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Abstract Social networks have demonstrated in the last few years to be a powerful
and flexible concept useful to represent and analyze data emerging from social inter-
actions and social activities. The study of these networks can thus provide a deeper
understanding of many emergent global phenomena. The amount of data available
in the form of social networks is growing by the day. This poses many computa-
tional challenging problems for their analysis. In fact many analysis tools suitable
to analyze small to medium sized networks are inefficient for large social networks.
The computation of the betweenness centrality index (BC) is a well established
method for network data analysis and it is also important as subroutine in more
advanced algorithms, such as the Girvan-Newman method for graph partitioning. In
this chapter we present a novel approach for the computation of the betweenness
centrality, which speeds up considerably Brandes’ algorithm (the current state of the
art) in the context of social networks. Our approach exploits the natural sparsity of
the data to algebraically (and efficiently) determine the betweenness of those nodes
forming trees (tree-nodes) in the social network. Moreover, for the residual network,
which is often of much smaller size, we modify directly the Brandes’ algorithm so
that we can remove the nodes already processed and perform the computation of
the shortest paths only for the residual nodes. We also give a fast sampling-based
algorithm that computes an approximation of the betweenness centrality values of
the residual network while returns the exact value for the tree-nodes. This algorithm
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improves in speed and precision over current state of the art approximation methods.
Tests conducted on a sample of publicly available large networks from the Stanford
repository show that, for the exact algorithm, speed improvements of a factor ranging
between 2 and 5 are possible on several such graphs, when the sparsity, measured
by the ratio of tree-nodes to the total number of nodes, is in a medium range (30–
50 %). For some large networks from the Stanford repository and for a sample of
social networks provided by Sistemi Territoriali with high sparsity (80 % and above)
tests show that our algorithm, named SPVB (for Shortest Path Vertex Betweenness),
consistently runs between one and two orders of magnitude faster than the current
state of the art exact algorithm.

1 Introduction

Social networks have demonstrated in the last few years to be a powerful and flexible
concept useful to represent and analyze data emerging from social interactions and
social activities. The study of these networks can thus provide a deeper understand-
ing of many emergent social global phenomena. Moreover such analytic tools and
concepts have been successfully adopted in a vast range of applications including
communications, marketing and bioinformatics.

According to the standard paradigm of social networks, each agent/item is asso-
ciated to a node of the network and the edges between pairs of nodes represent the
relationship between them. Social networks are naturally represented as graphs, con-
sequently graph theory and efficient graph algorithms play an important role in social
network analysis. Among the analytic tools, centrality indices are often used to score
(and rank) the nodes (or the edges) of the network to reflect their centrality position.
The intuitive idea behind this class of indices is that a more central node is likely to
be involved in many processes of the network, thus its importance increases.

Depending on what we mean with the word “important", different definitions of
centrality are possible [1]. For example: degree centrality highlights nodes with a
higher number of connections, closeness centrality highlights nodes easily reachable
from other nodes, eigenvector centrality highlights nodes connected with authorita-
tive nodes and betweenness centrality (BC) highlights nodes which are more likely to
be information hubs. A complete compendium of many centrality definitions, prob-
lems and measures can be found in [2]. Vertex betweenness [3, 4] is one of the most
broadly used centrality indices. The (vertex) betweenness of a vertex v is defined as
the sum, for each pair of nodes (s, t) in the network, of the ratio between the number
of shortest (aka geodesic) paths from s to t passing through v and the total number of
shortest paths from s to t . The main assumption of this index is that the information
flows in the network following shortest paths. Despite the fact that this assumption
could be considered restrictive, betweenness finds a vast range of applications (e.g.
in computing lethality for biological networks [5] and in bibliometry [6]).

A very similar concept, the edge betweenness, is defined in [3] where for an
edge e, the sum is computed for each pair of nodes (s, t) of the ratio among the
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number of shortest paths from s to t through the edge e over the number of all
the shortest paths from s to t . Edge betweenness has a prominent application as a
subroutine in the algorithm of Newman and Girvan [7] for community detection of
complex networks. In this chapter, for sake of clarity, we discuss only the problem
of computing efficiently vertex betweenness, however with minor modifications our
approach applies to edge betweenness as well (see [8]). The computation of the
betweenness centrality index is demanding because, for a given nodev, all the shortest
paths between each couple of nodes passing through v have to be counted (even if it
is not necessary to explicitly enumerate them). This means that, in general, for fairly
large networks the computation of this index based on a direct application of its
definition becomes impractical, having complexity O(n3), for a graph with n nodes.
Since the last decade the number and size of social networks have been consistently
increasing over time, efficient algorithms have emerged to cope with this trend.

The fastest exact algorithm to date is due to Brandes [9]. It requires O(n+m) space
and O(nm) time where n is the number of nodes and m the number of edges in the
graph. For sparse graphs, where m = O(n), Brandes’ method is a huge improvement
over the naive direct method, however it is still quadratic in n, regardless of any other
special feature the input graph may have.

