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Preface

We are proud to present the edited book that contains extended versions of a
selected set of papers presented at the 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, ASONAM 2012, which was
held in Istanbul at Kadir Has University in August 2012. Recently, use of social
networks has become a normal activity for a huge number of ordinary people of all
ages and as computer scientists we need to find new ways of making their expe-
riences more productive and enjoyable. As a result, social networks and mining
have become one of the hottest research fields in computer science and attracts the
attention of researchers with different backgrounds. The field is fruitful and offers
interesting challenging problems as reflected by our book contents. In the con-
ference there were several top quality papers; however, in this book we are able to
include 17 of them written by experts. The studies included in this book consider
subjects ranging from practical issues to theoretical considerations such as dis-
covering the political structure in the Italian Parliament, new event detection in
tweets, prediction of stock market trends, and finding clique structures in social
networks. In the following, we present a short summary of the papers covered in
our book. We are confident that the collected efforts presented here will open new
horizons for both practitioners and theoreticians working in the field of social
networks and mining.

The first chapter: ‘‘A Randomized Approach for Structural and Message
Based Private Friend Recommendation in Online Social Networks’’ by Bharath
K. Samanthula and Wei Jiang proposes a two-phase private friend recommen-
dation protocol for a particular user by using network structure and message
interaction between users. They compute recommendation scores by preserving
the privacy of users and for better security they propose an extended version of
the proposed protocol using randomization technique. They provide the com-
plexity and security analysis of their protocol and study its applicability based on
different parameters.

The second chapter: ‘‘Context Based Semantic Relations in Tweets’’ by Ozer
Ozdikis, Pinar Senkul, and Halit Oguztuzun proposes methods to extract semantic
relationships among terms in tweets and use them to detect events with higher
accuracy, with larger time span, and in a user-friendly form. For discovering
semantic associations they use co-occurrence-based statistical methods. They
improve their previous work by using similarity scores instead of thresholds and
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constant multipliers for semantic expansion and identify context-dependent asso-
ciations by evaluating terms in specific time windows. Daily event clusters are
determined by an outlier analysis.

The third chapter: ‘‘Fast Exact and Approximate Computation of Betweenness
Centrality in Social Networks’’ by Miriam Baglioni, Filippo Geraci, Marco Pel-
legrini, and Ernesto Lastres introduces a novel approach for the betweenness
centrality computation. It speeds up considerably Brandes’ algorithm. Their
approach exploits the natural sparsity of the data to algebraically and efficiently
determine the betweenness of those node forming trees (tree-nodes) in the social
network. They also give a fast sampling-based algorithm that computes an
approximation of the betweenness centrality.

The fourth chapter: ‘‘An Agent-Based Modeling Framework for Social
Network Simulation’’ by Enrico Franchi proposes an agent-based modeling
framework for simulations over social networks. It is created to deal with large
simulations and to work effortlessly with other social network analysis toolkits. In
order to allow people without a strong programming background to write simu-
lations easily, the framework comes with an internal Domain-Specific Language
(DSL) embedded in Python. Their experience with their approach shows that it is
successful in providing a user-friendly environment to perform agent-based sim-
ulations over social networks.

The fifth chapter: ‘‘Early Stage Conversation Catalysts on Entertainment-Based
Web Forums’’ by James Lanagan, Nikolai Anokhin, and Julien Velcin studies
conversation of forum users’ posts for television series episodes, and analyzes
comments to obtain a description of the principal point of interest, which is referred
to as peak. They focus on this peak and evaluate the behavior of users within it
compared with during the entire conversation life cycle. They show by their
approach that it is possible to identify those users within the forum who act as
conversation catalysts for subsequent analysis, hence they do not lose a significant
amount of information that has been produced by such members of the community.

The sixth chapter: ‘‘Predicting Users Behaviours in Distributed Social Networks
Using Community Analysis’’ by Blaise Ngonmang, Emmanuel Viennet, and
Maurice Tchuente studies the churn prediction problem, i.e., predicting the tendency
of a user to stop using a social platform. They present a novel algorithm, which can
deal with pathological cases, to accurately detect overlapping local communities in
social graphs. They show that using the graph attributes it is possible to design
efficient methods for churn prediction. They present experiments and a successful
implementation of their approach using the Hadoop Hbase framework.

The seventh chapter: ‘‘What Should We protect? Defining Differential Privacy
for Social Network Analysis’’ by Christine Task and Chris Clifton studies the use
of differential privacy; which is an alternative privacy model, popular in
data-mining over tabular data, that uses noise to obscure individuals’ contributions
to aggregate results, in social networks. They present a practical introduction to the
application of differential privacy to social networks, review two existing stan-
dards for adapting differential privacy to network data and analyze the feasibility
of several common social-network analysis techniques under these standards.
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The eighth chapter: ‘‘Complex Network Analysis of Research Funding: A Case
Study of NSF Grants’’ by Hakan Kardes, Abdullah Sevincer, Mehmet Hadi Gunes,
and Murat Yuksel discovers interesting complex network structures from the NSF
funding data, and derive the collaboration among researchers in obtaining federal
funding. Collaboration patterns at different periods are extracted at researcher,
institution, and state levels.

The ninth chapter: ‘‘A Density-Based Approach to Detect Community
Evolutionary Events in Online Social Networks’’ by Muhammad Abulaish and
Sajid Yousuf Bhat presents a density-based community mining method for
tracking overlapping community evolution in online social networks. It adapts a
preliminary community structure toward dynamic changes in social networks
using a novel density-based approach for detecting overlapping community
structures and automatically detects evolutionary events. Their method does not
require the neighborhood threshold parameter to be set by the users; rather it
automatically determines it for each node locally. They show that the proposed
method is computationally efficient and naturally scales to large social networks.

The tenth chapter: ‘‘@Rank: Personalized Centrality Measure for Email
Communication Networks’’ by Paweł Lubarski and Mikołaj Morzy uses a large
dataset of email communication within a constrained community to discover the
importance of actors in the underlying network as perceived independently by each
actor. For this purpose they use the simple notion that people are more likely to
quickly respond to emails sent by people whom they perceive as important. They
propose several methods for building the social network from the email commu-
nication data and introduce various weighting schemes that correspond to different
perceptions of importance and compare their results with a ground truth to verify
their method.

The eleventh chapter: ‘‘Twitter Sentiment Analysis: How to Hedge Your Bets
in the Stock Markets’’ by Tushar Rao and Saket Srivastava studies identifying
relationships between Twitter-based sentiment analysis of a particular company/
index and its short-term market performance. For this purpose they use more than
four million tweets. They show that negative and positive dimensions of public
mood carry strong cause–effect relationship with price movements of individual
stocks/indices. Their analysis of individual company stocks indicate strong cor-
relation values with Twitter sentiment features of that company. They also
investigate other features such as how previous week sentiment features affect the
next week’s opening.

The twelfth chapter: ‘‘The Impact of Measurement Time on Subgroup Detection
in Online Communities’’ by Sam Zeini, Tilman Göhnert, Tobias Hecking, Lothar
Krempel, and H. Ulrich Hoppe studies the community detection problem. They
consider methods that allow for the detection of overlapping clusters, they are the
Clique Percolation Method and Link Community detection. They use these two
methods to analyze data like mailing lists from some open source developer com-
munities and compare the results for varied time windows of measurement. They
observe that certain minimal window size is needed to get a clear image with enough
‘‘light’’ (i.e., dense enough interaction data) to detect subgroup membership.
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The thirteenth chapter: ‘‘Spatial and Temporal Evaluation of Network-Based
Analysis of Human Mobility’’ by Michele Coscia, Salvatore Rinzivillo, Fosca
Giannotti, and Dino Pedreschi uses complex network techniques to mine and
analyze a large dataset of human trajectories of a large GPS dataset of vehicles.
They build a multiresolution spatial grid and map the trajectories to several
complex networks, by connecting the different areas. They analyze different
temporal slices of the network, the structural properties of the temporal and
geographical slices, and their human mobility predictive power. They provide
pointers regarding the significance of their results in understanding of the data
transformation process that is needed to connect mobility with social network
analysis and mining.

The fourteenth chapter: ‘‘An Ant Based Particle Swarm Optimization
Algorithm for Maximum Clique Problem in Social Networks’’ by Mohammad
Soleimani-pouri, Alireza Rezvanian, and Mohammad Reza Meybodi uses the
Particle Swarm Optimization algorithm to enhance the performance of the ant
colony optimization algorithm for finding the maximum clique in social network
graph. It is known that finding a maximum clique is essential for analysis of certain
groups and communities in social networks. The simulation results on popular
social network datasets and some additional graphs show improved performance
with respect to the standard ant optimization algorithm.

The fifteenth chapter: ‘‘XEngine: An XML Search Engine for Social Groups’’
by Kamal Taha introduces a collaborative filtering recommender system called
XEngine. It categorizes social groups based on various user characteristics such as
age, ethnicity, religion, etc. The output generated by XEngine is ranked according
to the user preferences and system inferred user social groups. The experimental
comparison with three other systems and statistical tests shows that it provides a
marked improvement and in terms of execution time efficiency it is comparable
with other systems. A demo version of the engine is made accessible on the Web.

The sixteenth chapter: ‘‘Size, Diversity and Components in the Network
Around an Entrepreneur: Shaped by Culture and Shaping Embeddedness of Firm
Relations’’ by Maryam Cheraghi and Thomas Schott examines the causal scheme
of culture, personal networking, and business networking, where attributes of the
entrepreneur and the firm are included as controls. They conceptualize properties
of the personal network around the entrepreneur, specify hypotheses about cultural
effects on the personal network, test them, and then turn to hypothesizing and
testing subsequent effects on the business network around the entrepreneur’s firm.
Their conclusions indicate that entrepreneurs’ personal networks and firms’
business networks have consequences for their performance, specifically their
innovation and expectations for growth of their firms.

The seventeenth chapter: ‘‘Content Mining of Microblogs’’ by M. Özgür Cingiz
and Banu Diri considers the problem of microblog classification. In their work,
they use Multinominal Naive Bayes and Support Vector Machines and show that
the first one significantly outperforms the second. They also present several other
experimental observations and possible uses of their results that may help other
researchers in their studies.
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Before concluding, we would like to thank our authors for their significant
contributions and referees for their insightful constructive criticism. Finally, we
would like to acknowledge the invaluable support of several Springer people who
made this book possible.

Fazli Can
Tansel Özyer

Faruk Polat
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A Randomized Approach for Structural
and Message Based Private Friend
Recommendation in Online Social Networks

Bharath K. Samanthula and Wei Jiang

Abstract The emerging growth of online social networks have opened new doors for
various business applications such as promoting a new product across its customers.
Besides this, friend recommendation is an important tool for recommending poten-
tial candidates as friends to users in order to enhance the development of the entire
network structure. Existing friend recommendation methods utilize social network
structure and/or user profile information. However, these techniques can no longer
be applicable if the privacy of users is taken into consideration. In this chapter, we
first propose a two-phase private friend recommendation protocol for recommend-
ing friends to a given target user based on the network structure as well as utilizing
the real message interaction between users. Our protocol computes the recommen-
dation scores of all users who are within a radius of h from the target user in a
privacy-preserving manner. We then address some implementation details and point
out an inherent security issue in the current online social networks due to the message
flow information. To mitigate this issue or to provide better security, we propose an
extended version of the proposed protocol using randomization technique. In addi-
tion, we show the practical applicability of our approach through empirical analysis
based on different parameters.

1 Introduction

Online social networks [4, 22] such as Facebook and Google+ have been emerging
as a new communication service for users to stay in touch and share information with
family members and friends over the Internet. Since the users are generating huge
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2 B. K. Samanthula and W. Jiang

amounts of data on social network sites, an interesting question is how to mine this
enormous amount of data to retrieve useful information. Along this direction, social
network analysis [29, 35, 38] has emerged as an important tool for many business
intelligence applications [3] such as identifying potential customers and promoting
items based on their interests. In particular, since users are often interested to make
new friends, friend recommendation application provides the medium for users to
expand his/her social connections and share information of interest with more friends.
Besides this, it also helps to enhance the development of the entire network structure.

Discovering new friends to a given target user A is equivalent to solving the
link prediction [23] problem for A in the corresponding social network. Given a
snapshot of the social network, the link prediction problem aims at inferring the new
interactions that are likely to happen among its nodes. In our case, the nodes of the
social network are the users and an edge between two users indicates a friendship
between them. Briefly, friend recommendations can be performed as follows. (i)
Social closeness (hereafter, we refer to it as recommendation score) between A and
each potential candidate is computed. (ii) The candidates with Top-K scores are
recommended as new friends to A.

In general, recommendation score between any two given users can be com-
puted either based on the network topology and/or user profile contents (such as
previous employer, location and hobbies). For the past few years, researchers have
been focused on developing hybrid friend recommendation algorithms [5, 20] to
take advantages of both approaches. Recently, Dai et al. [9] proposed a new friend
recommendation algorithm (denoted as CSM - meaning “Combine Structure and
Messages”) by utilizing the real messages communicated between the users as well
as the network structure. To be concrete, this chapter computes the recommendation
scores between users based on the similarity metric given in [9]. More details are
given in the later part of this section.

The computation of recommendation scores based on the similarity metric given in
[9] is straight-forward if user’s data are public. However, as users are more concerned
about their privacy [8, 10, 16, 21, 40], many online social networks have provided
various privacy settings for users to keep their data private. In general, users are
allowed to keep their friend lists, profile information etc., as private information.
More specifically, in this chapter, we assume that user’s data are encrypted and
stored on the server of network provider. We emphasize that this is a commonly
made assumption in the related problem domains such as in [2, 7, 14, 26, 36, 37].
We believe that, due to increasing privacy concerns, such a private social network will
become more common, and it can attract non-traditional users. Under this scenario,
the computation of recommendation scores is non-trivial. Along this direction, we
propose a two-phase private friend recommendation algorithm based on the similarity
metric proposed in [9]. Our method computes the recommendation scores between
A and all potential users who are h-hop away from A in a privacy-preserving manner.
Figure 1, shows a sample network for target user Lee with h = 3. In practice, as
proposed by Milgram [28], any two persons can get acquainted each other through
six degree of separation (i.e., 1 < h ≤ 6) in the network.
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Fig. 1 A sample social network for target user Lee showing users within a radius of 3 (i.e., h = 3)

We also present various practical implementation details of the proposed protocol.
In addition, we point out an inherent security issue in the current online social net-
works due to the message flow information between various users. To mitigate this
issue or to provide better security, we propose an extension to the proposed protocol
using randomization technique.

1.1 Problem Definition

Consider a social network graph Gs with the nodes denoting the users and the
(directed) weighted edge between any two nodes denoting the number of real mes-
sage interactions between them. Since the message interaction can be bi-directional,
we take the minimum number of messages, as mentioned in [9, 25], as the actual
weight of the edge (denoting the strength of the relationship). A sample minimum
message interaction between various users (for h = 3) in Lee’s network is as shown
in Fig. 2. In general, if user A sends n1 messages to B and B sends n2 messages to
A, then the weight of the edge between A and B is taken as min(n1, n2). This further
implies that the weight of the edge between any two friends is directly correlated to
the strength of their relationship (i.e., larger weight indicates stronger friendship).

For a target user A (whom we wish to recommend friends), we generate a candi-
date network with A as the root and an edge between the users denote the number
(minimum) of real message interactions. Note that the users who are 1-hop away
from A are actually his/her friends. In order to generate the candidate network, we
have to remove the links between users at the same level. E.g., refer to Fig. 2, we can
generate the candidate network by removing the link between Hall and Cox (since
they are on the same level). The recommendation score (RS) between A and any
potential user U who is l-hop (2 ≤ l ≤ h) away from A in the candidate network is
given as [9]:
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Lee

Hall Cox Bell

Ford Butler Cole Kelly

Shaw Ray Fox Ryan Hart Jones

2 2 1

1

2 1 4 3 3

2 1 4 2 5 2 4

Fig. 2 Message interaction between different users in Lee’s network

RS(A, U ) =
(∑

k

(
|Pk(A, U )| ∗

∏
i

C(Si−1, Si )

))
∗ DU

T N
(1)

where Pk(A, U ) denote all the intermediate users on the kth shortest path starting
from A (root) to user U , |Pk(A, U )| is the total number of messages along path
Pk(A, U ), and L(i) is the set of all users at level i (i.e., i-hop away from A). Si ∈
Pk(A, U )∩ L(i), for i = 1, . . . , l − 1, where U ∈ L(l). Note that S0 denote the root
user A. C(Si−1, Si ) denote the proportion of messages between user Si and Si−1 to
the total number of messages at level i . Here, user Si−1 is the parent of user Si in the
corresponding candidate network; DU denote the degree of U and T N denotes the
total number of users in the candidate network.

When the privacy of users is taken into consideration, the computation of above
mentioned recommendation score is not straight-forward. More specifically, in this
chapter, we assume the following private information (PI) for user U :

(1) PI 1—Friendship: The friendship between any two users U and V is not revealed
to any other user.

(2) PI 2—Strength of Friendship: The weight of an edge between U and V , denoted
as CU,V , is not revealed to users other than U and V .

(3) PI 3—Degree: The size of the friend list of U is not revealed to other users.
(4) In addition, the above user’s information should not be revealed to the network

administrator.

Without loss of generality, let U1, . . . , Un be the set of potential candidates who
are at most l-hop (2 ≤ l ≤ h) away from A. The goal of this chapter is to develop a
private friend recommendation protocol which is formally defined as follows:

PFR(A, F(A), U1, . . . , Un) → Γ (2)
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where F(A) denote the friend list of user A. Γ is defined as:

Γ = {⊆⎧RS(A, U1), U1∧, . . . , ⊆⎧RS(A, Un), Un∧}

Here, ⎧RS(A, U j ) is the new recommendation score for U j which is correlated to the
actual score RS(A, U j ) (based on Eq. 1) as below, for 1 ≤ j ≤ n:

⎧RS(A, U j ) = Mh ∗ T N ∗ RS(A, U j )

Mh is the normalizing factor for a user at h-hop away from A and T N is the number
of users in the candidate network. For any fixed h and A, we observe that Mh and T N
are constants (more details are given in Sect. 3). At the end of the PFR protocol, the
values of ⎧RS(A, U j ) and U j , for 1 ≤ j ≤ n, are known only to A and the privacy of
each user (PI 1, 2, and 3) is preserved. In practice, since the friend lists can be large,
the number of scores returned to A can be in hundreds. Therefore, a more effective
way is to simply select Top-K users as the final set of friend recommendations.

1.2 Main Contribution

The proposed protocol computes the recommendation scores between a target user
A and all potential candidates who are at most l-hop (2 ≤ l ≤ h) away from A in a
privacy-preserving manner. More specifically, the main contributions of this chapter
are summarized below:

• Security—The proposed protocol guarantees that the friend lists, the strength of
friendships, and the friend list sizes of each user are kept as private from other
users. However, we identify an inherent security issue that may leak valuable
information to the network administrator in the current online social networks
which is also applicable to the proposed protocol. To mitigate this risk or to provide
better security, we also propose an extended version of the proposed protocol using
randomization technique.

• Accuracy—Our protocols compute the recommendation scores which are scaled
by a constant factor Mh ∗ T N ; therefore, the relative ordering among the scores is
preserved. Hence, our protocols guarantee the same kind of effectiveness similar
to the CSM method [9]. That is, the final Top-K list of recommended users in our
protocols is the same as in [9] and is independent of K.

• Efficiency—In our empirical analysis, we show the practical value of PFR through
various experiments. Also, we show that the efficiency of the extended version is
very close to that of PFR. We observe that the computation costs incurred on the
internal users in our protocols are very small; therefore, the proposed protocols
are very efficient from internal users perspective.

The rest of the chapter is organized as follows. We discuss the existing related
work in Sect. 2. Section 3 presents the new scoring function that preserves the relative
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rankings among the recommendation scores. The proposed PFR protocol, along with
a detailed security and complexity analysis, is discussed in Sect. 4. We address various
implementation details in Sect. 5 and point out an inherent security issue in the current
online social networks in Sect. 6. To mitigate this risk or to provide better security, we
present an extended version of the proposed protocol in Sect. 7. Section 8 discusses
the empirical results based on various parameters. We conclude the chapter along
with future work in Sect. 9.

2 Related Work

As mentioned earlier, friend recommendation is a very useful application for both
users and the social network provider. Through social recommendations, users are
allowed to make new friends; therefore, expanding their social connections. In addi-
tion, it helps the social network provider in a way to enhance the development of
entire network structure. In general, recommendation scores between any two given
users can be computed either based on the network topology [30, 34] and/or user
profile contents [39].

Only recently, researchers have focused on developing hybrid friend recommen-
dation algorithms [5, 20] to take advantages of both approaches. As an independent
work, Lo and Lin [25] proposed a graph-based friend recommendation algorithm
using weighted minimum-message ratio as the scoring metric. This work was later
improved in [9] by taking the evolution of entire network into consideration. The
computation of recommendation scores based on the metric given in [9] is straight-
forward when users data are public. However, due to the growing concerns over user
privacy [8, 10, 16, 21, 40], many users prefer to keep their profile data (including
their friend lists) as private. Along this direction, many online social networks such
as Facebook, provide various privacy settings for users to make their data private.
Therefore, the above existing methods are not applicable if privacy of users is taken
into consideration.

To make friend recommendations possible even in privacy-sensitive environ-
ments, this chapter proposes a two-phase PFR protocol based on the similarity metric
given in [9]. Furthermore, we address an inherent security issue in the current online
social networks. To overcome this issue, we propose an extended version to the
proposed PFR protocol.

2.1 Other Existing PFR Protocols

We emphasize that there has not been much work done in developing efficient PFR
protocols based on different metrics. Dong et al. [11] proposed a method to securely
compute the social proximity between users in a mobile social network. They have
used the cosine similarity metric to compute how close two give users are by treating
user’s location as private.
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Table 1 Common notations

HPEnc+ An additive homomorphic probabilistic encryption system
SMP Secure multiplication
SMPA Secure multiplication and addition
T A trusted party (such as network administrator)
⊆E, D∧ A pair of HPEnc+ based encryption and decryption function
⊆pk, pr∧ A public and private key pair corresponding to ⊆E, D∧
F(U ) Friend list of user U
m Size of friend list of target user A
CU,V Minimum number of messages exchanged between U and V (or weight of edge

between U and V )
L(i) List of all users at level i in the corresponding candidate network
Mi−1,i Total number of (minimum) messages exchanged between users at L(i − 1) and L(i)
C(Si−1, Si ) Ratio of CSi−1,Si to Mi−1,i

Ml , M ≈
l Normalization and scalar factors for a user ∈ L(l)

Φ List of encrypted scalar factors
L A, LU j Aggregated list of encrypted number of messages computed by A and user U j

Machanavajjhala et al. [27] analyzed the trade-offs between accuracy and privacy
for private friend recommendation algorithms based on differential privacy [12, 13].
Our work is entirely different from theirs since the security guarantee in our chapter
is based on the well-known semi-honest security definition of secure multiparty
computation (SMC) [17, 41, 42]. In addition, they use a different similarity metric,
namely common neighbors [23] whereas our work is based on the scoring metric
given in Eq. 1.

3 Order Preserving Scoring Function

The original scoring function [9] given in Eq. 1 contains a rational factor (i.e.,
C(Si−1, Si )) which varies with i , for 1 ≤ i ≤ l − 1 and 2 ≤ l ≤ h. Therefore,
to perform encryption operations, here we define a new scoring function (producing
an integer value) based on Eq. 1 such that the relative rankings among the final rec-
ommendation scores are preserved. Table 1 presents some common notations used
extensively in this chapter.

3.1 Normalization Factor

Given a snapshot of the network for A, we define the normalization factor for a user
l-hop (or friend) away from A (where 1 ≤ l ≤ h) as:
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Ml =
l−1∏
i=1

Mi−1,i (3)

where Mi−1,i , denoting the total number of messages exchanged between users at
L(i − 1) and L(i), is as given below.

Mi−1,i =
∑

U∈L(i−1)
V ∈L(i)

CU,V

We explicitly assume M1 = 1 since users who are 1-hop from A are already
friends of A. For any two potential candidates U and V who are l-hop away from A,
we observe that U and V have the same normalization factor.

Example 1 Refer to Fig. 2. Consider the potential candidate Cole who is 2 hops
away from Lee. Here, we have L(0) = ⊆Lee∧ and L(1) = ⊆Hall, Cox, Bell∧. The
normalization factor for Cole is M2 = M0,1 = CLee,Hall+CLee,Cox +CLee,Bell = 5.
Note that the normalization factor for Ford, Butler, and K elly (who are also 2
hops away from Lee) is the same as Cole. Similarly, we have M1,2 = 13. By
substituting these values in Eq. 3, the normalization factor for users at level 3 is
M3 = ⎨2

i=1 Mi−1,i = M0,1 ∗ M1,2 = 65. �

Observation 1. For any user Si−1 ∈ L(i − 1) and Si ∈ L(i), one can observe that

the value of C(Si−1, Si ) is equivalent to
CSi−1,Si
Mi−1,i

. Therefore, for a potential user U at
level l, the rational factor in Eq. 1 can be simplified as follows:

l−1∏
i=1

C(Si−1, Si ) =
l−1∏
i=1

CSi−1,Si

Mi−1,i
= 1

Ml

l−1∏
i=1

CSi−1,Si

3.2 Scalar Factor

Given a target user A and h, we define the scalar factor for a user at level l, for
1 ≤ l ≤ h, as follows:

M ≈
l = Mh

Ml
= M0,1 ∗ . . . ∗ Mh−2, h−1

M0,1 ∗ . . . ∗ Ml−2, l−1
(4)

where Ml is the normalization factor for a user belonging to L(l). In addition, we
observe that M ≈

l is the same for all users who are at same level l. Furthermore, when
l = h, we have M ≈

h = 1. Similarly, we have M ≈
1 = Mh . From Fig. 2, the scalar factor

for Cole is M ≈
2 = M3

M2
= M1,2 = 13.
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Claim For any given target user A and potential candidate U who is l hops away
from A, we define the new scoring function (denoted as ⎧RS(A, U )) as follows:

⎧RS(A, U ) = M ≈
l ∗

(∑
k

(
|Pk(A, U )| ∗

∏
i

CSi−1,Si

))
∗ DU (5)

Note that CSi−1,Si is the weight of edge between parent user Si−1 and Si on the kth
shortest path from A to U , for 1 ≤ i ≤ l − 1. We claim that the scoring function
given in Eq. 5 preserves the relative ordering among the recommendation scores of
potential candidates.

Proof Based on Eqs. 3 and 4, and by using Observation 1, we can re-write Eq. 5 as
below.

⎧RS(A, U ) = Mh

Ml
∗

(∑
k

(
|Pk(A, U )| ∗

∏
i

CSi−1,Si

))
∗ DU

= Mh ∗
(∑

k

(
|Pk(A, U )| ∗

∏
i

CSi−1,Si

Mi−1,i

))
∗ DU

= Mh ∗ T N ∗
(∑

k

(
|Pk(A, U )| ∗

∏
i

C(Si−1, Si )

))
∗ DU

T N

= Mh ∗ T N ∗ RS(A, U )

The values of Mh and T N are constants for any given snapshot of the social net-
work (for a fixed h). Therefore, we emphasize that all the original recommendation
scores are multiplied with the same constant Mh ∗ T N . This makes sure that the
relative orderings among the recommendation scores of the potential candidates
based on Eq. 5 are preserved. More specifically, for any two potential users U
and V if RS(A, U ) > RS(A, V ), then the new scoring function guarantees that⎧RS(A, U ) > ⎧RS(A, V ) for any fixed h and A.

Example 2 Refer to Fig. 2 and let us consider the case of computing the rec-
ommendation score between Lee and Fox . Here, Fox has two shortest paths
from Lee; P1(Lee, Fox) = {Lee, Hall, Butler, Fox} and P2(Lee, Fox) =
{Lee, Cox, Butler, Fox}. The total (minimum) number of messages along the first
path i.e., |P1(Lee, Fox)| is 7. Similarly, |P2(Lee, Fox)| = 10. Along P1(Lee, Fox),
we have two internal users Hall and Butler who are respectively 1 and 2 hops away
from Lee. In addition, we have CLee,Hall = 2 and CHall,Butler = 1. Similarly, for
the path P2(Lee, Fox), we have CLee,Cox = 2 and CCox,Butler = 4. Since Fox is 3
hops away from Lee, her scaling factor M ≈

3 is 1. By substituting the above values in
Eq. 5, the recommendation score for Fox is given as:

⎧RS(Lee, Fox) = 1 ∗ [7 ∗ 2 ∗ 1 + 10 ∗ 2 ∗ 4] ∗ DFox = 94 ∗ DFox
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Whereas, the actual recommendation score for Fox , following from Eq. 1, is given
by:

RS(Lee, Fox) =
⎧

7 ∗ 2

5
∗ 1

13
+ 10 ∗ 2

5
∗ 4

13

⎪
∗ DFox

T N

= 1

65
∗ 94 ∗ DFox

T N

where DFox is the degree (size of friend list) of Fox and T N denotes the size of
the candidate network. It is clear that ⎧RS(Lee, Fox) = Mh ∗ T N ∗ RS(Lee, Fox),
where Mh = 65. �

4 The Proposed Protocol

In this section, we present our private friend recommendation (termed as PFR) pro-
tocol which computes the recommendation scores between the target user A and all
potential candidates who are at most h-hop (> 1) away from A based on Eq. 5. We
explicitly make the following assumptions:

1. If U ∈ F(V ), then V ∈ F(U ), and CU,V is known only to U and V . We assume
F(A) = ⊆B1, . . . , Bm∧.

2. Each user has a unique user ID (for example, Facebook user ID is generally at
most 128-bit integer).

3. There exists a third party T (e.g., network administrator) who generates a pair of
encryption and decryption function ⊆E, D∧ for A based on the additive homomor-
phic probabilistic encryption scheme (HPEnc+) such as the Paillier cryptosystem
[32]. The corresponding private key pr is known only to T and the public key
pk is public. In addition, let N be the group size (usually of 1,024 bits). For any
two given plaintexts m1, m2 ∈ ZN , the HPEnc+ system exhibits the following
properties:

a. Homomorphic Addition: E pk(m1 +m2) ← E pk(m1)∗ E pk(m2)mod N 2;
b. Homomorphic Multiplication: E pk(m1 ∗ m2) ← E(m2)

m1mod N 2;
c. Semantic Security: The encryption scheme is semantically secure as

defined in [18, 19]. Briefly, given a set of ciphertexts, an adversary can-
not deduce any additional information about the plaintext.

We emphasize that homomorphic encryption is not a new topic and has been
in the literature for more than 30 years. Though the first homomorphic encryption
scheme by Rivest et al. [33] proved to be insecure, researchers have been successful
in proposing alternative additive as well as multiplicative homomorphic encryption
schemes. We refer the reader to [15] for a detailed survey on homomorphic encryp-
tion schemes and their wide-spread use in secure applications. In the cryptographic
community, Paillier cryptosystem [32] is a well-known example of HPEnc+ system
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mainly due to its probabilistic nature and semantic security guarantees. Over the
past several years, Paillier scheme has been used in a wide range of applications
such as privacy-preserving data mining [1, 24] and electronic voting [6]. Therefore,
in this chapter, we use Paillier cryptosystem as the underlying encryption scheme
and develop a novel PFR protocol.

In order to generate the candidate network, we need to omit the messages between
users who are at the same level. For example, in Fig. 2, we should not consider
CHall,Cox for computing the recommendation scores in the PFR protocol (as men-
tioned in [9, 25]). Thus, to explicitly generate the candidate network, we include an
initialization step as follows. Initially, A generates a counter t = h − 1 and passes it
over to his/her friends. Upon receiving the counter, each intermediate user U stores
the value of received counter (locally) and also stores the parent user who sent the
counter to U (denoted as Pr(U )). After this, U decrements the counter by 1 and
sends it to his/her friends. This process continues until users at h-hop from A receive
a counter of t = 0. Since a user can receive multiple counter values, we have the
following observation.

Observation 2. Consider user U , who is l-hop away from A and 1 ≤ l ≤ h,
receiving multiple t values. We address the following two cases:

Case 1: If the counter values are the same, then U has multiple shortest paths
(with parents of U on the same level). In this case, U considers one of the parents
(can be chosen randomly) as actual parent Pr(U ) and any further communication
happens only with that parent. E.g., refer to Fig. 2, “Hart” receives t = 0 from both
Cole and K elly. Therefore, he can pick one of them, say K elly, as Pr(U ).

Case 2: If U receives different values of t which happens when U receives
counters from parents who are at different levels. In this case, U selects one of
the parent user who sent the maximum t value as Pr(U ). In the PFR protocol, the
child users of U (denoted as Ch(U )) are users belonging to F(U ) − R(U ), where
R(U ) denotes the set of users who have sent a counter value to U . The important
observation here is U omits the messages exchanged with the users who have sent
smaller counter values (also dumps the corresponding counter). This further implies
that, U considers only messages exchanged between him/her and either Pr(U ) or
Ch(U ) (therefore forming a candidate network by omitting messages with users on
the same level). An example to this case is user “Cox” (refer to Fig. 2). Here, Cox
receives t = 2 and t = 1 from Lee and Hall respectively. Therefore, Cox treats
Lee as the actual parent user and omits CCox,Hall .

At the end of the initialization step, based on Observation 2, each internal user
U who is l-hop away from A, for 1 ≤ l ≤ h, has the values of t, pk, Pr(U ) and
Ch(U ). Apart from the above initialization step, the proposed PFR protocol mainly
consists of the following two phases:

Phase 1—Secure Computation of Scalar Factors: During Phase 1, A computes
the list of encrypted scalar factors (denoted as Φ, where Φl−1 denotes the encrypted
scalar factor for level l and 2 ≤ l ≤ h) in a privacy-preserving manner. This phase
utilizes a secure multiplication protocol (only if h > 3) as a building block. At the
end, only A knows Φ and nothing is revealed to other users.
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Phase 2—Secure Computation of Recommendation Scores: Following from
Phase 1, A (with Φ as input), T and other internal users jointly compute the rec-
ommendation scores of all potential candidates who are l-hop away from A, for
2 ≤ l ≤ h. This phase utilizes a secure multiplication and addition protocol as a
building block. The final recommendation scores and the corresponding user IDs are
revealed only to A and nothing is revealed to other users.

To start with, A chooses the value of h1 and executes the initialization step as
explained earlier. Then, during Phase 1, A decides whether there is a need to take the
help of other users in order to generate Φ. If h = 2, A computes Φ locally. Otherwise,
for h > 2, A computes Φ with the help of internal users. After this, during Phase 2, A
sends necessary information to Bi along with his/her user ID and Φ, for 1 ≤ i ≤ m.
Then, each intermediate user U j receives the necessary information from Pr(U j ),
generates his/her encrypted partial scores (only if U j is not already a friend of A) and
sends the encrypted partial scores to A. In addition, if the value of t (stored during
initialization step) of U j is greater than 0, he/she computes the necessary information
(for t > 0) and sends it to his/her corresponding child friends. After receiving all
the encrypted partial scores, A and T involve in a secure multiplication and addition
protocol to compute the recommendation scores for each potential candidate U j . At
the end of this step, only A knows the user IDs of all potential friends along with
their recommendation scores (computed based on Eq. 5). The main steps of PFR are
shown in Algorithm 1. Now, we discuss the steps involved in each of the two phases
in detail.

4.1 Phase 1: Secure Computation of Scalar Factors

If the value of h is 2, then only the child friends of A’s friends are considered as
the potential candidates. Since the scalar factor for users at l = 2 is M ≈

2 = 1, A
simply sets Φ1 = E pk(1) for security reasons. When h > 2, A does not have
necessary information to compute the encryption of scalar factors (such as M ≈

3) since
the potential candidates can belong to any L(l), where 2 ≤ l ≤ h. Therefore, when
h > 2, A computes Φ, with the help of internal users who are at most h − 2 hops
away from A. We observe that potential candidates who are at most h − 2 hops
away from A are sufficient to generate the encryption of all scalar factors because
the partial scores of Mh−2,h−1 are known to users belonging to L(h − 2). Note that,
irrespective of the value of h, Φh−1 = E pk(1) always hold. Phase 1 involves steps 1
to 16 as shown in Algorithm 1.

In order to compute Φ, for h > 2, A simply waits for internal users with t ≥ 2
to send in the aggregated data. To start with, each internal user U j (including Bi )
performs the following operations based on the value of t :

1 Note that h should always be greater than 1. Because, when h = 1, we have l = 1 which implies
potential candidates who are 1-hop away from A who are already friends of A.
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1. Compute XU j = E pk(
⎨s

i=1 CU j ,Vi ), where Vi is the child friend of U j and
s = |Ch(U j )|

2. Create a vector LU j of size t − 1; sets LU j [t − 1] to XU j

3. If t > 2, U j receives LVi from Vi and updates LU j by aggregating LVi component-
wise as follows, and sends it to Pr(U j ).

LU j [k] =
s∏

i=1

LVi [k] mod N 2, for 1 ≤ k ≤ t − 2

The above process forwards the aggregated data at each internal user in a bottom-
up fashion. At the end, A receives L Bi from Bi , for 1 ≤ i ≤ m. After this, A generates
the final aggregated encrypted list (L A) and proceeds as follows:

1. L A[k] = ⎨m
i=1 L Bi [k] mod N 2, for 1 ≤ k ≤ |L Bi |, where L Bi denote the aggre-

gated list received from Bi . The observation is |L Bi | = h − 2, for 1 ≤ i ≤ m.
2. Assign the encrypted scalar factor for level h as Φh−1 = E pk(1). If h = 3,

sets Φ1 ← L A[1]. Else, let L A = ⊆E pk(x1), . . . , E pk(xh−2)∧. Using secure
multiplication (SMP) protocol, as shown in Algorithm 2, A and T jointly compute
Φ using L A as below.

Φl ← E pk

⎪
⎝h−l−1∏

j=1

x j

⎞
⎠, for 1 ≤ l ≤ h − 2

The SMP protocol is one of the basic building blocks in the field of secure multi-
party computation (SMC) [17]. The basic concept of the SMP protocol is based on
the following property which holds for any given a, b ∈ ZN :

a ∗ b = (a + r1) ∗ (b + r2) − a ∗ r2 − b ∗ r1 − r1 ∗ r2 (6)

where all the arithmetic operations are performed under ZN . Given that A has input
E pk(a) and E pk(b), the SMP protocol computes E pk(a ∗ b) as the output (which
will be revealed only to A) without disclosing the values of a and b to either A or T .
The output of Phase 1 is the list of encrypted scalar factors (in order) for each level.
More specifically,

Φl = E pk(M ≈
l+1), for 1 ≤ l ≤ h − 1

where M ≈
l+1 is the scalar factor for users at (l +1)-hop away from A. If the maximum

value of h is 6 (sufficient for most situations), the maximum size of L A is 4. Therefore,
Phase 1 is bounded by 2 instantiations of the SMP Protocol.

Theorem 1 The output of Phase 1 is the list of encrypted scalar factors (in order)
for each level. That is, Φl is equivalent to the encryption of scalar factor for users
at level l + 1, where 1 ≤ l ≤ h − 1. Formally,
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Algorithm 1 PFR
Require: pr is private to T , h is private to A, and pk is public; U j knows t , Pr(U j ) and

Ch(U j ) from initialization step
{Steps 1 - 7 performed by U j with t ≥ 2}

1: s ← |Ch(U j )|
2: XU j ← E pk(

⎨s
i=1 CU j ,Vi ), where Vi ∈ Ch(U j )

3: LU j [t − 1] ← XU j

4: if t > 2 and U j received LVi from Vi then
5: LU j [k] ← ⎨s

i=1 LVi [k] mod N 2, for 1 ≤ k ≤ t − 2
6: end if
7: send LU j to Pr(U j )

{Steps 8 - 16 performed by A and T }
8: Φh−1 = E pk(1)
9: if h ≥ 3 then
10: L A[k] ← ⎨m

i=1 L Bi [k] mod N 2, for 1 ≤ k ≤ h − 2
11: if h = 3 then
12: Φ1 ← L A
13: else
14: Compute Φ using L A as input to the SMP protocol
15: end if
16: end if

{Steps 17 - 21 performed by A}
17: for all Bi ∈ Ch(A) do
18: α1 ← E pk(CA,Bi )

19: αl ← Φ
CA,Bi
l−1 mod N 2, for 2 ≤ l ≤ h

20: send A, Φ , and α to Bi (note that α is different for each Bi )
21: end for

{Steps 22 - 36 performed by U j }
22: if A ∈ F(U j ) then
23: send A, Φ and α to each Vi ∈ Ch(U j )
24: else
25: compute β j ← α

DU j
1 mod N 2

26: compute γ j ← α2 ∗ Φ
CY,U j
1 mod N 2

27: Z j ← {E pk(U j ), ⊆β j , γ j ∧}
28: send Z j to A
29: end if
30: if t > 0 then
31: Φl ← Φl+1, for 1 ≤ l ≤ t

32: α1 ← α
CY,U j
1 mod N 2

33: αl ← αl+1 ∗ Φ
CY,U j
l−1 mod N 2, for 2 ≤ l ≤ t + 1

34: send A, Φ and α to each Vi ∈ Ch(U j )
35: end if

{Step 37 performed by A and T }

36: (̃RS(A, U j ), U j ) ← SMPA(Z j ), for each Z j
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Algorithm 2 SMP(E pk(a), E pk(b)) → E pk(a ∗ b)

Require: A has E pk(a) and E pk(b)
1: A:

(a). Pick two random numbers ra, rb ∈ ZN
(b). za ← E pk(a) ∗ E pk(ra)mod N 2

(c). zb ← E pk(b) ∗ E pk(rb)mod N 2; send za, zb to T

2: T :

(a). Receive za and zb from A
(b). ua ← Dpr (za); ub ← Dpr (zb)
(c). Compute u = ua ∗ ubmod N
(d). v ← E pk(u); send v to A

3: A:

(a). Receive v from T
(b). s ← v ∗ E pk(a)N−rb mod N 2

(c). s≈ ← s ∗ E pk(b)N−ra mod N 2

(d). E pk(a ∗ b) ← s≈ ∗ E pk(ra ∗ rb)
N−1mod N 2

Φl = E pk(M ≈
l+1)

where M ≈
l+1 is the scalar factor for users at l + 1 hops away from A.

Proof For h = 2, we have M ≈
2 = 1 and it is clear that Φ1 = E pk(1) = E pk(M ≈

2).
Note that irrespective of the value of h, we always have Φh−1 = E pk(1) = E pk(M ≈

h).
When h ≥ 3, initially the internal user X with t = 2 (denoting level h − 2) sends
L X = E pk(

⎨|Ch(X)|
i=1 CX,Yi ) to Z , where Yi ∈ Ch(X) and Z = Pr(X). Then, Z

aggregates the data received from Ch(Z). Without loss of generality, let Z receives
L X1 , . . . , L Xd , where Xi ∈ Ch(Z). Then, the aggregated entry in L Z is L Z [1] =
L X1 [1] ∗ . . . ∗ L Xd . In addition, Z sets L Z [2] = E pk(

⎨|Ch(Z)|
i=1 CZ ,Xi ). Since we

are aggregating data component-wise, lth component in L Z is equivalent to the
encryption of summation of (minimum) number of messages exchanged between
users at L(h − l − 1) and L(h − l) under sub-tree of Z . (Note that, following from
Observation 2, if Xi has multiple parents, then he/she will send L Xi to only actual
parent user Pr(Xi )). This aggregation process continues at each level in a bottom-up
fashion. Finally, when A computes L A (by aggregating the L Bi ’s component-wise,
for 1 ≤ i ≤ m), we observe that the lth component in L A is equivalent to the
encryption of sum of (minimum) number of messages exchanged between users at
L(h − l − 1) and L(h − l), that is, L A[l] = E pk(Mh−l−1,h−l), for 1 ≤ l ≤ h − 2. As
mentioned earlier, let L A = ⊆E pk(x1), . . . , E pk(xh−2)∧, where xl = Mh−l−1,h−l ,
for 1 ≤ l ≤ h − 2. Based on the above discussions, we consider the following two
scenarios depending on the value of h:

Scenario 1: When h = 3, we have |L A| = 1 and Φ1 gives the encrypted scalar
factor for users at level 2 as shown below.
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Φ1 = L A[1]
= E pk(M1,2)

= E pk

(
M0,1 ∗ M1,2

M0,1

)

= E pk

(
M3

M2

)

Scenario 2: On the other hand, when h > 3, A and T jointly involve in the SMP
protocol (Step 14 in Algorithm 1). Following from the SMP protocol (as given in
Algorithm 2), the value of Φl , for 1 ≤ l ≤ h −2, can be formulated as shown below:

Φl = E pk

⎪
⎝h−l−1∏

j=1

x j

⎞
⎠

= E pk

⎪
⎝h−l−1∏

j=1

Mh− j−1,h− j

⎞
⎠

= E pk

(
h−2∏
k=l

Mk,k+1

)

= E pk

(
M0,1 ∗ . . . ∗ Mh−2,h−1

M0,1 ∗ . . . ∗ Ml−1,l

)

= E pk

(
Mh

Ml+1

)
= E pk(M ≈

l+1)

�

4.2 Phase 2: Secure Computation of Recommendation Scores

During Phase 2, A with input Φ along with T and the internal users jointly compute
the recommendation score for each potential candidate. The overall steps involved in
Phase 2 of the PFR protocol are shown as steps 17–37 in Algorithm 1. To start with,
initially A computes a vector α (which is different for each Bi ) of size h as follows:

α1 = E pk(CA,Bi )

αl = Φ
CA,Bi
l−1 mod N 2, for 2 ≤ l ≤ h

After this, A sends A, Φ, and corresponding α to Bi , for 1 ≤ i ≤ m. Then, each
internal user U j receives the values of A, Φ, and α from Pr(U j ) and checks whether
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A is already a friend of U j (this case happens only if U j is equal to one of the Bi ’s).
If A ∈ F(U j ), then U j simply forwards A, Φ, and α to each of his/her child friend.
Otherwise, U j computes the encryptions of parts of his/her recommendation score
as below:

β j = α
DU j
1 mod N 2; γ j = α2 ∗ Φ

CY,U j
1 mod N 2

where DU j denote the degree of U j (i.e., |F(U j )|); Y denote the parent friend of
U j ; β j and γ j denote the encryption of DU j ∗ ⎨

i CSi−1,Si and M ≈
l ∗ |P(A, U j )|

respectively. Observe that ⎧RS(A, U j ) = M ≈
l ∗ (|P(A, U j )| ∗ ⎨

i CSi−1,Si

) ∗ DU j .
After this, U j sends Z j = {E pk(U j ), ⊆β j , γ j ∧} to A. Note that U j can receive
multiple pairs of (Φ,α) which occurs only when there exist multiple shortest paths
from A to U j . Under this scenario, U j creates the encrypted partial scores for each
pair of (Φ,α) and simply appends them to Z j as follows.

Z j = {E pk(U j ), ⊆β1, j , γ1, j ∧, . . . , βs, j , γs, j ∧}

where each βl, j , γl, j , for 1 ≤ l ≤ s, is computed as explained above for each pair
of (Φ,α) and s denotes the number of such pairs (number of shortest paths to U j

from A). In addition, if the counter (t) corresponding to U j is greater than 0, then
U j generates necessary information for his/her child friends as follows.

• Update Φ and α:

– Φl = Φl+1, for 1 ≤ l ≤ t

– α1 = α
CY,U j
1 mod N 2

– αl = αl+1 ∗ Φ
CY,U j
l−1 , for 2 ≤ l ≤ t + 1

• Send A, Φ and α to his/her child friends. If U j receives multiple pairs of (Φ, α),
U j updates each pair as above and sends all updated pairs to the child friends.

Upon receiving the entries from all potential candidates, A and T involve in a
secure multiplication and addition (SMPA) protocol. The main steps involved in the
SMPA protocol are shown in Algorithm 3. Without loss of generality, consider the
entry Z j = {E pk(U j ), ⊆β1, j , γ1, j ∧, . . . , ⊆βs, j , γs, j ∧}, where s denote the number of
shortest paths from A to U j . In addition, let βk, j = E pk(ak, j ) and γk, j = E pk(bk, j ),
for 1 ≤ k ≤ s. The goal of the SMPA protocol is to securely compute a1, j ∗
b1, j + · · · + as, j ∗ bs, j as output without revealing the values of ak, j and bk, j , for
1 ≤ k ≤ s, to either A or T . At the end of the SMPA protocol, only user A knows
the recommendation score corresponding to U j , for 1 ≤ j ≤ n. The basic idea of
the SMPA protocol is based on the following property which holds for any given
ak, j , bk, j ∈ ZN , for 1 ≤ k ≤ s:
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Algorithm 3 SMPA
Require: A’s input is Z j
1: A:

(a). for 1 ≤ k ≤ s do:

• β̃k, j ← βk, j ∗ E pk(rk, j )mod N 2, where rk, j ∈ ZN

• γ̃k, j ← γk, j ∗ E pk(r ≈
k, j )mod N 2, where r ≈

k, j ∈ ZN

(b). λ j ← E pk(U j ) ∗ E pk(r j )mod N 2, where r j ∈ ZN

(c). E pk(r) ← E pk(
⎨s

k=1 rk, j ∗ r ≈
k, j )

(d). E pk(r1) ← ⎨s
k=1 β

r ≈
k, j

k, j mod N 2

(e). E pk(r2) ← ⎨s
k=1 γ

rk, j
k, j mod N 2

(f). τ ← E pk(r̃ j ) ∗ E pk(r)N−1mod N 2, where r̃ j ∈ ZN

(g). w j = τ ∗ E pk(r1)
N−1 ∗ E pk(r2)

N−1mod N 2

(h). Send w j , λ j and β̃k, j , γ̃k, j , for 1 ≤ k ≤ s to T

2: T :

(a). Receive parameters from A
(b). ãk, j ← Dpr (β̃k, j ) ; b̃k, j ← Dpr (γ̃k, j ), for 1 ≤ k ≤ s
(c). c j ← ⎨s

k=1 ãk, j ∗ b̃k, j mod N
(d). z j ← Dpr (w j ); s1, j ← z j + c j mod N
(e). s2, j ← Dpr (λ j ); send s1, j and s2, j to A

3: A:

(a). Receive s1, j and s2, j from T

(b). R̃S(A, U j ) ← s1, j − r̃ j mod N (recommendation score)
(c). U j ← s2, j − r j mod N (corresponding user ID)

s∑
k=1

ak, j ∗ bk, j =
s∑

k=1

(ak, j + rk, j ) ∗ (bk, j + r ≈
k, j ) −

s∑
k=1

ak, j ∗ r ≈
k, j

−
s∑

k=1

bk, j ∗ rk, j −
s∑

k=1

rk, j ∗ r ≈
k, j

where rk, j and r ≈
k, j are random numbers in ZN and all arithmetic operations are

performed under modulo N . The overall steps involved in SMPA are shown in Algo-
rithm 3. Initially, A randomizes each encrypted tuple ⊆βk, j , γk, j ∧ , for 1 ≤ k ≤ s, as
follows:

β̃k, j = βk, j ∗ E pk(rk, j )mod N 2

γ̃k, j = γk, j ∗ E pk(r
≈
k, j )mod N 2
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Here rk, j and r ≈
k, j are randomly chosen in ZN . A also randomizes E pk(U j ) and

performs these homomorphic operations (steps 1(b) to 1(g) of Algorithm 3). The r j

and r̃ j are also random numbers in ZN . Then, A sends β̃k, j and γ̃k, j , for 1 ≤ k ≤ s,
to T along with w j and λ j . Upon receiving, T decrypts β̃k, j and γ̃k, j , for 1 ≤ k ≤ s,
multiplies and adds them as below:

• For 1 ≤ k ≤ s, ãk, j = Dpr (β̃k, j ) and b̃k, j = Dpr (γ̃k, j )

• c j = ⎨s
k=1 ãk, j ∗ b̃k, j mod N .

Furthermore, T decrypts w j and λ j : z j = Dpr (w j ) and s2, j = Dpr (λ j ), and
computes s1, j = z j + c j mod N . Then, T sends s1, j and s2, j to A. Finally, A
removes the randomness from s1, j and s2, j to get the actual score and user ID U j as
follows: ⎧RS(A, U j ) = s1, j − r̃ j mod N ; U j = s2, j − r j mod N

Here, ⎧RS(A, U j ) is the recommendation score for user U j based on Eq. 5. Note that
(N − 1) represents “−1” under ZN .

Theorem 2 The output of Phase 2 is the list of recommendation scores along with
the corresponding users IDs. That is, for any given entry Z j , we have:

s1, j − r̃ j mod N = ⎧RS(A, U j )

s2, j − r j mod N = U j

where s1, j and s2, j are the final values sent to A from T corresponding to the entry
Z j in the SMPA protocol, for 1 ≤ j ≤ n.

Proof Without loss of generality, consider a potential user U j who receives A and
(Φ, α) pairs from his/her parent friends. Let us assume that U j receives s number
of different (Φ, α) pairs (representing s number of shortest paths from A to U j ) and
let βk, j , γk, j denote the encrypted partial scores corresponding to kth pair (Φk, αk)

(denoting kth shortest path from A to U j ), for 1 ≤ k ≤ s. U j computes the encryp-
tions of parts of kth pair as follows:

βk, j = α
DU j
1,k mod N 2 = E pk

(
DU j ∗

∏
i

CSi−1,Si

)

γk, j = α2,k ∗ Φ
CY,U j
1,k mod N 2 = E pk(M ≈

l ∗ |Pk(A, U j )|)

where αy,k (resp., Φy,k) denotes the yth component of vector αk (resp., Φk); i =
1, . . . , l − 1; l = L(U j ) and Si−1 = Pr(Si ) along the kth path from A to U j . Then,
U j sends Z j = {E pk(U j ), ⊆β1, j , γ1, j ∧, . . . , ⊆βs, j , γs, j ∧} to A. Upon receiving, A
and T involve in the SMPA protocol. As mentioned earlier, let βk, j = E pk(ak, j )

and γk, j = E pk(bk, j ), for 1 ≤ k ≤ s. Since the SMPA protocol securely multiplies
each (βk, j , γk, j ) pair and then adds them, the output of the SMPA protocol can be
formulated as follows:



20 B. K. Samanthula and W. Jiang

s1, j − r̃ j mod N =
s∑

k=1

ak, j ∗ bk, j

=
s∑

k=1

(DU j ∗
∏

i

CSi−1,Si ) ∗ (M ≈
l ∗ |Pk(A, U j )|)

= M ≈
l ∗

s∑
k=1

(
|Pk(A, U j )| ∗

∏
i

CSi−1,Si

)
∗ DU j

= ⎧RS(A, U j )

Similarly, we can show that s2, j − r j mod N = U j . �
During the actual implementation, the SMPA protocol can be initiated in parallel

as the computation for potential user U j is independent of others. Thus, overall,
SMPA requires only one round of communication between A and T .

Example 3 We show various intermediate steps and results involved in the PFR pro-
tocol using Fig. 2 as an example. We have h = 3 and Lee as the target user. Following
from initialization step, users at 1-hop away from Lee, that is, ⊆Hall, Cox, Bell∧
have a value of t = 2. Similarly, ⊆Ford, Butler, Cole, K elly∧ have a value of
t = 1. Whereas, ⊆Shaw, Ray, Fox, Ryan, Hart, Jones∧ have t = 0. Each of them
is aware of pk and also their parent and child friends (following from the initialization
step).

Phase 1: Initially, Hall computes L Hall [1] = E pk(CHall,Ford +CHall,Butler ) =
E pk(3). Similarly, Cox and Bell compute LCox [1] = E pk(7) and L Bell [1] = E pk(3)

respectively. Observe that CHall,Cox is not included in L Hall [1] and LCox [1] since
Hall and Cox are at the same level from Lee. After this, Hall, Cox, and Bell
send L Hall , LCox , and L Bell resp., to Lee. Upon receiving values, Lee computes
L Lee[1] = L Hall [1] ∗ LCox [1] ∗ L Bell [1]mod N 2 = E pk(13). Then, Lee sets the
encrypted scalar factors as follows:

Φ1 = L Lee[1] = E pk(13); Φ2 = E pk(1)

Phase 2: During Phase 2, Lee computes encrypted vector α (different) for each
of his friends. Without loss of generality, consider user Hall. Lee creates α for Hall
as follows.

α = ⊆E pk(CLee,Hall),Φ
CLee,Hall
1 , Φ

CLee,Hall
2 ∧

= ⊆E pk(2), E pk(2 ∗ 13), E pk(2 ∗ 1)∧

Then, Lee sends ⊆Lee, Φ, α∧ to Hall who further forwards them to Ford and Butler.
The final entries (that are sent to Lee) from all potential users are shown in Table 2.
Finally, Lee and T involve in the SMPA protocol to get the scaled recommendation
scores. E.g., the recommendation score for Ford is ⎧RS(Lee, Ford) = 2 ∗ DFord ∗
4∗13 = 104∗ DFord . It is clear that ⎧RS(Lee, Ford) = Mh ∗T N ∗ RS, where actual
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Table 2 Encrypted partial scores corresponding to each potential candidate based on PFR

{E pk(Butler), ⊆E pk(2 ∗ DButler ), E pk(39)∧, ⊆E pk(2 ∗ DButler ), E pk(78)∧}
{E pk(Fox), ⊆E pk(2 ∗ DFox ), E pk(7)∧, ⊆E pk(6 ∗ DFox ), E pk(10)∧}
{E pk(Ryan), ⊆E pk(2 ∗ DRyan), E pk(5)∧, ⊆E pk(6 ∗ DRyan), E pk(8)∧}
{E pk(Hart), ⊆E pk(6 ∗ DHart ), E pk(10)∧, ⊆E pk(3 ∗ DHart ), E pk(6)∧}
{E pk(Ray), ⊆E pk(4 ∗ DRay), E pk(5)∧}
{E pk(Jones), ⊆E pk(3 ∗ DJones), E pk(8)∧}
{E pk(Ford), ⊆E pk(2 ∗ DFord ), E pk(52)∧}
{E pk(Cole), ⊆E pk(2 ∗ DCole), E pk(65)∧}
{E pk(K elly), ⊆E pk(DK elly), E pk(52)∧}
{E pk(Shaw), ⊆E pk(4 ∗ DShaw), E pk(6)∧}

M1 M2

U

t
2 t

2

(a)

M1 M2

U

t
2 t

2

(b)

Fig. 3 a M1 and M2 are friends. b M1 and M2 are not friends. Case 1 of initialization step in PFR

recommendation score for Ford is RS = 4 ∗ 2
5 ∗ DFord

T N and Mh = 65. Note that,
upon receivingα from Hall, Ford computesβFord locally using DFord (known only
to Ford) and homomorphic multiplication as βFord = α

DFord
1 = E pk(2∗ DFord). �

4.3 Security Analysis

In this sub-section, we analyze the security of the initialization step and each Phase
in the proposed PFR protocol separately.

We emphasize that, during the initialization step, the generation of candidate
network does not leak any information. Consider the two possible cases of the ini-
tialization step as discussed in Observation 2. For case 1, where U receives the same
counter values from multiple parents (on the same level), U cannot predict whether
there exist friendship between any two parents. For example, suppose U receives
t = 2 from two parents M1 and M2. Then we observe that U cannot distinguish
the two scenarios shown in Fig. 3. This is because the value of t received by U is
independent of the relationship between the parents who sent it.

Similarly, for case 2, where U can receive different counter values from multiple
parents (different levels), U cannot deduce any information by simply using the
received counter values. For example, consider that U receives t = 3 from M1 and
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Fig. 4 a M1 and M2 are friends. b M1 and M2 are not friends. Case 2 of initialization step in PFR

t = 2 from M2. Then, U cannot distinguish between the following two possible
scenarios as shown in Fig. 4, where J is the parent user of M2. It is clear that the
counter values passed to U are independent of the relationship between M1 and
M2. Hence, passing the counter values during the formation of candidate network
(initialization step) in PFR does not reveal any information.

During Phase 1, each internal user sends the encrypted aggregated data only to
Pr(U ). Thus, the privacy of individual users is preserved as per the security definition
of SMC [17]. In addition, during the SMP protocol, A first randomizes the values
of L A and sends them to T . Therefore, the simulated view of T is indistinguishable
compared to the real view (trusted third party model). Furthermore, since T sends
only the encrypted scalar factors to A, neither the values of Mi−1,i ’s nor M ≈

i ’s are
revealed to A, for 1 ≤ i ≤ h − 1. Therefore, the privacy of A and U j are preserved,
for 1 ≤ j ≤ n. Note that the scalar factor for users at level h is always known to
A, since M ≈

h = 1 always hold. However, we emphasize that this does not reveal any
information to A.

On the other hand, in Phase 2, A initially sends {A, Φ, α} to each Bi , for 1 ≤ i ≤
m. Each internal user U j , computes his/her encrypted partial scores using DU j and
CYi ,U j , where Yi is the parent friend of U j (with multiple parents denoting multiple
shortest paths from A to U j ). Then, U j sends his entry Z j in encrypted form to
A. Here, the privacy of each U j is preserved under the assumption that number of
shortest paths to U j can be revealed to A. However, we emphasize that this problem
can be solved my random masking without effecting the recommendation score
(more details are given in Sect. 6). During the SMPA protocol, the values of each
entry are randomized in ZN and sent to T . That is, the values of DU j ∗ ⎨

i CSi−1,Si

and M ≈
l ∗ |Pk(A, U j )|, for 1 ≤ k ≤ s, are randomized and sent to T . Therefore, the

privacy of A and U j is preserved further. In addition, the final output sent to A is
the actual output and the intermediate values are never revealed to A, T and other
internal users.

Based on the above discussions, it is clear that, apart from the initialization step,
Phase 1 and 2 are secure. In addition, the values returned from Phase 1 to 2 are
pseudo-random; therefore, the sequential composition of the two Phases lead to a
secure protocol according to the Composition Theorem [18].
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4.4 Complexity Analysis

We analyze the computation and communication costs of each party in the PFR
protocol. For the rest of this sub-section we omit the costs of the Initialization step
since they are negligible compared to the encryption costs in Phase 1 and 2 of PFR.

4.4.1 Computation Cost

For Phase 1, the computation cost of each internal user U j depends on his/her counter
value and number of child friends. In addition, irrespective of the counter value, U j

has to perform one encryption operation. Therefore, the computation complexity
of U j is bounded by one encryption and O(t ∗ |Ch(U j )|) homomorphic addition
operations. Whereas, the computation complexity of A mainly depends on h and m.
If h = 2, then A simply performs one encryption operation. However, when h = 3,
A’s computation complexity is bounded by O(h ∗ m) homomorphic additions and
one encryption. On the other hand, if h > 3, the computation complexity of A
mainly comes from the SMP protocol which depends on the value of h. That is,
A’s computation complexity is bounded by O(h ∗ m) homomorphic additions and
O(h) number of encryption operations. Whereas, the computation complexity of T
is bounded by O(h) decryption operations (coming from the SMP protocol).

In Phase 2, the computation complexity of each internal user (excluding Bi ’s)
depends on his/her t and s (number of shortest paths from A to U j ). Specifically,
U j ’s computation cost is bounded by O(t ∗ s) exponentiations and homomorphic
additions. On the other hand, A has to initially compute α, which depends on the
value of h, for each Bi . Therefore, the computation complexity of A for computing
all α values is bounded by O(h ∗ m) encryption and exponentiation operations. In
addition, during the SMPA protocol, A has to randomize all components of each
potential candidate. Let n denote the number of potential candidates and s be the
maximum number of shortest paths, then the computation cost of A in the SMPA
protocol is bounded by O(s ∗ n) encryption and exponentiation operations. Overall,
during Phase 2, the computation complexity of A is bounded by O(s ∗n) encryption
and exponentiation operations (under the assumption s ∗ n > h ∗ m). Whereas, the
computation complexity of T is bounded by O(s ∗n) decryption operations (coming
from the SMPA protocol).

4.4.2 Communication Cost

Without loss of generality, let K denote the Paillier encryption key size (in practice,
K should be at least 1,024 bits). During Phase 1, the communication complexity
between any two internal users is bounded by O(K ∗ t)bits. Note that t may vary
between each pair of users depending on their location in the corresponding can-
didate network and only adjacent users (i.e., friends) communicate to each other.
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Whereas, between A and all Bi ’s, the communication cost is bounded by O(K ∗ h ∗
m)bits. In addition, for the SMP protocol, the communication complexity between
A and T is bounded by O(K ∗ h)bits.

Additionally, during Phase 2, the communication cost between any two internal
users is bounded by O(K ∗ t)bits, where t is the counter of the corresponding parent
user. Since A has to send Φ and α to each Bi , for 1 ≤ i ≤ m, the communication
cost between A and all Bi ’s is bounded by O(K ∗ h ∗ m)bits. In addition, since each
potential candidate sends the encryptions of parts of his/her recommendation score
to A, the communication cost between A and all potential candidates is bounded by
O(K ∗ s ∗ n)bits. Here, we assume there exist s number of shortest paths from A
to each potential candidate. Finally, during the SMPA protocol, the communication
cost between A and T is bounded by O(K ∗ s ∗ n)bits.

5 Practical Implementation Details

5.1 Masking Number of Shortest Paths

As mentioned earlier, the PFR protocol reveals (only to A) the number of shortest
paths from A to each potential candidate U j , for 1 ≤ j ≤ n. However, it is unclear
how this additional information effects the privacy of U j . Nevertheless, we empha-
size that this problem can be solved by randomly masking the number of entries
corresponding to each U j without effecting his/her final recommendation score.
Suppose Z j = {E pk(U j ), ⊆β1, j , γ1, j ∧, . . . , ⊆βs, j , γs, j ∧} is the entry corresponding
to U j , where s denotes the number of shortest paths from A to U j in the correspond-
ing candidate network. We briefly explain the steps involved in masking the entry
Z j by U j below, for 1 ≤ j ≤ n:

• Randomly mask the number of shortest paths from A to U j by computing Z ≈
j =

{E pk(U j ), ⊆β1, j , γ1, j ∧, . . . , βs+θ, j , γs+θ, j ∧}, where θ is the security parameter
chosen by U j , such that βs+i, j = γs+i, j = E pk(0), for 1 ≤ i ≤ θ . Note that the
encryption scheme used in this chapter (based on HPEnc+ system) is probabilistic.
Therefore, encryption of 0 each time yields different (random) ciphertext in ZN 2 .

• Send the masked entry Z ≈
j to A.

The rest of the steps are the same as in Phase 2 of PFR. Observe that applying SMPA
on Z ≈

j yields the same result as on Z j , for 1 ≤ j ≤ n.

5.2 Data Encryption and Secure Peer-to-Peer Communication

The PFR protocol assumes there exist peer-to-peer network connectivity and the
communication between any two users happens through a secure channel. However,
in practice, as it is the case is many online social networks, communication between
any two users should happen through the social network provider (say the network



A Randomized Approach for Structural 25

administrator) for security reasons. Another reason for this is a user may not be
online at the receiving end.

As mentioned in Sect. 1, in this chapter, we assume that users profile data are first
encrypted (using his/her own secret key) and then stored on the server of network
administrator [2]. We emphasize that this assumption is commonly made in the
literature of related problem domains such as in [2, 7, 14, 26, 36, 37]. Also, from
user’s perspective, this assumption gives more flexibility to them since users have
more control over their own data. In addition, secure communication between any
two users can be achieved by establishing a secure session (using AES session key
[31]) between them. For example, if Alice wants to establish a new secure session
with Bob, then Alice encrypts the trapdoors using Bob’s public key and sends it to the
network administrator. Upon receiving, Bob can decrypt them to get the trapdoors
which will enable Alice and Bob to communicate in a secure fashion. It is important
to note that each user in the network is responsible to generate, maintain, and share
his/her own keys.

Under such an architecture, the network administrator merely acts as an interme-
diate router who simply stores the encrypted data sent by the sender and delivers it
to the concerned end-user after he/she logins. Note that the data to be sent is first
encrypted using the corresponding session key of sender and then stored on the server.
Therefore, only the end-user who holds the session key can decrypt it. For example,
during the initialization step of PFR, each user U first establishes a secure session
with his/her friends. Then, the value of t to be sent is encrypted and stored on the
server. Once the intended end-users (i.e., friends of U ) logins into social network, the
network administrator sends the encrypted value of t to him/her who decrypts it to
know his/her counter value. We emphasize that the session keys should be changed
occasionally for security reasons.

6 Inherent Security Issue

In many online social networks, such as Facebook, we observe an inherent security
issue due to the information flow between different entities. For example, consider
the scenario of user U sending a message to another user V . Though the message is
encrypted using the session key of U , as explained above, it is clear that the network
administrator will know that U and V have some kind of relationship. This is because
of the fact that the communication between any two users should pass through the
network administrator. Here U and V might be friends but this may not be the case
always since a user can send a message to any other user in the social network (i.e.,
no need of friendship between the two users).

In particular to the PFR protocol, this information might be too specific since U
sends an encrypted counter or some other information during Phase 1 or 2 to only
his/her parent or child nodes (i.e., friends of U ). However, we emphasize that the
network administrator cannot distinguish which message belongs to which applica-
tion. This is because the messages are encrypted and thus the underlying application
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is not transparent to the network administrator. Nevertheless, the network adminis-
trator will still know that there exist some kind of relationship between U and the
users at the receiving end. It is unclear how this extra information will be useful to
the network administrator in deducing any private information of U .

7 Extension to PFR

As mentioned above, the PFR protocol might leak the additional information that
there exist some kind of relationship between U and his/her friends to the network
administrator. Note that this kind of information is never revealed to other users in
the PFR protocol. We emphasize that if the message flow is always between U and
only his/her friends, then the probability of guessing user Vj ∈ F(U ) is a friend
of U by the network administrator is very high. Therefore, to mitigate this issue
or to provide better security, this section presents an extended version (denoted by
PFRrand) of the PFR protocol by randomly including additional users (apart from the
actual friends) to take participation in the PFR protocol without effecting the final
recommendation scores. By doing so, we are actually randomizing the friend lists
of users; therefore, reducing the probability of guessing the friends of a user by the
network administrator.

Similar to PFR, the PFRrand protocol consists of an initialization step and two
phases. However, the methodology is slightly different from PFR. Therefore, we
explain the key steps in PFRrand that are different from PFR below.

7.1 Initialization Step

To start with, the target user A selects a random set of dummy friends (excluding
the actual friends of A) from the social network, denoted by D(A), where |D(A)|
is the security parameter for A. Note that the dummy friends can also be referred
to as dummy child nodes. Then, A sets the counter t to h − 1 and sends (δ, t) to
each user Y j in F(A) ∪ D(A). Where δ = 1 if Y j ∈ F(A), and 0 otherwise. Then,
each intermediate user U selects his/her random set of dummy users D(U ), stores
(δ, t) and the parent user who sent the entry to U locally (as explained below). In
addition, he/she sends the updated (δ, t) entry to users in Ch(U ) ∪ D(U ), where
Ch(U ) denotes the actual child nodes of U as explained in Sect. 4. This process is
continued until the users at h-hop away from A receive a counter of t = 0. Since U
can receive multiple pairs of (δ, t), depending on whether U is a dummy user or not,
we address the following two cases.

Case 1: If the δ values received by U are all 0’s (whereas the values of t can
be different), then U is actually a dummy user (i.e., not part of candidate network).
Under this case, U stores δ as 0 and the maximum t value received locally. Plus, U
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selects the user who sent the maximum t as his/her parent (i.e., P(U )). In addition,
U sends (δ, t) to each user in Ch(U ) ∪ D(U ) with δ ← 0 and t ← t − 1.

Case 2: On the other hand, if U receives either different δ values (i.e., both 0
and 1’s) or same δ values of 1, then U is part of the candidate network. Therefore,
U stores δ as 1 and selects the maximum t value among the entries with δ = 1 as
his/her counter value . Also, among the users who sent δ = 1, U selects the user who
sent the maximum t as Pr(U ). Unlike in the previous case, U sends (1, t) to users
in Ch(U ) and (0, t) to users in D(U ), where t ← t − 1.

At the end of the initialization step, each user who participates in the PFRrand
protocol knows whether he/she is a dummy user (i.e., δ = 0) or part of the candidate
network (δ = 1). In addition, each user knows his/her parent user (Pr(U )), actual
child users (Ch(U )), and dummy child users (D(U )).

7.2 Phase 1: Secure Computation of Scalar Factors

Following from Case 1 and 2 of the above initialization step, we have the following
observation in the PFRrand protocol.

Observation 3. For any internal user U who belongs to the candidate network (i.e.,
δ = 1), we observe that Pr(U ) also belongs to the candidate network and is the
same as in the PFR protocol (assuming single parent).

The basic idea of Phase 1 in PFRrand is the same as in PFR. However, the only
difference is that whenever an internal node (and also A) receives the encrypted
aggregated data from his/her child nodes (i.e., users in Ch(U ) ∪ D(U )), U simply
dumps the messages received from dummy child nodes (∈ D(U )). More specifically,
only the messages received from actual child nodes are used in performing further
computation by U and the resulting aggregated data is forwarded to Pr(U ). Since
the messages from dummy nodes are not used for computations and following from
Observation 3, we observe that the final output from Phase 1 is the same as that of
Phase 1 in PFR.

7.3 Phase 2: Secure Computation of Recommendation Scores

Similar to PFR, at the end of Phase 1 in PFRrand, A has the list of encrypted scalar
factors (i.e., Φ) for all potential users within a radius of h. Note that, as mentioned
above, these scalar factors are computed based on the candidate network. That is,
even though dummy child friends are added for each user to provide better security,
the corresponding messages are not used during the computation of encrypted scalar
factors for each level. Thus, the final result of Phase 1 in PFRrand is equivalent to Φ

(list of encrypted scalar factors for each level).
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During Phase 2, A initially sends his/her ID, Φ, and α (which is computed similar
to in PFR) to each user in F(A)∪ D(A). Then, each participating user M j in PFRrand,
after receiving encrypted data from his/her parent(s), computes the encryptions of
parts of his/her recommendation score as mentioned in PFR. After this, M j sends
his/her entry Z j , as defined below, to A.

Z j = {E pk(M j ), E pk(δ j ), ⊆β1, j , γ1, j ∧, . . . , βs, j , γs, j ∧}

where s denotes the number of shortest paths from A to M j and the flag δ j denotes
whether or not M j is part of the candidate network. Observe that δ j is not used in the
PFR protocol. We emphasize that, similar to PFR, the number of shortest paths can
be masked by M j before sending it to A. For each entry Z j received, A first retrieves
δ j securely as follows:

• A randomizes E pk(δ j ) by computing σ j = E pk(δ j ) ∗ E pk(r j )mod N 2, where r j

is a random number chosen from ZN , and sends σ j to T .
• Upon receiving, T computes δ≈

j = Dpr (σ j ) and sends δ≈
j to A.

• A removes the randomization from δ≈
j to get δ j , i.e., computes δ j = δ≈

j − r j

mod N .

At the end of this step, A knows which entries belong to actual potential users (i.e.,
δ j = 1) and dummy users (i.e., δ j = 0). Finally, A and T involve in the SMPA
protocol to get the recommendation scores and corresponding user IDs for only
those entries with δ j = 1. We emphasize that the number of instantiations of SMPA
in PFRrand is the same as in PFR.

8 Empirical Analysis

Since the effectiveness of PFR is the same as CSM method [9], in this section, we
analyze the computation costs of PFR based on different parameters. In addition, we
compare the computation costs of PFRrand with PFR.

8.1 Platform and Dataset Description

For our experiments, we used Paillier cryptosystem [32] as the underlying encryption
scheme. The proposed protocols were implemented in C, and experiments were con-
ducted on an Intel® Xeon® Six-CoreTM 3.07GHz PC with 12GB memory running
Ubuntu 10.04 LTS.

Since it is hard to control parameters in a real-world dataset, we simulated the
environment and computed the computation costs. In all our experiments, we assume
that the minimum number of messages exchanged between any two users U and V
(i.e., CU,V ) is uniformly distributed in [1, 1000]. Also, we assume that there is no
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communication delay between participating users (which further implies that users
are online). In addition, the number of child friends for each user (including the target
user A) is varied from 50 to 250.

8.2 Performance of PFR

We first analyze the computation costs of A, T , and internal user U j in Phase 1 and
2 of PFR separately. Since the run time of U j depends on which level he/she belongs
to, we present the average of computation costs of all internal users at different levels.
For the rest of this sub-section, the Paillier’s encryption key size (i.e., K ) is fixed to
either 1,024 or 2,048 bits.

