 single-projects.

31.6.2 BRKGA Configuration

Although there is no straightforward way to configure the parameters of a genetic
algorithm, our past experience with genetic algorithms based on the same evolu-
tionary strategy (see Gonçalves and Almeida 2002; Gonçalves and Resende 2004,
2011b, 2012, 2013, 2014; Gonçalves et al. 2005, 2008) has shown that good results
can be obtained with the values of nelit, nmut, and Crossover Probability (�elit) shown
in Table 31.1.

Table 31.1 Range of
parameters for the
evolutionary strategy

Parameter Interval

nelit (0.10–0.25) � � init
pop

nmut (0.15–0.30) � � init
pop

Crossover probability (�elit) (0.70–0.85)
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Table 31.2 Configuration of the BRKGA for the computational experiments

Population size: min{0.2 � Number of activities in the multi-project, 250}

Crossover probability: 0.7
Selection: The top 10 % from the previous population chromosomes

are copied to the next generation

Mutation: 20 % of the population chromosomes are replaced with new
randomly generated chromosomes

Fitness: See Eq. (31.5)

Stopping criterion: 50 generations

For the population size we obtained good results by indexing it to the size of the
problem, i.e., use small size populations for small problems and larger populations
for larger problems. Having in mind this past experience and in order to obtain a
reasonable configuration, we conducted a factorial analysis on a small pilot set of
problem instances not included in the experimental tests. The configuration shown
in Table 31.2 was the best in terms of the sum of fitness values and the number
of best results and was held constant for all problem instances in the experiments.
The experimental results demonstrate that this configuration not only provides high-
quality solutions but it is very robust.

31.6.3 Results

Table 31.3 summarizes the experimental results. It lists the fitness, earliness,
tardiness, and flow time deviation for each problem type. Let m be the number of
projects in each problem instance. Averages and standard deviations were computed
for the 20 problem instances included in each problem type. Columns Avg1 and SD1

list averages and standard deviations for the expression

1

m

 

wT

mX

iD1

T 3
i C wE

mX

iD1

E2
i C wFD

mX

iD1

FD2
i

!

Columns Avg2 and SD2 list, respectively, averages and standard deviations for the
expression

1

m

mX

iD1

Ei

Columns Avg3 and SD3 list, respectively, averages and standard deviations for the
expression
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1

m

mX

iD1

Ti

and columns Avg4 and SD4 list, respectively, averages and standard deviations for
the expression

1

m

mX

iD1

FDi

The last column with heading % Improv represents the percentage improvement
of the average last generation fitness values on those of the first generation, i.e.,

100 % � .Fitness at first generation � Fitness at last generation/

Fitness at first generation

Table 31.3 shows that all averages of the tardiness are close to zero and that the
averages values of the earliness are also close to zero for all instances with more
than three overlapping projects. As expected, the fitness obtained gets smaller (i.e.,
improves) as the number of overlappings of projects increases. This is due to the
fact that as the number of overlapping projects increases, so does the flexibility
in terms of capacity, therefore allowing for more possibilities of finding good
schedules. Finally, the % Improv values show that the BRKGA achieves a substantial

Table 31.3 Experimental results

No No Fitness Tardiness Earliness Flow dev. No %

Proj’s Overl. Avg1 SD1 Avg2 SD2 Avg3 SD3 Avg4 SD4 Best Improv

10 3 10.35 18.56 0.00 0.00 1.20 1.41 0.38 0.54 17 99.99

20 3 73.14 117.52 0.00 0.00 2.57 2.91 1.07 1.97 17 100.00

6 0.95 2.10 0.00 0.00 0.42 0.27 0.03 0.07 20 100.00

30 3 210.13 202.81 0.01 0.02 3.92 2.88 1.74 1.45 18 100.00

6 3.89 7.11 0.00 0.00 0.60 0.40 0.09 0.20 20 100.00

9 0.48 0.37 0.00 0.00 0.38 0.12 0.02 0.05 19 100.00

40 3 1,324.14 1,282.69 0.06 0.06 9.45 7.29 6.15 4.77 15 100.00

6 6.18 15.00 0.00 0.00 0.59 0.35 0.11 0.22 18 100.00

9 4.48 16.52 0.00 0.00 0.50 0.25 0.06 0.21 18 100.00

12 2.00 4.28 0.00 0.00 0.52 0.26 0.04 0.08 17 100.00

50 3 2,584.49 2,887.14 0.07 0.04 14.68 5.68 7.40 6.42 11 99.91

6 25.87 57.23 0.00 0.00 0.87 0.60 0.23 0.39 17 100.00

9 0.73 0.79 0.00 0.00 0.43 0.11 0.02 0.05 20 100.00

12 1.35 2.16 0.00 0.00 0.50 0.17 0.02 0.05 18 100.00

15 1.07 1.98 0.00 0.00 0.50 0.15 0.01 0.04 13 100.00
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Table 31.4 Average elapsed time for 50 generations

Problem instance type (number of projects): 10 20 30 50

Average elapsed time (in seconds) for 50 generations: 178 449 840 1,860

improvement in the quality of the solutions. Sometimes the average percentage
improvement is as large as 100 %.

The computational experiments were run on a PC with a 1.33 GHz AMD
Thunderbird CPU on the MS Windows Me operating system and the algorithm was
implemented in Visual Basic 6.0. Table 31.4 presents the average computational
times, in seconds, for each problem instance and for 50 generations.

31.7 Conclusions

This chapter presents the Basic Multi-Project Scheduling Problem and a solution
approach using a biased random-key genetic algorithm. The chromosome represen-
tation of the problem is based on random keys. The schedules are constructed using
a schedule-generation scheme that generates parameterized active schedules based
on priorities, delay times, and release dates generated by the biased random-key
genetic algorithm.

The approach is tested on a set of test problems with 10, 20, 30, 40, and 50
projects (having 1,200, 2,400, 3,600, 4,800, and 6,000 activities, respectively). In
the computational experiments, the algorithm obtained values near the optimum
(zero), therefore validating the effectiveness of the proposed approach.
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