In this chapter we propose an evolution of the Brandes’ algorithm, named SPVB
(for Shortest Path Vertex Betweenness), which exploits some widespread topologi-
cal characteristic of social networks to speed up the computation of the betweenness
centrality index. We show that for nodes in the graph that belong to certain tree struc-
tures the beteenness value can be computed by a straightforward counting argument.
The advantage of our approach is two-fold: on the one hand we do not need to count
shortest paths for the subset of network nodes that have the required tree-structure,
and, on the other hand, for the residual nodes we compute the shortest paths only
between nodes belonging to the residual of the original graph, thus more efficiently.
Our algorithm performance strictly depends on the number of nodes for which we
can algebraically derive the betweenness. Therefore it works well in practice for
social networks since we observed that such tree structures are quite frequent in the
context of social networks where the number of edges of the graph is of the same
order of magnitude of the number of nodes. Note, however, that SPVB still reduces
to the Brandes’ algorithm in a strict worst case scenario.

We have tested graphs with up to 500 K nodes, which is a fair size for many
applications. However in some applications (e.g. web graphs, telephone calls graphs)
we face much larger graphs in the regions of millions of nodes, and we might want to
trade off speed and precision in computing the Betweenness Centrality (BC). In this
case approximating betweenness may be the strategy of choice. Thus we combine
our algebraic computation with the sampling approach in [10] so to gain the benefits
of both (see Sect. 6), obtaining the algorithm ASPVB (for Approximate Shortest
Path Vertex Betweenness).

We tested our algorithm on a set of 18 social graphs of Sistemi Territoriali which
is an ICT company with headquarters in Italy, specializing in Business Intelligence
applications. These graphs coming from real applications are very large and very
sparse, a property SPVB exploits to gain in efficiency. Compared to Brandes’ method
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we can gain orders of magnitudes (between one and two) in terms of computation
time. We also tested SPVB on a set of 16 social graphs from the Stanford Large
Network Dataset Collection. We obtained marginal improvements on seven cases,
speed ups by a factor from 2 to 6 in six cases, and speedups by orders of magnitude
in two cases. At the best of our knowledge this approach is novel.

The chapter is organized as follows. Section 2 gives a brief survey of related work,
while Sect. 3 gives key insights from Brandes’ methods. In Sect. 4 we describe our
method in detail for exact computations. In Sect. 5 we give the experimental results
for exact computations. In Sect. 6 we give the approximation algorithm and the
corresponding experimental results.

2 Related work

Let G = (V, E) be the graph associated to a social network, we denote as: σst

the number of shortest paths starting from the node s and ending in t , σst (v) the
cardinality of the subset of geodesic paths from s to t passing through v. Betweenness
centrality [4] measures, for a given vertex v, the fraction of all the possible shortest
paths between pairs of nodes which pass through v. Formally betweenness centrality
B(v) is defined as:

B(v) =
∑

s �=v �=t∈V

σst (v)

σst

The practical application of centrality indices depends also on the scalability of
the algorithm designed to compute them. Early exact algorithms have a complexity
in the order of O(n3) [11], where n is the number of nodes. Thus the computation
of betweenness by this direct approach becomes impractical for networks with just
a few thousands nodes.

In 2001 Brandes [9] developed the asymptotically fastest exact algorithm to date,
that exploits a recursive formula for computing partial betweenness indices effi-
ciently. It requires O(n + m) space and O(nm) time where n is the number of nodes
and m the number of edges in the graph. For sparse graphs, where m = O(n),
Brandes’ method is a huge improvement over the naive direct method, allowing to
tackle graphs with tens of thousands of nodes.

Given the importance of the index, and the increasing size of networks to be
analyzed, several strategies for scaling up the computation have been pursued. Algo-
rithms for parallel models of computations have been developed (see e.g. [12–14]).

A second strategy is to resort to approximations of the betweenness [15]. In [10]
the authors describe an approximation algorithm based on adaptive sampling which
reduces the number of shortest paths computations for vertices with high centrality.
In [16] the authors present a framework that generalizes the Brandes’ approach to
approximate betweenness. In [17] the authors propose a definition of betweenness
which takes into account paths up to a fixed length k.
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Another important complexity reduction strategy was presented in [18] where ego-
networks are used to approximate betweenness. A ego-network is a graph composed
by a node, called ego, and by all the nodes, alters, connected to the ego. Thus if two
nodes are not directly connected, there is only a possible alternative path which passes
through the ego node. The authors have empirically shown over random generated
networks that the betweenness of a node v is strongly correlated to that of the ego
network associated to v.

In order to extend the use of betweenness centrality to a wider range of applica-
tions, many variants of this index were proposed in the literature. For example in [19]
the betweenness definition is applied to dynamic graphs, while in [20] geodesic paths
are replaced with random walks. Modularity properties of social networks are used
in [21] to define a notion of Community Inbetweenness. In experiments this measure
is shown to weakly correlate with standard BC for networks of high modularity.

In graphs that change dynamically or are built incrementally (e.g. in a stream-
ing model) algorithms have been proposed that dynamically update the between-
ness by detecting efficiently those nodes whose BC is affected by the graph update
(see [22, 23]).

In this chapter we propose to use specific local structures abundant in many types
of social graphs in order to speed up the exact computation of the betweenness index
of each node by an adaptation of the exact algorithm due to Brandes.