For Phase 1, we fix the value of h to 6 and compute the run time of A, T , and U j by
varying the number of child friends from 50 to 250 (note that users at level h−1 and h
do not involve in Phase 1). As shown in Fig. 5a, for Paillier key size K = 1,024 bits,
the computation time for A, T , and U j are 79, 30, and 4.25 ms respectively when
the number of child friends is 50. In addition, the computation time of U j varies
only slightly (due to less expensive homomorphic operations) from 4.25 to 6 ms
when the number of child friends of U j are varied from 50 to 250. However, for
A the computation time remains the same since the cost of homomorphic addition
operations are negligible compared to the encryption operations involved in SMP.
Since h is fixed, the encryption cost in SMP remains the same irrespective of the
child friends of A. Therefore, the computation costs of A and T remains the same
in Phase 1. A similar trend can be observed for K = 2,048 bits as shown in Fig. 5b.
Briefly, when the number of child friends is 50, the computation costs of A, T , and
U j are 571, 240, and 24.25 ms respectively. Also, irrespective of the number of child
friends and h, we observe that the computation time of U j is always significantly
less than that of A and T .

During Phase 2, the computation time to find the recommendation score for each
potential candidate U j mainly depends on m (number of A’s friends) and the cost
of SMPA which in turn depends on the number of shortest paths (s) from A to U j .
However, for any given m, the cost to compute recommendation score for each U j

varies with the corresponding s. Thus, we analyze the computation costs for A, T
and U j based on varying values of s with h = 6 and m = 50. As shown in Fig. 5c, the
computation cost of U j (averaged over different levels) increases from 0.8 to 2.4 ms
when s is varied from 5 to 25 for K = 1,024 bits. However, due to the expensive
encryption costs, the computation cost of A varies from 207 to 538 ms when s is
changed from 5 to 25. On the other hand, due to the decryption costs in SMPA, the
computation cost of T varies from 30 to 130 ms when s is changed from 5 to 25. A
similar trend can be observed for K = 2,048 bits as shown in Fig. 5d. In short, when
s = 5, the computation costs of A, T , and U j are 1.79,0.24 and 0.002 s respectively.
We observe that, for any fixed parameters, the computation costs of A and T are
increased by a factor of almost 8 whereas U j ’s time is increased by a factor of 2
when K is doubled.
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Fig. 5 a Phase 1 for K = 1,024. b Phase 1 for K = 2,048. c Phase 2 for K = 1,024. d Phase
2 for K = 2,048. e Total cost for K = 1,024. f Total cost for K = 2,048. Computation costs of
different parties in PFR based on varying parameter values

Based on the above results, it is clear that the computation costs incurred due to
Phase 2 are much higher than those of Phase 1. This further validates our computa-
tional analysis of PFR as discussed in Sect. 4.

Furthermore, we compute the total run time of PFR based on varying values of h
and s. That is, the total time took by our PFR protocol to compute the recommendation
score corresponding to the potential user U j (similar analysis can be deduced for
other potential candidates) is computed. We fix the number of child friends for each
potential user (and A) to 50. The results are as shown in Figs. 5e and 5f. For K =1,024,
as shown in Fig. 5e, we observe that the total time does not change much when h is
changed from 2 to 3 for both s =1 and 5. For example, when s = 5, the run time of
PFR varies from 241.8 to 245.8 ms when h is changed from 2 to 3. This is because
the cost of Phase 1 does not change much since there is no need of SMP when h = 2
and 3. Also, the cost of Phase 2 almost remains the same for any fixed s (assuming
m is also fixed). However, the total cost increases as h is varied from 3 to 6. For
example, when s = 5, the total time for PFR to compute the recommendation score
for U j varies from 245.8 to 351.05 ms when the value of h is changed from 3 to 6. A
similar trend can be observed for s = 1 as shown in Fig. 5e. Also, for any given value
of h, the computation time of PFR is almost increased by a factor of 1 to 2 when s
is changed from 1 to 5. E.g., when h = 6, the computation time of PFR varies from
264.25 to 351.05 ms when s is changed from 1 to 5. In addition, we observed that
for any fixed values of h and s, the running time of PFR grows almost linearly with
n. A similar trend can be observed for K = 2,048 as shown in Fig. 5f.

These results show that most of the significant computation (more than 97 %) is
from A and T . The computation cost incurred on all internal nodes is negligible. In
addition, for A and T the computation time grows linearly with s and n. Furthermore,
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Fig. 6 a Cost of Phase 2 for s = 1. b Cost of Phase 2 for s = 5. c Total cost for n≈ = 50.
Comparison of computation costs of PFRrand with PFR for K = 1, 024 bits

when the size of encryption key doubles, the computation time of PFR increases by
almost a factor of 8 for any fixed parameters.

8.3 Computation Costs: PFR Versus PFRrand

In this sub-section, we compare the computation costs of PFRrand with PFR. As
mentioned earlier, remember that adding random dummy users to take participation
in PFRrand does not change the relative ordering among the recommendation scores
of actual potential candidates. That is, the effectiveness of PFRrand is the same as
in PFR. For the rest of this sub-section, we fix the Paillier key size K to 1,024 bits
(however we emphasize that similar analysis can be deduced for K = 2,048 bits).

For any given parameters, it is important to note that the computation cost of
Phase 1 in PFRrand is the same as in PFR. This is because of the fact that though
additional dummy child friends are added for each internal user (and A), he/she will
operate on the encrypted partial data received from only his/her actual child friends.
Therefore, we first compare the computation costs of Phase 2 in PFR and PFRrand.

Suppose the number of actual child friends for each potential candidate U j be 50,
i.e., |Ch(U j )| = 50. Also, let m = 50, n = 100 and h = 6. Now we evaluate the
computation time of Phase 2 in the proposed protocols for varying n≈ and s = 1,
where n≈ denotes the total number of dummy random users participating in the
PFRrand protocol. As shown in Fig. 6a, the computation time of Phase 2 in PFR is
5.2 s and it remains constant with varying n≈ since Phase 2 is independent of n≈ in
PFR. Whereas, the computation cost of Phase 2 in PFRrand varies from 5.93 to 6.27 s
when n≈ is varied from 10 to 50. It is clear that the extra cost incurred on Phase 2 in
PFRrand is not that much compared to the cost of Phase 2 in PFR. A similar trend can
be observed for s = 5 as shown in Fig. 6b. Briefly, the computation time of Phase
2 in PFR remains to be constant at 13.88 s whereas in PFRrand the cost varies from
14.61 to 14.95 s when n≈ is changed from 10 to 50.

We have also computed the total run time of PFR and PFRrand for varying s and by
fixing n≈ to 50. The results are as shown in Fig. 6c. The total run time of PFR varies
from 13.99 to 57.25 s whereas that of PFRrand varies from 15.07 to 58.33 s when
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s is changed from 5 to 25. Irrespective of the value of s and for any fixed parameters,
we observe that the total run time of PFR is very close to that of PFRrand.

We emphasize that friend recommendation is generally performed on a daily basis
(not a real-time application); therefore, the performances of the proposed protocols
are reasonable in practice. The main advantage is that the proposed protocols make it
possible to do friend recommendations even in a privacy-preserving social network-
ing environments.

9 Conclusion

Friend recommendation has become an important service in many online social
networks to enhance the development of the entire network as well as to provide
opportunities for users to expand their social relations. Due to privacy concerns [10,
21, 40], many online social networks are providing various privacy settings to users.
Existing friend recommendation algorithms do not take privacy into account; there-
fore, they are not applicable in privacy-preserving social networking environments.
In this chapter, we first proposed a new two-phase private friend recommendation
(PFR) algorithm based on the network structure as well as real messages exchanged
between users. The proposed PFR protocol computes the recommendation scores
of all users within a radius of h from the target user A by using the similarity met-
ric proposed in [9] as a baseline. In particular, our protocol generates the (scaled)
recommendation scores along with the corresponding user IDs in such a way that
the relative ordering among the users in the TOP-K list of recommended users is
preserved (i.e., the same accuracy as in [9]).

We have provided an in-depth security and complexity analysis of the proposed
PFR protocol and also addressed various implementation details related to PFR in
practice. In addition, we demonstrated a new security issue in the current online
social networks due to the inherent message flow information between different
entities. To mitigate this issue or to provide better security, we proposed an extended
version of the proposed protocol using randomization technique. We also showed
the practical applicability of the proposed protocols through extensive experiments
based on different parameters.
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Context Based Semantic Relations in Tweets

Ozer Ozdikis, Pinar Senkul and Halit Oguztuzun

Abstract Twitter, a popular social networking platform, provides a medium for
people to share information and opinions with their followers. In such a medium, a
flash event finds an immediate response. However, one concept may be expressed
in many different ways. Because of users’ different writing conventions, acronym
usages, language differences, and spelling mistakes, there may be variations in the
content of postings even if they are about the same event. Analyzing semantic rela-
tionships and detecting these variations have several use cases, such as event detec-
tion, and making recommendations to users while they are posting tweets. In this
work, we apply semantic relationship analysis methods based on term co-occurrences
in tweets, and evaluate their effect on detection of daily events from Twitter. The
results indicate higher accuracy in clustering, earlier event detection and more refined
event clusters.

1 Introduction

Social networking platforms, especially micro-blogging sites such as Twitter, act as
an important medium where people share their opinions with their followers. With its
millions of users around the world and half a billion tweets per day,1 textual content
in Twitter is an abundant and still growing mine of data for information retrieval

1 http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-billion-tweets-a-day
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Fig. 1 Number of Tweets per hour collected by using the Twitter streaming API

researchers. This retrieved information is used for analyzing public trends, detecting
important events, tracking public opinion or making on-target recommendations and
advertisements. However, there may be variations in the contents of such a free and
unsupervised platform, even if people refer to the same topic or the same concept in
their tweets. Users may express the same thing in their own personal ways, such as by
using unusual acronyms or symbols. Geographic, cultural and language diversities
cause variations in the content. Even the regional setting or character set used on the
device for posting affects uniformity. Moreover, the character limitation of a tweet
in Twitter forces people to write in a compact form, possibly with abbreviations or
symbols. Last but not least, spelling mistakes are definitely another major reason
for divergence in content. For these reasons, in order to apply information retrieval
algorithms more effectively in such an environment, it is necessary to be able to
figure out the semantic relationships among the postings under the variations. Our
goal is to identify such cases, and understand what the user could have meant, so that
we can enrich a given tweet with possible similar terms.

In this work, we devise methods to extract semantic relationships among terms in
tweets and use them to enhance the event detection capability. For the extraction of
semantic associations, we use co-occurrence based statistical methods. Although the
techniques we use are independent of language, we limit our scope to Turkish tweets
posted in Turkey. In Fig. 1, we present a chart that displays the number of tweets
per hour with Turkish content that we collect for several days. This figure indicates
that, the collected tweets show a daily pattern and there are almost no postings
around 7 in the morning. Therefore, we perform semantic relationship analysis and
event detection on daily basis, such that we consider 7 am as the end of the day and
identify hot topics of the previous day offline.

Our intuition is that implicit similarities among terms are time-dependent. In other
words, consistently with the tweet graph in Fig. 1, we observe that a new day mostly
starts with new events and new terms in Twitter. Therefore we choose to analyse
term relations, i.e., co-occurrences, within the scope of per day. Using such a context
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based relation extraction and applying these relations for tweet expansion, we aim to
obtain earlier event detection, with longer lifetime and accurately clustered tweets.
Moreover we obtain more refined results so that the users can follow the daily reports
more easily. The rest of this chapter is organized as follows:

• We first present several metrics for measuring the associations among terms in a
collection of documents (Sect. 2).

• We present our algorithm for event detection and introduce our proposed methods
for enhanced event detection (Sect. 3).

• We provide analysis results by evaluating proposed techniques for discovering
term associations and enhanced event detection. We discuss the results of our
experiments (Sect. 4).

• We present a review of the related work about event detection, especially on social
media. Recent studies using semantics in word co-occurrences and use of similarity
analysis in different problem domains are given (Sect. 5).

• We finally conclude the chapter with an overview of the results obtained and future
work directions (Sect. 6).

2 Term Relationship Metrics

In natural languages, terms can have several types of semantic and grammatical
relationships in sentences. For example, a term can be the synonym, antonym, or
hyponym of another term. Two closely related terms, such as the first and last names
of a person, may occur in sentences more frequently than other term pairs. There are
also phrases that are composed of multiple terms frequently used in the same pattern,
such as “take advantage of ”, “make use of ” or “keep an eye on”. It is possible to look
for these relationships in dictionaries, thesauri or encyclopedia. On the Internet, there
are even online resources for this purpose such as WordNet and Wikipedia, which
are already utilized in studies on similarity analysis and word sense disambiguation
[2, 16]. However, in addition to the fact that these online resources are not mature
enough for all languages yet, the language of Twitter is remarkably different than
the one in dictionaries or newspaper texts. First of all, there is no authority to check
the correctness of the content in Twitter. It is a social networking platform where
people can write whatever they want in their own way. In its simplest terms, they
can make spelling mistakes or they may type a word in different ways (like typing
u for ü or o for ö in several languages). Therefore, instead of utilizing an online
dictionary, we adopt a statistics-based technique to identify associations among a
given set of terms. The idea is that semantic relations of terms have some impact on
their distribution in a given document corpus. By analyzing syntactic properties of
documents, i.e., tweets in this case, associations between term pairs can be extracted.
There are several relationship metrics depending on which statistical patterns in term
distributions to look for. First order relations, also known as syntagmatic relations,
are used to identify term pairs that frequently co-occur with each other [19, 25].
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A person’s first and last names, or place names such as United States or Los Angeles
can be considered to have this kind of relationship. Moreover, term pairs like read-
book, blue-sky, and happy-birthday are examples of first order associations.

Term co-occurrences can be used in order to identify second order relationships
as well. Second order associations are referred to as paradigmatic relations and they
aim to extract term pairs that can be used interchangeably in documents [19]. If
two terms co-occur with the same set of other terms, this can be interpreted as one
can be replaced with the other (possibly changing the meaning of the sentence,
but this is immaterial). Therefore, methods that find paradigmatic relations do not
directly use co-occurrence counts between two terms, but consider the mutuality of
co-occurrences with other words. For example, photo-photograph or black-white are
such word pairs that most probably co-occur with the same words.

In addition to the first and second order associations, there are also higher order
associations with basically the same logic [5]. For example, if there is a high number
of co-occurrences among the term pairs t1 − t2, t2 − t3 and t3 − t4, then t1 and t4
can be considered as having a third-order association. In this work, we focus on first
and second order relationships. Finding these relationships can be achieved by using
several metrics. For syntagmatic relations, a straightforward measurement is simply
counting the co-occurrences of term pairs. Other co-occurrence ranking metrics are
proposed such as Dice, Cosine, Tanimoto and Mutual Information [10]. Application
of entropy-based transformations [20] or Singular Value Decomposition [7] on the
co-occurrence frequencies are also further improvements for first-order relations. For
finding second order relationships between two terms t1 and t2, one of the metrics
is to count the number of distinct terms t3 that co-occur with t1 and t2 [5]. However,
in our work, we apply a method based on the comparison of co-occurrence vectors
as presented in [19]. The basic idea is to generate term co-occurrence vectors and
compare their similarity in the vector space. We experiment with cosine and city-
block distances for similarity comparisons. For first order relations, we simply count
the number of co-occurrences, i.e., raw co-occurrence values. Both in the first and
second order association analysis, our objective is not only finding the most related
terms, but also assigning them a similarity score, i.e., a value between 0 and 1. This
similarity score will be used while applying a lexico-semantic expansion to tweet
vectors, as will be explained shortly.

Statistical methods do not necessarily require a dictionary or human annotated
data. First of all, this brings about language independence. Moreover, by analyzing
terms in specific timeframes, ambiguities can be resolved depending on the context.
For example, the term goal could have many related terms, such as match, objective
or end. But if we know that there was an important soccer game that day and the
term appears very frequently in tweets, then we can assume that it is used in sports
context, therefore match would be the most suitable related term.

Regarding the performance issues and resource limitations, we do not apply
semantic analysis on rare terms. On a daily collection of around 225 K tweets, there
are more than 140 K distinct words on average, some of them appearing only in a few
tweets. Moreover, in order to capture co-occurrences, content-rich tweets are pre-
ferred. Therefore, we process tweets with at least 4 terms and compare the terms with
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minimum frequency of 300. These numbers are selected by intuition, after observing
the Twitter traffic for a period of time. They can be adapted for another language,
another tweet selection criterion, or another processing infrastructure. Here we would
like to emphasize that our focus in this work is to demonstrate that the extraction
of semantic relations in an uncontrolled environment such as Twitter is practical for
better event detection. Finding the most suitable parameter values or most efficient
similarity metrics could be the objective of another study.

2.1 First Order Relationships

As explained before, in order to find the first order relationships, we use the raw co-
occurrence values. In our previous work [13], after finding the number of times the
term pairs co-occur, we identified the semantically related term pairs if they appear
in more than 50 tweets together. Moreover, if two terms are found to be semantically
related, we assigned a constant similarity score of 0.5. In this work, we developed a
more generic solution and adopted the approach that we used for discovering hashtag
similarities in [14]. Instead of using a threshold for deciding the similarity of two
terms and giving them a constant similarity score, we assign normalized similarity
scores for each term pair by using their co-occurrence values. For example, the term
pair with the maximum number of co-occurrence value, cmax , on a given day has the
similarity score 1.0. For other term pairs ti and tj with a co-occurrence count of ci,j,
their similarity score is given by the ratio of ci,j/cmax .

2.2 Second Order Relationships with Cosine Similarity

For the second order relationships, term co-occurrence vectors are generated. Let ci,j

represent the number of co-occurrences of the terms ti and tj. Then, for each term
ti, we count its co-occurrences with other terms t1, t2,... t|w| where W is the set of
distinct terms collected on that day’s tweets. After forming the term vectors as given
in (1),

ti = (ci,1, ci,2, ..., ci,i−1, 0, ci,i+1, ..., ci,|W |−1, ci,|W |) (1)

we compare their cosine distance by using the cosine distance equation in (2) [28].

simcosine(ti, tj) = ti · tj

|ti||tj| =
∑|W |

k=1 ci,kcj,k√∑|W |
k=1 c2

i,k

∑|W |
k=1 c2

j,k

(2)

Again we do not use any threshold for the decision of similarity but rather use the
cosine distance as the similarity score, which is already in the range [0,1].
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2.3 Second Order Relationships with City-Block Distance

City-block distance is another simple vector comparison metric [19]. After forming
the co-occurrence vectors, while comparing two vectors, it finds the sum of absolute
differences for each dimension as given in (3).

simcity-block(ti, tj) =
|W |∑
k=1

|ci,k − cj,k | (3)

Similar to the solution we applied for first order relations, we normalize the
distances in [0, 1] and use these values as similarity scores.

3 Event Detection and Semantic Expansion

In this work, we perform offline event detection on tweets. However the algorithms
we implement can also be used online with further performance optimizations. The
flow of the event detection process is depicted in Fig. 2. Dashed arrows indicate the
extension that we implemented on a traditional clustering algorithm. We first present
the data collection, tweet vector generation, clustering and event detection steps.
Then we explain how we carry out lexico-semantic expansion and improve event
detection quality.

For tweet collection from the Twitter Streaming API, we use Twitter4J,2 a Java
library that facilitates the usage of Twitter API. We apply a location filter and gather
tweets posted by users in Turkey, with Turkish characters. Posts with other char-
acter sets such as Greek or Arabic letters are filtered out. The gathered tweets are
immediately stemmed with a Turkish morphological analyzer called TRMorph [6].
After further preprocessing, including the removal of stop words and URLs, they are
stored into the database. Using this process, we collect around 225 K tweets per day.
Further details regarding the tweet collection and preprocessing steps are found in
our previous work [13].

Our event detection method is an implementation of agglomerative clustering,
applied on tweets collected in a given period of time. In this algorithm, tweets are
represented by tweet vectors that are generated by the TF-IDF values of the terms
in each tweet. In order to fix the size of these vectors and calculate the IDF values
of terms, all tweets in the given period are pre-processed. The number of distinct
terms, i.e., the dimension of tweet vectors, is determined and document frequencies
of each term are found. Finally tweet vectors are created by using the frequencies of
their terms and their inverse document frequencies.

The clustering algorithm simply groups similar tweets according to the distance
of their tweet vectors in n-dimensional vector space. Just like tweet vectors, clusters

2 Twitter4J homepage, http://twitter4j.org.

http://twitter4j.org
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Fig. 2 Event detection process

are also represented with vectors. A cluster vector is the arithmetic mean of the tweet
vectors grouped in that cluster. Tweets are processed one by one according to their
posting time. For each tweet, the most similar cluster vector is found. For similarity
calculation, we use cosine distance as given in Eq. (2). If the similarity of the most
similar cluster is above a given threshold, the tweet is added to that cluster and the
cluster vector is updated. Otherwise, that tweet starts a new cluster on its own. If no
tweet gets added to a cluster for a certain period of time, then it is finalized, meaning
that the event does no longer continue.

Finally, with all tweets processed, we apply an outlier analysis using the empirical
rule (also known as the three-sigma or 68-95-99.7 rule) [14, 29]. According to this
rule, we first find the mean number of tweets in clusters and their standard deviation
(σ). We mark the clusters with more than mean+3σ tweets as event clusters. In order
to present an understandable summary to the user, summaries are generated for each
event cluster. Summaries are simply the first three terms in cluster vectors with the
highest TF-IDF values.

The event detection method we introduced above is our basis method, whose path
is indicated with the solid arrows in Fig. 2. We refer to it as BA (Basis Algorithm) in
the rest of the chapter. The novelty of our work is an extension on this basis algorithm
by applying a lexico-semantic expansion to tweets. This extension is composed of two
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steps, namely calculation of similarity scores among frequent terms and using these
scores while applying the semantic expansion on tweet vectors before feeding them
to the clustering process. As explained before, we implemented three metrics for the
analysis of term associations. We evaluate their results and apply them on clustering
separately. We label these clustering implementations as FO for First Order, COS
for Cosine and CBL for City-Block metrics.

The first step in this extension is the calculation of similarity scores among term
pairs that appear in the tweets to be clustered. By using one of the abovementioned
metrics, we obtain term–term similarity scores. For each term, we keep only top-n
similarities, due to the performance optimizations. We choose to use top-3 similarities
in our experiments.

After having the similarity scores, generated either with first order or second order
analysis, we use these similarity scores to apply semantic expansion on tweet vectors.
The idea of semantic expansion is similar to the studies in [9] and [16]. In this work,
we develop specialized methods for evaluating the numerical values. The expansion
process is as follows:

1. Given a tweet ti and its tweet vector with k terms [ti
1, ti

2, ...t
i
k] with corresponding

TF-IDF weights [wi
1,wi

2, ...w
i
k],

2. For each ti
x in the tweet vector,

a. Search for its semantically related terms. Let ti
x be associated with the three

terms ta, tb, tc with similarity scores sa, sb, and sc

b. Find the products wi
xsa, wi

xsb, and wi
xsc as expanded TF-IDF values

c. If ta does not exist in the tweet vector or if its TF-IDF value in the tweet
vector is less than the expanded TF-IDF value, namely wi

xsa, then insert ta to
the tweet vector with its expanded TF-IDF value. Otherwise, simply ignore
it. That means if a term already exists in the tweet with a high TF-IDF value,
then it is not changed by the semantic expansion process. Do this step for tb
and tc as well.

Such an expansion usually results in tweet vectors with much higher dimensions
than the original ones. The effect of this may be larger clusters with more similar
tweets, or larger clusters with junk tweets. Therefore it is important to identify correct
term similarities with correct similarity scores. As elaborated in the following section,
application of such a semantic expansion has several advantages.

4 Evaluation and Results

Our evaluations focus on two core functions implemented in our enhanced event
detection method, namely the success of identified term similarities and the qual-
ity of detected events. Our 3-week test dataset is composed of about five million
tweets posted between the 4th and 25th of September 2012 with Turkish content in
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Turkey. We adopt daily processing of tweets, i.e., tweets collected during one day are
processed at 7am in the following morning. The results are evaluated in accordance
with this regular daily processing, presented for each day covered by our test dataset.

4.1 Evaluation of Term Similarity Analysis

Before presenting the similarity analysis, we present some figures to clarify the
statistical value of our evaluation. The average number of tweets per day, collected
during the generation of our test dataset is 225,060. On average, 140 K distinct terms
are used in Twitter every day, with 518 of them deemed as having high frequency by
our definition (>300). It means that we compare about 518 terms on average every
day for their semantic associations.

For evaluating the success of a semantic relationship extraction method, it is pos-
sible to make use of word similarity questions in a language exam such as TOEFL
[19, 20]. Comparing the results of the algorithm with the answer sheet of the exam
is an acceptable method. However, terms written in Twitter are hardly found in a
dictionary due to the variances in writing conventions and spelling mistakes. More-
over, ambiguous similarities can exist depending on the context, as we have explained
in an example where the term goal must be related to the term match if there is a
soccer game that day. Discovery of such context-based associations may not always
be captured by an automatic language test.

In order to set a golden standard for evaluation, we prepared a questionnaire
per day that is composed of 120 questions for each day (2,520 questions in total).
They were five-choice questions, where for a given term, users were asked to mark
the most relevant term among the choices. Choices for each question are populated
from the results of three similarity measurement algorithms (the ones with highest
similarity scores) and two randomly selected terms from the corpus. If similarity
estimations of two algorithms coincide, we write that term only once in the choices,
and another random term is inserted to present five distinct choices for the question.
Questions are answered by seven users who are native Turkish speakers and mostly
computer science graduates. We explained them briefly our relevance criteria, such as
spelling mistakes (günaydın ∼ gunaydin), abbreviations (Barca ∼ Barcelona), and
strong association of domains (sleep ∼ dream). Users could also select “none”, if they
think there is no related term among the choices or if the term in the question may not
have a matching term (e.g. it can be a number, a symbol, or some meaningless word
which makes it impossible to decide similarity). Therefore, unanswered questions
could mean that either it is inapplicable, or none of the similarity algorithms could
successfully find a similar term. We compare the similarity algorithms only on the
answered questions.

While grading the success rates of the algorithms, we count the number of correctly
estimated similar terms. If the term with the highest similarity score found by an
algorithm is the same as the term marked by the user, it is accepted as a correctly
answered question by that algorithm. There may be cases where all three algorithms
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Table 1 Offline term
similarity results

Day Marked questions Accuracy ratio
FO (%) COS (%) CBL (%)

1 63 62 25 25
2 53 38 36 30
3 73 44 36 34
4 66 35 50 15
5 68 44 28 21
6 68 49 32 25
7 73 52 27 29
8 84 63 19 29
9 77 38 36 27
10 62 61 31 21
11 58 48 41 21
12 67 49 30 6
13 71 56 34 14
14 69 54 33 23
15 70 54 29 24
16 90 47 33 17
17 82 41 30 22
18 101 42 30 17
19 97 48 31 16
20 65 43 32 18
21 58 48 31 16
Avg. 72 48 32 21

find the same correct result for a question. Then they all get their points for that
question. As a result, the ratio of the number of correct results of each algorithm to
the number of marked questions is used to evaluate the accuracy of the algorithms.
The results of term similarity evaluations are presented in Table 1. The column labeled
with “Marked questions” indicates the number of questions with a valid answer, i.e.,
the user did manage to select an answer among the choices. The percentages of
correct results for each algorithm are presented in the rest of the columns, where
the highest accuracy ratio for each question is highlighted. Results are presented for
each day in the test data set.

The number of answered questions shows that, users could find a relevant term
among the choices for more than half of the questions. Ignoring the luckily selected
random terms while generating the choices of the questions, this can be interpreted
as at least one algorithm finds a relevant term in the corpus at least half of the time.
According to this table, the first order relations are apparently closer to the users’
answers. Several examples of successfully detected first order relations are birth ∼
day, listen ∼ music, and read ∼ book. Obviously, given the first term, these can
be considered as the first mappings that come to mind even without any multiple
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choices. In other words, they are easier to identify. Second order relations are a
little harder for a person to see at first. Several examples of the correctly selected
second order term pairs are morning ∼ early, happy ∼ fine, and class ∼ school.
Therefore we believe the accuracy ratio of the second order associations should not be
underestimated. Between cosine distance and city-block distance, cosine similarity
makes more accurate guesses.

Although this table can give an idea about the power of co-occurrence based
similarity techniques, calculated similarity scores play an important role for the
event detection and expansion algorithm. The effect of similarity scores is better
observed in the evaluation of event detection.

4.2 Evaluation of Event Detection

In the Topic Detection and Tracking (TDT) domain, evaluation of event detection
algorithms is usually made either by precision-recall [23] or by false alarm-miss
rate analysis [3, 8]. In our work, we use the precision-recall metric for evaluation.
Moreover, we analyzed the event detection times and studied the refinement of the
generated event clusters. The comparison of the event detection algorithms mainly
focuses on the following three goals:

1. Number of event clusters and their tweets: In order to present a useful and readable
report to the users, it is preferable to generate more refined event clusters with as
many correctly clustered tweets as possible. The best case would be presenting
unique event clusters for each actual event in the real world, with explanatory
cluster summaries.

2. Accuracy of event clusters: Ideally, there should be no irrelevant tweet in an event
cluster, and an event cluster should cover as many relevant tweets as possible.
Therefore, our goal is to improve the accuracy of tweets in event clusters.

3. Time span of detected events: Our expectation is that the utilization of hidden
semantic relations among terms should result in earlier generation of event clus-
ters with longer duration. Especially longer duration of larger clusters shift their
finalization to a later time. Therefore, they can attract unique tweets that would
normally start new clusters on their own.

Our event detection evaluation is based on human annotated tweets. For each day
in our test data set, we run four event detection algorithms, where our baseline is
the one with no semantic expansion (BA). The results are compared with the other
algorithms using different expansion methods, namely first order (FO), second order
with cosine (COS) and city-block distances (CBL). An event detection algorithm
may find several event clusters about an event. We consider them all as belonging to
the same event, which means that an event may be represented by one or more event
clusters in an algorithm. While matching an event cluster with an event, we consider
its cluster summary. We would like to remind that the cluster summaries are in fact
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the top three terms in the event cluster with the highest TF-IDF values. In order to
assign an event cluster to an event, its summary must be understandable and clearly
mention the corresponding event.

After the event clusters are obtained, we select one event per day as our
“target event” for that day. While determining a target event cluster, we utilized other
resources in Internet such as TV rating results or newspapers in order to determine
the most popular and important event for each day. On the other hand, we observed
that people are posting tweets that are not newsworthy, such as “good morning” or
“good night” tweets. It is possible to apply a classification algorithm in order to filter
out such event clusters [4, 22]. We simply let them survive as event clusters but do
not consider them as target events in our evaluations.

Although our event detection algorithm is executed on a daily basis at 7 am,
events do not have to last one day. According to our observations, almost no event
lasts longer than two days though. In fact, 2-day events are observed only when the
event happens at midnight. Since we process tweets at 7am, an event that happened
around midnight is usually detected on both days. For example, the first target event
in our test data set is the tragic loss of a young soccer player, Ediz Bahtiyaroglu,
who had played in several major Turkish soccer clubs and passed away at the age of
26 from heart attack. As soon as this event is heard at night, people posted tweets to
express their sorrow and condolences. These tweets continued during the day, which
resulted in detection of this event the next day as well. Apart from this, other target
events that we marked for evaluation can be classified as soccer games, anniversaries
of historical events, disasters, criminal incidents, popular TV shows or news about
celebrities, which are mentioned by thousands of people in Turkey.

We first present the number of event clusters, number of annotated tweets, and
the results of our precision-recall analysis in Table 2 for each day in our test data.
The table can be interpreted as follows. The first column labeled as “Day” displays
the index of the day between 4th and 25th of September 2012 (e.g. Day-1 is the
4th of September). The row “avg” is the average of all days for the feature in the
corresponding column. The second column, namely “Annt.”, represents the number
of tweets that are manually annotated by human annotators as belonging to the
target event of that day. By “annotation”, we mean manually marking a tweet to be
related to an event or not. We adopt the following method to generate a tweet set
to annotate. Given a day, each algorithm that we implement generates their event
clusters for the target event for that day. Assume the set of tweets grouped by each of
these algorithms are TBA, TFO, TCOS , and TCBL . Then the tweets that we manually
annotate are the union of these tweet sets, i.e., TBA ∪ TFO ∪ TCOS ∪ TCBL . Consider
Day-20 for example. The target event of that day was the game of a popular sports
club in Turkey. Each algorithm detected multiple event clusters for that target event,
and the number of tweets clustered in these event clusters were 574, 427, 674, and
519 respectively for each algorithm. As shown in the table, the union of these tweet
sets is composed of 862 tweets, which gives the tweets to be annotated for that day’s
target event.

The third column group that is labeled as “Target Event Cluster Ratio” displays
the number of target event clusters and the number of event clusters detected for that
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day. For example, on Day-20, 15 event clusters were identified as outliers by the
BA algorithm. Among these 15 event clusters, we found four of them to be related
with the target event, namely the soccer game. These numbers give an idea about
the information contained in event clusters if considered together with the coverage.
The lowest number of event clusters with the highest coverage ratio leads to more
understandable event cluster summaries for people. Otherwise, if too many event
clusters are generated with low coverage, this would mean scattered information
with poor comprehensibility.

Rest of the columns in the table present the precision, recall, and F-score values
for each day for all clustering algorithms that we implement. If an algorithm finds
no event cluster for a target event, then its precision-recall analysis becomes inap-
plicable, denoted as NaN. This accuracy analysis can be interpreted as follows: The
basis algorithm usually results in better precision, 0.90 on average. This is because
we apply no semantic expansion to the tweets, and there is less chance for an irrele-
vant tweet to be included in a cluster. On the other hand, its coverage is not as large
as the algorithms using semantic expansion. Whether it is the first or second order
relationship, semantic expansion techniques usually cover more tweets than the basis
algorithm. The overall accuracy is calculated by using the F-score equation given in
(4). According to these results, second order associations provide higher accuracies.

Fscore = 2 × precision × recall

precision + recall
(4)

In addition to these analyses, another criterion for better event detection is the
time of detection. It is preferable to hear about an event as soon as possible. As an
example, we present the active times of event clusters of Day-20 in Fig. 3. An active
event cluster is depicted in tiles, with its beginning and ending times corresponding
to the earliest and latest tweet times, respectively. The time window covered in each
algorithm is highlighted in gray. The first group of rows is the target event clusters
found by the BA algorithm. As given in Fig. 3, the BA algorithm detected four event
clusters for the soccer game that day. Therefore the figure displays four lines for BA
with the clusters’ active time windows. According to this algorithm, the first tweet
about the game was posted at around 14:00. In other words, the track of this event
was first observed in the afternoon and lasted for about 2 h. Then, no similar tweet
has been observed until the evening. It can also be said, the content of tweets after
16:00 were not very related to the first event cluster. Then at about 20:30, the first
goal was scored in the game, which cause the generation of two event clusters at that
time. The name of the scoring player was Burak Yılmaz, which was also spelled as
Burak Yilmaz in some tweets (the letter i replacing ı). We consider this as the most
important reason for two event clusters about the same event. The last event cluster
generated by BA begins at 10 pm and lasts for three hours. The summary of this event
cluster is about the celebrations after the end of the match.

In the first three algorithms, the event detection times are almost the same. On the
other hand, the duration of the first event cluster is longer for FO and COS algorithms.
This is considered to be the result of successfully identified semantic associations.
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Fig. 3 Timespan of event clusters on day-20

Interestingly in the COS algorithm, there is only one event cluster detected at 20:30.
Apparently the algorithm found a high similarity score between the terms Yılmaz
and Yilmaz, which results in a single event cluster at that time. This observation
highlights one of the major objectives of our research, i.e., elimination of duplicate
event clusters. Another objective was earlier detection of events. In this specific
case on Day-20, this is achieved by using the CBL algorithm. The first event cluster
generated for this event starts at about 12:00, which is 2 h earlier than the earliest
event detection times of other algorithms.

5 Related Work

Event Detection, also known as Event Detection and Tracking, aims to identify unique
events by processing textual materials such as newspapers, blogs, and recently, the
social media [1]. Especially after the foundation of Twitter in 2006 and with its
millions of users around the world today, there have been many studies that uti-
lize peoples’ postings for information retrieval purposes [11, 12]. An implemen-
tation of real-time event detection from Twitter is described in [22]. In that work,
Sankaranarayanan and coworkers follow tweets of handpicked users from different
parts of the world; cluster them for event detection, and assign a geographic location
to the event in order to display it on a map. In a similar study, Sakaki and coworkers
focus on earthquakes in Japan [21]. They detect earthquakes and make estimations
about their locations only by following tweets in Twitter. There are also studies for
improving first story detection algorithms on Twitter, i.e., identifying the first tweet
of a new event [17]. An interesting use of event detection in Twitter is presented in
[15]. In that work, Park and coworkers aim to detect important events related to a
baseball game, and display annotated information to people that watch that game
on TV. This can be considered to be a similar case of our example in Fig. 3. By
detecting separate events for scoring a goal, or making a homerun as stated in [15],
it is possible to retrieve who made the homerun at what time and where.
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Using the semantics in word co-occurrences has been exploited in several studies
on event detection. In [23], authors implement a solution by integrating burst detec-
tion and co-occurrence methods. In that solution, they track a list of terms (entities
which may be taken from a reference work like Wikipedia) in query logs or tweet
data in order to detect extraordinary increases in their appearances. They argue that
if two entities show unusually high frequencies (bursts) in the same time-window,
they possibly belong to the same event. In order to measure their relevance and group
in the same event, content-rich news articles in the corresponding time window are
processed and first order associations among terms are analyzed. A similar approach
is used in [24]. The intuition is that documents about an event should contain similar
terms. By generating a graph with terms as nodes, and co-occurrences as edges, they
identify highly connected sub-graphs as event clusters.

Apart from event detection purposes, similarity analysis on textual materials can
be useful for recommendation and applying intelligent expansion to queries. In [27],
authors study the spatio-temporal components of tweets and identify associations
among trending topics provided by Twitter API. They generate vectors considering
their spatial and temporal aspects, which are then pairwise compared with Euclidean
distance to find the most similar topic pairs in Twitter. In a more recent work, methods
in [27] are extended with the similarities of topic burst patterns in order to take event-
based relationships into account [26]. The intuition is that two similar topics should
have similar bursting periods as well as spatial and temporal frequency similarities.

A method for exploring associations among hashtags in Twitter is presented
in [18]. The proposed model aims to make more complex temporal search requests
in Twitter, such as asking for hashtags with an increasing co-occurrence with a given
hashtag in a desired period of time. Another example of analyzing term associations
is given in [10], where users are guided while giving a title for the product they want
to sell in an online store. Text entered by a seller is compared with previous queries
of buyers, and a better title for the product is recommended to the seller.

In our preliminary work, we presented the basics of the techniques that we elabo-
rate in this chapter, executed on a very limited data set of three days [13, 14]. These
techniques have been combined and extended for context-based daily event detection,
tested on a much larger data set annotated by several users. Moreover, detailed evalu-
ations focus on both term similarity analysis and event detection methods, providing
a more reliable and clear overview of results.

6 Conclusion

In this work, we aim to extract associations among terms in Twitter by using their
co-occurrences and use them in a semantic expansion process on tweets in order
to detect events with higher accuracy, with larger time span, and in a user-friendly
form. We improve our previous work by using similarity scores instead of thresholds
and constant multipliers for semantic expansion. Moreover, we identify context-
dependent associations by evaluating terms in specific time windows. Daily event
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clusters are determined by making an outlier analysis. Although our methods are
applied on tweets in each day, they can be adapted to work in different time gran-
ularities or in an online system, which we are planning to implement as a future
work. Moreover, we would like to experiment periodically merging and/or dividing
event clusters in the course of event detection in order to improve the resulting event
clusters.

Our methods are tested on a set of around five million tweets collected in three
weeks with Turkish content. We implemented three different semantic similarity
metrics and evaluated them on this test data set. Results of these metrics are fur-
ther analyzed in the evaluations of our event detection methods. Improvements are
observed in event detection in several aspects, especially when second order associa-
tions are used. As the methods we implement do not require a dictionary or thesaurus,
they can be used for other languages as well.
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Fast Exact and Approximate Computation
of Betweenness Centrality in Social Networks

Miriam Baglioni, Filippo Geraci, Marco Pellegrini and Ernesto Lastres

Abstract Social networks have demonstrated in the last few years to be a powerful
and flexible concept useful to represent and analyze data emerging from social inter-
actions and social activities. The study of these networks can thus provide a deeper
understanding of many emergent global phenomena. The amount of data available
in the form of social networks is growing by the day. This poses many computa-
tional challenging problems for their analysis. In fact many analysis tools suitable
to analyze small to medium sized networks are inefficient for large social networks.
The computation of the betweenness centrality index (BC) is a well established
method for network data analysis and it is also important as subroutine in more
advanced algorithms, such as the Girvan-Newman method for graph partitioning. In
this chapter we present a novel approach for the computation of the betweenness
centrality, which speeds up considerably Brandes’ algorithm (the current state of the
art) in the context of social networks. Our approach exploits the natural sparsity of
the data to algebraically (and efficiently) determine the betweenness of those nodes
forming trees (tree-nodes) in the social network. Moreover, for the residual network,
which is often of much smaller size, we modify directly the Brandes’ algorithm so
that we can remove the nodes already processed and perform the computation of
the shortest paths only for the residual nodes. We also give a fast sampling-based
algorithm that computes an approximation of the betweenness centrality values of
the residual network while returns the exact value for the tree-nodes. This algorithm
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improves in speed and precision over current state of the art approximation methods.
Tests conducted on a sample of publicly available large networks from the Stanford
repository show that, for the exact algorithm, speed improvements of a factor ranging
between 2 and 5 are possible on several such graphs, when the sparsity, measured
by the ratio of tree-nodes to the total number of nodes, is in a medium range (30–
50 %). For some large networks from the Stanford repository and for a sample of
social networks provided by Sistemi Territoriali with high sparsity (80 % and above)
tests show that our algorithm, named SPVB (for Shortest Path Vertex Betweenness),
consistently runs between one and two orders of magnitude faster than the current
state of the art exact algorithm.

1 Introduction

Social networks have demonstrated in the last few years to be a powerful and flexible
concept useful to represent and analyze data emerging from social interactions and
social activities. The study of these networks can thus provide a deeper understand-
ing of many emergent social global phenomena. Moreover such analytic tools and
concepts have been successfully adopted in a vast range of applications including
communications, marketing and bioinformatics.

According to the standard paradigm of social networks, each agent/item is asso-
ciated to a node of the network and the edges between pairs of nodes represent the
relationship between them. Social networks are naturally represented as graphs, con-
sequently graph theory and efficient graph algorithms play an important role in social
network analysis. Among the analytic tools, centrality indices are often used to score
(and rank) the nodes (or the edges) of the network to reflect their centrality position.
The intuitive idea behind this class of indices is that a more central node is likely to
be involved in many processes of the network, thus its importance increases.

Depending on what we mean with the word “important", different definitions of
centrality are possible [1]. For example: degree centrality highlights nodes with a
higher number of connections, closeness centrality highlights nodes easily reachable
from other nodes, eigenvector centrality highlights nodes connected with authorita-
tive nodes and betweenness centrality (BC) highlights nodes which are more likely to
be information hubs. A complete compendium of many centrality definitions, prob-
lems and measures can be found in [2]. Vertex betweenness [3, 4] is one of the most
broadly used centrality indices. The (vertex) betweenness of a vertex v is defined as
the sum, for each pair of nodes (s, t) in the network, of the ratio between the number
of shortest (aka geodesic) paths from s to t passing through v and the total number of
shortest paths from s to t . The main assumption of this index is that the information
flows in the network following shortest paths. Despite the fact that this assumption
could be considered restrictive, betweenness finds a vast range of applications (e.g.
in computing lethality for biological networks [5] and in bibliometry [6]).

A very similar concept, the edge betweenness, is defined in [3] where for an
edge e, the sum is computed for each pair of nodes (s, t) of the ratio among the
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number of shortest paths from s to t through the edge e over the number of all
the shortest paths from s to t . Edge betweenness has a prominent application as a
subroutine in the algorithm of Newman and Girvan [7] for community detection of
complex networks. In this chapter, for sake of clarity, we discuss only the problem
of computing efficiently vertex betweenness, however with minor modifications our
approach applies to edge betweenness as well (see [8]). The computation of the
betweenness centrality index is demanding because, for a given nodev, all the shortest
paths between each couple of nodes passing through v have to be counted (even if it
is not necessary to explicitly enumerate them). This means that, in general, for fairly
large networks the computation of this index based on a direct application of its
definition becomes impractical, having complexity O(n3), for a graph with n nodes.
Since the last decade the number and size of social networks have been consistently
increasing over time, efficient algorithms have emerged to cope with this trend.

The fastest exact algorithm to date is due to Brandes [9]. It requires O(n+m) space
and O(nm) time where n is the number of nodes and m the number of edges in the
graph. For sparse graphs, where m = O(n), Brandes’ method is a huge improvement
over the naive direct method, however it is still quadratic in n, regardless of any other
special feature the input graph may have.

In this chapter we propose an evolution of the Brandes’ algorithm, named SPVB
(for Shortest Path Vertex Betweenness), which exploits some widespread topologi-
cal characteristic of social networks to speed up the computation of the betweenness
centrality index. We show that for nodes in the graph that belong to certain tree struc-
tures the beteenness value can be computed by a straightforward counting argument.
The advantage of our approach is two-fold: on the one hand we do not need to count
shortest paths for the subset of network nodes that have the required tree-structure,
and, on the other hand, for the residual nodes we compute the shortest paths only
between nodes belonging to the residual of the original graph, thus more efficiently.
Our algorithm performance strictly depends on the number of nodes for which we
can algebraically derive the betweenness. Therefore it works well in practice for
social networks since we observed that such tree structures are quite frequent in the
context of social networks where the number of edges of the graph is of the same
order of magnitude of the number of nodes. Note, however, that SPVB still reduces
to the Brandes’ algorithm in a strict worst case scenario.

We have tested graphs with up to 500 K nodes, which is a fair size for many
applications. However in some applications (e.g. web graphs, telephone calls graphs)
we face much larger graphs in the regions of millions of nodes, and we might want to
trade off speed and precision in computing the Betweenness Centrality (BC). In this
case approximating betweenness may be the strategy of choice. Thus we combine
our algebraic computation with the sampling approach in [10] so to gain the benefits
of both (see Sect. 6), obtaining the algorithm ASPVB (for Approximate Shortest
Path Vertex Betweenness).

We tested our algorithm on a set of 18 social graphs of Sistemi Territoriali which
is an ICT company with headquarters in Italy, specializing in Business Intelligence
applications. These graphs coming from real applications are very large and very
sparse, a property SPVB exploits to gain in efficiency. Compared to Brandes’ method
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we can gain orders of magnitudes (between one and two) in terms of computation
time. We also tested SPVB on a set of 16 social graphs from the Stanford Large
Network Dataset Collection. We obtained marginal improvements on seven cases,
speed ups by a factor from 2 to 6 in six cases, and speedups by orders of magnitude
in two cases. At the best of our knowledge this approach is novel.

The chapter is organized as follows. Section 2 gives a brief survey of related work,
while Sect. 3 gives key insights from Brandes’ methods. In Sect. 4 we describe our
method in detail for exact computations. In Sect. 5 we give the experimental results
for exact computations. In Sect. 6 we give the approximation algorithm and the
corresponding experimental results.

2 Related work

Let G = (V, E) be the graph associated to a social network, we denote as: σst

the number of shortest paths starting from the node s and ending in t , σst (v) the
cardinality of the subset of geodesic paths from s to t passing through v. Betweenness
centrality [4] measures, for a given vertex v, the fraction of all the possible shortest
paths between pairs of nodes which pass through v. Formally betweenness centrality
B(v) is defined as:

B(v) =
∑

s ≤=v ≤=t∗V

σst (v)

σst

The practical application of centrality indices depends also on the scalability of
the algorithm designed to compute them. Early exact algorithms have a complexity
in the order of O(n3) [11], where n is the number of nodes. Thus the computation
of betweenness by this direct approach becomes impractical for networks with just
a few thousands nodes.

In 2001 Brandes [9] developed the asymptotically fastest exact algorithm to date,
that exploits a recursive formula for computing partial betweenness indices effi-
ciently. It requires O(n + m) space and O(nm) time where n is the number of nodes
and m the number of edges in the graph. For sparse graphs, where m = O(n),
Brandes’ method is a huge improvement over the naive direct method, allowing to
tackle graphs with tens of thousands of nodes.

Given the importance of the index, and the increasing size of networks to be
analyzed, several strategies for scaling up the computation have been pursued. Algo-
rithms for parallel models of computations have been developed (see e.g. [12–14]).

A second strategy is to resort to approximations of the betweenness [15]. In [10]
the authors describe an approximation algorithm based on adaptive sampling which
reduces the number of shortest paths computations for vertices with high centrality.
In [16] the authors present a framework that generalizes the Brandes’ approach to
approximate betweenness. In [17] the authors propose a definition of betweenness
which takes into account paths up to a fixed length k.
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Another important complexity reduction strategy was presented in [18] where ego-
networks are used to approximate betweenness. A ego-network is a graph composed
by a node, called ego, and by all the nodes, alters, connected to the ego. Thus if two
nodes are not directly connected, there is only a possible alternative path which passes
through the ego node. The authors have empirically shown over random generated
networks that the betweenness of a node v is strongly correlated to that of the ego
network associated to v.

In order to extend the use of betweenness centrality to a wider range of applica-
tions, many variants of this index were proposed in the literature. For example in [19]
the betweenness definition is applied to dynamic graphs, while in [20] geodesic paths
are replaced with random walks. Modularity properties of social networks are used
in [21] to define a notion of Community Inbetweenness. In experiments this measure
is shown to weakly correlate with standard BC for networks of high modularity.

In graphs that change dynamically or are built incrementally (e.g. in a stream-
ing model) algorithms have been proposed that dynamically update the between-
ness by detecting efficiently those nodes whose BC is affected by the graph update
(see [22, 23]).

In this chapter we propose to use specific local structures abundant in many types
of social graphs in order to speed up the exact computation of the betweenness index
of each node by an adaptation of the exact algorithm due to Brandes.

An approach that exploits special structures in social graphs is advocated also a
chapter by Puzis et al. [24] that appeared just after the preliminary conference version
of this work [25]. In Puzis et al. [24] develop two algorithms for exact BC compu-
tation. The first algorithm is advantageous when many nodes that are structurally
equivalent, that is when they have the same set of neighbors. In this case equivalent
nodes can be contracted into a single node and a quotient graph is generated. The
original Brandes’ procedure is adapted to work on the quotient graph, while com-
puting the BC relative to the original graph. Experiments in [24] show a speed up
from 2 to 3 in several Autonomous Systems (AS) graphs, and from 2 to 6 in DBLP
co-authors graphs. The second algorithm generates the bi-connected components of
the input graph, computes partial BC independently for each bi-connected, and then
combines the results of the single components to produce the BC with respect to the
original graph. Combining the two algorithms it is shown a speed from 2 to 7 in the
set of AS-graphs. The edges of the tree-like structures we exploit are bi-connected
components of the input graph thus, our trees are a special case of the components
considered in [24], however the code we propose are much simpler than the algorithm
in [24], while attaining comparable speed ups in the tested as-graphs.

3 Background

In this section we give some key features of Brandes’ algorithm, since it gives a
background to our approach. This method is based on an accumulation technique
where the betweenness of a node can be computed as the sum of the contributions of
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all the shortest paths starting from each node of the graph taken in turns. Given three
nodes s, t, v ∗ V , Brandes introduces the notion of pair-dependency of s and t on v

as the fraction of all the shortest paths from s to t through v over those from s to t :

δst (v) = σst (v)

σst

The betweenness centrality of the node v is obtained as the sum of the pair-
dependency of each pair of nodes on v. To eliminate the direct computation of all
the sums, Brandes introduces the dependency of a vertex s on v as:

δs•(v) =
∑
t∗V

δst (v) (1)

Thus the betweenness centrality B, of node v is given by summing the dependencies
from all source nodes:

B(v) =
∑
s∗V

δs•(v)

Observation 1 If a node v is a predecessor of w in a shortest path starting in s,
then v is a predecessor also in any other shortest path starting from s and passing
through w [9].

Arguing form the observation 1, Eq. 1 can be rewritten as a recursive formula:

δs•(v) =
∑

w:v∗Ps (w)

σsv

σsw
(1 + δs•(w)), (2)

where Ps(w) is the set of direct predecessors of a certain node w in the shortest paths
from s to w, encoded in a BFS (Breadth First Search) rooted DAG (Directed Acyclic
Graph) form node s.

4 Our Algorithm: SPVB

Our algorithm algebraically computes the betweenness of nodes belonging to trees
in the network obtained by iteratively removing nodes of degree 1. Afterwards we
apply a modification of Brandes’ algorithm [9] to compute the betweenness of the
nodes in the residual graph.

A first trivial observation is that nodes with a single neighbor can be only shortest
paths endpoints, thus their betweenness is equal to zero. Thus we would like to remove
these nodes from the graph. However, these nodes by their presence influence the
betweenness of their (unique) neighbors. In fact, such neighbor v works as a bridge
to connect the node to the rest of the graph and all the shortest paths to (from) this
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node pass through that unique neighbor. Our procedure computes the betweenness
of a node v as the sum of the contribution of all nodes for which v is their unique
direct neighbor.

Following this strategy, once the contribution of the nodes with degree 1 has been
considered in the computation of the betweenness of their neighbors, they provide
no more information, and can be virtually removed from the graph. The removal of
the nodes with degree 1 from the graph, can cause that the degree of some other node
becomes 1. Thus the previous considerations can be repeated on a new set of degree
one nodes. When we iterate, however, we need also to record the number of nodes
connected to each of the degree one nodes that were removed from the graph. This
recursive procedure allows us to algebraically compute the betweenness of trees in
the graph.

4.1 Algorithm Formalization and Description

We will assume the input G to be connected, in order to simplify the argument.
If G is not connected, the argument can be repeated for each connected component
separately. Let F be the set of nodes in G = (V, E) that can be removed by iteratively
delete nodes of degree 1, and their adjacent edge. We call the nodes in F the tree-
nodes. Let G ∈ = (V ∈, E ∈) be the residual graph for the residuals set of node, with
V ∈ = V \F . The set F induces a forest in G, moreover the root of each tree Ti of the
forest is adjacent to a unique vertex in V ∈. Each node in F is a root to a sub-tree. Let
RG(w, F) be the set of nodes of trees in F having w as their root-neighbor in G ∈.
The formula for the betweenness of node v ∗ V involves a summation over pairs
of nodes s, t ∗ V . Thus we can split this summation into sub-summations involving
different types of nodes, and provide different algorithms and formulae for each case.

Tree-nodes. Let u be a node in F , and let v1, . . . , vk be the children of u in the tree
Tu , and let Tvi , for i = 1, . . . k, be the subtrees rooted at vi . When s and t are in the
same subtree Tvi , then there is only one shortest path connecting them completely
in Tvi and this path does not contain u, thus the contribution to B(u) is null. When s
is in some tree Tvi , and t is in the complement (V \{u})\Tvi , then each shortest path
connecting them will contain u. Thus the contribution to the betweenness of u is given
by the number of such pairs. We will compute such number of pairs incrementally
interleaved with the computation of the set F by peeling away nodes of degree 1 from
the graph. When at iteration j , we peel away node vi we have recursively computed
the value of |Tvi |, and also for the node u the value |RG(u, Fj )| which is the sum
of the sizes of trees Tvh , for h ∗ [1, . . . k], i ≤= k already peeled away in previous
iterations. The number of new pairs to be added to B(u) is:

|Tvi | × (|(V \{u})\Tvi | − |RG(u, Fj )|).
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G’

v1 v2 v3 vk

u

s t s1 t1 s2

....
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t2
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Fig. 1 Illustration of the tree-nodes structure and possible s–t paths involving tree nodes

This ensures that each pair (s,t) is counted only once. Finally observe that when
both s and t are in V ∈ no shortest path between them will contain u therefore their
contribution to B(u) is zero. Since the roles of s and t are symmetrical in the formula
we need to multiply the final result by 2 in order to cont all pairs (s, t) correctly. The
pseudocode for this procedure is shown in Sect. 4.2. See Fig. 1 for an illustration.

Residual graph nodes. Let u be a node in V ∈, we will see how to modify Brandes’
algorithm so that executing the modified version on the residual graph G ∈ (thus at a
reduced computational cost), but actually computing the betweenness of the nodes
in u ∗ V ∈ relative to the initial graph G. Brandes algorithm’s inner loop works by
computing from a fixed node s a BFS search DAG in the input graph, which is a
rooted DAG (rooted at s), and by applying a structural induction from the sinks of
the DAG towards the root as in formula (2).

Subcase 1.If a node x ∗ V ∈ has R(x, F) ≤= ∩ the tree formed by R(x, F) and x
would be part of the BFS DAG in G having its source in V ∈, however, since we run
the algorithm on the reduced graph G ∈, we need to account for the contribution of the
trimmed trees to the structural recursive formula (2). The correction term for δs•(x)
is equal to |RG(x, F)| since each shortest path from s to y ∗ RG(x, F) must contain
x . Thus we obtain the new formula:

δs•(u) =
∑

w:u∗Ps (w)

σsu

σsw
(1 + δs•(w) + |RG(w, F)|))
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Note that in the development of the above formula R(s, F) does not appear. Since
no shortest path from s ∗ V ∈ to any t ∗ R(s, F) may include a node u ∗ V ∈, this
subtree has zero contribution to δs•(u).

Subcase 2. Consider now a node x ∗ R(s, F) as source for the BFS. In the
computation of δx•(u), for u ∗ V ∈ each shortest path from x to t ∗ R(s, F) cannot
contain u thus gives zero contribution. For t ∗ V \R(s, F), such shortest path would
contain a shortest path from s, thus we have δx•(u) = δs•(u) for all x ∗ R(s, F). In
order to account for these contributions to B(u) it suffices to multiply the contribution
δs• by (1 + |R(s, F)|), obtaining:

B(u) = B(u) + δs•(u) → (1 + RG(s, F)).

4.2 Algorithm Pseudo-Code

In the following Algorithm 1 we show the pseudo-code for SPVB (Shortest-paths ver-
tex betweenness) preprocessing, handling degree 1 nodes. For simplicity we assume
G to be connected. For a disconnected graph G, the algorithm should be applied to
each connected component separately. For a node v of degree 1 at a certain stage
of the iteration, the vector p records the number of nodes in a subtree rooted at v
(excluding the root). For any other node u, vector p records the sum of the sizes of
subtrees rooted at children of that node that have been deleted in previous iterations.

SPVB:
Data: undirected unweighted graph G=(V,E)
Result: the graph’s node betweenness B[v] for all v ∗ V
B[v] = 0, v ∗ V ; p[v] = 0, v ∗ V ; i = 0;
Gi = G; deg1 = {v ∗ V i |deg(v) = 1};
repeat

v ⊆ deg1;
u ∗ V i .(v, u) ∗ Ei ;
B[u] = B[u] + 2(n − p[v] − p[u] − 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i + +;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u ∧ deg1 ; /*deg(u) is computed on the new graph Gi

*/
until deg1 = ∩;
if |V i | > 1 then

Brandes_modified(Gi , p, B)
end

Algorithm 1: Shortest-paths vertex betweenness
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The modification of Brandes’ algorithm does not change its asymptotic complexity,
which however must be evaluated on the residual graph with n∈ = |V | − |F | nodes
and m∈ = |E | − |F | edges, thus with a time complexity O(n∈m∈). The complexity of
the first part of SPVB is constant for each node in F , except for the operations needed
to dynamically modify the graph Gi in Algorithm 1 and maintain the set of degree-
1 nodes. With standard dynamic dictionary data structure we have an overhead of
O(log n) for each update operation.

5 Experiments

In order to evaluate the performance of our algorithm we run a set of experiments
using both a collection of 18 graphs provided by Sistemi Territoriali (SisTer), which is
an Italian ICT company involved in the field of data analysis for Business Intelligence
and a collection of graphs downloaded from the Stanford Large Network Dataset
Collection.1 Since both SPVB and Brandes’ compute the exact value of betweenness,
we tested the correctness of the implementation by comparing the two output vectors.
Here we report only on the running time of the two algorithms. For our experiments
we used a standard PC endowed with a 2.5 GHz Intel Core 2, 8 Gb of RAM and
Linux 2.6.37 operating system. The two algorithms were implemented in Java. In
order to avoid possible biases in the running time evaluation due to the particular CPU
architecture, we decided to implement the algorithm as a mono-processor sequential
program.

SisTer Collection. In Table 1 we report the graph id, the number of nodes and edges
in the SisTer collection and the percentage of tree-nodes in each graph. Note that a
very large percentage of the nodes can be dealt with algebraically by SPVB and the
residual graph, on which we ran a modified Brandes’, is quite small relative to the
original size.

Figure 2 compares the running time of our and Brandes’ algorithms. On the
x-axis we report the graph id, while on the y-axis we report in logarithmic scale the
running time expressed in seconds. From Fig. 2 it is possible to observe that SPVB
is always more than one order of magnitude faster than the procedure of Brandes,
sometimes even two orders of magnitude faster. For graph G1, with 233,377 nodes,
for example, we were able to finish the computation within 1 h while Brandes’ needs
approximately two days. For graph G6, with 169,059 nodes, we could complete in
about 1 min, compared to two days for Brandes. A notable result is shown also
for graph G18 which is our biggest in this collection. In this case SPVB required
approximately 2, 4 days to finish while Brandes’ could not terminate in one month
(data not shown).

Stanford Collection. We have selected a subset of graphs from the Stanford collec-
tion, using the following criteria. First the graphs have been ranked by number of

1 http://snap.stanford.edu/data/

http://snap.stanford.edu/data/
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Brandes_modified:
Data: directed graph G = (V, E),
for each v:
the number of tree-nodes connected to v: p[v],
the partial betweenness computed for v: B[v]
Result: the graph’s node betweenness B[v]
for s ∗ V do

S = empty stack;
P[w]= empty list,w ∗ V ;
σ[t] = 0, t ∗ V ;σ[s] = 1;
d[t] = −1, t ∗ V i ; d[s] =0;
Q= empty queue;
enqueue s ∧ Q;
while Q not empty do

dequeue v ⊆ Q;
push v ∧ S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w ∧ Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v ∧ P[w];

end
end

end
δ[v] = 0, v ∗ V ;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w⊆ S;
for v ∗ P[w] do

δ[v] = δ[v] + σ[v]
σ[w] (δ[w] + p[w] + 1);

end
if w ≤= s then

B[w] = B[w] + δ[w] × (p[s] + 1)
end

end
end

Algorithm 2: Modified Brandes’ algorithm

nodes and we have selected representative graphs from as many categories as possi-
ble (Social networks, Communication Networks, Citation networks, Collaboration
networks, Web graphs, Internet peer-to-peer networks, and Autonomous systems
graphs). We have excluded graphs that because of their size would take more than
one week of computing time. In Table 2 we have listed these graphs, their size in
number of nodes and edges, and the percentage of tree-nodes, which is the most
important parameter influencing the performance of our method. Each input graph
was considered undirected. We decided a cut-off time of seven days. In order to
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Table 1 SisTer Collection.
For each graph it is listed the
number of nodes, the number
of edges, and the percentage
of tree-nodes. The graphs
need not be connected

Graph ID Node # Edge # Tree nodes (%)

G1 233,377 238,741 86
G2 14,991 14,990 99
G3 15,044 15,101 85
G4 16,723 16,760 84
G5 16,732 16,769 84
G6 169,059 169,080 99
G7 16,968 17,026 84
G8 3,214 3,423 95
G9 3,507 3,620 96
G10 3,507 3,620 96
G11 3,519 3,632 96
G12 44,550 46,519 77
G13 46,331 46,331 99
G14 47,784 48,461 84
G15 5,023 5,049 93
G16 52,143 53,603 85
G17 8,856 10,087 89
G18 506,900 587,529 80

Fig. 2 A comparison of the running time of our algorithm SPVB (left) and Brandes’ (right) on 18
sparse large graphs. The ordinate axis report running time in seconds and is in logarithmic scale.
Data for Brandes on graph 18 is missing due to time-out

measure the convergence of the two methods we collected also the partial output of
the two algorithms every 24 h of execution. In Table 3 the running time, expressed in
seconds, of the two methods is shown, and the speed up factor. As it is expected the
speed up factor is strongly correlated to the fraction of the tree-nodes in the graph.
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Table 2 Selected graphs from the Stanford Collection

Graph name Node # Edge # Tree nodes (%)

ca-GrQc 5,242 28,980 21
as20000102 6,474 13,233 36
ca-HepTh 9,877 51,971 20
ca-HepPh 12,008 237,010 11
ca-AstroPh 18,772 396,160 6
ca-CondMat 23,133 186,936 9
as-caida20071112 26,389 106,762 38
cit-HepTh 27,770 352,807 5
cit-HepPh 34,546 421,578 4
p2p-Gnutella31 62,586 147,892 46
soc-epinion1 75,879 508,837 51
soc-sign-Slashdot090221 82,144 549,202 36
soc-Slashdot0922 82,168 948,464 2
soc-sign-epinions 131,828 841,372 51
Email-EuAll 265,214 420,045 80
web-NotreDame 325,729 1,497,134 51

For each graph it is listed the number of nodes, the number of edges, and the percentage of tree-
nodes, which is the most important parameter affecting the time performance
In bold are marked data sets with percentage of tree-nodes above 30 %

We notice a speed-up factor ranging from 2 to almost 6 when the ratio of tree-nodes
to the total number of nodes is in the range 30–50 %.

Two large test graphs are quite noticeable. Graph Email-EuAll has a percentage of
80 % of tree-nodes which is a value closer to those found in the SisTer collection, thus
the speed up measured is at least 27 (since we stopped Brandes’ after one week). That
value is between one and two orders of magnitude, consistently with those measured
in the SisTer collection.

For the web-NotreDame graph, which is the largest graph in our sample of the
Stanford collection, we estimate the convergence properties of the two algorithms as
follows. SPVB has been run to completion (in about 9 days) in order to have the exact
target solution vector. Also at fixed intervals each day we recorded the intermediate
values of the betweenness vectors for both algorithms. For each vertex we compute
the ratio of the intermediate value over the target value (setting 0/0 to value 1), and
then we average over all the vertices. This measure is strongly biased by the fact that
for leaves (nodes with degree 1) both Brandes and SPVB assign at initialization the
correct value 0, thus in this case precision is attained by default. To avoid this bias
we repeat the measurement by averaging only over those nodes with final value of
betweenness greater than zero (see Fig. 3). From Fig. 3 we can appreciate that the
average convergence rate is almost linear in both case, but the curve for SPVB has
a much higher slope. After 7 days our algorithm reached about 75 % of the target,
against 10 % of Brandes’, by a linear extrapolation we can thus predict a speed up
factor of about 8.
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Table 3 Running time (in seconds) of the two methods over selected Stanford collection graphs,
and their ratio (speed up factor)

Graph name Node # Brandes (s) SPVB (s) Ratio

ca-GrQc 5,242 35 s 24 s 1.45
as20000102 6,474 141 s 54 s 2.65
ca-HepTh 9,877 230 s 148 s 1.55
ca-HepPh 12,008 703 s 563 s 1.24
ca-AstroPh 18,772 2,703 s 2,447 s 1.10
ca-CondMat 23,133 3,288 s 2,718 s 1.21
as-caida20071112 26,389 6,740 s 2,014 s 3.34
cit-HepTh 27,770 8,875 s 8,227 s 1.07
cit-HepPh 34,546 16,765 s 15,636 s 1.07
p2p-Gnutella31 62,586 74,096 s 15,573 s 4.76
soc-Epinion1 75,879 145,350 s 25,771 s 5.64
soc-sign-Slashdot090221 82,140 199,773 s 64,905 s 3.07
soc-Slashdot0902 82,168 199,544 s 190,536 s 1.04
soc-sign-epinions 131,828 564,343 s 96,738 s 5.83
Email-EuAll 265,214 >7 days 22,057 s >27
web-NotreDame 325,729 – ≈9 days ≈8

In bold are marked data sets with a performance ratio above 2

Fig. 3 Evolution in time of the average (over the vertices) ratio of the partial betweenness values
over the final betweenness value. In the averaging leaves are excluded

6 Approximating Betweenness Centrality

In this section we show how we can combine our algebraic approach to computing
BC with the approximation scheme in [10], which is based on adaptive sampling.
First of all we notice that it is not possible in general to choose a random sample
size for each data set that ensures a uniform relative error α at each node. In [10] it
is shown that with high probability, we can approximate the betweeenness B[v] of a
node v in a graph of n nodes, up to a factor 1/α, with a number s of randomly chosen
source nodes (from here referred as pivots), where s = s(B[v], n, α). Since s depends
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Table 4 Running time (in seconds) of the two approximate methods over selected Stanford col-
lection graphs, their mean relative error and their ratio (speed up factor)

Graph name Node # MRE Approx Time Approx
ASPVB Brandes Ratio ASPVB (s) Brandes (s) Ratio

ca-GrQc 5,242 0.260 0.374 1.43 5.359 11.475 2.12
as20000102 6,474 0.394 0.427 1.08 5.709 8.058 1.41
ca-HepTh 9,877 0.329 0.457 1.38 13.479 23.322 1.73
ca-HepPh 12,008 0.353 0.472 1.34 29.881 48.448 1.62
ca-AstroPh 18,772 0.413 0.548 1.32 83.516 100.566 1.20
ca-CondMat 23,133 0.341 0.458 1.34 89.589 90.286 1.01
as-caida20071112 26,389 0.435 0.454 1.04 74.025 126.258 1.70
cit-HepTh 27,770 0.729 0.742 1.01 209.085 211.766 1.01
cit-HepPh 34,546 0.724 0.246 0.34 330.874 347.646 1.05
p2p-Gnutella31 62,586 0.362 0.537 1.48 392.815 892.982 2.27
soc-Epinion1 75,879 0.398 0.466 1.17 650.055 1,586.527 2.44
soc-sign-Slashdot090221 82,140 0.566 0.595 1.05 1,154.123 2,111.585 1.82
soc-Slashdot0902 82,168 0.616 0.604 0.98 2,003.166 2,081.609 1.03
soc-sign-epinions 131,828 0.566 0.595 1.05 1,154.123 2,111.585 1.83
Email-EuAll 265,214 0.072 0.067 0.93 868.456 25,704.993 29.59
web-NotreDame 325,729 0.671 0.539 0.80 14,364.103 51,372.872 3.57

Each value is the mean of 10 runs with different random samples
For Columns ASPVB and Brandes the bold values indicates the smallest MRE value among the
two approximate methods
For the column “Ratio” bold values indicate values above 1.30 in improved error performance
For the Time approximation ratio bold values indicate a performance ratio above 1.70

also on the value B[v] we cannot hope to have a uniform approximation factor bound
over all the nodes in the graph. For this reason, we select an uniform sample size
function having as input only the number of nodes and we measure the resulting
mean relative error in each experiment. Thus we select a fixed value s = ←

n, and
we measure empirically the mean relative error against the exact value.2 The BC
value of tree-nodes is known exactly and their contribution to the BC value of other
nodes can be attributed to the root of the tree, therefore we restrict the sampling on
the nodes in the residual graph. Also the shortest path computations are done in the
residual graph. Note however that the expansion factor used to estimate the BC is
referred to the size of the original graph. The pseudocode of the combined approach
is shown in Algorithms 3, 4, and 5.

6.1 Approximate Algorithm Pseudo Code

In the following Algorithm 3 we show the pseudo-code for ASPVB (Approximate
Shortest-paths vertex betweenness) preprocessing. For the sake of clarity we consider

2 For nodes whose BC exact value is zero, the partial BC contribution for any source is also zero,
thus the sampling procedure will estimate the correct value, zero.
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G to be connected. For disconnected graphs the same procedure should be applied
to each component.

ASPVB:
Data: unweighted graph G=(V,E)
Result: the graph’s node approximate betweenness cB [v] for all v ∗ V
cB [v] = 0, v ∗ V ;
c0[v] = 0, v ∗ V ; /*c0[v] stores the algebraic computation of the
degree one nodes */

p[v] = 0, v ∗ V ; i = 0;
Gi = G;
deg1 = {v ∗ V i |deg(v) = 1};
repeat

v ⊆ deg1;
u ∗ V i .(v, u) ∗ Ei ;
c0[u] = c0[u] + 2(n − p[v] − p[u] − 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i + +;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u ∧ deg1 ; /*deg(u) is computed on the new graph

Gi ) */
until deg1 = ∩;
if |V i | > 1 then

ComputeApproximateBetweenness(Gi , p, cB [v], c0[v], |V |)
end
else

cB [v] = c0[v]
end

Algorithm 3: Approximate shortest-paths vertex betweenness

The algorithm takes as input an undirected graph G = (V, E) and returns the
approximate betweenness value for each node of the graph. Since the algebraic
computation is the same of the exact algorithm, for nodes whose betweenness is
algebraically computed the returned value is exact.

In Algorithm 4 we show our approximate algorithm for the residual graph. We
compute the betweenness of the nodes in each path starting from a generic node s as
if we were considering the path in the whole graph (see lines 1 and 2 in Algorithm
4). This is because we need to consider the contribution of the node within the
whole graph when computing its approximate value. We maintain update an auxiliary
structure (see line 3 in Algorithm 4) with the weight of each node in the shortest path
from s for all the nodes connected to the residual graph through s. This value will
be used in case of exact computation (see line 1 in Algorithm 5) to return the exact
value of each node. As in [10], the computation of the approximate betweenness is
the sum of the contributions due to the pivots times

←
n.
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Table 5 Running time (in seconds) of the two approximate methods over selected Sister Collection
graphs, their mean relative error and their ratio (speed up factor)

Graph name Node # MRE Approx Time Approx
ASPVB Brandes Ratio ASPVB (s) Brandes (s) Ratio

G8 3,214 0.166 0.272 1.63 0.669 2.073 3.09
G9 3,507 0.222 0.251 1.13 0.715 2.260 3.16
G10 3,507 0.250 0.236 0.94 0.687 2.161 3.14
G11 3,519 0.271 0.236 0.87 0.690 2.033 2.94
G15 5,023 0.075 0.347 4.63 0.912 3.750 4.11
G17 8,856 0.168 0.402 2.39 2.802 9.517 3.39
G2 14,991 0.000 0.023 – – 13.988 –
G3 15,044 0.022 0.229 10.4 4.151 12.863 3.09
G4 16,723 0.017 0.159 9.30 3.607 14.440 4.00
G5 16,732 0.019 0.159 8.36 3.704 14.554 3.92
G7 16,968 0.028 0.158 5.64 5.104 14.736 2.88
G12 44,550 0.050 0.323 6.46 17.007 99.715 5.86
G13 46,331 0.070 0.016 0.22 5.377 130.774 24.32
G14 47,784 0.028 0.231 8.25 20.658 108.105 5.23
G16 52,143 0.035 0.235 6.71 22.431 131.889 5.87
G6 169,059 0.120 0.001 120.00 57.238 2,156.538 37.67
G1 233,377 0.049 0.264 5.38 338.383 2,461.949 7.27
G18 506,900 0.166 0.366 2.20 4,849.750 160,623.840 33.12

Each value is the mean of 10 runs with different random samples. For G2 the sample size is the
residual graph size, thus the computation is exact
For Columns ASPVB and Brandes the bold values indicates the smallest MRE value among the
two approximate methods
For the column “Ratio” bold values indicate values above 1.30 in improved error performance
For the Time approximation ratio bold values indicate a performance ratio above 1.70

6.2 Experimental Results on Approximating Betweenness

In Tables 4 and 5 we report quality (measured by the mean relative error) versus time
measurements over ten runs of our approximation algorithm and the original scheme
in [10], where both algorithms are executed with the same number of samples.

We notice that almost always on the graphs from the Stanford repository our
combined approximations scheme gains against [10] in quality (reducing the mean
relative error), even with a low percentage of tree-nodes. We also gain in speed by
a factor between 3.5 and 1.7 for graphs with a large percentage of tree-nodes. The
speedup factor is not as high as in the exact case since the uniform sampling size
(same number of sources) eliminates one of the gain factors we have in the exact case.
For the Sister Collection, due to the very high sparsity we gain substantially in speed
(by a factor 3 or larger), and the error is reduced (often by an order of magnitude)
in 14 tests over 18. In two cases, G6 and G13, the speed up effect is large, but the
quality measure is worse. This is due to the fact that the sample size is smaller but
close to the residual graph size, thus the final scaling factor introduces a small bias.
However in such cases the exact algorithm of Sect. 4, should be run, as there is no
time gain in resorting to the approximated version.
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ComputeApproximateBetweenness:
Data: directed graph G = (V, E),
for each v:
the number of tree-nodes connected to v: p[v],
the accumulator for the approximate betweennessv: AB[v],
the betweenness algebraically computed so far v: c0[v],
the number of nodes in the original graph n
Result: the graph’s node approximate betweenness AB[v]
pivot_number = 0;
ABs [v] = 0, v ∗ V
max = sqrt(n)
if max > |V | then

max = |V |
end
while pivot_number < max do

pivot_number + +
pivot = choose(n ∗ V )
s = pivot
S = empty stack;
P[w]= empty list, w ∗ V ;
σ[t] = 0, t ∗ V ;σ[s] = 1;
d[t] = −1, t ∗ V i ; d[s] =0;
Q= empty queue;
enqueue s ∧ Q;
while Q not empty do

dequeue v ⊆ Q;
push v ∧ S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w ∧ Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v ∧ P[w];

end
end

end
δ[v] = 0, v ∗ V ;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w⊆ S;
1 δ[w] = δ[w] + p[w]

for v ∗ P[w] do
2 δ[v] = δ[v] + σ[v]

σ[w] (δ[w] + 1)

if w ≤= s then
AB[w] = AB[w] + δ[w]

3 ABs [w] = AB[w] + (δ[w] → p[w])
end

end
end

end
ApproximateValue(AB, ABs , c0, n,max, |V |)

Algorithm 4: Modified Brandes’ algorithm
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ApproximateValue:
Data: for each v:
Approximate betweenness AB,
the betweenness value depending on nodes not in the residual graph ABs ,
the algebraic betweenness computation c0,
the number of nodes in the original graph, n
the number of pivot, max
the number of nodes in the residual graph, nr
Result: the graph’s node approximate betweenness AB[v]
i=0;

1 if max = nr then
for i < n do

AB[i] = AB[i] + ABs [i] + C0[i]
end

else
for i < n do

if AB[i] ≤= 0 then
AB[i] = AB[i] → n

max
else

AB[i] = c0[i]
end

end
end

Algorithm 5: Rescaling of the results.