An approach that exploits special structures in social graphs is advocated also a
chapter by Puzis et al. [24] that appeared just after the preliminary conference version
of this work [25]. In Puzis et al. [24] develop two algorithms for exact BC compu-
tation. The first algorithm is advantageous when many nodes that are structurally
equivalent, that is when they have the same set of neighbors. In this case equivalent
nodes can be contracted into a single node and a quotient graph is generated. The
original Brandes’ procedure is adapted to work on the quotient graph, while com-
puting the BC relative to the original graph. Experiments in [24] show a speed up
from 2 to 3 in several Autonomous Systems (AS) graphs, and from 2 to 6 in DBLP
co-authors graphs. The second algorithm generates the bi-connected components of
the input graph, computes partial BC independently for each bi-connected, and then
combines the results of the single components to produce the BC with respect to the
original graph. Combining the two algorithms it is shown a speed from 2 to 7 in the
set of AS-graphs. The edges of the tree-like structures we exploit are bi-connected
components of the input graph thus, our trees are a special case of the components
considered in [24], however the code we propose are much simpler than the algorithm
in [24], while attaining comparable speed ups in the tested as-graphs.

3 Background

In this section we give some key features of Brandes’ algorithm, since it gives a
background to our approach. This method is based on an accumulation technique
where the betweenness of a node can be computed as the sum of the contributions of
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all the shortest paths starting from each node of the graph taken in turns. Given three
nodes s, t, v ∈ V , Brandes introduces the notion of pair-dependency of s and t on v

as the fraction of all the shortest paths from s to t through v over those from s to t :

δst (v) = σst (v)

σst

The betweenness centrality of the node v is obtained as the sum of the pair-
dependency of each pair of nodes on v. To eliminate the direct computation of all
the sums, Brandes introduces the dependency of a vertex s on v as:

δs•(v) =
∑

t∈V

δst (v) (1)

Thus the betweenness centrality B, of node v is given by summing the dependencies
from all source nodes:

B(v) =
∑

s∈V

δs•(v)

Observation 1 If a node v is a predecessor of w in a shortest path starting in s,
then v is a predecessor also in any other shortest path starting from s and passing
through w [9].

Arguing form the observation 1, Eq. 1 can be rewritten as a recursive formula:

δs•(v) =
∑

w:v∈Ps (w)

σsv

σsw
(1 + δs•(w)), (2)

where Ps(w) is the set of direct predecessors of a certain node w in the shortest paths
from s to w, encoded in a BFS (Breadth First Search) rooted DAG (Directed Acyclic
Graph) form node s.

4 Our Algorithm: SPVB

Our algorithm algebraically computes the betweenness of nodes belonging to trees
in the network obtained by iteratively removing nodes of degree 1. Afterwards we
apply a modification of Brandes’ algorithm [9] to compute the betweenness of the
nodes in the residual graph.

A first trivial observation is that nodes with a single neighbor can be only shortest
paths endpoints, thus their betweenness is equal to zero. Thus we would like to remove
these nodes from the graph. However, these nodes by their presence influence the
betweenness of their (unique) neighbors. In fact, such neighbor v works as a bridge
to connect the node to the rest of the graph and all the shortest paths to (from) this
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node pass through that unique neighbor. Our procedure computes the betweenness
of a node v as the sum of the contribution of all nodes for which v is their unique
direct neighbor.

Following this strategy, once the contribution of the nodes with degree 1 has been
considered in the computation of the betweenness of their neighbors, they provide
no more information, and can be virtually removed from the graph. The removal of
the nodes with degree 1 from the graph, can cause that the degree of some other node
becomes 1. Thus the previous considerations can be repeated on a new set of degree
one nodes. When we iterate, however, we need also to record the number of nodes
connected to each of the degree one nodes that were removed from the graph. This
recursive procedure allows us to algebraically compute the betweenness of trees in
the graph.

4.1 Algorithm Formalization and Description

We will assume the input G to be connected, in order to simplify the argument.
If G is not connected, the argument can be repeated for each connected component
separately. Let F be the set of nodes in G = (V, E) that can be removed by iteratively
delete nodes of degree 1, and their adjacent edge. We call the nodes in F the tree-
nodes. Let G ′ = (V ′, E ′) be the residual graph for the residuals set of node, with
V ′ = V \F . The set F induces a forest in G, moreover the root of each tree Ti of the
forest is adjacent to a unique vertex in V ′. Each node in F is a root to a sub-tree. Let
RG(w, F) be the set of nodes of trees in F having w as their root-neighbor in G ′.
The formula for the betweenness of node v ∈ V involves a summation over pairs
of nodes s, t ∈ V . Thus we can split this summation into sub-summations involving
different types of nodes, and provide different algorithms and formulae for each case.