7 Conclusions

Brandes’ algorithm for computing betweenness centrality in a graph is a key break-
through beyond the naive cubic method that computes explicitly the shortest paths in
a graph. However, it is not able to exploit possible additional locally sparse features
of the input graph to speed up further the computation on large graphs. In this work
we show that combining exact algebraic determination of betweenness centrality for
some tree-like sub-graphs of the input graph, with a modified Brands’ procedure
on the residual graph we can gain orders of magnitudes (between one and two) in
terms of computation time for very sparse graphs, and a good factor from 2 to 5, in
moderately sparse graphs. Also in the approximate setting combining the algebraic
technique with an adaptive sampling our experiments show gains in speed and/or
precision over state of the art approximate algorithms. At the best of our knowledge
this approach is novel. Among the graphs tested in this chapter, we did not find a sig-
nificant number of tree-nodes only in author collaboration graphs and citation graphs,
while for the other categories we found a significant number of tree-nodes. We thus
conjecture that this feature is common enough in a range of social networks so to
make the application of our method an interesting option when exact or approximate
betweenness is to be computed.

As future work we plan to explore further this approach by determining other
classes of subgraphs (besides trees) in which we can gain by the direct algebraic
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determination of the betweenness. Moreover the impact of our approach combined
with other approximation schemes will be investigated.
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An Agent-Based Modeling Framework
for Social Network Simulation

Enrico Franchi

Abstract Agent-based modeling has been frequently adopted as a research tool in
the fields of social and political sciences. Although recently social network analysis
has generated a new wave of interest in many different research fields, nonetheless
software instruments specifically created for agent-based social network simulation
are still missing. However, restricting the field of interest specifically to social net-
work models and simulations instead of supporting general agent-based ones, allows
for the creation of easier to use, more focused tools. In this work, we propose an
agent-based modeling framework for simulations over social networks. The models
are written in a purposely developed, domain-specific language that helps in map-
ping social-network concepts to agent-based ones. Our framework is created to deal
with large simulations and to work effortlessly with other social network analysis
toolkits.

1 Introduction

In the last 10 years, the pervasive adoption of social networking sites has deeply
changed the web and such sites became an unprecedented social phenomenon [10].
According to some recent studies, web sites have attracted users with very weak
interest in technology, including people who, before the social networking revolu-
tion, were not even regular users of either popular Internet services or computers in
general [44].

In the preceding decade, Agent-Based Modeling (ABM) was widely adopted as
a research tool in the fields of social and political sciences, because a multi-agent
system is a suitable means for modeling and performing simulations on complex
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systems: a model consists of a set of agents whose execution emulates the behavior
of the various individuals that constitute the system [46].

Seminal research in this direction was due to Epstein and Axtel and led to the
development of Sugarscape [14], which builds upon the earlier ideas of cellular
automata [47], and more specifically of Conway’s Game of Life [21], by adding social
elements, agent’s individual features, genetics and different types of environment in
which the agents are situated.

Multi-agent systems are especially appropriate to model systems (1) where com-
plex features arise from repeated relatively simple interactions, and (2) which are
dominated by discrete decisions. In particular, starting from Sugarscape, ABM gave
important results in social science because it represents and simulates not only the
behavior of individuals or groups of individuals but also their interactions that com-
bine to create to the emergent behavior [2, 13].

In parallel with the theoretical development of ABM a number of software plat-
forms were developed to ease the task of running the simulations; among these the
most popular are Swarm [34], Mason [29], RePast [35] and NetLogo [45], which,
however are not specifically tailored for social network simulations.

In this chapter, instead, we introduce a different kind of ABM tool specifically
created for network generation and general processes over networks. The tool we
propose does not aim at being a general purpose agent-based modeling tool, thus
remaining a relatively simple software system, whereas it is extensible where it
really matters (e.g., supporting different representations for networks, from simple
memory-based ones to pure disk-based storage for huge simulations).

Simulation parameters can be easily set both programmatically or as command
line arguments, so that simulations can be easily run with different starting parame-
ters, for example to perform sensitivity analysis or any kind of batch execution.

People with little programming skills shall be able to specify and run their sim-
ulations, but skilled programmers must not feel limited. Consequently, we designed
an agent-based Domain-Specific Language (DSL) created to express and execute (1)
social network generation models and (2) general processes over social networks. The
system focuses on expressing communicative acts among the nodes in the network,
as they can be used to express any process conveniently (e.g., link creation/removal
or information/disease diffusion).

In Sect. 2 we more thoroughly expose the motivations for this work and we com-
pare it with the ABM tools mentioned before. In Sect. 3 we describe the logical meta-
model of the simulation toolkit, and in Sects. 4 and 5 we present the DSL design and
the concurrency model, respectively. We also show how some well known models
are implemented in our toolkit. Finally, in Sect. 6 we draw some conclusions.

2 Motivations of the Work

At the beginning of this section we briefly introduce ABM, and, specifically, the
general structure of an agent-based simulation; then, in Sect. 2.2, we put ABM in the
perspective of social network modeling, i.e., we present the unique traits of social
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network simulations and how they impact on designing an ABM of social network
processes. Finally, we discuss the state of the art of ABM and how it is related to our
project.

2.1 Agent-Based Simulation Fundamentals

An agent-based simulation has three main components: (a) a set of agents, (b) a set of
agent relationships that determines a topology and (c) the agents environment [31].

Although the actual definition of agent is still debated [22, 48], there is general
consensus that:

• Agents are autonomous, i.e., they operate without human intervention;
• Agents are reactive, i.e., they can react to external events;
• Agents are pro-active or have goal-driven behavior; and
• Agents have defined boundaries that divide internal state from the rest of the

system.

Essentially, from the point of view of software engineering, an agent is an
autonomous, isolated software unit with reactive and/or pro-active behavior. How-
ever, the fact that agents in simulations actually have these properties, and especially
true autonomy and pro-activeness, is questioned by Drogoul et al. [12]; for discus-
sions on multi-agent systems applied to various social network-related problems, we
refer to [6, 8, 18].

When using ABM to model social networks, two kinds of relationships should be
taken into account, i.e., system-level relationships and network-level relationships.
The former represents all mutual dependencies, interactions and message-passing
among the agents in the system, the latter are the actual relationships in the social
network, so, in essence, the system-level relationships determine the system topology,
while the network-level relationships determine the network topology.

The two concepts are distinct: for example, in a simulation involving a network
evolution process, let nodes u and nodes v be connected in the initial state of the
simulation. As a consequence, they have a network-level relationship because they are
neighbors. However, if they never communicate, they are not connected by a system-
level relationship. On the other hand, if at some step of the simulation u sends a
message to v to sever their connection, at the end of the simulation they have no longer
a network-level relationships, albeit they have a system-level relationship because
of the communication. Typically, when performing social network modeling and
simulation, only the network topology is analyzed. However, the network determined
by the active interactions established during the simulation can also be of interest.

In ABM many different environments may be simulated, according to the actual
model. However, in the case of social network simulations, the social network is the
preeminent environment. Additional environmental information can be encoded in
the social network, if necessary.
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Fig. 1 Diagram representing the interactions of the four main components of a PyNetSYM
simulation

2.2 Towards Agent-Based Modeling of Social Networks

In the present section we introduce the design principles of PyNetSYM,1 a social
network simulation system we propose that has the following defining goals: (1) it
must support both small and large networks; (2) simulations shall be effortlessly run
on remote machines; (3) it must be easy to use, even for people without a strong pro-
gramming background; (4) deploying a large simulation should not be significantly
harder than deploying a small one.

A PyNetSYM simulation has four main components that can be modified inde-
pendently: (1) the user interface, (2) the simulation engine, (3) the simulation model
and (4) the network database. The interactions between the four components are sum-
marized in Fig. 1. The simulation model needs to be specified for each simulation and
is the only part that has to be completely written by the user. Its specification is partly
declarative and partly object-oriented. The user interface is responsible for taking
input from the user, e.g., simulation parameters or information on the analysis to per-
form, and is specified declaratively. The simulation engine defines the concurrency
model of the simulation, the scheduling strategies of the agents and the communica-
tion model among the agents. The network database actually holds a representation
of the social network; it may be in-memory or on persistent storage, depending on
the size of the simulation. Multiple network database implementations are provided
and the framework can be extended with additional ones.

Large scale simulations typically require more resources than those available on
a desktop-class machine and, consequently, need to be deployed on external more
powerful machines or clusters. In order to simplify the operation, we designed our
system so that a simulation can be entirely specified in a single file that can be easily
copied or even sent by email. Considering that the simulations are frequently run on
remote machines, we opted for a command line interface, because a traditional GUI
becomes more complex in this scenario. An added benefit is that batch executions are

1 https://github.com/rik0/pynetsym

https://github.com/rik0/pynetsym
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also greatly simplified. We also support Read-Eval-Print Loop (REPL) interaction
to dynamically interact with the simulation.

In order to allow people without a strong programming background to easily
write simulations, we decided to create a Domain-Specific Language (DSL). A DSL
is a language providing syntactic constructs over a semantic model tailored towards
a specific domain (e.g., building software). The idea is that DSLs offer significant
gains in productivity, because they allow the developers to write code that looks more
natural with respect to the problem at hand than the code written in a General-Purpose
Language (GPL) with a suitable library.

DSLs are usually categorized in internal and external: an external DSL is a new
language that is compiled or interpreted (e.g., makefile), while an internal DSL is
represented within the syntax of a GPL, essentially using the compiler/interpreter
and runtime of the host language. Mernik et al. [33] discuss the issue thoroughly.
Traditionally, DSLs were sparingly used to solve engineering problems. Nowadays,
with the widespread diffusion of very expressive languages such as Python, Ruby,
Haskell or Scala the general attitude towards DSLs has changed [16, 23], especially
because writing internal DSLs in such languages significantly lowers the developing
costs to a point that is comparable to an API based solution [27].

Consequently, we decided to develop an internal DSL embedded in Python, in
order to provide an environment that is friendly enough for scientists without strong
programming background, without being limiting for the others. Moreover, the inter-
nal DSL approach greatly simplifies external library usage, since all the libraries
available for the host language are available for the DSL as well, and we think that
accessing high quality scientific libraries and using an expressive language are both
features of paramount importance. The actual description of our DSL is detailed in
Sect. 4.

2.3 State of the Art of ABM

In this section, we review the most widespread ABM toolkits in more detail and
compare our design decisions with theirs, where appropriate.

NetLogo focuses on the 2-dimensional grid topology where situated agents (tur-
tles) interact with the environment and among themselves. A problem we have found
with this approach is that the visualization leaks into the rest of the model. In general,
we feel that the NetLogo language lacks:

• Many interesting features found in general purpose languages that may be useful
to implement algorithms and data structures, e.g., (1) the lack of object types,
algebraic datatypes, or even plain old record types, and (2) the need to emulate
such features with agents, makes general programming awkward.

• Many useful libraries, e.g., proper social network analysis toolkits, statistical toolk-
its, database connectors.



80 E. Franchi

In fact, using network analytic or statistical techniques is hardly uncommon inside
a model, and many of these algorithms may well be as complicated to implement
as the simulation itself, especially considering that NetLogo is also aimed at non-
programmers.

Our approach is more similar to that of ReLogo which is a Groovy DSL inspired
by NetLogo and built upon the RePast Symphony framework. Since ReLogo models
are written in Groovy, they are able to call any Java library providing the required
functionality. However, ReLogo is still designed with the 2D grid in mind and it does
not easily inter-operate with the rest of the RePast framework [30].

Mason, RePast and Swarm follow an approach different from our own. They
are mostly libraries or frameworks for general purpose languages and this is a
clear advantage when interfacing with external libraries. However, all considered,
those systems are relatively complex to learn because they have rich and elaborate
APIs [37]. Moreover, simulations are software projects typically split in more files
and rather complex deployment.

Although they are not agent-based modeling toolkits, it is worth mentioning
SIENA [38] and statnet [24], two R packages created for analysis, simulation and
visualization of network data. Both tools start of different premises than ABM, and
are grounded in the statistical modeling of networks [42]. Statnet focuses on (1)
exponential random graph models [25, 39, 40], (2) latent space models [28], and
(3) latent cluster models [28], while SIENA is designed to analyze (1) longitudinal
network data [41], (2) longitudinal data of networks and behaviors [43]. Considering
the approach to network dynamics and the required computing resources, SIENA
statistical analysis is meant for networks with a number of nodes between 10 and
1,000.

Finally, our approach shares some similarities with Pregel [32]. Pregel is a software
system designed to efficiently execute graph algorithms on large relational datasets
in a distributed environment. A Pregel computation takes a graph as input, and it
consists in several supersteps, separated by global synchronization points. Within
each superstep, each node executes the same user-defined function; as a result of the
function execution, (1) the node state can change, and (2) the node links can change.
Nodes can also communicate with messages. The main differences our approach has
with Pregel are:

• The general focus: Pregel is software system to execute graph algorithms, and,
although it can be used to run simulations, that is not its main purpose. Similarly,
although PyNetSYM could be used to implement distributed graph algorithms, it
is not optimized for the purpose.

• The approach to time and concurrency: Pregel model strictly separates the super-
steps using global synchronization; on the other hand, PyNetSYM neither requires
strictly distinct steps, nor mandates global synchronization. If synchronization is
part of the model, it is sufficient to use an appropriate Activator agent. For more
details on what an Activator is, we refer to Sect. 3.2.

• The semantics of messages: in Pregel all the messages sent at time t are received at
time t+1. In PyNetSYM each message is available almost immediately (depending
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on potential network latencies if the source and the target are not in the same
process), but it is processed only when the target receives control. Although the
predictability of Pregel is a desirable property, in practice, with fair schedulers,
this is not much of an issue [9]. Moreover, PyNetSYM supports asynchronous and
synchronous message passing semantics.

3 PyNetSYM Runtime System

The social network simulation system we propose, PyNetSYM, has an elaborate
runtime system that supports the execution of simulations providing only brief spec-
ifications. The nature of these specifications is described in Sect. 4. In this section
we describe (1) the components that support the simulation, (2) the general structure
of the simulation execution, and (3) a metamodel to easily specify various network-
based processes. We also discuss general semantic properties of the simulation engine
as a concurrent system.

3.1 Simulation Engine

The central element of the runtime system is the agent, since the elements under simu-
lation and several infrastructure components of the runtime system are implemented
as agents. In the following we describe the design characteristics of PyNetSYM
agents. For our purposes an agent is a bounded unit with its own thread of execution.
By bounded we mean that there is a clear separation between what is inside the
agent and what is outside the agent. Agents have their own state, and access to that
state is mediated by the agent itself. All the communication among the agents occurs
through message passing; each agent has a mailbox where the incoming messages
are stored, and a unique identifier that is used to address the messages.

Agents also perceive and modify the environment. Our agents are not necessarily
autonomous or goal-directed. Since they are used as a computational primitive, we
need a lower-level specification that can be enriched to provide “real” agents but
which does not place unnecessary overhead on the system.

The communication primitive is the send command. When an agent y executes
the command send(x, “m”), (1) a message m{i}s created, (2) it is delivered in the
mailbox of x , and (3) an empty placeholder is immediately returned to y as the
return value of the send call, so that r = send(x, “m”) is a valid command. When x
processes m{}, its method m is invoked and the return value is placed in r .

Send provides both the semantics of synchronous and asynchronous messaging.
The semantics is that of an asynchronous message in the following cases: (1) send
was invoked just as send(x , “m”), so that the return value is simply ignored, or (2)
send was called as r = send(x, “m”), but the caller ignores the return value r .
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On the other hand, the caller y can force the retrieval of the value of r and wait
until m{} is processed. In this case, y is blocked and control is given to another agent;
y will be activated again after the value of r has been supplied by x . This is essentially
the semantics of a synchronous message passing. Agent y can also check without
blocking whether the value of r is ready or do not block indefinitely but only up to
a given timeout.

Messages with parameters can be sent with either:

send(x, “m”, p1 = v1, . . . , pn = vn) (1)

r = send(x, “m”, p1 = v1, . . . , pn = vn) (2)

In these cases the message m{p1 = v1, . . . , pn = vn} is delivered to x and the
m method of x is invoked with actual parameters v1, . . . , vn passed to the formal
arguments p1, . . . , pn of the method.

The default behavior of the agents is waiting for messages to arrive and then
processing the incoming message with the appropriate handlers. However, full agent
behavior (autonomous, goal-oriented, and pro-active) can be implemented either
supplying a different behavior or augmenting the default with pro-activeness.

Another important design decision regarding the system semantics is whether to
implement cooperative or preemptive multi-tasking. In a preemptive multitasking
system, the system can (1) temporarily interrupt any active task, (2) give control
to another task, and (3) give control back to the original task at a later moment.
Consequently, tasks must be programmed considering that at any stage they could
be interrupted and the global system state may have changed by the moment they
are resumed.

In a cooperative multitasking system, the system cannot interrupt the active tasks.
Each task explicitly relinquishes control in order to allow for the execution of the other
tasks. Several popular languages and platform implement preemptive multi-tasking
because in general purpose systems the probability and the risks of a misbehaving
application consuming all the CPU time is too high. However, for a simulation
oriented platform, such risks are minimal and we opted for cooperative multi-tasking
because it allows a more deterministic control of complex time sequences.

As a consequence, in PyNetSYM a message handler can only voluntarily “give
up” the execution for a while, either explicitly going to sleep or by requesting a
blocking operation. In all other situations, when an agent starts processing a message,
it continues until termination. This property is analogue to the semantics of the Actor
Model [1] and simplifies formal reasoning on the system. Moreover, from the point
of view of the emergent properties of the simulation it has little impact [9].

When an agent has an empty mailbox, it can choose to be removed from main
memory and have its state saved on secondary storage. If the stored agent is sub-
sequently sent a message, it is restored in main memory from the saved state. This
behavior is extremely convenient considering that for most social network topolo-
gies, a small fraction of agents is responsible for the vast majority of the links. Since
in most processes over networks the agents with few links are seldom activated, we
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can save memory keeping them in secondary storage and do not lose much CPU
time.

Another important related issue is the visibility of the network itself. A possible
solution is completely distributing the knowledge of the network among the agents,
so that each agent only knows its neighbors and the network must be reconstructed
from their interactions. However, many network processes could not be implemented
efficiently in this scenario, because several elementary operations would involve too
much communication among the agents.

For example, suppose node u wants to establish a new link to another random
node according to preferential attachment, i.e., with a probability proportional to
the nodes degree. In this case, if there is no global view of the network, the only
solution is (1) to explicitly ask every node for its degree and (2) to locally compute
the probability vector. Moreover, if there is more than one node that wants to create a
new link, multiple messages are sent and the computation is redundantly performed.
On the other hand, if a specialized agent holds this information, the agents intending
to create the links send a message to such agent and the computation is performed
only once.

Consequently, we prefer to maintain a global view of the network. From the point
of view of ABM, the decision is consistent with the interpretation of the network as
the environment, as: (1) agents can interact with it by creating or destroying links,
and (2) the agents behavior is influenced by the network in several process dependent
ways.

This view is presented as a software component that we call network database
(Network DB), and that provides a unified interface that agents can use to modify
and query the network state. Since the Network DB is just an interface for net-
work modifications and queries, various implementations with different trade-offs
are available:

• Some implementations are RAM based, and their main advantage is to provide
more efficient accesses when the network is not excessively large; others are backed
with various secondary-storage based solutions, which results in slower operations,
but allows for simulations on larger networks.

• Some implementations maintain the information in the memory space of the
main PyNetSYM program; others use separate processes, such as SQL or NoSQL
DBMSs. Setting up the runtime environment for the first kind of implementations
is easier, while the latter allow to deal with larger simulations.

• Some implementations hold all the information pertaining the network structure
in a single process; others split the information in multiple processes, potentially
hosted on different machines. The first kind of implementations are clearly more
efficient, but do not scale as easily.

All these properties can be independently chosen depending on what is desirable
for the specific simulation execution. For example, the network can be stored in a
MongoDB database, which is a disk-based separate-process solution. However, the
database system can be run on single machine or sharded on multiple hosts. A shard
is a horizontal partitioning of a database, so that rows of database tables are held
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separately. The abstract nature of the Network DB leaves several possibilities open;
for example, although we have not implemented it, it is possible to develop a Network
DB implementation backed by Pregel [32], so that queries and network modifications
are implemented in Pregel and executed on a Pregel cluster.

As a general comment, it should be said that, although PyNetSYM provides an
abstract interface to the actual implementation, memory and CPU issues remain. Let
us consider two different RAM based, internal and single-process implementations
that are reasonable extremes regarding RAM usage. While the NetworkX library
provides many useful algorithms and has a thorough support for edge and node
attributes, a network of order n = 106 and size m ≤ 10 ·n occupies 4–5 GB of RAM
when represented as a NetworkX graph. The reason is that NetworkX represents
graphs as adjacency lists implemented using nested hash-maps. Several essential
operations are fairly efficient, but substantial memory overhead is added.

On the other hand, the same network, represented as a sparse matrix occupies
less than 2 MB; however, with the latter approach node and link attributes are much
harder to manage, in the sense that an additional data structure is needed, which
would increase memory usage considerably. Moreover, node identifiers are neces-
sarily integers, as opposed to generic objects (including strings).

Different situations have different trade-offs and consequently we are working to
make the choice of underlying implementation as transparent as possible. Moreover,
depending on the actual network process, some implementations are more appro-
priate than others, because some operations that occur frequently in the process of
choice are more efficient.

3.2 Simulation Structure

The actual simulation is divided in two distinct phases (1) setup, summarized in Fig. 2,
and (2) execution, presented in Fig. 3. During the first phase (setup), the system is
initialized so that it reaches the initial configuration specified by the simulation. First,
various infrastructural agents (e.g., Activator, NodeManager) are created and started,
so that they are ready to receive messages, and the Clock (if present) is also created,
but not started. The setup phase is illustrated in Fig. 2.

Later during this phase, the Configurator agent instructs the NodeManager to (1)
create the initial nodes in the network, (2) to give them instructions to establish the
connections they are meant to have at t0, and (3) to provide them with any other
initial information that the simulation may require.

The NodeManager is generally responsible for (1) creating the new agent-nodes,
passing them the appropriate initialization parameters and (2) monitoring them, so
that their termination (exceptional or not) is managed.

We created different Configurator agents for the most frequent needs, that are
(1) reading an initial network specification from disk and setting the system up
accordingly, or (2) creating n node-agents of a given kind. When reading network
specifications from file, we support (1) popular file formats for exchanging networks,
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sd Setup_Phase

Simulation
Activator Clock NodeManager

start

start

start

createNode

Nodes

link

start

loop

[moreNodes]

Fig. 2 Sequence diagram of the first phase (setup phase) of a PyNetSYM simulation

sd Execution_Phase

clock: Clock

activator: 
NodeActivator

node_manager: 
NodeManager

node1: Node

node2: Node

node3: Node

node4: Node

1: tick
2: create

4: terminate

3a: activate

3b: activate

node5: Node

Fig. 3 Interaction diagram of the main agents in PyNetSYM during a single step of the execution
phase
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such as GraphML or Pajek, (2) networks saved as sparse matrices in HDF5 files, and
(3) networks stored in various DBMS, such as MongoDB.

After configuring the simulation, (1) the Configurator agent terminates, and (2)
if present, the Clock agent starts, marking the transition to the execution phase, or
(3) the node-agents are otherwise notified that the simulation begins.

During the execution phase the node-agents perform the simulation according
to their behavior. Although from a theoretical point of view such behavior can be
completely autonomous and do not rely on an external time schedule, in practice most
network generation models and generic processes over networks can be described in
terms of a relatively simple meta-model [7, 9, 17], described below.

In the meta-model, the Clock beats the time, which is discrete. At each step, the
Activator selects (1) which nodes to activate, and (2) decides whether nodes shall
be destroyed, or (3) created, negotiating the eventuality with the NodeManager. The
nodes execute actions after receiving the activation message. However, they can also
perform actions autonomously, without waiting for activation. The nodes can also
leave the simulation, require the creation of other agents, and send messages to the
other nodes.

According to the meta-model, the general structure of the execution phase is
presented in Fig. 3. A simulation is fully described providing the specifications of:

1. the selection process of the groups of nodes to create, activate or destroy, which
is performed by the Activator agent;

2. the behavior of the nodes themselves.

Notice that the general structure does not change significantly even when intro-
ducing some agent-ness in the simulations, e.g., introducing goal-directed behavior.

4 Defining a Domain-Specific Language for Network
Simulations

In Sect. 2.2 we mentioned the advantages of a DSL in terms of ease of development for
both programmers and non-programmers because of the increased language expres-
sivity. In this section we describe the general structure of our DSL, which is an
internal DSL hosted by Python. We also present some examples.

Our choice of language was motivated by the following features: (1) focus in
readability; (2) ease of use; (3) availability of useful libraries for scientific compu-
tations and consequently (4) widespread adoption in many scientific areas; (5) solid
choice of concurrency frameworks and frameworks for distributed or GPU based
computing; (6) powerful REPL implementations (7) advanced metaprogramming
capabilities, which we extensively use to improve the expressiveness of the DSL.
However the host language is almost an implementation detail, since other object
oriented high level languages such as Ruby or Scala could have provided the same
features.
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Here we review some aspects of the Python language that are significantly different
from static languages such as Java or C++:

(a) class A(B) means that class A is a subclass of class B.
(b) Methods are defined with the def keyword. For clarity, we differentiate among

methods and message handlers; the latter are introduced with the handler key-
word, even though this keyword is not part of Python’s syntax.

(c) The explicitly specified formal parameter “self” is the object the method is
invoked on.

(d) Methods can be invoked with named parameters.
(e) Set ({a, b}) and hash-map ({k : “v”, . . .}) literals are available.
(f) Everything defined directly in the class body becomes a class attribute. A callable

defined in the class body is a method.
(g) Classes are first class objects: when called, are factories.
(h) Classes can be defined inside other classes; in this case, they are “attributes” of

the enclosing class. As a consequence, an inner class can be invoked as a method
of the enclosing class and returns the appropriate instance object.

(i) The send(x , “m”) command discussed in Sect. 3 becomes a method defined in
the Agent class and, as such, is invoked with self.send(x, “m”).

As described in Sect. 3.2, our simulations have two distinct logical elements:

1. The essentially imperative/object oriented description of the agents behavior (e.g.,
the nodes and the Activator agent).

2. The mostly declarative description of the simulation itself and of the simulation
options specification.

Regarding the imperative/object oriented part, it suffices to say that the nodes and
the Activator agent are implemented as subclasses of Agent, which means they are
essentially Python objects with agent semantics provided by PyNetSYM and dis-
cussed in Sect. 3.1. Their behavior is thus specified using the host language (Python)
for maximum expressivity.

The other logical element defining a model is the Simulation class. A Simulation
is not an agent and is essentially the executable specification of the simulation that
collates together all the other elements. A Simulation object has a run method that
is called to execute the simulation. When run is called, both (1) command line
arguments and (2) actual parameters directly passed into run are taken into account,
i.e., it processes the “simulation options” field and creates a command line parser
that can parse command line options according to the specification.

The specification is a list of allowed options, each with its name, default value and
the function to convert the string value as specified in the command line to the proper
value. For example, the following specification would let the simulation accept two
options, option1 and option2; the first option has default value 1.0 and is of type
float, the second has 1 as the default value and is an integer:

command_line_options = (
(’--option1’, {’default’: 0.0’, ’type’: float}),
(’--option2’, {’default’: 1, ’type’: int}))
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Moreover, a help message is automatically constructed from the options, and is
displayed if the simulation is run with the “--help” option. Such message lists the
various options and, if a documentation string was provided in the specification, also
their meaning.

When a simulation is executed, it always instantiates some objects and agents that
fill pre-determined roles, such as the network database, the Configurator agent, the
Activator agent, or the Clock agent.

Additionally, the behavior of simulations can be declaratively customized. If the
body of the Simulation subclass has an attribute in the form role_type, it is used
as the factory for the object in question in place of the default implementation. For
example, a different Activator can be requested with theactivator_type option.

A subset of the simulation options is passed to the constructors of objects and
agents instantiated by Simulation. The subset is determined in the following order:
(1) inspecting the “options” attribute in the object class definition, (2) using an
attribute named role_options defined in the Simulation class, and (3) performing
introspection on the names of the parameters of the object/agent constructor. Intro-
spection is a programming language feature that allows programs to analyze types
and function/method signatures at runtime. Additionally, the Simulation class has an
additional_agents attribute, where additional “roles” can be defined.

If the configuration is wrong or incomplete (e.g., because of a missing or wrongly
typed parameter), the simulation fails as early as possible, ideally at “compile time”
(i.e., when classes are evaluated).

4.1 SIR Model

In this section we present the implementation of the Susceptible-Infected-Recovered
(SIR) model in our DSL. The SIR model was originally proposed to study the out-
break of contagious illnesses in a closed population over time [26] and was subse-
quently adapted as a social network process [36]. For our purposes, the SIR model
is the network adapted variant. In this form, each node has three possible states:
susceptible (S), infected (I) and recovered (R), hence the SIR name. The system
starts with a given ratio r of infected patients, and each infected patient can recover
with probability γ. Moreover, each infected patient infects each of its neighbors with
probability β.

We fit the SIR model to our meta-model so that, at each step, the Activator agent
only activates infected nodes (Fig. 4, lines 6–7). Susceptible and recovered nodes do
not need to take action. Consequently, when a node is infected, it sends a message
to the activator to inform it that it is infected and, similarly, when it recovers, it
sends a message indicating its recovery. When an infected node is activated, it tries
to spread the disease among its neighbors by sending them messages. Afterwards, it
may recover with a given probability (Fig. 5).

In the implementation with PyNetSYM the simulation has three initial parameters:
the infection rate β, the recovery rate γ and the initial ratio of infected nodes r . The
declaration of the simulation options is given in lines 26–29 of Fig. 6.
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1: class SIR Activator(pynetsym.Activator):
2: handler infected(self, node):
3: self.infected nodes = self.infected nodes.add(node)
4: handler not infected(self, node):
5: self.infected nodes = self.infected nodes.remove(node)
6: def nodes to activate(self):
7: return self.infected nodes

Fig. 4 SIR model activator implementation

Fig. 5 SIR model node implementation

An additional starting parameter is the shape of the network. The initial configu-
ration of the network is read from a file, hence we use NXGraphConfigurator (line 32
of Fig. 6), that (1) reads files in any format supported by NetworkX, and (2) it creates
the appropriate nodes along with their connections. The type of the nodes and the
simulation options they require are specified with the node_type and node_attribute
of the Configurator respectively. Finally, initialize_nodes is a special method of the
Configurator agent which is called after the nodes have been created to provide them
with additional setup. In this case, it randomly selects which nodes start infected.

In Figs. 4 and 5 the implementation of the SIR nodes and of the SIR Activator
are shown. Essentially, their behavior is that described when discussing how to fit
the SIR model to the meta-model.

In Fig. 7 we plot the evolution of the fraction of susceptible, infected and recovered
nodes as functions of the elapsed number of steps as given by the PyNetSYM simu-
lations of the SIR model. The starting network is an Erdős-Rényi graph G(105, 120)
[15], i.e., a random graph where each of the 105 nodes has 120 random edges. The
1 % of the nodes starts as infected (r = 0.01) and the parameters here are infection
rate β = 1.0 and recovery rate γ = 0.4.
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Fig. 6 SIR model simulation specification
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Fig. 7 Time evolution of the fraction of susceptible, infected and recovered nodes as functions of
the number of steps according to the PyNetSYM agent-based simulation of the SIR model. The
starting network is a G(105, 120) network, the starting parameters are β = 1.0, γ = 0.4, r = 0.01.
The solid lines are guides for the eye

4.2 Barabàsi-Albert Model

In Fig. 8 we show the code for a simulation implementing the Barabàsi-Albert (BA)
model [3]. Line numbers reported in this section refer to Fig. 8 unless differently
specified. The BA model starts with n0 nodes and no edges. At each step a new
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Fig. 8 BA model simulation implementation

node with m random links is added. The m links are directed towards nodes with a
probability proportional to their degree, this strategy is called preferential attachment.

In Lines 16–23 the simulation configuration is specified. Line 17 specifies that
the BA_Activator (defined in lines 9–15) is the activator to be used. Classes can be
stored in variables like any other object.

Lines 18–20 specify the command line options, their default values and the type
of the parameters. When values for some options are not specified in the command
line, the default value is used.

The BasicConfigurator (Lines 21–23) reads the value n0 of the simulation option
“--network-size” and requests to the NodeManager the creation of n0 nodes
of type specified by the node_type attribute.

In Lines 1–8 and 9–15 there are the specifications for the nodes and the activator
respectively. The nodes are specified providing a handler for the activate{} message.
Moreover, in the Node class we defined:

• A method link_to, which requests the creation of a link with a given node, and
whose default implementation simply sends a link_request{source} message to
the target node, as shown in Lines 3–4 of Fig. 9.

• A handler for link_request{source} messages. The default implementation pro-
vided in Lines 5–7 of Fig. 9 always accepts the link and informs the agent managing
the network to create the link. In a model where nodes can decide whether to accept
a connection, such default handler would be overridden with the desired behavior.

• A conceptually similar method/handler pair is provided to sever links.
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Fig. 9 Implementation of some node methods and handlers

The Activator accepts a tick{} message from the clock. In Line 11 the Activator
sends the NodeManager: (1) the class of the agent to create in the “cls” parameter
and (2) the arguments to pass to their constructor with the “parameters” parameter.
This is a synchronous call, because the Activator blocks waiting for the identifier of
the newly created agent. Then, it immediately sends to the new agent an activate{}
message (line 15).

5 PyNetSYM Concurrency Approach

In Sect. 3 we defined the runtime model of our simulation framework. Essentially,
we assumed that agents do have their own thread of control, but did not specify
how concurrency was implemented. The traditional approach in agent-based frame-
works is to implement concurrency mainly with threads, and to provide coopera-
tive multitasking as an option [4]. Even when cooperative multitasking is available,
agent platforms are typically built around threading features provided by the hosting
platform [5, 19].

Instead, we decided to use gevent,2 a networking and concurrency framework
that uses coroutines to implement cooperative tasks, called “greenlets” in the gevent
lingo. Coroutines are a generalization of subroutines allowing multiple entry points
for suspending and resuming execution at certain locations [11].

A regular procedure has only one entry point, i.e., the beginning of the procedure,
reached after the procedure invocation, and potentially multiple exit points, i.e., the
return statements. On the other hand, coroutines can be exited and re-entered, so it is
possible to start a coroutine f1, exit at a given point and start executing a coroutine
f2 and successively re-entering f1 at the point where the execution was stopped,
actually resuming the previous computation. As a consequence, it is possible to use
coroutines to implement cooperative multitasking, as long as a task scheduler is
provided. In our case, Gevent also provides the greenlets scheduler.

Frameworks such as gevent are popular for writing programs with very high
concurrency, since greenlets: (1) are less expensive to create and to destroy; and (2)
do not use memory structures in kernel space. In fact, greenlets live entirely in the

2 http://www.gevent.org

http://www.gevent.org
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Table 1 Comparison between Greenlet and thread efficiency: the main agent spawns a new agent
and sends it a message with the numeric value of the number of agents to spawn, then it waits for a
message on its own queue

# items Thread execution (s) Greenlet execution (s)

1 × 102 0.022 0.002
5 × 102 0.110 0.009
1 × 103 0.224 0.018
1 × 104 2.168 0.180
1 × 105 21.85 1.796
1 × 106 223.3 18.24

When the other agent receives a message with value n, each secondary agent: (1) spawns a new
agent and sends it a message with the value n − 1 if n ∗= 0; (2) on the other hand, if n = 0, it means
that all the agents have been created and sends a message to the main thread. Notice that the agents
do not exist all at the same time: once they have received and sent a message, they terminate

user-space, thus context switches between different greenlets are inexpensive as well
and do not involve system calls.

In Table 1 we report execution times of a simple benchmark performed with
a different number of threads/greenlets. It is easy to see how the greenlet based
solutions are roughly ten times faster than the corresponding thread-based ones.
Further comparisons between greenlet and thread performances can be found in [20].

The better performance of greenlets is particularly relevant in our case, since in
ABM it is required to potentially support millions of concurrent agents, and, since
greenlets use no kernel resources, their number is limited only by the amount of
available RAM. Moreover, experience suggests that a modern operating system can
only support a few thousand threads.

Although, thread pools offer a viable, albeit more complex solution, cooperative
multitasking as provided by greenlets gives a finer grained control over schedul-
ing and concurrency in general, because the moments when context switches occur
become more predictable, as they cannot be externally interrupted. Moreover, the lack
of preemption relieves from the necessity to protect critical sections, i.e., portions of
codes that modifies data structures shared among multiple tasks.

6 Conclusion

In this chapter, we have presented PyNetSYM, a novel language and runtime for
network specific simulations. PyNetSYM is built for the generative approach [13] to
science typical of Agent-Based Modeling (ABM). We believe there is a strong need
for tools that are both: (1) easy to use (especially for people with little programming
background but with a significant expertise in other disciplines, such as social sci-
ences) and (2) able to tackle large scale simulations, using remote high-performance
machines and potentially distributing the computation on multiple servers. Therefore,
while our primary goal is maintaining our toolkit simple and easy to use, efficiency
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is our second priority, since nowadays there is a wide interest on networks of huge
size.

Specifically, we created PyNetSYM: (1) to easily support both small and huge
networks, using either in-memory and on-disk network representations, and (2) to
be as easy to be used both on personal machines or on remote servers.

We designed PyNetSYM so that all the entities, both the infrastructural ones and
those under simulation, are agents: defining the network simulation is essentially a
matter of specifying (1) the behavior of the nodes and (2) a few additional simulation
parameters (e.g., storage strategy and user-customizable options).

Given the merits of Domain-Specific Languages (DSLs) in general, and specif-
ically the ones concerning how to make development easier both for programmers
and non programmers alike, we decided to create a DSL to drive PyNetSYM simula-
tions, so that it is possible to write programs that are machine-executable, high-level
formulations of the problem to solve. Specifically, our DSL is an internal DSL over
Python.

As PyNetSYM provides the simulation engine, the simulation can be written in a
simple file using our DSL. Thus, PyNetSYM models are very easy to deploy (copy-
ing around a single file is sufficient) and can also be effortlessly shared between
researchers. Moreover, PyNetSYM models can also be written and executed interac-
tively from a Read-Eval-Print Loop (REPL), a feature that is extremely useful when
exploring the results of a simulation, because it makes possible to interactively and
dynamically perform analysis and visualize data.

We also implemented some classic processes over networks (generation models,
infection/information diffusion processes) with PyNetSYM and found that the result-
ing programs are readable and fluent; in fact, they are very similar to a pseudo-code
formulation of the models, even though they are efficiently executable. At the present
moment we are using PyNetSYM to simulate the behavior of users in a novel fully
distributed social networking platform, in order to understand the condition under
which the information propagates to the intended recipients. Although, the study is
at a rather early stage, we find the PyNetSYM modeling features quite satisfactory.

Our results show that our approach is successful in providing a friendly and
easy to use environment to perform agent-based simulations over social networks.
Agent-based simulation is a powerful conceptual modeling tool for social network
simulations and with the present work we contribute a natural and expressive way to
specify social network simulations using a DSL.
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Early Stage Conversation Catalysts
on Entertainment-Based Web Forums

James Lanagan, Nikolai Anokhin and Julien Velcin

Abstract In this chapter we examine the interest around a number of television series
broadcast on a weekly basis. We show that through analysis of initial conversation
between fans or users of dedicated web forums we can provide a description of
the greatest period of interest (or peak). We then focus our attention on this peak
with an ultimate goal of characterising episodes as a function of the actions and
qualities of the people that take part in early conversation about this episode. We find
that early interaction trends have strong similarities with the overall conversation
patterns, and contain the majority of information provided by influential members of
the community. This observation has important implications for the rapid generation
of meta-data which may be used during later broadcast and re-runs for description
and valuation of episodes.

1 Introduction

Recent years have seen a massive increase in research into real-time information
retrieval, providing strong evidence of the growing importance of temporal infor-
mation. It is essential to remember however that the nature of the information being
shared in real-time is necessarily less in-depth than that of, say, web forums which
are not as time-sensitive. Within a web forum it is easy to browse past discussions
and posts of users, even those from many hours or days prior to the current moment,
and respond. As a result users are able to write more and consider topics at a higher
level than any one current issue.
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This type of interaction is not yet possible on real-time websites due to the amount
of information being generated. The method of delivery is more akin to a reservoir
where information is available for a fixed period of time before being washed away.
Although real-time services such as Twitter provide a means of gauging instant
reaction to events such as political rallies and live sports competitions [10, 27], the
enduring nature of web forums and other online resources means that conversations
can take place over longer periods of time at a more sustained volume. While this
information is not truly created from real-time sharing, the style of content being
discussed can affect both the reaction and interest surrounding it.

The viewing habits of television and internet users are also changing, meaning that
there is an ever-increasing desire for content on demand. While real-time information
can help to guide viewing habits and choices at the time of broadcast, analysis of
sources such as forums can help in providing deeper more targeted recommendations
at a later date. Analysing dedicated forums allows us to understand fans’ reactions
to specific episodes or series, and provide recommendations based on these insights
rather than a purely content-based approach.

It has always been important for advertisers and content providers to know
audience sizes and opinions when calculating market value. Gensch and Shaman
[17] used time series of raw viewing figures to predicting the ratings and subsequent
earning of television series. Their approach could be improved upon by incorporating
the reactions of viewers as well as these viewing figures: advertising costs could be
adjusted during later broadcasts of episodes that have been received particularly well
or badly.

While it is interesting to look at the reactions of the audience as a whole, focussing
on those users who are most influential or informed provides the greatest chance of
generating useful meta-data to aid the above goal of revenue increase. This has
implications when deciding the fate of early-stage television ventures also. It is
therefore important that this content is not lost due to shortened observational time
windows.

In this chapter we examine the interest around a number of television series that are
broadcast on a weekly basis. We perform rapid analysis of conversation generated
by forum users’ posts for a given episode, and analyse comments posted so as to
provide a description of the principal point of interest (the peak). We then focus
our attention on this peak and evaluate the behaviour of users within it compared to
during the entire conversation life-cycle. The ultimate goal is the characterisation of
episodes as a function of the actions and qualities of the people that take part in this
discussion so as to use this information during later broadcast, video on demand, or
similar services.

The major contributions of this chapter are two-fold:

• We show that it is possible to cluster the trend within conversation threads, and
use the clustered conversation peak period of interest to characterise the evolution
of the thread early in its life-cycle.

• We show that it is possible to identify those user within the forum who act as
“conversation catalysts” for subsequent analysis. It is also shown that limiting this
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Fig. 1 The workflow of our approach

analysis to the aforementioned “period of interest” retains the majority of these
catalysts’ posts.

By considering the contributions of users to a forum within an adaptive sliding time
window, we are able to perform unsupervised ensemble clustering on the temporal
representations of users to assign a principal (most representative) role. This extends
past work [3] that used measures adapted from the citation analysis domain to assign
roles. We show that our measures help to differentiate more clearly why certain users
are ranked highly within the social network.

In the experiments that follow we shall examine how much information can be
learned about an episode given just the first week of activity after broadcast. We shall
further restrict ourselves to the time during the initial “peak” of discussion. We are
able to show that restricting analysis to the conversation peak still allows for analysis
of the conversations between the most prominent and important users within the
forum. This procedure is illustrated in Fig. 1.

Note that here we would like to show that it is possible in the context of forum
discussions to restrict analysis of conversation to early interactions about a show
rather than waiting for the thread to die. This restriction allows for increased scala-
bility (through reduction of the volume of content being analysed) as well as speed
since, as shown in Sect. 4, the periods of interest last just a few days. While this may
seem slow in the context of real-time analysis, it is adequate in the context of TV
and Video-on-demand (VOD) recommendations where users do not require the same
level of immediacy. It is also important here to recall that our ultimate goal lies closer
to the realm of advertising revenue maximisation through increased understanding
of how content was received by the audience.
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In the next section we detail related work before discussing the collection,
preparation and composition of our corpus in Sect. 3. Section 4 provides a back-
ground on time-series, as well as an explanation of method to discover the period of
interested mentioned above in Sect. 4.1.1. Details of the new adapted measures that
we have created to characterise our forum users are listed in Sect. 4.2. The experi-
mental procedure is outlined in Sect. 5. Finally in Sect. 6 we draw some conclusions
from our experiments and elaborate on future research directions.

2 Related Work

The related work to our own stretch across two fields; those of social network analysis
and temporal analysis. Both of these fields have been researched extensively and so
we will not provide an exhaustive list but instead some of the more directly related
research concerning entertainment content and its meta-data, much of which comes
from web forums and dynamics around user interaction.

Work on predicting the final box-office earnings of movies as well as future ratings
from content features and meta-data has been performed in the past [22, 31]. These
approaches use a variety of data ranging from IMDb ratings to the text content of
both professional and amateur critical reviews. All of these approaches centre on
cinematic releases that are inherently one-time/unique. Our work is specific to meta-
data (at present forum posts) created about television series built on episodic content
allowing us to examine the activity around several similar pieces of content.

Temporal information plays an important role in the understanding of forum and
online social dynamics. Activity on websites and forums is bursty by nature, and
having identified these bursts it is possible to weight posts as a function of the
general interest at a specific time-point [33]. Yang and Leskovec [40] observe the
temporal clustering patterns around internet memes; interest is implicitly qualified
by the shape of these patterns.

By looking at the evolution of users within a forum, Kan et al. [23] look to classify
the usage patterns of users. Their approach however disregards explicit temporal
information such as the time a user performs an action or creates a forum post. Rowe
et al. [35] use content and structure specific features to predict how threads within
web forums will grow over time. They look to the readability, polarity and focus of
users to predict whether posts within a forum will receive replies. Will this approach
is useful in observing the growth potential of the conversation, the temporal aspect
of conversation is again ignored.

The shape of associated financial temporal information is also used by Lavrenko
et al. [28] to categorise text and build language models about stocks. Analysis of the
time series of public opinion is performed by O’Connor et al. [30] so as to predict the
outcome of political polls. This work requires time series or long duration however,
due both to the volume of data and its subsequent fluctuations.

Web forum and news group interactions have been well researched for many
decades, and more recently these ideas have been migrated to the field of social
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media network analysis [14]. The structural properties of threads within forums,
both their reconstruction and growth have helped in understanding how forum users
interact [37]. The usefulness or value of specific posts within a forum has been also
studied [8, 26], allowing for moderation as well as information filtering.

In the literature there are two dominating approaches to detecting the social roles
of users in a social network. The first approach consists of extracting interesting
qualitative and quantitative features from the structure and content of discussions,
and then performing a comparative analysis of these features’ values across users
[5, 39]. The main difficulty of this approach is that in order to apply supervised
learning, one first has to have a labelled training data set. Assigning labels, however,
is difficult due to subjectivity notions of influence. This may be overcome by using
unsupervised learning techniques [40].

Dynamic block-models have been used in the past to observe the changing roles
that users can have [15]. The dynamics of relations/links between actors in the social
network are used to attribute the roles. In contrast, we perform our role assignment by
looking at the behaviour of users in general throughout our observation period, and
not simply by the roles of each user’s neighbours.Unlike the multiple-role approach
however [38], we attribute a single role per time-windows but this role can change
between time-windows.

The second approach models influence as an epidemic, or the spread of a disease
in a population represented as a network of users [1, 11]. However, unlike presence or
absence of illness, the fact of having an opinion is vague and subjective. Moreover,
the traditional “epidemic” approach only takes into consideration the structure of
the user network, while in the context of influence it makes sense to consider other
factors as well.

There is little work on using citation analysis approaches with the context of web
forums [3, 18]. Examining the reactions to the posts of users across a forum allows
improved understanding of what makes a person central to the network or forum
community. Garfield observed 15 separate reasons for the citation of articles within
a work [16]; Brooks notes that it may in fact be far more complex than this [7].
The reasoning remains strongly linked to the reasoning behind online conversations;
people search for social consensus or validation of their own opinions [2].

Yu et al. [41] use semantic similarity of content to improve TV
personalization. They define similar TV contents to be those with similar seman-
tic information, e.g., plot, background, genre, etc. and propose a hybrid approach
for TV content similarity, which combines both the vector space model and category
hierarchy model. It measures TV content similarity from the semantic level than the
physical level. This approach differs from our own as the purpose here is not for
recommendation of content, but more the discovery of similarities within the reac-
tion of the audience itself. This has the advantage of being less content-specific, and
focussed instead towards possibilities for revenue maximisation.

In this chapter we focus on the growth and clustering of temporal information
around entertainment content. While we want to perform early clustering and char-
acterisation based on a peak period of interest, we also wish to show that limiting
analysis/information to this peak does not significantly impact future research on the
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textual content itself. We therefore also study the distribution of user types within the
conversation threads. Before analyse begins however, we detail the collection and
preparation of the forum content.

3 Corpus Creation

Our corpus was created by crawling 6 years of forum posts from TWOP1 crawled
in February 2012. The website is dedicated to entertainment discussion, and the 7
television series we have analysed feature in the “Top Shows" categories (containing
8–10 television series) on the site2: American Idol, Breaking Bad, Dexter, Grey’s
Anatomy, House, Mad Men, and The (American) Office. These series were picked
for both their critical success and on-site audience in an attempt to ensuring a fan-base
and number of comments of sufficiently large size.

TWOP contains dedicated sub-forums each focussed on a single television series
(Fig. 2), allowing us to tag each thread in our corpus with a single series of interest.
Many topics may be discussed on the forums—future ideas or speculation; actors;
theories—but for the work that follows we are interested solely in those threads that
discuss particular episodes. Details of how we recognised those threads discussing
single episodes are given below. From this point on, when we refer to episodes
we mean a single broadcast of a series for which a thread exists within our corpus
(Table 1). In order to have a significant number of posts, we ignore the initial season
(if available) allowing the audience and fan base to build. Doing so reduces our
corpus to 278,037 posts by 20,465 unique authors (This number is different from
that in Table 1 as some authors are active in more than one sub-forum).

We focus our analysis of role distribution within threads on the years 2007–2008.
This is done for practical reasons of scale. Limiting our analysis to these 2 years
results in a loss of 1 of our 7 shows,3 but messages are still spread across 220
threads. As a result of pre-processing 1,959 forum users were retained for analysis
(see Sect. 5.2).

Corpus Preparation

After crawling the forum, it was necessary to reconstruct the threads of discussion:
TWOP uses a ‘quote’ mechanism meaning that the quoted text of a message appears
before the text of a reply. We used a series of regular expressions, as well as Leven-
shtein distance (95 % overlap) to detect the parent-child relationship within the past
20 in-thread messages. This threshold was chosen empirically as it provided us with

1 http://forums.televisionwithoutpity.com/
2 Other than American Idol, the 6 series are a spread of entertainment genres from drama, suspense,
and comedy. American Idol is unique amongst the collection as it is a reality TV competition
meaning that both the number of episodes and the level of interest in any particular episode is
somewhat different from a weekly series.
3 Breaking Bad was first mentioned on the site in 2009.

http://forums.televisionwithoutpity.com/
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Fig. 2 Each sub-forum contains threads that are focussed on a single episode of a particular series

Table 1 Breakdown of corpus by sub-forum

Forum Seasons (analysed) Threads (episodes) Posts Authors

American idol 7 323 93,307 8,793
Breaking bad 3 25 8,406 579
Dexter 6 60 11,609 1,390
Grey’s anatomy 8 147 47,673 4,921
House 8 141 47,767 3,953
Mad men 4 37 32,178 2,080
The office 8 145 37,097 3,668

Totals 44 878 278,037 25,384

This is the corpus of episode-specific threads after removal of Season 1

high retrieval. We manually checked the efficacy of the proposed thresholds across
10 % of the corpus and found a 100 % retrieval rate for all quoted parent texts.

While the sub-forums are focussed on particular series, the topics of conversation
within any single thread can be varied. There is however a convention used on the
forum as a whole to signify discussion about a particular episode that allows us to
filter and retrieve (see Fig. 2) just these threads and their posts. The title of any thread
discussing a single episode is of this form allowing us to analyse just these focussed
conversations.

Having retrieved a conversation thread for each episode in a series, we are then
able to analyse the temporal posting patterns of users on a per-episode basis. The
nature of the series that we are studying is such that a new episode is broadcast each
week. This has lead us to the following question: if we examine just the first week
after a episode is broadcast, how well can we characterise all conversation about the
episode? Is it necessary to study the whole week (or longer) when we see so much
of the activity focussed in the short period after broadcast?
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4 Evolution of Conversation Threads

We look at the time series created by the hourly interactions of users on the sub-forums
of interest for the first week post-broadcast. Every forum has its own life-cycle: with
respect to the forums we are studying, there is a regular burst of activity the night of
a new episode’s airing and for some time after. This burst of activity is of particular
interest to us. As we have stated, early identification of the reaction to shows could
help with pricing of advertising during later broadcasts. To better understand this
peak we must also have an understanding of the participants. In this section we shall
therefore first explain how we will identify the peak activity within thread time series,
and next detail how we can classify the users within the forums (thus threads) by
their behavioural roles.

4.1 Temporal Analysis

In order to apply time series analysis it is necessary to regularise and smooth the time
series as there are many hours during which there are no interactions. The natural
circadian rhythm of forum users creates an irregular time series: the decomposition
of time series (as described below) requires that there be a uniformly distributed
fixed sampling interval, and therefore that the time series to be analysed, be regular.
We create a mapping from our irregular time series to a uniformly distributed hourly
time series, aligning the posting times to the nearest hour. We also insert zeros for
all hours (such as early morning) where no posts have been made, thereby creating
a regular time series to be smoothed.

Trends within Time Series
Any (additive) time series, xt , may be decomposed into its constituent parts that
describe the overall series in terms of particular features [9]. In general, a systematic
change in a time series that does not appear to be periodic is known as a trend, mt , and
is modelled by the trend component. The time series that we observe within our sub-
forums are indeed additive, allowing us to perform time series decomposition and
study the underlying trend within our episode conversation threads [24]. Removing
the seasonal effect (a repeating pattern within the time series) of the circadian rhythm
allows us to observe the actual trend in interest around a particular episode.

The trend is a Centred Moving-Average of width frequency, F , and centred
on the point of interest, t . In our time series of hourly posting activity this frequency
corresponds to a 24 h day:

m̂t = 1

2F
xt− 1

2 F + 1

F
×

1
2 F−1∑

j=− 1
2 F−1

xt− j + 1

2F
xt+ 1

2 F (1)
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Fig. 3 Overall posting behaviour for ‘House’. The trend (F = 365 days) is shown in orange

As shown in the above formula F
2 values are required before t , and so the hourly

trends do not have observations before t = 12. We begin our time series on the
broadcast date of episodes: the shows of interest are all broadcast in the evening and
so are there are more than F

2 hours before the majority of posts. This is an important
consideration however for shows which are broadcast at an earlier time. It may be
necessary to begin time series on the day before broadcast in some cases.

Although the trend creates a smoothed or filtered version of the original series
with many of the spikes of activity removed, it also provides us with a far better
understanding of the continued interest around an episode. We use thread trend
information as the starting point of our analysis.

Clustering Similar Trends
Having identified the trend for each thread/episode, we would like to verify that
these trends may be used to anticipate and understand the longer-term reaction by
the community to an episode. Figure 3 shows the overall posting behaviour of users
on the ‘House’ sub-forum. We can see that the overall interest in the series displays a
decreasing trend (F = 365 days), however the activity around any one episode can
defy this general trend.

One might assume a somewhat natural clustering presented by simply grouping
on seasons (September–May), thus grouping highly-discussed episodes from later
seasons with those that provoked far less discourse simply because of their proximity
in broadcast date. This would however be naïve: even though the general volume of
comments in later seasons may has decreased, the speed and intensity with which
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users/fans greet a great episode does not. For this reason we choose to examine the
shape of the trend (interest) curve for discussion about each episode, and cluster
episodes as a function of this curve. In order to study this we must first normalise
the volume, thereby ensuring that the time series is indeed a function of the interest
rather than simply volume. For this we perform min-max normalisation4 prior to
decomposing and reducing the time series into its trend information.

Since our time series have been regularised, they are all of equal length T = [t0, tn]
and can be considered as vectors. Unlike in the case of “meme" detection [40],
our time series begin and end within fixed time periods (t0 = broadcastdate to
tn = t0 +7), and so translation should not in fact be invariant. Translation invariance
implies that small-scale conversation delayed by several days should be considered
in a similar light to that happening in volume soon after broadcast. By observa-
tion we see that the conversation that takes place just after broadcast is far more
involved/reactionary than later. It is not of the same type as memes where the meme
has simply been discovered/shared by a new audience: here the audience is already
focussed on the topic. For these reasons we believe k-means clustering is an
appropriate means of clustering our 8-day time series trend data. The choice of k is
detailed below in Sect. 4.3.

4.1.1 Conversation Peaks

The clustering centroids obtained for the Grey’s Anatomy series are shown in Fig. 4.
Here we can see that the norm is to post soon after the broadcast of an episode, though
not always to the same degree. We would like to further examine this burst of peak
activity and in doing so characterise the conversation surrounding each episode. We
can see in Fig. 4 that it would not be wise to simply take the first x hours after an
episode is broadcast and choose this as a cut-off point for “peak interest" since the
peak itself can be of dramatically different shape (cf. Cluster 1 vs. Cluster 2).

More formally we observe T = [t0, tn] the 8 days surrounding the broadcast of a
show, and look to define a period of interest, i = [cs, ce] contained within T such
that a) it is possible to predict the interest that a particular show has received as a
function of its assigned cluster centroid and b) to do this as early as possible. We
choose to use the 2nd half-life of the maximum value (a reduction to 25 % of the trend
maximum value) as a cut-off when defining i . Taking the first time point before, cs ,
and after, ce, the peak maximum fulfils this requirement and defines i . Our choice of
threshold is based on both empirical analysis and past work [40]. Unlike Yang and
Leskovec however, the nature of our content and audience means that the period of
greatest interest/activity falls far faster after it peaks.

As stated, the shape of this peak can vary, but we found that the majority of peaks
are between 24 and 72 h duration (minimum peak duration was 18 h, maximum 84 h;
median of 41 h). The limits of i are always aligned to the nearest hour as this is a
property of the time series created in Sect. 4.1.

4 Min–Max normalisation creates values in the range [0, 1] using the formula: x = x−min(x)
max(x)−min(x)

.
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Fig. 4 Clusters obtained on the Grey’s anatomy trend time-series

Fig. 5 Clustering on the peak period (shaded) of the time series

Every thread in a particular cluster, c, is now limited or ‘cut-off’ using the cluster
centroid. i.e. every thread in c is shortened to contain only those posts that were
created between the hours cs , the start of the centroid’s peak, and ce, the end of the
centroid’s peak (Fig. 5). We will examine the features of these new peak-limited
threads and their ability to characterise and predict the features of the entire thread.
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By this we refer to the full thread of discussion present in our corpus and not just the
first week.

The ultimate aim of discovering a limited time-series i is to investigate and under-
stand the reaction to an episode. We may in future like to perform qualitative research
on the conversation and so it is important that limiting our study to i does not mean
losing a large quantity of important/insightful content from important key commu-
nity members. It is therefore necessary to define what we mean by “important”
community members.

4.2 Bottom-Up Role Identification

While understanding of conversation growth may be possible from just early interest,
it is important to gain an understanding of the users who are showing this interest. We
look to the interactions of a forum as they change over time, and how these interactions
place certain users into certain behavioural roles. At present the most important of
these is that of the influential users. These influential users, or “conversation catalysts”
are able to spark discussion and their comments may be seen as a rich source of meta-
data to aid in classification and understanding of the reactions to particular episodes.

We will use the approaches put forward in the citation analysis literature to provide
a measure of interaction and importance to our forum users. This differs from purely
graph-based measures as we intend to take into account only those interactions that
have been judged sufficiently interesting. We then use these distinctions in importance
and interaction style to help in role detection. We adapt two well-known citation
metrics to define “sufficiently interesting” posts. These are Hirsch’s h-index [20].

An author has an h-index of h if h of his total contributions have received at least h citations
each (the h-core).

and its successor g-index [12]:

An author has a g-index g if g is the highest rank such that the top g contributions have,
together, at least g2 replies. This also means that the top g + 1 messages have less than
(g + 1)2 replies.

The proposed methodology is an extension of the work of Anokhin et al. [3] who
identified social roles based on the evolution of user features over time using a fixed
sliding time window. We extend their work by looking at the directed graph of user
interactions over activity-based varying time-windows.

Defining Behavioural Characteristics
Adapting the measures of Anoknin et al. and applying them to our corpus helps us
understand the differing roles played by our communities’ users.

Node (Neighbours’) g-(In/Out) Index This feature evaluates how active neighbours
of the node are. Node out-g-index is the feature that characterizes users who often
replies to users who reply to other users. High Node g-In-Index shows that a user
is often replied to by users who get a lot of replies themselves. This is indicative of
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being well known/respected by other well-known users. in[out]-g-index is calculated
as the highest number g of predecessors[successors] such that sum of their weighted
in[out]-degrees is g2 or more.

Catalytic Power The Catalytic Power of a message k reflects the amount of reaction
from other users caused by the message: in the context of forum discussions, we use
the number of direct replies, ck , to estimate this power. The catalytic power of a user
A is consequently defined as the sum of powers from the h-core of all messages
sent by A.

Weighted In/Out Degree The weighted out[in]-degree of a node A at moment t
is defined as the sum of all communications from[to] A to[from] all neighbours B,
(A → B), in its neighbourhood N (A).

Activity The activity of a forum user clearly affects the way the user is perceived
by other members of the forum. To measure a user’s activity we use the number of
messages posted by the user. It has been noted [1] that high activity alone does not
guarantee an important role in the forum.

Cross-Thread Entropy Let us consider a user who posted id messages across all d
threads. Let n = ∑

i i , then focus of a user is defined as:

F =
∑

d

− id

n
log

id

n
.

This measure helps to distinguish between users who contribute to many threads
across the forum from users who focus on a single thread. We also calculated the
topic entropy but found this to be too discriminative as most users in our sample are
only interested in a single topic/show.

For every user we calculated a time series of daily feature vectors. Each feature
vector contains seven values: a user’s in/out degree, g-in/out index, catalytic power,
activity, and cross-thread entropy.

Adaptive Time Windowing
Although analysis of users’ features obtained from the entire data sets reveals general
patterns of interactions between users, it is also important to consider how values of
those features evolve over time. With TWOP we observe weekly peaks of activity on
the broadcast dates of new episodes of each series, and almost no activity in summer
when none of the six TV shows are broadcast. There exist weeks when the activity
of users was very small, meaning even the influential users are “underestimated” as
they simply don’t have enough users to communicate with.

To cope with these effects we use variable-width time windows, rather than
constant ones. The width of each window is adjusted in order to contain at least
μmsg − σmsg messages as the time windows before it, where (μmsg) and (σmsg) are
the mean and standard deviation of the number of messages within all time windows
up to this point. Figure 6 shows the adaptive time windows computed over the years
2007–2008.
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Fig. 6 Adaptive time windows: blue—lengths of time windows in days, red—numbers of messages
in time windows, green—(μmsg − σmsg)

It can be seen that in the periods of extremely high activity the time windows
contracted to the length of 1–3 days, while low user activity is characterised by very
long time windows (about 6 weeks in July 2007).

Every user is now represented by a 7 dimensional time-series of daily feature
vector observations. The activity of each user is far from uniform, and consequently
most users are likely not to play the same social role all the time: in the current work
we shall assign a user to their most representative role. Although in future we plan
to consider temporal evolution patterns of the proposed features to identify roles,
we currently assume that each social role is characterised by a feature vector with
certain values of its components. In order to find these values, we use unsupervised
learning to cluster our users’ time points.

Ensemble clustering
The particular feature of the given data is that it contains a large number of data
items. Not all conventional clustering algorithms can deal with such large amounts of
data. Ensemble clustering is a possible approach that allows us to overcome this
problem [4]. This approach is robust to fluctuations within the data, and also provides
good stability and accuracy for clustering partitions. It is also a faster clustering
technique which is necessary for our role detection step as there is for more data than
in the case of our episode threads.

We follow the process set out by Ayad et al. [4] in which s sub-samples of the
entire data-set are taken with replacement, and then each s is clustered into l clusters.
A subsequent meta-clustering is performed in which these sample clusterings are
combined to provide a final stable clustering of k clusters. This finally meta-clustering
can be performed using any clustering technique: we choose to use hierarchical
clustering in this final phase as was proposed in the original publication.
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4.3 Validating the Number of Clusters

We cluster our time-series of episode-centric thread posts using k-means clustering.
It is necessary however to use ensemble clustering for our user time-series for the
reasons previously stated. K-means clustering is a particular case of ensemble clus-
tering when the initial l and final k number of clusters are the same. Both these
algorithms are thus unsupervised processes, but it is necessary to provide the final
number of clusters, k, to be created. Out of several existing techniques we chose three
indices that are orthogonal by construction and so provide a more reliable estimation
of the correct k clusters. To find the optimal value of k, each index is computed for
k = 1, 2, . . . , nmax clusters.

Note that the validation indices are computed using k-means. The reason is that
it is a non-trivial task to adapt ensemble clustering to validation indices. Previous
work has shown however that in the case of the time-point clustering, each cluster
corresponds to a certain behaviour of a user and these behaviours can still be captured
using k-means [3].

The Hartigan Index [19] for n items into k partitions is defined by the relative
measure of the reduction in square error, when the number of clusters increases from
k to k +1. The main disadvantage of applying Hartigan’s index to our data is that the
number of items in the data set is so large that the scaling factor (n − k − 1) does not
make any difference. The KL-Index [25] is an attempt to overcome this difficulty;
the number of data never appears in the expression for KL-Index explicitly.

The Stability Index [6] uses a different idea: instead of validating the number
of clusters using within-cluster distance, it assumes that for a good k the clustering
has to remain roughly the same even for a subset of data.

5 Experimental Analysis

Our experiments are a two stage process: firstly we identify the peaks within the
episodic threads and compare clusters of peaks with entire threads based on a number
of quantitative measures. We then examine if the use of just these peaks for future
community analysis results in a major loss of information with regards our catalysts.

5.1 Clustering Episodes

We would like to cluster the episodes of each of our series of interest based on the
features that we obtain by examining the initial burst or peak of activity. We then
compare this clustering with one based on the full-length (sometimes lasting over
a year) threads. Our goal is to enable an analysis based on the first few days after
broadcast that is equivalent to one performed many days or weeks later.

In order to characterise our conversation threads it is necessary to define a set of
features that best describe them. We choose to use a set of features that model both
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the scale of conversation as well as the involvement or interaction (e.g. quoting and
replying). We follow previous work [13, 26] that has looked to define features of
both the authors and posts within a forum thread:

• Number of authors: The number of distinct users that have taken part.
• Number of Posts: The total number of posts.
• Number of Originals: The number of posts that are not replies to another post.
• Number of Replies: The number of posts that are in reply to a previous post.
• Avg. Post Length: The average character count of posts.

The first two features describe the amount of general interest surrounding the
thread. More users may be seen as an indication of wide-spread interest. The latter
three features are indicative of the intensity of discussion within the thread. The
more evenly balanced the ratio of original posts to replies, the more likely it is that
a conversation of greater depth is taking place. In this work we remain focussed on
the quantitative features of the threads rather than qualitative and so disregard any
further in-depth analysis of the content of threads themselves. We do provide some
further thoughts on possible areas of research in Sect. 6.

We now perform a second round of clustering but this time on the feature vectors
of the peak-limited and entire duration threads. Again we use Hartigan’s Index to
decide on the number of clusters to use, as well as 100 iterations of k-means. Table 2
show the number of clusters used for each clustering.

5.1.1 Comparison of Clustering Results

In order to compare the clustering of each of our feature vector representations,
we use the well-known Adjusted Rand Index (ARI) [21]. This is a measure of
accuracy or agreement between two clustering solutions in the range [−1, 1]. The
general Rand Index [32] is the number of pairs of elements, a, that are assigned to
the same cluster in both partitions; plus the number of pairs of elements, b, that are
assigned to different clusters in both partitioning; over all possible pairs of elements:

ARI = Index − Expected Index

Max Index − Expected Index
(2)

Here the value of ARI is zero when the index equals its expected value (under
the generalized hypergeometric distribution assumption for randomness) [36]. It is
important to note that the number of clusters chosen for our two datasets is not
always equal.The reasons for this different number of clusters could be that the
range of values that particular features take is smaller within the peak than across the
time series as a whole. The inverse may also be true where threads limited to only
the peak activity exhibit active conversation, but as the thread grows longer (more
time passes) the effect of this initial burst of conversation is dampened.

We can see that in general there is reasonable agreement in the clustering produced
on both the entire and peak periods of a thread (Table 2). We believe this, along with
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Table 2 Rand index for the agreement of clustering for entire and peak-limited thread feature
vectors

Forum Clusters (entire) Clusters (peak) Number rand index % posts in peak

American tdol 4 4 52,003 0.00 49.69
Breaking bad 4 9 300 0.19 60.97
Dexter 4 5 1,170 0.30 48.45
Grey’s anatomy 4 4 10,731 0.27 40.82
House 4 4 9,870 0.27 52.31
Mad men 4 4 666 0.04 54.94
The office 4 5 10,440 0.33 32.08

the high percentage of posts found within the peak, shows strong justification for
concentrating analysis on the peak period since this is a good characterisation of the
final thread.

The worst performance is seen on the American Idol and Mad Men sub-forums.
Mad Men has a far shorter seasons than any of the others (with the exception of
Breaking Bad) and so there are less threads against which to perform a clustering
(see Table 1). This also means that there is less variation within the features of peak-
period threads, again impacting the clustering. American Idol is the inverse having
very long seasons and large volumes of commentary. This commentary is provided
by large numbers of users (mainly new/insignificant) and so the features used to
classify the complete threads are more varied. We believe there is a lot of mixing
between clusters resulting in a low ARI. Further analysis is warranted into the affects
of both media and post content on the amount of conversation produced, as well as
the degree to which the length of a season affects clustering.

5.2 Behaviours Discovered

As stated in Sect. 3 we focus our analysis of role distribution within threads on the
years 2007–2008. For every user we calculated a time series of 730 feature vectors,
one for each day. Each feature vector contains seven values: a user’s in/out degree,
g-in/out index, catalytic power, activity, and cross-thread entropy.

The feature vectors with all-zero components were excluded as they represent
moments when users were not part of the community.5 We also choose to filter out
all users who have not written at least 10 messages during our chosen timespan as
we do not have sufficient information to infer a behavioural role to them. As a result
139,474 feature vectors belonging to 1,959 forum users were retained.

Ensemble clustering was applied to the feature vectors of forum users with the
following parameters: samples s = 40; re-sampling probability p = 0.5; clusters for

5 They may have posted a new (non-reply) message, but have received no replies to this message.
Hence all values apart from activity are zero.
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Table 3 Summary of cluster centroids for feature vector from ensemble clustering

Cluster In Out In Out Catalytic Cross-thread Activity
degree degree g-Index g-Index power entropy

1 0.070 0.075 2.26e−4 0.052 1.59e−01 1.98e−01 0.300
2 0.010 0.221 0.000 0.000 7.97e−05 5.98e−03 0.205
3 0.291 0.048 0.322 0.000 2.34e−01 7.52e−02 0.241
4 0.428 0.429 0.447 0.445 3.65e−01 1.80e−01 0.445
5 0.242 0.305 0.277 0.335 1.93e−01 5.52e−03 0.287
6 0.008 0.000 0.000 0.000 0.000 2.43e−16 0.171
7 0.012 0.271 0.000 0.308 2.74e−05 8.07e−03 0.231

samples l = 35; Sample clustering algorithm: k-means with 1,000 re-initialisations;
final clusters k = 7. Table 3 presents the centroids of the clusters created through
the ensemble clustering process. It should be noted that these centroids are not exact
representations of the clusters (since hierarchical clustering does not produce the
same elliptical clusters as k-means) but provide strong indication of the points within
each cluster.

These cluster centroids help to classify user behaviour, although it is not immedi-
ately obvious as to what behaviour every cluster corresponds. We can however see a
number of obvious divisions that have been captured. Cluster 3 for example contains
all observations where a user participated in several threads (hence the relatively low
entropy) and received significant amount of replies (high in-degree) from prominent
people (high in-g-index), although not replying much (low out-degree), making them
something of a catalyst as evidenced by the cluster’s high catalytic power.

Cluster 2 on the other hand shows evidence of times when users are unable to
generate any conversation (low catalytic power & in/out-g-index) despite having
replied to many comments in a wide variety of threads (high out-degree & entropy).
Cluster 6 represents non-active users (lowest activity). Such users do not get many
replies; do not reply much; and consequently are not likely to be known in the
community.

Two clusters presented in Table 3 are of special interest for us. Cluster 4 includes
feature vectors with high values of all the features; members of this cluster can be
seen as potential catalysts in several topics. Cluster 5 also has high-connected char-
acteristics (in/out(-g)-indexes) but are unable to generate interaction (low catalytic
power). This may be due to their far less focussed behaviour as witnessed by low
entropy.

5.3 Participation of Thread Lifespan

We are interested to know if disregarding all messages that happen outside of the
peak would result in significant loss of insightful information. We characterise this
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Table 4 Median percentage of role contributions found within the peak

Forum Episodes Role 1 Role 2 Role 3 Role 4 Role 5 Role 6 Role 7

American Idol 73 0.46 0.52 0.63 0.80 0.95 0.98 0.00
Dexter 24 0.52 0.79 1.00 0.00 0.00 0.00 0.00
Grey’s Anatomy 40 0.31 0.45 0.70 0.91 1.00 0.00 0.00
House 41 0.37 0.57 0.71 0.94 1.00 0.00 0.00
Mad Men 13 0.35 0.47 0.74 0.94 0.99 0.00 0.00
The Office 36 0.33 0.38 0.64 0.79 0.97 0.00 0.00

by saying that the retention of information produced by important users is critical.
Table 4 shows the percentage of posts that are retained per role if only the peak is
considered. It can be see that while at least half of all messages produced by lesser
users is lost (Roles 2, 6, & 7), practically all posts created by important or nearly
important users (Roles 4 & 5) is retained. Role 7 is a vary sparsely populated role
which explains the lack of posts within the peak. We see that Dexter again suffers
from the misclassification of the peak.

This result shows that it is possible to use just the peak period to gather meta-data
about the episode—semantics, descriptions, named entities—without fear of losing
large amounts of content contributed by influential users.

6 Conclusion and Future Work

The focus of the work presented here has been on the quantitative aspects of online
forum discussions. We have shown a method for focusing on the initial buzz around
new episodes of television series, and validated that this focus significantly biases
neither the overall structure of conversation threads nor the presence of its most
important contributors. This focus does however present many interesting future
challenges with respect to qualitative analysis.

We would like to study the correlations between fan-based/critic episode rat-
ings and the temporal patterns/clusters found using the approaches described in this
chapter. It would also be interesting to observe the correlation between critical ratings
and the participation of the users we have identified as important using our proposed
features.

As stated previously, the role that a user plays may change over time [15].
Although our approach helps to identify important users despite inactivity for a
period of time, we see that there is important work to be continued on the dynamic
evolution/transference from one role to another. Deciding on an appropriate size
time window is key to discovering the role of a user at any time-point; we will exam-
ine further appropriate time-intervals for the graph snapshots [29], as well as [34]
time-respecting sub-graphs.
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The differences in the number of clusters produced for Breaking Bad illustrate
one limitation of the approach we have taken. Many posts appear to happen outside
of the peak period for threads in this sub-forum. Manual observation of the threads
shows that there is one episode that received over twice the comments of all others
on the forum. A means of recognising bursts of activity within threads is required to
alleviate this problem [33].