Tree-nodes. Let u be a node in F , and let v1, . . . , vk be the children of u in the tree
Tu , and let Tvi , for i = 1, . . . k, be the subtrees rooted at vi . When s and t are in the
same subtree Tvi , then there is only one shortest path connecting them completely
in Tvi and this path does not contain u, thus the contribution to B(u) is null. When s
is in some tree Tvi , and t is in the complement (V \{u})\Tvi , then each shortest path
connecting them will contain u. Thus the contribution to the betweenness of u is given
by the number of such pairs. We will compute such number of pairs incrementally
interleaved with the computation of the set F by peeling away nodes of degree 1 from
the graph. When at iteration j , we peel away node vi we have recursively computed
the value of |Tvi |, and also for the node u the value |RG(u, Fj )| which is the sum
of the sizes of trees Tvh , for h ∈ [1, . . . k], i �= k already peeled away in previous
iterations. The number of new pairs to be added to B(u) is:

|Tvi | × (|(V \{u})\Tvi | − |RG(u, Fj )|).
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Fig. 1 Illustration of the tree-nodes structure and possible s–t paths involving tree nodes

This ensures that each pair (s,t) is counted only once. Finally observe that when
both s and t are in V ′ no shortest path between them will contain u therefore their
contribution to B(u) is zero. Since the roles of s and t are symmetrical in the formula
we need to multiply the final result by 2 in order to cont all pairs (s, t) correctly. The
pseudocode for this procedure is shown in Sect. 4.2. See Fig. 1 for an illustration.

Residual graph nodes. Let u be a node in V ′, we will see how to modify Brandes’
algorithm so that executing the modified version on the residual graph G ′ (thus at a
reduced computational cost), but actually computing the betweenness of the nodes
in u ∈ V ′ relative to the initial graph G. Brandes algorithm’s inner loop works by
computing from a fixed node s a BFS search DAG in the input graph, which is a
rooted DAG (rooted at s), and by applying a structural induction from the sinks of
the DAG towards the root as in formula (2).

Subcase 1.If a node x ∈ V ′ has R(x, F) �= ∅ the tree formed by R(x, F) and x
would be part of the BFS DAG in G having its source in V ′, however, since we run
the algorithm on the reduced graph G ′, we need to account for the contribution of the
trimmed trees to the structural recursive formula (2). The correction term for δs•(x)
is equal to |RG(x, F)| since each shortest path from s to y ∈ RG(x, F) must contain
x . Thus we obtain the new formula:

δs•(u) =
∑

w:u∈Ps (w)

σsu

σsw
(1 + δs•(w) + |RG(w, F)|))
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Note that in the development of the above formula R(s, F) does not appear. Since
no shortest path from s ∈ V ′ to any t ∈ R(s, F) may include a node u ∈ V ′, this
subtree has zero contribution to δs•(u).

Subcase 2. Consider now a node x ∈ R(s, F) as source for the BFS. In the
computation of δx•(u), for u ∈ V ′ each shortest path from x to t ∈ R(s, F) cannot
contain u thus gives zero contribution. For t ∈ V \R(s, F), such shortest path would
contain a shortest path from s, thus we have δx•(u) = δs•(u) for all x ∈ R(s, F). In
order to account for these contributions to B(u) it suffices to multiply the contribution
δs• by (1 + |R(s, F)|), obtaining:

B(u) = B(u) + δs•(u) ∗ (1 + RG(s, F)).

4.2 Algorithm Pseudo-Code

In the following Algorithm 1 we show the pseudo-code for SPVB (Shortest-paths ver-
tex betweenness) preprocessing, handling degree 1 nodes. For simplicity we assume
G to be connected. For a disconnected graph G, the algorithm should be applied to
each connected component separately. For a node v of degree 1 at a certain stage
of the iteration, the vector p records the number of nodes in a subtree rooted at v
(excluding the root). For any other node u, vector p records the sum of the sizes of
subtrees rooted at children of that node that have been deleted in previous iterations.

SPVB:
Data: undirected unweighted graph G=(V,E)
Result: the graph’s node betweenness B[v] for all v ∈ V
B[v] = 0, v ∈ V ; p[v] = 0, v ∈ V ; i = 0;
Gi = G; deg1 = {v ∈ V i |deg(v) = 1};
repeat

v ← deg1;
u ∈ V i .(v, u) ∈ Ei ;
B[u] = B[u] + 2(n − p[v] − p[u] − 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i + +;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u → deg1 ; /*deg(u) is computed on the new graph Gi

*/
until deg1 = ∅;
if |V i | > 1 then

Brandes_modified(Gi , p, B)
end

Algorithm 1: Shortest-paths vertex betweenness
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The modification of Brandes’ algorithm does not change its asymptotic complexity,
which however must be evaluated on the residual graph with n′ = |V | − |F | nodes
and m′ = |E | − |F | edges, thus with a time complexity O(n′m′). The complexity of
the first part of SPVB is constant for each node in F , except for the operations needed
to dynamically modify the graph Gi in Algorithm 1 and maintain the set of degree-
1 nodes. With standard dynamic dictionary data structure we have an overhead of
O(log n) for each update operation.