It would be of interest to study different types of content so as to assertain the
generalisability of the our approach. The particularity of the content we have studied
is that it has weekly nature meaning that most conversation happens soon after
broadcast leading to obvious peak interest. This may not be true for sports/live content
or movies. The application of event detection approaches similar to those of Lanagan
and Smeaton [27] can alleviate this problem: here only the content around significant
events could be studied. Once this event detection is performed, the approach outline
here may serve to improve understanding and characterisation of those events.

In this paper we have seen that by looking at the evolution over just a few days
it is possible to predict the overall shape and trend within conversations of longer
duration. Clustering of these peak periods of conversation allows us to focus our
attention on the initial buzz and excitement generated by an episode. We have also
shown that by focussing on just this peak, we do not lose significant amount of
information that has been produced by the most central and dedicated members of
the community. This discovery alone has important implications for those interested
in the quick identification and classification of content for such low-level purposes
as meta-data extraction or indeed high level ones such as advertising valuation.
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Abstract Prediction of user behaviour in Social Networks is important for a lot of
applications, ranging from marketing to social community management. This chapter
is devoted to the analysis of the propensity of a user to stop using a social platform in a
near future. This problem is called churn prediction and has been extensively studied
in telecommunication networks. We first present a novel algorithm to accurately
detect overlapping local communities in social graphs. This algorithm outperforms
the state of the art methods and is able to deal with pathological cases which can
occur in real networks. It is then shown how, using graph attributes extracted from
the user’s local community, it is possible to design efficient methods to predict churn.
Because the data of real large social networks is generally distributed across many
servers, we show how to compute the different local social circles, using distributed
data and in parallel on Hadoop HBase. Experimentations are presented on one of the
largest French social blog platforms, Skyrock, where millions of teenagers interact
daily.
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1 Introduction

Churn prediction is a well studied data mining task in the context of telecommuni-
cation networks [1]. It consists of predicting whether, in a near future, a user will
leave his present operator for another one. With the multiplication of social network
platforms that generally provide similar functionalities, a subscriber of a particular
platform can decide to churn and switch to another network. This phenomenon was
observed on several platforms when Facebook arrived on the French market. Churn
is just an example of a user behaviour that an operator would like to predict in order
to take some appropriate action (marketing, ads targeting, recommendation, content
pushing...).

The behaviours of users are often social or viral in the sense that one user will
influence or be influenced by his or her friends. It thus makes sense to study the local
environment of a user in order to predict churn more accurately.

Community detection in social networks has attracted a lot of attention in the past
years. The resulting communities can be used to understand the underlying network
structure. We show in the present work how the community of a user can be used to
predict if he will become inactive (i.e. he will churn) in a near future.

Hereafter, we focus on local rather than global community detection. Indeed,
methods for global community detection like those described in [2] generally assume
that one can access the whole network. This assumption is not realistic for very large
and dynamic networks, because it would induce too large computing times. Further-
more, existing global community detection methods like Louvain’s algorithm [3] (one
of the best methods to efficiently partition graphs with millions of nodes) usually
produce very large communities that are not useful in practice. This is a consequence
of the optimization of global criteria like modularity [4] . To overcome this drawback,
several local community detection methods have been introduced: starting from a
node, one explores at each step the neighbourhood of the current local community,
and include the external node that produces the maximum gain for the objective
function used by the method. Examples of such methods are presented in [5–8]. In
this chapter we will focus on these local methods.

The contribution of local community-based attributes for churn prediction will be
illustrated here on a dataset provided by Skyrock (http://www.skyrock.com). Skyrock
is a large online blog network where users can establish friendship relations. It is then
possible to compute the communities in this friendship network. The aim of this work
is to show that the local communities of users in real friendship social networks such
as Skyrock, produce relevant attributes for the construction of a supervised learning
model for churn prediction.

Note that, in this study, we do not use the contents posted by the users, and
don’t analyse their behaviours (except for absence or presence of connections to the
platform). We only focus on social ties. Better results could in principle be obtained
by taking into account these indicators, but the analysis becomes more complex.

Implementing Social Networks Analysis methods on a real network application
is not trivial; the data is huge, the processing environment is complex and results

http://www.skyrock.com
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are needed in real time. Moreover, the data of real large social networks is usually
distributed across many physical servers. We then need methods that can deal with
distributed data and that can take advantage of all these servers for computation.
In this chapter we propose an approach to deal with distributed data using Hadoop
HBase framework.

The rest of this article is organized as follows: in Sect. 2, we present the churn
prediction problem in the context of social networks; Sect. 3 recalls an algorithm
we have proposed earlier for local community identification in social networks;
Sect. 4 presents our framework for distributed Social Network Analysis (SNA);
Sect. 5 presents the dataset and the methodology for the construction of the network;
Sect. 6 presents the experiments performed and the relevant results; and finally Sect. 7
presents some conclusions and discussions.

2 Churn Prediction in Social Networks

The term churn is derived from change and turn. It means the discontinuation of
a contract. In business applications, it corresponds to customer loss. In telecom-
munications, a subscriber is said to have churned when he leaves one carrier to
move to another [9], and this phenomenon has been extensively studied [10, 11].
Indeed, it is generally admitted that retaining an existing customer is less expen-
sive than winning a new one [12]. As a consequence, telecommunication companies
tend to move important marketing efforts from customers acquisition to customers
retention. Churn prediction is therefore an important task for Customer Relationship
Management (CRM).

To predict churn, dozen to hundred of attributes are generally derived from the
customer’s profiles and service usages. These features are then used to build a statis-
tical model for churn prediction based on supervised learning [9]. This pure feature-
based churn prediction has the limitation that it does not take into account the social
relations between subscribers.

Indeed, in social networks, social ties or links are also relevant to churn
prediction [11] because people form communities and are more active with members
within their local communities than with members outside their local communities.
It follows that if many members of a user community stop using a service, the num-
ber of persons with whom this user can interact through that service decreases and
the probability that he also churns gets higher. The local community of a user can
therefore be mined to provide community-based attributes for churn explanation.

The analysis carried out in [11] is one of the first in that direction and explores the
propensity of a subscriber of a mobile operator to churn, depending on the number of
friends that have already churned. The method proposed by Dasgusta et al. is based
on a diffusion process and can be summarized as follows:

• the initial seeds set contains the known churners of the past period;
• at each iteration the seeds try to activate their neighbors based on a diffusion

function;
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• all the new activated nodes are included in the new seeds set;
• the process stop when there is no new activated node and there is not a significant

change in the level of activation for each node.

The limitation of this approach is that the notion of community is implicitly
defined by the diffusion process. Moreover, it cannot easily consider other available
information (socio-demographic information, age, gender, adresse, profession,...)
when they are available.

Other studies have also been conducted in P2P networks. For example, authors
of [13] have studied the bias induced by the length of the observation period while
predicting the churn in P2P networks.

3 Local Community Identification in Social Networks

In this section, we recall some basic results published in [8] on the identification of
local communities in social networks. A network is represented by an undirected
and unweighted graph G = ≤V, E∗, where V is the set of nodes and E is the set of
edges. A neighbour of node u is a vertex v such that (u, v) ∈ E . Γ (u) denotes the
set of neighbours of u. Let D be a subset of V . An edge e = (u, v) is internal to D
if both ends u and v are in D. An outgoing link is an edge e = (u, v) that has only
one end in D.

The density δ of links present in a graph is a generic notion that refers to the number
of links divided by the number of nodes to which they are incident. The internal
density δin corresponds to the number of internal links of a sub-graph divided by the
number of vertices. Similarly, the external density δout corresponds to the number of
outgoing links divided by the number of nodes.

A community of a network G is a subset of nodes D such that δin is high, and δout

is low. In the case where the network is not fully known, the community produced
by exploring G starting from a node n0 is called the local community of n0.

3.1 General Greedy Scheme for Community Detection

Most existing algorithms for local community identification use a greedy scheme:
initially, the local community D contains only the starting node n0 and the quality of
this initial community is 0. At each step, the external node that maximizes the quality
function Q used by the algorithm is considered. If its inclusion into D increases the
quality criterion Q, then it is added to D, and the quality Q of the community is
updated. This procedure is repeated until there is no more external vertex whose
inclusion into D increases the quality Q. At the end of the algorithm, D contains the
local community of n0.
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3.2 Quality Functions for Local Community Identification

In the rest of this article, D denotes a local community, B is the set of nodes of D
that have at least one neighbour out of D and S is the set of nodes out of D that have
at least one neighbour in D.

Clauset [14] introduces the idea that nodes on the border of a community (nodes
of B) must have more links with D than with S. The local modularity of D is then
defined by formula (1):

R = Bin

Bin + Bout
(1)

where Bin = ∑
u∈B |Γ (u) ∩ D| is the number of links between B and D, and

Bout = ∑
u∈B |Γ (u) ∩ S| is the number of links between B and S.

Luo et al. [15] has proposed another quality function that takes into account all
the internal links rather than just those edges that link B to D. This idea leads to the
quality function defined by:

M = Din

Dout
(2)

where Din = ∑
u∈D |Γ (u) ∩ D|, and Dout = Bout .

Chen et al. [6] have proposed a new quality function L and a new method. This
method introduced a first innovation: it considers the densities of intra-community
edges and outer edges and not their numbers. More precisely the density of intra-
community links Lin is defined according to the expression:

Lin =
∑

i∈D |Γ (i) ∩ D|
|D| (3)

Similarly, the density of external links is defined by:

Lex =
∑

i∈B |Γ (i) ∩ S|
|B| (4)

Chen et al. then use the ratio of these two densities to define a quality function:

L = Lin

Lex
(5)

To avoid the improper inclusion of vertices into the local community, an increase of
the quality function L does not induce the automatic inclusion of a new node into
D. More precisely, let L →

in and L →
ex denote the new densities if ni is added to D. A

node is included only if L →
in > Lin .

At the end of the main loop, i.e. when there is no extra outside node that produces
a positive gain when added to D, the algorithm reviews the nodes of D. Each node
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of D is removed and a test to add it is carried out. During this confirmation stage, a
node is maintained in D only if L →

in > Lin and L →
ex < Lex .

We recently proposed [8] to improve the algorithm of Chen et al. by adding at
each step, and at the same time, all the nodes that maximize the quality function,
instead of selecting one at random. We also have proposed a new quality function
T which favours the nodes that are closer to the starting node. Hereafter, the corre-
sponding algorithm is named “BME” (after the author’s firstnames). In this approach
the contribution of internal links is given by:

Tin =
∑

i∈D
|Γ (i)∩D|
(1+di )

D
(6)

where di is the length of the path from the starting node n0 to node i in the tree
generated by the algorithm. In this expression, internal links that are close to the
starting node are favored by the multiplicative factor 1 + di . For external links, the
contribution is defined by:

Tex =
∑

i∈D |Γ (i) ∩ S|(1 + di )

D
(7)

In this expression, external links that are far away from the starting node are penalized
by the multiplicative factor 1 + di . This leads to the quality function:

T = Tin

Tex
(8)

We have shown in [7] that BME performs better than the Chen et al. [6] method
which was from our best knowledge the best method at that time.

The time complexity of the algorithms derived from Chen et al.’s method, depends
only on the average degree of the network, the size of the local community found
and the number of neighboring nodes of that community. It is in the worst case
O(|D|d|S|), were |D| and |S| are usually very small compared to the size of the
whole network.

3.3 Local Overlapping Communities

A natural idea for identifying overlapping communities is to take an algorithm A for
local community identification and apply the scheme of Algorithm 1. In this scheme,
A corresponds to one pass through the loop, V is the set of nodes confirmed in the
second phase of the algorithm A and LocalCom is the table of the local overlapping
communities found, indexed by idcom. After each execution of A, the links that are
internal to V \ {n0} are deleted.
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Fig. 1 Some examples of local communities found by algorithm IoLOCo in Skyrock dataset. The
starting node is at the center. We drew only the internal nodes and links. We see that in most cases,
the starting node belongs to many local communities and that some time some others nodes also
belong to more than one communities (see the bottom rightmost figure.)

Even in the case of non-overlapping communities, the application of IOLoCo
achieves the best results [8]. Figure 1 presents some communities found IOLoCo
with In the next sections, IOLoCo will be used to compute communities for churn
prediction.

Algorithm 1 Identification of Overlapping Local Communities
Algorithm: IOLoCo

Input: a graph G and a starting node n0.
Output: a table LocalCom[..] of local overlapping communities of n0
idcom = 0
Initialize LocalCom with the empty table
Repeat

V = the local community of n0 produced by algorithm A
if n0 ∈ V or |Γ (n0) ∩ V | >= ∑

i∈V
|Γ (i)∩V |

|V | then
LocalCom[idCom] = V
idcom = idcom + 1

end if
Mark all the internal links of V \ {n0} as “deleted”

Until ( Γ (n0) = ⊆ )
Return LocalCom
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DISTRIBUTED DATABASE LAYER

DATA ACCESS LAYER

DATA MODEL LAYER

ANALISYS LAYER

VISUALIZATION LAYER

Fig. 2 Distributed SNA model

4 A Model for Social Network Analysis
with Distributed Data

The data of real large social networks is usually distributed across many physical
servers. It is then necessary to develop methods that can access these data efficiently.
In this section, we describe a general framework to perform social network analy-
sis (SNA) in general and the computation of local circles (local communities and
neighbourhood) in particular, in the case where the data are distributed across many
servers. This situation is always the case for very large and dynamic on-line social
networks.

The proposed model is composed of the following layers : the Distributed Database
Layer (DDL), the Data Model Layer (DML), the Data Access Layer (DAL), the
Analysis Layer (AL) and the Visualization Layer (VL). Figure 2 presents all these
layers.

4.1 Distributed Database Layer

First of all, the persistence and the distribution of the data need to be described.
For this purpose we define a Distributed Database Layer. For this layer any dis-
tributed database can be used so that the system can be able to scale horizontally.
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Fig. 3 HBase architecture

The implementation presented here uses HBase, the Hadoop Database [16] that is
an open-source, distributed, versioned and column-oriented [17]. Figure 3 presents
an overview of HBase architecture:

• the data is stored using the Hadoop Distributed File System (HDFS) [18].
• Master is responsible for assigning regions to RegionServers and uses Apache

ZooKeeper, a reliable, highly available, persistent and distributed coordination
service.

• the RegionServers manage the regions and the storage of data on HDFS.
• API is the component that enables to query the database using programming

languages.

More information about HBase can be obtained in [16] or by browsing the official
website: http://hbase.apache.org/.

4.2 Data Model Layer (DML)

After the choice of the distributed database, a data model for the representation of a
social network must be defined. The Data Model Layer (DML) is a table where each
row corresponds to a node attribute or to an edge:

• an edge (u,v) with label l is represented by (u, Neigh, v, l)
• an attribute of node u with type T and value V is represented by (u, Attrib, T, V).

Figure 4 presents an example of social network and the four rows that represent
the information concerning node 0.

The basic operations implemented are the following: add or remove a node, add
or remove an edge, get the neighbours of a node etc.

http://hbase.apache.org/
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Fig. 4 A toy social networks (a) and the representation of node 0 in the proposed model (b)

4.3 Data Access Layer

Having defined a distributed database and a model to represent a social network in this
database, it is now time to show how to retrieve and update data of a social network.
For this purpose three classes and an interface are defined. The classes Graph, Node
and Edge are self explanatory. The interface DataAccessInterface provides the access
point to query the distributed database using the previous sub-mentioned classes as
inputs and/or results. Figure 5 presents the classes and the relation between them
whereas Fig. 6 presents the interface and a concrete class that implements it following
a UML representation.

With this model all the operations of social network analysis can be defined
efficiently. The operations provided by the DataAccessInterface are:

• boolean insertNode(Node node): insert a node to the database
• Node getNode(): get a node from the database
• boolean insertNode(Node node): insert a node to the database
• Edge getEdge(): get an edge from the database
• long vcount(): return the number of nodes
• long ecount(): return the number of edges
• boolean beginBatch(): begin a transaction mode
• boolean endBatch(): end a transaction mode
• boolean close(): close the connection to the database.
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Fig. 5 SNA layer implementation example

4.4 Upper Layers

Given the description of the bottom layers, the upper ones (AL and VL) are able to
query the Data Access Layer, interact with the data and process them.

The implementation of these layers consists of different algorithms that solve
problems for social network analysis or visualisation.

Examples of tasks that can be performed are the computation of local communities
and other social circles like neighbourhoods. In fact the distributed algorithms are
the same as in the case where the data is located on the computation node. We
only need to replace each sequential instruction that gives access to a node or to
an edge, by the corresponding one that is distributed. Since the computation of each
social circle is independent of the others, the total computation time of the distributed
program decreases linearly with the number of processing nodes. We have conducted
experiments with one to ten processors and the results are reported in Fig. 7.
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Fig. 6 Data access layer implementation example

5 Dataset Description and Attributes Extraction

Skyrock (http://www.skyrock.fr) is a social platform where users (aka “skynautes”)
can (among other actions) create blogs, add comments, create tags and define explic-
itly friendship relations. The global dataset of Skyrock has 31.3 × 106 nodes (the
user’s profiles) and 1.17 × 109 links (the friendship relations). Figure 8 shows a
screenshot of the Skyrock Social Network.

The dataset used for the experimentations is constructed as follows (Fig. 9): from
the global network, the subgraph of active users in March 2011 is extracted, because
the churn prediction concerns only active users that become inactive. A user is active
if he has made at least one connexion to the platform during the considered period
of time. In the following, only this graph formed by active users is considered

After that, all the nodes that have more than 5,000 friends are removed because
they generally represent celebrities (“mega-hubs” in the network) with abnormal
behaviour. This new subgraph has 2.24×106 nodes and 127.428×106 links compared

http://www.skyrock.fr
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Fig. 7 Speedup results: the computation time linearly decreases with the number of processors

Fig. 8 The skyrock social network. The main page where you can login or subscribe to start a
social experience with your friends and other users

to the 31.3×106 nodes and 1.17×109 friendship links of the whole network. Figure 10
presents the degree distribution of the nodes of this network. Not surprisingly, the
degrees seem to follow a power law.

Local communities are then computed using the algorithm IOLoCo presented in
Sect. 3. The distribution of sizes of these local communities is shown in Fig. 10.

For completeness the global communities detected by the Louvain algorithm [3]
were also computed. It is a global method that can compute communities efficiently
in very large networks and is based on an heuristic optimization to maximize the
modularity of the partition.
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Observation (learn) Prediction period (apply)

April 1st May 1st May 31

Active subgraph extraction Attributes computation End of
prediction period 

Target: Not Active?Attributes

Degree

CC

Activity

CommunitySize

...

Fig. 9 Experimental setup used for churn prediction

Fig. 10 Distributions of
nodes’ degrees and of sizes
of local communities found
in Skyrock network (log-
log scale). The top curve
corresponds to nodes’ degrees
and exhibits a typical scale-
free distribution. The bottom
curve corresponds to the size
of local communities: most are
small, but some nodes form
larger communities, and the
log-log curve is quasi-linear

Then, some simple attributes are defined to characterize a node and its vicinity. We
consider only very simple attributes (degree, community size, proportion of active
nodes, etc.) which can be computed quickly and have straightforward interpretation.
Some of these attributes are related to the starting node and some of its social circles
such as its local community, the first neighborhood , the second neighborhood (see
Fig. 11) and the Louvain’s community. All these attributes are presented in Table 1.

Then 50,000 users are selected at random to create the learning dataset. This
dataset has been divided into training (66 %) and test (34 %) sets. A supervised
learning algorithm is trained and estimated on this dataset.

The results of attribute extraction using the methods introduced above, can now
be presented. It’s worth looking at the sizes of the sets of nodes used to compute
the attributes: the local community size (attribute ComSize) ranges from 1 to 547
with a mean of 21. The first neighborhood size (NeigSize) is large, ranging from 1
to 4,644 with a mean of 669. The second neighbourhood size (Neig2Size) is even
larger (4–42,3089 with a mean of 79,702). Finally, the sizes of global communities
(LouvainSize) are as usual very heterogeneous, ranging from 2 to 511,457 with a
mean of 359,625. Thus, the local communities are by far the smallest sets of nodes
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Fig. 11 A central node and
its first neighbourhood (inner
circle), its second neighbour-
hood (outer circle) and its
local community (nodes in
bold)

that we will consider. This leads to a faster algorithm and allows us to focus on the
most important neighbours.

In this application, the churn problem consists, starting from a set of active users
by the end of March, to observe their activity during the month of April in order to
predict which users will churn in May. The objective is to show the contribution of
the (local) community of a node in churn prediction. This is presented in the next
section.

6 Experimentations and Results

Various models, based on different subsets of attributes, were built. A tool provided
by KXEN (www.kxen.com) (that is known to be very efficient [19, 20]) is used to
identify the most relevant attributes, amongst the attributes enumerated above. This
is done using their contributions to the underlying model. In this context, the output
of KXEN is a ranking of the attributes considered as explanotary variables.

6.1 Experiments with Various Attributes Sets

All attributes are numerical and have been normalized between −1 and 1. The experi-
ments are based on standard Support Vector Machines—a well established statistical
classifier. The LIBSVM software [21] is used.

The Radius Basis Function (RBF) kernel has been chosen. This kernel non-linearly
maps samples into a higher dimensional space and allows to build non-linear decision
frontiers. Note that the linear kernel is a special case of RBF [22].

The parameter C for each model was fixed to 1 and the parameter γ to the inverse
of the number of features. In order to compensate the difference between the number

www.kxen.com


134 B. Ngonmang et al.

Table 1 Some attributes for churn prediction

Attribute name Description

1 Degree The degree of the node
2 CC The local clustering coefficient of the node
3 Activity The number of time the node has made a

connexion during the learning month
3 DaysAfterLastCon The number of days since the last

connexion of the node during the
learning month

4 LocalComSize The size of the local community i.e. the
number of nodes of the local
community

5 LocalInProp The internal proportion i.e. the proportion
of local community’s node directly
connected to the starting node

6 LocalAvgDegree The average degree of the nodes inside the
local community

7 LocalPropInact The proportion of nodes inside the local
community that are already inactive

8 LocalAvgAct The average activity for the nodes of the
local community

9 NeigSize The size of the first neighborhood
10 NeigAvgDegree The average degree of the first

neighborhood
11 NeigPropInact. The proportion of nodes inside the first

neighborhood that are already inactive
12 NeigAvgAct The average activity for the nodes of the

first neighborhood
13 Neig2Size The size of the second neighborhood
14 Neig2AvgDegree The average degree of the second

neighborhood
15 Neig2PropInact The proportion of nodes inside the first

neighborhood that are already inactive
16 Neig2AvgAct The average activity for the second

neighborhood
17 LouvainSize The size of the Louvain’s global

community the node belongs to
18 LouvainAvgDegree The average degree of the Louvain’s

global community the node belongs to
19 LouvainPropInact. The proportion of nodes inside the

Louvain’s global community the node
belongs to that are already inactive

20 LouvainAvgAct The average activity for the Louvain’s
global community the node belongs to

21 Not active? The target attribute we want to predict

of examples in each class, we weighted the positive class according to the proportion
of churners.

To train the different models, the following sets of attributes were used:



Predicting Users Behaviours in Distributed Social Networks 135

Table 2 Evaluation with support vector classifiers

Method Avg #nodes used AUC

All 431978 0.855
All without Louvain’s global community 72353 0.854
Node & local community 21 0.832
SPA method [11] – 0.829
Node & second neighborhood 71734 0.826
Node & first neighborhood 598 0.824
Node & Louvain’s global community 359625 0.823
Node only 1 0.815
Local community only 20 0.727
Second neighborhood only 71733 0.699
First neighborhood only 598 0.649
Louvain community only 359624 0.635

1. all the attributes;
2. the node attributes;
3. the node attributes and the first neighborhood attributes;
4. the node attributes and the second neighborhood attributes;
5. the node attributes and the local community attributes;
6. the node attributes and the Louvain community attributes;
7. all the attributes except Louvain community attributes;
8. the first neighborhood attributes;
9. the node second neighborhood attributes;

10. the local community attributes;
11. the Louvain community attributes.

The models were trained and then applied to the test set in order to compute the
area under ROC Curve (AUC) was computed. For sake of comparison, the AUC
obtained with the method by Dasgusta et al. (SPA) [11] is also displayed.

The Receiver Operating Characteristic (ROC) curve is a plot of the true positive
rate against the false positive rate for the different possible decision thresholds. The
area under this curve represents how well the model can separate the two classes.

Table 2 presents the results of the experiments using the above performance indi-
cators. The results are ranked by the value of AUC which is the most relevant per-
formance indicator because the classes are unbalanced.

One can observe from Table 2 that the best model is obtained by using all the
attributes. This illustrates the well known robustness of SVM models, which are
able to cope with a lot of variables. The second model is the one with all variables
except those extracted from global communities. This is not a surprise, because global
communities are too large for this application and thus are not able to capture the
local dynamics of the network. The local circle that gives the best prediction is the
local community.
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The second most performant model (bolded in Table 2) is based only on the
attributes computed from the user and its local community. On average, this model
considers the state of 21 nodes, while the average degree of the nodes is 669: the
local community allows to focus on the most important neighbours. In an application
where local communities are incrementally computed and maintained, this leads to
very efficient estimators.

The relevance of the local community is confirmed by the observation that when
the nodes attributes are not considered, the best performance is achieved using the
local community only. This shows clearly that the most important contribution to
churn prediction is provided by the local community.

One can observe that the method by Dasgupta et al. (SPA) [11] has a performance
that is close to what is obtained with the local community. However, contrary to SPA,
the method proposed here can easily take into account non graph-based attributes such
as age, gender, profession and salary. in the statistical model. Moreover, the approach
proposed in this chapter is more flexible and modular with a clear separation between
the computation of the local community and the estimation of the outcome: both the
community detection algorithm and the statistical model could be replaced by other
versions adapted to specific applications.

It can be seen that the second neighbourhood is better than the first one, but leads
to an algorithm that is less accurate and much slower than the one based on the local
community.

6.2 Ranking of Attributes

The second experiment uses InfiniteInsight, a tool developed by KXEN (a data min-
ing company which provides tools that can handle millions of records in an effective
way). The K2C/K2R (Kxen Consistent Coder and Robust Regression) modules are
able to select the most relevant attributes and compute their contribution to the model.
With these modules, one can built a model using all the attributes except those related
to the activity of the node itself. The aim of this test is to identify the topological
attributes that have the most important contribution. The results are shown in Fig. 12.
It can be seen from Fig. 12 that the most relevant topological attribute for churn pre-
diction is PropInact: the proportion of inactive members of the local community.
This result reinforces the intuition that nodes are highly influenced by the behav-
iours of local community members: the most important explicative factor of churn
is the number of friends in the local community that churned during the period of
observation. This generalizes the result of [11] where it was shown that the number
of friends (neighbours with strong links) that have churned, has a great impact on
churn prediction.

Figure 12 also shows that the second most relevant topological attribute is the
proportion of nodes that are inactive in the second neighbourhood (Neig2InactProp).
This is consistent with the previous test : after the local community, the second
neighbourhood produces the most relevant attributes.
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Fig. 12 Variable contributions to the K2C/K2R model

7 Conclusion and Discussions

In this chapter, we have studied the churn prediction problem in social networks.
It is shown that local communities that are known to be quickly and accurately
computable, can be used to extract attributes that are relevant for churn. An approach
has been proposed to deal with real Social Networks that are usually distributed on
several servers. A successful implementation using the Hadoop Hbase framework
has been presented.

We are currently working on an extension that takes into account nodes attributes
and the dynamics of local circles.. Indeed, users are continuously generating contents
(likes, tags, posts, comments) that, although complex and noisy, can be used to
improve the prediction of users’ behaviours. On the other hand, the analysis of
the dynamics of local communities can clearly help to better understand the users’
interactions and future behaviours.
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What Should We Protect? Defining
Differential Privacy for Social Network
Analysis

Christine Task and Chris Clifton

Abstract Privacy of social network data is a growing concern that threatens to limit
access to this valuable data source. Analysis of the graph structure of social net-
works can provide valuable information for revenue generation and social science
research, but unfortunately, ensuring this analysis does not violate individual privacy
is difficult. Simply anonymizing graphs or even releasing only aggregate results of
analysis may not provide sufficient protection. Differential privacy is an alternative
privacy model, popular in data-mining over tabular data, that uses noise to obscure
individuals’ contributions to aggregate results and offers a very strong mathematical
guarantee that individuals’ presence in the data-set is hidden. Analyses that were
previously vulnerable to identification of individuals and extraction of private data
may be safely released under differential-privacy guarantees. We review two existing
standards for adapting differential privacy to network data and analyze the feasibil-
ity of several common social-network analysis techniques under these standards.
Additionally, we propose out-link privacy and partition privacy, novel standards for
differential privacy over network data, and introduce powerful private algorithms for
common network analysis techniques that were infeasible to privatize under previous
differential privacy standards.

1 Introduction

Social networks are powerful abstractions of individuals and the relationships that
connect them; social network analysis can be a very powerful tool. For example,
understanding how well-connected a network is can aid in the development of
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word-of-mouth marketing campaign: How quickly will word of a product spread?
Similar analysis is useful in epidemiology, predicting spread of a disease.

However, data about people and their relationships is potentially sensitive and
must be treated with care to preserve privacy. Generally, social network graphs are
anonymized before being made available for analysis. However, as several recent
incidents have demonstrated, releasing even anonymized graphs may lead to re-
identification of individuals within the network and disclosure of confidential infor-
mation, with serious consequences for those involved. In 2007, Netflix released the
Netflix Prize data-set, containing anonymized data about the viewing habits of its
members, for public analysis by information retrieval researchers. Within a year,
it had been demonstrated that wide-spread de-anonymization of individuals in the
data-set was possible using public information from the Internet Movie Database [1].
By 2009, Netflix was involved in a lawsuit with one of its members who had been
victimized by the resulting privacy invasion.

Privacy researchers have attempted to improve the security provided by graph
anonymization techniques by adding noise to the node parameters and structure
of the graph [2]. However, even a noisy graph structure with no node parameters
whatsoever can be subject to deanonymization, particularly if an attacker has back-
ground knowledge of the network data [3]. For example, knowing the friendship
relationships of a few individuals can make them identifiable in the released graph,
leading to identification of their friends (and disclosure of information, such as other
relationships, that those friends might not want publicly revealed.) As global social
networks become more broadly accessible, these types of background knowledge
are more readily available [3].

Differential privacy is a privacy standard developed for use on tabular data that pro-
vides strong guarantees of privacy without making assumptions about an attacker’s
background knowledge [4]. Differentially-private queries inject randomized noise
into query results to hide the impact of adding or removing an arbitrary individ-
ual from the data-set. Thus, an attacker with an arbitrarily high level of background
knowledge cannot, with a high degree of probability, glean any new knowledge about
individuals from differentially-privatized results; in fact, the attacker cannot guess
whether any given individual is present in the data at all.

While many of the privacy concerns associated with social-network analysis could
be relieved by applying differential-privacy guarantees to common social-network
analysis techniques, researchers have struggled to develop suitable adaptations of
these techniques. Two principal difficulties arise: The adaptation of differential pri-
vacy from tabular data to network data, and the high sensitivity of social-network
metrics to relatively small changes in the network structure.

Two models for applying differential privacy to social networks have arisen. Node
privacy limits the ability of an attacker to learn any information about an individual,
but at a high cost in added noise. Edge privacy protects against learning any particular
relationship, but may allow learning general information about an individual. This
chapter introduces out-link privacy and partition privacy, models for differential
privacy that provide greater protection than edge privacy while allowing important
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types of analysis that are not feasible under node privacy. The key contributions and
outline of this chapter are as follows:

• A straightforward introduction to traditional differential privacy;
• A discussion of two known differential-privacy standards for network data, as well

as the contribution of two new standards, out-link privacy and partition privacy,
that provide strong privacy guarantees with the introduction of very small noise;

• A study of the feasibility of common social-network analysis techniques under
differential-privacy;

• The contribution of two new algorithms satisfying out-link privacy that use ego-
network style analysis to provide approximate results for queries that are too
sensitive to perform under previous standards.

• A demonstration of the application partition privacy to a variety of contexts; par-
tition privacy is a new approach that provides unprecedented levels of privacy with
minimal noise, for studies that compare variables across multiple social networks.
It allows the wide variety of techniques developed for traditional differential pri-
vacy to be applied to social-network privacy.

2 Traditional Differential Privacy

Differential privacy was developed by Cynthia Dwork and collaborators at Microsoft
Research Labs [4]. It does not define a specific technique or algorithm; instead it states
a mathematical guarantee of privacy that sufficiently well-privatized queries can
satisfy. Consider a common sequence of events in social science research: a survey
is distributed to individuals within a population; a subset of the population chooses
to participate in the survey; individual information from the surveys is compiled into
a data-set and some analysis is computed over it; the analysis may be privatized
by the injection of random noise; and the final privatized result is released to the
general public. Differentially-private queries offer a rigorous mathematical guarantee
to survey participants that the released results will not reveal their participation in
the survey.

We first introduce a few useful notations: I is set of individuals who contribute
information to the data-set DI (e.g., survey participants). The set of all possible
data-sets is D. We use F : D ≤ ∗k : to refer to the desired non-privatized analysis
performed on a data-set and Q : D ≤ ∗k to refer to the privatized implementation
of F. We refer to the publicly released, privatized analysis results as R.

If R are the privatized query results that are released to the public, then R is the
only evidence an attacker has about the nature of DI . We introduce a possible-worlds
model to understand how differential privacy works (see Fig. 1). We define DI to
be true world from which the analysis was taken. We also define any data-set that
differs by the presence or absence of one individual to be a “neighboring” possible
world: thus DI−Bob is the neighboring possible world of DI in which Bob chose to
not participate in the survey.
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Fig. 1 Differential privacy adds noise to obfuscate individuals’ affect on query results

We require that an attacker possessing the privatized results R be unable to deter-
mine whether or not Bob (or any other specific individual) took the survey, i.e.,
whether or not R are the results from an analysis of DI or DI−Bob (or, indeed,
any neighboring world of DI ). Therefore, R should be a plausible result from any
neighboring world of DI .

Formally, DI neighbors DJ iff DI = DJ±x for any x in the population, and:

Definition 1 A randomized query

Q : D ≤ ∗k

satisfies σ-differential privacy [4] if, for any two possible neighboring data-sets
D1, D2 and any possible query result R:

Pr [Q(D1) = R]
Pr [Q(D2) = R] ∈ eσ

Here σ is a small, positive value that controls the trade-off between privacy and
accuracy, and is chosen by the person administering the privacy policy. To make the
definition more intuitive, consider that if we set σ = ln(2), the above states that the
result R is at most twice as likely to be produced by the true world as by any of its
neighbors. Setting a smaller σ will provide greater privacy at the cost of additional
noise, as we will demonstrate below.

The difference between the results from the true world D1 and its neighbor D2 is
the difference the privatization noise will need to obfuscate in order for the privatized
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results to not give evidence about whether D1 or D2 is the true world. The upper
bound of this difference over DI ∩ D is the sensitivity of query F.

Definition 1 The global sensitivity of a function F : D ≤ Rk = A is1:

ΓF = max
D1,D2

→F(D1) − F(D2)→1

over all pairs of neighboring data-sets D1, D2.

Intuitively, the sensitivity of a query is the greatest possible impact that adding
or removing an arbitrary individual from the data-set can have on the query results,
over any possible data-set. Suppose our analysis F asks two questions: “How many
people in I are depressed?” and “How many people in I have fewer than 3 friends?”
Then both answers can change by at most 1 when a single individual is added to or
removed from I, and ΓF = 2. If our analysis instead asks: “How many people in I
are depressed?” and “How many people in I are happy?” then at most one answer
can change by at most 1, and ΓF = 1. Note that histograms, which partition the
individuals of the data set into ‘bucket’ counts, have a sensitivity of 1: removing or
adding an individual will change at most one bucket count by at most 1. This very
low sensitivity makes histograms a useful tool in differentially private data-mining
[4–6].

We can create a differentially private query Q by adding noise to F that is cali-
brated to cover up ΓF [4]:

Theorem 1 If F : D ≤ ∗k is a k-ary function with sensitivity ΓF then the function
F(D)+Lapk(ΓF/σ) is σ-differentially private, where Lapk(δ) is a k-tuple of values
sampled from a Laplacian random variable with standard deviation

⊆
2δ.

The standard deviation of the Laplacian noise values is
⊆

2ΓF/σ. Thus the noise
will be large if the function is very sensitive, or if σ is small. If we set σ = ln(2) on
a query with sensitivity ΓF = 2, the standard deviation of our added noise will be
close to 4.

It is important to note that ΓF is an upper bound taken across all possible pairs of
neighboring data-sets; it is independent of the true world. Intuitively, this is necessary
because noise values which are dependent on the nature of the true world may
introduce a privacy leak themselves. For example, when querying the diameter of
a social network, if Alice forms the only bridge between otherwise unconnected
subgraphs in the true world, removing her node and edges from the data-set causes a
difference of ∧ in the graph diameter. Noise values calibrated to this true world must
be arbitrarily large (and, in fact, will obliterate the utility of the result). However,
consider a neighboring possible world including Bob, who forms a second bridge
between the subgraphs (see Fig. 12); if this possible world were the true world, the
difference in diameter caused by adding or removing a node would be finite, and if
we calibrated the noise to that difference, it would be relatively small. If we chose

1 The L1-norm of x ∩ ∗n is defined as →x→1 = Φn
i=1|xi |.



144 C. Task and C. Clifton

our noise values based on the true world, an attacker could easily determine whether
or not Bob was in the network: a result of R = 300,453.23 would imply Bob was
absent, while the result R = 4.23 would indicate that Bob was present. To prevent
this, global sensitivity is based on the worst-case scenario for the query, across all
possible data-sets. In this case, this implies that diameter is a query too sensitive to
be feasibly privatized using traditional differential privacy.

2.1 Smooth Sensitivity

Several sophisticated privatization techniques exist which do calibrate noise to the
true data-set rather than using the worst-case upper-bound offered by global sensi-
tivity. Consider an actual data-set DJune12; the local sensitivity of a function F on
the data DJune12 is the maximum change in F caused by removing or adding an
individual from DJune12, analogous to computing the global sensitivity with D1, D2
restricted to DJune12 and its neighboring possible worlds. In the example above,
diameter(Gbob)’s local sensitivity is small, while the local sensitivity of its neigh-
bor diameter(Galice) is very high: this jump in local sensitivities is what causes the
threat to privacy described above. Since Galice is created by removing one individ-
ual from Gbob, we will refer to Galice as a one-step neighbor of Gbob, and consider
a k-step neighbor of Gbob to be one created by adding or removing k individuals
from Gbob. Smooth sensitivity is a technique which computes privatization noise
based on both the local sensitivity of the true data-set, and the local sensitivity of
all k-step neighbors scaled by k, for all k [7]. The technique ‘smooths’ over the
local-sensitivity jumps depicted in the alice-bob graph example. However, local-
sensitivity based techniques satisfy a weaker definition of differential privacy, and in
some cases computing the amount of noise required to privatize a given DI may be
infeasible. We will primarily focus on techniques which satisfy strict σ-differential
privacy in this chapter, but we will reference existing smooth-sensitivity techniques
where applicable, and we recommend looking at [8] for more information on this
approach.

3 Differential Privacy and Network Data

The above definition for differential privacy assumes all information about a data-
set participant is provided by the participant themselves; protecting an individual’s
presence in the data-set then protects all the information regarding them. The situ-
ation changes when we ask survey participants to provide information about other
individuals.

We will refer to individuals who contribute their knowledge to the data-set as
participants, and individuals who have information provided about themselves (by
others) as subjects. Traditional differential privacy protects participants only, and
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in many cases it seems clear that subject privacy is unnecessary: if a survey counts
the students who attended the “Coffee with the Dean” event, the dean’s privacy is
not important. By contrast, a study that counts students who report having sexual
relations with the football captain exposes extremely sensitive information about its
subject. Social networks are often collected from populations of interest by having
participants list the full names of their friends within the population; these relation-
ships form directed network edges leading from the participant’s node to the nodes
of each of their friends [9]. In this case, the friends are subjects of the participant’s
survey data, but the participant herself may also be the subject of some of her friends’
survey data (if they also submit surveys). This presents a complex situation in which
to apply differential privacy.

The core of the differential privacy guarantee is that the privatized result R is
difficult to attribute to the true world versus one of its neighboring possible worlds.
Adapting differential privacy to networked data amounts to deciding what we mean
by “neighboring worlds” in this context. There are several possibilities; each one
provides a different level of privacy guarantee and deals with a different type of
“gap” between worlds. As always, there is a trade-off between privacy and utility:
in general, the stronger the privacy guarantee, the more noise will be required to
achieve it. We will describe two network privacy standards, node privacy and edge
privacy, which have appeared in the literature.

Additionally, we propose two novel standards, out-link privacy and partition-
privacy, that require less noise than existing standards; give reasonably strong guar-
antee of privacy similar to traditional differential privacy; and enable certain queries
that required levels of noise that rendered results meaningless under existing stan-
dards.

3.1 Node Privacy

A privatized query Q satisfies node-privacy if it satisfies differential privacy for all
pairs of graphs G1 = (V1, E1), G2 = (V2, E2) where V2 = V1 − x and E2 =
E1 − {(v1, v2)|v1 = x ≈ v2 = x} for some x ∩ V1.

The Alice-Bob graph example in Sect. 2 implicitly assumes this privacy standard:
In node privacy, if the true world is a given social network G, the neighboring
possible worlds are ones in which an arbitrary node, and all edges connected to it,
are removed from or added to G. This privacy guarantee completely protects all
individuals, both participants and subjects. An attacker in possession of R will not
be able to determine whether a person x appears in the population at all. Although
this is an natural adaptation of differential privacy to social networks, it also places
extremely severe restrictions on the queries we are able to compute, as we will
demonstrate in Sect. 4, and in many cases, node-privacy may be an unnecessarily
strong guarantee.
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3.2 Edge Privacy

A privatized query Q satisfies edge-privacy if it satisfies differential privacy for all
pairs of graphs G1 = (V1, E1), G2 = (V2, E2) where V1 = V2 and E2 = E1 − Ex

where |Ex | = k.

In edge privacy, if the true world is the social network G, neighboring possible
worlds are ones in which k arbitrary edges are added or removed from G. An attacker
in possession of R won’t be able to determine with high certainty whether individuals
x and y are friends, and an individual node in the graph can plausibly deny the exis-
tence of up to k of its friendships with other nodes. Single edge privacy, with k = 1,

is the standard most often used in existing literature on differentially private graph
analysis. This is a weaker guarantee than node-privacy: high-degree nodes may still
have an easily identifiable effect on query results, even though their individual rela-
tionships are protected. However, this is a sufficiently strong for many applications,
and enables many more types of queries to be privatized than the severely-restrictive
node-privacy.

3.3 Out-Link Privacy

A privatized query Q satisfies out-link privacy if it satisfies differential privacy for
all pairs of graphs G1 = (V1, E1), G2 = (V2, E2) where V1 = V2 and E2 =
E1 − {(v1, v2)|v1 = x} for some x ∩ V1.

This privacy guarantee protects the data contributed by data-set participants, using
the same conceptual privacy standard as the original definition of differential privacy.
Given that the true world is a social network G, the neighboring possible worlds are
ones in which an arbitrary node and all of its out-links are removed from or added to G.

An attacker in possession of R won’t be able to determine whether a person x supplied
their data (submitted a survey) to help produce the graph. This privacy guarantee is
strictly weaker than node privacy, but compares well with single edge privacy for
many queries. Any participant can plausibly deny its out-links, or, equivalently, any
participant can plausibly deny one in-link from another participant node. Analogous
to k-edge privacy, we can also provide k-out-link privacy by considering neighboring
worlds that differ from the true world by the out-links of up to k nodes. Note that
2-out-link privacy allows two nodes to simultaneously deny all out-links, and as a
result, this enables a complete mutual edge to be protected (providing single-edge
privacy in addition to out-link privacy). In general, a k-level privacy guarantee can
be satisfied by scaling the added noise by k.

Out-link privacy improves on edge-privacy by reducing the distinctive signature
of high-degree nodes in the data-results, through protecting all relationships cited by
the popular person: although others may still claim to be friends with her, she can
plausibly deny those relationships are mutual. Additionally this standard simplifies
sensitivity computation and noise addition, enabling many queries that would be
infeasible under both node and edge privacy as we will demonstrate in Sect. 4.
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3.4 Partition Privacy

Define a partitioned graph to be comprised of separate components such that G = {gi }
for disjoint subgraphs gi . A privatized query Q satisfies partition privacy if it satisfies
differential privacy for all pairs of graphs G1, G2 where G1 = G2 − gi for some
gi ∩ G1.

Many questions about social structures are naturally asked over a collection of
graphs rather than one monolithic social network. Social scientists studying interper-
sonal interaction run experiments over large collections of small social groups, col-
lecting social networks for each distinct group [10, 11]. Collections of disjoint social
networks can be implicit in larger graphs as well. Node properties such as dormitory,
major, university, or geographical location can be used to partition large graphs into
meaningful sets of disjoint local social networks [12]. This enables researchers to per-
form tests of hypotheses about social behavior across groups, such as “Is clustering
coefficient correlated with gender in dormitory friendship structures?”.

This useful sub-class of analyses is especially amenable to privatization. In parti-
tion privacy, neighboring possible worlds are ones in which one subgraph is added or
removed from the set of disjoint subgraphs comprising the data-set. Partition privacy
is strictly stronger than node-privacy: it provides protection at the level of entire social
groups rather than individuals. However, it also requires very little noise to imple-
ment. We will present a diverse selection of analyses that can be easily privatized
under partition privacy.

Below we will discuss the application of these four privacy standards to common
social network analysis tasks such as triangle counts (and subgraph-counts gener-
ally), degree distributions, centrality measures, graph-modeling, and other differen-
tially privatized network analyses from the existing literature. In addition to covering
previous work, we provide several infeasibility proofs and propose two original algo-
rithms applying out-link privacy to common problems in social network analysis.

4 Applications of Differential Privacy to Social
Network Analysis

We now present a straightforward guide to the application of differential privacy to
several common social network analysis techniques.

4.1 Triangle Counting

Triangles, instances in which two of an individual’s friends are themselves mutual
friends, indicate social cohesion in the network. Triangle counts are the key parameter
in the clustering coefficient, a common metric for describing and comparing graphs.
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Fig. 2 Node-sensitivity of triangle-counts is a function of n, and thus is unbounded in general

Similarly, counts of other subgraphs such as stars, or squares, are used as graph
statistics for graph similarity comparisons [13, 14]. All subgraph counts have similar
privacy properties to the triangle count privatization described below.

Node Privacy Differentially private triangle counts are not feasible under simple
node-privacy. In the worst case, adding a node to a complete graph of size n (a graph
containing all possible edges), will introduce

(n
2

)
new triangles (Fig. 2). Since the

change is dependent on the size of the graph, the global sensitivity of the query in
general is unbounded: it is impossible to compute a finite global upper-bound (see
Sect. 3).

Although the global sensitivity of the query is unbounded here, there is another
approach, using ideas similar to the smooth sensitivity approach described in
Sect. 2.1. If it is publicly known that the maximum degree of a graph is d, then
removing or adding a node can affect the triangle count by at most

(d
2

)
. And, any

graph whose maximum degree is greater than d will have a k-step neighbor, for some
k, whose maximum degree will be d (i.e., high-degree nodes can be removed until the
maximum degree of the graph falls within the threshold). On generally sparse graphs
with few nodes above degree d, the number of triangles in this bounded-degree
neighbor graph will be a close approximation of the correct answer. The operation
of finding the low-degree neighbor incurs its own sensitivity cost, but privacy can be
still achieved at a sensitivity cost in the range O(d2) [15]. While this is untenable for
large social networks, networks with low maximum degrees may successfully apply
node-privacy to their triangle counts using this method.

Edge Privacy For similar reasons to node privacy, edge privacy is also not feasible
for triangle-counts. In the worst case, removing an edge from a graph with n nodes
can remove n − 2 triangles (Fig. 3). Since the sensitivity is a function of the graph
size, it is unbounded in general.

However, the local sensitivity of this query under edge-privacy, the sensitivity
over a specific data-set, is bounded. Consider two nodes, a and b, that have k wedges
(paths of length 2) connecting them, as in Fig. 3. If G is a graph in which no pair of
nodes has more than k wedges connecting them, then adding an edge to G will create
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Fig. 3 Edge-sensitivity of triangle-counts is a function of n, and thus is unbounded in general

at most k triangles, and removing an edge will delete at most k triangles. We can
apply smooth sensitivity techniques to take advantage of this in cases where k is not
large, and thus attain a slightly weaker level of differential edge-privacy; however,
real world social networks are transitive (if two people share a mutual friend, they’re
much more likely to be friends with each other) and this will tend to produce large
values of k. When k is large, even instance-based noise addition may introduce error
of a factor of 10 or greater [8].

Outlink Privacy We now propose a method for privatizing information about triangle
counts and clustering coefficients under out-link privacy, using a somewhat modified
version of the query that more closely mimics the information gathered from a real
world social-network survey. To do this, we introduce a simple, powerful method
that can be applied to gather private estimates of a variety of useful statistics over
nodes in the graph.

By focusing on protecting the knowledge each individual has about their role with
respect to the network, out-link privacy fits naturally with the techniques of ego-
network analysis, an approach to social network analysis that focuses on the network
as viewed by the individuals belonging to it [16]. In this approach, a network with
n members is broken into n overlapping ego-network subgraphs, each consisting of
a individual ‘ego’ node and his or her immediate neighborhood of friends (referred
to as alters). A survey collecting information about the triangles in an individual’s
ego-network might look like Algorithm 1.

The only data that is retained by the researcher is, for each individual x : out-
degree(x), the number of friends the individual has, and tr ianglecount (x), the
number of triangles the individual participates in. These statistics are sufficient to
determine the local clustering co-efficient of the node: the ratio between the number
of triangles the node participates in and the maximum possible number of triangles
for a node of that degree [13].

Out-degree and local clustering data from this survey can be collected into a two-
dimensional histogram that provides detailed information about the patterns of social
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Algorithm 1 A survey gathering information about triangles
function TriangleQuery

f r iendlist ← Query(“Who are your friends?”)
f r iendpairs ← CrossProduct( f r iendlist, f r iendlist)
outdegree ← Size( f r iendlist)

tr iangles ← Query(“Which of these pairs are friends with each other?”, f r iendpairs)
tr ianglecount ← Size(tr iangles)
return (outdegree, tr ianglecount)

end function

cohesion of the graph and has a very low sensitivity under out-link privacy: removing
or adding an individual’s survey data to the histogram only alters one partition count
by at most one, and thus the noise required to privatize this data-structure would
be very small. Histograms with fewer partitions and larger count values in each
partition are less sensitive to added noise; we propose Algorithm 2 that produces
a very flexible, robust, and safely privatized representation of the social cohesion
patterns in the network using local triangle counts.

Algorithm 2 Privatizing local clustering coefficient distribution data
function PrivateClustering(deglow, degmed , data)

Initialize(bins[][])
for all (nodeDegree, tr iangleCount) ∩ data do

degBin ←Partition(nodeDegree, deglow, degmed )

localCluster ← tr iangleCount/(nodeDegree ≥ (nodeDegree − 1))

tr i Bin ←Partition(localCluster, 1/3, 2/3)

bin[degBin][tr i Bin] ← bin[degBin][tr i Bin] + 1
end for
for i = 0 ≤ 2, j = 0 ≤ 2 do

bins[i][ j] ← bins[i][ j]+ LaplacianNoise(1)
end for
return bins

end function

Algorithm 2 takes as input two node-degree threshold values, deglow, degmed and
uses these to partition the (outdegree, tr ianglecount) data-points collected from
the T riangleQuery survey into low, medium and high degree nodes. The algorithm
then computes the local clustering coefficient of each node and further partitions
nodes by these values, creating a histogram with nine partitions (see Fig. 4). Laplacian
noise sufficient to cover a function sensitivity of 1 is added to each partition, and
the privatized result may be released. We can consider the effect of this noise in
terms of how many of the noisy, privatized partition counts can be expected to differ
measurably from their true values. With only nine counts and a sensitivity of 1, the
expected number of privatized partition counts that will differ from their true values
by more than 3, is less than 0.25. The released histogram accurately and succinctly
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Fig. 4 The triangle distribution allows us to present clustering information with an out-link sensi-
tivity of 1

Fig. 5 A comparison of true and privatized results over the Slashdot Zoo social network

captures useful information about the distribution of meaningful local patterns across
the graph.

Figure 5 shows the effect of privatization noise on the outlink-private triangle
counting algorithm over the Slashdot ‘Zoo’ social network [17]. Here, nodes are
binned by their degree and their local clustering coefficient, and the resulting degree-
bins are normalized to show the distribution of clustering coefficients in each degree
bin. The true counts are given in the left columns, their privatized versions are given
in the right. Note that, as the magnitude of noise added by this algorithm is very
small in comparison to the scale of the data, it was necessary to focus on a small
section of the results in order for the effect of the noise to be visible.

The same simple approach can be used to collect and privatize any information
available within an ego-network, simply by restructuring the survey appropriately.
For example, replacing question 2 in the survey of 1 by the question “For each of
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your friends, add a check mark if the two of you share at least one additional, mutual
friend” will collect information about the probability that an edge participates in a
triangle. The question “Are you part of a group of at least k friends who are all mutual
friends with each other?” collects statistics about cliques in the graph.

If undirected social network data must be privatized, the survey-collection
approach described above may be simulated by considering each node’s immedi-
ate neighborhood as their ego-network view, and sub-sampling by introducing α
probability that the ego is unaware of any given edge between its alters.

Partition Privacy In applications that require a collection of disjoint social net-
works, even more detailed privatized analysis is possible. Partition-privacy allows
essentially arbitrary analysis of individual graphs in the data-set and then privatizes
the aggregation of the independent results. Assume an analysis has been performed
on each individual graph, producing either a numerical result with a publicly known
range (e.g., the global clustering coefficient of the graph), a category result (the gen-
der of the dorm represented by the graph), or any combination of numerical and
categorical results. The collection of graphs may now be viewed as a collection of
multi-attribute data points. Removing or adding one graph from the collection is
equivalent to removing or adding one of these data points; we can apply traditional
differential privacy techniques to this set of independent data points as though we
were working with tabular data over individuals. Two low-sensitivity techniques are
very useful here: histograms and privatized means. We will demonstrate the appli-
cation of these techniques in the examples below, beginning with an application of
partition privacy to triangle-count data.

The global clustering coefficient is the proportion of wedges in the graph (where
one person has a pair of friends) that are closed to form a triangle (i.e., the pair of
friends are also friends with each other); formally, Clustering Coe f f icient (G) =
3≥[number of triangles in G]

[number of wedges in G] . A graph with no triangles has a clustering coefficient of
0; a clique has a clustering coefficient of 1. The clustering coefficient of a graph is
a useful normalized measure of its social cohesion. However, it is difficult to draw
meaningful conclusions about the population being studied using one piece of data in
isolation. Given a collection of social networks, we can identify meaningful patterns
of behavior by comparing clustering coefficients across networks.

Assume we want to examine how attribute X of a social group affects its degree
of social cohesion. For example, we could study the relationship between the gender
of a college dormitory and the clustering coefficient of the social network within
the dorm (see Fig. 6). Given a data-set consisting of a collection of social networks
for each possible value of X (e.g., a set of male, female and co-ed dorms), we first
compute the global clustering coefficient over each individual network. We can then
compute the mean of the clustering coefficients for each value of the attribute X, add
noise to privatize the result, and release the privatized means.

The mean of a set of bounded numerical values has low sensitivity when the
number of values is publicly known. Consider the mean MaleDormsClustering =
M/N where M = ΦG∩MaleDorms clustering_coe f f icient (G) and N is the number
of male-only dorms in the data-set. If N is publicly known (for instance, because
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Fig. 6 Removing or altering one graph from the partitioned graph set only affects the numerator
of the mean by one

each university’s dorms are listed on their website) we can safely skip adding noise
to this value and focus on privatizing only the numerator M without reducing the
privacy of the result [18]. Since M is a sum of clustering coefficients that have values
in the bounded range [0, 1], adding, removing or altering one clustering coefficient
will alter the sum M by at most 1. Thus the sensitivity of the sum M is 1, and the
value M+Lap(1/σ)

N will be differentially private. Note that the noise added to the true
values of MaleDormsClustering has a standard deviation of only Lap(1/σ)/N .

4.2 Degree Distribution

The degree distribution of a graph is a histogram partitioning the nodes in the graph
by their degree; it is often used to describe the underlying structure of social networks
for purposes of developing graph models and making similarity comparisons between
graphs [19].

Node Privacy Although degree distributions are represented as histograms, the sen-
sitivity is not small under node privacy because one node affects multiple counts in
the distribution: removing a node from the graph reduces the degree of all nodes
connected to it. A node with k edges can affect a total of 2k + 1 values of the dis-
tribution (Fig. 7). In the worst case, adding a node of maximal degree will change
2n + 1 values, and since this sensitivity is dependent on n, it will be unbounded in
general (see Sect. 3).

Edge Privacy Edge privacy is feasible for degree distributions. Removing one edge
from the graph changes the degree of two nodes, and affects at most four counts
(Fig. 8). Under k-edge privacy, the sensitivity is 4k. With a sufficiently large graph,
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Fig. 7 Node sensitivity of degree distribution queries is a function of n, and thus is unbounded in
general

Fig. 8 Edge sensitivity of degree distribution queries is 4: at most four values can change by one
when a node is added or removed

this is a negligible amount of noise, and the utility of this technique has been suc-
cessfully demonstrated [6].

Outlink Privacy Out-link privacy, in contexts where it is deemed sufficient, requires
even less noise for degree distributions. Here, we consider just the distribution of
out-degrees, the result of asking participants, “How many friends do you have?”
Removing one node and its out-links from the graph affects only one value in the
degree distribution (Fig. 9). Under this privacy standard, a high-degree node may still
leave evidence of its presence in the data-set through the out-degrees of its friends.
However, there are many possible explanations for a slightly higher-than-expected
degree among nodes in the graph: they may represent additional friendships among
the nodes, or outside friendships with individuals who were non-participants in the
survey. Exploiting this vulnerability to guess the presence of a high-degree node with
any certainty would require an attacker to possess near complete information about
the true social network.
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Fig. 9 Out-link sensitivity=1. Protecting the out-edges of a node provides privacy with relatively
little effect on the degree distribution

Fig. 10 A comparison of true and privatized results over the Slashdot Zoo social network

Figure 10 shows the effect of privatization noise on the outlink-private degree
distribution algorithm over the Slashdot ‘Zoo’ social network [17]. Again, as the
noise added by this algorithm is very small, the figure focuses on a subsection of the
results in order to make the effect of the noise visible.

Partition Privacy Partition privacy can also enable privatized analysis of degree
distribution data. Consider the context in which a researcher performs an experiment
to directly study behavior patterns in small social groups. A common technique is to
assign people to small groups where they must work cooperatively to solve problems
[10, 11]. Interpersonal communications in each group are monitored and analyzed.
Raw communication data can be transformed into social network graphs by adding
edges between nodes that communicate frequently. In small groups, different degree
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Fig. 11 Removing or adding one graph only affects the count in one histogram category by one

distributions will indicate different patterns of cooperation; for example, groups
may have one high-degree ’leader’ centralizing communication, or they might coop-
erate equitably together producing a near clique graph (see Fig. 11). These degree-
distribution categories may be affected by the group’s context (e.g., working in per-
son, or online), and they may affect the group’s performance on the assigned task.
When degree-distributions help us attach a meaningful category label to individual
networks, we can use a privatized histogram to safely release the distribution of these
labels across the set of networks. If desired, we can further partition this histogram
using properties such as the group’s context or performance score to create more
informative multi-dimensional histograms (for an example of a multi-dimensional
histogram, see Fig. 14). As described in Sect. 2, histograms have a sensitivity of only
1 and may be safely released by adding Laplacian noise calibrated to that sensitivity
to each count.

4.3 Centrality and Paths

Centrality measures attempt to gauge the relative “importance” of specific individuals
within the social network; they may be studied on a per-node basis, identifying
influential members of the community, or as distribution scores providing information
about the overall behavior of the social network [20]. The simplest centrality measure
is node degree: nodes with high degree are more likely to be influential in the network.
However, other centrality measures take into account information from across the
network: betweenness scores individuals by the number of shortest-paths between
other pairs of nodes across the network that pass through them, and closeness scores
nodes by the sum of their distances to all other nodes in the graph.

The two more complex centrality measures present difficulties for traditional
approaches to differential privacy in social networks. Clearly, it is impossible to
release a named list of influential individuals under node-privacy. But even distrib-
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Fig. 12 Removing one node or edge from a graph can change path lengths catastrophically

utions of centrality scores can be very sensitive, under both node and edge privacy,
due to the role of bridges in the graph. Removing a node, or edge, that forms the only
connection between two otherwise disconnected subgraphs will have a catastrophic
affect on path distances in the network, causing finite distances to become infinite,
and thus will drastically alter betweenness and closeness scores (see Fig. 12). In
general, privatizing traditional centrality measures, or any metric that relies on path
lengths, remains an open problem under differential privacy.

Outlink Privacy We propose a very different approach for collecting and privatiz-
ing information about influential nodes within a network; one that satisfies out-link
privacy (by protecting individuals’ data contributions) and leverages individuals’
knowledge about their community. We define a popularity graph: a synthetic net-
work that represents the social structure among influential community members
(Algorithm 3).

Individuals in the population are asked to “list up to three of your most popular
friends within the specified population group”. A base graph is created containing
nodes for all members of the population group, and undirected edges of weight 0 are
added between all pairs of nodes. The data collected from the survey is then added
to the graph: when two popular people are listed on the same survey, the weight
of the edge connecting them is incremented. For example, if a person submits a
survey listing three popular friends, weights of every edge in the triangle connecting
those friends will be incremented. The sensitivity of the popularity graph is 3, since
a maximum of 3 edge-weight values can change if a participant adds or retracts
their data.

To privatize the data, appropriate Laplacian noise to cover a function sensitiv-
ity of 3 is added to all edge-weights. Then two post-processing steps are applied:
edges with low weight are eliminated, and the graph is anonymized. The result-
ing weighted popularity graph is published (Fig. 13). This graph can be used
to understand the underlying social influence structure of the population, iden-
tifying social clusters and the bridges between them. The privacy of data pro-
vided by the query participants is fully protected; however, the subjects who
appear as nodes in the graph will clearly be less secure and this analysis may
not be appropriate in all contexts. For many population though, the popularity
graph should be sufficient protection: anonymity, noisy edges, and the fact that
the artificially-constructed graph will lack detailed substructures often used for
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Fig. 13 A popularity graph with edge thickness indicating edge-weight

re-identification attacks, will all contribute to protecting the privacy of the query
subjects.

Algorithm 3 Privatizing centrality data
function PrivateCentrality(importanceT, dataI )

V ← population
E[i][ j] ← 0 ∪i, j ∩ V
for all i ∩ I do

∪p j , pk∩dataI [i], E[p j , pk ]←E[p j , pk ] + 1
end for
for all i, j ∩ population do

E[i, j] ← E[i, j]+ LaplacianNoise(3)
if E[i, j] < importanceT then

E[i, j] ← 0
end if

end for
return Populari t yGraph = (V, E)

end function

Partition Privacy A noteworthy property of partition privacy is that it does not
exhibit the high sensitivity to path length queries that constrains other forms of graph
privacy. Although removing a bridge will drastically affect path lengths in a given
network, it will only affect one network in the collection of small disjoint networks
that comprises the data-set for a partition privacy application. This enables privatized
analysis for a wide variety of graph properties that are otherwise too revealing to be
released.

The average shortest-path distance for a network is a measure of its connectedness.
Given a collection of networks, we can find the average shortest-path length for each
network and aggregate the results into a histogram, giving us information about the
patterns of graph-connectedness across our data-set (see Fig. 14). As the sensitivity
of a histogram is just 1, the results can be privatized by adding a relatively small
amount of noise to each count. The same technique can be used on any numerical or
categorical graph property: we can privatize the distribution of maximum centrality
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Fig. 14 With a set of graphs, histograms can be used to release information about the relationships
between multiple variables, including path lengths, with low sensitivity

scores, number of bridges per graph, or even graph diameters. This flexibility of
application is one of the primary advantages of partition privacy.

4.4 Graph-Modeling and Social Recommendations

Several groups have proposed differentially private approaches to creating graph
models–randomized synthetic graphs that are generated to be similar to a true, private,
social network and thus can be studied safely in place of the original graph. The
Stochastic Kronecker graph model has been privatized under edge-privacy [21], and
several other groups have developed their own models that satisfy differential edge
privacy [22–24].

We also note that the results from our proposed out-link privatized degree distri-
bution and triangle statistics (see Sects 4.1, 4.2) could provide privatized input for
the Transitive Chung Lu graph model proposed by Pfeiffer et al. [25]. This model is
somewhat unique in the literature for its ability to generate graphs that match both
the degree distribution and clustering coefficient of the original target graph.

Finally, the possibilities and difficulties of applying edge-privacy standards to
social network recommendation systems are explored in [26].
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5 Conclusions

Differential privacy represents a potentially powerful tool for analyzing social net-
works while providing strong guarantees of privacy for individual participants.
The application of differential-privacy guarantees to social-network analysis allows
results to be released with confidence that individual data will not be compromised
by malicious attackers, even with the benefit of arbitrary background knowledge.

By providing this guide to differentially private social network analysis, along
with new, powerful techniques for privatizing social-network data, we hope to spur
the application of these standards to social-network data in a practical fashion. In
future work we plan to study the application of out-link privacy and partition privacy
to other social-network analysis tasks and provide studies of these approaches on
real-world network data.
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Abstract Funding from the government agencies has been the driving force for the
research and educational institutions particularly in the United States. The govern-
ment funds billions of dollars every year to lead research initiatives that will shape the
future. In this chapter, we analyze the funds distributed by the United States National
Science Foundation (NSF), a major source of academic research funding, to under-
stand the collaboration patterns among researchers and institutions. Using complex
network analysis, we interpret the collaboration patterns at researcher, institution,
and state levels by constructing the corresponding networks based on the number of
grants collaborated at different time frames. Additionally, we analyze these networks
for small, medium, and large projects in order to observe collaboration at different
funding levels. We further analyze the directorates to identify the differences in col-
laboration trends between disciplines. Sample networks can be found at http://www.
cse.unr.edu/~mgunes/NSFCollaborationNetworks/.
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1 Introduction

As data about social networks has grown vastly in size and heterogeneity, complex
network analysis of such networks have become more popular. Many researchers are
modeling the growth and the structure of the networks from different fields including
biology, chemistry, geography, mathematics and physics. Complex network analysis
helps to capture the small-scale and the large-scale features of these networks that are
not evident. Such analysis may uncover the underlying dynamics of the network pat-
terns. In this direction, researchers have investigated interactions of different systems
in various fields as a complex network [1].

Many studies [2–5] look into popular social networks such as Facebook, Twitter
and YouTube. Newman provided the first study on co-authorship networks by ana-
lyzing the macroscopic properties of different domains [6, 7]. Similarly, researchers
have studied academic ties [8], air transport [9], authors network [10], citation net-
works [11, 12], friend recommendation [13], influenza spread [14, 15], Internet
topology [16–18], news networks [19, 20], patent networks [21, 22], protein inter-
actions [23], software collaborations [24, 25], and video industry [26] as complex
networks.

In this chapter, we analyze the collaboration of researchers when they obtain
federal funding.1 For this study, we obtain the funding data of the National Science
Foundation (NSF), an independent federal agency established by the U.S. Congress
in 1950 to promote the progress of science; to advance the national health, prosperity,
and welfare; and to secure the national defense. NSF has an annual budget of about
$7.4 billion (FY 2011) [28], and funds research and educational activities at various
institutions including universities, research institutes, foundations and industry.

As a public institution, NSF shares its funding information [29]. The data released
by NSF includes the Principle Investigator (PI), i.e., the researcher responsible for
leading the project, co-PIs (if any), organizations, directorate, grant amount and
several other fields for the funded projects. In order to analyze the collaboration
structures within the NSF research funding network, we generate three types of net-
works from the provided dataset based on the number of collaborations for different
time frames. First, we construct the PI collaboration network where we analyze the
social interaction of researchers. The PI network shows the structure of the collab-
oration and different characteristics of the NSF grants among PIs. Moreover, from
the institution information of co-PIs, we build an organization network where we
inspect the collaboration among research institutions. This analysis reveals the most
central organizations and collaboration trends. We also derive the state collaboration
network to study the collaboration among the states in obtaining federal funding.

Since, we construct these networks both for different time frames and as a whole;
we compare the network characteristics of these networks for different time frames
and capture the changes in the NSF collaboration network over the time. Additionally,
we analyze these networks for small, medium, and large projects in order to observe

1 An earlier version of this study appeared in [27].
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collaboration patterns at different funding levels. We further analyze the funding
networks within each NSF directorate and find their distinct properties. We compare
each directorate with the other directorates to better understand the collaboration in
the NSF funding data.

The main goal of this chapter is to collect the NSF funding dataset, discover inter-
esting complex network structures from the dataset, and derive new insights from
it. The newly discovered properties from the dataset will give an idea of the collab-
oration among researchers in obtaining federal funding. Researchers have studied
National Institutes of Health (NIH) and NSF data sets for visualization. For instance,
Herr et al. presents an interactive two dimensional visualization of the 60,568 grants
funded by NIH in 2007 [30]. However, this chapter is, to best of our knowledge, the
first study to analyze the funding data as a complex network.

In the rest of the chapter, first we clarify the metrics that we use during our
analysis and we describe data collection and network construction procedures. We
then present analysis of research funding networks derived from the NSF data at
different levels. Finally, we conclude and provide future directions.

2 Preliminaries and Definitions

There are several well known metrics which are widely utilized in complex network
analysis. In this section, we briefly provide an overview of the metrics that we use
in our analysis.

Size is one of the most basic properties of a network, and is quantified by the
number of nodes n and the number of edges e.

The basic characteristic to infer a network’s connectivity is average node degree
k̄ = 2n/e. The degree k of a node is the number of edges that are adjacent to the
node. A node with degree k is called as k-degree node, and n(k) is the set of all
k-degree nodes in a network. The average node degree can also be calculated by
taking the mean of the degree of all nodes in the network. Weighted Degree of a
node is the sum of the weights of all of the edges that this node has. Node degree
distribution is the probability distribution of the node degrees where the probability
of having a k-degree node in the network is expressed as P(k) = n(k)/n.

Distance is the shortest path length between a pair of nodes in the network.
Average Path Length stands for the average distance between all pairs of nodes in
the network. Diameter is the maximal shortest distance between all pairs of nodes
in the graph, and gives an idea of how far apart are the two most distant nodes.

Assortativity illustrates the link behavior of nodes, and measures whether similar
degree nodes are more likely to be connected to each other. Rich Club measures how
well the highest degree nodes in the network are connected.

Clustering coefficient is the measure of how well the adjacency (i.e., neighbors)
of a node are connected. The neighbor set ns of a node a is the set of nodes that are
connected to a. If every node in the ns is connected to each other, then the ns of a
is complete and will have a clustering coefficient of 1. If no nodes in the ns of a are
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connected, then the clustering coefficient of a will be 0. High clustering coefficient
is the indicator of small-world effect along with small average shortest path.

There are several measures for the centrality of a node within the network.
Such centrality measures are important in analyzing the funding network since they
may determine the relative importance of a node within the network. Betweenness
Centrality of a node is the measure of how often this node appears on the short-
est paths between any node pair in the network. Closeness Centrality of a node
is the average distance of this node to all other nodes in the network. Eigenvector
Centrality measures the importance of a given node based on its connections.

3 Data Collection

NSF provides historic information on funded grants at its website. A search engine
provides access to the grant information. Each search query turns at most 3,000 grants
at a time, and there is a rate limit for queries from a computer. This rate limiting of
NSF website necessitates using multiple computers if one wants to download the
grant data faster. We implemented a crawler using the PlanetLab [31] infrastructure
to download the NSF grants database in order to parallelize the download process.
Overall, we downloaded a total of 279,862 funded grant data spanning from 1976 to
December 2011.

Each NSF grant has a Principal Investigator (PI), organization, co-PIs, directory
and several other fields in the database. We ignored some of these fields since our aim
is to analyze the network of collaborations among the NSF grants. The individual
grants such as fellowships or presidential awards are not included in the dataset as
they are not collaborative works. A collaborative research grant with co-PIs from the
same institution has a single entity in the NSF database. However, if the co-PIs are
from different organizations, there may be multiple entities in the database for this
grant. If it appears in multiple entities, the title of the grant should be the same and
begin with ‘Collaborative Research’. We filter the dataset considering these rules
and similar naming conventions of the NSF.

4 Networks Analysis of the NSF Funding

In order to analyze the collaboration patterns within the research funding network,
we generated three types of networks from the dataset and visualized them with
Gephi [32]. First network we explore is the PI network, i.e., the collaboration network
between Principal Investigators (PIs) of the grants. By constructing this network, we
aim to understand the relationships and characteristics of the collaboration between
researchers. To construct the PI network, we connected co-PIs of each grant as in
Fig. 1. In this network, each node Pi ∈ P I s represents a PI and each edge between
Pi and Pj indicates that these two PIs have a collaborative grant. This network is
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Fig. 1 PI network construction

weighted and the weight of the edges represents the number of grants collaborated
among the two PIs. Moreover, we built the organization network, i.e., the collabo-
ration network between the organizations of the PIs of the funded grants to observe
the relations between institutions in receiving grants from the NSF. Finally, we con-
structed the state network, i.e., the collaboration network between the states of the
PIs in order to analyze the patterns among the home state of researchers.

Furthermore, we drew the same networks for different time frames, namely 80s
(i.e., 1980–1989), 90s (i.e., 1990–1999), and 2000s (i.e., 2000–2009). Although NSF
was established in 1950, it has begun to gain more importance since 1980s as the
country realized the significance of research in science, technology, and education. In
1983, NSF budget exceeded $1 billion for the first time. Later, it passed $2 billion in
1990, $4 billion in 2001 and became $6.9 billion in 2010. Therefore, in this analysis,
we examine the evolution of the collaboration networks and the effect of the growth
of the budget to the collaboration of the researchers and organizations.

Moreover, we analyzed these networks for small, medium, and large projects in
order to observe the collaboration at different funding levels. Similarly, we analyzed
the funding network within each NSF directorate to find their distinct properties.
We compared each directorate with the other directorates to better understand the
collaboration patterns within different research fields.

4.1 PI Network

The PI network constructed from the dataset is shown in Fig. 2. In this network,
there are about 106K nodes and 197K edges which makes it hard to visualize. The
diameter of the PI network, which is constructed from all PIs with a collaboration, is
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Fig. 2 PI collaboration network

29 and the average path length is 24.4. The average path length is higher than other
similar social networks. There are several directorates such as Biological Sciences
(BIO), Computer and Information Sciences (CSE), Education and Human Resources
(EHR), Geosciences (GEO), Mathematical and Physical Sciences (MPS), Office of
Polar Programs (OPP), Social Behavioral and Economic Sciences (SBE) in NSF
grants. Thus, in our opinion, the main reason for having high diameter and average
path length values for the PI network is due to the diverse fields of studies of the PIs.
Additionally, as the PI network is sparse, the number of interdisciplinary grants which
would make the PI network more connected is low. As indicated in the Directorates
Networks Section, the PI network of each individual directorate is well-connected
with low diameter and average path length values but we do not observe this behavior
when we consider all of the directorates together.

Figure 3a presents the clustering coefficient distribution of the nodes in the PI
network. The average clustering coefficient of the graph is 0.46. This is considerably
higher than a random network of similar size, which happens in small world [33]
networks.

The node degree distribution in Fig. 3b does not exhibit a power-law distribution
as observed in many social networks but rather results in a declining curve. We
think this is mainly due to the fact that funding collaborations require considerable
effort and researchers are limited in the number of collaborations they can form. The
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Fig. 3 PI and organization network metrics. a PI clustering coefficient. b PI degree distribution. c PI
rich club. d Organization clustering coefficient. e Organization degree distribution. f Organization
rich club

average node degree for the network is 3.71, while the weighted node degree is 4.5.
The number of collaborations, if any, among PIs is 1.22 on average.

The assortativity of the graph is 0.18, which means the network is non-assortative
[34]. That is, PIs who have high collaborations slightly tend to work together rather
than collaborating with PIs that have low collaborations.

Moreover, Fig. 3c shows the rich club connectivity of the PI network. According
to this graph, there is not an obvious rich club that contains most of the collaborations
even though such phenomenon has been observed in citation networks [35].
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Fig. 4 PI collaboration network for PIs with high degrees

In order to better analyze highly collaborative PIs, we draw the network of the
PIs with the highest node degrees in Fig. 4. In this figure, the thickness of the edges
illustrate the number of collaborations among PIs while the boldness of the color of
each node represents the weighted node degree, i.e., the total number of collabora-
tive grants for that node. In the figure, we observe few cliques indicating a highly
collaborative group of researchers and some isolated nodes indicating researchers
with a large number of distinct collaborations.

Moreover, in order to study frequent collaborations among researchers, we con-
struct the PI network by only considering the highest weighted edges in Fig. 5. As
seen in the figure, there are many distinct pairs of PIs while there are a few trian-
gles and larger cliques in this network. This indicates most of the frequently funded
research teams consist of two PIs. Though more statistical evidence is needed, one
may concur that frequent collaboration with another PI is more likely to increase
chances of a successful project compared to new collaborations that might be more
fruitful while being more risky.

4.2 Organization Network

To observe the relations between institutions receiving grants from the NSF, we build
the organization network, i.e., the collaboration network between the organizations
of the PIs of the funded grants. The constructed network of 3,450 nodes and around
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Fig. 5 PI frequent collaboration network

27K edges is visualized in Fig. 6. In this visualization, the nodes with high node
degrees are located at the core of the network. The edge weights of these core nodes
are usually high as well. This network is also weighted and the weight of the edges
represents the number of grants collaborated among the two organizations. As seen
in the figure, there is a group of nodes that are highly collaborative at the center of
the figure.

The diameter of the organization network is 6.5 and the average path length is
3.07. However, we observed that there are many organizations that collaborate just
once or twice. Many of these organizations are some short-run companies which
were in business for a limited time. When we exclude such organizations from the
network, the diameter of the network becomes 6.0 and the average shortest path
becomes 2.75. Therefore, it can be concluded that the six degrees of separation is
also observed in this network.

Figure 3d presents the clustering coefficient distribution of the nodes in the orga-
nization network. The average clustering coefficient of the network is 0.34. The top
clique size is 20 indicating that there are 20 organizations that have pairwise col-
laborated with each other. Along with the small average path length, the very high
clustering coefficient compared to a random network of similar size indicates the
small world characteristics for the collaboration network of organizations.

The node degree distribution of the organizations network is shown in Fig. 3e.
The degree distribution follows a power-law distribution with a fat tail. The average
node degree for the network is 15.85, while the average weighted degree is 33.36.
This indicates that on average each organization collaborated with its peers twice.
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Fig. 6 Organization collaboration network

According to Fig. 3f which presents the rich club connectivity, there is a rich club
among organizations that receive federal funding. As observed as a highly connected
core in Fig. 6, a group of organizations participate in most of the collaborations.
To further investigate the rich club, we calculate the betweenness centrality, node
degree, and weighted node degree for each node. Table 1 shows the rankings of the
top 10 organizations based on the betweenness centrality and node degree values.
Essentially, these top 10 organizations are part of the rich club in the network. As
indicated above, for an organization, node degree expresses the number of distinct
organizations which a collaboration was made while weighted node degree represents
the total number of grants collaborated with the other institutions. According to
the table, University of Colorado at Boulder is ranked 1st both according to the
betweennes centrality and node degree, while ranked 5th based on weighted degree.
This illustrates that even though University of Colorado at Boulder has collaborated
with the highest number of organizations, it is not the highest according to the total
number of grants collaborated. Another interesting result is that even though MIT is
not one of the top ten organizations based on the node degree, it is the 4th institution
according to weighted node degree.

The assortativity value of this network is −0.09, which indicates that the orga-
nizations equally prefer to collaborate with high or low degree organizations. That
is, different from the PI network where highly collaborating researchers slightly
prefer to collaborate with researchers that also have high degrees, organizations are
indifferent to the degree or popularity of the collaborators.
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Fig. 7 High node degree organizations’ collaboration network

In order to illustrate the collaboration of organizations with the highest number
of collaborative grants, we draw the network of the top 10 organizations in Fig. 7.
This network forms a clique, i.e., all organizations collaborated in grants with the
others. The thickness of the edges presents the number of collaborations among
these organizations. The boldness of the color of each node represents the weighted
node degree for that node. The highest number of collaborations is between the
University of Washington and the Arizona State University with 27 grants. The
lowest collaboration among this group is between the Arizona State University and
the Columbia University with 5 grants.

Moreover, in order to study frequent collaborations, we only consider edges where
there are more than 10 collaborations in Fig. 8. As seen in the figure, the ratio of the
distinct pairs is lower than that of the PIs’ frequent collaboration network in Fig. 5.
There are more triangles and even larger cliques in this network indicating frequent
collaboration among those organizations.

4.2.1 Historical Perspective

Above, we analyze organization collaboration network of the NSF grants from 1976
to 2011. However, in order to capture the changes within this network and to analyze
the evolution of the network better, one needs to analyze the network at different
time frames. Therefore, in this section, we generate the organization collaboration
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Fig. 8 Organization frequent collaboration network

Table 2 Organization
network characteristics over
years

80s 90s 00s Overall

Avg. degree 5.39 7.36 15.3 15.85
Avg. W. degree 7.50 11.03 27.9 33.36
Diameter 9 9 7 6
Avg. path length 3.54 3.53 3.1 3.07
Avg. clustering coef. 0.15 0.19 0.32 0.34

network for 1980s, 1990s and 2000s. For 2000s, we just analyze the grants awarded
from 2000 to 2009 in order to have the same time frame length in each network.

Table 2 represents the characteristics of organization collaboration networks of
1980s, 1990s and 2000s. According to this table, there is a steep increase in the
average node degree and the average weighted node degree. The average node degrees
of the networks are 5.39, 7.36 and 15.3, respectively, while the average weighted
degrees of the networks are 7.5, 11.03, and 27.9, respectively. These values clearly
illustrate that both the average number of collaborators and the total number of
collaborations with other peer institutions have increased considerably. Additionally,
the average number of collaborations made by an organization with its peers has
become 1.8, while it was 1.4 in 1980s.

Parallel to the increase in the node degree, the organization network has become
denser over the years. The diameter of the network is 9, 9, and 7, respectively for
1980s, 1990s, and 2000s. However, when we look at the overall network of the
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Fig. 9 PI and organization degree distributions (historic). a PI degree distribution. b PI degree
distribution. c PI degree distribution. d Organization degree distribution. e Organization degree
distribution. f Organization degree distribution

organization collaborations, the diameter is 6. Thus, the six degrees of separation
has persisted in the organization collaboration network though the past three decades.
Moreover, the average path length of the network decreases over the years, while
the average clustering coefficient rises. In addition to the small-world characteristic
of the organization collaboration network, it has become denser over the years as
observed in typical social networks.
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Fig. 10 PI and organization network rich club metric (historic). a PI rich club. b PI rich club. c PI
rich club. d Organization rich club. e Organization rich club. f Organization rich club

Table 1 shows the rankings of the top 10 organizations based on the between-
ness centrality and node degree values for the 1980s, 1990s, 2000s, and overall (i.e.,
including all three periods in the network formation) networks. These top 10 orga-
nizations are part of the rich club in the network. According to the table, we can
conclude that the rich-get-richer phenomenon is observed in the organization col-
laborations networks. Finally, Figs. 9 and 10 present several network characteristics
of the Organization and PI collaboration networks for different time frames.
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Fig. 11 State collaboration network based on betweenness centrality

4.3 State Network

In order to analyze the patterns among the home state of researchers, we construct the
state network, i.e., the collaboration network between the states of the PIs. Figure 11
illustrates the state network constructed from the dataset where the nodes with higher
betweenness centrality are located towards the center. In this network, there are 54
nodes and 1,285 edges. This network is highly clustered as the maximal clique size
is 35 indicating that 35 states pairwise collaborate with each other. The assortativity
coefficient is −0.13 for this network. The diameter of the network is 2 and average
path length is 1.1. The average node degree of the network is 47.6 and the clustering
coefficient is 0.95. All these metrics indicate a highly connected network.

There is no rich club in this network as almost all nodes are well connected.
However, we can see the states that have many connections with higher degrees and
weights represented with thick lines in the network. For instance, there is a frequent
collaboration triangle between the states of New York (NY), California (CA) and
Massachusetts (MA), which points to a large number of collaboration among these
three states.

Furthermore, we tabulate the betweenness centrality, and weighted node degree
for each node in Table 3. According to the table, betweenness centrality values are
very close to each other for the top 5 collaborative states. However, average weighted
node degree results indicate some differences among the top collaborative states.



Complex Network Analysis of Research Funding 179

Table 3 Top 10 states

Metric State rankings
1980s 1990s 2000s Overall
State Value State Value State Value State Value

Weighted node degree CA 379 CA 1,270 CA 3,982 CA 7,730
NY 284 NY 1,024 NY 2,716 NY 5,946
PA 187 MA 814 MA 2,384 MA 4,748
MA 179 PA 605 PA 1,764 PA 3,774
IL 166 IL 512 IL 1,594 IL 3,289
TX 137 TX 465 TX 1,563 TX 3,178
WA 101 MI 402 CO 1,330 CO 2,520
MI 94 MD 399 FL 1,166 MI 2,333
FL 93 NC 363 VA 1,105 FL 2,309
CO 90 CO 333 MI 1,099 NC 2,146

Betweenness centrality CA 204.7 PA 75.8 FL 21.8 CA 8.2
VA 77.2 HI 54.6 OR 20.6 NC 8.2
NY 69.9 CA 26.1 WA 20.5 NY 8.2
IL 59.3 NY 26.1 CA 12.8 OH 8.2
FL 48.8 MA 23.2 IL 12.8 TX 8.2
MA 36.6 NC 20.2 NC 12.8 FL 4.9
PA 34.3 CO 19.5 NY 12.8 TN 4.9
CO 34.1 TX 19.2 SC 9.6 MI 4.7
NC 33.5 MI 16.3 AK 8.9 PA 4.6
TX 32.1 WA 15.3 KS 7.1 IL 4.6

California (CA) is the most collaborative state with 7,730 inter-state collaborations.
Since the node degrees are very close to each other we don’t tabulate them. California
(CA), North Carolina (NC), Ohio (OH), Pennsylvania (PA) and Texas (TX) have a
node degree value of 53; which indicates that they have collaborated with all other
states in at least one grant. On the other hand, Virgin Islands (VI), Guam (GU),
Puerto Rico (PR), Wyoming (WY), South Dakota (SD), and Mississippi (MS) has
collaborated with 13, 14, 35, 40, 41, 42, and 43 states, respectively, and are the states
with the smallest node degrees.

Moreover, we analyze frequent collaborations among the states. In Fig. 12, we
draw the state collaboration network when the number of collaborations is greater
than 250. There are 10 states which collaborated in more than 250 grants. As seen
in the figure, California (CA) collaborated at least 250 times with all the other states
in this network. The high collaboration among NY, CA and MA is more visible in
this figure.
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Fig. 12 State frequent collaboration network

4.3.1 Historical Perspective

Table 4 represents the network characteristics of state collaboration networks of
1980s, 1990s and 2000s, respectively. According to this table, there is a considerable
increase in the average node degree and the average weighted node degree values.
The average node degrees of the networks are 17.9, 34.2 and 43.3, respectively while
the average weighted degrees of the networks are 57.5, 229.6, and 695.1, respectively.
These values clearly illustrate that inter-state research collaboration has increased
over the years. Additionally, the average number of collaborations made by a state
with its peers has become 16 in 2000s, while it was around 3 in 1980s. Thanks to this
increase in the node degree, the overall state collaboration network has become almost
a clique, i.e., full mesh. The diameters of the networks are 3, 3, and 3, respectively
over the three decades. This is mainly due to two states, namely Virgin Islands (VI)
and Guam (GU), which have very low collaborations. They don’t have a research
collaboration and a common collaborator in given time frames. However, when we
look at the overall network of the organization collaborations, the diameter reduces
to 2. Moreover, average path length of the network decreases over the years and has
become 1.09 while the average clustering coefficient rises and has become 0.95 in
the overall network.

Table 3 shows the rankings of the top 10 states based on the weighted node degree
and the betweenness centrality values for the 1980s, 1990s, 2000s, and overall net-
works. The top 10 states have slightly changed over the years. Additionally, according
to this table, we can conclude that rich-get-richer phenomenon applies to the state
collaborations network, as well.
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Table 4 State network
characteristics over years

80s 90s 00s Overall

Avg. degree 17.9 34.15 43.3 47.7
Avg. W. degree 57.5 229.6 695.1 1405.0
Diameter 3 3 3 2
Avg. path length 1.69 1.37 1.18 1.09
Avg. clustering coef. 0.63 0.78 0.81 0.95
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Fig. 13 Degree distribution for CSE directorate

4.4 Directorates Networks

In the previous sections, we construct three kinds of networks based on the whole
NSF funding data. In this section, we construct these networks for each directorate
separately to analyze the funding structures within each NSF directorate. The dataset
contains 9 different NSF directorates, namely: Biological Sciences (BIO), Computer
and Information Sciences (CSE), Education and Human Resources (EHR), Engi-
neering (ENG), Geosciences (GEO), Mathematical and Physical Sciences (MPS),
Office of Polar Programs (OPP), Social Behavioral and Economic Sciences (SBE),
and Office of the Director (OD).

By considering each directorate we calculate node degree values of the PI, the
organization, and the state networks. The graphs for node degree distributions of
each directorate are shown in Figs. 13 and 14. When considering each directorate
individually, the corresponding networks do not have a rich club similar to the whole
network. Additionally, the assortativity value of each individual directorate network
is close to zero indicating indifference to the popularity of the peers.

According to the clustering coefficient values of the directorate networks, GEO
directorate has the highest clustering coefficient in the state network followed by BIO
and ENG. These three directorates have the highest clustering coefficient values in
the PI and the organization networks, as well, which indicates that the collaboration
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Fig. 14 Metrics for directorates networks. a Degree distribution for BIO directorate. b Degree
distribution for EHR directorate. c Degree distribution for EHR directorate. d Degree distribution
for MPS directorate. e Degree distribution for GEO directorate. f Degree distribution for SBE
directorate. g Degree distribution for OD directorate. h Degree distribution for OPP directorate
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Table 5 Network
characteristics for different
project sizes

Small P. Medium P. Large P. Overall

Avg. degree 9.46 6.42 14.6 15.9
Avg. W. degree 13.3 16.2 21.1 33.3
Diameter 6 8 6 6
Avg. path length 2.97 2.88 2.60 3.07
Avg. clustering coef. 0.36 0.50 0.59 0.34

within these directorates are much more emphasized than the other NSF directorates.
It also indicated, however, that researchers whose home directorate is one of these
three directorates have a lower likelihood of collaborating with researchers from
other directorates.

Additionally, as expected, the PI networks of directorates are better clustered than
the overall PI network. Their diameter and average shortest path values are much
smaller than those of the overall PI network, as well.

4.5 Project Size

NSF categorizes the research projects based on funding levels. There are mainly
three types of projects: small projects (typically, <500K), medium projects (typ-
ically, 500K-2M), and large projects (typically, >2M). In order to analyze the
collaboration patterns within different project sizes, we generate the organization net-
works to investigate the collaboration among organizations at different funding levels
(Fig. 15).

Table 5 represents the network characteristics of organization collaboration net-
works of small, medium and large projects. According to the table, the average node
degrees of the networks are 9.46, 6.42 and 14.6, respectively. Interestingly, organi-
zations collaborated with more different peers in smaller projects than the medium
projects. The average weighted degrees of the networks are 13.3, 16.2, and 21.1,
respectively. Accordingly, the average number of collaborations made by an organi-
zation with its peers is 1.4 in small and large projects while it is 2.5 in medium projects.
This also indicates that organizations collaborate with more peers in small and large
projects. However, the average number of collaborations made by an organization
with its peers is higher in medium projects, indicating more persistent collaborations
at medium level of funding.

The diameters of the networks are 6, 8, and 6, respectively. Since the average
number of collaborators of an organization is the lowest in medium project net-
work, this network has the highest diameter. Moreover, in the large project collab-
oration network, we have the lowest average path length and the highest average
clustering coefficient values. Thus, while all networks are small-worlds, the large
project collaboration network exhibits the small-world characteristics more than the
other funding levels.
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5 Conclusion and Future Work

In this chapter, we analyzed publicly available data on NSF funded grants to reveal
the collaboration patterns among researchers. We derived three different kinds of
networks to analyze the trends within the funding of the PI network, the organization
network, and the state network. The PI network reveals a small-world characteristic
but does not exhibit a power-law degree distribution. However, organization network
exhibits a power-law degree distribution with a rich club that has majority of the
collaborations. The state network is highly clustered but we identified the most central
states in terms of collaborations. We construct these networks both for different
time frames and as a whole in order to compare the network characteristics of these
networks for different time frames and capture the evolution of the NSF collaboration
network over the time. We further analyze the funding network within each NSF
directorate and find that some research fields are more collaborative than others in
obtaining federal funding. Finally, we analyze these networks for small, medium, and
large project sizes in order to observe the collaboration at different funding levels.

Our study revealed several interesting findings while reaffirming some of the
anticipated characteristics of the funding network. We clearly observed a six degrees
of separation in the state and the organization collaboration networks, while the
degree of separation in the PI network is much higher. Another observation was that
most of the funded collaborative projects had only two PIs.

Several extensions to the grant network analysis is of interest. In our study, we
focussed on the successful grant proposals. To obtain a better picture of the collab-
oration patterns in the research funding, it would be very helpful to consider unsuc-
cessful proposals. Furthermore, NSF uses different recommendation levels to rank
grant proposals, e.g., Highly Recommended, Recommended, or Low Recommended.
Consideration of these recommendation levels while constructing the collaboration
networks would reveal more refined patterns. However, the challenge is to obtain such
data without violating the privacy of PIs. Lastly, it would be interesting to observe
the collaboration patterns in agencies other than the NSF and the United States.
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Abstract With the advent of Web 2.0/3.0 supported social media, Online Social
Networks (OSNs) have emerged as one of the popular communication tools to interact
with similar interest groups around the globe. Due to increasing popularity of OSNs
and exponential growth in the number of their users, a significant amount of research
efforts has been diverted towards analyzing user-generated data available on these
networks, and as a result various community mining techniques have been proposed
by different research groups. But, most of the existing techniques consider the number
of OSN users as a fixed set, which is not always true in a real scenario, rather the
OSNs are dynamic in the sense that many users join/leave the network on a regular
basis. Considering such dynamism, this chapter presents a density-based community
mining method, OCTracker, for tracking overlapping community evolution in online
social networks. The proposed approach adapts a preliminary community structure
towards dynamic changes in social networks using a novel density-based approach for
detecting overlapping community structures and automatically detects evolutionary
events including birth, growth, contraction, merge, split, and death of communities
with time. Unlike other density-based community detection methods, the proposed
method does not require the neighborhood threshold parameter to be set by the users,
rather it automatically determines the same for each node locally. Evaluation results
on various datasets reveal that the proposed method is computationally efficient and
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1 Introduction

With increasing popularity of Online Social Networks (OSNs) and their wide
applications in different walk of life, community mining research has attracted
researchers from various fields including data mining, web mining, and network
science in recent past and the field is still rapidly evolving. As a result, various
methods based on spectral clustering [1, 2], partitional clustering [3], modularity
optimization [4], and latent space clustering [5] have been developed to identify
users’ communities in social networks. The fact that a person may have different
diverse interests and consequently she may participate in more than one community
has resulted in an increased attention towards detecting overlapping communities in
social networks, and a solution based on k-clique percolation given by Palla et al.
[6] is a step towards this end, followed by other density-based community detection
methods, including gSkeletonClu [7], CHRONICLE [8], and CMiner [9] that
are based on DBSCAN [10].

One of the important properties of the real-world social networks is that they
tend to change dynamically as most often: (1) new users join the network, (2) old
users leave the network, and (3) users establish/break ties with other users. Con-
sequently, all these evolutionary events result in birth, growth, contraction, merge,
split, and death of communities with time. Although a number of community finding
techniques have been proposed by different researchers, the dynamic nature of the
real-world social networks (specifically, the online social networks like Facebook
and Twitter) has been largely ignored in terms of community detection. In case of
dynamic social networks, most of the studies either analyze a single snapshot of
the network or an aggregation of all interactions over a possibly large time-window.
But, such approaches may miss important tendencies of dynamic networks and in
fact the possible causes of this dynamic behavior may be among the most important
properties to observe [11]. Although, recent literature includes some approaches for
analyzing communities and their temporal evolution in dynamic networks, a com-
mon weakness in these studies is that communities and their evolutions have been
studied separately. As pointed out in [12], a more appropriate approach would be to
analyze communities and their evolution in a unified framework, where community
structure provides evidence about community evolution.

Considering the case of OSNs like Facebook and Twitter, community structures
have mostly been analyzed using traditional community detection techniques over
social networks representing explicit relations (friends, colleagues, etc.) of users.
However, the observations made by Wilson et al. [13] and Chun et al. [14] on Face-
book friendship and interaction data reveals that for most users, majority of their
interactions occur only across a small subset of their social links, proving that only
a subset of social links actually represents interactive relationships. Their findings
suggest that social network-based systems should be based on the activity network,
rather than on the social link network.

This chapter presents the design of a density-based unified method, OCTracker, to
identify overlapping communities and track their evolution in online social networks.
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The initial version of this work has been published as a short chapter in proceedings
of the ASONAM’12 [15], and the major enhancement is the enhancement of the
proposed methodology and the addition of more experimental results on different
datasets. The proposed method detects dynamic overlapping community structures
by automatically highlighting evolutionary events like birth, growth, contraction,
merge, split, and death with time using a density-based approach. The novelty of
the method lies in its overlapping community detection approach, which does not
require the neighborhood threshold ε (mostly difficult to determine for density-based
community detection methods) to be specified by the users manually. In addition,
the proposed method is scalable to large social networks.

The rest of the chapter is organized as follows. Section 2 presents a brief review
of the related works. Section 3 defines the similarity function and presents the
density-based overlapping community detection approach. Section 4 describes the
proposed approach for tracking evolution of overlapping communities in dynamic
social networks. Section 6 presents the parameter estimation process, followed by a
brief explanation of the overlapping community merging process in Sect. 5. Section 7
presents the experimental setup and evaluation results. Finally, Sect. 8 concludes the
chapter.

2 Related Work

Traditional community finding approaches are generally based on either graph
partitioning methods [16] or partition-based clustering [17, 18], where the problem
is to divide the nodes into k clusters by optimizing a given cost function. However,
the main drawback of these methods lie in the requirement of the number of clus-
ters and their sizes a priori. Hierarchical clustering is another well-known technique
used in social network analysis [19, 20]. Starting from a partition in which each
node is in its own community or all nodes are in the same community, one merges or
splits clusters according to a topological measure of similarity between nodes. Other
similar methods include methods based on the sociological notion of betweenness
centrality [21] and methods based on modularity Q optimization [4].

Extending the DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) algorithm [10] to undirected and un-weighted graph structures, Xu et al.
[22] proposed SCAN (Structural Clustering Algorithm for Networks) to find clus-
ters, hubs, and outliers in large networks based on structural similarity, which uses
the neighborhood of vertices as clustering criteria. CHRONICLE [8] is a two-stage
extension of SCAN to detect the dynamic behavior of communities in dynamic net-
works. Similarly, considering only the weighted interaction graph of the online social
networks, Falkowski et al. [23] extended the DBSCAN algorithm [10] to weighted
interaction graph structures of online social networks. Some important features of
density-based community detection methods include less computation, detection
of outliers and natural scalability to large networks. However, the main drawback of
traditional density-based community detection methods is that they require the global
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neighborhood threshold, ε, and the minimum cluster size, μ, to be specified by the
users. The methods are particularly sensitive to the parameter, (ε), which is difficult
to determine. As an alternative, the method proposed in [7] reduces the number of
possible values to consider for ε significantly by considering only the edge weights
of a Core-Connected Maximal Spanning Tree (CCMST) of the underlying network.

The most popular method for identifying overlapping communities is the Clique
Percolation Method (CPM) proposed by Palla et al. [6], which is based on the con-
cept of k-clique, i.e., a complete subgraph of k nodes. The method relies on the
observation that communities seem to consist of several small cliques that share
many of their nodes with other cliques in the same community. In [24], the authors
presented an overlapping community detection method MOSES by combining local
optimization with Overlapping Stochastic Block Modeling (OSBM) [25] using a
greedy maximization strategy. Here communities are created and deleted, and nodes
are added or removed from communities, in a manner that maximizes a likelihood
objective function.

In order to find communities in dynamic social networks and to track their
evolutions, various methods have been proposed recently. A typical dynamic com-
munity detection problem is formulated in [11, 26]. In these works, along a discrete
timescale and at each time-step, social interactions of certain individuals of a network
are observed and several subgraphs are formed. Based on these subgraphs, the true
underlying communities and their developments over time are identified, so that most
of the observed interactions can be explained by the inferred community structure.
Similar approaches have been followed in [8, 27, 28]. However, as pointed out in
[12], a common weakness in these approaches is that communities and their evolu-
tion are studied separately. It would be more appropriate to analyze communities and
their evolution in a unified framework where community structure provides evidence
about the community evolutions. Along this direction, [29] proposed a framework
for studying community dynamics where a preliminary community structure adapts
to dynamic changes in a social network. Our approach is similar to [29], but unlike it,
our concern is on tracking the evolution of overlapping communities and we do not
need an ageing function to remove old interactions from the network. Moreover, our
method is applicable to directed/un-directed and weighted/un-weighted networks,
whereas [29] applies only to un-directed and weighted networks. For un-weighted
networks, the proposed method considers a unit weight for each edge in the network
without altering the meaning or representation of the network.

3 Proposed Method

In this section we present the procedural detail of the proposed method to identify
community evolution events. Along the lines of the SCAN [22], DENGRAPH [23],
and other density-based community detection methods likegSkeletonClu [7] and
CHRONICLE [8], the proposed method is based on DBSCAN [10]. As pointed out in
Sect. 2, the main drawback of traditional density-based community detection methods
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Table 1 Notations and their descriptions

Notation Description

V Set of nodes in the social network
E Set of links in the social network
I−→p Total number of out-going interactions of a node p
I−→pq Number of interactions from node p to node q
I←→pq Reciprocated interactions of p and q: min(I−→pq , I−→qp)

I←→p Number of reciprocated interactions of a node p:
∑

∀q∈Vp
min(I−→pq , I−→qp)

Vp Set of nodes in the network with whom node p interacts
Vpq Set of nodes with whom both nodes p and q interact: Vp ∩ Vq

is that they require the global neighborhood threshold, ε, and the minimum cluster
size, μ, to be specified by the users. On the other hand, the proposed method does
not require the global neighborhood threshold parameter, ε, to be set manually at the
beginning of the process. Instead, it uses a local representation of the neighborhood
threshold which is automatically calculated for each node locally using a much
simpler approach from the underlying social network. Moreover, a local version of
μ is also computed for each node automatically using a global percentage parameter
η. The proposed method thus requires only a single tunable parameter η to be set by
the users.

3.1 Distance Function and Parameter Estimation

This section presents a formal definition of a novel distance function and related
concepts that are used in the proposed density-based overlapping community finding
algorithm. The distance function defines distance between a pair of nodes by taking
into consideration the average number of reciprocated interactions between the nodes
and their commonly interacted nodes in the network. Considering the social network
as a graph G = (V, E), where V is the set of nodes representing users and E ⊆ V ×V
is the set of links between the users based on their interactions in the network, the
distance function can be defined formally in the following paragraph. For simplicity,
the symbols used throughout this chapter and their interpretations are presented in
Table 1.

Definition 1 (Distance) For any two interacting nodes p, q ∈ V , the distance
between them is represented as Δ(p, q) and defined as the minimum of the recipro-
cals of their mutual directed responses, normalized by their respective total count of
outgoing interactions in the interaction graph, as shown in Eq. 1.

Δ(p, q) =
{

min
(

δ(p,q)−1

I−→p
,

δ(q,p)−1

I−→q

)
if δ(p, q) > 0 ∧ δ(q, p) > 0

1 otherwise
(1)
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In Eq. 1, δ(p, q) represents the response of node q to the interactions of node p,
and defined as the average of the per-user reciprocated interactions (link weights)
of q and the nodes of Vpq , with p, if I←→pq > 0, otherwise 0. Mathematically, it can
be defined using Eq. 2, where Vpq and I←→pq have same interpretations as given in
Table 1.

δ(p, q) =
⎧⎨
⎧

⎪∑
s∈Vpq (I←→ps )+I←→pq

|Vpq |+1

⎨
if I←→pq > 0

0 otherwise
(2)

Smaller values for Δ(p, q) represent higher response between the nodes p and
q and thus represent more closeness between p and q, whereas higher values for
Δ(p, q) translates to higher distance and thereby less closeness between the nodes
p and q.

Definition 2 (Local-Neighborhood Threshold) For a node p ∈ V , the local neigh-
borhood threshold is represented as εp and defined using Eq. 3 as the average
per-receiver reciprocated interaction-score of p with all its neighbors (i.e., friends
and non-friends with whom it interacts).

εp =

⎧⎪⎨
⎪⎧

⎪
I←→p
|Vp |

⎨−1

I−→p
if I←→p > 0

0 otherwise

(3)

In Eq. 3,
I←→p
|Vp | represents the average number of reciprocated interactions between a

node p and all other nodes in V to whom p sends interactions. The denominator I−→p
represents the total count of outgoing interactions of node p in the interaction graph
and it has been used to normalize the value of εp to the range [0, 1].

Definition 3 (Local ε -neighborhood) The local ε-neighborhood of a node p ∈ V is
represented by Nlocal p and defined as the set of nodes to which p sends interactions
such that the distance between p and each node in Nlocal p is less than or equal to
εp. Formally, the local εp-neighborhood of a node p can be given by Eq. 4.

Nlocal p = ⎝
q: q ∈ Vp ∧ distance(p, q) ≤ εp

⎞
(4)

For our proposed method, we define a local version of minimum-number-of-
points for a node p, represented by μp, which is also computed automatically from
the underlying social network. However, we need to specify a fraction η between
[0.0–1.0] to compute μp for a node p. For a node p ∈ V , the value of μp is taken as
the fraction η of its interacted nodes in the network.

It should be noted that the fraction η, forms the only parameter for the proposed
method to be set by the users. Moreover, besides determining the local minimum-
number-of-points threshold, μp, for a node p, the value of η is also used to spec-
ify a distance constraint, which is specified as follows. The distance between two
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interacting nodes p and q can be measured by Eq. 1 only if the number of commonly
interacted nodes of p and q is greater than the number of nodes defined by the frac-
tion η of the minimum of their individually interacted nodes minus one. Otherwise,
the distance between them is taken as 1. Formally, the distance constraint can be
specified using Eq. 5.

distance(p, q) =
{

Δ(p, q) if |Vpq | > (η × min(|Vp|, |Vq |)) − 1

1 otherwise
(5)

Definition 4 (Core node) A node p ∈ V having non-zero reciprocated interactions
is defined to be a core node with respect to a global percentage constant η, if its local
εp-neighborhood contains at least μp (local minimum-number-of-points threshold
for p) of its interacted nodes.

The proposed method identifies core nodes and uses them to grow communities
in a recursive manner using the following definitions. It should be noted that all the
definitions used in the proposed method are significantly different from the definitions
used in traditional density-based community detection methods in terms of the overall
concept used to define a community.

Definition 5 (Direct density-reachability) A node q is direct density-reachable from
a node p with respect to η if p is a core node and q belongs to the local εp-
neighborhood of p.

Direct density-reachability is an asymmetric relation, i.e., if a node q is direct
density-reachable from a node p, then it is not necessarily true otherwise.

Definition 6 (Mutual cores) Two nodes p and q are called mutual cores if both p
and q are core nodes, and p belongs to the local εq -neighborhood of q, and q belongs
to the local εp-neighborhood of p. In other words, two nodes p and q are mutual
cores if they are direct density-reachable from each other.

Definition 7 (Density reachability) A node q is density-reachable from a node p
with respect to η, if there is a chain of nodes v1, v2, . . . , vn where v1 = p and vn = q,
such that vi+1 and vi are mutual cores for i ranging from 1, 2, . . . , n − 2, and vn is
direct density-reachable from vn−1.

Definition 8 (Density connectivity) A node q is density-connected to a node p with
respect to η, if there exists a node v such that both p and q are density reachable
from v.

Density connectivity is a symmetric relation and for the density reachable vertices,
it is also reflexive.

Definition 9 (Density-connected community) A non-empty subset C ⊆ V is called
a density-connected community with respect to η, if all the vertices in C are density-
connected with each other and C is maximal with respect to density reachability.
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3.2 Overlapping Community Detection

In order to identify overlapping communities in social network data, initially all nodes
of the network are un-labeled and un-visited. For a given global percentage threshold,
η, the process iteratively finds a density-connected community by randomly selecting
an un-visited node, say p, to grow a community using density-reachable relationship
of p with other nodes. For each un-visited node p, it checks whether p is a core
node and if p qualifies the test, it finds all density-reachable nodes of p to identify its
community. To do so, it first computes the local εp threshold for p using Eq. 3. If the
εp threshold for p is greater than zero, then it uses the distance function of Eq. 1 and
distance constraint to determine the local εp-neighborhood of p, i.e., Nlocal p. If node
p qualifies as a core node, its community list is appended with the current community
label and the community list of each node in Nlocal p is also appended with the same.
We use the term appended as the nodes belonging to Nlocal p including p can already
be labeled by some other community label(s) in some previous iteration(s). A node
is assigned to a new community irrespective of its previous community allotments,
thus allowing a node to belong to multiple communities. Once a node p is identified
as a core-node, the following important steps are performed for identifying a density-
connected community of p.

1. All un-visited mutual-core nodes of node p in Nlocal p are appended with the
current community label. They are marked as visited and pushed to a stack to
identify the density-reachable nodes of p. This step is later repeated for each node
in the stack for the current community in order to find the connected sequences
of mutual-core nodes starting from p. These connected sequences of mutual-
core nodes form the Mutual-core Connected Maximal Sub-graph (MCMS) of a
community. All nodes in the MCMS of a community are called the primary-core
nodes of that community. However, if a core-node p does not show mutual-core
relation with any other core-node, then only the node p along with its Nlocal p
forms a community with p being its only primary core-node.

2. If a core-node q in Nlocal p is not a mutual-core of p, it is appended with the
current community label; however, it is not pushed into the stack to grow the
current community and its visited/un-visited status is kept un-altered.

3. Non-core nodes in Nlocal p are marked as visited and they are appended with the
current community label. Such nodes form boundary nodes for the community
of p and are thus not pushed into the stack as they cannot be used to grow a
community.

The steps through 1–3 are repeated for each node in the stack thus identifying
a density-connected community for each randomly selected un-visited node p in
the social network. It is worthwhile to note that if a core-node q, assigned to a
community C , does not show a mutual-core relation with any primary-core node
of C , then q is called a secondary-core node of community C and C is called a
secondary-community of q. Similarly, if a core-node r is a primary-core node of a
community C (i.e., r belongs to the MCMS of C) then community C is called the
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primary-community of r . The whole process is repeated for each un-visited node to
find the overlapping community structure in the social network. At the end of the
process, un-labeled nodes (if any) represent outlier nodes, i.e., they do not belong
to any community as they do not show an interaction behavior that is similar to any
node or enough number of nodes in the social network.

4 Community Evolutionary Events Tracking

It should be noted that unlike [29], we do not need an ageing function to remove old
interactions and we also argue that it is difficult to decide upon a selection criteria to
do so. As our approach involves local average interactions of nodes for the clustering
process, addition of new interactions results in new averages for the involved nodes
and directly effects their neighborhoods and roles for clustering. A social network
and its resulting community structure can evolve due to various events triggered by
the social network individuals. These events may include:

1. Addition of new weighted interaction links and/or nodes
2. Increase in the interaction weights of existing links
3. Removal of existing nodes

In order to track the evolution of communities in dynamic social networks like
OSNs, the proposed method first detects a preliminary community structure from an
initial state of the network using the method discussed in Sect. 3.2. Then for each
node involved in a change in the network, i.e., the events mentioned earlier, various
transitions can occur. They can be handled by either considering a live stream of
changes as the network evolves (an online evolutionary adaption of the community
structure), or the set of changes observed in a specific time-window (an offline evo-
lutionary adaption of the community structure). In either case, the new edges and/or
nodes are added to the network or nodes are removed from the network, and each
node involved in a change and its direct-neighbors (nodes with which they have an
edge) in the network are marked as un-visited. The reason to consider the direct-
neighbors also is that in our proposed method the local εp-neighborhood of a node
is also dependent on the interaction behavior of its direct-neighbor(s) in a network.
So if a node p interacts with some other node q, besides re-determining the local
εp-neighborhoods of p and q we also need to re-determine the localεp-neighborhoods
of all the immediate neighbors of p and q respectively to detect the induced change
by the nodes p and q. Thereafter, each remaining un-visited node is re-checked for
a core-node property by re-calculating its local ε(p)-neighborhood. Various events
or transitions used by proposed method to model the evolution of communities are
presented in the following sub-sections.
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4.1 A Non-core Node Becomes a Core

In this case, either an existing non-core node or a newly added node in the network
becomes a core node. In order to track a possible evolutionary event, the following
conditions are checked.

For the new core node p, if there exist core nodes in the local ε(p)-neighborhood
with which the node p has mutual-core relations and which already belong to different
communities, then p causes the primary communities of these core nodes to merge
into a single community. Consequently, in this case, p causes the MCMSs of different
communities to join and form a single MCMS for the new merged community. The
merged community also forms the primary community of the new core node p and
nodes in its local neighborhood are also added to the merged community.

If the new core node p has mutual-core relations with nodes that have the same
primary community C , then p also forms a primary core of community C by append-
ing this community label to itself and to its local neighborhood. This simply results
in the expansion of community C .

Finally, if the new core node p has no mutual-core relations, then p forms a new
community and appends the new community label to its local neighborhood and
itself. This causes the birth of a new community with p being its only primary core.

4.2 A Core Node Becomes a Non-core

In this case, an existing core node no longer remains a core node due to some change
in the network. This triggers either a split or a shrink event in the evolution of a
community as follows.

Let p be a primary core node of a community C at a previous stage, and p seize
to exist as a core node due to a new dynamic change in the network. Let S be the
set of primary cores of the community C which had mutual-core relations with p
before the change in the network. We mark the nodes in S as un-visited. For any core
node q ∈ S, let T be a simple BFS (Breadth First Search) traversal of nodes starting
from q, visiting nodes in the local neighborhoods of the core nodes and branching
at mutual-core relations wherein each newly visited node is labeled as visited. If T
includes all the core nodes in S, then p is simply removed from being a primary core
of community C . Moreover, if p and/or any other node that belonged to the earlier
local neighborhood of p are not in the traversal T , then they are removed with the
community label of C , causing C to shrink.

However, If T does not include all the core nodes in S, then T forms a new
community, i.e., the original community C split as p with loosed core-node property
causes a cut in the MCMS of C . The community label C of the nodes in T (which
now represents a split part of community C) are replaced with a new community
label. The traversals are repeated for each remaining un-visited core nodes in S until
no further split of community C is possible, i.e., no node in S remains un-visited
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after a traversal. In the last traversal, if a node s is visited which does not have the
community label of C (i.e., it was removed as s belonged to a previous traversal that
split the community C), then the community label of C is re-appended to it resulting
in an overlapping node. At the end, the node p and/or any node that belonged to its
previous local neighborhood may be labeled with community label C , but do not
belong to the last traversal. In this case, the community label C for these nodes is
removed, causing community C to further shrink.

It is also worth to note that in case a lost core node p was the only primary core
node of a community C , then p with loosed core-node property causes the death of
community C as no representative primary core node for community C remains.

4.3 A Core Node Gains/Looses Nodes but Remains as Core

Due to dynamic nature of social networks, changes in them may cause a core node
to gain or loose nodes or both but still hold the core node property. In this case, the
addition or removal of nodes are handled as follows.

If the local εp-neighborhood of a core node p gains a set of nodes S that do
not have mutual-core relation with p, then the primary-community label of p is
simply appended to each node q ∈ S. However, if the added nodes have mutual-core
relation with p, then they are handled in the same way as the mutual-cores of a newly
formed core node are handled (Sect. 4.1). This can either cause the expansion of a
community or merge of multiple communities. It is obvious that if all the mutual-
cores of p in its neighborhood including p have the same primary-community, then
only the neighborhood of p is updated resulting in expansion of a community.

Consider the case when the local εp-neighborhood of a core node p with
a primary-community C , looses a set of nodes L that were earlier in its εp-
neighborhood. If the nodes in L do not have mutual-core relation with p, and they
are not direct density-reachable from any other primary-core of the community C ,
then the community label of community C is removed from the lost nodes resulting
in the shrinkage of community C . However, if a core node p looses a set of nodes S
that had mutual-core relation with it, then such nodes are handled in the same way
when the mutual-core of a core node no longer remains a core node (Sect. 4.2). But,
in this case the core node p in question is not excluded from the set of nodes S. This
could possibly lead to either split or no change to the community C .

Most of the community dynamics can be tracked by considering only the three
previously mentioned transitions or events and can be used to model the community-
centric evolutionary events easily.

5 Parameter (η) Value Estimation

The proposed method requires only a single parameter, η, to be set by the users
for detecting overlapping community structures in a social network. The value of η
basically defines the size and density of the overlapping communities to be detected.
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Smaller values of η yield larger and less-dense communities, whereas larger values
yield smaller and more-dense communities. This implies that the parameter, η, can
be tuned to detect overlapping community structures at different levels of granu-
larity, naturally forming a hierarchical representation of the identified overlapping
communities. In order to find a good approximation for η, the proposed method con-
siders a minimum (ηmin) and a maximum (ηmax) values for η, and the community
structures are identified from ηmin to ηmax at some regular step until the modularity
score [4] of the community structure for the current step is no longer better (or same)
than the previous step. In this way, the proposed method takes the value of η between
ηmin and ηmax as the one where the modularity score of the identified community
structure is highest. To define such a domain of η for an underlying network, the
proposed method considers the topological-overlap (Eq. 6) between a pair (i, j) of
reciprocating nodes.1

σOverlap = |Ni ∩ N j |
min(|Ni |, |N j |) , (6)

In Eq. (6), Ni and N j represents the sets of nodes to which nodes i and j have
out-links, respectively. The mean and standard_deviation of the topological-overlap
are taken over all reciprocating pairs of nodes in the underlying network (rounded-up
to two decimal places), and the value of step is taken as the standard_deviation/2
(rounded-up to two decimal places). The ηmin value is determined as follows. If
mean +standard_deviation is less than or equal to 0.5, then ηmin = mean +step,
otherwise ηmin = mean (truncated to one decimal place). The ηmax value is taken as
ηmax = ηmin + standard_deviation.

The above procedure is used to determine a good approximation of η for every
consecutive state of a dynamic network. It is possible that the ηmin value for a network
state at time t +1 is less than the η value decided for a previous network state at time
t . In this case, all the nodes in the network at time t + 1 are marked as un-visited and
the changes to the local ε-neighborhoods are determined for each node.

6 Overlapping Communities and Post-Merge

As mentioned earlier, the proposed community detection method identifies
overlapping community structures in a social network. It does so by allowing a
node q to belong to the εp-neighborhood of a core-node p irrespective of q’s pre-
vious community assignments in a density-based context as discussed in Sect. 3.2.
Thus a node can belong to multiple communities representing a node where multiple
communities overlap. It is often possible that two communities overlap in such a way

1 For a directed network two nodes are said to be reciprocating if each has an out-going edge towards
the other, whereas for un-directed networks each edge is considered to represent a bi-directional
reciprocal edge.
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that majority of nodes of one community (in some cases both the communities) are
involved in the overlap between the two communities. In such cases, two overlapping
communities can be merged to represent a single community as implemented in [30].
For the proposed method such a merging of highly overlapping communities is per-
formed as follows. After a community structure is determined from some state of the
underlying network at a particular value of η, the proposed method can merge two
overlapping communities if the number of nodes, involved in the overlap between
them, for the smaller community is more than or equal to the fraction ηmax of its can-
didate nodes. In this work, the process of merging highly overlapping communities
identified during any state of an underlying network is termed as post-merge.

7 Experimental Results

This section presents the experimental results of the proposed method on some
benchmark datasets. We compare the results obtained through proposed method with
four other state-of-the-art community detection methods that include MOSES [24],
DENGRAPH [23], gSkeletonClu [7], and CFinder [6]. The evaluation is
performed based on two scoring measures which include omega index [31] and
normalized mutual information(NMI) [32]. Both Omega and NMI are generalized
scoring measures used for evaluating both overlapping and non-overlapping com-
munity structures.
gSkeletonClu and MOSES are parameter free methods and do not require an

input. On the other hand,CFinder requires an input parameter k to define the clique
size, which has been set to k = 4 in our experiment as the method generates best
results for this clique size. For DENGRAPH, the input parameters ε and μ have been
varied to generate the best possible results. All the experiments were performed on
an Intel i3 based computer with 4 GB memory.

7.1 Results on Static Networks

For this experiment, we have used four well-known real-world benchmarks to evalu-
ate the performance of the proposed method and compared it with other state-of-the-
art. For all four real-world network datasets, the ground truth community structures
are known and are used to calculate the performance scores. Figure 1 gives the com-
parison of the proposed method with other state-of-the-art methods on the benchmark
datasets.

Figure 1a compares the result scores of the proposed method at η = 62 % on the
un-directed and weighted Zachary’s Karate club network [33] with other methods.
The proposed method identifies a total of three overlapping communities out of which
two almost perfectly match the ground truth. The third community consists of only
three nodes out of which one is involved in an overlap with other community resulting
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Fig. 1 Experimental results on real-world static datasets. a Zachary. b Football. c Dolphin. d Pol-
books

in only two misclassified nodes. It can be seen that the community structure identified
by the proposed method scores better than all the other methods in question.

Figure 1b gives the comparison of the methods on a 2,000 season NCAA College
football network (un-directed and un-weighted) [21], which consists of 115 college
football teams, divided into eleven conferences and five independent teams that do
not belong to any conference. The proposed method at η = 50 % exactly identifies
eleven communities from the network that almost perfectly match the ground truth.
It also identifies five independent teams that do not belong to any conference as
outliers. However, it additionally marks three other nodes as outliers and one of the
nodes is assigned to two conferences. Figure 1b concludes that almost all methods
in question perform well and that the proposed method is comparable to the state-
of-the-art methods.

Figure 1c compares the methods on an un-directed and un-weighted social network
of frequent associations among 62 Dolphins in a community living off Doubtful
Sound, New Zealand that has been compiled by Lusseau et al. [34]. The results
obtained by the proposed method are at η = 50 %. It is clear from Fig. 1c that the
proposed method performs marginally better that all other methods in question on
the Dolphin network.

Figure 1d provides the comparison of the performance scores of the OCTracker
with other methods on the US political books network (un-directed and un-weighted).
This network is a dataset of books about US politics compiled by Valdis Krebs http://
www.orgnet.com/ wherein the nodes represent books about US politics sold online by
Amazon and the edges represent frequent co-purchasing of books by the same buyers.

http://www.orgnet.com/
http://www.orgnet.com/
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Fig. 2 Experimental results on a primary school dynamic network considering the network a after
day-1, and b after day-2 (i.e., merged day-1 and day-2 network)

Mark Newman http://www-personal.umich.edu/~mejn/netdata/ clustered the nodes
of this network into ‘liberal’, ‘neutral’ and ‘conservative’ based on the description
and reviews of books posted on Amazon. The network consists of 105 nodes (books)
and 441 edges (co-purchases). The proposed method identifies a total of five com-
munities at η = 62 % with four overlapping nodes and two outliers. Two of the
identified communities closely match to the actual ‘liberal’ and ‘conservative’ cat-
egories. However, the ‘neutral’ category is difficult to identify and is scattered into
three communities by the proposed method along with a few nodes from the ‘liberal’
and ‘conservative’ categories. Figure 1d shows that the proposed method also per-
forms reasonably well on the political books network dataset. It is notable from Fig. 1
that DENGRAPH [23] is not able to identify the community structure in un-weighted
networks.

7.2 Results on Dynamic Networks

This section presents experimental results on two dynamic network datasets. The
first dataset comprises two weighted networks of face-to-face proximity between
242 individuals representing students and teachers in a primary school over a period
of two days [35]. The two networks correspond to two days of study wherein a
daily contact network is provided. The nodes in this network represent students and
teachers, and edges correspond to the interactions between them. The weight of
an edge represents the number of times two nodes have interacted during the day.
The students actually belong to ten different classes which can represent the ground
truth communities. The teachers do not specifically belong to any class and interact
with any student community. Our aim is to track the community-centric evolutionary
events that possibly occur during the two days of interactions between the individuals.
We also aim to see how well can the actual communities in the network, at various
stages, be detected by the community detection methods.

Figure 2a shows the comparison of performance scores (Omega and NMI) for the
various methods on the interaction network of the individuals after day-1. The scores

http://www-personal.umich.edu/~mejn/netdata/
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are computed against the known ground truth for day-1. As can be seen from the
results for day-1, the proposed method performs better than all other methods in
question.

In order to detect the evolutionary events, the set of community structures detected
by the proposed method for day-1 forms its initial community state. This initial com-
munity structure is now adapted to changes in the network, i.e., by adding interactions
for day-2 to the underlying network which could also include adding new nodes, as
discussed in Sect. 4. Figure 3 shows the dynamic changes that occur in the commu-
nity structure of the primary school interaction network over two days as tracked
by the proposed method. Initially on day-1 network, the proposed method detects 9
communities labeled as A–H, of which community C overlaps with D and E over-
laps with I . The interactions for day-2 are merged with the underlying day-1 network
which leads to addition of some new nodes and edges, and increases the weights of
some already existing edges. Thereafter, OCTracker scans the changes in the net-
work as discussed in Sect. 4 and tracks the resulting community-centric changes in
the initial community structure. As shown in Fig. 3, almost all the initial communi-
ties gain nodes resulting in their expansion. Two important evolutionary events are
detected by the proposed method after the second day of interactions. Firstly, the
two overlapping communities C and D merge to form a single community labeled
as C + D. Secondly, community G splits into two overlapping communities labeled
as G1 and G2. Moreover, after the second day of interactions, many communities2

begin to overlap with each other which are represented by overlapping circles in
Fig. 3.

Figure 2b shows the comparison of performance scores (Omega and NMI) for the
various methods on the interaction network of the individuals after day-2, i.e., the
network represented by merging the interactions and nodes for both day-1 and day-2.
The scores are computed against the known ground truth for both day-1 and day-2
data. As can be seen from the results, the proposed method again performs better than
all other methods in question for the complete primary school interaction network
over two days. To generate the results for the proposed method on the primary school
network dataset, the input parameter η is set to 65 %. Surprisingly, CFinder could
not generate any results for the primary school network data due to its higher space
complexity.

The second dataset [36] is a dynamic directed-network of about 8,000 users from
the English Wikipedia that voted for and against each other in admin elections from
year 2004 to 2008. Nodes represent individual users, and directed-edges represent
votes. Edges are positive (“for” vote) and negative (“against” vote) represented by
edge weights of 1 and −1, respectively. For this paper, the dataset is divided into five
subnetworks based on the year of voting. Starting with the network of year 2004,
the proposed method identifies the preliminary community structures. Then for each
subsequent year, it adds the respective subnetwork to the current state of the network

2 Figure 3 does not depict the actual size of the detected communities or the amount of overlap
between communities.



A Density-Based Approach to Detect Community Evolutionary Events 205

A

B

C

D

E

F

G

H

I

A

I

G2

G1

F

B

E

C+D

H

Gains 8 nodes

Gains 4 nodes

Merge to form C+D

Gains 1 node

Gains 2 nodes

Splits into G1 and G2

Gains 1 node

Day 1 Day 2

Gains 2 nodes
Looses 1 node

Fig. 3 Community evolution tracking in a primary school dynamic network

and identifies the changes induced to the existing community structures for the new
state of the network. The proposed method finds highly-overlapping communities
from each state (cumulative network from the start to some later year) of the voting
network. Some of the evolutionary transitions (birth, split, and merge) for some of
the communities across any two consecutive states (years) of the voting network
identified by the proposed method (without post-merge) is shown in Fig. 4. Based
on these results, we conclude that the proposed method can identify the evolutionary
transitions (birth, growth, contraction, merge, split, and death) of communities across
a time-varying network even if the changes involve only the addition of new edges
and/or nodes. It means that the proposed method does not necessarily require an
ageing function to remove old links.
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Fig. 4 Community tracking on the signed and directed Wikipedia election network [36]

As mentioned earlier, the partial results on the Wikipedia election network shown
in Fig. 4 are generated by the proposed method without performing the post-merge
process. On applying post-merge to the community structure identified for each state
of the network, the number of communities for each state are reduced as many highly
overlapping communities are merged to represent a single community. The analysis
of the community evolution trend, using post-merge with the proposed method,
reveals that at every new state new nodes tend to join existing larger communities
(and cause their growth) or form completely new communities instead of involving
in merge or split.
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8 Conclusion

This chapter has presented a novel density-based approach to track the evolution
of overlapping community structures in online social networks. The novelty of the
proposed method lies in the approach for allowing the communities to overlap, and its
distance function which is defined as a function of the average interactions between a
node and its neighborhood. In addition, unlike other density-based methods for which
the neighborhood threshold is to be set by the users, which is generally difficult to
determine, the proposed method computes a local neighborhood threshold for each
node from the underlying network. The preliminary experimental results on both
static and dynamic networks show that the proposed method is comparable to the
state-of-the-art methods and can effectively track the evolutionary events in dynamic
networks. The method is naturally scalable to large social networks.
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Abstract Email communication patterns have been long used to derive the
underlying social network structure. By looking at who is talking to who and how
often, the researchers have disclosed interesting patterns, hinting on social roles and
importance of actors in such networks. Email communication analysis has been pre-
viously applied to discovering cliques and fraudulent activities (e.g. the Enron email
network), to observe information dissemination patterns, and to identify key play-
ers in communication networks. In this chapter we are using a large dataset of email
communication within a constrained community to discover the importance of actors
in the underlying network as perceived independently by each actor. We base our
method on a simple notion of implicit importance: people are more likely to quickly
respond to emails sent by people whom they perceive as important. We propose sev-
eral methods for building the social network from the email communication data and
we introduce various weighting schemes which correspond to different perceptions
of importance. We compare the rankings to observe the stability of our method. We
also compare the results with an a priori assessment of actors’ importance to ver-
ify our method. The resulting ranking can be used both in the aggregated form as
a global centrality measure, as well as personalized ranking that reflects individual
perception of other actors’ importance.
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1 Introduction

Can we establish the importance of people by simply analyzing the database of
sent and received emails, having no access to subject lines or contents of mes-
sages? The answer, apparently, is “yes we can”. Intrinsic behavior of people reveals
simple patterns in choosing which email to answer next. Our theory is based on
two assumptions. We assume that people do their email communication in bursts,
answering several messages consecutively and that they can freely choose the order
of answers. Secondly, we believe that people use priority queues to manage their
internal task lists, including the list of emails to be answered. Looking at timing and
ordering of responses we derive individual rankings of importance, because we posit
that people have a tendency to reply to important actors first. These individual sub-
jective rankings are significant because they reflect the relative importance of other
actors as perceived by each actor. The individual rankings can be further aggregated
into a global ranking of importance of all actors, which can be used as a centrality
measure.

Contemporary communication within institutions and organizations in being
performed mostly using emails. In many cases this is the preferred method of com-
munication, strongly favored over other communication modalities. Emails allow
people to pass information quickly without having to physically contact each other.
Due to the overwhelming usage of emails and the sheer volume of communication,
both professional and private, many researchers have begun to treat email not as a
pure communication tool, but rather as a tool for prioritizing goals and tasks (where
one’s inbox serves as the to-do list of tasks). This approach to email tools allows us
to use email communication to study human behavior and social interactions.

Our theory is strongly influenced by ideas of Albert László-Barabási. In his
latest book, “Bursts” [4], he formulates an interesting proposition. According to
him, human behavior is mostly controlled by priority queues that humans create and
manage internally (and often unconsciously). For instance, a person has a priority
queue for handling email communication. The length of the queue may vary from
person to person and may depend on individual traits, but psychological experiments
suggest that the average queue length should not exceed 10 items. The arrival of
emails is dictated by the specifics of person’s profession, so without a loss of gener-
ality we may assume that the arrival times of emails follow the Poisson distribution.
Given a set of current emails in the queue (where each email represents a task),
László-Barabási theorizes that the position of each email in the queue corresponds
to the perceived importance of the task. If a new email arrives at a given moment,
the person evaluates the importance of the email (in the context of the current email
queue) and places the email in the queue at the appropriate position, pushing less
important emails down the queue. Of course, this process is unconscious and we may
only observe its outcome. Interestingly, if applied to the domain of email communi-
cation, this scenario produces a power law distribution of email response times that
is very similar to email response distributions observed in real datasets. According
to László-Barabási, the phenomenon of priority lists management can be applied
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to many different aspects of human activity and can account for various power law
distributions observed in practice.

We have decided to test this model and apply it to the large body of email commu-
nication data obtained from the Institute of Computing Science at Poznan University
of Technology. We assume that every person within the Institute is familiar with
other people to the extent that allows her to assess the relative professional impor-
tance of each person. If the model is correct, we should be able to derive the ranking
of employees that corresponds to the perceived importance of employees by using
the communication data and constructing the network, where each node represents
an employee and each edge represents an email conversation. Conversations are
weighted based on the behavioral characteristics of people involved. The weight
may represent the delay in answering, the number of other email messages in the
queue that were pushed down by the current conversation, or simply the number of
emails in the queue at the moment of conversation. Based on these weighting schemes
we develop several local rankings that order the employees. Next, we aggregate these
rankings and compute distances between rankings.

In particular, we seek to answer the following questions:

• Can we compute efficiently the ranking of employees?
• Is there a significant difference in rankings by various weighting schemes?
• To which extend our ranking resembles the ranking computed solely from employ-

ees’ university positions (research assistants, associate professors, etc.)?
• Do our rankings reveal interesting patterns of perceived importance?
• Do local priority queues derived from individual employees aggregate to mean-

ingful global rankings?

We perform an experimental evaluation of the model by analyzing the dataset
consisting of over 600 000 emails sent during one year period to 200 employees of
our university. The results of our experiments show that there is a strong correlation
between the perceived importance of people and the time taken to answer emails.
Indeed, we have the tendency to put emails from important people on top of the
priority queue. Extending individual perception of importance by the information
from other employees allows us to construct the social network which closely models
the relationships of importance between the employees. The resulting global ranking
correctly identifies tenure professors and functional employees (vice-director of the
Institute, finance director of the Institute) at the top of the ranking. At the same time,
very interesting patterns emerge (such as a very high position of a person who served
as the local coordinating officer for a large European project, at the same time being
officially only a regular assistant professor). We firmly believe that the presented
method can be employed to other institutions to unearth hidden patterns and implicit
importance of employees.

We think that our model is general and it can be applied whenever behavioral
data is available which includes any choice made by actors from a set of available
alternatives with the alternatives having varying degrees of importance to individual
actors. The method is computationally inexpensive and requires no prior knowledge
before computing the social network. It can be easily applied in real time and can be
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used both on the server side (e.g., as a part of an anti-spam filter) and on the client side
(e.g., by enhancing the functionality of email client software). The ranking of users
computed by our method can be used to provide additional ordering criterion to boost
productivity, to mark urgent emails that are procrastinating in the inbox, or to provide
additional insights into correspondent’s importance. At the global level, the analysis
of the resulting rankings reveals the “true” importance of actors as perceived by the
community, which, in turn, allows to identify unrecognized influential employees as
well as high profile employees who are deemed unimportant by others. The results can
also be useful in evaluating customer relations and assessing the impact of marketing
campaigns.

The presented method is not without its limitations. It operates under the assump-
tion that email communication is the primary communication means within the
organization. Though it is often the case, individuals may exist (in particular, on
the highest levels of organizational hierarchy) who do not employ email as commu-
nication means. Such individuals often relegate email communication to subordinate
staff and do not communicate directly using email. We have observed this phenom-
enon in our dataset, where the importance of the head of the Institute was clearly
transfered to the secretary, who serves as a proxy. In such cases, additional configu-
ration is required to capture such cases in the data.

The organization of the chapter is the following. In Sect. 2 we present the related
work on the subject. Section 3 introduces basic definitions and notation used through-
out the chapter. In Sect. 4 we report on the results of the initial experimental evaluation
of the model. We present our extension of the model in Sect. 5 and we conclude the
chapter in Sect. 6 with a brief summary.

2 Related Work

The literature on email communication analysis is abundant. Probably, the most
famous analysis has been conducted on email communication within the Enron group
shortly before the outbreak of the scandal [11]. For instance, using the Enron dataset
Trier and Bobrik [21] develop a new centrality measure called Brokering Activity that
captures the involvement of each node in the formation of the network and analyzes
the growth of the network using overlapping time windows. An overview of mining
email social networks can be found in [7]. An interesting system for extracting user
social network by analyzing the contents of user’s inbox is presented in [10]. Also,
previous works exist that aim at analyzing email communication networks and using
reputation of users to fight spam [14].

In many aspects the analysis of email communication data resembles the analysis
of the Twitter environment. The similarities stem from the fact that Twitter con-
versations also employ the threading of tweets and replies. More importantly, the
user is presented with an “inbox” of recent tweets and may freely choose the order
of replies, which is crucial for our model. The research on the characteristics of
the Twitter abounds. In [8] authors analyze the characteristics of conversations and



@Rank: Personalized Centrality Measure for Email Communication Networks 213

show how the new mechanism of retweeting is being employed in many different
ways to conduct conversations between individuals, groups and public. Most of the
research on Twitter networks concentrates however on finding the most influential
users (which is somehow similar to our quest of finding the most respected and rep-
utable employees). Authors of [1] argue that although one may define “power-users”
of Twitter as active users with many followers who produce cascades of retweets, the
prediction whether a particular resource or a particular tweet will be retweeted are
very unreliable and that the only way to induce viral effects in the Twitter network
is to target a large number of users in order to harness the average effect. Similar
conclusions can be drawn from [9] where authors find that simple centrality mea-
sures such as indegree are poor predictors of one’s influence. In [22] a new centrality
measure, called TwitterRank, is introduced and the authors claim that this measure
outperforms other approaches to the quantification of user’s influence.

Our current work is mostly influenced by the works of László-Barabási, in particu-
lar, by [4–6]. We employ the idea presented in [4] and verify it on a real dataset, adding
novel weighting schemes and comparing various rankings, but the main premise of
the research presented in this chapter is derived from these works. A similar approach
is presented in [15], but the authors there concentrate on the design of a universal
priority queue model to explain the output power law distributions of events with
both Poisson and power law distributions of input stimuli.

We have presented our initial findings in the area of using email communication
networks to build personalized rankings of actor’s importance in [17]. In this chapter
we present the overview of our method and we extend our previous findings by
filtering out quick interruptions and incorporating the measurement of the effort
required to prepare a message. The detailed description of the new material w.r.t. the
original paper is presented in Sect. 5.

In this chapter we also use rank aggregation and comparison methods. Ranking
of elements and the aggregation of partially ranked lists has long been the subject of
scientific inquiry. A thorough introduction to rank aggregation methods can be found
in [12]. Most of the research has been conducted on ranking search engine query
results, for instance [2, 3, 13]. Also, a significant effort has been put into developing
effective aggregation methods for full and partial ranking lists [16].

Our work also touches upon reputation management. This area of research has
always attracted lot of scientific attention. For a quick introduction we refer the reader
to [18–20].

3 Basic Definitions

In this section we introduce basic definitions used throughout the chapter and we
present various weighting schemes employed for the construction of the underlying
social network.

Let U = {u1, . . . , um} be the set of users. Let mt
ij denote the fact of sending a

message from user ui to user uj at time t. Let M be the set of all sent messages.
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If mt0
ij ≤ M ∗ mt1

ji ≤ M, we say that there was a communication between users ui

and uj. If t0 < t1 then the user uj replied to the message sent by the user ui , which
is denoted as ct1

ji . In practice, users ui and uj might have communicated several
times over different issues. Due to the privacy concerns we did not have the access
either to subject lines of emails or to the In-Reply-To header field, so we could
not have identified multiple instances of communication between users ui and uj as
concerning different topics. Therefore, we make a simplifying assumption that users
ui and uj communicate in a serial mode using the first-in-first-out method, i.e., the
first email from ui to uj is answered by the first email from uj to ui , the second email
from ui to uj is answered by the second email from uj to ui , and so on. In case if there
are multiple emails from ui to uj before the first response, i.e. if mt0

ij , . . . , mtn
ij ≤ M

then the first message mtn+1
ji from uj to ui replies to the entire set of mt0

ij , . . . , mtn
ij and

is denoted by ctn+1
ji .

Every reply has a delay τ(ctk
ji ) = |tk − tk−1| . With each user we associate a

message queue which represents all messages received by the user until time t. This
message queue is denoted as Qt (ui ) .

Qt (ui ) = {mt ∈
ki ≤ M : t ∈ < t, uk, ui ≤ U }

After being replied the message is discarded from the queue. Thus, if there is a
message mt ∈∈

ik ≤ M : t ∈∈ > t ∈ then the message mt ∈
ki is removed from the message

queue. The number of messages received during the communication delay τ(ct1
j i ) is

called the delay queue and it is denoted as q(ctk
ji ) = abs

(∣∣∣Qtk−1
ui

∣∣∣ −
∣∣∣Qtk

ui

∣∣∣).

Let R(ui ) represent the centrality rank of the user ui . The weight of the commu-
nication between users ui and uj is denoted as wij. We may perceive the weight wij as
the importance of the user uj as perceived by the user ui . In other words, it is a vote
from ui to uj. In general, wij ∩= w ji . Independent of a particular weighting function,
we compute the rank of the user ui recursively by computing the ranks of all users
who communicate with ui and considering the weights of these communications:

R(ui ) =
∑

uk≤U

wki → R(uk) (1)

Because there may be several instances of communication between a given pair of
users, each with a different weight, we have taken an additional simplifying assump-
tion that the final weight wij is averaged over all communications between the given
pair of users:

wij =
∑
cij≤C

w(ct
ij)∣∣{cij ≤ C}∣∣ (2)

In our experiments we have considered the following three weighting schemes for
communication
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3.1 Delay Factor

Our first scheme weights the response by the time it took to answer, decreasing the
weight linearly with the time. The weighting is given in Eq. 3:

wDF
ij =

{
1 if τ(ct

ij) < α
1

τ(ct
ij)−α

otherwise (3)

where α denotes the single time unit duration, i.e., the interval within which the
typical response is expected to happen. This time unit strongly depends on the means
of communication. For instant messaging this would be close to a couple of minutes,
for email this may extend to a couple of hours, whereas for Internet forum posts
this may extend to several days. In our experiments we have set α = 8, arbitrarily
choosing the delay of less than 8 h to be acceptable. In other words, if an email has
been answered within 8 h from the moment of arrival, we assume that it has been
answered “instantly”, without unnecessary delay. The rationale behind such choice
is that people usually work in day batches and it is expected that email messages will
be answered within a single working day.

3.2 Queue Number

The second scheme weights the response by the number of messages in the queue
that were answered after the response. In other words, the highest weight is always
given to the first answered message. In this scheme we fix the size of the message
queue at β messages and the weight of the response is β if this has been the first
message the user has answered, β − 1 if this has been the second message the user
has answered, and so on. Equation 4 presents the formula for the weighting function:

wQN
ij =

{
β − q(ct

ij) if q(ct
ij) <= β

0 if q(ct
ij) > β

(4)

where β denotes the a priori chosen length of the priority queue. Psychological
research suggests that the lesser number of choices increases the level of human
happiness and that too many choices are derogatory for our cognitive and processing
abilities. It is suggested that typical to–do lists should not exceed 8–10 items. How-
ever, since we are dealing with homogeneous tasks (email answering) with a great
variance in labor intensiveness between them, we have decided to set the length of
the queue at β = 15 emails. This choice is arbitrary and not backed by any hard
evidence. However, we have tried a few settings of the β parameter and we have not
observed any significant change to the resulting rankings.
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3.3 Queue Factor

In the third weighting scheme we compute, for each message answered, the number
of preceding unanswered messages in the queue divided by the size of the queue.
In other words, for each message that has been answered we compute the number
of messages that were shifted down the queue by the current message. This scheme
presented in Eq. 5 aims at identifying as important the conversations which interrupt
the priority queue of the user.

wQF
ij =

∣∣Qt
ui

∣∣ − q(ct
ij)∣∣Qt

ui

∣∣ (5)

3.4 Global Versus Local Ranking

For each of the above weighting schemes we have run the ranking algorithm in two
versions: with and without user weighting. The two rank definitions were as follows:

R(ui ) =
∑

uk≤U

wki (6)

R(ui ) =
∑

uk≤U

wki → R(uk) (7)

Equation 6 presents the simple version of the ranking function where the rank of
the user is determined solely based on the weights of communication edges, without
considering the ranks of users with whom the given user communicates. An extended
formula, presented in Eq. 7, considers also the current ranking of the user with whom
the given user communicates (we will refer to these schemes as weighted schemes). It
is worth noting that this formulation of the ranking problem produces a single global
ranking of users, thus leading to a global centrality measure of user’s importance as
averaged over all other users. On the other hand, one might decide to create vectors
RL(ui ) = [w1i , w2i , . . . , wmi ] representing, for each user ui , the relative importance
of users u1, u2, . . . , um to the user ui . In other words, our method produces both a
global ranking R(ui ) or users and local ranking RL(ui ) personalized for each user
ui . In the next section we report on the results of the experimental evaluation of our
method.

4 Experiments

The data consisted of one year worth of email communication within the Institute
of Computing Science at Poznan University of Technology. The dataset describes
the communication between 126 224 actors sending 637 284 email messages (the
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Fig. 1 Queue length histogram

majority of actors are external entities and only around 200 people are employed in
the Institute). The dataset has been sanitized by removing spam messages, messages
generated by software (e.g., SVN reports), aggregating messages to/from the same
actor using different university aliases, and removing emails with an empty sender
header. In our experiments we have assumed the basic unit of time to be 1 h.

Figure 1a, b present histograms of key variables of the dataset. As one can easily
see, the distributions of received messages, as well as the distribution of the message
queue follow power law distributions with exponential cut-offs (the distribution of
sent messages is almost identical to the distribution in Fig. 1b). These cut-offs
roughly correspond to physical limits of email communication. For instance, there
are very few employees who have a queue of unanswered emails longer than 100
messages.

Next, we have run our ranking algorithms on the networks induced by the weight-
ing schemes described in Sect. 3. As the result, we have received several different
rankings. Firstly, we have decided to verify the quality of rankings by performing a
simple comparison. We have manually created a list of all employees and we have
mapped each employee to a particular position within the Institute (these positions
basically represent different jobs and titles, such as Ph.D., research assistant, asso-
ciate professor, tenure professor, etc.). Each position was then assigned a certain
amount of points proportionally to its “importance”. For instance, tenure professors
were assigned 80 points, while Ph.D. students were assigned 10 points. People from
outside of the Institute were assigned 1 point. As of the time of the experiment
the Institute counted 188 employees. In addition, employees who were occupying
administrative positions in the Institute were awarded additional 20 points for their
position (e.g., vice-deans, financial director, etc.).

Given a ranking of employees, we have divided the employees into 10-element
bins and we have aggregated the points in each bin. We present these moving partial
sums in each bin for selected ranking algorithms in Fig. 2a through c. One may see
that there are no apparent differences between rankings and each ranking produces
almost strictly monotonically decreasing partial sums. The variation in sums of points
across bins may be easily explained by the fact that some employees, who are formally
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Fig. 2 Delay factor weighting function ranking

“important” (e.g., employees who are tenure professors), may not be that important
in the eyes of other employees. Indeed, when scrutinizing ranking lists of employees
we have discovered, that each ranking correctly identified the most important people
in the Institute (for instance, each ranking had two members of the Academy of
Sciences ranked within the first 5 positions). In addition, each algorithm ranked very
highly the secretary of the head of the Institute (while the head of the Institute was
ranked low, because this person uses the proxy to communicate with subordinates).
Each algorithm correctly identified all automatically generated communication and
assigned the weight of such communication to 0.

Because we were not sure whether any of the weighting schemes has proven more
advantageous than others, we have computed distance measures between resulting
rankings to see the variability of ranking results. To compare rankings we have used
well known measures of Spearman’s ρ footrule distance and Kendall’s τ distance.

Given a universe Ψ , an ordered list is a ranking r = [x1 ⊆ x2 ⊆ . . . ⊆ xn] with
each xi ≤ Ψ and ⊆ being some ordering relation on Ψ. The Spearman’s ρ footrule dis-
tance is the sum of the absolute differences between the ranks of xi over all rankings,
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Table 1 Similarity between rankings shown by Spearman’s ρ and Kendall’s τ

DF Weighted DF QN Weighted QN QF Weighted QF

DF 1.00 0.85 1.00 0.87 0.85 0.85
Weighted DF 0.85 1.00 0.85 0.88 0.90 0.90
QN 1.00 0.85 1.00 0.87 0.85 0.85
Weighted QN 0.87 0.88 0.87 1.00 0.88 0.88
QF 0.85 0.90 0.85 0.88 1.00 0.90
Weighted QF 0.85 0.90 0.85 0.88 0.90 1.00

for all items xi ≤ Ψ. Formally, given rankings r1 and r2 the Spearman’s footrule
distance between these rankings is defined as DFD(r1, r2) = ∑|Ψ |

i=1 |r1(i) − r2(i)| .
After dividing this value by the maximum value of |Ψ |2 /2 we obtain the normalized
Spearman’s footrule distance. Analogously, the Kendall’s τ distance is defined as
the number of pairwise disagreements between two lists. Sometimes the Kendall’s
τ distance is called the bubble sort distance because it captures the same aspect of
the data. Formally, KTD(r1, r2) = |{(i, j) : i < j, r1(i) < r2(i) ∗ r1( j) > r2( j)}| .
Table 1 summarizes the correlation similarities between different rankings (where
similarity has been computed directly from the distance). We report a single value
because the differences between the two ranking distances would not appear for less
than three digits of precision. Therefore, for the sake of simplicity we conclude that
the two distance measures produce the same result. The outcome presented in Table 1
is very promising because high mutual similarity between rankings clearly shows
that all weighting functions are valid and that they capture a very similar set of data
features.

5 Extended Work

5.1 Interruptions

We were pleased to see such concordance between rankings independent of the
particular weighting function used, and the decreasing monotonicity of rankings
w.r.t. external weights of employees suggested that the model was correct and that
it captured implicit relationships of perceived importance of employees. However,
several criticisms were raised upon our presentation of these initial results. First
and foremost, many people pointed out that the importance of a person is not always
inversely proportional to the speed of reply. It is common in many workplaces that the
flow of work is constantly interrupted by the influx of emails, and some of the emails,
despite not being sent by important persons, are done away quickly because they
require almost no time to answer. The phenomenon of having the psychological urge
to “get it done” is well established in the literature, it serves the purpose of “closing”
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open tasks and releasing the positions in the priority queue. Therefore, we have
experimented with a minor tweak of the model and we have removed from employee
ranking computation messages that were answered extremely quickly, marking them
as interruptions. These interruptions may represent a simple acknowledgement of
reading the message, a single sentence reply, a virtual handshake, etc.

Below we present the results of modifying the model by removing from consid-
eration interruptions. We have experimented with different cutoff thresholds (30, 45,
60 s) for the interruption. Also, a problem arose with first messages in a burst: since
we could not have established the time it took a given person to answer, we could
either include or remove these messages.

For the clarity of presentation we have included in Fig. 3 only the best solutions.
As the reference we have taken one of the ranking functions that did not employ
the identification of interruptions. When we set the cutoff at 30 s (i.e., if an email
took only 30 s to reply, we assume that it was not an important message, and thus it
does not contribute to the perceived importance of the sender), the resulting ranking
is almost strictly monotonically decreasing, which in turn means, that the ranking
of employees derived from their behavioral traits is almost identical to the artificial
ranking of employees based on their administrative positions. We have also found
that the removal of messages for which it was impossible to compute the amount of
time necessary to reply did not contribute to the final ranking. This counterintuitive
result can be easily explained by the fact that this removal included around 50 % of
all messages and the loss of information due to cleaning could not be compensated
by more accurate importance estimations.