5 Experiments

In order to evaluate the performance of our algorithm we run a set of experiments
using both a collection of 18 graphs provided by Sistemi Territoriali (SisTer), which is
an Italian ICT company involved in the field of data analysis for Business Intelligence
and a collection of graphs downloaded from the Stanford Large Network Dataset
Collection.1 Since both SPVB and Brandes’ compute the exact value of betweenness,
we tested the correctness of the implementation by comparing the two output vectors.
Here we report only on the running time of the two algorithms. For our experiments
we used a standard PC endowed with a 2.5 GHz Intel Core 2, 8 Gb of RAM and
Linux 2.6.37 operating system. The two algorithms were implemented in Java. In
order to avoid possible biases in the running time evaluation due to the particular CPU
architecture, we decided to implement the algorithm as a mono-processor sequential
program.

SisTer Collection. In Table 1 we report the graph id, the number of nodes and edges
in the SisTer collection and the percentage of tree-nodes in each graph. Note that a
very large percentage of the nodes can be dealt with algebraically by SPVB and the
residual graph, on which we ran a modified Brandes’, is quite small relative to the
original size.

Figure 2 compares the running time of our and Brandes’ algorithms. On the
x-axis we report the graph id, while on the y-axis we report in logarithmic scale the
running time expressed in seconds. From Fig. 2 it is possible to observe that SPVB
is always more than one order of magnitude faster than the procedure of Brandes,
sometimes even two orders of magnitude faster. For graph G1, with 233,377 nodes,
for example, we were able to finish the computation within 1 h while Brandes’ needs
approximately two days. For graph G6, with 169,059 nodes, we could complete in
about 1 min, compared to two days for Brandes. A notable result is shown also
for graph G18 which is our biggest in this collection. In this case SPVB required
approximately 2, 4 days to finish while Brandes’ could not terminate in one month
(data not shown).

Stanford Collection. We have selected a subset of graphs from the Stanford collec-
tion, using the following criteria. First the graphs have been ranked by number of

1 http://snap.stanford.edu/data/

http://snap.stanford.edu/data/
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Brandes_modified:
Data: directed graph G = (V, E),
for each v:
the number of tree-nodes connected to v: p[v],
the partial betweenness computed for v: B[v]
Result: the graph’s node betweenness B[v]
for s ∈ V do

S = empty stack;
P[w]= empty list,w ∈ V ;
σ[t] = 0, t ∈ V ;σ[s] = 1;
d[t] = −1, t ∈ V i ; d[s] =0;
Q= empty queue;
enqueue s → Q;
while Q not empty do

dequeue v ← Q;
push v → S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v → P[w];

end
end

end
δ[v] = 0, v ∈ V ;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w← S;
for v ∈ P[w] do

δ[v] = δ[v] + σ[v]
σ[w] (δ[w] + p[w] + 1);

end
if w �= s then

B[w] = B[w] + δ[w] × (p[s] + 1)
end

end
end

Algorithm 2: Modified Brandes’ algorithm

nodes and we have selected representative graphs from as many categories as possi-
ble (Social networks, Communication Networks, Citation networks, Collaboration
networks, Web graphs, Internet peer-to-peer networks, and Autonomous systems
graphs). We have excluded graphs that because of their size would take more than
one week of computing time. In Table 2 we have listed these graphs, their size in
number of nodes and edges, and the percentage of tree-nodes, which is the most
important parameter influencing the performance of our method. Each input graph
was considered undirected. We decided a cut-off time of seven days. In order to
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Table 1 SisTer Collection.
For each graph it is listed the
number of nodes, the number
of edges, and the percentage
of tree-nodes. The graphs
need not be connected

Graph ID Node # Edge # Tree nodes (%)

G1 233,377 238,741 86
G2 14,991 14,990 99
G3 15,044 15,101 85
G4 16,723 16,760 84
G5 16,732 16,769 84
G6 169,059 169,080 99
G7 16,968 17,026 84
G8 3,214 3,423 95
G9 3,507 3,620 96
G10 3,507 3,620 96
G11 3,519 3,632 96
G12 44,550 46,519 77
G13 46,331 46,331 99
G14 47,784 48,461 84
G15 5,023 5,049 93
G16 52,143 53,603 85
G17 8,856 10,087 89
G18 506,900 587,529 80

Fig. 2 A comparison of the running time of our algorithm SPVB (left) and Brandes’ (right) on 18
sparse large graphs. The ordinate axis report running time in seconds and is in logarithmic scale.
Data for Brandes on graph 18 is missing due to time-out

measure the convergence of the two methods we collected also the partial output of
the two algorithms every 24 h of execution. In Table 3 the running time, expressed in
seconds, of the two methods is shown, and the speed up factor. As it is expected the
speed up factor is strongly correlated to the fraction of the tree-nodes in the graph.
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Table 2 Selected graphs from the Stanford Collection

Graph name Node # Edge # Tree nodes (%)

ca-GrQc 5,242 28,980 21
as20000102 6,474 13,233 36
ca-HepTh 9,877 51,971 20
ca-HepPh 12,008 237,010 11
ca-AstroPh 18,772 396,160 6
ca-CondMat 23,133 186,936 9
as-caida20071112 26,389 106,762 38
cit-HepTh 27,770 352,807 5
cit-HepPh 34,546 421,578 4
p2p-Gnutella31 62,586 147,892 46
soc-epinion1 75,879 508,837 51
soc-sign-Slashdot090221 82,144 549,202 36
soc-Slashdot0922 82,168 948,464 2
soc-sign-epinions 131,828 841,372 51
Email-EuAll 265,214 420,045 80
web-NotreDame 325,729 1,497,134 51

For each graph it is listed the number of nodes, the number of edges, and the percentage of tree-
nodes, which is the most important parameter affecting the time performance
In bold are marked data sets with percentage of tree-nodes above 30 %

We notice a speed-up factor ranging from 2 to almost 6 when the ratio of tree-nodes
to the total number of nodes is in the range 30–50 %.