5.2 Effort

Our second improvement over the initial model was the inclusion of effort computa-
tion. Many critics rightly pointed out that the most pronounced feature of emails sent
to important people was the effort in email preparation. Indeed, when replying to an
email that one deems important (i.e., when replying to a person that one considers to
be important), it is common to put more work into the contents, proper spelling and
punctuation, clarity of language used, comprehensiveness, etc. Thus, we have further
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extended our model by including the effort of message preparation into the calcu-
lation of edge weight. We compute the effort of message preparation based on the
time between consecutive messages that occur in a burst. We say that two messages
mt

ij and mt ∈
ij occur in a burst if the time between the two messages does not extend

a predefined threshold,
∣∣t − t ∈

∣∣ < ξ. We have experimented with different values of
the threshold ξ and we have found that the best results could be obtained with the
burst of the length of 45 min, which means, that there are no email messages that
take more than 45 min of continuous work. Because we cannot compute the effort
of the first message in each burst, we have decided to discard this message from
rank computation. With these explanations in mind we can proceed to the formal
definition of the effort.

e(mt
ij) = ∣∣t − t ∈

∣∣ , ∣∣t − t ∈
∣∣ < ξ, t ∈ : ∧mt ∈

ik∗ ∩ ∧mt ∈∈
ik : t ∈ < t ∈∈ < t (8)

As can be seen in Eq. 8, the effort of the message mt
ij is defined as the time span

between sending of the message and the directly preceding message mt ∈
ik , provided

that this time span is within the limits defined by the burst.
Let us now see how the inclusion of the effort affects the resulting rankings of

employees. In the figures below we have used, as the reference base weight wr , the
QN ranking with the length of the queue set at 15 (recall that the Queue Number
ranking assigns the weight to the message based on the position of the message
in the message queue, i.e., wr = max{0, 15 − (|Q| − qi )}, where wr denotes the
reference weight of the message, and qi denotes the position of the message at the
moment of reply. We have verified the following ways of including effort into ranking
computation:

5.2.1 E1 Scaled Multiplied Effort

The weight of the message mt
ij is w = λe(mt

ij)wr , where λ denotes the scaling factor
which defines the ratio between the importance of the effort w.r.t. the importance of
the reference weight computed from the QN ranking. In the results below we have
set λ = 3, and e, wr ≤ ≈1, 2←. This formula tries to stress the importance of effort as
compared to the ordering of replies.

5.2.2 E2 Simple Multiplied Effort

Here the weight of the message mt
ij is w = e(mt

ij)wr , with e, wr ≤ ≈1, 2←. It is a
simplified version of the scaled multiplication with λ = 1. We use this ranking to
verify if putting more emphasis on the effort (by increasing the coefficient λ) is of
any benefit.
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5.2.3 E3 Power Effort

The weight of the message mt
ij is w = (e(mt

ij))
2wr . We are trying to establish if

putting even more emphasis on the effort by increasing its influence nonlinearly with
the increase in effort would produce a better ranking. The danger with this scheme
is that the influence of outliers (i.e. messages that took much time to answer due to
some external reason not related to the real importance of the sender) can bias the
final ranking significantly.

5.2.4 E4 Additive Effort

The weight of the message mt
ij is w = e(mt

ij) + wr , with e, wr ≤ ≈0, 1←. According
to this scheme we treat the original weight obtained from the QN ranking and the
computed effort equally, after normalizing both values to the common range of ≈0, 1←.

5.2.5 E5 Additive Effort with Addressee Weighting

This scheme is very similar to the previous scheme E4. The weight of the message
mt

ij is w = (e(mt
ij) + wr )R(uj), where R(uj) denotes the current ranking of the user

uj who is the addressee of the message. As previously, both effort and base weight
are normalized to the interval ≈0, 1←. If indeed one puts more effort in replying
to people generally considered important by the entire population, this weighting
scheme should outperform other schemes. However, the caveat here is that R(uj)

denotes the global ranking of the user uj, which does not necessarily have to be in
accordance with the way a particular user perceives the importance of the user uj.

5.2.6 E6 Effort Only

The last scheme defines the weight of the message mt
ij simply as w = e(mt

ij). We
discard the information on the base weight wr and we compute the importance of the
message solely based on the effort of message preparation. This approach is prone to
many errors because there are multiple factors that may contribute to the time it took
to answer a message that were not related to the importance of the message (e.g.,
a person was interrupted during email writing) and we have no way of finding this
from email communication data.

Figure 4 presents the results of the above described schemes of including effort
into ranking computation. We see that, in general, including the effort of the message
into ranking computation is beneficial. In particular, we observe that additive effort
schemes (E4 and E5), and to some extent the effort only scheme (E6), provide a
more monotonically decreasing rankings, while multiplied effort schemes (E1 and
E2) and power effort scheme (E3) do not improve over the base QN ranking.
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6 Conclusions

In this chapter we have presented a novel method for assessing the importance of
actors in the social network. The resulting ranking may be used as an alternative
centrality measure of actors. The method is based on the analysis of email communi-
cation patterns. In particular, we are interested in measuring the delay in answering
each message. We make the assumption that actors have an implicit ranking of the
importance of other actors and that this implicit ranking can be discovered by mea-
suring the procrastination in answering emails. The experiments conducted on a large
body of data representing a one year of email communication within the Institute
of Computing Science of Poznan University of Technology prove the validity of the
proposed solution. The centrality ranking produced by our method has an additional
benefit of being fully personalized, i.e., it is possible both to aggregate individual
importance rankings to obtain a single global importance ranking, but at the same
time one may use individual importance rankings to order other actors of the network
independently for each actor.

The results presented in this chapter are preliminary. As our future work we
intend to verify other weighting schemes. We also want to gather data from other
organizations and to verify if our model is universal enough to be employed in other
environments. In particular, we believe that the approach consisting in measuring the
effort required to perform an action to assess the individual perception of importance
of the action can be successfully used in many different application domains. We
are currently investigating the applicability of our method to rank events (posts,
comments and likes) in the social network.
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Twitter Sentiment Analysis: How to Hedge
Your Bets in the Stock Markets

Tushar Rao and Saket Srivastava

Abstract Emerging interest of trading companies and hedge funds in mining social
web has created new avenues for intelligent systems that make use of public opinion
in driving investment decisions. It is well accepted that at high frequency trading,
investors are tracking memes rising up in microblogging forums to count for the pub-
lic behavior as an important feature while making short term investment decisions.
We investigate the complex relationship between tweet board literature (like bullish-
ness, volume, agreement etc) with the financial market instruments (like volatility,
trading volume and stock prices). We have analyzed Twitter sentiments for more than
4 million tweets between June 2010 and July 2011 for DJIA, NASDAQ-100 and 11
other big cap technological stocks. Our results show high correlation (upto 0.88
for returns) between stock prices and twitter sentiments. Further, using Granger’s
Causality Analysis, we have validated that the movement of stock prices and indices
are greatly affected in the short term by Twitter discussions. Finally, we have imple-
mented Expert Model Mining System (EMMS) to demonstrate that our forecasted
returns give a high value of R-square (0.952) with low Maximum Absolute Percentage
Error (MaxAPE) of 1.76 % for Dow Jones Industrial Average (DJIA). We introduce
and validate performance of market monitoring elements derived from public mood
that can be exploited to retain a portfolio within limited risk state during typical
market conditions.
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1 Introduction

Financial analysis and computational finance have been an active area of research for
many decades [17]. Over the years, several new tools and methodologies have been
developed that aim to predict the direction as well as range of financial market instru-
ments as accurately as possible [16]. Before the emergence of internet, information
regarding company’s stock price, direction and general sentiments took a long time
to disseminate among people. Also, the companies and markets took a long time
(weeks or months) to calm market rumors, news or false information (memes in
Twitter context). Web 3.0 is characterized with fast pace information dissemination
as well as retrieval [6]. Spreading good or bad information regarding a particular
company, product, person etc. can be done at the click of a mouse [1, 7] or even
using micro-blogging services such as Twitter [4]. Recently scholars have made use
of twitter feeds in predicting box office revenues [2], political game wagons [29],
rate of flu spread [27] and disaster news spread [11]. For short term trading deci-
sions, short term sentiments play a very important role in short term performance of
financial market instruments such as indexes, stocks and bonds [24].

Early works on stock market prediction can be summarized to answer the
question—Can stock prices be really predicted? There are two theories—(1) ran-
dom walk theory (2) and efficient market hypothesis (EMH) [22]. According to
EMH stock index largely reflect the already existing news in the investor community
rather than present and past prices. On the other hand, random walk theory argues that
the prediction can never be accurate since the time instance of news is unpredictable.
A research conducted by Qian et al. compared and summarized several theories that
challenge the basics of EMH as well as the random walk model completely [23].
Based on these theories, it has been proven that some level of prediction is pos-
sible based on various economic and commercial indicators. The widely accepted
semi-strong version of the EMH claims that prices aggregate all publicly available
information and instantly reflect new public version [19]. It is well accepted that
news drive macro-economic movement in the markets, while researches suggests
that social media buzz is highly influential at micro-economic level, specially in the
big indices like DJIA [5, 14, 20, 26]. Through earlier researches it has been vali-
dated that market is completely driven by sentiments and bullishness of the investor’s
decisions [23]. Thus a comprehensive model that could incorporate these sentiments
as a parameter is bound to give superior prediction at micro-economic level.

Earlier work done by Bollen et al. shows how collective mood on Twitter (aggre-
gate of all positive and negative tweets) is reflected in the DJIA index movements
[5] and [20]. In this work we have applied simplistic message board approach by
defining bullishness and agreement terminologies derived from positive and negative
vector ends of public sentiment w.r.t. each market security or index terms (such as
returns, trading volume and volatility) [25]. Proposed method is not only scalable
but also gives more accurate measure of large scale investor sentiment that can be
potentially used for short term hedging strategies as discussed ahead in Sect. 6. This
gives clear distinctive way for modeling sentiments for service based companies such
as Google in contrast to product based companies such as Ebay, Amazon and Netflix.
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We validate that Twitter feed for any company reflects the public mood dynamics
comprising of breaking news and discussions, which is causative in nature. Therefore
it adversely affects any investment related decisions which are not limited to stock
discussions or profile of mood states of entire Twitter feed.

In Sect. 2, we discuss the motivation of this work and related work in the area
of stock market prediction in Sect. 3. In Sect. 4 we explain the techniques used in
mining data and explain the terminologies used in market and tweet board literature.
In Sect. 5 we have given prediction methods used in this model with the forecasting
results. In Sect. 6 we discuss how Twitter based model can be used for improving
hedging decisions in a diversified portfolio by any trader. Finally in Sect. 7 we discuss
the results and in Sect. 8 we present the future prospects and conclude the work.

2 Motivation

Communities of active investors and day traders who are sharing opinions and in some case
sophisticated research about stocks, bonds and other financial instruments will actually have
the power to move share prices ...making Twitter-based input as important as any other data
related to the stock

–TIME (2009) [21]

High Frequency Trading (HFT) comprises of very high percentage of trading
volumes in the present US stock exhange. Traders make an investment position that
is held only for very brief periods of time—sometimes only for a few seconds.
Investors rapidly trades into and out of those positions, sometimes thousands or tens
of thousands of times a day. Therefore the value of an investment is as good as the last
known index price. Most investors will make use of anything that will give them an
advantage in placing market bets. A large percentage of high frequency traders have
trained AI bots to capture buzzing trends in the social media feeds without learning
dynamics of the sentiment and accurate context of the deeper information being
diffused in the social networks. For example, in February 2011 during Oscars when
Anne Hathaway was trending, stock prices of Berkshire Hathaway rose by 2.94 %
[28]. Figure 1 highlight the incidents when the stock price of Berkshire Hathaway
jumped coinciding with an increase of buzz on social networks/ micro-blogging
websites regarding Anne Hathaway (for example during movie releases).

The events are marked as red points in the Fig. 1, event specific news on the points:
A: Oct. 3, 2008—Rachel Getting Married opens: BRK.A up 0.44 %
B: Jan. 5, 2009 — Bride Wars opens: BRK.A up 2.61 %
C: Feb. 8, 2010—Valentine’s Day opens: BRK.A up 1.01 %
D: March 5, 2010—Alice in Wonderland opens: BRK.A up 0.74 %
E: Nov. 24, 2010—Love and Other Drugs opens: BRK.A up 1.62 %
F: Nov. 29, 2010—Anne announced as co-host of the Oscars: BRK.A up 0.25 %
G: Feb. 28. 2011—Anne hosts Oscars with James Franco: BRK.A up 2.94 %
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Fig. 1 Historical chart of Berkshire Hathaway (BRK.A) stock over the last 3 years. Highlighted
points (A–F) are the days when its stock price jumped due to an increased news volume on social
networks and Twitter regarding Anne Hathaway. Courtesy Google Finance

As seen in this example, large volume of tweets can create short term influential
effects on stock prices. Simple observations such as these motivate us to investi-
gate deeper relationship between the dynamics of social media messages and market
movements [17]. This work is not directed towards finding a new stock prediction
technique, which would certainly include effects of various other macroeconomic
factors. The aim of this work, is to quantitatively evaluate the effects of twitter sen-
timent dynamics around a stocks indices/stock prices and use it in conjunction with
the standard model to improve the accuracy of prediction. Further in Sect. 6 we
investigate into how tweets can be very useful in identifying trends in futures and
options markets and to build hedging strategies to protect one’s investment position
in the shorter term.

3 Related Work

There have been several works related to web mining of data (blogposts, discussion
boards and news) [3, 12, 14] and to validate the significance of assessing behavioral
changes in the public mood to track movements in stock markets. Some trivial work
shows information from investor communities is causative of speculation regard-
ing private and forthcoming information and commentaries [8, 9, 18, 30]. Dewally
in 2003 worked upon naive momentum strategy confirming recommended stocks
through user ratings had significant prior performance in returns [10]. But now with
the pragmatic shift in the online habits of communities around the worlds, platforms
like StockTwits1 [31] and HedgeChatter2 have come. Das and Chen made the initial
attempts by using natural language processing algorithms classifying stock messages
based on human trained samples. However their result did not carried statistically
significant predictive relationships [9].

1 http://stocktwits.com/
2 http://www.hedgechatter.com/

http://stocktwits.com/
http://www.hedgechatter.com/
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Gilbert et al. and Zhang et al. have used corpus from livejournal blogposts in
assessing the bloggers sentiment in dimensions of fear , anxiety and worry mak-
ing use of Monte Carlo simulation to reflect market movements in S&P 500 index
[14, 32]. Similar and significantly accurate work is done by Bollen et al. [5] who used
dimensions of Google—Profile of Mood States to reflect changes in closing price of
DJIA. Sprengers et al. analyzed individual stocks for S&P 100 companies and tried
correlating tweet features about discussions of the stock discussions about the partic-
ular companies containing the Ticker symbol [26]. However these approaches have
been restricted to community sentiment at macro-economic level which doesn’t give
explanatory dynamic system for individual stock index for companies as discussed in
our previous work [25]. Thus deriving a model that is scalable for individual stocks/
companies and can be exploited to make successful hedging strategies as discussed
in Sect. 6.

4 Web Mining and Data Processing

In this section we describe our method of Twitter and financial data collection as
shown in Fig. 2. In the first phase, we mine the tweet data and after removal of
spam/noisy tweets, they are subsequently subjected to sentiment assessment tools in
phase two. In later phases feature extraction, aggregation and analysis is done.

4.1 Tweets Collection and Processing

Out of other investor forums and discussion boards, Twitter has widest acceptance
in the financial community and all the messages are accessible through a simple
search of requisite terms through an application programming interface (API)3. Sub
forums of Twitter like StockTwits and TweetTrader have emerged recently as hottest
place for investor discussion buy/sell out at voluminous rate. Efficient mining of
sentiment aggregated around these tweet feeds provides us an opportunity to trace
out relationships happening around these market sentiment terminologies. Currently
more than 250 million messages are posted on Twitter everyday (Techcrunch October
20114).

This study was conducted over a period of 14 months period between June 2nd
2010 to 29th July 2011. During this period, we collected 4,025,595 (by around
1.08 M users) English language tweets Each tweet record contains tweet identifier,
date/time of submission (in GMT), language and text. Subsequently the stop words

3 Twitter API is easily accessible through an easy documentation available at—https://dev.twitter.
com/docs Also Gnip—http://gnip.com/twitter, the premium platform available for purchasing pub-
lic firehose of tweets has many investors as financial customers researching in the area.
4 http://techcrunch.com/2011/10/17/twitter-is-at-250-million-tweets-per-day/

https://dev.twitter.com/docs
https://dev.twitter.com/docs
http://gnip.com/twitter
http://techcrunch.com/2011/10/17/twitter-is-at-250-million-tweets-per-day/
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Fig. 2 Flowchart of the proposed methodology. Four set of results obtained (1) correlation results
for twitter sentiments and stock prices for different companies (2) Granger’s casuality analysis to
causation (3) Using EMMS for quantitative comparison (4) Performance of forecasting method
over different time windows

Table 1 List of companies Company name Ticker symbol

Amazon AMZN
Apple AAPL
AT&T T
Dell DELL
EBay EBAY
Google GOOG
Microsoft MSFT
Oracle ORCL
Samsung Electronics SSNLF
SAP SAP
Yahoo YHOO

and punctuation are removed and the tweets are grouped for each day (which is the
highest time precision window in this study since we do not group tweets further
based on hours/minutes). We have directed our focus DJIA, NASDAQ-100 and 11
major companies listed in Table 1. These companies are some of the highly traded
and discussed technology stocks having very high tweet volumes.
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Fig. 3 Graph for average of log of daily volume over the months under study

11 tech companies are selected on the basis of average message volume. If
their average tweet volume is more than the tweet discussion volume of DJIA and
NASDAQ-100, they are included in the analysis, as observed in the Fig. 3. In this
study we have observed that technology stocks generally have a higher tweet volume
than non-technology stocks. One reason for this may be that all technology compa-
nies come out with new products and announcements much more frequently than
companies in other sectors (say infrastructure, energy, FMCG, etc.) thereby gener-
ating greater buzz on social media networks. However, our model may be applied to
any company/indices that generate high tweet volume.

4.2 Sentiment Classification

In order to compute sentiment for any tweet we had to classify each incoming tweet
everyday into positive or negative using nave classifier. For each day total number of
positive tweets is aggregated as Positiveday while total number of negative tweets as
Negativeday. We have made use of JSON API from Twittersentiment,5 a service pro-
vided by Stanford NLP research group [15]. Online classifier has made use of Naive
Bayesian classification method, which is one of the successful and highly researched
algorithms for classification giving superior performance to other methods in context
of tweets. Their classification training was done over a dataset of 1,600,000 tweets
and achieved an accuracy of about 82.7 %. These methods have high replicability
and few arbitrary fine tuning elements.

In our dataset roughly 61.68 % of the tweets are positive, while 38.32 % of the
tweets are negative for the company stocks under study. The ratio of 3:2 indicates
stock discussions to be much more balanced in terms of bullishness than internet
board messages where the ratio of positive to negative ranges from 7:1 [10] to 5:1 [12].

5 https://sites.google.com/site/twittersentimenthelp/

https://sites.google.com/site/twittersentimenthelp/
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Fig. 4 Tweet sentiment and market features

Balanced distribution of stock discussion provides us with more confidence to study
information content of the positive and negative dimensions of discussion about the
stock prices on microblogs.

4.3 Tweet Feature Extraction

One of the research questions this study explores is how investment decisions for
technological stocks are affected by entropy of information spread about companies
under study in the virtual space. Tweet messages are micro-economic factors that
affect stock prices which is quite different type of relationship than factors like
news aggregates from traditional media, chatboard room etc. which are covered in
earlier studies over a particular period [10, 12, 18]. Keeping this in mind we have
only aggregated the tweet parameters (extracted from tweet features) over a day. In
order to calculate parameters weekly, bi-weekly, tri-weekly, monthly, 5 weekly and 6
weekly we have simply taken average of daily twitter feeds over the requisite period
of time.

Twitter literature in perspective of stock investment is summarized in Fig. 4. We
have carried forward work of Antweiler et al. for defining bullishness (Bt) for each
day (or time window) given equation as:

Bt = ln

(
1 + Mt

Positive

1 + Mt
Negative

)
(1)

Where Mt
Positive and Mt

Negative represent number of positive or negative tweets on
a particular day t. Logarithm of bullishness measures the share of surplus positive
signals and also gives more weight to larger number of messages in a specific senti-
ment (positive or negative). Message volume for a time interval t is simply defined
as natural logarithm of total number of tweets for a specific stock/index which is
ln(Mt

Positive + Mt
Negative). The agreement among positive and negative tweet mes-

sages is given by:
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At = 1 −
√√√√(1− | (MPositive

t − MNegative
t )

(MPositive
t + MNegative

t )
| (2)

If all tweet messages about a particular company are bullish or bearish, agree-
ment would be 1 in that case. Influence of silent tweets days in our study (trading
days when no tweeting happens about particular company) is less than 0.1 % which
is significantly less than previous research [12, 26]. Carried terminologies for all
the tweet features {Positive, Negative, Bullishness, Message Volume, Agreement}
remain same for each day with the lag of one day. For example, carried bullishness
for day d is given by CarriedBullishnessd−1.

4.4 Financial Data Collection

We have downloaded financial stock prices at daily intervals from Yahoo Finance
API6 for DJIA, NASDAQ-100 and the companies under study given in Table 1. The
financial features (parameters) under study are opening (Ot) and closing (Ct) value
of the stock/index, highest (Ht) and lowest (Lt) value of the stock/index and returns.
Returns are calculated as the difference of logarithm to the base e between the closing
values of the stock price of a particular day and the previous day.

Rt = {ln Close(t) − ln Close(t−1)} × 100 (3)

Trading volume is the logarithm of number of traded shares. We estimate daily
volatility based on intra-day highs and lows using Garman and Klass volatility mea-
sures [13] given by the formula:

Γ =
√

1

n

∑ 1

2

[
ln

Ht

Lt

]2

− [2 ln 2 − 1]

[
ln

Ct

Ot

]2

(4)

5 Statistical Analysis and Results

We begin our study by identifying the correlation between the Twitter feed fea-
tures and stock/index parameters which give the encouraging values of statistically
significant relationships with respect to individual stocks(indices). To validate the
causative effect of tweet feeds on stock movements we have used econometric tech-
nique of Granger’s Casuality Analysis. Furthermore, we make use of expert model
mining system (EMMS) to propose an efficient prediction model for closing price
of DJIA and NASDAQ 100. Since this model does not allow us to draw conclusion

6 http://finance.yahoo.com/

http://finance.yahoo.com/
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about the accuracy of prediction (which will differ across size of the time window)
subsequently discussed later in this section.

5.1 Correlation Matrix

For the stock indices DJIA and NASDAQ and 11 tech companies under study we have
come up with the correlation matrix as heatmap given in Fig. 5 between the financial
market and Twitter sentiment features explained in Sect. 4. Financial features for each
stock/index (Open, Close, Return, Trade Volume and Volatility) is correlated with
Twitter features (Positive, Negative, Bullishness, Carried Positive, Carried Negative
and Carried Bullishness). The time period under study is monthly average as it the
most accurate time window that gives significant values as compared to other time
windows which is discussed later Sect. 5.4. Heatmap in Fig. 5 indicative of significant
relationships between various twitter features with the index features.

Our approach shows strong correlation values between various features (upto
−0.96 for opening price of Oracle and 0.88 for returns from DJIA index etc.) and the
average value of correlation between various features is around 0.5. Comparatively
highest correlation values from earlier work has been around 0.41 [26]. As the rela-
tionships between the stock(index) parameters and Twitter features show different
behavior in magnitude and sign for different stocks(indices), a uniform standardized
model would not applicable to all the stocks(indices). Therefore, building an indi-
vidual model for each stock(index) is the correct approach for finding appreciable
insight into the prediction techniques. Trading volume is mostly governed by agree-
ment values of tweet feeds as −0.7 for same day agreement and −0.65 for DJIA.
Returns are mostly correlated to same day bullishness by 0.61 and by lesser magni-
tude 0.6 for the carried bullishness for DJIA. Volatility is again dependent on most of
the Twitter features, as high as 0.77 for same day message volume for NASDAQ-100.

One of the anomalies that we have observed is that EBay gives negative correlation
between the all the features due to heavy product based marketing on Twitter which
turns out as not a correct indicator of average growth returns of the company itself.

5.2 Bivariate Granger Causality Analysis

The results in previous section show strong correlation between financial market
parameters and Twitter sentiments. However, the results also raise a point of dis-
cussion: Whether market movements affects Twitter sentiments or Twitter features
causes changes in the markets? We make use of Granger Causality Analysis (GCA)
to the time series averaged to weekly time window to returns through DJIA and
NASDAQ-100 with the Twitter features (positive, negative, bullishness, message
volume and agreement). Granger Causality Analysis (GCA) is not used to establish
causality, but as an economist tool to investigate a statistical pattern of lagged corre-
lation. A similar observation that the clouds precede rain is widely accepted. GCA
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Fig. 5 Heatmap showing Pearson correlation coefficients between security indices versus features
from Twitter

rests on the assumption that if a variable X causes Y then changes in X will be sys-
tematically occur before the changes in Y. We realize lagged values of X shall bear
significant correlation with Y. However correlation is not necessarily behind causa-
tion. We have made use of GCA in similar fashion as [5, 14] This is to test if one time
series is significant in predicting another time series. Let returns Rt be reflective of
fast movements in the stock market. To verify the change in returns with the change
in Twitter features we compare the variance given by following linear models:
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Rt = Φ +
n∑

i=1

αiDt−i + βt (5)

Rt = Φ +
n∑

i=1

αiDt−i +
n∑

i=1

γiXt−i + βt (6)

Equation 5 uses only ‘n’ lagged values of Rt , i.e. (Rt−1, ..., Rt−n) for prediction,
while Eq. 6 uses the n lagged values of both Rt and the tweet features time series
given by Xt−1, ..., Xt−n. We have taken weekly time window to validate the casuality
performance, hence the lag values7 will be calculated over the weekly intervals
1, 2, ..., 7. From the Table 2, we can reject the null hypothesis (Ho) that the Twitter
features do not affect returns in the financial markets i.e. α1,2,...,n ≤= 0 with a high
level of confidence (P-alues closer to zero signify stronger causative relationship).
However as we see the result applies to only specific negative and positive tweets.
Other features like agreement and message volume do not have significant casual
relationship with the returns of a stock index (high p-values).

5.3 EMMS Model for Forecasting

We have used Expert Model Mining System (EMMS) which incorporates a set of
competing methods such as Exponential Smoothing (ES), Auto Regressive Integrated
Moving Average (ARIMA) and seasonal ARIMA models. In this work, selection
criterion for the EMMS is coefficient of determination (R squared) which is square
of the value of pearson-‘r’ of fit values (from the EMMS model) and actual observed
values. Mean absolute percentage error (MAPE) and maximum absolute percentage
error (MaxPAE) are mean and maximum values of error (difference between fit
value and observed value in percentage). To show the performance of tweet features
in prediction model, we have applied the EMMS twice—first with tweets features as
independent predictor events and second time without them. This provides us with
a quantitative comparison of improvement in the prediction using tweet features.

In the dataset we have time series for a total of approximately 60 weeks (422
days), out of which we use approximately 75 % i.e. 45 weeks for the training both
the models with and without the predictors for the time period June 2nd 2010 to April
14th 2011. Further we verify the model performance as one step ahead forecast over
the testing period of 15 weeks from April 15th to 29th July 2011 which count for wide
and robust range of market conditions. Forecasting accuracy in the testing period is
compared for both the models in each case in terms of maximum absolute percentage
error (MaxAPE), mean absolute percentage error (MAPE) and the direction accuracy.
MAPE is given by the Eq. 7, where ŷi is the predicted value and yi is the actual value.

7 lag at k for any parameter M at xt week is the value of the parameter prior to xt−k week. For
example, value of returns for the month of April, at the lag of one month will be returnapril−1 which
will be returnmarch.
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Table 3 EMMS model fit characteristics for DJIA and NASDAQ-100

Index Predictors Model fit statistics Ljung-Box Q(18)
R-squared MaxAPE Direction Statistics DF Sig.

Dow-30 Yes 0.95 1.76 90.8 11.36 18 0.88
No 0.92 2.37 60 9.9 18 0.94

NSDQ-100 Yes 0.68 2.69 82.8 23.33 18 0.18
No 0.65 2.94 55.8 16.93 17 0.46

MAPE = λn
i| yi−ŷi

yi
|

n
× 100 (7)

While direction accuracy is measure of how accurately market or commodity up/
down movement is predicted by the model, which is technically defined as logical
values for (yi,t̂+1 − yi,t) × (yi,t+1 − yi,t) > 0 respectively.

As we can see in the Table 3, there is significant reduction in MaxAPE for
DJIA(2.37 to 1.76) and NASDAQ-100 (2.96 to 2.69) when EMMS model is used
with predictors as events which in our case our all the Tweet features (positive, neg-
ative, bullishness, message volume and agreement). There is significant decrease in
the value of MAPE for DJIA which is 0.8 in our case than 1.79 for earlier approaches
[5]. As we can from the values of R-square, MAPE and MaxAPE in Table 3 for both
DJIA and NASDAQ 100, our proposed model uses Twitter sentiment analysis for a
superior performance over traditional methods. Figure 6 shows the EMMS model
fit for weekly closing values for DJIA and NASDAQ 100. In the figure fit are model
fit values, observed are values of actual index and UCL & LCL are upper and lower
confidence limits of the prediction model.

5.4 Prediction Accuracy Using OLS Regression

Our results in the previous section showed that forecasting performance of stocks/
indices using Twitter sentiments varies for different time windows. Hence it is impor-
tant to quantitatively deduce a suitable time window that will give us most accurate
prediction. Figure 7 shows the plot of R-square metric for OLS regression for returns
from stock indexes NASDAQ-100 and DJIA from tweet board features (like number
of positive, negative, bullishness, agreement and message volume) both for carried
(at 1-day lag) and same week. From the Fig. 7 it can be inferred as we increase the
time window the accuracy in prediction increases but only till a certain point that is
monthly in our case beyond which value of R-square starts decreasing again. Thus,
for monthly predictions we have highest accuracy in predicting anomalies in the
returns from the tweet board features.
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Fig. 6 Plot of Fit values (from the EMMS model) and actual observed closing values for DJIA and
NASDAQ-100

Fig. 7 Plot of R-square values over different time windows for DJIA and NASDAQ-100. Higher
values denote greater prediction accuracy
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6 Hedging Strategy Using Twitter Sentiment Analysis

Portfolio protection is very important practice that is weighted as much as portfolio
appreciation. Just like a normal user purchases insurance for its house, car or any
commodity, one can also buy insurance for the investment that is made in the stock
securities. This doesn’t prevent a negative event from happening, but if it does happen
and you’re properly hedged, the impact of the event is reduced. In a diverse portfolio
hedging against investment risk means strategically using instruments in the market
to offset the risk of any adverse price movements. Technically, to hedge investor
invests in two securities with negative correlations, which again in itself is time
varying dynamic statistics.

To explain how weekly forecast based on mass tweet sentiment features can be
potentially useful for a singular investor, we will take help of a simple example.

Let us assume that the share for a company C1 is available for $X per share and
the cost of premium for a stock option of company C1 (with strike price $X) is $Y.

A = total amount invested in shares of a company C1 which is number of shares
(let it be N) × $X

B = total amount invested in put option of company C1 (relevant blocksize × $Y)
And always for an effective investment (N × $X) > ( Blocksize × $Y)
An investor shall choose the value of N as per as their risk appetitive i.e. ratio

of A:B = 2:1 (assumed in our example, will vary from from investor to investor).
Which means in the rising market conditions, he would like to keep 50 % of his
investment to be completely guarded, while rest 50 % are risky components; whereas
in the bearish market condition he would like to keep his complete investment fully
hedged by buying put options equivalent of all the investment he has made in shares
for the same security. From Fig. 8, we infer for the P/L curves consisting of shares and
2 different put options for the company C1 purchased as different time intervals 8;
hence the different premium price even with the same strike price of $X. Using
married put strategy makes the investment risk free but reduces the rate of return in
contrast to the case which comprises of only equity security which is completely free-
fall to the market risk. Hence the success of married put strategy depends greatly on
the accuracy of predicting whether the markets will rise of fall. Our proposed Tweet
sentiment analysis can be highly effective in this prediction to determine accurate
instances when the investor should readjust his portfolio before the actual changes
happen in the market. Our proposed approach provides an innovative technique
of using dynamic Twitter sentiment analysis to exploit the collective wisdom of
the crowd for minimising the risk in a hedged portfolio. Below we summarize two
different portfolio states at different market conditions (Table 4).

To check the effectiveness of our proposed tweet based hedging strategy, we run
simulations and make portfolio adjustments in various market conditions (bullish,

8 The reason behind purchase of long put options at different time intervals is because in a fully
hedged portfolio, profit arrow has lower slope as compared to partially hedged portfolio (refer P/L
graph). Thus the trade off between risk and security has to be carefully played keeping in mind the
precise market conditions.
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Table 4 Example investment breakdown in the two cases

Partially Hedged Portfolio at 50 % risk
1000 shares at price of $X = 1,000 X
1 Block size of 500 shares put options purchased at strike price of $X with premium of $Y each
= 500Y
Total = 1,00 X + 500 Y
Fully Hedged Portfolio at minimized risk
1000 shares at price of $X = 1,000 X
2 Block size of 500 shares each put options purchased at strike price of $X with premium of $Y
each = 2×500 Y = 1000 Y
Total = 1,000 X + 1,000 Y

Fig. 8 Portfolio adjustment in cases of bearish (fully hedged) and bullish (partial hedged) market
scenarios. In both the figures, strike price is the price at which a option is purchased, Break even
point (BEP) is the instance when investment starts making profit. In case of bearish market scenario,
two options at same strike price (but different premiums) are in purchased at different instances,
Option1 brought at the time of initial investment and Option2 brought at a later stage (hence lower
in premium value)

bearish, volatile etc). To elaborate, we take an example of DJIA ETF’s as the under-
lying security over the time period of 14th November 2010 to 30th June 2011.
Approximately 76 % of the time period is taken in the training phase to tune the
SVM classifier (using tweet sentiment features from the prior week). This trained
SVM classifier is then used to predict market direction (DJIA’s index movement) in
the coming week. Testing phase for the classification model (class 1—bullish market
∈ and class 0- bearish market ∩) is from 8th May to 30th June 2011 consisting a total
of 8 weeks. SVM model is build using KSVM classification technique with the linear
(vanilladot—best fit) kernel using the package ‘e1071’ in R statistical framework.
Over the training dataset, the tuned value of the objective function is obtained as
−4.24 and the number of support vectors is 8. Confusion matrix for the predicted
over the actual values (in percentage) is given in Table 5. (Percentages do not sum
to full 100 % as the remaining 12.5 % falls under the third type of class when the
value of the index do not change. This class is excluded in the current analysis due
to limitations of data period) Overall classifier accuracy over the testing phase is
85.7 %. Receiver operator characteristics (ROC) curve measuring the accuracy of
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Table 5 Prediction accuracy
over the testing phase (8
weeks). Values in percentage

Confusion matrix Predicted direction
Market down Market up

Actual direction Market down 37.5 12.5
Market up 0 37.5

Fig. 9 Receiver operating
characteristic (ROC curve)
curve for the KSVM classifier
prediction over the testing
phase. ROC is graphical plot of
the sensitivity or true positive
rate, versus false positive rate
(one minus the specificity or
true negative rate). More the
area under curve for typical
ROC, more is the performance
efficiency of the machine
learning algorithm

the classifier as true positive rate to false positive rate is given in the Fig. 9. It shows
the tradeoff between sensitivity i.e. true positive rate and specificity i.e. true negative
rate (any increase in sensitivity will be accompanied by a decrease in specificity).
Good statistical significance for the classification accuracy can be inferred from the
value of area under the ROC curve (AUC) which comes out to 0.88.

Figure 10 shows the DJIA index during the testing period and the arrows mark the
weeks when the adjustment is done in the portfolio based on prediction obtained from
tweet sentiment analysis of prior week. At the end of the week (on Sunday), using
tweet sentiment feature we predict what shall be the market condition in the coming
week- whether the prices will go down or up. Based on the prediction portfolio
adjustment—bearish −→ bullish or bullish −→ bearish.

7 Discussions

In Sect. 5, we observed how the statistical behavior of market through Twitter sen-
timent analysis provides dynamic window to the investor behavior. Furthermore, in
the Sect. 6 we discussed how behavioral finance can be exploited in portfolio deci-
sions to make highly reduced risked investment. Our work answers the important
question—If someone is talking bad/good about a company (say Apple etc.) as sin-
gular sentiment irrespective of the overall market movement, is it going to adversely
affect the stock price? Among the 5 observed Twitter message features both at same
day and lagged intervals we realize only some are Granger causative of the returns
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Fig. 10 DJIA index during the testing period. In the figure green marker shows adjustment bearish
−→ bullish, while red arrow shows adjustment bullish −→ bearish. (Data-point at the centre of
the box) (Data courtesy Yahoo! finance)

Table 6 Comparison of various approaches for modeling markets movements through Twitter

Previous Bollen et al. [5] and Sprenger et al. [26] This work
approaches Gilbert et al. [14]
→
Approach Mood of complete

Twitter feed
Stock discussion with

ticker $ on Twitter
Discussion based tracking

of Twitter sentiments
Dataset 28th Feb 2008 to 19th

Dec 2008, 9M
tweets sampled as
1.5 % of Twitter
feed

1st Jan 2010 to 30th
June 2010—0.24M
tweets

2nd June 2010 to 29th July
2011-4M tweets through
search API

* High corr values (upto
−0.96) for opening price

* Strong corr values (upto
0.88) for returns

Results * 86.7 % directional
accuracy for DJIA

* Max corr value of
0.41 for returns of
S&P 100 stocks

* MaxAPE of 1.76% for
DJIA

* Directional accuracy of
90.8 % for DJIA

Feedback/
Drawbacks

Individual modeling
for stocks not
feasible

News not taken into
account, very less
tweet volumes

Comprehensive and
customizable approach.
Can be used for hedging
in F&O markets

from DJIA and NASDAQ-100 indexes, while changes in the public sentiment is well
reflected in the return series occurring at even lags of 1, 2 and 3 weeks. Remarkably
the most significant result is obtained for returns at lag 2 (which can be inferred as
possible direction for the stock/index movements in the next week).

Table 6 given below explains the different approaches to the problem that have
been done in past by researchers [5, 14, 26]. As can be seen from the table, our
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approach is scalable, customizable and verified over a large data set and time period
as compared to other approaches. Our results are significantly better than the previous
work. Furthermore, this model can be of effective use in formulating short-term
hedging strategies (using our proposed Twitter based prediction model).

8 Conclusion

In this chapter, we have worked upon identifying relationships between Twitter based
sentiment analysis of a particular company/index and its short-term market perfor-
mance using large scale collection of tweet data. Our results show that negative and
positive dimensions of public mood carry strong cause-effect relationship with price
movements of individual stocks/indices. We have also investigated various other fea-
tures like how previous week sentiment features control the next week’s opening,
closing value of stock indexes for various tech companies and major index like DJIA
and NASDAQ-100. Table 6 shows as compared to earlier approaches in the area
which have been limited to wholesome public mood and stock ticker constricted
discussions, we verify strong performance of our alternate model that captures mass
public sentiment towards a particular index or company in scalable fashion and hence
empower a singular investor to ideate coherent relative comparisons. Our analysis
of individual company stocks gave strong correlation values (upto 0.88 for returns)
with twitter sentiment features of that company. It is no surprise that this approach
is far more robust and gives far better results (upto 91% directional accuracy) than
any previous work.
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The Impact of Measurement Time on Subgroup
Detection in Online Communities

Sam Zeini, Tilman Göhnert, Tobias Hecking, Lothar Krempel
and H. Ulrich Hoppe

Abstract More and more communities use internet based services and infrastructure
for communication and collaboration. All these activities leave digital traces that are
of interest for research as real world data sources that can be processed automatically
or semi-automatically. Since productive online communities (such as open source
developer teams) tend to support the establishment of ties between actors who work
on or communicate about the same or similar objects, social network analysis is a
frequently used research methodology in this field. A typical application of Social
Network Analysis (SNA) techniques is the detection of cohesive subgroups of actors
(also called “community detection”. We were particularly interested in such methods
that allow for the detection of overlapping clusters, which is the case with the Clique
Percolation Method (CPM) and Link Community detection (LC). We have used
these two methods to analyze data from some open source developer communities
(mailing lists and log files) and have compared the results for varied time windows
of measurement. The influence of the time span of data capturing/aggregation can
be compared to photography: A certain minimal window size is needed to get a clear
image with enough “light” (i.e. dense enough interaction data), whereas for very
long time spans the image will be blurred because subgroup membership will indeed
change during the time span (corresponding to a moving target). In this sense, our
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target parameter is “resolution” of subgroup structures. We have identified several
indicators for good resolution. In general, this value will vary for different types
of communities with different communication frequency and behavior. Following
our findings, an explicit analysis and comparison of the influence of time window
for different communities may be used to better adjust analysis techniques for the
communities at hand.

1 Introduction

With the rise of web based social media, more and more profession-al and hobby
communities use internet based services and infrastructure for communication and
collaboration. All these communities leave traces that are of high interest for research
as easily accessible and processable real world data. Social network analysis [18]
is one of the preferred research methodologies in this field, especially be-cause
structural analyses can be computed easily.

From an SNA perspective, the shift from classical network survey techniques to
automated capturing of data from network sources has opened new opportunities but
has also raised new methodological is-sues. One of these issues is the adequate and
explicit handling of time. On the one hand, communication data from networked
communities comes with time stamps as an explicit attribute. Indeed, we find numer-
ous studies of the dynamics of networks in the sense of evolution over time (see
next section), yet the effect of the time span of data aggregation and measurement is
usually not explicitly analyzed.

We came across the problem of window sizes in the context of studying positional
role models to identify potential innovators in productive networked communities,
particularly open source soft-ware developers. As data sources we used the freely
available mailing lists (communication) and software archive log files (cooperation).
In general, we were able to show that network positions and their evolution over
time can be used as indicator for potential innovators in communities [11]. A further
refinement following the distinction between individual innovators versus groups
of innovators led us to a comparison between the classical individual broker model
[4, 9] and analyses involving overlapping members between k-cliques in the sense
of group brokerage [16]. While using the Clique Percolation Method (CPM) [13]
to identify overlapping members be-tween clusters we found that different sizes of
time slices for data aggregation led to considerably different clusters. For instance,
selecting a time slice of one or two years for a very active source code repository
would lead to one big clique including practically all members of the network while
selecting time slices in the length of days in highly specialized developer mailing
lists may only render very sparse and arbitrary connections.

In general, the influence of the time span of data capturing/aggregation can be
described using a photographic analogy: A certain minimal window size is needed to
get a clear image with enough “light” (i.e. dense enough interaction data), whereas
for very long time spans the image will be blurred because subgroup membership
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will indeed change during the time span (moving target). In this sense, we strive for
optimizing the choice of the target parameter “resolution” with respect to subgroup
structures.

For familiar communities, researchers usually have an idea of an adequate length
of time slices under the specific conditions. This is often defined by interest in dif-
ferent types of affiliations, e.g. 14-days window length as middle-term relationship
between observed student interactions and so on. So there is an implicit idea of inher-
ent paces or fitting time spans existing in given productive groups or communities
of which researchers are aware while sampling their cases. For unknown large com-
munities this kind of implicit assumption is missing and the length of time windows
is chosen by contingency or comparability between cases.

This leads us to the idea that an adequate size for time slices will lead to ranges that
represent the inherent pace of community and will thus yield meaningful clusters.
After introducing some related work, in this book chapter, based on our previous
work [19], we will discuss the size of time window slices as a determining factor
for resolution in the detection of clusters using the Clique Percolation Method and
the Link Communities Approach on communication data from open source projects.
Finally, after describing and analyzing the empirical cases, we will discuss possible
applications and extensions of this approach for determining adequate time slice
sizes adjusted to an authentic tempo for different communities regarding to their
productivity cycles.

2 Related Work

There is a considerable body of research regarding the dynamics of networks accord-
ing to evolution and growth. In her recent Ph.D. thesis, Falkowski [8] has developed
and applied clustering techniques to detect communities in social networks and to
determine the evolution of these structures over time and gives a good overview on
the general literature on dynamic networks but does not take the effect of variation of
the size of time slices into account. Also the fact that the group structures as perceived
by the actors in a community and group structures inferred from network data may
differ and therefore the size of time slices has to be considered as an influence factor
had already been mentioned once in the early 1980s [2]. However, this problem has
not been addressed by community researchers later. We assume that for nowadays?
huge online communities it is even more important to determine a time window size
that is appropriate for observing the group dynamics, especially if network data are
com-pared to cognitive self-perceptions. On platforms like facebook and LinkedIn
it is not unusual for one individual member to have declared friendship relations
with more than 500 other members alt-hough this number renders the strength or
significance of these single ties highly questionable (cf. Dunbars number [7]).

Other relevant approaches dealing with problems in temporal network dynamics
are moving structures [14], in which the overlap between time slices is considered.
Also there is other work questioning the meaningfulness of static measures like
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centrality for dynamic networks [15]. Issues similar to the problem of finding out
best fit-ting window lengths occur in the field of network text analysis concerning
the right size for window lengths over text fragments to determine the co-occurrence
between concepts [6].

Another portion of related work uses CPM in context of temporal dynamics of
communities. Wang and Fleury [17] propose a frame-work addressing the influence
of temporal variation by “regularizing communities by initializing sub-communities
corresponding the cores and proportionality”. Palla et al. [12] formulate an extension
on CPM by referring to size of communities and their age as heuristic. Finally Greene
et al. [10] develop a model for tracking communities in dynamic social networks
based on events. A recent paper addressing concretely the identification of best
fitting window sizes in order to increase link prediction accuracy was published by
Budka et al. [3] at about the same time as our initial research [19]. Last but not least
the survey paper by Coscia et al. [5] contains a good overview on the analysis of
dynamic communities.

3 Approach

In contrast to several other standard techniques, the Clique Percolation Method
(CPM) as described by Palla et al. in [13] allows for identifying cohesive subgroups
or communities in social networks with overlapping members between different
clusters, whereas many other methods only yield disjoint clusters. As in open source
projects, cohesive subgroups may correspond to project teams and project coordi-
nators or senior advisors would usually be involved in several of those subgroups,
CPM was the approach chosen for this case study. A community in the sense of
CPM is defined as “the union of all k-cliques that can be reached from each other
through a series of adjacent k-cliques” [13]. In this definition k-cliques are complete
subgraphs of size k and two k-cliques are adjacent if they share k − 1 members.
The term “percolation” in this case refers to the k-clique construct that percolates
through a graph over the adjacent k-cliques with only one node moving at a time
(see Fig. 1 the upper row shows the original graph and the community found with
4-clique percolation and the lower row shows the percolation of the 4-clique through
the graph).

Similar to CPM, the Link Communities (LC) method [1] also detects overlapping
subgroups. The difference is, however, in the interpretation of overlaps. The notion
of a community is completely different from other methods. Groups are defined as
social dimensions or contexts (e.g. common interest, friendships, etc.) with hierar-
chical structure and pervasive overlaps, rather than the common definition as parts of
networks with more internal than external links. Whereas nodes are usually involved
in several contexts, links are assumed being related to a single context only. To capture
the hierarchical and massively overlapping organization of groups, the method per-
forms a hierarchical clustering of links instead of nodes. The similarity of two edges
with one common incident node is based on the similarity of their neighborhoods.
Edges without common incident nodes are considered as not being similar.
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Fig. 1 Percolation of a 4-clique

Using time stamped data, the network data can easily be sliced into different
window sizes. For the cases described here, the data was collected from the mailing
lists and the log files of the source code version management system of an open
source development communities over two years. Especially in the case of the version
management data the problem became very clear. This kind of data can be described
as very dense in the sense of events as there are a lot of changes in the code done by
few “maintainers” having permissions to commit code to the repository. While there
are cliques in monthly and quarterly slices, the community becomes a big clique
when viewed in the whole time of two years. The same tendency is also observable
for the developer mailing list. The intuitive choice of monthly or quarterly time slices
which was the basis of our earlier analyses led to meaningful results but also brought
us to the question of determining the optimal size for time slices assuming that every
community has its own productive speed and inherent time.

We identified several indicators, which reflect the group structure of networks and
can be used as basis for a mechanism that supports finding the ideal time slice for a
given network. For our application we define an indicator as a function i(N , D) → r
which maps the network N and the group structure found by the subgroup detection
method D to a real value r . The basic indicators we use are number of clusters,
aggregated forms of cluster size, coverage, and overlap coverage. Coverage and
overlap coverage are defined similarly by the ratio of number of nodes being in at
least one cluster (coverage cov) or being in at least two clusters (overlap coverage
ol_cov) to the number of nodes in the network:

cov(N , D) = |{v ∈ V (N ) : |{∃c ∈ C(N , D), v ∈ c}| > 1}|
|V (N )| (1)

ol_cov(N , D) = |{v ∈ V (N ) : |{c : c ∈ C(N , D), v ∈ c}|}|
|V (N )| (2)
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Table 1 Candidates for objective functions

Maximum Average Standard deviation

Number of clusters max num avg num sd num
Maximal cluster size max max_size avg max_size sd max_size
Average cluster size max avg_size avg avg_size sd avg_size
Coverage max cog avg cov sd cov
Overlap coverage max ol_cov av ol_cov sd ol_cov
Combined indicator max ci avg ci sd ci

In both of the above formulas, V (N ) is the vertex set of a network N and C(N , D)

is the set of clusters found by subgroup detection method D applied to network N .
In contrast to the other indicators, cluster size needs to be aggregated before it

can be used as a measure describing a single network. As aggregation forms we use
maximum, average, and variance or standard deviation. Each of these aggregations
gives one single value for a single network. Thus the aggregated forms of cluster size
qualify as basic indicators.

In addition to these simple indicators we introduce a combined indicator based on
the number of clusters and the overlap coverage. For the case |{c : c ∈ C(N , D)}| > 1
it is defined as:

ci(N , D) = |{c : c ∈ C(N , D)}| · m

|V (N )| + ol_cov(N , D) (3)

and as ci(N , D) = 0 in any other case. Here, m denotes the minimal cluster size.
We have introduced it to allow the comparison between CPM and other subgroup
detection methods. For CPM the parameter k denotes the size of the clique being
percolated through the network and thus determines the minimal size of clusters
being found. For comparing the results of CPM with methods which do not restrict
the minimal cluster size, like LC, we set m = k and ignore all clusters of a size
smaller than m. If not stated otherwise we have used k = m = 4 throughout this
work. We need the case distinction because if we have only one cluster the outcome
would be simply the inverse of the number of nodes, which does not state anything
about the subcommunity structure.

Based on these indicator functions objective or target functions can now be
defined. These objective functions shall have the form o(T, D) → r with T being
a time series; a series of time slices (networks) of the same length taken from the
same community. To transform our basic indicators into such an objective form we
need to aggregate again, this time over all networks in a time series. For the purpose
of aggregation we again use the same forms of aggregation as for the aggregation
of cluster size into a measure for one network. The maxima of such an objective
function should now point to time window sizes (here represented by time series),
which allow insights into the dynamics of the community in question. All in all we
come up with the following candidates for objective functions (Table 1).
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We have used both standard deviation and variance as possible aggregation meth-
ods but as those are closely related we have only included standard deviation in the
table of candidates for objective functions.

4 Case Studies

We chose the open source projects Asterisk, OpenSimulator (OpenSim), and the
Dojo toolkit to test our assumptions and evaluate and apply our approach. Each of
the projects defined as case studies represent a different domain and also a different
type of community in respect to size and frequency of actions.

Asterisk is a software based telephone private branch exchange (PBX) developed
by Digium. It is released under the GNU public license as well as under a propri-
etary license (dual license model). There is a big community working on Asterisk.
The software based telephone PBX is often used within call-centers and for this
purpose open source is a good choice since the companies can change and adapt the
software in respect to their individual needs. Asterisk represents a typical big and
productive community with a more or less stable core of developers and users as
well as a high fluctuation of occasional users. In general we have collected data from
the developer mailing list, the community mailing list and also from the logfiles
of the source code version management system (svn) using our data-multiplexer-
demultiplexer approach and tool [11]. In case of Asterisk the data covers the whole
years 2006 and 2007. The developer mailing list contains 13,542 messages in 4,694
threads discussed by 1,324 developers, the community mailing list 67,949 mails in
26,095 topics discussed by 4,642 contributors, and the svn data 17,868 revisions of
1,866 artifacts from 30 developers. OpenSimulator is a project developing an open
source server for hosting 3D simulation worlds, comparable to Secondlife®. It is
released under the BSD License. The community is somehow similar to Asterisk,
there are maintainers, developers, hosters and end users. It is much smaller though.
The data covers the time period of September 2007 to February 2009. The developer
mailing list contains 5,505 messages in 1,185 threads discussed by 198 developers,
the community mailing list 1,582 mails in 634 topics discussed by 175 people, and
the svn data 32,867 revisions of 6,012 artifacts from 26 developers. OpenSimulator
represents a typical mid-size open source community with a relative stable core of
developers and regular users and some occasional users. The Dojo toolkit is an open
source Javascript library developed by the Dojo Foundation. It started in 2004 and
the framework is targeting needs of client side web development. It is released under
a modified BSD License as well as under the Academic Free License. The data for
the mailing list covers the complete years 2006 and 2007. The svn data contains
whole 2006 and January to August 2007. The mailing list contains 7,207 messages
in 1,477 threads discussed by 114 developers. The svn data contains 15,845 revisions
of 4,151 artifacts from 29 users. Dojo represented at the time of observation a typical
small-size open source project with a stable core of developers and users but only
few occasional users.
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To evaluate our approach for the adequate identification parameters in terms of
window sizes and clique orders to get an optimal resolution of the cohesive subgroup
structure in a given community we decided to use the data from the developer mail-
ing lists because it is less formally pre-regulated than repository access and more
open for new developers so that cliques are more likely to emerge and change over
time. The opposite assumption that pre-regulated networks of maintaining develop-
ers with write access rights based on their svn contributions will tend to build one
large clique over time has been tested and confirmed for all three cases with each of
our approaches. For this reason we focus to describe and discuss our approach only
on the networks derived from the developer mailing lists. Regarding these lists Open-
Simulator and Dojo are quite similar projects in the sense that both have between 100
and 200 active members of these lists and between 5,000 and 7,500 contributions
to these lists over the observation period. Asterisk is much bigger with more than
1,000 members and more than 13,000 contributions on the mailing list. But there is
also a qualitative difference between OpenSimulator and Dojo. Dojo tends to have
little fluctuation within the whole developer community whereas OpenSimulator has
a stable core of developers but also high fluctuation in the periphery.

5 Analysis

The initial assumption was that evolving networks bear an inherent time which
reflects the changes in the community structure. This inherent time might not be
stable over the entire period of observation. Moreover highly dynamic networks
emerge through different phases [20]. In the email networks of open source com-
munities the communication between the members might rise, e.g. in phases short
before a release date.

5.1 Overall Characterization of the Community Networks

To further examine the effect of the observation period on the choice of proper
time window sizes we have to have a closer look on the evolution of the particular
networks. The upper two diagrams of Fig. 2 show the evolution of the density and
the number of nodes of the Asterisk network over a period of 720 days split up in
monthly time windows. It is easy to see that this network does not evolve uniformly.
The network density increases over the time period whereas the number of nodes
decreases. Especially interesting are irregularities like the changes in the number of
participating actors within the period between month 4 and month 10. Within this
period number of nodes and the density of the network develop in a similar manner.
Both decrease in the first two months of this period but later also increase in parallel.
This means that together with the new (or returning) members of the network more
connections per node are introduced than the average number of connections a node
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Fig. 2 Number of nodes and Density over time for all networks (monthly time slices)

had in the network before their entrance to the network. After one and a half year the
density grows sharply with a nearly constant number of nodes. That means that the
remaining actors in the Asterisk network intensify their interactions in this phase.
Hence the analysis of the dynamic subcommunity evolution of the Asterisk network
may benefit from using different time window sizes for the different phases.

The OpenSimulator network shows a growing behaviour. After an initial phase
in the first 5 month of observation where the density decreases and the number
of nodes increases, the density remains constantly between 0.04 and 0.05 and the
number of nodes show a growing tendency. This indicates that this community was
in a formation process in the first five month and then the average degree of the
nodes increases. In contrast the Dojo network, which is the smallest and densest
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network under investigation, seems to evolve more uniformly than the other two.
Therefore the complete period of observation can be split up into time windows of
equal length. These observations lead to the assumption that the size of time windows
should be adjusted to different phases of observation. Another general observation
of analyzing dynamic networks over growing time window sizes is that the networks
density grows with growing time window sizes and therefore sizes and density of
detected subgroups also tends to grow.

5.2 CPM Analysis

Regarding the CPM algorithm this results in the maximal k-value for which clusters
can be found increasing with increasing time window size. For the Asterisk and the
OpenSimulator developer mailing lists we observed that the highest values of k for
which at least one group could be found in every three-month period were k = 5
for Asterisk and k = 6 for OpenSimulator. As we found in our earlier work [20]
that time window sizes of two or three month seem to be promising we decided to
focus on the results for k between 3 and 6 to keep these window sizes in the range
of candidate window sizes.

Other effects of the growing density of the network over growing time window
sizes are expected behaviors of our indicators. The most important one is the effect
this has on the number of clusters. While extending the time window there can
be two effects here. One effect of the growing density could be the forming of new
groups as more members of the network interact with each other and thereby relations
between them are formed which increases the number of clusters. The other effect
of increasing density could be the merging of groups that decreases the number of
clusters. As we assume these possible effects to cause the number of clusters to be
first increasing with growing time window size to a maximum as new groups appear
and then to decrease with further growth of time window sizes caused by the growing
together of groups the number of clusters seems to be the most promising indicator.

Another expected consequence of the growing network density could be observed
with the cluster size indicator. One effect of groups growing together would be that
there are few groups which are built from large parts of the vertex set of the network
and some groups which are small. In the extreme this means that the network is
partitioned in one large group and some isolated nodes. This phenomenon has already
been observed in earlier analyses of networks with the clique percolation method
and leads us to the expectation that a strong increase in the variance of this indicator
followed by a decrease to almost zero variance (caused by the fact that only one
cluster which comprises almost the complete network can be observed in each time
window) indicates that the time window size is too large to allow insights into the
network structure.

If all actors were present even at the smallest observed time window size the
expected influence of the growing density regarding the coverage indicator would be
that the value of this indicator grows with growing time window sizes as the denom-
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Fig. 3 Coverage for k = 3 to k = 6 in the Asterisk network (solid line is k = 3, dotted line is
k = 4, dashed line is k = 5, and dashed and dotted line is k = 6)

inator of the fraction would be constant and the number of actors that are member
of at least one group would grow. If this is not the case then this indicator shows
that growing time window sizes also result in an increasing number of actors that are
observed and thereby also strengthen the assumption that the observed communities
do not only show dynamics in the communication behavior of their actors but also
that there is at fluctuation in the group of actors. Figure 3 shows the coverage curves
for the Asterisk network. The coverage curves for the OpenSimulator community
show similar shapes for the selected k values. Yet, the absolute difference in coverage
is big. Given our target of determining active coherent teams in productive online
communities, the k = 4 curve reaching around 15 % coverage with time slices of
2–3 months and approaching 20 % towards the long end appears to be an adequate
choice.

For the whole analysis we assume that some variance in any of the indicator values
reflects the fact that the observed network is not static. For both cases the numbers of
clusters for each k show a medium range variance, which supports our assumption
that this indicator is the most relevant one. Also our expectation regarding the cluster
size fits the observation as can be seen in Fig. 4, which leads us to the conclusion
that time windows larger than four month do not allow meaningful insights into the
structure of the Asterisk network if analyzed with CPM and k = 3.

This leads us to going back to using the number of cliques over time for each k,
which was the original idea we started with. Since the networks for smaller observa-
tion ranges is too sparse for detecting communities, the smallest window length we
present is one week. The maximal window size depends on the complete observed
time period, it is 720 days for Asterisk and 540 days for OpenSimulator. Both net-
works show a similar characteristic of the curves.

Figure 5 for example shows that the maximal number of clusters for the OpenSim-
ulator case reaches its maximum in time slices with a length between one and two
months for k = 5. This means that choosing too short slices like weeks would make
the observed results too arbitrary and too long slices like half years would result in
too “blurred” and crowded clusters.
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Fig. 4 Cluster size for k = 3 in the Asterisk network (dashed line variance, dot line max. cluster
size, solid line aver. cluster size)

Fig. 5 Maximal number of clusters for k = 5 in the case of OpenSimulator (dashed line variance,
dotted line max. cluster size, solid line aver. cluster size)

Fig. 6 Maximal number of clusters for k = 4 in the case of Asterisk (dashed line variance, dotted
line max. cluster size, solid line aver. cluster size)

For the Asterisk network the maximum of the maximal number of clusters as an
indicator is more explicit. We assume that this is related to the more hub oriented
structure of the network as we can also see by the inverse powerlaw for the degrees.
Figure 6 shows this peak at a time window size of two month for k = 4.
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Fig. 7 Maximal number of clusters for k = 6 in the case of Asterisk (dashed line variance, dotted
line max. cluster size, solid line aver. cluster size)

Our analysis also corroborates our expectation that by choosing longer periods
of observation the more distinctive clustering will be found to higher values of k.
Figure 7 shows that the maximal number of cliques moves to the right side repre-
senting bigger time slices. Compared to k = 4 we expect to get clearer insights into
the cluster structure by selecting time slices with the length of a three months instead
of one to two months.

5.3 Link Community Analysis and Comparison

As an extension of our previous work [19] we compare the CPM approach with
the Link Communities approach [1] by analyzing the previously defined indicators
graphically with different window sizes to figure out well fitted time windows, so that
the subcommunity detection methods produce meaningful results. The aim of longi-
tudinal analysis of subsequent time slices of an evolving network is to understand the
dynamics of subcommunities. Therefore it is quite natural to assume that a high vari-
ance in the indicator values for a certain time window size indicates that the window
size is appropriate to observe the evolution of the subcommunities over the period
of observation. The investigated methods are not only different in their subcom-
munity identification approaches, they differ also in their restrictiveness regarding
found subcommunities. The Clique Percolation Method for example requires the
specification of a parameter k, which defines the size of the initial cliques that are
percolated through the graph. This implies that the smallest possible cluster found
by this method is a clique of size k. For Link Communities on the other hand the
smallest possible group of nodes is two, the endpoints of a single link. As stated in
Sect. 3 we have used k = 4 in most cases described in this work and have generally
ignored all smaller clusters.

Both the clique percolation method and the link community method are designed
for finding overlapping subgroup structures in a network. Therefore it is desirable to
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Fig. 8 Overlap coverage for the Asterisk network and different methods CPM (left), LC (right).
(dashed line standard deviation, dotted line max. cluster size, solid line aver. cluster size)

Fig. 9 Combined indicator for OpenSimulator, left CPM, right LC (dotted line std. dev. overlap
coverage, dashed line std. dev. num. clust., solid line std. dev. sum)

investigate the overlap coverage of the clusters found by these methods under differ-
ent window sizes. Figure 8 depicts the results for overlap coverage in the Asterisk
network as an example how the overlap coverage indicator can help figuring out
appropriate time window sizes. However, important to note is that the overlap cov-
erage is strongly related to the number of sub communities, because the more sub
communities exist the more overlap can occur between them.

The combined indicator introduced in Sect. 3 uses this connection for emphasizing
the situations in which both number of clusters and overlap are high. The found results
for the OpenSimulator case study are depicted in Fig. 9.

The left diagram shows the results for the clique percolation method, the right for
the link community method. In both cases both single indicators and the combined
indicator are included. The number of clusters is already in the normalized form as
it is used for the combined indicator (see Sect. 3).

The above discussed effect according to growth of density leads us furthermore
also to the assumption that the size of time windows should be adjusted to different
phases of observation. In Fig. 10 we show an illustrative example of the impact of
different observation periods to the number of clusters for our main basic indicators.
It depicts the number of clusters that can be identified with the Clique Percolation
Method using different time window sizes in the OpenSimulator network.

The diagram on the left corresponds to the first 120 days of observation where
the community grows rapidly and on the right to the following 420 days. It appears
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Fig. 10 Number of clusters indicators for CPM in the OpenSimulator network for different obser-
vation periods (left days1–120, right days 120–540, dotted line max. num. clust., dashed line avg.
num. clust., solid line std. dev. num. clust.)

that for the first period of observation shorter time window and for the second period
longer time windows yield a good resolution of the subcommunity structure. We
could observe similar effects with the other methods. As a consequence one can say
that more dynamic phases of a network require shorter time window sizes.

Figure 11 shows the number of identified clusters in relation to different window
sizes for each method and the networks based on the developer mailing lists of each
open source project.

In this chapter only the results regarding the number of clusters and the overlap
coverage are presented, because we found that cluster size and coverage are not
very useful to determine a proper time window size. These indicators tend to simply
increase with larger time window size and consequently don not tell anything about
the dynamics of the subcommunity structure.

This analysis of number of clusters shows again the differences between the
Asterisk community on the one hand and OpenSimulator and Dojo on the other
hand. The OpenSimulator network and the Dojo network are smaller and much
denser than the Asterisk network in the sense that more interaction occurs between
less people.

This results also in the CPM method not being able to detect more than one
giant cluster with time slices larger than three month for OpenSimulator and Dojo.
It also clearly shows that the growth in the density of the networks resulting from
growing time window sizes has a strong effect on subcommunity detection methods.
In contrast to CPM the link community method identifies more clusters when time
windows grow as this method initially clusters the edges of a network instead of
its nodes. Thus the Link Community method can identify more different clusters in
dense networks where many edges can be clustered. As discussed above for the CPM
method a peek in the variance of the cluster sizes for particular time window sizes is
a good indicator for reasonable time windows. In most cases this raise and decline
of the variance/standard deviation can also be observed for Link Communities but it
is often not as obvious.
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Fig. 11 Number of clusters according to different time window sizes. CPM (left), LC (right),
Asterisk (up), OpenSimulator (middle), Dojo (down) (dotted line max. num. clus., dashed line avg.
num clust., solid line std. dev. num. clust.)

Overall and in general these results support our initial intuitive expectation that,
for the given cases, time slices of two to three months lead to the best subgroup
resolution under the Clique Percolation Method [20].

5.4 Relation Between Community Overlaps and Actor Roles

The extension to more cases and approaches also show that the choice of time
windows has to be based on heuristics regarding the specific determinants of the
networks. In the productive online communities studied, deadlines and release dates
were important determinants of the inherent time structure. The observation that
obviously events have an impact of productivity speed in communities leads us to
give a closer look at the stories behind the networks to estimate the practical relevance
caused by the effect of different time slices.
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Table 2 Innovative contributions versus overlapping membership of k = 4 cliques in different size
time slices

Innovative contributions 7 day slices 30 day slices 120 day slices Half year slices

Cristina V. L. Justin C. C. Justin C. C. Kyle H. Dirk H.
Stefan A. Melanie Melanie Dzonatas Stefan A.
Dahlia T. Sean D. Adam F. David W.
Dirk H. Adam F. Dirk H.
Justin C. C. Teravus O. Dirk K.
Adam F. Dirk H. Stefan A.
Chris H. Cristina V. L
James S. Dahlia T.
Kyle G. Dirk K.
Michael W.

The original research question that led us to studying the influence of time window
size was related to identifying different brokerage role models and their effects on
innovation in productive communities. To reflect this question again in the light of
our general findings we focus on the OpenSimulator case. Open Simulator is a quite
innovative community. Also the average size and the balanced fluctuations in core
and periphery structure indicate it as an ideal network. It is less event driven than
Asterisk in phases when support requests dominate the mailing lists. It is also not
too much of a “closed shop” like Dojo in some phases, where users tend to act as a
big family or clique and everyone does everything.

One of the most innovative topics in OpenSimulator was the idea of so called
“Hypergrids”. This idea was strongly driven by the computer scientist Cristina V. L.,
a community member. Her aim was to define a standard protocol similar to hyperlinks
in the web, so users in 3D worlds could use these “links” to jump from one simulation
world into another. The topic emerged in 6 threads over the time span of 5 months.
5 of 6 threads correlated at least with one of the brokerage role models. In the fol-
lowing we compare the top 10 participants in innovative topics during a quarter in
which the Hypergrid topic emerged twice and also correlated with at least one of the
brokerage models. We compare them with the top overlapping members at k = 4 in
different slice sizes. Even though we also find individual brokers (as simple gatekeep-
ers) as well as hubs & authorities, the CPM-based overlapping brokers are indeed the
best fitting models in the sense of correlation with participation in innovative topics.
So the following comparison (Table 2) is at least tentatively representative for the
OpenSimulator community.

Since the slices represent the whole time span and not only the time span of the
Hypergrid discussion, it is a quite good indication that Cristina V. L. at least emerges
in the top positions of overlapping members in 7 day slices. Most of the names
above are heavily involved in OpenSimulator and also mostly having a maintainer
position with write permission access to the source code repository. But we also
see newcomers like Teravus O. or Dirk K. Dirk for example is a consultant who
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was using OpenSimulator indeed as an open innovation project. He did not hold an
official role within the OpenSimulator community but his idea of embedding inworld
applications (like old 8bit arcade games) into 3D worlds were frequently discussed.
Accordingly, he emerges in the 7 days and 30 days slices.

We also have to be aware of formal roles within the communities. Stefan A.
and Dirk H. who are the only two overlapping members in the half year slices for
example both have important formal positions within the OpenSimulator community.
This indicates that formal positions manifest stronger in cliques in bigger time slices
whereas freshmen with new ideas occur as broker cliques in shorter time spans. This
result underlines our finding with the combined indicator that more dynamic phases
of a network require shorter time window sizes.

6 Discussion and Conclusion

Our research shows that a variation of the time window size for data capturing has
a systematic effect on subgroup detection. We have studied this using CPM and
LC, and first informal trials show similar effects also for other methods, but a more
exhaustive systematic exploration of the method-specific characteristics is still on
the agenda. We are aware that the underlying notion of community for CPM and LC
is quite different and, accordingly, both methods yield different results. However,
our point is that both show a systematic dependency of the respective results on
the window size. The specific values for most distinctive “high resolution” results
are likely to be dependent on the nature of the communities studied. Here not only
the size in terms of number of members but also the frequency and distribution of
active contributions will likely play a role. We have been looking at “productive
communities”, which show a high and frequent proportion of active participation
as compared to certain hobby or lifestyle communities, in which the share of active
members as well as the question/response times are typically much lower. One of the
systematic dependencies that we have observed is that there is not one “sweet spot”
in terms of a best window size but that, even for one given community, the optimal
resolution will depend on the subgroup detection methods and its parameterization.

The proposed indicators offer a starting point for finding combinations of time
window sizes and analysis methods that correspond to the “inherent pace” of a
network. If we compare, for example, networks based on twitter communication to
networks based on scientific co-publication and co-citations is evident that these have
different inherent time scales. We believe that in most existing studies, researchers
have had an adequate intuition about this inherent pace and the ensuing consequences
for data sampling. However, the influence of window size should be determined and
characterized to allow for a more explicit and informed handling of time. Also,
different characteristics of the dependence of subgroup resolution on time window
size and group order may be used to characterize the nature of the communities
studied. Pinpointing concrete functions based on what we have shown in this chapter
are and will be foundations for techniques and methods that may facilitate awareness
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components for collaborative systems and community platforms and to help users as
well as deciders to observe and also orchestrate their networks and communities in
which they are involved or engaged.
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Abstract The availability of massive network and mobility data from diverse
domains has fostered the analysis of human behavior and interactions. This data avail-
ability leads to challenges in the knowledge discovery community. Several different
analyses have been performed on the traces of human trajectories, such as under-
standing the real borders of human mobility or mining social interactions derived
from mobility and viceversa. However, the data quality of the digital traces of human
mobility has a dramatic impact over the knowledge that it is possible to mine, and
this issue has not been thoroughly tackled in literature so far. In this chapter, we mine
and analyze with complex network techniques a large dataset of human trajectories,
a GPS dataset from more than 150 k vehicles in Italy. We build a multiresolution
spatial grid and we map the trajectories to several complex networks, by connecting
the different areas of our region of interest. We also analyze different temporal slices
of the network, obtaining a dynamic perspective over its evolution. We analyze the
structural properties of the temporal and geographical slices and their human mobil-
ity predictive power. The result is a significant advancement in our understanding
of the data transformation process that is needed to connect mobility with social
network analysis and mining.
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1 Introduction

The availability of massive network and mobility data from diverse domains has
fostered the analysis of human behavior and interactions. Traces of human mobility
can be collected with a number of different techniques. We can obtain Global Posi-
tioning System (GPS) logs, or GSM data referring to which cell tower a cellphone,
carried and used by a person, was connecting. The result is a huge quantity of data
about tens of thousand people moving along millions of trajectories.

This data availability leads to challenges in the knowledge discovery community.
Several different analyses have been performed on the traces of human trajectories.
For example, [16, 22] are two examples of studies able to detect the real borders of
human mobility: given how people move, the authors were able to cluster different
geographical areas in which people are naturally bounded. Another analysis example
connects mobility with social networking [4, 25]. The fundamental question in these
cases is: do people go in the same places because they can find their friends there or
do people become friends because they go in the same places?

However, there is an important issue to be tackled before performing any kind
of social knowledge extraction from mobility data. It has been proved that the data
quality of the digital traces of human mobility has a dramatic impact over the knowl-
edge that it is possible to mine. For example, in [23] authors perform a trajectory
clustering analysis, with GPS data that are successively transformed in GSM-like
data. They prove that the knowledge extracted with the semi-obfuscated data is more
prone to data noise and performs worse. The conclusion is that mobility analysis
should be performed with the high data precision that only GPS is able to provide.

Several open questions are left unanswered, and some of them represent the main
focus of this chapter.

The first is connected to the temporal dimension, that is intrinsically linked to any
movement data. For example, in [22] authors want to define the borders of human
mobility, but they create a rather static snapshot by putting together movements
without considering when these movements took place. Also works that consider
temporal information usually use it as a continuum without discontinuity points or
phase transitions.

In the real world, different events may dramatically change how people move on
the territory. Such events may be unpredictable or not frequent, like natural disasters,
but most of them are not. The most natural regular and predictable event is the
transition between working and non-working days. During Saturdays and Sundays,
people usually abandon their working mobility routines for different paths, obeying
to completely different criteria. Another example may be organized human social
events, like manifestations in a particular town or sport events.

The aim of this chapter is to systematically prove that to mine human mobility
and to extract from it useful knowledge is necessary to take into account these phase
transitions. A dataset of undifferentiated trajectories, without taking into account
when they were performed, may lead to increased and unexpected noise effects,
lowering the quality of the results and, in extreme cases, hiding interesting patterns.
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The second open question is orthogonal to the temporal dimension and it involves
the spatial dimension. Given that we use GPS data, how can we connect it to the
territory? In general, GPS does not need to be mapped on the territory, as it already
provides the coordinates of the person moving. However, usually we are dealing
with two kinds of constraints. First, we are studying vehicles mobility, thus the “data
points” are not free to move on a bi-dimensional surface, but they are constrained by
the road graph. Second, if we want to apply social network analysis techniques on
these data, such as the ones applied in [16, 22] namely community discovery over a
network of points in space to find the borders of mobility, we need to discretize the
territory in cells, as it is impossible to translate a continuous surface into a graph.

These two considerations force us to discretize the continuous human trajectories
into a discrete spatial tessellation and then operate social network analysis on that
partition. Should we use external information about the territory, such as the political
organization in towns and municipalities? Or should we create a regular grid?

In this chapter, we propose an empirical study aimed at tackling these questions.
We collect data from 150 k vehicles moving on a region of Italy, namely Tuscany.
First, we address the temporal dimension problem by analyzing with complex net-
work techniques our GPS trajectories and then understand their predictive power of
the movements of our observed vehicles over the time span of a month.

Second, we address the spatial dimension problem by creating a multiresolution
regular grid that covers Tuscany. We use this grid to generate different network
perspectives over Tuscany mobility: grid cells c1 and c2 are connected with a directed
edge if there is at least one trajectory starting from c1 and ending in c2. The edge is
then weighted according to how many trajectories connect the two cells.

Both questions are addressed with the same complex network analysis technique,
namely community discovery. Community discovery in complex networks aims to
detect a graph’s modular structure, by isolating densely connected sets of nodes called
communities. For the temporal dimension, the communities observed at time t are
used to predict the communities observed at time t + 1. For the spatial dimension,
we verify how well the community partition of a network generated with a particular
grid resolution is able to describe the general structure with the minimum amount of
information loss.

In the proposed framework, we generate sets of network with different criteria
(temporal and spatial). We then apply community discovery on these networks, fol-
lowing our previous works [6, 17], to identify the borders of human mobility. Our
focus is to evaluate which temporal perspective and which grid resolution is lead-
ing to the best results. We evaluate each network results both quantitatively, using
different quality scores, and qualitatively, by looking at the resulting borders and
confronting them with what we know about Tuscany mobility.

The rest of the chapter is organized as follows. In Sect. 2 we present the works
related to the present chapter: the connections between mobility and social network
analysis and mining. We introduce the community discovery problem definition and
our adopted solution in Sect. 3. We address our temporal analysis in Sect. 4: we
map movements using the political division of the territory, we generated different
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temporal slices and we predict the community from one slice to the other. The
creation of the multiresolution grid is presented in Sect. 5. Finally Sect. 6 concludes
the chapter presenting also some future insights.