Two large test graphs are quite noticeable. Graph Email-EuAll has a percentage of
80 % of tree-nodes which is a value closer to those found in the SisTer collection, thus
the speed up measured is at least 27 (since we stopped Brandes’ after one week). That
value is between one and two orders of magnitude, consistently with those measured
in the SisTer collection.

For the web-NotreDame graph, which is the largest graph in our sample of the
Stanford collection, we estimate the convergence properties of the two algorithms as
follows. SPVB has been run to completion (in about 9 days) in order to have the exact
target solution vector. Also at fixed intervals each day we recorded the intermediate
values of the betweenness vectors for both algorithms. For each vertex we compute
the ratio of the intermediate value over the target value (setting 0/0 to value 1), and
then we average over all the vertices. This measure is strongly biased by the fact that
for leaves (nodes with degree 1) both Brandes and SPVB assign at initialization the
correct value 0, thus in this case precision is attained by default. To avoid this bias
we repeat the measurement by averaging only over those nodes with final value of
betweenness greater than zero (see Fig. 3). From Fig. 3 we can appreciate that the
average convergence rate is almost linear in both case, but the curve for SPVB has
a much higher slope. After 7 days our algorithm reached about 75 % of the target,
against 10 % of Brandes’, by a linear extrapolation we can thus predict a speed up
factor of about 8.
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Table 3 Running time (in seconds) of the two methods over selected Stanford collection graphs,
and their ratio (speed up factor)

Graph name Node # Brandes (s) SPVB (s) Ratio

ca-GrQc 5,242 35 s 24 s 1.45
as20000102 6,474 141 s 54 s 2.65
ca-HepTh 9,877 230 s 148 s 1.55
ca-HepPh 12,008 703 s 563 s 1.24
ca-AstroPh 18,772 2,703 s 2,447 s 1.10
ca-CondMat 23,133 3,288 s 2,718 s 1.21
as-caida20071112 26,389 6,740 s 2,014 s 3.34
cit-HepTh 27,770 8,875 s 8,227 s 1.07
cit-HepPh 34,546 16,765 s 15,636 s 1.07
p2p-Gnutella31 62,586 74,096 s 15,573 s 4.76
soc-Epinion1 75,879 145,350 s 25,771 s 5.64
soc-sign-Slashdot090221 82,140 199,773 s 64,905 s 3.07
soc-Slashdot0902 82,168 199,544 s 190,536 s 1.04
soc-sign-epinions 131,828 564,343 s 96,738 s 5.83
Email-EuAll 265,214 >7 days 22,057 s >27
web-NotreDame 325,729 – ≈9 days ≈8

In bold are marked data sets with a performance ratio above 2

Fig. 3 Evolution in time of the average (over the vertices) ratio of the partial betweenness values
over the final betweenness value. In the averaging leaves are excluded

6 Approximating Betweenness Centrality

In this section we show how we can combine our algebraic approach to computing
BC with the approximation scheme in [10], which is based on adaptive sampling.
First of all we notice that it is not possible in general to choose a random sample
size for each data set that ensures a uniform relative error ε at each node. In [10] it
is shown that with high probability, we can approximate the betweeenness B[v] of a
node v in a graph of n nodes, up to a factor 1/ε, with a number s of randomly chosen
source nodes (from here referred as pivots), where s = s(B[v], n, ε). Since s depends
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Table 4 Running time (in seconds) of the two approximate methods over selected Stanford col-
lection graphs, their mean relative error and their ratio (speed up factor)

Graph name Node # MRE Approx Time Approx
ASPVB Brandes Ratio ASPVB (s) Brandes (s) Ratio

ca-GrQc 5,242 0.260 0.374 1.43 5.359 11.475 2.12
as20000102 6,474 0.394 0.427 1.08 5.709 8.058 1.41
ca-HepTh 9,877 0.329 0.457 1.38 13.479 23.322 1.73
ca-HepPh 12,008 0.353 0.472 1.34 29.881 48.448 1.62
ca-AstroPh 18,772 0.413 0.548 1.32 83.516 100.566 1.20
ca-CondMat 23,133 0.341 0.458 1.34 89.589 90.286 1.01
as-caida20071112 26,389 0.435 0.454 1.04 74.025 126.258 1.70
cit-HepTh 27,770 0.729 0.742 1.01 209.085 211.766 1.01
cit-HepPh 34,546 0.724 0.246 0.34 330.874 347.646 1.05
p2p-Gnutella31 62,586 0.362 0.537 1.48 392.815 892.982 2.27
soc-Epinion1 75,879 0.398 0.466 1.17 650.055 1,586.527 2.44
soc-sign-Slashdot090221 82,140 0.566 0.595 1.05 1,154.123 2,111.585 1.82
soc-Slashdot0902 82,168 0.616 0.604 0.98 2,003.166 2,081.609 1.03
soc-sign-epinions 131,828 0.566 0.595 1.05 1,154.123 2,111.585 1.83
Email-EuAll 265,214 0.072 0.067 0.93 868.456 25,704.993 29.59
web-NotreDame 325,729 0.671 0.539 0.80 14,364.103 51,372.872 3.57

Each value is the mean of 10 runs with different random samples
For Columns ASPVB and Brandes the bold values indicates the smallest MRE value among the
two approximate methods
For the column “Ratio” bold values indicate values above 1.30 in improved error performance
For the Time approximation ratio bold values indicate a performance ratio above 1.70

also on the value B[v] we cannot hope to have a uniform approximation factor bound
over all the nodes in the graph. For this reason, we select an uniform sample size
function having as input only the number of nodes and we measure the resulting
mean relative error in each experiment. Thus we select a fixed value s = √

n, and
we measure empirically the mean relative error against the exact value.2 The BC
value of tree-nodes is known exactly and their contribution to the BC value of other
nodes can be attributed to the root of the tree, therefore we restrict the sampling on
the nodes in the residual graph. Also the shortest path computations are done in the
residual graph. Note however that the expansion factor used to estimate the BC is
referred to the size of the original graph. The pseudocode of the combined approach
is shown in Algorithms 3, 4, and 5.

6.1 Approximate Algorithm Pseudo Code

In the following Algorithm 3 we show the pseudo-code for ASPVB (Approximate
Shortest-paths vertex betweenness) preprocessing. For the sake of clarity we consider

2 For nodes whose BC exact value is zero, the partial BC contribution for any source is also zero,
thus the sampling procedure will estimate the correct value, zero.



68 M. Baglioni et al.

G to be connected. For disconnected graphs the same procedure should be applied
to each component.

ASPVB:
Data: unweighted graph G=(V,E)
Result: the graph’s node approximate betweenness cB [v] for all v ∈ V
cB [v] = 0, v ∈ V ;
c0[v] = 0, v ∈ V ; /*c0[v] stores the algebraic computation of the
degree one nodes */

p[v] = 0, v ∈ V ; i = 0;
Gi = G;
deg1 = {v ∈ V i |deg(v) = 1};
repeat

v ← deg1;
u ∈ V i .(v, u) ∈ Ei ;
c0[u] = c0[u] + 2(n − p[v] − p[u] − 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i + +;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u → deg1 ; /*deg(u) is computed on the new graph

Gi ) */
until deg1 = ∅;
if |V i | > 1 then

ComputeApproximateBetweenness(Gi , p, cB [v], c0[v], |V |)
end
else

cB [v] = c0[v]
end

Algorithm 3: Approximate shortest-paths vertex betweenness

The algorithm takes as input an undirected graph G = (V, E) and returns the
approximate betweenness value for each node of the graph. Since the algebraic
computation is the same of the exact algorithm, for nodes whose betweenness is
algebraically computed the returned value is exact.

In Algorithm 4 we show our approximate algorithm for the residual graph. We
compute the betweenness of the nodes in each path starting from a generic node s as
if we were considering the path in the whole graph (see lines 1 and 2 in Algorithm
4). This is because we need to consider the contribution of the node within the
whole graph when computing its approximate value. We maintain update an auxiliary
structure (see line 3 in Algorithm 4) with the weight of each node in the shortest path
from s for all the nodes connected to the residual graph through s. This value will
be used in case of exact computation (see line 1 in Algorithm 5) to return the exact
value of each node. As in [10], the computation of the approximate betweenness is
the sum of the contributions due to the pivots times

√
n.
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Table 5 Running time (in seconds) of the two approximate methods over selected Sister Collection
graphs, their mean relative error and their ratio (speed up factor)

Graph name Node # MRE Approx Time Approx
ASPVB Brandes Ratio ASPVB (s) Brandes (s) Ratio

G8 3,214 0.166 0.272 1.63 0.669 2.073 3.09
G9 3,507 0.222 0.251 1.13 0.715 2.260 3.16
G10 3,507 0.250 0.236 0.94 0.687 2.161 3.14
G11 3,519 0.271 0.236 0.87 0.690 2.033 2.94
G15 5,023 0.075 0.347 4.63 0.912 3.750 4.11
G17 8,856 0.168 0.402 2.39 2.802 9.517 3.39
G2 14,991 0.000 0.023 – – 13.988 –
G3 15,044 0.022 0.229 10.4 4.151 12.863 3.09
G4 16,723 0.017 0.159 9.30 3.607 14.440 4.00
G5 16,732 0.019 0.159 8.36 3.704 14.554 3.92
G7 16,968 0.028 0.158 5.64 5.104 14.736 2.88
G12 44,550 0.050 0.323 6.46 17.007 99.715 5.86
G13 46,331 0.070 0.016 0.22 5.377 130.774 24.32
G14 47,784 0.028 0.231 8.25 20.658 108.105 5.23
G16 52,143 0.035 0.235 6.71 22.431 131.889 5.87
G6 169,059 0.120 0.001 120.00 57.238 2,156.538 37.67
G1 233,377 0.049 0.264 5.38 338.383 2,461.949 7.27
G18 506,900 0.166 0.366 2.20 4,849.750 160,623.840 33.12