2 Related Work

As stated in the introduction, there are several works in the field of human trajectories
data mining. A class of these works is focused on applying frequent pattern min-
ing to mobility data [13, 24], even borrowing techniques from biology mining [9].
A popular application to these techniques is the privacy-preserving anonymization
of human movements [3, 12]. Different data sources can be used to obtain mobility
data ranging from GSM [16], to GPS [17], to RF tags [11]. Sometimes, techniques
developed for trajectory mining are then applied in other scenarios [10]. A good
taxonomy for mining trajectories can be found in [1].

In literature, there are several works exploring the application of social network
analysis to mobility data. Two examples are [16, 22]. In [22] for the first time it is
proposed to represent trajectories with a graph, then community discovery techniques
are applied to the graph to discover areas that are frequently connected by the same set
of trajectories. The mobility data used is the manually submitted information about
the movements of one dollar bills in the US territory.1 In [16] the same approach
is implemented, but using GSM cellphone data: each trajectory is composed by the
cell tower to which a particular device was connected. As stated in the introduction,
the main problems of these approaches is that the data source leads to unavoidable
approximations, significantly lowering the quality of the results [23]. We improve
over these works by using a more reliable data source, namely direct GPS tracks.

Another class of works is more focused on the links between mobility and social
relationships. In [25] a new link prediction technique is proposed. Link prediction
in social network is the problem of quantifying how much likely is to observe new
connections in a complex network given the current topology of the graph (see
for example [19]). The advancement proposed in [25] is to use for the prediction
not only the current topology of the graph, but also mobility information about the
nodes of the network. The orthogonal problem is tackled in [4]: given the social
relationships among a set of individuals, the study aims to predict which trajectories
these individuals will decide to take. This class of studies does not focus only on GSM
data about real people. In [20], authors focus on movements of virtual spaceships in
a massive multiplayer online game, with a wide “universe” to move in. Our chapter
is focused on the prerequisites of this class of works, namely how to define the
movement graph needed for the analyses.

Finally, as community discovery is used as mean to assess the quality of a network
representing human mobility, we report some references about it. Two comprehen-
sive surveys about community discovery are [8], focused on an empirical evalua-
tion of many different algorithms, and [5], that aims to classify the many different

1 http://www.wheresgeorge.com/

http://www.wheresgeorge.com/
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community discovery approaches according to the underlying definition of commu-
nity they operate on. Several interesting community discovery algorithms are [7, 15,
18, 21], employing different community clustering strategies. We focus particularly
on [18], as it is the algorithm we used in the framework presented in this chapter.

This chapter is built on previous work [6]. The focus of [6] was mainly on ana-
lyzing the geographical dimension of our problem. We extend over it by introducing
a temporal analysis and extended experiments.

3 Community Discovery

An important part of our framework is the application of graph clustering algorithm
on our network of trajectories. For this reason, in this section we introduce the
problem of community discovery in complex networks along with the solution that
we adopted.

An extensive survey, providing more background about community discovery, can
be found in [5]. From [5] we know that clustering algorithms can provide extremely
different results, according to their definition of what is a community in a com-
plex network. For example, modularity maximization algorithms aim to maximize
a fitness function describing how internally dense are the clusters according to their
edges. Other techniques use random walks to unveil the modular structure of the
network, since the random walker is trapped in denser areas of the network.

When clustering algorithms enable the multi-level identification of “clusters-
in-a-cluster”, they are defined “hierarchical”. With this type of clustering algorithms,
we can explore each cluster at several levels and possibly choose the level which, for
example, best optimize some fitness function. This is a critical function for mobility
networks, as in this scenario it is necessary to explore borders at different granularity
levels: conglomerates of cities, cities and even neighborhoods.

Among the hierarchical clustering algorithms available in the literature, we choose
the Infomap [18], which is one of the best performing non-overlapping clustering
algorithms [8].

The Infomap algorithm is based on a combination of information theoretic tech-
niques and random walks. It uses the probability flow of random walks on a graph
as a proxy for information flows in the real system and decomposes the network into
clusters by compressing a description of the probability flow. The algorithm looks
for a cluster partition M into m clusters so as to minimize the expected description
length of a random walk. The intuition behind the Infomap approach for the random
walks compression is the following. The best way to compress the paths is to describe
them with a prefix and a suffix. Each node that is part of the same cluster M of the
previous node is described only with its suffix, otherwise with prefix and suffix. Then,
the suffixes are reused in all prefixes, just like the street names are reused in different
cities. The optimal division in different prefixes represent the optimal community
partition. We can now formally present the theory behind Infomap. The expected
description length, given a partition M , is given by:



274 M. Coscia et al.

L(M) = q H(Q) +
m∑
i=1

piH(Pi).

L(M) is made up of two terms: the first is the entropy of the movements between
clusters and the second is entropy of movements within clusters. The entropy asso-
ciated to the description of the n states of a random variable X that occur with
probabilities pi is H(X) = −∑n

1 pi log2 pi. In (1) entropy is weighted by the prob-
abilities with which they occur in the particular partitioning. More precisely, q is
the probability that the random walk jumps from a cluster to another on any given
step and pi is the fraction of within-community movements that occur in community
i plus the probability of exiting module i. Accordingly, H(Q) is the the entropy
of clusters names, or city names in our intuition presented before, and H(Pi) the
entropy of movements within cluster i, the street names in our example, including
the exit from it. Since trying any possible partition in order to minimize L(M) is
inefficient and intractable, the algorithm uses a deterministic greedy search and then
refines the results with a simulated annealing approach.

4 The Temporal Dimension

In this section we explore the temporal issues of the application of complex network
analysis to mobility data. As a proxy of human mobility, we used a dataset of spatio-
temporal trajectories of private cars consisting of around 10 M trips performed by
150,000 vehicles. These GPS tracks were collected by Octo Telematics S.p.A., a
company that manages on-board GPS devices and data collection for the car insur-
ance industry. Each trajectory is represented as a time-ordered sequence of tuples
(id,x, y, t), where id is the anonymized car identifier, x and y are the latitude and
longitude coordinates, t is the timestamp of the position. The GPS tracks were col-
lected during a period of one month, from 1st May to 31st May 2011. The GPS
device automatically starts collecting the positions when the car is turned on and it
stops when it is turned off. The log is transmitted to the server via GPRS connection.
Octo Telematics serves the 2 % of registered vehicles in Italy. In our collection, they
collected the traces of the vehicles circulating in a bounding box containing Tuscany
Region during the period of observation.

To apply complex network analysis on mobility data we first generalize the spatio-
temporal positions by means of a spatial tessellation. This is already a challenge per
se, and we deal more in deep with it in Sect. 5. Since in this section we are focused
on the temporal analysis of human mobility networks, we use a simple, sub-optimal,
solution. We focus on the origin and destination of each travel of each vehicle. Using
the spatial tessellation provided by ISTAT, the statistical bureau in Italy, we associate
each origin (destination) to the census sector where the corresponding travel began
(ended).
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Fig. 1 a Number of nodes/edges. b Number of components. c Average path length. Some statistics
for the daily network snapshots

After this generalization step we can model human mobility by means of a graph
where the nodes represent the census sectors and each edge represents the set of
travels starting and ending within the corresponding census sectors. In particular,
an edge connecting the nodes v1 and v2 is weighted with the number of travels
starting from the sector associated to v1 and ending at the sector associated with v2.
Moreover, since we are interested in studying the temporal evolution of the extracted
network, we extracted several networks at different time intervals. In general, our
method consists in selecting only the trajectories “alive” in the time period of study.

Which time interval should be adopted to analyze mobility from a temporal per-
spective? We fixed a minimum temporal interval of one day and then we generated
daily snapshots of the movement graphs. We depict in Fig. 1 some of the basic
statistics of these daily networks. We can see that there are remarkable differences
between weekday and weekend networks (we recall that May 8th, 15th, 22nd and
29th 2011 were Sundays). Saturdays and Sundays networks usually have less edges,
somewhere between 62 and 75 % of the edges of a weekday (Fig. 1a); they have more
components, i.e. the networks are more fragmented, with areas not connecting at all
to each other (Fig. 1b); and finally their average path length is significantly higher,
May 8th presents a lower peak, but the whole preceding week was lower than the
following, due to the fact of Italian national holiday of May 1st (Fig. 1c).

We can conclude that we expect different results from the weekdays and weekend
networks, as their topology is significantly different. Thus, we considered three dis-
tinct intervals for each week: weekdays, i.e. day from Monday to Friday, weekends,
i.e. Saturday and Sunday, and the whole week, obtaining 12 networks for the 4 weeks
considered.

4.1 Weeks, Weekdays and Weekends Network Statistics

We now take a look to the basic statistics of the extracted networks, as they are able
to unveil preliminary differences between the different network views of the dataset.
For a deeper explanation about concepts such as “connected component” or “average



276 M. Coscia et al.

Table 1 The average statistics of the different network views of the dataset

Network |V | |E | Avg degree |CC | GC size (%) Reciprocity Γ

Weeks 17468.8 218474.0 25.01 20.25 98.8351 0.276039 4.25788
Weekdays 16568.2 167425.0 20.21 26.00 98.7612 0.263951 4.50722
Weekends 13895.5 72055.8 10.37 69.00 97.9868 0.247907 5.33465

path length” we refer to [14]. In Table 1 we reported the following statistics: number
of nodes (column |V |), number of edges (column |E |), average degree (column Avg
Degree), number of connected components (column |CC |), relative size of the giant
component (column GC Size %), reciprocity (column Reciprocity) and average path
length (column Γ). In each row of the table we grouped three kinds of networks:
Week, Weekdays and Weekends. Each entry is the average value of the measure of
the four networks in each network type.

As we can see, the number of nodes of the Week networks is slightly higher than
the number of nodes of the Weekdays networks. This means that during weekends
people sometimes choose to reach places that were never visited during weekdays,
although in general their destination set is slightly narrower. A big difference between
Weekdays and Weekend networks is highlighted by the average degree: during week-
ends the paths chosen by users are significantly less than what expected by the smaller
set of destinations. This means that during weekends the same few paths are under
a higher mobility pressure.

Weekends networks appear to be more fragmented (the networks on average
present 69 components against the 26 for Weekdays networks), however almost 98 %
of destinations are still part of the network’s giant component. The giant component
size is important because if most of the census sectors are actually isolated from each
other, the community discovery loses significance. Also, we know that in Weekends
networks we will find 68 very small and isolated communities, that can be ignored
for our analytical purposes.

Reciprocity is the ratio of bidirectional edges over the total number of edges. This
measure is lower during weekends, implying that in that period of the week people
are more likely to stay in the places they reach. Finally, the average path length
unveils that we are dealing with classical small-world networks [26]: the average
number of edges to be crossed to go from any node to any other node is below 5.
An exception is represented again by Weekends networks: although the average path
length Γ is low, it is higher than the other network view, and with a lower number
of nodes. We can conclude that the long-range connectivity in Weekends network is
weaker than expected.

We depict in Fig. 2 the degree distributions of our 12 networks. We colored in
red the Week networks, in blue the Weekend networks and in green the Weekdays
networks. The distributions represent an argument in favor of our chosen method-
ology. The three kinds of networks present very similar degree distributions, while
they differ from each other. While the Weekday networks still can approximate the
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Fig. 2 The cumulative degree
distribution of our networks
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Week ones, the same does not hold for the Weekend network, that dramatically differ
from the previous two. The statement that the Weekend network cannot be useful
in predict general patterns of the week, and vice versa, proves to be intuitive. We
provide evidences in favor of this statement in Sect. 4.3.

4.2 Evaluation

To evaluate how much the communities discovered in a particular temporal interval
are meaningful, we check if they are preserved in different time periods, by comparing
each other by means of the measures of precision and recall. We call clustering the
aggregation of a set of objects into subgroups and each subgroup is called a cluster.
Formally, a clustering C is the union of its own clusters {C1, C2, . . . , Cn}. Given two
clusters, say C1 and C2, precision and recall are given by the formulas;

R(C1, C2) = |C1 ≤ C2|
|C1| ; P(C1, C2) = |C1 ≤ C2|

|C2|
The recall measures how many of the objects in C1 are present in C2, while the

precision measures the proportion of the object of C1 in the cluster C2. The recall
of the set C1 tends to one when all the elements of C1 are present in C2, it tends to
zero otherwise. The precision of a cluster C1 tends to zero when the proportion of
elements of C1 is small with respect to the number of element in C2, and it tends to
one when the cluster C2 contains only elements in C1.

To extend the measures from the cluster level to the global evaluation of the two
clusterings, we propose the following procedure. First, for each cluster Ci in C1 we
determine a cluster C ∗

j = map(Ci) ∈ C2, such that C ∗
j maximizes the intersection

with Ci among all the clusters in C2. Then, for each pair (Ci,map(Ci)) we determine
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precision and recall values. The overall similarity indexes is given by the weighted
average of each pairs:

P(C1, C2) =
∑

Ci∈C1

|Ci|P(Ci,map(Ci))

R(C1, C2) =
∑

Ci∈C1

|Ci|R(Ci,map(Ci)).

4.3 Experiments

4.3.1 The Human Mobility Borders: Weekdays Versus Weekends

We start by taking a look at the top-level clusters extracted by the hierarchical version
of Infomap algorithm. In Fig. 3 we show a matrix of all the clusterings, for each week
and for each network type (Weekday, Weekend and Whole Week). In general, the
clusters look mostly compact, with the exceptions of the areas where we can find the
highway entrances, as they are of course catalyst hubs of long-range trips. The white
areas are regions where no trip started or ended and for this reason are excluded
from the network representation. In general, some useful insights can be extracted to
improve human mobility management, as the merging of Pisa and Livorno provinces
(cluster on the middle-left, light green color in the Weekday map for the week 1, top
left corner of Fig. 3): the two cities are divided only for political reasons, but they are
very close and part of a strongly connected area, as witnessed by how people move.
At least on the higher level, those areas need to coordinate.

In this case, we can exploit the power of the cluster hierarchy to have a finer
description of the mobility borders. In Fig. 4 we zoomed into the Pisa-Livorno cluster
for the Weekday network of week 1: on the left side we have the cluster at the top
level of the hierarchy, on the right side the cluster at the second level. As we can
see, at this level the provinces of Pisa and Livorno are correctly split, meaning that
there is a border at least at the city level, and our framework is able to detect it by
exploring the cluster hierarchy.

Let us now focus on the differences between the Weekdays and the Weekends
clusters. The Weekends clusters look as compact as the Weekdays clusters and the
quantity of differences looks lower than expected from the intuition that the net-
work statistics gave us (see Sect. 4.1). However, the quality of the differences is
very important: in week 1 the Pisa-Livorno cluster expanded and now includes
also the cities of Lucca and Viareggio (black and brown clusters north of Pisa in
Fig. 3, respectively), that are naturally separated from Pisa and difficult to reach. The
inclusion is probably due to a higher rate of long-range trips to neighboring towns
usually difficult to reach, but appealing to spend some free time during the weekend.
Also, the Florence cluster (orange in Fig. 3a) is split in two (pink and blue cluster in
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Fig. 3 The Tuscany mobility clusters (top level of the hierarchy).
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Fig. 4 a Weekend 2 clusters at the highest level of hierarchy. b Pisa-Livorno cluster at level 1.
c Pisa-Livorno cluster at the second level of hierarchy. Exploring the second level of hierarchy
clusters

Fig. 3b). These changes are very important qualitatively, as these clusters involve a
large share of all Tuscany trips. In general, the strong noise effect created by weekend
movements is evident for week 3. The Whole Week clusters tend to look in general
more alike the Weekdays, but Weekend clusters perturb their borders: the Weekday
Lucca cluster (light purple) is split in three parts in the Weekend cluster and this
causes its disappearance also from the Whole Week clusters, divided between the
pre-existing Florence (blue) and Massa-Carrara-Viareggio (green) clusters. Similar
instances of these problems are present in each week, intuitively proving the noisy
effect of weekend trajectories.

4.3.2 Weekdays and Weekends Quality Evaluation

We now evaluate the predictive power quality of the cluster extracted from the various
networks. We make use of the Precision and Recall measures as defined in Sect. 4.2.
The general procedure is the following: we consider the clusters extracted in the
network representing the first week and then we calculate the Precision and the
Recall for each of the other networks. A high score means that the target network
contains similar clustered information, therefore it is predictable using the source
network. The results are depicted in Fig. 5.

To understand how to read Fig. 5, let us consider its leftmost scatter plot: in this
case the source clustering is calculated using each of the Weekday network. Each dot
represent the quality results, according to Precision (x axis) and Recall (y axis), for
each of the other network considered in this article. The dot color represent the kind
of network to which we are applying the prediction: green for Weekday, blue for
Weekend and red for Week. Since we are dealing with four weeks and three different
network views for each week (Weekday, Weekend and Week) we have a total of
48 points, 4 of which scores 1 for both Precision and Recall as they are clusterings
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Fig. 5 The precision and recall values for the predictions using weekday (Left), weekend (Center)
and week (Right)

applied to themselves: since we are considering the leftmost plot, the 4 perfect scores
are all green dots, each representing a Weekday clustering applied to itself.

Now we can find evidences about the lower quality of the Weekend predictions by
considering all the three plots. As we can see, the central plot, the one representing
the prediction results using the Weekend clusters, scores lower performances for all
networks, both in Precision and Recall. Not only Weekend clusterings are not able
to predict Weekday and Week clustering: they also score poorly in predicting them-
selves, proving that from one weekend to another the trajectories vary significantly,
and therefore they cannot be predicted efficiently using the simple assumption that
the same period in the week should behave in the same way across time.

The other side of the story also holds: not only Weekend cannot predict with high
scores, but it also cannot be predicted. By considering the leftmost and the rightmost
plot, we see that the distribution of the colors of the dots is not random, but they
are clustered in precise areas of the plot. Focusing on the blue dots (Weekend), we
notice that they always tend to be clustered in the lower side of the plot, i.e. the
one characterized with lower Recall scores. In conclusion, Weekend clusterings are
behaving like an unpredictable, and unreliable for prediction, class of phenomena.

However, we also notice that unexpectedly Prediction scores for blue dots in the
leftmost and rightmost plots are not the lowest in absolute terms. The explanation
lies in the nature of the Week datasets: by definition it also includes the trajectories
originated during weekends. This inclusion is lowering the Precision scores for the
prediction Weekday to Week and from Week to Weekday. In fact, in the leftmost plot
the green dots (Weekday to Weekday predictions) tend also to score better according
to prediction, while this does not hold for red dots (Weekday to Week predictions). For
the rightmost plot, being the Week-based prediction affected by the weekend data,
we have a more confused evaluation. We can conclude that to integrate weekday
data with weekend data is equivalent to manually introduce noisy data points, and it
should be avoided. It is not true that weekday data can correct the noise of weekend
data, or that weekend data can somehow compensate or integrate weekday data. If we
want to have reliable models for the majority of human movements, then we should
use only weekday data. If we want to have also a model for the irregular human
movements during weekends, we need to sacrifice the prediction quality.
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4.3.3 Systematic Versus Occasional Trajectories

To evaluate the influence of systematic movements over human mobility, we pro-
pose here a method to select the very frequent movements among the travels of each
vehicle. Given a vehicle v we select all the travels associated to v and we cluster
them according to their starts and ends, i.e. the trips starting from similar places and
ending in similar places are aggregated in the same cluster. To extract the clusters
from the set of origins and destinations of each vehicle we adopt a density based
clustering method, namely OPTICS [2]. OPTICS is one of the best candidates clus-
tering methods since it is very robust to noise, it does discover the natural number
of clusters in the dataset analyzed and it can be customized by providing specific
distance functions. In our case, we defined a distance function based on the rela-
tive distance between origin and destination point of each trajectory. In particular,
given two trajectories t1 and t2 with end points respectively (s1, e1) and (s2, e2), the
distance between t1 and t2 is defined as

d(t1, t2) = d(s1, s2) + d(e1, e2)

2
.

The OPTICS algorithm start exploring the dataset by evaluating the neighborhood of
each trajectory according to the distance function provided and to a distance threshold
Φ, which defines a minimum radius around the current object, and a minimum number
of point MinPts expected to be found within the given radius. When a trajectory has
enough neighbors in its radius, it is said to be a core trajectory and its cluster is
expanded as far as other density points are reachable. In our experiments we focused
on the analysis of very compact clusters that could represent systematic travels.
Thus, we used a distance threshold of 250 m. The cluster with the highest cardinality
is selected as the most frequent and, hence, as the systematic movement of the vehicle.
By repeating this procedure for all the vehicles, we can select a subset of movements
that are frequently performed by them. Starting from this subset we apply the same
method presented in the previous section: the trajectories are generalized to the spatial
tessellation, they are projected in a specific time interval and a complex network is
extracted.

In Fig. 6a we report the relative distribution of systematic trajectories in our
dataset. For each day, we divide the number of trajectories classified as “systematic”
by the number of the total trajectories that were followed during that day. We can see
that there is a strong difference between weekdays and weekends. During weekdays,
more than 13 % of trajectories are systematic. An exception is Friday, as pre-weekend
day, although always at least 12 % trajectories are systematic during that day. During
weekends, these shares drop to around 8.5 % during Saturdays and 7.5 % during
Sundays. Therefore we can safely state that our assumption, i.e. that systematic
trajectories are followed more commonly during weekdays, is sustained by evidence.

The impact of the systematic component of mobility is also evident from the
results of community discovering on these networks. Figure 6b show the measures
of precision and recall resulting from the comparison of the systematic networks with
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Fig. 6 a The daily distributions of systematic trajectories. b The quality measure of the communities
extracted from the systematic networks. The daily distributions of systematic trajectories: for each
day the share of trajectories that are systematic

the networks explored in Sect. 4.3.2. The separation between weekend prediction
and week/weekday prediction is here even more evident. In general, the values of
recall are very low if compared with Fig. 5. This is due to a sparse network extracted
from a limited number of trajectories. We can verify this by looking at the statistics of
the networks extracted from the systematic trajectories. In Table 2 we report the same
statistics of Table 1, but for the systematic networks instead of the networks created
with the complete set of trajectories. We can see that there is an increased number
of connected components (ten times more) and the giant component is significantly
smaller. Each separated component generates an isolated community, thus greatly
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Table 2 The average statistics of the different network views of the dataset, using only systematic
trajectories

Network |V | |E | Avg degree |CC | GC size % Reciprocity Γ

Weeks 11861.2 26349.8 4.443 240.75 94.7033 0.0290827 7.85268
Weekdays 11059 22748.2 4.11398 269.5 93.8127 0.0270297 8.40738
Weekends 7375.25 8745.5 2.37158 667.75 76.4822 0.0172919 14.4058

lowering the Recall score. The values of precision, in this case, are neatly separated:
weekday and week networks maintain similar values, whereas weekend networks
have poor prediction performances.

5 The Spatial Dimension

As we saw in the previous section, given the spatial precision of GPS points, it is
necessary to process the data in order to generalize neighbor points within a spatial
region. Since the spatial precision of a GPS position can have an error of few meters,
we need to determine the most suitable generalization for then performing complex
network analysis. Our approach consists in studying the properties of a complex
network extracted from a regular grid composed of regular squares with edges of the
same length.

As a starting point, we consider the bounding box containing our GPS trajectories,
i.e. the minimum geographical rectangle that contains all the points, say h and w
respectively the height and width of the box. Chosen a length l for the edge of each
cell, we divide the bounding box into a grid of cells with r rows and c columns,
where r = ∩h/l→ and c = ∩w/l→. The resulting grid is aligned with the lower left
corner of the original box.

There are several criteria to partition the territory for a spatial generalization step.
In this research, we focus on the spatial resolution of a regular division, since it
enables us to control the granularity with a uniform distribution of the cells.

Given a spatial partition, we can extract a network model to represent human
movements on the grid. Each travel is mapped to a pair of cells: cs, the starting cell,
and ce the destination cell. The network is determined by a set of nodes, representing
the cells, and a set of edges, representing the travels between two cells. Each edge is
weighted with the number of travels connecting the corresponding cells.

By varying the grid resolution as shown in Fig. 7, we are able to generate dif-
ferent network perspective of human mobility, and for each network we can derive
basic statistics on its topology. Network basic statistics are an important proxy to
understand part of the topology of the network itself. Given the values of measures
like average degree or path length, we can understand if the network representation
presents a topology that is likely to include a modular structure, thus community
discovery can be used effectively.
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Fig. 7 (Left) A sample of the trajectory dataset used for the experiments. (Center) A partition based
on a regular grid with cells of size 2,000 m. (Right) A partition with a grid with 20,000 m cell size

To refer to distinct granularities, we call each network as “od_net_” followed by
the cell size in meters of the underlying grid used to generate the network. Figures 8
and 9 depicts two different sets of statistics. Please note that the figures do not report
the absolute value of the particular network measurement, but their relative value w.r.t
the value obtained for the network with the largest grid cell, i.e. “od_net_40000”.
We cannot report the actual values for all networks for lack of space.2

Looking at Figs. 8 and 9 we can state some interesting things about the networks
generated with different grid resolution levels. First, the number of nodes and edges
drops dramatically by passing from a grid size of 200–10,000 m, while sizes greater
than 15,000 m do not create much difference. Second, the number of edges drops
with a different rate w.r.t the drop in the number of nodes: we can see in Fig. 8
that the green line starts from below the red line, then it is higher in the interval
4,000–17,000 m then drops again. This is consistent to what we see in Fig. 9: the
average degree increases until a maximum density for a cell size in between 10 and
15,000 m, then slightly lowers. The average path length drops consistently, while
reciprocity and average node weight increase: this is expected as bigger cells includes
more trips and it is more probable to have reciprocal edges.

If we want significant results with community discovery we need generally dense
networks with small-world properties with not too many small isolated components,
and we want to achieve this objective with the smallest possible grid cell, thus with
more nodes and edges, to have a more fine-grained description of reality. A prelimi-
nary conclusion may be that the optimal cell size should be around 5,000 m: smaller
cells generate networks with lower density, or with too many components.

Another important characteristic of the analyzed networks can be observed by
when plotting their degree distributions (see Fig. 10). For clarity, we plotted only the
degree distributions of the networks generated with a cell size of 500, 1,000, 2,000,
5,000, 10,000, 20,000 and 40,000 m. We can see that all the distributions present a
heavy exponential cutoff. However, while the distributions for small cell sizes are

2 The complete table can be retrieved at the following URL: http://www.di.unipi.it/~coscia/borders/
gridstatistics.htm

http://www.di.unipi.it/~coscia/borders/gridstatistics.htm
http://www.di.unipi.it/~coscia/borders/gridstatistics.htm
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Fig. 9 Some statistics of the extracted networks, relative to the values of the “od_net_40000”
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similar, just on different scales, from cell sizes larger than 10,000 m the exponential
cutoff is increasingly stronger. This means that networks generated with larger cells
lack of a peculiar characteristic of many large complex networks, i.e. the presence of
hubs, a set of nodes very highly connected. As their average shortest path is still low,
it means that their “small world” properties are not due to the network connectivity
itself, but instead to the network small size. Thus, a cell size of 10,000 m seems a
reasonable upper bound for the cell size in our dataset. This upper bound can be
explained by considering the distribution of lengths showed in Fig. 11: short-ranged
travels (up to 10 km) count for the 60 % of the whole dataset. When increasing the
grid size, small travels tend to be contained within the same cell, generating a self-
link in the resulting network. This reduces the “power” of a cell of attracting other
cells in its community, since there are less long-ranged trips.
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Fig. 11 Cumulative distribution of length of trajectories in our dataset

5.1 Experiments

The communities extracted for each grid resolution are mapped back to the geog-
raphy and they are used to compute thematic maps of the territory. Given a spatial
resolution, for each community we retrieve all the cells associated to its nodes and
we join them in a cluster, i.e. a geometric representation of the area covered by the
community. An example of such thematic map is presented in Fig. 12. For clarity,
areas corresponding to different communities are rendered with different colors. It
can be noted the presence of holes in the reconstructed map, since there cells of the
spatial partition that do not contains any travel. This phenomenon is more evident
for smaller resolutions, where it is possible to find cells that do not contains any road
and, thus, any car travel.
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Fig. 12 (Left) The clusters obtained with grid cell size of 2,000 m. (Right) The clusters determined
by the level 2 of the Infomap hierarchy for the same grid resolution

5.1.1 The Borders

We compare the resulting clusters with the existing administrative borders, in partic-
ular with the provinces, i.e. an aggregation of adjacent municipalities whose gover-
nance has the duty for traffic monitoring and planning. The borders of provinces are
drawn with a thick green line in Fig. 12 (Left). From the figure it is evident how the
emerging communities suggest small variation on the location of the actual borders.
For example, the four provinces of Pisa, Livorno, Lucca and Massa are aggregated
in a single cluster, since the province of Lucca serves as collector of the mobility
of the other three. Exploring the hierarchical aggregation of the communities result-
ing from Infomap (see Fig. 12 (Right)), it is evident the role of the central area of
the province, where Lucca is located and where there exists a large vertical cluster
(highlighted in blue) connecting the majority of the municipalities of the region. In
fact, the cities of Pisa, Lucca, and Livorno form the so-called area vasta (i.e. large
area), which is characterized by a large flow of commuters. The province of Livorno
is divided into two parts, where the north part is included to the province of Pisa
and, by transitivity, with the other twos. A similar behavior is observed for the clus-
ter containing the provinces of Firenze, Prato, and Pistoia. These big cities actually
form a large metropolitan area with a huge number of commuters moving from one
city to the other. This mobility is also sustained by the high capacity of the highway
that connects the south with the north through the node of Firenze. The citizens of
the city, moreover, have a special reduction for the toll. The provinces of Siena and
Arezzo maintain their own borders. It is worth noting that the derived communities
follow the borders of each municipality enforcing the internal role of each city as a
minimum building block for human mobility borders.



Spatial and Temporal Evaluation of Network-Based Analysis 289

Fig. 13 The resulting clusters obtained with different spatial granularities. a 500 m. b 1,000 m.
c 2,000 m. d 5,000 m. e 10,000 m. f 20,000 m

Figure 13 shows the evolution of the clusters at different spatial granularities,
namely with size 500, 1,000, 2,000, 5,000, 10,000, and 20,000 m. The first three
snapshots show a coherent result, where the clusters identified within the high reso-
lution grid of 500 m are preserved in the successive steps. Starting from a cell size of
5,000 m, the smaller clusters disappear, like for example the cluster between Siena
and Grosseto, highlighted in red. When the spatial resolution became more and more
coarse, we observe also a merging of distinct clusters in the same communities. In
the clusters of resolution 5,000 m, for instance, the cluster of Siena is merged with
the cluster formed by Firenze, Prato, and Pistoia. In the other two successive steps
the same phenomenon is repeated. At a resolution of 10,000 m the cluster of Firenze
is merged with the cluster of Pisa and Lucca. In the coarser version of the grid the
resulting clustering actually contains all the grid cells in the same cluster.

From a qualitative evaluation of the resulting maps, we can infer an optimal grid
cell size threshold of 5,000 m: smaller granularities allow the identification of rea-
sonable borders at the cost of a more complex computation and with the proliferation
of very small local clusters.
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5.1.2 Community Quality

Beside a visual comparison with the provinces, we analytically compared the partition
derived by the community discovery approach and the partition determined by the
actual administrative organization by means of the two measures of precision and
recall introduced in Sect. 4.2. In our setting, for each grid resolution we compare the
sets of cells determined by the Infomap algorithm and the set of cells determined by
the administrative borders. The administrative borders are represented by the set of
grid cells whose cenrtoid is contained within the border interior (we use the centroid
of the cell to avoid duplicated cells in different clusters).

The resulting values for precision and recall are plotted in Fig. 14. The plot sup-
ports the observation made by means of the visual comparison of the clusters. Recall
performs better for smaller grid size, namely up to 2,000 m grid size, it decreases
for values between 2,000 and 7,000 m, and it has a drop for larger cell sizes. These
results confirm and explain the clusters presented in Fig. 13.

Precision and Recall are not the only evaluation measures we can exploit. Infomap
calculates also the code length needed to codify the network given the community
partition. Lower code lengths are better because they are the results of a better division
in communities. Of course, the simple value of the code length is meaningless in our
case, as the networks have very different scales (the number of nodes goes from 335 k
to 194 and the number of edges from 4 M to 9 k). Instead, we can adjust the code
length with the number of nodes, as it is an information referred to how many bits
are needed to represent all the nodes in the network. We adjust the code length with
the following formula:

C Ladj = C L

log2 n
,

where n is the number of nodes in the network. The log2 n term returns the number
of symbols (bits) needed to code each node of the network taken separately, i.e.
using a uniform code, in which all code words are of equal length. Since C L is the
code length returned by Infomap, i.e. the number of symbols needed to code each
node of the network given the community partition (that tries to exploit community
information to use shorter code words), their ratio is telling us how much better is
C L over the baseline. If C Ladj ⊆ 1, then the community division is using the same
number of symbols (or more) than the ones needed without the community, otherwise
the compression is effective, and the lower value the better partition. For this reason,
C Ladj is scale independent.

The resulting plot of the C Ladj for all the networks generated is depicted in Fig. 15.
As we can see, the adjusted code length decreases while approaching a cell size in
the interval 5–10,000 m, that is our minimum, and then increases again. At cell size
8,000 m, the adjusted code length is slightly lower than 0.53, intuitively it means that
the obtained code length is long as 53 % of the baseline. This confirms the topology
analysis of the networks performed at the beginning of this section, that identified the
most promising cell sizes at values smaller than 10,000 m. Moreover, the comparison
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Fig. 14 The measures of precision and recall compared with the division of the territory into
provinces
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Fig. 15 The adjusted codelength values of the extracted networks

of the plots in Figs. 15 and 14 show that the communities discovered for grid sizes up
to 2,000 m have comparable results at the cost of a complexity that decreases when
the cell grid size increases. Beyond the grid size limit of 7–10,000 m the spatial grid is
no more able to capture local mobility behavior and the corresponding communities
and their complexity start getting worse.

6 Conclusion

In this chapter we explored the influence of the temporal and spatial dimension for the
analysis of complex networks extracted from mobility data. We considered a large
dataset of GPS trajectories, with a very precise temporal and spatial resolution. From
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these trajectories, we derived different network perspectives: the first set is generated
by defining time intervals (i.e. weekdays and weekends), the second set is generated
by defining a set of multi-resolution spatial grids. We studied several network statis-
tics over the extracted networks and we applied a community discovery algorithm
to understand how the temporal and the spatial dimension affect the problem of
detecting the actual borders of human mobility. The extensive experiments show that
the choice of the appropriate temporally bounded data and spatial resolution of the
grid is critical for the network study of mobility data. Temporally, data from periods
of increased unpredictability can introduce noise and lower the quality of mobility
prediction. Spatially, finer resolutions create over detailed networks where smaller
components are associate to several small clusters. Large cell sizes, on the contrary,
generate an excessive aggregation of local movements. We provided a framework
to understand how to detect the optimal spatiotemporal tradeoff. We detected the
optimal spatial resolution, that allows the correct generalization of local trips, that
represent the majority of human mobility, and the reduction of model complexity
of the extracted communities, which yield a compact code representation. We also
detected that to maximize the usefulness of the mobility clusters, one has to rely on
systematic trajectories, that are more frequent and predictable.
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An Ant Based Particle Swarm Optimization
Algorithm for Maximum Clique Problem
in Social Networks

Mohammad Soleimani-pouri, Alireza Rezvanian
and Mohammad Reza Meybodi

Abstract In recent years, social network services provide a suitable platform for
analyzing the activity of users in social networks. In online social networks, interac-
tion between users plays a key role in social network analysis. One of the important
types of social structure is a full connected relation between some users, which known
as clique structure. Therefore finding a maximum clique is essential for analysis of
certain groups and communities in social networks. This paper proposed a new hybrid
method using ant colony optimization algorithm and particle swarm optimization
algorithm for finding a maximum clique in social networks. In the proposed method,
it is improved process of pheromone update by particle swarm optimization in order
to attain better results. Simulation results on popular standard social network bench-
marks in comparison standard ant colony optimization algorithm are shown a relative
enhancement of proposed algorithm.

Keywords Social network analysis · Clique problem · ACO · PSO

1 Introduction

Today online social networks are formed a new type of life due to some facili-
ties and services for a wide ranges of ages such as young to old. Besides, there
is no doubt about either influence or growth of social networks. Therefore, several
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many of researchers are focused on social network analysis aspects. It seems to be
useful, studying certain structure of relation between users in social networks. One
of the important user group structure associated with a full connected of some users,
which known as clique structure [1, 2]. Several applications of finding clique are
reported by researchers such as social networks analysis [3, 4], online shopping rec-
ommendation [5], evolution of social networks [6], scheduling [7], biochemistry [8],
computer vision [9] and wireless sensor networks [10]. In literature, finding clique
is categorized as NP-complete problems in graph theory [11].

In maximum clique problem, finding the largest complete subgraph is considered.
It was introduced by Karp [12]. Various types of algorithms have been presented to
solve clique problem, while evolutionary algorithms such as genetic algorithm (GA)
and ant colony optimization (ACO) have been used more than others. Popular algo-
rithm named Ant-clique algorithm, which make a maximal clique using sequential
greedy heuristics based on ACO by adding vertices to the partial cliques iteratively
[13]. Besides, another ACO based method hybridized by simulated annealing (SA)
[14] and tabu search [15]. Although new hybrid algorithm obtained good results,
they have a high complexity in practice.

In this study, Particle Swarm Optimization (PSO) algorithm has been applied as
the heuristic to enhance the performance of ACO algorithm for finding the maximum
clique in social network graph. Simulation results on social network benchmark are
shown the better results in comparison with standard ACO algorithm. In the rest of
this paper, Sects. 2 and 3 are consisted of ACO and PSO introduction respectively, in
Sect. 4, proposed method is discussed. Simulation results on social networks datasets
are reported in Sect. 5.

2 Ant Colony Optimization

Ant Colony optimization (ACO) algorithm works well for solving several discrete
problems. The basic algorithm of ACO was proposed by Dorigo as a multi agent
approach in order to solve traveling salesman problem (TSP) [16]. The main idea of
ACO algorithm is inspired from the behavior of seeking out food by colonies of ants.
Ants search their environment randomly to find food. They return some of the food
to their nest once found a food and leave pheromone in their return path. The amount
of pheromone left on their path depends on quality and size of the food source and
it evaporates gradually. Remaining pheromones will persuade other ants to follow
the path and just after a short time, majority of the ants will trace the shorter path
which is marked with stronger pheromone. Procedure of ACO algorithm has been
presented in Fig. 1.

During running of the algorithm, ants first produce different solutions randomly in
the main loop after initialization. Afterwards, the solutions are improved by updating
the pheromones and using a local search optionally. According to the problem and
graph traverse, pheromones set on vertices or edges of graph. Traversing the edge
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Fig. 1 Pseudo-code of ACO
algorithm [17]

Algorithm 1 ACO algorithm
procedure ACO_MetaHeuristic

while (termination_conditions)
generateSolutions()
daemonActions() {Optional}
pheromoneUpdate()

endwhile
end procedure

between vertices i and j depends on the probability of edge which is calculated as
below:

pk
i j =

(
ΓΦ

i j

)
∑(

ΓΦ
i j

) (1)

where, pi j
k is probability of traversing the edge between vertices i and j, while Γi j

Φ

is amount of pheromone present on the above mentioned edge. An optional local
search can contribute to improvement of the results prior to updating the pheromones.
However, method of updating the pheromones can be like this:

Γ t+1
i j = (1 − α) Γ t

i j + βΓ t
i j (2)

where, α is evaporation rate of pheromone, Γi j
t+1 is amount of new pheromone

for edge between i and j, Γi j
t is amount of current pheromone for edge between i

and j, γΓi j
t is amount of reinforced pheromone for proper solutions which can be

calculated from the following equation.

βΓ t
i j =

{
1 if Γ t

i j ∈ good solution
0 Otherwise

(3)

3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based optimization technique
developed by Eberhart and Kennedy in 1995, which inspired from social behavior
of birds seeking for food. In this method, group of birds seek for food in a specified
space randomly. Birds follow the bird with the shortest distance to food in order to
find position of the food [18].

Every solution in PSO algorithm which is called a particle corresponds to a bird in
their pattern of social movement. Each particle has a value of fitness calculated by a
fitness function. A particle bears greater fitness once it is located in a closer position



298 M. Soleimani-pouri et al.

to the target (food in the model of moving birds) within search space. Moreover, any
particle represents a speed which is responsible to direct the particle. A particle will
keep going through the problem space by following the optimum particle at current
state.

A group of particles (solutions) are created randomly at the beginning of particle
swarm optimization algorithm and they try to find the optimum solution through
being updated among generations. A particle is updated in each step using the best
local and global solution. The best position a particle has ever succeeded to reach is
called pbest and saved while the best position achieved by the population of particles
is named gbest. Velocity and location of each particle will be updated using Eqs. (4)
and (5) in each step of implementing the algorithm after finding the best local and
global values.

vt+1
i = wvt

i + c1r1
⎧
pbestt

i − xt
i

⎨ + c2r2
⎧
gbestt

i − xt
i

⎨
(4)

xt+1
i = xt

i + vt
i i = 1, . . . , m (5)

where, vi is the velocity of i th particle and xi is the current position of it. r1 and r2
are random values in the range of (0,1). c1 and c2 are learning parameters usually
assumed equal (c1 = c2). w is inertia weight which is considered as a constant or
variable coefficient as random, linear, nonlinear and adaptive [19]. PSO has been used
in various applications [20–22] and this research utilizes it to improve the amount of
pheromones.

4 Proposed Algorithm

High complexity was a major drawback of the previous heuristic methods for solving
the clique problem since it significantly adds to the volume of calculations. All
methods provided so far apply the following relation to calculate βΓ although the
proposed algorithm take the advantage of PSO algorithm to improve results and
reduce complexity.

βΓ t+1 = 1

(1 + |G-best | − |best-tour| ) (6)

This algorithm has used the hybrid of ACO and PSO algorithms in order to find
the maximum clique in a graph. For this purpose, some ants are placed initially on
the graph and follow paths to find the maximum clique. After evaporation of existing
pheromones, proper path is updated by its amount on the edges using PSO algorithm.
This procedure is repeated until the optimum clique is obtained on the desired graph.
Determining the amount of pheromone through PSO is such that the total pheromone
measured at this step and the total pheromone associated with the best answer up
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Algorithm 2 proposed Algorithm

For each ant choose randomly a first vertex vf V
C {vf}
candidates {vf/(vi,vi) E}
while candidates do

choose a vertex vi candidate with probability by equation (1)
{vi}

candidates candidates {vf /(vi,vf) E}
endwhile
evaporate()
Evaluation best current clique for all ant

Pheromone update τΔ based on PSO by equation (7)

Fig. 2 Pseudo-code of proposed algorithm based on ACO and PSO

to present step will be calculated taking into account the amount of pheromones at
current step. Now, βΓ for the reinforced pheromone of the desired clique will be
calculated with PSO algorithm using the following equation:

βΓ t+1 = βΓ t + V t (7)

where, βΓi j
t is amount of reinforcement for current pheromone and βΓi j

t+1 is
amount of reinforcement for new pheromone, while V t gives the amount of change
which can be achieved from this equation:

Vt+1 = c1r1(pΓ − βΓ) + c2r2(gΓ − βΓ) + c3Vt (8)

where, V t+1 is the new value of V t . r1 and r2 are two random values within range
of (0,1), while c1, c2 and c3 are learning parameters (c1 = c2 = c3). pΓ and gΓ

are considered as the pheromone correspondent with the best current clique and the
best clique found so far, respectively. In this case, discovering the changed amount
of pheromone will be implemented much more intelligent.

Taking into consideration the mentioned items, general routine of proposed the
algorithm can be presented in Fig. 2.

5 Simulation Results

5.1 Comparison of the Proposed Algorithm

For evaluation of the proposed method, experiments applied on some popular social
network datasets [19] and DIMACS graphs [2]. The descriptions of these networks
are listed in the Table 1.
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Table 1 Descriptions of social network datasets and DIMACS graphs for experiments

Name Descriptions Nodes Edges

SN_I Zachary’s karate club 34 78
SN_II Common adjective and nouns in “David Copperfield” 112 425
SN_III Neural network of the nematode C. Elegans 297 8479
SN_IV Social network of dolphins, Doubtful Sound, New Zealand 62 159
SN_V Pajek network: Erdos collaboration network 971 472 1314
SN_VI Pajek network: Erdos collaboration network 991 492 1417
SN_VII Pajek network: World Soccer, Paris 1998 35 295
SN_VIII Pajek network: graph and digraph glossary 72 118
SN_IX Pajek network: Slovenian journals 1999–2000 124 823168
SN_X Co-authoship of scientists in network theory and experiments 1589 1190
SN_XI Pajek network: SmaGri citation network 1059 4919
SN_XII Email interchange network, Univ. of Rovira i Virgili,Tarragona 1133 5451
DC_I DIMACS graphs: C250.9 250 27984
DC_II DIMACS graphs: gen200_p0.9_44 200 17910
DC_III DIMACS graphs: keller4 171 9435
DC_IV DIMACS graphs: MANN_a27 378 70551
DC_V DIMACS graphs: p_hat700-2 700 121728
DC_VI DIMACS graphs: brock400_2 400 59786
DC_VII DIMACS graphs: C1000_9 1000 450079
DC_VIII DIMACS graphs: hamming10_4 125 6963

Topologies of some social networks and DIMACS are presented in Fig. 3 as the
most popular of the social network datasets.

The setting of parameters for experiment is listed in below. It is noted that choosing
different values for improving the results is also possible.

In this chapter has used 30 ants with α = 0.95, λ = 0.0002,γΓini tial =
0, Γmin = 0.01, Γmax = 6.

Meanwhile, parameters of PSO were initialized as V = 0, c1 = c3 = 0.3, and
c2 = 1− c1. Φ and α were given the following values based on the experiments done
and t is the number of iterations.

Φ(t) =

⎧⎪⎪⎨
⎪⎪⎪

1 t ≤ 100
2 100 < t ≤ 400
3 400 < t ≤ 800
4 t > 800

⎝⎪⎪⎞
⎪⎪⎠ (9)

α(t+1) =
{

(1 − τ)α(t)
0.95 if α(t) > 0.95

(10)

Average of 10 independent runs with 1,000 iterations for each Social network
dataset implementation have been listed in Table 2, and 30 independent runs with
1,500 iteration for DIMACS have been presented in Table 3 for proposed method
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Fig. 3 Visulization of some datasets for experiments. a SN_III. b SN_VI. c SN_IX. d SN_II. e
DC_III. f DC_II
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Table 2 Simulation results for finding a maximum clique in social network datasets

Graph ACO ACO-PSO
Best Avg Std Run-time Best Avg Std Run-time

SN_I 5 4.991 0.080 64.03 5 4.995 0.070 11.84
SN_II 5 4.709 0.495 355.81 5 4.783 0.412 23.37
SN_III 7 5.521 1.568 1121.71 7 5.543 1.482 49.47
SN_IV 5 4.991 0.094 132.12 5 4.998 0.044 15.69
SN_V 7 8.753 0.861 5853.59 7 5.848 0.667 105.11
SN_VI 7 5.961 0.924 6281.35 7 6.011 0.819 111.89
SN_VII 5 3.910 0.293 55.15 5 4.118 0.322 10.742
SN_VIII 4 3.943 0.232 153.66 4 3.985 0.121 12.94
SN_IX 4 3.017 0.316 438.87 4 3.185 0.299 22.07
SN_X 3 2.175 0.434 2142.03 3 2.253 0.371 118.59
SN_XI 8 6.025 0.815 9153.65 8 6.409 0.765 481.34
SN_XII 12 7.562 2.370 11109.17 12 7.997 2.240 529.04

Table 3 Simulation results for finding a maximum clique in DIMACS datasets

Graph ACO ACO-PSO
Best Avg Std Run-time Best Avg Std Run-time

DC_I 44 43.20 0.761 43343.98 44 43.83 0.461 27978.04
DC_II 44 41.50 2.270 23992.76 44 42.90 1.863 19485.80
DC_III 11 11.00 0.000 8294.87 11 11.00 0.000 8417.40
DC_IV 126 125.60 0.498 194254.88 126 126.00 0.000 200678.54
DC_V 44 43.60 0.621 89776.41 44 44.00 0.000 89539.63
DC_VI 25 23.53 0.628 24730.51 29 24.30 1.087 29580.20
DC_VII 63 59.86 1.569 265326.84 67 64.06 1.172 276632.40
DC_VIII 40 36.30 1.556 151290.21 40 38.60 1.404 177169.91

(ACO-PSO) and ACO algorithm respectively, including the maximum (Best), aver-
age (Avg), standard deviation (Std) and run-time of algorithm for finding a maximum
clique in each graph datasets.

Tables 2 and 3 indicate that the proposed method (ACO-PSO) produces better
results in comparison with ACO method since the proposed approach is an appro-
priate method to update pheromones of the traversed paths for ants in calculating the
optimum clique.

5.2 Comparison of Convergence of the Proposed Algorithm

Convergence behavior of the proposed algorithm in comparison standard ACO have
been presented along running for some graphs. Figure 4 shows an average of 30
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Fig. 4 Convergence behavior of the proposed algorithm in comparison standard ACO. a DC_II. b
DC_IV. c DC_VI. d DC_VII

independent runs for 1,000 periods within intervals of 10 periods for some network
graphs listed in table 1.

In these figures can be observed that proposed algorithm has excellent result
compared with standard ACO.

6 Conclusion

A new hybrid algorithm has been presented in this paper using ACO and PSO
(ACO-PSO) for finding the maximum clique problem. Traditional algorithms suf-
fered high complexity while the hybrid proposed algorithm just change the process
of update pheromone. It has been shown that the new algorithm was able to improve
the basic ACO algorithm as simply and quickly. Simulation results on popular social
network datasets indicate the suitable results for proposed algorithm in comparison
with the ACO algorithm.
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XEngine: An XML Search Engine for Social
Groups

Kamal Taha

Abstract We introduce in this chapter an XML user-based Collaborative Filtering
system called XEngine. The framework of XEngine categorizes social groups based
on ethnic, cultural, religious, demographic, or other characteristics. XEngine out-
puts ranked lists of content items, taking into account not only the initial preferences
of the user, but also the preferences of the various social groups, to which the user
belongs. The user’s social groups are inferred implicitly by the system without involv-
ing the user. XEngine constructs the social groups and identifies their preferences
dynamically on the fly. These preferences are determined from the preferences of
the social groups’ member users using a group modeling strategy. XEngine can be
used for various practical applications, such as Internet or other businesses that mar-
ket preference-driven products. We experimentally compared XEngine with three
existing systems. Results showed marked improvement.

1 Introduction

With the growth of massive information on the Web, it has become increasingly
difficult to search for useful information. As one of the most promising approaches
to alleviate this overload, recommender systems have emerged in domains such
as E-commerce and digital libraries. In general, recommendation systems suggest
items or products, by analyzing what users with similar tastes have chosen in the
past. One of the successful recommendation tools is Collaborative Filtering (e.g.,
[12]). Collaborative Filtering (CF) is the process of filtering for information using
the opinion of other people. It aims at predicting the user interest for a given item
based on a collection of profiles of users who have similar interests. The underlying
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assumption of CF approach is that those who agreed in the past tend to agree again
in the future.

A number of CF algorithms have been proposed. There are two major classes of
these algorithms [5], memory-based and model-based approaches. Memory-based
CF (e.g., [5]) predicts a user’s preference based on his/her similarity to other users in
the database. Model-based CF first learns a descriptive model of the user preferences
and then uses it for providing item recommendation. The advantage of the memory-
based methods over their model-based alternatives is that less parameters have to be
tuned. Existing memory-based CF methods, mainly user-based (e.g., [5]) and item-
based (e.g., [7]) methods, predict new ratings by aggregating rating information from
either similar users or items. Given an unknown test rating to be estimated, user-based
CF measures similarities between test user and other users. Item-based CF measures
similarities between test item and other items.

We introduce in this chapter an XML [6] user-based CF system called XEngine.
The framework of XEngine categorizes social groups based on ethnic, cultural, reli-
gious, demographic, age, or other characteristics. For example, people of ethnic
group EX ; people who follow religion RY ; and people who live in neighborhood NY

can all be considered to form various social groups. XEngine outputs ranked lists
of content items, taking into account not only the initial preferences of the active
user, but also the preferences of the active user’s various social groups. Consider
for example a Mexican-American user. The user belongs to social groups Mexicans
and Americans: the portion of Mexicans living in the USA. The results of a query
submitted by this user will be filtered and ranked based on the union of the interests
of social groups “Mexicans” and “Americans”. The social groups to which a user
belongs usually have class-subclass relationships. A subclass social group has its
own properties while inheriting the properties of its superclass(es).

In the framework of XEngine, user characteristics (e.g., social groups) are inferred
implicitly by the system without involving the user. That is, the user is not required
to reveal the social groups to which he belongs. The user is determined whether
or not he/she belongs to a social group G by matching his/her rating pattern with
the rating pattern of G. XEngine constructs social groups and also identifies their
preferences dynamically on the fly. We developed formal concepts and algorithms
that identify the preferences of various social groups dynamically on the fly. These
preferences are determined from the preferences of the social groups’ member users
using a group modeling strategy. XEngine can be used for various practical appli-
cations, such as Internet or other businesses that market preference-driven products.
We experimentally compared XEngine with three existing systems. Results showed
marked improvement. A demo of XEngine is available at: http://dbse1.uta.edu/kamal/
XEngine/.

The rest of this chapter is organized as follows. In Sect. 2, we present related
work. In Sect. 3, we outline our approach. In Sect. 4, we describe how the ratings of a
social group can be initialized dynamically from Web pages publishing information
about the social group. In Sect. 5, we describe how the social group to which the
user belongs can be identified implicitly by the system. In Sect. 6, we describe how
we model social groups graphically. In Sect. 7, we describe how results are filtered

http://dbse1.uta.edu/kamal/XEngine/
http://dbse1.uta.edu/kamal/XEngine/
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and ranked based on the ratings of the user’s social group. We present the system
architecture in Sect. 8. We present our experimental results in Sect. 9 and conclusions
in Sect. 10.

2 Related Work

There have been a number of researches in filtering based on group profiling [1, 11,
18, 21, 24, 27]. In most of these works, a group is formed based on common interests
of its members on an item(s)/features.

O’Connor et al. [18] describes how a combination of collaborative and demo-
graphic filtering can be used to recommend product bundles. It describes how stored
data is used to recommend a combination of tourist services. Gomes and Canuto [11]
presents Caracará, a system for searching and mining information on the World Wide
Web, using a dynamic grouping process. Carcará groups Internet users according to
their profile. After that, the system makes suggestions of URLs which are likely to
be useful for the users of these groups. Aimeur et al. [1] creates categories of users
having similar demographic characteristics, and tracks the aggregate buying behav-
ior of users within these categories. Recommendations for a new user are issued by
applying the aggregate buying preferences of previous users in the category to which
the user belongs. Wang et al. [27] presents a model for supporting social groups in an
Ubicomp environment. There must be consensus between group members in order
for a person to be a member of the group.

Symeonidis et al. [21] proposes an approach/system called Feature-Weighted
Nearest Biclusters (FWNB), which is the closest and most relevant to our proposed
work. In Sect. 9, we experimentally compare FWNB with XEngine. The following
is an overview of FWNB:

An overview of FWNB [21]: The paper proposes to capture the interaction
between users and their favorite features by constructing feature profile for users.
Users are grouped into biclusters (i.e., group of users which exhibit highly correlated
ratings on groups of items). Each bicluster acts like a community for its correspond-
ing items. Each bicluster’s item features are weighted. The weighted value of feature
f for user u W(u, f ) is calculated as follows: W(u, f ) = FF(u, f ) * IUF(f ), where
FF(u, f ) is the number of times f occurs in the profile of user u; and, IUF(f ) is the
inverse user frequency and is calculated as: IUF(f ) = log (|U |/UF(f )), where |U | is
the total number of users; UF(f ) is the number of users in which feature f occurs at
least once.

2.1 The Following are Outlines of the Novelty of Our Approach
Compared to Existing Approaches

1. Employing context-driven group profiling techniques:
Most current user-based CF algorithms suffer the following limitation. When they
determine the users having similar rating pattern as the active user, the number
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of these users is usually much less than the actual number. The reason is that
most of these algorithms consider only item features rated by the active user and
co-rated by other users, and users usually rate only a subset of an item’s features.
We observe that we can account for all users that have similar interests as the
active user by employing a mechanism similar to friend-of-a friend ontology. For
example, if: (1) user ux has preference on feature fi , (2) user uy has preference on
features fi and f j , and (3) user uz has preference on feature f j . By applying the
friend-of-a friend ontology, we will find that all three users may have common
interests. Moreover, these interests may include features other than fi and f j ,

if the three users belong to some common context. A context is a characteristic
that define a group based on culture, ethnicity, religion, demography, or other
characteristics. Therefore, we propose grouping users based on their contexts’
profiles rather than solely on their rating patterns. If an active user ux and another
user uy rated different features of an item, but both have similar rating pattern as
a social group G, it is most likely they both have similar interests, which are the
interests of the social group G. The interests of ux can be predicted based on the
interests of the social group G. Some of the member users of G may have rated
features other than those rated by user uy .

2. Employing multi-context group profiling techniques:
The smaller a social group is, the more granular and specific its interests are.
We propose smaller granularity of group classes formed from the intersections of
different contexts. That is, a group from this class is composed of an aggregation
of people sharing common multi-context profile. For example, the portion of
ethnic group EX who follow religion RY forms a multi-context group.

3. Coupling multi-context profiling with implicit and dynamic identification tech-
niques:
We constructed previously a system called SPGProfile [23], which also employs
the concept of group profiling. However, SPGProfile uses static and explicit mech-
anisms as follows: (1) the user is required to reveal to the system explicitly the
social groups, to which he belongs,1 and (2) the preferences of a social group are
determined statically from preference data acquired from subjects belonging to
the social group (e.g., via interviews); these preferences will NOT be updated and
optimized based on the preferences of new member users of the social group. A
link to SPGProfile demo is provided in the XEngine’s Web site.

2.2 Key Differences Between XEngine and SPGProfile

1. XEngine identifies the social groups to which the user belongs implicitly. That
is, the user is not required to reveal to the system the social groups, to which he

1 Collecting characteristics from users themselves can be intrusive into the user interaction. More-
over, users are usually unwilling to spend extra effort to explicitly specify their characteristics (e.g.,
social groups) [20]. Therefore, XEngine is an improvement over SPGProfile.
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belongs. As for SPGProfile, the user is required to reveal to the system explicitly
his/her social groups.

2. XEngine constructs social groups and identifies their preferences dynamically
on the fly. The preferences/ratings of a social group are dynamically updated
and optimized based on the ratings of each new member user belongs to the
social group. As for SPGProfile, the system administrator needs first to identify
subjects belonging to each social group (e.g., via phone interviews). He then
provides them with a GUI to rate their preferences on features. These preferences
act as the preferences of the social group and will NOT be updated based on the
preferences of new member users belonging to the social group.

3. By crawling Web sites, XEngine initializes the preferences of social groups
dynamically from Web pages that publish information about them. It also employs
a strategy that rates these preferences. SPGProfile does not do so.

3 Concept Used in the Chapter and Outline of the Approach

3.1 Definition of Key Concepts

Notation 3.1 An item feature: We use the term “feature” to refer to the name of
a data element in an XML document. A feature reveals a distinctive and essential
aspect of an item.

We use the terms user preference and user interest interchangeably throughout the
chapter.

Definition 3.1 User preference (interest): A user preference W is an ordered set of
some data dimensions D, i.e., W = {w1, w2, . . ., wm}, where wi ≤ D. It follows the
order such that w1 > w2 > · · · > wm where wi > w j represents that the user prefers
wi to w j .

We use the term “domain” to mean an area of activity, belief, culture, ethnicity,
demography, or the like. A Single-Domain Group (SDG) is a group of people sharing
common domain interests. For example, each of ethnic group EX and religious group
RY represents a SDG.

Definition 3.2 Single-Domain Group (SDG): A SDG is an aggregation G of indi-
vidual users, where for each x, y ≤ G (x ∗= y): x and y share a common and
distinctive culture, ethnicity, religion, demography, or the like. That is, x and y share
the same interests of only one domain group.

The smaller a social group is, the more granular and specific its interests are. There-
fore, we introduce another class of social groups called Multi-Domain Group (MDG)
whose size is usually smaller than a SDG. A MDG is composed of an aggregation
of people sharing common multi-domain interests. Thus, a MDG is formed from
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the intersection of two or more SDGs. For example, the portion of ethnic group
EX who follow religion RY and live in neighborhood NY (i.e., the intersection of
EX ∈ RY ∈ NY ) forms a MDG. The interests of a MDG are the union of the interests
of the SDGs forming it. Thus, the interests of a MDG are more specific than the inter-
ests of each of the SDGs forming it. To fine-grain a user’s query results, XEngine
outputs a filtered and ranked list of items taking into account the preferences of the
user’s MDG.

Definition 3.3 Multi-Domain Group (MDG): Let S be the set of all SDGs that
exist. A MDG is an aggregation G of individual users, where: ∩x ≤ G: x shares
the same interests of ∩s → S:|s| ⊆ 2. That is, G is formed from the intersection⋂
SDGi ≤s,s→S

SDGi .

We model the user’s initial preferences as a set D = {(a1, w1), . . ., (am, wm)},
where: ai denotes item feature i and wi a weight on ai . The weight wi is a value
scaled between 0 and 1. A complete set of features is presented to users to determine
their relevance. The system provides the users with a graphical user interface (GUI)
to reveal their initial preferences and weights on a feature. Based on the weights of
a SDG’s member users on features, each feature is given a score. This score reflects
the importance of the feature to the SDG relative to other features. We adopt the
following strategy for determining these scores:

Each feature is assigned a score. This score is based on the difference between the number
of times the feature beats other features (i.e., assigned a higher weight by the members of
the SDG), and the number of times it loses.

Definition 3.4 A score of a feature for a SDG: Let a ∧ b denote: the number of
times the members of a SDG considered feature a as a preference is greater than that
of feature b. Let c(a) denote the score of feature a. Given the dominance relation
∧ on a set F of features rated by the SDG, the score c(a) of feature “a” equals
|{b ≤ F : a ∧ b}| − |{b ≤ F : b ∧ a}|.
The following are some of the characteristics of this scoring strategy: (1) the sum
of the scores of all features is always zero, and (2) the highest and lowest possible
scores are (n − 1) and −(n − 1) respectively, where n is the number of features.
We normalize the scores by first adding the absolute of the most negative score to
all scores and then normalizing the resulting values. We now introduce a running
example to illustrate some of the concepts in this chapter.

Example 1 Consider Table 1, which shows the ratings of three SDG’s members on
10 features ( f1−10 are the features and u1−3 are the users). The rating scale is between
[0–10]. Based on the ratings in Table 1, the “beats” and “looses” of each feature are
shown in Table 2. The symbol “+” denotes that a feature beat a corresponding one
(i.e., rated higher by the majority of users), while “−” denotes it lost. For example,
feature f1 beat feature f7. A zero means: two features beat each other the same
number of times and also lost to each other the same number of times. The raw
before the last one in Table 2 shows the score of each feature computed using the
strategy described in Definition 3.4. The last raw shows the normalized scores.
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Table 1 Weighted user-feature matrix

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

u1 4 9 3 2 8 2 4 6 10 7
u2 3 8 4 5 6 4 2 2 8 6
u3 5 10 7 6 7 7 5 3 7 5

Table 2 Beats/Looses, score, and normalized score of each feature based on the ratings in Table 1

Feature f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f1 0 + + + + + − − + +
f2 − 0 − − − − − − 0 −
f3 − + 0 − + − − − + +
f4 − + + 0 + 0 − − + +
f5 − + − − 0 − − − + −
f6 − + + 0 + 0 − − + +
f7 + + + + + + 0 0 + +
f8 + + + + + + 0 0 + +
f9 − 0 − − − − − − 0 −
f10 − + − − + − − − + 0
Score −5 +8 +1 −2 +5 −2 −8 −8 +8 +3
Normalized score 0.04 0.2 0.1 0.08 0.16 0.08 0 0 0.2 0.14

3.2 Outline of the Approach

1. Predefining and modeling SDGs:
The system administrator predefines SDGs and their domains from published
studies. SDGs are usually defined in publications such as published government
censuses and statistical studies. After the system administrator inputs the SDGs’
data to XEngine, the system models it as ontology-driven graphical representa-
tion. In this modeling technique, each SDG is represented as a vertex, and the
relationships between SDGs are represented as edges. An edge depicts the onto-
logical relationship between two SDGs. Section 6.1 describes this process in more
details.

2. Initializing the preferences of a SDG:
The preferences and ratings of a SDG are first initialized.2 The ratings of a SDG
are initialized from preference data concerning the SDG acquired from published
scientific studies. The initialization is done either dynamically from Web pages or
statically from published hard-copy studies. The system identifies the first corpus
of users belonging to a SDG by matching their ratings with the initialized ratings
of the SDG. Section 4 describes this process.

2 Then, these ratings will be updated and optimized constantly based on the ratings of each member
user belongs to the SDG (see Step 3).
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3. Identifying the members of a SDG implicitly and updating the preferences of the
SDG Dynamically:
After the ratings of a SDG are initialized, they will be updated and optimized based
on the ratings of the member users of the SDG. As each new user is identified
by the system (implicitly) as belonging to the SDG, the ratings of the SDG will
be optimized and updated (dynamically) based on the ratings of this user, using a
group modeling strategy. The system identifies (implicitly) new member users of
the SDG by matching their ratings with the ratings of the SDG. Section 5 describes
this process.

4. Identifying the user’s MDG and filtering results:
In response to a user’s query/rating, XEngine performs the following steps: (1)
constructs an XQuery query [6] equivalent to the user’s query, (2) identifies all
possible MDGs that exist because of the interrelations between SDGs, and iden-
tifies implicitly the smallest MDG to which the user belongs, and (3) filters and
ranks the user’s query results based on the ratings of the user’s smallest MDG.
These steps are described in details in Sects. 6.2 and 7.

4 Initializing the Ratings of a SDG

The ratings of a SDG can be initialized either statically from hard-copy published
studies (see Sect. 4.1) or dynamically from Web pages (see Sect. 4.2). After the ratings
of the SDG are initialized, the system identifies the first corpus of users belonging
to the SDG by matching their ratings with the initialized ratings of the SDG.

4.1 Initializing the Ratings of a SDG Statically

The preferences of a SDG can be acquired statically from hard-copy published studies
such as:

(a) Published articles and books (e.g., [14, 25]).
(b) Published studies conducted by organizations (e.g., [9]), or specialized centers

belonging to universities.

First, we need to decide on the publications to be used. The more publications used,
the more accurate the results are. We need to select ones issued by reputable sources.
Preferences on an item’s features obtained from a hard-copy published study are
represented as a publication-feature matrix M with entries fi and Pj : feature fi is
recommended by publication Pj . The rating of publication Pj on feature fi is the
element M(j, i) of matrix M. Element M(j, i) is a Boolean value, where one denotes that
publications Pj stresses the importance of feature fi to the SDG and zero otherwise.
That is, the rating M(Pj ) of publication Pj is the j-th row of matrix M. For example,
consider the following car preferences of the residents of neighborhood Nx (i.e., SDG
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Table 3 Publication-feature
matrix M

f1 f2 f3 f4

P1 0 0 0 1
P2 1 0 1 1
P3 1 1 1 0
P4 0 0 0 1
P5 1 1 1 1
Score 3 2 3 4
Normalized score 0.25 0.17 0.25 0.33

Nx ). Nx is a neighborhood in the State of Minnesota, USA. According to published
surveys, 68 % of Minnesotans prefer cars with snow-proof features,3 61 % prefer
fuel-efficient cars,4 and 76 % of the residents of Nx prefer cost-efficient cars.5 The
preferences of Nx on each of these three features will be assigned a weight of one
in matrix M. The score of a feature is the summation of publications’ weights on it
(see Eq. 1). Table 3 shows an example data set of matrix M. For example, the score
of feature f1 is the sum of the weights of publication P2, P3, and P5 on feature f1.

Score fi =
|I |∑
j=1

M(Pj , fi ) (1)

We now introduce an item-feature matrix N, where element N(j, i) is one, if item
I j contains feature f j and zero otherwise. The profile N(I j ) of item I j is the j-th
column of matrix N. The score of item I j is the summation of the normalized scores
of the features that I j contains (see Eq. 2)

ScoreI j =
∑

∩N ( fi ,I j )=1

score fi (2)

Table 4 shows an example data set of Matrix N. For example, the score of item I1 is
the sum of the normalized scores of features f2 and f3 which is 0.17 + 0.25 (recall
Table 3). For maintaining the integrity of relativity, all rival features should be rated
using the same publications.

3 Due to the very snowy winter in the state of Minnesota.
4 Which is due, in part, to the fact that the government of Minnesota offers sales tax break incentive
for buying fuel-efficient cars.
5 Due to the fact that Nx is a middle-class neighborhood (e.g., [16]).
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Table 4 Feature-item
matrix N

I1 I2 I3

f1 0 1 0
f2 1 1 0
f3 1 0 1
f4 0 1 0
Score 0.42 0.75 0.25

4.2 Initializing the Ratings of a SDG from Web Pages Dynamically
by Crawling Web Sites

By crawling Web sites, XEngine initializes the preferences and ratings of SDGs
dynamically from Web pages that publish information about them. We proposed
previously in [22] an approach that identifies the semantic relationships between
XML elements in an XML document. In Sect. 4.2.1, we describe modifications we
made to [22] to suit the extraction of Web content data for the sake of dynamically
initializing SDGs’ preferences. In Sect. 4.2.2, we describe modifications we made
to an approach proposed in [24] in order to initialize a SDGs’ preferences. The
system generates items’ scores by converting the preference data (obtained from the
two approaches) into weighted web-feature and feature-item matrices (similar to
Tables 3, 4).

4.2.1 Employing the XCDSearch Approach in [22]

We proposed in [22] techniques called XCDSearch to build semantic relationships
between elements in XML documents. For the sake of this work, we modified these
techniques in order to build semantic relationships between Web content data (i.e.,
instead of XML data) to initialize the ratings of SDGs. We constructed a copy of
XEngine that employs these techniques to dynamically identify the preferences of
SDGs from Web pages that publish information about them. The system will then
generate items’ scores dynamically by converting this preference data to weighted
web-feature and feature-item matrices (recall Tables 3, 4) using Eqs. 1 and 2. The
system will use these matrices to initialize SDGs’ ratings. First, the system will mark
up a Web page with XML tags and model the resulting document as a rooted and
labeled XML tree (e.g., Fig. 1). A SDG is represented as an interior node in the XML
tree, and its preferences as data/leaf nodes. For example, Fig. 1 is a fragment of an
XML tree modeling the content data of Web page publishing information about some
SDGs.

We first define key concepts used in the modified techniques. We use the term
Ontology Label to refer to the ontological concept of a node in an XML tree. Let
(m “is-a” m≈) denote that class m is a subclass of class m≈ in an Object-Oriented
ontology. m≈ is the most general superclass (root node) of m in a defined ontology
hierarchy. m≈ is called the Ontology Label of m. The system converts an XML tree
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Fig. 1 A fragment of an XML tree modeling the content data of a Web page about some SDGs.
Nodes are numbered for easy reference

Fig. 2 Ontology-based tree constructed from the XML tree in Fig. 1

into a tree called ontology-based tree. For example, Fig. 2 shows an ontology-based
tree constructed from the XML tree in Fig. 1. An ontology-based tree is constructed
as follows. First, the system removes all interior nodes that do not have children data
nodes (for example, nodes 4, 7, and 13 are removed from Fig. 1). Then, the system
replaces the remaining interior nodes with their Ontology Labels (for example, nodes
ethnic group(1) and sect(8) in Fig. 1 are replaced by their Ontology Label, which is
GROUP as shown in Fig. 2).

Let a be an interior node and b a data node in an ontology-based tree. Nodes a
and b are semantically related if the paths from a and b to their Lowest Common
Ancestor (LCA), not including a and b, do not contain more than one node with
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the same Ontology Label. The LCA of a and b is the only node that contains the
same Ontology Label in the two paths to a and b. Consider that node b contains
the preference data6 Pi and that node a represents SDG G j . If nodes a and b are
semantically related, Pi is a preference of SDG G j . For example, consider Fig. 2.
Preference “no pork-related products” (node 10) belongs to religious sect RY (node
6) and not to ethnic group EX (node 2), because the LCA of nodes 10 and 2 is node
1, and the path from node 1 to node 10 includes two nodes with the same Ontology
Labels (i.e., nodes 1 and 8). Similarly, the preference “spicy flavor” (node 3) belongs
to EX and not to SZ (node 9). Using the same techniques, both of “spicy flavor” and
“no pork-related products” are preferences to religion group RY (node 6).

4.2.2 Employing the TopDown Approach in [24]

Tang et al. [24] studies the effect of topic taxonomy on dynamic group profiling. A
topic taxonomy consists of topic nodes. Each internal node is defined by its vertical
path (i.e., ancestor and child nodes) and its horizontal list of attributes. To perform
taxonomy adaptation, the paper proposes a top-down hierarchical traversal approach
called TopDown. We constructed a copy of XEngine that employs an adjusted version
of the TopDown approach to identify and initialize the preferences of a SDG from
Web pages publishing information about it. For each topic node n representing a
SDG Gx , this copy of XEngine identifies the best neighbor nodes of n that contain
preference data about Gx . The TopDown approach consists of multiple iterations to
search for better hierarchies, as follows:

1. Identification of the node to check: A list of topic nodes in the hierarchy is main-
tained for the search. Nodes at the upper level are given higher priority.

2. Identification of promising neighboring hierarchies concerning a node: The
promising hierarchies are checked by rolling-up nodes to their upper level. Then,
the hierarchies are checked by pushing down nodes to their siblings and by merg-
ing two sibling nodes to form a super node.

3. Identification of the best neighbor: This procedure compares all the promising
neighboring hierarchies and finds the best among them.

4. Update of the current best hierarchy: The current best hierarchy is replaced with
the best hierarchy just found and the list of nodes to check is updated.

Example 2 Consider that the system crawled a web site publishing information about
the Buddhism faith and identified the classificatory taxonomy of branches shown in
Fig. 3. In the figure, px , py, pz, and pw are preference data. By merging nodes
Mandalas and Shingon and rolling up the resulting node, and by pushing down node
Mahayanists, the preferences of the Mahayanists can be identified as px , py, and
pz . By pushing down node Buddhists, it preferences can be identified as px , py,

pz, and pw.

6 The system identifies such data via text mining program.
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Fig. 3 Classificatory
taxonomy of branches
of the Buddhism faith

5 Identifying a SDG Members Implicitly and Updating a SDG
Ratings Dynamically

5.1 Identifying Members of a SDG Implicitly

The system identifies (implicitly) new member users of a SDG Gx by matching their
ratings with the rating pattern of Gx . Let D be the set of all domains. From each
domain d ≤ D, the system will determine a SDG ≤ d to which the user belongs,
using a similarity measure. Let sim(um, Gx ) be the similarity between the preference
vectors of user um and SDG Gx . The user um will be considered belonging to a SDG
Gx ≤ domain dk if for each other SDG G y ≤ dk, sim(um, Gx ) > sim(um, G y). We
measure sim(um, Gx ) using the cosine-similarity measure shown in Eq. 3:

sim(um, Gx ) =
∑

∩i≤I

((
rum ,i − r̄um

) (
rGx ,i − r̄Gx

))
√∑

∩i≤I

(
rum ,i − r̄um

)2
√∑

∩i≤I

(
rGx ,i − r̄Gx

)2
(3)

• I: Set of features rated by SDG Gx and co-rated by um .

• rum ,i : Weight of user um on feature i.
• rGx ,i : Normalized score of SDG Gx on feature i

• r̄um : Normalized mean weight of um on set I ; r̄um =
∑

∩i≤I rum ,i
|I |

• r̄Gx : Normalized mean score of Gx on set I ; r̄Gx =
∑

∩i≤I rGx ,i
|I |

Equation 3 considers each feature rated by SDG Gx and co-rated by user um even
if the feature was rated by only one member of Gx . Therefore, the equation may give
misleading similarity results, since some features in set I may not reflect the actual
preferences of Gx . A feature that has been rated very low or by few members of SDG
Gx is most likely rated by a member(s) of Gx who belongs also to another SDG G y .

That is, this member(s) may belong to a MDG composed of Gx and G y . This feature
is likely reflects a preference of G y and not Gx . That is, a user who belongs to a
MDG {Gx , Gy} is most likely to rate features that reflect the preferences of both Gx

and Gy . Therefore, when measuring the similarity between an active user and Gx ,

we should consider only the features that reflect the preferences of Gx . That is, we
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need to consider only the dominant features of Gx (i.e., the features that have been
rated high and by the majority of the members of Gx ). Consider for example that
10 % of the members of Gx belong to also another SDG G y . The scores of Gx on
features reflecting the preferences of G y are most likely be low, since 90 % of the
members of Gx may not rate them high. Intuitively, these are non-dominant features
for Gx .