Each value is the mean of 10 runs with different random samples. For G2 the sample size is the
residual graph size, thus the computation is exact
For Columns ASPVB and Brandes the bold values indicates the smallest MRE value among the
two approximate methods
For the column “Ratio” bold values indicate values above 1.30 in improved error performance
For the Time approximation ratio bold values indicate a performance ratio above 1.70

6.2 Experimental Results on Approximating Betweenness

In Tables 4 and 5 we report quality (measured by the mean relative error) versus time
measurements over ten runs of our approximation algorithm and the original scheme
in [10], where both algorithms are executed with the same number of samples.

We notice that almost always on the graphs from the Stanford repository our
combined approximations scheme gains against [10] in quality (reducing the mean
relative error), even with a low percentage of tree-nodes. We also gain in speed by
a factor between 3.5 and 1.7 for graphs with a large percentage of tree-nodes. The
speedup factor is not as high as in the exact case since the uniform sampling size
(same number of sources) eliminates one of the gain factors we have in the exact case.
For the Sister Collection, due to the very high sparsity we gain substantially in speed
(by a factor 3 or larger), and the error is reduced (often by an order of magnitude)
in 14 tests over 18. In two cases, G6 and G13, the speed up effect is large, but the
quality measure is worse. This is due to the fact that the sample size is smaller but
close to the residual graph size, thus the final scaling factor introduces a small bias.
However in such cases the exact algorithm of Sect. 4, should be run, as there is no
time gain in resorting to the approximated version.
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ComputeApproximateBetweenness:
Data: directed graph G = (V, E),
for each v:
the number of tree-nodes connected to v: p[v],
the accumulator for the approximate betweennessv: AB[v],
the betweenness algebraically computed so far v: c0[v],
the number of nodes in the original graph n
Result: the graph’s node approximate betweenness AB[v]
pivot_number = 0;
ABs [v] = 0, v ∈ V
max = sqrt(n)
if max > |V | then

max = |V |
end
while pivot_number < max do

pivot_number + +
pivot = choose(n ∈ V )
s = pivot
S = empty stack;
P[w]= empty list, w ∈ V ;
σ[t] = 0, t ∈ V ;σ[s] = 1;
d[t] = −1, t ∈ V i ; d[s] =0;
Q= empty queue;
enqueue s → Q;
while Q not empty do

dequeue v ← Q;
push v → S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v → P[w];

end
end

end
δ[v] = 0, v ∈ V ;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w← S;
1 δ[w] = δ[w] + p[w]

for v ∈ P[w] do
2 δ[v] = δ[v] + σ[v]

σ[w] (δ[w] + 1)

if w �= s then
AB[w] = AB[w] + δ[w]

3 ABs [w] = AB[w] + (δ[w] ∗ p[w])
end

end
end

end
ApproximateValue(AB, ABs , c0, n,max, |V |)

Algorithm 4: Modified Brandes’ algorithm
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ApproximateValue:
Data: for each v:
Approximate betweenness AB,
the betweenness value depending on nodes not in the residual graph ABs ,
the algebraic betweenness computation c0,
the number of nodes in the original graph, n
the number of pivot, max
the number of nodes in the residual graph, nr
Result: the graph’s node approximate betweenness AB[v]
i=0;

1 if max = nr then
for i < n do

AB[i] = AB[i] + ABs [i] + C0[i]
end

else
for i < n do

if AB[i] �= 0 then
AB[i] = AB[i] ∗ n

max
else

AB[i] = c0[i]
end

end
end

Algorithm 5: Rescaling of the results.

7 Conclusions

Brandes’ algorithm for computing betweenness centrality in a graph is a key break-
through beyond the naive cubic method that computes explicitly the shortest paths in
a graph. However, it is not able to exploit possible additional locally sparse features
of the input graph to speed up further the computation on large graphs. In this work
we show that combining exact algebraic determination of betweenness centrality for
some tree-like sub-graphs of the input graph, with a modified Brands’ procedure
on the residual graph we can gain orders of magnitudes (between one and two) in
terms of computation time for very sparse graphs, and a good factor from 2 to 5, in
moderately sparse graphs. Also in the approximate setting combining the algebraic
technique with an adaptive sampling our experiments show gains in speed and/or
precision over state of the art approximate algorithms. At the best of our knowledge
this approach is novel. Among the graphs tested in this chapter, we did not find a sig-
nificant number of tree-nodes only in author collaboration graphs and citation graphs,
while for the other categories we found a significant number of tree-nodes. We thus
conjecture that this feature is common enough in a range of social networks so to
make the application of our method an interesting option when exact or approximate
betweenness is to be computed.

As future work we plan to explore further this approach by determining other
classes of subgraphs (besides trees) in which we can gain by the direct algebraic
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determination of the betweenness. Moreover the impact of our approach combined
with other approximation schemes will be investigated.
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