We adopt the following strategy for determining the set of dominant features for
a SDG. From the set F of all features, the subset F ≈ is the dominant features for a
SDG, if every feature in F ≈: (1) dominates every feature not in Fi (i.e., has a greater
score), and (2) acquires a score greater than a threshold z. For example, recall Table 2
and consider that z is set to “+1”. Accordingly, the set Fi of dominant features for the
SDG would be {f2, f9, f5, f10}. We now formalize the concept of dominant features.

Definition 5.1 Dominant features for a SDG: Let F be a set of n features and c(f) be
the score of feature f. The subset F ≈ ← F of dominant features with maximal scores
for a SDG is given by: {a ≤ F :c(a) ⊆ c(b), for all b ≤ F} and {c(a) > z:(n − 1) >

z < −(n − 1)}.
We adjusted Eq. 3 so that only the subset F ≈ ∈ I is considered, as shown in Eq. 4.

sim(um, Gx ) =
∑

∩i≤F ≈≈
((

rum ,i − r̄um

) (
rGx ,i − r̄Gx

))
√∑

∩i≤F ≈≈
(
rum ,i − r̄um

)2
√∑

∩i≤F ≈≈
(
rGx ,i − r̄Gx

)2
(4)

• F ≈: Set of dominant features rated with maximal scores by SDG Gx

• F ≈≈: Subset of F ≈ co-rated by um (i.e., F ≈≈ → F ≈).
• r̄um =

∑
∩i≤F ≈≈ rum ,i

|F ≈≈| and r̄Gx =
∑

∩i≤F ≈≈ rGx ,i
|F ≈≈|

From the set F ≈≈, Eq. 4 overlooks the subset F ≈ − F ≈≈ (i.e., the subset that has
not been co-rated by user um). Therefore, the equation may give inaccurate sim-
ilarity results. We observe that we can consider user um assigned a weight of zero
to each of the features in the subset. The reason is that users usually have either no
or very little interest on features they do not rate. We adjusted Eq. 4 to consider the
subset F ≈ − F ≈≈ as shown in Eq. 5.

sim(um , Gx ) =
∑

∩i≤F ≈≈
(
rum ,i − r̄um

) (
rGx ,i − r̄Gx

) + ∑
∩ j≤P

(
r̄um

(
rGx , j − r̄Gx

))
√∑

∩i≤F ≈≈
(
rum ,i − r̄um

)2 + |P| (r̄um

)2
√∑

∩i≤(F ≈≈≥P)

(
rGx ,i − r̄Gx

)2

P = {F ≈ − F ≈≈} (5)

Let Fu be the set of features rated by user um . As a final improvement of the
similarity equation, we consider each feature fk ≤ {Fu − F ≈}, if the weight of
SDG Gx on fk beat other features’ weights at least k number of times, where k > 0.
However, we need to penalize each expression operand in the equation involving fk
to ensure that it will have a lower impact on the similarity result. Moreover, we need
to scale down these expressions appropriately to account for the rank specificity of
fu among the list of features ranked by Gx to ensure that that lower ranked features
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indeed get higher penalty. Towards this, we penalize and scale down each expression
operand involving fu by a factor decayt−1, where decay is a parameter that can be
set to a value in the range 0 to 1. We set the exponent t to account for the rank of
fu among the list of features ranked by SDG Gx . We adjusted Eq. 5 accordingly as
shown in Eq. 6.

sim(um , Gx ) =
∑

∩i≤F ≈≈
(
rum ,i − r̄um

) (
rGx ,i − r̄Gx

) + ∑
∩ j≤P

(
r̄um

(
rGx , j − r̄Gx

)) + N√∑
∩i≤{F ≈≈≥Fk }

(
rum ,i − r̄um

)2 + |P| (r̄um

)2
√∑

∩i≤(F ≈≈≥P)

(
rGx ,i − r̄Gx

)2 + M

(6)

N =
∑

∩i≤V

(
rum ,i − r̄um

) (
rGx ,i − r̄Gx

) × decayt−1

M =
∑

∩i≤V

(
rGx ,i − r̄Gx

)2 × decayt−1

V = {Fk − F ≈}

Fk : Set of features that are: (1) rated by Gx , (2) co-rated by um, and (3) assigned
weights by Gx that beat other features’ weights at least k number of times.

Example 3 Recall Table 2. Consider that the threshold k in Eq. 6 has been set to
4. Thus, feature f3 will be considered in Eq. 6, if the active user co-rated it (even
though f3 /≤ F ≈. The expressions in Eq. 6 involving f3 will be penalized by a factor
decayt−1, where t is 5 (i.e., the rank of f3 in the set rated by SDG Gx ). Parameter
decay can be set to a value from 0 to 1.

5.2 Optimizing and Updating the Ratings of a SDG

As each new user is identified by the system as belonging to a SDG Gx (using Eq. 6),
the current ratings of Gx will be re-optimized and re-updated (dynamically) based on
the ratings of: (1) this new user, and (2) other member users of Gx . The ratings of the
first corpus of users would update and optimize the initialized features’ scores for the
SDG (recall Sect. 4). The ratings of each subsequent user would update and optimize
current features’ scores for the SDG by updating: (1) features’ number of beats/looses
and scores (recall Table 2), and (2) the set of dominant features for the SDG (recall
Definition 5.1). The preferences of a SDG Gx are stored in the system in the form of
a trigger rule, called TrigRule(Gx ). The computation time complexity of updating
and optimizing current ratings of a social group is not expensive, because only the
beats/looses matrix needs to be updated. Moreover, the computation complexity can
be improved by updating the matrix after a certain number of new member users join
the social group rather than updating it after each new member user joins the social
group.

Definition 5.2 TrigRule(Gx ): TrigRule(Gx ) is a construct of rules formed from
predicate Boolean conditions. These conditions represent the preferences of SDG
Gx . In response to a query submitted by a user belonging to Gx , TrigRule(Gx ) filters
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XML tuples, retaining only those satisfying the preferences of Gx . The construct of
a trigger rule is formed from the “WHERE” clause of XQuery [6].

A trigger rule has the form [$b Γ L ♦ P and/or/not…$b Γ L ♦ P]. The symbol Γ

denotes either an XQuery’s child ‘/’ or descendant operator ‘//’. The symbol♦denotes
an XQuery comparison operator. P denotes a SDG’s preference data contained in
the XML document in a data element labeled L.

Example 4 Consider that after applying the strategy described in Definition 5.1, the
following food preferences are identified: (1) feature “spicy flavor” is a preference for
ethnic group Ey, and (2) feature “no pork-related products in ingredients” is a pref-
erence for religious group Rx (e.g., because the teachings of religion Rx dictate that).
These preferences will be stored as the following trigger rules: FoodTrigRule(Ey)
{$b/flavor = “spicy”}; FoodTrigRule(Rx ) {contains ($b/ingredients, “no pork-related
products”)}.

6 Modeling SDGs and Identifying the User’s Smallest MDG
Implicitly

6.1 Modeling SDGs

XEngine identifies the user’s smallest MDG (recall Definition 3.3) by modeling
the relationships between SDGs using an ontology-driven graphical representation
called Single Domain Graph (SDGraph). A SDGraph represents the domain ontology
of SDGs. Let Us be the set of users belonging to both SDGs Gx and Gy, whose
domains are different (i.e., Us → Gx , G y). If |Us | > m, (where m is a threshold
parameter determined by the System Administrator), Gx and G y are related and
their vertices in the SDGraph will be linked by an edge to represent this relationship.
That is, if the number of users who are members of both SDGs is greater than m, the
vertices of the two SDGs will be linked by an edge in the SDGraph. If Gx and G y

are not linked by an edge, but each is linked by an edge with another SDG Gz, one
can infer that Gx and G y are related by being superclasses of Gz .

Definition 6.1 Single-Domain Graph (SDGraph): A SDGraph is a pair of sets (V,
E), where V is a finite set of vertices representing SDGs and E, the set of edges, is a
binary relation on V, so that E → V × V . E = {edge(u, v):u ≤ V and v ≤ π[u]},
where π[u] is the set of vertices representing the immediate subclasses of the SDG
represented by the vertex u ≤ V .

Example 5 Consider the following USA-based SDGs of four domains: (1) ethnic
groups EX and EY , (2) religious groups RX and RY , (3) national origin group OX ,

and (4) region-based groups NX and NY (the people living in neighborhoods NX and
NY respectively), Ethnic group EY lives in neighborhood NX , and follows religion
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RY . Ethnic group EX lives in neighborhoods NX and NY . Part of EX follows religion
RX , and the other follows RY . Figure 4 shows a SDGraph constructed based on the
above information.

Internally, XEngine constructs a SDGraph as follows. It first prompts the system
administrator with two GUI text fields, one represents a SDG Gx and the other
represents the immediate-subclass of Gx . The system administrator can acquire this
data from published studies, such as: (1) government censuses and statistical studies
(e.g., [26]), and (2) published studies conducted by specialized centers in universities
and organizations (e.g., [8]). After receiving the SDGs’ data, XEngine will represent
the data internally as OWL ontology [4]. The OWL file defines the relations between
SDGs as ontological classes.

6.2 Identifying the User’s Smallest MDG Implicitly

XEngine provides the user with a GUI to reveal his initial preferences (represented by
his/her weights on features). Based on these ratings, the system identifies the user’s
SDGs and smallest MDG. A user may belong to more than one MDG. The smaller
a MDG is, the more granular its interests are. Therefore, the system determines the
user’s smallest MDG to enable it to return the most relevant results. To determine
the user’s smallest MDG, the system needs first to identify at least one of the SDGs
to which the user belongs. XEngine adopts the following approaches for identifying
the user’s SDGs: (1) it matches his rating with the ratings of SDGs using Eq. 6
(recall Sect. 5.1), (2) it employs lookup databases provided by Maponics [15] to
implicitly identify all region-based SDGs (by translating users’ IP addresses to US
neighborhoods, cities, and states), and (3) it analyzes the structure of the SDGraph.

For example, by analyzing the structure of Fig. 4, if the user lives in neighborhood NX and
follows religion RY, the system can determine implicitly that he/she belongs to ethnic group
EY and national origin OX.

After identifying some of the SDGs to which the user belongs, XEngine identifies
the smallest MDG to which the user belongs by traversing the paths of the SDGraph,
as follows. The user’s smallest MDG is formed from: (1) SDGs located in the paths
from the user’s known SDGs to their lowest common descendant, and (2) SDGs
located in the path from the lowest common descendant to the lowest SDG. If the
paths originated from n number of vertices (i.e., n number of SDGs), MDG is usually
formed from m number of SDGs, where m > n. Therefore, the more SDGs identified
for the user, the smaller in size a MDG can be identified (recall that the more SDGs
a MDG is composed of, the smaller in size it becomes).

Example 6 Consider Fig. 4 and that the system identified through the lookup data-
bases that the user’s neighborhood is NX . Consider also that the system identified
implicitly the user’s religion as RY (by matching the user’s ratings with the ratings of
RY using Eq. 6). Accordingly, the system can determine that the user’s smallest MDG
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Fig. 4 A SDGraph depicting relationships between some USA SDGs

FilterResults (Q, VY)  {
1.     SItems GetInitialResults(Q) 

2.      for each SDG  Gx ∈VY

3.               SItems RefineSelection(Gx , SItems) 
}   

Fig. 5 Algorithm FilterResults. Subroutine RefineSelection iterates over the results in set SItems.
It filters the results recursively. Each recursion filters the results based on the preferences of a SDG
≤ MDG VY

is {NX , RY , EY , OX }. This is because: (1) EY is the lowest common descendant of
NX and RY , and (2) OX is a descendant of EY . As can be seen, the system started the
search using two SDGs and it could locate a MDG composed of four SDGs.

7 Filtering and Ranking Results

In response to a user’s query/ratings, the system first constructs an XQuery query [6]
equivalent to the user’s query to get the initial results. After identifying the user’s
smallest MDG, XEngine uses an algorithm to filter and rank the user’s initial results
based on the preferences/ratings of the SDGs composing the user’s smallest MDG.
The algorithm is called FilterResults (see Fig. 5). It is an XML-based framework.
It employs recursive querying to sequentially optimize (filter) results. In each opti-
mization sequence, the results are filtered based on the preferences of one of the
SDGs forming the user’s smallest MDG. That is, in each optimization sequence the
algorithm triggers trigger rule TrigRule(Gx) where Gx is one of the SDGs forming
the user’s smallest MDG.

The inputs to Algorithm FilterResults are: (1) an XQuery query Q equivalent to
the user’s query, and (2) the user’s smallest MDG VY . In line 1 of the Algorithm,
function GetInitialResults uses an XQuery search engine to return the IDs of the
items that satisfy the conditions of query Q. These IDs will be stored in a set called
SItems. Line 3 calls an XML-based subroutine called RefineSelection to recursively
filter the IDs in set SItems. That is, the subroutine iterates over the IDs in set SItems.
In each iteration, the set is passed to the subroutine as a parameter; the return of the
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Fig. 6 System architecture

subroutine will be stored in the same set. In each iteration, only the IDs belonging
to items satisfying the preferences of a SDG Gx ≤ VY are retained. The subroutine
includes FLWOR expressions of XQuery [6]. The “where” clause of FLWOR filters
items in the XML document retaining only those whose: (1) IDs match the ID from
set SItems, and (2) elements contain preference data matching the preference data
triggered by trigger rule TrigRule(Gx), where Gx is one of the SDGs composing the
user’s MDG.

After the items have been filtered, they will be ranked based on the vector D of
scores rated by the SDGs composing the user’s smallest MDG. Items whose scores
are high are ranked higher. A score Tx of an item is defined as the summation of the
normalized scores on the item’s features rated by all the SDGs composing the user’s
smallest MDG.

Tx =
n∑

j=1

di, j (7)

• di, j : Score on feature i rated by SDG j; di, j ≤ D
• n: Number of SDGs composing the user’s smallest MDG

8 System Architecture

Figure 6 shows the system architecture. Module GRFManager performs the follow-
ing: (1) converts SDGs’class-subclass data into a SDGraph, and (2) identifies all
possible MDGs that exist because of the interrelations between SDGs.

Module PRManager performs the following for each SDG Gx : (1) initializes
the ratings of Gx either dynamically from Web pages or statically from published
studies, (2) for the dynamic initialization, it uses Protégé ontology editor [19] to build
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Ontology Labels and saves the ontologies in database Ontology-DB, (3) optimizes
and updates the ratings of Gx based on the ratings of new member users, (4) stores the
preferences of Gx in the system’s database in the form of a trigger rule, (5) assigns a
folder for Gx in the system’s database to store information such as the name, ratings,
and preferences of Gx , and (6) assigns a subfolder within the folder of Gx for each
user belonging to Gx to store information such as the ratings of the user. That is,
individual subfolders are associated with Gx folder via file in a file system structure
in a two-layer directory tree.

XEngine engine performs the following: (1) constructs an XQuery query [6]
equivalent to the user’s query/ratings and gets the initial results using an XQuery
search engine, (2) identifies implicitly the user’s SDGs and smallest MDG by con-
sulting module PRManager, and (3) filters and ranks results based on the ratings of
the smallest MDG, to which the user belongs.

9 Experimental Results

We implemented XEngine in Java and ran it on an Intel(R) Core(TM)2 Dup CPU
processor, with a CPU of 2.1 GHz and 3 GB of RAM, under Windows Vista. Our
objective is to compare: XEngine, FWNB [21], Amazon Elastic MapReduce [2], and
SPGProfile [23], using: (1) MovieLens data set [17], (2) simulated-user evaluation,7

and (3) real-user evaluation.8

9.1 Methodologies for Obtaining Test Data Sets

9.1.1 MovieLens Data Set

MovieLens is a movie recommender system maintained by GroupLens Research
[17]. MovieLens data set contains 10 million ratings on 10,000 movies provided by
72,000 registered users. We extracted the content features (e.g., actors, directors,
keywords) and the ratings on these features from the internet movie database (imdb)
[13]. After joining the imdb and Movielens data sets, we identified 2,664 actors and
actresses, 12,076 keywords, and 1,163 directors from 1,700 movies. To conform
to the experimental protocol followed in [21], we selected only the 3 best paid
actors/actresses for each movie.

For the sake of the experiments, we assume the following analogies concern-
ing XEngine. Each group of users who like a specific film genre forms a SDG

7 We simulate an online grocery dealer running the four systems and targeting 20 USA neighbor-
hoods; this evaluation will be conducted using test data acquired from real individuals living in the
20 neighborhoods.
8 This evaluation is conducted by students from UTA.
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(e.g., SDGclassis). A user who likes two or more genres, is considered to belong to
a MDG composed of the genre-based SDGs, which the user likes. For example,
a user who likes both classic and horror movies is considered to belong to MDG
= {SDGclassis, SDGhorror}. We initialized the preferences and ratings of the genre-
based SDGs using the copy of XEngine that employs the modified version of XCD-
Search (recall Sect. 4.2.1). Towards this, the system crawled 30 Web sites publishing
information about top-rated movies per genre. It identified these movies using the
approach and text mining technique described in Sect. 4.2.1. A movie is considered
top-rated if it has been rated at least 6/10. For each genre-based SDG, the system
generates its scores on movies by creating weighted web-feature and feature-item
matrices (similar to Tables 3 and 4).

We then submitted the ratings of the registered member users of [13, 17] to FWNB
[21] and XEngine. FWNB grouped the users into biclusters (recall Sect. 2). As for
XEngine, it populated the 22 genre-based SDGs9 with the users. The ratings of the
first corpus of users from [13, 17] updated and optimized the initialized ratings of the
genre-based SDGs. The ratings of each subsequent user from [13, 17] would update
and optimize current ratings/scores of a SDG.

9.1.2 Test Data Set for Simulating User Evaluation

We aimed at obtaining ethnic and religious-based food preference data from real
individuals living in 20 USA neighborhoods in order to further evaluate XEngine.
Towards this, we selected 20 USA neighborhoods known for their ethnic and religious
diversity. Each neighborhood represents a region-based SDG. From the combined
residents of the 20 neighborhoods, those who belong to a same ethnicity represent
an ethnic-based SDG, and those who have the same religious beliefs represent a
religious-based SDG. After obtaining the food preference/rating data from people
belonging to the above described SDGs, we would load the data/ratings into the
four systems. Then, we would determine which system(s) returns ranked list of
canned food that matches closely to the ones ranked by the subjects living in the 20
neighborhoods.

We needed to identify some of the residents living in the 20 USA neighborhoods
to acquire their food preferences. Using an online phone book, we selected some of
these residents. Along with six volunteers, we phoned them, explained the objectives
of our research, and asked them to: (1) provide us with their ethnicities and religions,
and (2) rate their preferences (and restrictions) on five different canned soup flavors
and ingredients in the scale of 1–10. Some of the residents declined to provide us
with the information, while others agreed to. From over 600 calls, only 278 residents
provided us with the information. The 278 residents included at least 10 ones from
each of the 20 neighborhoods. Table 5 shows the number of region, ethnic, and
religious SDGs constructed from the acquired data.

9 By matching the ratings of each member user from [13, 17] with the ratings of the genre-based
SDGs, using Eq. 6 (recall Sect. 5).
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Table 5 Number of region, ethnic, and religion SDGs from which we acquired preference data

State MN TX WA FL CA
City MPLS Dallas-Fort Worth Seattle Miami Los Angles
Number of neighborhood SDGs 5 4 2 3 6
Number of ethnic-based SDGs 3 4 3 4 4
Number of religious-based SDGs 2 4 2 3 4

9.1.3 Test Data for Real-User Evaluation

We asked 32 students from The University of Texas at Arlington (UTA) to evaluate
and compare the four systems. The students belong to four different ethnic back-
grounds and five ancestry origins. Some of them consider religion to be irrelevant
and the others follow three different religions. We asked each of the students to pre-
pare a list of 10 canned food items ranked based on the student’s own preferences.
We then asked this student to query each of the four systems for canned food to
determine which one(s) returns ranked list of canned food matches closely to the one
ranked by the student himself/herself.

9.2 XEngine Demo System

A demo of the XEngine system targeting the 20 USA neighborhoods (described in
Sect. 9.1.2) is available at: http://dbse1.uta.edu/kamal/XEngine/. The demo filters
results based on the preferences/ratings of the 278 residents of the neighborhoods
described in Sect. 9.1.2. For more information about the demo system, click on the
tab “ABOUT XEngine Demo” in the demo’s Web site. The XEngine system and
the other three systems we are going to compare run on 1,000 MBs grocery.xml
document containing 28233719 XML nodes. The data for the grocery.xml document
is obtained from [3].

9.3 Comparing Three Approaches for Initializing
the Ratings of a SDG

We compare in this test the three approaches described in Sect. 4 for initializing
the preferences and ratings of a SDG. These approaches are: (1) the static ini-
tialization from hard-copy published studies (recall Sect. 4.1), (2) the dynamic ini-
tialization using the modified version of XCDSearch [22] (recall Sect. 4.2.1), and
(3) the dynamic initialization using the modified version of TopDown [24] (recall
Sect. 4.2.2). We cloned the XEngine system into three identical copies, each employ-
ing one of the three approaches described above. Our objective is to determine which

http://dbse1.uta.edu/kamal/XEngine/
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one of the three copies gives ranked lists of canned food closest to those ranked by the
278 subjects living in the 20 US neighborhoods (recall Sect. 9.1.2). For the exper-
imental dataset, we selected 18 Web sites (e.g., [10, 29]) publishing information
about social groups and their preferences. For the sake of consistency, we used the
same dataset for evaluating the static initialization approach also (rather than using
published hard copies).

We ran the Web pages (dynamically) against each of the two copies employing the
dynamic approaches. As for the copy employing the static initialization approach,
we entered the preference data from the Web pages manually into the copy. We then
measured the distance d(σu,σs) between each list ranked by a resident u and the
corresponding list ranked by one of the three copy systems s, using the following
Euclidean distance measure.

d (σu,σs) =
∑
x≤χ

|σu (x) − σs (x) | (8)

X: Set of canned food items.
σu ≤ [0, 1]|χ|: List of items ranked by resident u.

σs ≤ [0, 1]|χ|: A list ranked by one of the three copy systems
σu(x) and σs(x): position of canned food item x ≤ X in the
lists σu and σs respectively (a ranking of a set of n items is
represented as a permutation of the integers 1, 2, . . . , n).

Intuitively, the static initialization approach is expected to be more accurate than
the other two approaches, since data is entered to the system manually. However,
we aim at studying: (1) how much less accurate are the dynamic approaches than
the static approach and whether this accuracy difference is significant, (2) whether
the practicality and convenience of the dynamic approach makes up for its lower
accuracy, in case the accuracy difference is not significant, and (3) the impact of
number of publications on the accuracy of the three approaches. Figure 7 shows the
results. We can infer from the results the following:

1. The static approach outperforms the two dynamic approaches as long as the
number of publications is less than about 25.

2. The XCDSearch’s approach outperforms the TopDown approach as long as the
number of publications is greater than about 10.

Based on the experiment results, we advocate employing the XCDSearch’s
approach for the sake of practicality and dynamicity, especially for recommender
systems that target a rather wide range of SDGs.
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Fig. 7 Distance between the lists of items ranked by the USA residents and the lists ranked by the
copies of XEngine employing the XCDSearch, TopDown, and static initialization approaches

9.4 Evaluating the Effectiveness of XEngine to Update
and Optimize the Ratings of a SDG

We evaluate in this test the effectiveness of XEngine to update and optimize the
preferences and ratings of a SDG (after being initialized) by comparing it with
FWNP [21] (recall the description of FWNP in Sect. 2). Our objective is to determine
whether XEngine or FWNP gives ranked lists of items closer to those ranked by: (1)
MovieLens members (recall Sect. 9.1.1), (2) the 278 residents living in the 20 USA
neighborhoods (recall Sect. 9.1.2), and (3) the 32 UTA students (recall Sect. 9.1.3).

9.4.1 Evaluation Using MovieLens Data Set

In this test, we evaluate XEngine by comparing it with FWNB using the same exper-
imental protocol that [21] followed for evaluating FWNB. Towards this, we compare
the two approaches using: (1) MovieLens Data Set (recall Sect. 9.1.1), which was
used in [21], and (2) the same metrics used in [21], which are recall, precision, and
explain coverage. Let: (1) N be the number of movies in a recommended list, (2) Rn

be the number of relevant movies for the user in the recommended list that are rated
higher than a threshold p by the user, and (3) RAL Lbe the total number of relevant
movies for the user. Recall = Rn / RAL L and Precision = Rn / N. Explain coverage
measures the number of movie features that are: (1) rated by the user to a value
greater or equal to the threshold p, and (2) covered by the features in the movies
recommended by the system. To conform to the experimental protocol followed in
[21], we set the default size N to 20 and the rating threshold p to 3.

Figure 8 shows the recall-precision diagram. As the figure shows, XEngine out-
performed FWNB. It outperformed FWNB in precision because: (1) FWNB forms a
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Fig. 8 Comparing XEngine with FWNB in recall versus precision using MovieLens

Fig. 9 Comparing XEngine with FWNB in explain coverage versus number of features using
MovieLens

bicluster based on the rating similarity of its members on items, while XEngine forms
a SDG based on the rating similarity of its members on the features of the items, (2)
FWNP ranks items based on the frequency of the items’ features in the profile of
a bicluster, which may not be always accurate,10 while XEngine ranks items based
on the ratings of the user’s smallest MDG, and (3) the effectiveness of XEngine’s
group modeling strategy and similarity equation. XEngine outperformed FWNB in
recall because FWNB considers only items rated by the active user and co-rated by
a bicluster, while XEngine considers: (1) all dominant features of the user’s SDGs,
even if the user did not co-rate some of them, and (2) non-dominant features of the
user’s SDG, whose assigned weights beat other features’ weights at least k number
of times.11 Figure 9 shows explain coverage versus number of recommended list N.
As the figure shows, intuitively, explain coverage increases as N increases. None of
XEngine and FWNB shows clear performance over the other.

10 For example if the active user’s favorite actor acted in very few movies, FWNP will most likely
not include this actor’s movies in its recommendation list, or may rank them low.
11 In the experiments, we set the threshold k to (number of features)/2.
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Fig. 10 The distances between the lists of items ranked by the USA residents and the lists ranked
by FWNB and XEngine

9.4.2 Evaluation via the Simulated User Evaluation

We submitted the ratings provided by the 278 USA residents to both XEngine and
FWNP [21] to simulate their evaluation of the systems. We calculated the average
cumulative Euclidean distance between the lists ranked by the residents and the
corresponding ones ranked by a system within each interval of 10 residents, using
Eq. 4. Let n be a cumulative of 10 residents (n = 10, 20, …, 278). We measured the
average cumulative Euclidean distance between the lists ranked by each n residents
and the corresponding ones ranked by a system. Figure 10 shows the results. We can
infer from the experimental results that:

1. The “closeness” between the lists ranked by the residents and the lists ranked by
XEngine increases consistently as the cumulative number of residents increases.
This is because after the ratings of each resident are submitted to XEngine, it
updates and optimizes the current ratings of the resident’s SDGs based on the
ratings of this resident.

2. The distances of FWNB are not impacted by the cumulative increases of the
number of residents/ratings.

3. As the residents’ ratings were being submitted to the two systems, FWNB was
outperforming XEngine until the cumulative number of these ratings reached
about 70. Thereafter, XEngine kept consistently outperforming FWNB. Thus,
for a practical application (such as a business that markets preference-driven
products), XEngine can be preferable to FWNB.

9.4.3 Evaluation via Real-User Evaluation

We asked the 32 UTA students (recall Sect. 9.1.3) to calculate the average cumulative
Euclidean distance between the lists they ranked and the lists ranked by the two sys-
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Fig. 11 Distance between the lists ranked by the students and the lists ranked by FWNB and
XEngine

tems within each interval of 4 students, using Eq. 8. Figure 11 shows the results. The
results concurred with the results of the simulated evaluation described in Sect. 9.4.2,
where XEngine outperformed FWNB.

9.5 Comparing XEngine with SPGProfile

In this test, our objective is to compare the accuracy of the dynamic-implicit tech-
niques and static-explicit techniques of group profiling. Towards this, we compared
XEngine (as a representative of the former approach) with SPGProfile [23] (as
a representative of the later approach). Intuitively, we expected the static-explicit
approach to be more accurate, since: (1) users reveal explicitly to the system their
SDGs, and (2) the preferences of SDGs are determined statically. We aim at studying
how significant is the accuracy difference between the two approaches. If not sig-
nificant, the practicality and convenience of the dynamic-implicit approach would
make up for its lower accuracy and would pay off.

We submitted to SPGProfile the initial preferences and SDGs’ names of the 278
USA residents and calculated the average cumulative Euclidean distance between
the lists ranked by the residents and the ones ranked by SPGProfile, using Eq. 4.
Figure 12 shows the results. We also asked the 32 UTA students to calculate the
average cumulative Euclidean distance between the lists they ranked and the lists
ranked by SPGProfile, using Eq. 4. Figure 13 shows the results. As Figs. 12 and 13
show, SPGProfile outperformed XEngine (as expected). However, this performance
is slight, which is an indicative that there is no significant decline in the search
quality of the dynamic-implicit approach compared to the static-explicit approach.
Therefore, we believe that the practicality and convenience of the dynamic-implicit
approach can make up for the approach’s slight lower accuracy.
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Fig. 12 Distance between the lists of items ranked by the residents and the lists ranked by SPG-
Profile and XEngine

Fig. 13 Distance between the lists ranked by the students and the lists ranked by SPGProfile and
XEngine

9.6 Comparing CF Employing Group-Based Profiling
and User-Based Profiling

Our objective is to determine whether CF employing group-based profiling tech-
niques or CF employing user-based profiling techniques gives ranked lists of items
closer to those ranked by users themselves. Towards this, we compared both XEngine
and FWNB (as representatives of the former approach) with Amazon Elastic MapRe-
duce [2] (as a representative of the later approach). Amazon Elastic MapReduce
algorithm matches each of the user’s purchased and rated items to similar items then
combines those similar items into a recommendation list.

We submitted the ratings provided by the 278 USA residents to Amazon Elas-
tic MapReduce and calculated the average cumulative Euclidean distance between
the lists ranked by the residents and the corresponding ones ranked by Amazon
Elastic MapReduce, using Eq. 4. Figure 14 shows the results. We also asked the 32
UTA students to calculate the average cumulative Euclidean distance between the
lists they ranked and the lists ranked by Amazon Elastic MapReduce, using Eq. 4.



XEngine: An XML Search Engine for Social Groups 333

Fig. 14 Distances between the lists ranked by the residents and by Amazon Elastic MapReduce,
FWNB, and XEngine

Fig. 15 Distances between the lists ranked by the students and by Amazon Elastic MapReduce,
FWNB, and XEngine

Figure 15 shows the results. As Figs. 14 and 15 show, CF employing group-based
profiling approach significantly outperformed the other approach. This is because
a user usually rates only the subset of an item’s features that reflects only part of
his/her preferences. The techniques of CF employing group-based profiling may
return items, whose some of their features are not rated by the user but are rated by
the group, with which he/she shares interests.

9.7 Statistical Test of Significance

We aim at using z-test [28] to:

1. Determine whether the differences between individual Euclidean distances (used
in the evaluations presented in Sects. 9.4 and 9.5) of each of the three systems
are large enough to be statistically significant.

2. Test our hypothesis on specific Euclidean distances of the population mean.



334 K. Taha

Table 6 Average standard deviation D of the mean M

XEngine SPGProfile FWNB

M 11.73 9.81 18.2
D 3.37 3.84 2.73

Table 7 Z-Score and the probability of a randomly selected list ranked by a system that achieved
D ∪ X

X XEngine SPGProfile FWNB
Z score D ∪ X (%) Z score D ∪ X (%) Z score D ∪ X (%)

20 2.45 98 2.65 99 0.66 75
16 1.27 89 1.61 94 −0.81 21
12 0.08 53 0.57 71 −2.27 0

The z-score is the distance between the sample mean and the population mean
in units of the standard error. It is calculated as Z = (X−M)/SE where X is the mean
sample, M is the population mean, SE = D/sqrt(n) is the standard error of the mean in
which D is the Average Standard Deviation of the mean, and n is the sample size. For
each system, Table 6 shows its mean (M) of its Euclidean distances, and its Average
Standard Deviation (D) of the mean. As the values of D in Table 6 show: (1) the
measured Euclidean distances of the three systems did not vary substantially with
individual subjects’ ratings, and (2) FWNB has the lowest D, because D is computed
for FWNB based on the concept of biclusters while in the other two systems D is
computed based on the concept of SDGs, and a bicluster is formed solely based on
the closeness of its members’ ratings.

Table 7 shows the z-scores for the Euclidean Distances of the three systems. Using
the z-scores, we calculated the probability of a randomly selected subject (from the
278 USA residents and 32 UTA student), whose ranked list and a system’s ranked list
have an average Euclidean distance equal or less than a sample of mean (X). Column
(D ∪ X) in Table 7 shows the probabilities using a sample of three Euclidean mean
(D). These probabilities were determined from a standard normal distribution table by
using the z-scores as entries. For example, the probabilities for the systems to return
a ranked list with Euclidean distance ∪16 (see Table 3) are as follow: XEngine:
89 %; SPGProfile: 94 %; and FWNB: 21 %. As the z-scores in Table 7 shows, the
distances from the sample mean to the population mean are smaller for XEngine and
SPGProfile. The table shows also that both XEngine and SPGProfile have a much
higher probability for achieving Euclidean distance equal or less than the sample
mean for a randomly selected subject’s ranked list.
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Fig. 16 Avg query execution time under variable document sizes

9.8 Search Efficiency Evaluation

We evaluated the search efficiency of XEngine by comparing its average query exe-
cution time with FWNB, Amazon Elastic MapReduce, and SPGProfile. We varied
the size of the XML document 8 times in the range 10–1,000 MBs. We computed
the average query execution time of each system under each of the 8 document sizes.
Figure 16 shows the results. As the figure shows: (1) FWNB slightly outperformed
XEngine, (2) the average query execution time of XEngine ranged from 1.1 to 1.3
times the execution time of an equivalent SPGProfile query, which is not expensive
considering the overhead endured by XEngine because of adopting the dynamic-
implicit techniques, and (3) the average query execution time of XEngine ranged
from 1.2 to 1.9 times the execution time of an equivalent query of Amazon Elastic
MapReduce (recall that Amazon Elastic MapReduce employs user-based rather than
group-based profiling). Thus, the execution time of XEngine is not very expensive.

10 Conclusion

In this chapter, we proposed an XML-based CF recommender system, called
XEngine. In the framework of XEngine, a social group is an entity that defines a
group based on ethnic, cultural, religious, demographic, age, or other characteristics.
We presented a novel approach to XML search that leverages group information to
return most relevant query answers for users. User characteristics (e.g., social groups)
are inferred implicitly by the system without involving the user. XEngine identifies
social groups and their preferences dynamically. The preferences of a social group
are determined from the preferences of its member users. XEngine outputs ranked
lists of content items, taking into account not only the initial preferences of the user,
but also the preferences of the user’s various social groups.
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We experimentally compared three approaches for initializing the preferences and
ratings of a SDG. These are the static initialization, dynamic initialization using the
XCDSearch approach [22], and dynamic initialization using the TopDown approach
[24]. Based on the experiment results, we advocate employing the XCDSearch’s
approach for the sake of practicality and dynamicity. We experimentally evaluated
the effectiveness of XEngine to dynamically update the ratings of a social group
and to give ranked lists of items closer to those ranked by users. Towards this, we
compared it with FWNP [21], using three different data sets/methodologies: Movie-
Lens data set [17], test data attained from 278 subjects living in 20 US neighborhoods,
and real-user evaluation. We found that XEngine outperforms FWNB. We experi-
mentally evaluated the accuracy of the dynamic-implicit approach of group profiling
(represented by XEngine) by comparing it with the static-explicit approach (repre-
sented by SPGProfile [23]). We found that the later approach slightly outperforms
the former; thus, the practicality and convenience of the dynamic-implicit approach
can make up for its slight lower accuracy. We experimentally found that CF approach
employing group-based profiling techniques (represented by XEngine and FWNB)
can outperform CF employing user-based profiling techniques (represented by Ama-
zon Elastic MapReduce [2]). Finally, we evaluated the overhead endured by XEngine
to employ its dynamic-implicit group-based profiling techniques. We found that the
execution time of XEngine is not very expensive.

We will investigate in future work the expansion of the XEngine system to address
the problem of opinion dynamics. We will investigate whether the process of repeat-
edly averaging the opinions of the members of a social group lead to a shift in the
established and well known preferences of the social group. If so, we will investigate
the factors involved in the shift to new preferences, such as the interaction of the
social group with other social groups.
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Size, Diversity and Components in the Network
Around an Entrepreneur: Shaped by Culture
and Shaping Embeddedness of Firm Relations

Maryam Cheraghi and Thomas Schott

Abstract The network around an entrepreneur is conceptualized as having structural
properties of size, diversity and a configuration of components. The Global Entrepre-
neurship Monitor has surveyed 61 countries with 88,562 entrepreneurs who reported
networking with advisors. Cluster analysis of their relations revealed five compo-
nents: a private network of advice relations with spouse, parents, other family and
friends; a work-place network of boss, coworkers, starters and mentors; a profes-
sional network of accountants, lawyers, banks, investors, counselors and researchers;
a market network of competitors, collaborators, suppliers and customers; and an
international network of advice relations with persons abroad and persons who have
come from abroad. Entrepreneurs’ networking is unfolding in a culture of tradition-
alism versus secular-rationalism. Traditionalism is hypothesized to reduce diversity
and size of networks and specifically reduce networking in the public sphere, but to
enhance networking in the private sphere. Cultural effects on networking are tested
as macro-to-micro effects on networking in two-level mixed linear models with fixed
effects of traditionalism and individual-level variables and random effects of country.
We find that traditionalism reduces diversity and overall networking and specifically
networking in the work-place, professions, market and internationally, but enhances
private networking. These cultural effects are larger than effects of attributes of the
entrepreneur. The personal network around the entrepreneur provides an embed-
ding of the business relations around the entrepreneurs’ firm which are especially
facilitated by the entrepreneur’s networks in the public sphere.
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1 Introduction: Networks Around Entrepreneurs and Firms

A person’s networking unfolds in the culture. In a traditional culture a person
is in every-day life networking extensively with the family, typically, whereas
in a secular-rationalistic culture a person networks more with professionals [5].
Culture may also affect the network around an entrepreneur [12]. An entrepreneur’s
networking is especially interesting for two reasons. First, entrepreneurs face con-
siderably uncertainty in their endeavors and therefore are likely to depend heavily
on their networking for resources [11]. Second, entrepreneurs typically assemble a
wide spectrum of resources, including many kinds of knowledge, so their networks
may be especially diverse and bridge many environments [8]. Indeed, the network
is the entrepreneur’s social capital from which the entrepreneur may benefit in the
form of competitive advantage compared to those entrepreneurs whose networks
provide fewer benefits [1]. These are good reasons for here analyzing entrepreneurs’
networking with advisors in several environments.

An entrepreneur’s personal networking is consequential for the entrepreneur’s
enterprise. The firm has business relations around it. The entrepreneur’s personal
network expectedly facilitates and promotes the business network around the entre-
preneur’s firm. This embedding of the business network in the personal network is a
proposition of embeddedness [7].

Our study examines the causal scheme of culture, personal networking and busi-
ness networking, where attributes of the entrepreneur and the firm are included as
controls, Fig. 1.

We first conceptualize properties of the personal network around the entrepreneur,
then specify hypotheses about cultural effects on the personal network, test them, and
then turn to hypothesizing and testing subsequent effects on the business network
around the entrepreneur’s firm.

2 The Network Around an Entrepreneur: Size, Diversity
and Components

The network around an entrepreneur has structural properties such as size, compo-
sition and diversity. Size of the network around an entrepreneur refers to the entre-
preneur’s number of advisors or number of different kinds of advisors, as a more
qualitative range. Composition of the network around an entrepreneur refers to the
networking with distinct environments and the prominence of each environment in
the network. Diversity of the network around an entrepreneur refers to the spread of
relations across many or even all of the environments [19].
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Fig. 1 Hypothesized effects among culture, personal networking and business networking

3 Cultures of Traditionalism and Secular-Rationalism

Culture shapes the networks around people. Networking differs between traditional
culture and secular-rational culture [9]. A society may be pervasively secular-rational,
or traditional culture may prevail, or its culture may be a blend on the continuum
between secular-rational and traditional. Traditional culture and secular-rational cul-
ture are conceptualized and contrasted as pure types.

The traditional culture denotes the type of culture in which tradition is the authority
guiding social life. The authority of tradition is localized in the family and religious
leaders, and is exercised in youngsters’ upbringing and when people are listening
and seeking advice from these authorities. The contrasting type of culture is the
secular-rational culture in which life is guided by considerations of ends and means
toward ends, where benefits relative to costs are calculated and efficiency is pursued,
and in this sense is rational (as in the concept secular-rational culture; [9, 26]). In
the secular-rational culture authority is granted to expertise in ascertaining costs and
benefits, especially based on science, and the expertise is institutionalized in the
professions that teach youth and guide adults in pursuit of individual well-being and
advantages.

In the traditional culture, networking is particularistic in the way that relations
are based on prior ascribed ties, such as within the family and within a religious
community, where internal trust and solidarity are high, whereas trust and solidarity
are low to the outside, so external networking is sparse [15]. By contrast, in the
secular-rational culture, networking is not particularistic but universalistic in the
way that relations are formed more independently of prior ties, but formed more
affectively by attraction between similar people, homophily, or more instrumentally
by exchanges pursued for benefit, e.g. when seeking advice and buying expertise
from professionals. In the traditional culture, networking is diffuse in the way that
the relationship in a dyad typically is multi-stranded, a bundle of many kinds of
relations, analytically distinct but intertwined in the dyad. By contrast, in the secular-
rational culture, networking is not diffuse but specific in the way that the relationship
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in a dyad typically is uniplex, with a specific content and pursued for that specific
purpose. This traditional versus secular-rational dimension of culture shapes social
life around the world [9] and specifically shapes networking [4, 5, 27].

4 Hypotheses About Cultural Effects on the Network
Around an Entrepreneur

Our question is: how are size, diversity and components in the network around an
entrepreneur shaped by culture? That traditional culture grants authority to family,
whereas secular-rational culture grants more authority to professions, leads us to
hypothesize that the entrepreneur’s environment comprising family is more promi-
nent in traditional culture than in secular-rational culture, and that the entrepreneur’s
environment comprising professions is more prominent in secular-rational culture
than in traditional culture. Furthermore, the greater importance of family in tra-
ditional culture than in secular-rational culture induces the entrepreneur to pursue
relations within the family rather than outside the family, which leads us to hypoth-
esize that size of the entrepreneur’s network decreases with traditionalism in the
culture. The pursuit of relations outside the family entails a diversification of rela-
tions, so we also hypothesize that diversity in the entrepreneur’s network increases
with secular-rationalism and decreases with traditionalism.

4.1 Research Design

A study of culture affecting individual networking is a study of cultures at the macro-
level and individuals at the micro-level. For studying culture, the unit of observation
is a society, and the ‘population’ is all societies in the world. For studying networking,
the unit of observation is an entrepreneur, and the ‘population’ is all entrepreneurs
in the world, as two-level hierarchical populations, entrepreneurs nested within soci-
eties. A research design can use two-stage sampling, sampling societies and sampling
entrepreneurs within each sampled society. When each stage of sampling is random
or representative, inferential statistics can be used and results can be generalized to
all entrepreneurs in all societies in the world. Observations comprise measures of
culture in each sampled society and measures of networking of each sampled entre-
preneur, and also measures of variables to be controlled for. A suitable technique
for analyzing data on networks as they are affected by culture and control variables
is two-level linear mixed modeling, with fixed effects of culture and control vari-
ables and random effects of country, also taking into account autocorrelation within
each country. Coefficients in such models are then used for testing hypotheses about
effects of culture on networking.
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4.2 Data on Societies and Entrepreneurs

In our consortium Global Entrepreneurship Monitor we have in surveys 2009–2012
collected complete data on 88,562 networks around entrepreneurs in 61 societies,
namely Algeria, Angola, Arab Emirates, Argentina, Australia, Bangladesh, Barba-
dos, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, China, Colombia, Costa
Rica, Croatia, Czech Republic, Denmark, Ecuador, Egypt, El Salvador, Estonia,
Ethiopia, Ghana, Greece, Guatemala, Hungary, Iran, Ireland, Israel, Jamaica, Jordan,
Latvia, Lebanon, Malaysia, Mexico, Morocco, Namibia, Nigeria, Pakistan, Pales-
tine, Peru, Poland, Portugal, Romania, Saudi Arabia, Singapore, South Africa, South
Korea, Sweden, Syria, Taiwan, Thailand, Tonga, Trinidad and Tobago,
Tunisia, Turkey, United States, Uruguay, Venezuela, Yemen and Zambia (www.
gemconsortium.org). These 61 societies are fairly representative of the societies
in the world, and the entrepreneurs are those identified in fairly random samples of
the adults in each country [17]. Therefore the sampling is suitable for inferential
statistics with generalization to all entrepreneurs in all societies [2, 6].

Each entrepreneur was asked about advice from various others [1, 10, 20]. Our
list of potential advisors was culled from the literature (e.g. [8]) and pretested in
2008 in Denmark, Brazil, Iran, Latvia and South Korea [14], a pretest that led us to
drop a few potential advisors and add a few other potential advisors to our final list
of 20 possible advisors, Fig. 2. Each entrepreneur in the starting phase was asked
“Various people may give advice on your new business. Have you received advice
from [each of the 20 possible advisors]?” Slightly different formulations were used
when asking entrepreneurs in the intending and operating phases of enterprise (the
questionnaires are available on the website www.gemconsortium.org).

Culture in the dimension of traditionalism contrasted secular-rationalism has been
measured in the World Values Survey [9, 28]. Traditionalism of culture is imputed for
a few missing cases in our study as a weighted average of the measures available from
similar neighboring countries, and we then standardize the measures of traditionalism
across the 61 countries, Table 1.

Traditional culture is especially strong in El Salvador and Ghana, while secular-
rational culture prevails around Europe. This measure of culture, high for traditional
culture and low for secular-rational culture, is used for estimating effects of culture
upon networks around entrepreneurs.

4.3 Entrepreneurs’ Networking with Advisors

Entrepreneurs use some kinds of advisors frequently, while other potential advisors
are rarely used, Table 2 (based on 88,562 entrepreneurs).

Table 2 shows that more than half of the entrepreneurs receive advice from friends,
while few of the entrepreneurs receive advice from a lawyer.

www.gemconsortium.org
www.gemconsortium.org
www.gemconsortium.org
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Fig. 2 An entrepreneur’s network of advisors

Table 1 Countries with
traditional culture and
countries with
secular-rational culture

Culture Country

Traditional culture El Salvador 1.42
Ghana 1.30
Trinidad and Tobago 1.18
Colombia 1.11
Venezuela 1.04
Egypt 0.98
Nigeria 0.90

Secular-rational culture Czech Republic −1.97
Denmark −2.04
Estonia −2.07
Sweden −2.41

5 Size of the Network Around an Entrepreneur

The 20 relations tend to co-occur, their inter-correlations are all positive (Cronbach
alpha is 0.85, and in an exploratory factor analysis the first eigenvalue is 5.3 and
the second eigenvalue is below 1.7, and in a one-factor model all factor-loadings
exceed 0.25). Thus, underlying the relations is an overall tendency toward network-
ing. This makes it quite reasonable to use the concept of size of the network around
an entrepreneur, and to operationalize size as the number of advisors used by the
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Table 2 Entrepreneurs’ use
of advisors

Private network Spouse 46 %
Parents 44 %
Other family 49 %
Friends 55 %

Work-place network Boss 10 %
Co-workers 25 %
Starter 20 %
Business-mentor 30 %

Professional network Lawyer 7 %
Bank 7 %
Accountant 12 %
Public counselor 8 %
Investor 10 %
Researcher/inventor 7 %

Market network Competitor 7 %
Collaborator 11 %
Supplier 16 %
Customers 24 %

International network Someone abroad 10 %
Someone from abroad 10 %

Table 3 Countries with
largest networks and countries
with smallest networks
around entrepreneurs

Arab Emirates 7.6
Tonga 6.7
Saudi Arabia 6.5
United States 6.5
Romania 6.4
… …
Guatemala 2.7
China 2.8
Barbados 2.5
El Salvador 2.5
Tunisia 1.2

entrepreneur. Some entrepreneurs network more than others, and entrepreneurs in
some countries have larger networks than entrepreneurs in other countries, Table 3.

Size of the networks around entrepreneurs in Arab Emirates exceeds 7 advisors,
on average, while size of the networks around entrepreneurs in Tunisia more typically
is just 1 advisor. Some of the variation among entrepreneurs in size of network can
be attributed to their society (9 % as the eta-square estimated by anova).

We hypothesized that size of network is affected by culture in the way that
traditionalism reduces networking. This hypothesis can be tested by the standardized
coefficient in a model of network size (standardized) affected by national level of tra-
ditionalism (standardized). We include several control variables, here the individual
characteristics of gender (coded 0 for males and 1 for females, then standardized),



346 M. Cheraghi and T. Schott

Table 4 Size of the
entrepreneurs’ networks
affected by traditionalism

Variable Coefficient Probability-value

Traditionalism −0.13 0.003 one-sided
Gender female −0.04 0.0001 two-sided
Age −0.07 0.0001 two-sided
Education 0.09 0.0001 two-sided
Income 0.05 0.0001 two-sided
Household size 0.03 0.0001 two-sided
Self-efficacy 0.05 0.0001 two-sided
Opportunity-perception 0.08 0.0001 two-sided
Risk-willingness −0.03 0.0001 two-sided
Phase intending −0.07 0.0001 two-sided
Phase operating −0.04 0.0001 two-sided
Algeria −0.12 0.07 two-sided
Angola 0.56 0.0001 two-sided
Arab Emirates 1.02 0.0001 two-sided
Argentina −0.08 0.11 two-sided
etc. for each country

age (logarithm of years, then standardized), education (years, then standardized),
household income (scaled 1, 2, 3 for thirds in sample of all adults within each coun-
try, then standardized), household size (logged, then standardized), entrepreneurial
self-efficacy (coded 0 for unskilled and 1 for self-efficacious, then standardized),
opportunity-perception (coded 0 for unaware and 1 for perceiving opportunities, then
standardized), risk-willingness (coded 0 for fearing failure and 1 for risk-willing, then
standardized). The three phases—intending, starting and operating—form a variable
for intending contrasted to starting and another variable for operating contrasted
starting (both as dummies, then standardized). The model is a hierarchical two-level
mixed linear model, of entrepreneurs nested within countries, with fixed effects for
traditionalism and the control variables, and random effects for country, within which
also autocorrelation is taken into account, Table 4 (based on 61 countries with 64,824
entrepreneurs).

The effect of traditionalism is significant and negative, as we had hypothesized.
The effect of traditionalism is stronger than the effect of education or any other
measured attribute of the entrepreneur, and is the major effect upon the entrepreneurs’
tendency to network.

In passing, we may also note that networking is greater for males than females,
declines with age, increases with education, income, household size, self-efficacy
and opportunity-perception, but declines a little with risk-willingness. More detailed
analyses show that effects of attributes such as gender and education, however, differ
between traditional culture and secular-rational culture [18]. Networking is less in
the intending phase and in the operating phases than in the starting phase. We also
note that there is a unique effect of each country upon size of network (shown for
only a few of the 61 countries).
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Looking beyond an entrepreneur’s tendency toward networking or size of the
network, and looking in greater detail, we can see that the network is differentiated
into several components, networks in distinct environments.

6 Distinguishing Network Components

The composition of the network around an entrepreneur can be described as com-
ponents or rather distinct networks in several environments [3]. A component thus
denotes a cluster of co-occurring relations, advisors who tend to be used by the same
entrepreneurs [19]. The composition in terms of network components can thus be
revealed by a cluster analysis. Here we use the default variable clustering procedure
in SAS (an exploratory factor analysis identifies the same clusters). We discerned
five network components among the 20 advisors:

• Private network of relations of receiving business advice from spouse, parents,
other family and friends;

• Work-place network of relations with boss, co-workers, starters and more experi-
enced business-people;

• Professional network of relations with lawyer, bank, accountant, public business
counselor, potential investor and researcher or inventor;

• Market network of relations of receiving advice from competitor, collaborator,
supplier and customers; and

• International network of relations with someone who is abroad and someone who
has come from abroad.

Diversity of the network around an entrepreneur refers to networking widely
across the five environments. Diversity of an entrepreneur’s network may be opera-
tionalized as the number of components that the entrepreneur receives advice from.

A component in the network around an entrepreneur is more or less prominent.
For example, the entrepreneur’s private network may be highly prominent, more
utilized than her work-place network, her professional network, her market network
and her international network. For another entrepreneur the private network may be
less prominent or less salient than his other network components. Each component in
the network around the entrepreneur thus has a degree of prominence. Prominence
of an entrepreneur’s private network can be measured as the number of advisors
who are drawn from the private environment, i.e. the size of the private network. For
an entrepreneur, the sum of the five prominences—across the five environments—
is thus the size of the whole network around the entrepreneur. An alternative way
of measuring prominence of the private network is by a relative measure, as the
proportion of the advisors in the whole network who are drawn from the private
environment. For an entrepreneur, the relative prominences of the five components
are thus five proportions summing to 1. In this article we measure prominence of a
component by the count of advisors within that environment (substantively similar
results are obtained by measuring prominence relative to network size; [22]).
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7 Hypotheses About Specific Environments and Diversity

Having distinguished five network components we can now use our initial consider-
ations of culture to specify our hypotheses about each environment and also about
diversity:

• The private network is especially prominent in cultures that are traditional.
• The work-place network is little prominent in cultures that are traditional.
• The professional network is little prominent in cultures that are traditional.
• The market network is little prominent in cultures that are traditional.
• The international network is little prominent in cultures that are traditional.
• Diversity of the network around an entrepreneur is low in cultures that are tradi-

tional.

These six specific hypotheses can now be tested.

7.1 Prominence of the Private Network

Prominence of the private network, as the count of advisors in the private envi-
ronment, varies among entrepreneurs. This variation in prominence of the private
networks around entrepreneurs is partly a variation among societies, Table 5. Entre-
preneurs in Tonga, Saudi Arabia, Zambia and other countries in Southern Asia and
Africa have networks in which the private component is especially prominent. Con-
versely, the private network has low prominence for entrepreneurs in several countries
in Europe. Much of the variation among entrepreneurs in prominence of the private
network can be attributed to their society (9 % as the eta-square estimated by anova).

Prominence of the private network was hypothesized to be shaped by cul-
ture in the way that prominence is higher in traditional culture than in a secular-
rational culture. This hypothesis can be tested by the standardized coefficient in a
model of prominence of the private network affected national level of traditionalism
(a hierarchical two-level mixed linear model with controls as in the above analysis
of effects upon network size), Table 6 (based on 61 countries with 64,824 entrepre-
neurs).

The culture of traditionalism versus secular-rationalism has a significant and pos-
itive effect, as was hypothesized. The effect is quite strong, and stronger than any
effect of an attribute of the entrepreneurs.

7.2 Prominence of the Work-Place Network

Prominence of the work-place network, as number of advisors in the work-place
environment, also varies among entrepreneurs, and some of the variation in promi-
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Table 5 Countries with high
prominence and countries
with low prominence of
private networks

Tonga 2.9
Saudi Arabia 2.7
Zambia 2.7
Pakistan 2.6
Nigeria 2.6
… …
Sweden 1.3
Uruguay 1.2
S. Korea 1.2
Poland 1.2
Tunisia 1.0

Table 6 Prominence of the
private network affected by
traditionalism

Variable Coefficient Probability-value

Traditionalism 0.11 0.003 one-sided
etc. as in Table 4

Table 7 Countries with high
prominence and countries
with low prominence of the
work-place network

Arab Emirates 1.7
United States 1.6
Syria 1.6
Estonia 1.5
Saudi Arabia 1.5
… …
China 0.4
Ethiopia 0.4
Ghana 0.4
El Salvador 0.4
Tunisia 0.1

nence of work-place network can be attributed to society (8 % is the eta-square esti-
mated by anova). The work-place network is especially prominent in Arab Emirates
and United States and has especially low prominence in Tunisia and El Salvador,
Table 7.

Prominence of the work-place network was hypothesized to be shaped by culture
in the way that prominence is lower in traditional culture than in secular-rational
culture. This hypothesis is tested by the standardized coefficient in a hierarchical
mixed linear model of prominence of the work-place network affected by national
level of traditionalism, Table 8 (based on 61 countries with 64,824 entrepreneurs).

The culture of traditionalism has a significant effect in the way that traditionalism
reduces prominence of the work-place network, as we had hypothesized. Tradition-
alism has a strong effect, stronger than the effect of any attribute of the entrepreneur.
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Table 8 Prominence of
work-place network affected
by traditionalism

Variable Coefficient Probability-value

Traditionalism −0.16 0.0001 one-sided
etc. as in Table 4

Table 9 Countries with high
prominence and countries
with low prominence of
professional networks

Arab Emirates 1.5
United States 1.5
Romania 1.5
Ireland 1.3
Latvia 1.3
… …
Guatemala 0.10
Ethiopia 0.10
Bangladesh 0.07
China 0.07
Tunisia 0.06

Table 10 Prominence of
professional network affected
by traditionalism

Variable Coefficient Probability-value

Traditionalism −0.17 0.0001 one-sided
etc. as in Table 4

7.3 Prominence of the Professional Network

Prominence of the professional network also varies among entrepreneurs, Table 9,
and some of the variation in prominence of professional network can be attributed to
society (9 % as the eta-square estimated by anova). Professional networks are espe-
cially prominent in Arab Emirates, United States and Romania, but have especially
low prominence in Tunisia, China and Bangladesh.

Prominence of the professional network was hypothesized to be shaped by culture
in the way that prominence is low in traditional culture and high in secular-rational
culture. This hypothesis is tested by the standardized coefficient in a model of promi-
nence of the professional network affected by traditionalism, Table 10 (based on 61
countries with 64,824 entrepreneurs).

The culture of traditionalism has a significant effect in the way that traditionalism
reduces prominence of the professional network, as we had hypothesized. Tradition-
alism has an effect that is stronger than the effect of any attribute of the entrepreneur.

7.4 Prominence of the Market Network

Prominence of the market network also varies among entrepreneurs, and some of
the variation in prominence of market network can be attributed to society (9 % as
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Table 11 Countries with
high prominence and
countries with low
prominence of the market
networks

Arab Emirates 1.4
United States 1.4
Sweden 1.2
Estonia 1.2
Australia 1.2
… …
Bangladesh 0.2
Bolivia 0.2
China 0.2
Guatemala 0.1
Tunisia 0.03

Table 12 Prominence of
market networks affected by
traditionalism

Variable Coefficient Probability-value

Traditionalism −0.19 <0.00003 one-sided
etc. as in Table 4

the eta-square estimated by anova). Market networks are especially prominent in the
Arab Emirates and United States, but have especially low prominence in Tunisia and
Guatemala, Table 11.

Prominence of the market network was hypothesized to be shaped by culture in the
way that prominence is low in traditional culture and high in secular-rational culture.
This hypothesis is tested by the standardized coefficient in a model of prominence
of the market network affected by traditionalism, Table 12 (based on 61 countries
with 64,824 entrepreneurs).

The culture of traditionalism has an effect on market networking in the way that
traditionalism reduces prominence of the market network, as was hypothesized. The
effect is large, larger than the effect of any attribute of the entrepreneur.

7.5 Prominence of the International Network

Prominence of international networking varies among entrepreneurs, and some of the
variation in this prominence is attributed to society (6 % as eta-square estimated by
anova). The international network is especially prominent in the small Arab Emirates
and Tonga and has especially low prominence in the huge nation China, Table 13.

Prominence of the international network was hypothesized to be shaped by culture
in the way that prominence is low in traditional culture and high in secular-rational
culture. This hypothesis is tested by the standardized coefficient in a model of promi-
nence of the international network affected by traditionalism, Table 14 (based on 61
countries with 64,824 entrepreneurs).

The culture of traditionalism has an effect on international networking in the
way that traditionalism reduces prominence of the international network, as was
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Table 13 Countries with
high prominence and low
prominence of international
networks

Arab Emirates 0.7
Tonga 0.6
Romania 0.5
Estonia 0.5
Singapore 0.5
… …
Iran 0.06
Ghana 0.06
Brazil 0.04
Tunisia 0.02
China 0.01

Table 14 Prominence of
international networks
affected by traditionalism

Variable Coefficient Probability-value

Traditionalism −0.08 0.02 one-sided
etc. as in Table 4

Table 15 Countries with
high diversity and countries
with low diversity of
networks

Arab Emirates 3.3
Estonia 3.1
United States 3.1
Syria 3.0
Australia 3.0
… …
Ghana 1.4
Ethiopia 1.4
China 1.4
Guatemala 1.3
Tunisia 0.7

hypothesized. The effect is substantial and larger than the effect of any of the attributes
of entrepreneurs.

7.6 Diversity of the Network Around an Entrepreneur

Diversity of the network varies among entrepreneurs, and some of the variation in
this diversity is attributed to society (12 % as eta-square estimated by anova). The
diversity is especially high in the Arab Emirates and is especially low in Tunisia,
Table 15.

Diversity of the network was hypothesized to be shaped by culture in the way that
diversity is low in traditional culture and high in secular-rational culture. This hypoth-
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Table 16 Diversity of
networks affected by
traditionalism

Variable Coefficient Probability-value

Traditionalism −0.19 <0.0003 one-sided
etc. as in Table 4

esis is tested by the standardized coefficient in a model of diversity of network affected
by traditionalism, Table 16 (based on 61 countries with 64,824 entrepreneurs).

The culture of traditionalism has an effect on diversity in the way that tradition-
alism reduces diversity of networks, as was hypothesized. The effect is large, larger
than the effect of any of the attributes of entrepreneurs.

8 A Consequence of an Entrepreneur’s Networking:
Embeddedness of the Firm’s Business Relations

The proposition of embeddedness argued by Granovetter [7] posits that, typically, a
business relation is not a pure exchange, which is short-term, contractual and uncom-
mitted, but is facilitated by a personal bond, which is long-term, trusting and com-
mitted. The concept of embeddedness denotes the overlap and intertwining between
social bonds and economic exchanges within and between organizations. Network
theory argues that embeddedness promotes actors’ motivations from the narrow pur-
suit of immediate economic gains toward the enrichment of bonds through trust and
reciprocity [16, 24]. The resulting trust reduces transactional uncertainty and creates
opportunities for the exchange of goods and services which are difficult to price or
enforce contractually [24]. Therefore, social relations facilitate business agreements
by improving trust and morality. In spite of the fact that institutional contracts have
been recognized to be essential between partners, such arrangements alone cannot
ensure commitment and no fraud, and usually are too costly. The presence of trust
reduces cheating in the business relations, mostly because the most basic motivation
to abstain from cheating on business agreements is to keep reputation either within
the market or among the partners’ network. In practice, people more contend to have
business arrangements with those they trust, and the main source of this trust stems
from better information and moral obligation anchored on bonds. Better informa-
tion includes information which comes from a trusted informant, someone who has
already worked with that firm, and found it to be reliable. This informant could be
either inside or outside their firm. In addition, firms are cautious in keeping their good
reputation, because they tend to benefit from the advantages of repeating business
contracts with the old partners. This kind of information is cheap, more detailed and
more accurate, trustworthy, and beyond pure economic incentives [7].

Embeddedness is here examined in terms of how the network of advisors around
an entrepreneur facilitates the business network around the entrepreneur’s firm. We
hypothesize that the more the entrepreneur is networking, the stronger will be the
business relations around the entrepreneur’s firm. More specifically, we hypothesize
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Table 17 Countries with
dense business relations and
countries with sparse business
relations

Tunisia 0.6
Croatia 0.4
Estonia 0.4
Palestine 0.4
Poland 0.4
… …
Zambia 0.1
Botswana 0.1
Namibia 0.1
El Salvador 0.1
Ghana 0.1

that the business relations are facilitated more by work-place, professional, market
and international networking than by private networking.

In the Global Entrepreneurship Monitor survey in 2012 we measured business
relations around 6,543 firms in 33 countries. Those owning-managing an established
firm were asked seven questions, I will now ask how your new business works with
other enterprises and private and public organizations. Is your business working
together with other enterprises or organizations … to produce goods or services? …
to procure supplies? … to sell your products or services to your current customers?
… to sell your products or services to new customers? … to create new products
or services to your current customers? … to create new products or services to new
customers? … to make your business more effective? For each of these seven kinds of
business relations, the strength of the relation was measured on a scale from 0 to 1 (0
for no collaboration, .5 for collaboration that is not so intense, and 1 for collaboration
that is intense). The firm’s business networking can thus be measured by the mean
strength of the seven relations. This measure of a firm’s business networking, on the
scale from 0 to 1, is suitable for analyses of how the firm’s business networking is
embedded in the personal network around the entrepreneur.

Business networking varies among entrepreneurs’ firms, and some of this variation
is attributed to society (13 % as eta-square estimated by anova). Firm networking is
especially high in Tunisia, Croatia and Estonia, and is especially low in countries in
Sub-Saharan Africa, Table 17.

Firm networking was hypothesized to be embedded in and facilitated by the
personal advice network around the entrepreneur. Specifically, we hypothesize that
firm networking is promoted by the entrepreneur’s work-place network, professional
network, market network and international network, more than by the private net-
work. Moreover, firm networking may well be shaped by culture in the way that firm
networking is lower in traditional culture than in secular-rational culture, because
much of the firm networking is collaboration around innovating. These hypotheses
are tested by the standardized coefficients in a model of firm networking affected by
traditionalism and by the five component networks, controlling for attributes of the
entrepreneur and the firm, Table 18 (based on 33 countries with 6,543 entrepreneurs).
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Table 18 Firms’ relations (mean; standardized) affected by traditionalism and components around
entrepreneur

Coefficient Probability-value

Traditionalism (standardized) −0.08 0.10 one-sided
Private network (scale 0 to 4; standardized) 0.03 0.01 one-sided
Work-place network (scale 0 to 4; standardized) 0.11 0.0001 one-sided
Professional network (scale 0 to 6; standardized) 0.07 <0.00003 one-sided
Market network (scale 0 to 4; standardized) 0.13 0.0001 one-sided
International network (scale 0 to 2; standardized) 0.06 0.30 one-sided
Diversity (scale 0 to 5; standardized) 0.01 0.30 one-sided
Gender (0 male, 1 female; standardized) −0.02 0.03 two-sided
Age (log of years; standardized) 0.01 0.52 two-sided
Education (standardized within countries; then all standardized) 0.05 <0.00005 two-sided
Self-efficacy (1 self-efficacious, 0 not; standardized) 0.01 0.29 two-sided
Opportunity-perception (1 perceiving, 0 not; standardized) 0.03 0.01 two-sided
Risk-willingness (1 willing, 0 averse; standardized) 0.01 0.46 two-sided
Motivation: opportunity (1 opportunity, 0 not; standardized) −0.01 0.53 two-sided
Motivation: need for income (1 need, 0 not; standardized) −0.07 <0.00005 two-sided
Motivation: mix of the two (1 mix, 0 not; standardized) −0.03 0.003 two-sided
Motivation: other (1 other, 0 not; standardized) −0.01 0.59 two-sided
Sole proprietorship (1 sole, 0 shared; standardized) −0.05 0.35 two-sided
Owners (log of number of owners; standardized) 0.08 0.08 two-sided
Firm-age (log of years; standardized) −0.01 0.29 two-sided
Firm-size (log of persons; standardized) 0.21 <0.00005 two-sided
Intercept 0.08
Algeria 0.01 0.99 two-sided
Argentina −0.08 0.33 two-sided
etc. for each country

Traditionalism reduces firms’ business relations, as was expected. Each of the
five component networks appears to enhance business relations, but not equally.
The firm’s business relations are facilitated and promoted by the entrepreneur’s
work-place, professional, market and international networking. But the private net-
work apparently has no substantial effect.

In short, the firm’s business relations are embedded in and facilitated by the
personal network around the entrepreneurs, especially by the market network and
the work-place network, and to lesser degree also by the professional network and
the international network, but not notably by the private network.
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9 Conclusions

The network around an entrepreneur has here been conceptualized as having the
structural properties of size, diversity and composition as network components, each
with its own prominence.

Networking is embedded in culture with the dimension of traditionalism ver-
sus secular-rationalism. Cultural effects were tested on the networks around 88,562
entrepreneurs in 61 societies, where each entrepreneur reported relations with up to
20 advisors.

We hypothesized seven effects of the conditions of traditionalism upon the six
properties of the network around an entrepreneur,

• traditionalism decreases size of the network around an entrepreneur,
• traditionalism decreases diversity of networking, and specifically for the five

components,
• traditionalism increases private networking,
• traditionalism decreases work-place networking,
• traditionalism decreases professional networking,
• traditionalism decreases market networking,
• traditionalism decreases international networking,

All seven effects were found to be significant as hypothesized, and actually quite
large, larger than effects of individual attributes.

An entrepreneur’s personal networking for advice was thought to be consequen-
tial, in the way that it entails an embeddedness of the business relations of the
entrepreneur’s firm. We hypothesized that

– size of the entrepreneur’s personal network increases the firm’s business relations,
– The entrepreneur’s work-place, professional, market and international network-

ing increases the firm’s business relations more than the entrepreneur’s private
networking does.

These effects were found to be significant as hypothesized.
Finally, we also hypothesized that traditionalism reduces business networking.

Also this hypothesis was supported.
These effects are summarized in Fig. 3. The positive effects are solid arrows and

the negative effects are dotted arrows. Thickness of an arrow represents the magnitude
of the effect as indicated by the standardized coefficient.

The networks around entrepreneurs are shaped not only by the culture of their
societies, but also by their personal characteristics, e.g. gender, age and education,
and by characteristics of their enterprises, e.g. phase and ownership. These attributes
have effects on networking which are not as strong as the effects of culture.

The entrepreneurs’ personal networks have consequences for their performance,
specifically their innovation and expectations for growth of their firms [21, 23].
Likewise, the firms’ business networks have consequences for their performance,
specifically their innovation, exporting and growth-expectations [13, 25].
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Fig. 3 Effects among culture, the entrepreneur’s personal network and the firm’s business network
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Content Mining of Microblogs

M. Özgür Cingiz and Banu Diri

Abstract Emergence of Web 2.0, internet users can share their contents with other
users using social networks. In this chapter microbloggers’ contents are evaluated
with respect to how they reflect their categories. Migrobloggers’ category informa-
tion, which is one of the four categories that are economy sport, entertainment or
technology, is taken from wefollow.com application. 3337 RSS news feeds, whose
category labels are same with microbloggers’ contributions, are used as training data
for classification. Unlike the similar studies if a feature of microblog doesn’t appear
in RSS news feeds as a feature, this feature is omitted so abbreviations and nonsense
words in microblogs can be eliminated. In this study two types of users’ contributions
are taken as test data. These users are normal microbloggers and bots. Classification
results show that bots provide more categorical content than normal users.

1 Introduction

Recent advancements in Web 2.0, people can’t be regarded as simple content reader
they can also contribute content as writers. Web 2.0 introduces concepts like social
network, blog and microblogs with internet users. Users share their opinions, feelings,
images, favorite videos and other user’s contributions as microblog content.

Microblogs differ from blogs. Microblogs have size limitation for content. Twitter
is one of the most popular microblog applications because of its easy sign up process,
easy to use and mobile access. It has limitation of 140 characters for content. User
contribution is called as tweet in Twitter.
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In Twitter users can follow other users with respect to their field of interest.
Followers expect users who are followed in terms of their categorical information,
to share content about their field of interests. This study aims to evaluate two types
of users’ contents according to specifying they reflect their category or not.

Users can find out microblogger’s category information with using some applica-
tions such as wefollow.com. Users can describe their field of interests and category
which they provide tweet about. Because of the character limitations microbloggers’
contents can consist of abbreviations and nonsense words so this decrease success
of classification. In this chapter, we aim to eliminate this kind of features that lead
to decrease success of classification.

Similar studies can be separated into two area. First one is to find out user who
shares similar interest. Second is to obtain patterns from microblogs. Degirmencioglu
[1] extracts word-hashtag, word-user and hashtag-user pairs from tweets to discover
users’ common interest areas. Yurtsever [2] classifies microbloggers according to
their contents with using semantic resources. Akman [3] extract categorical features
from 150 microbloggers’ contents. Aslan [4] uses news pattern similarity for discov-
ering microbloggers who broadcast news content. Pilavcilar [5] classify texts with
using text mining techniques that some of them are used in this study. Güc [6] uses
microbloggers’ contents and text classification techniques to measure convenience
of users’ categories.

In this study in part two we examine data sets and their features. In third part
analyzing prepared model and model steps to find out users whose contents are more
valuable for its related category. In last part, we refer classification results and feature
work.

2 Data Sets

This study consists of two parts. First part is training part and second is test part.
Training part data consists of RSS news feeds. Content suppliers like BBC, CNN,
SKYNews provide their subscribers news with RSS format. RSS is a kind of web feed
format like atom. Users can follow news with using web browsers or aggregators.
We use RSS4j java library for getting RSS news feeds. 3337 RSS news feeds whose
category is one of the four categories which are economy sport, entertainment or
technology. 924 entertainment, 738 technology, 721 economy and 954 sport RSS
news feeds are taken for build training model.

In test part 10,630 tweets are obtained form 32 bot users and 30 normal users.
Category information of bot users and normal users are taken from wefollow.com
application. Category labels are the same with training case. We obtain users’ tweets
with using Twitter4j java library.
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3 Proposed System

Figure 1 shows the steps of the proposed system. Proposed system consists of two
phase. These phases are training and testing phases.

In training phase RSS news feeds are used for building training model. Content
distributors supply categorical information of RSS news feeds so we can obtain
category of training data. However, summaries of news also consist of valuable
features so taking RSS news feeds as training data reduce feature of training data
set. RSS news feeds and microbloggers’ contents are taken in same time period for
checking up-to-dateness of microblogers’ contents.

After retrieval of RSS news feeds, RSS news feeds are processed for text clas-
sification. In text classification area vector space model is used as representing text
documents as vectors in vector space. In training phase steps of text preprocessing,
feature weighting, dimension reduction, specifying term count threshold are applied
to RSS news feeds respectively. After preprocessing steps, Support Vector Machines
and Multinominal Naive Bayes are used separately as classifier for training phase.

In test phase tweets of 30 normal microbloggers and tweets of 32 bots, which
their categorical information is obtained from wefollow.com application, are used.
Microbloggers’ categories are sport, economy, entertainment and technology. Before
the selection of features of microbloggers’ contents, removing punctuations and
tokenization steps are applied. Microbloggers’ tweets split into their tokens (features,
words). If any word that is part of microbloggers’ tweet doesn’t be in training feature
set, this word is omitted. Features are only taken from training set and search these
features in microbloggers’ contents because of abbreviations and nonsense words
in microblogs. If these words are regard as features, classification success rate is
decreasing and testing phase results are specious. After feature specifying steps,
features are weighted.

Contents of tweets can be hyperlink of picture or video so in testing phase we
eliminate hyperlinks. After selection of only training features and removal of hyper-
links, some tweets become featureless. Featureless tweets are meaningless as test data
so we specify 3 different term count threshold values. Tweets must include at least
three, four or five words as test data. Testing is implemented with these 3 different
threshold values. Test data is given to training model for classification that is formed
by Support Vector Machines classifier and Multinominal Naive Bayes classifier. In
this section we explain all training and testing steps clearly.

3.1 Preprocessing

Removal of punctuations, tokenization, and selection of features in terms of their
linguistic information, stemming and elimination of stop words are preprocessing
steps that are used in text mining area. According to selection of linguistic features
only nouns and verbs are used as features.
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Fig. 1 Proposed system structure

3.1.1 Removal of Punctuations and Tokenization

First preprocessing step is removal of punctuations of RSS news feeds. After removal
of punctuations, word tokenization is applied to train data. Word tokenization splits
RSS news feeds into their words. Tokens also can be n-grams or collocations but in
this study words are taken as features of text. In vector space RSS news feeds are
shown as vectors, tokens of RSS news feeds are dimension of concerned vector.

3.1.2 Linguistic Selection and Stemming

In previous text classification works features are evaluated separately according to
their linguistic labels. Classification results which are obtained using different fea-
tures according to their linguistic information shows that nouns and verbs are more
valuable features than other types [7, 8]. In this study only nouns and verbs are used as
features. Pronouns, adjective, conjunctions are eliminated. Stanford1 part-of-speech
tagger is used for getting linguistic information of words.

1 http://nlp.stanford.edu/software/tagger.shtml

http://nlp.stanford.edu/software/tagger.shtml
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Words can be in different formats in texts. Such as “children, child” is differ-
ent forms of noun child or “drink, drank, drunk” is different forms of verb drink.
Stemming is necessary for successful classification and feature reduction.

3.1.3 Elimination of Stop Words

Stop words are commonly used in every category so they don’t have any differen-
tiation impact. Stop words decrease classification success. We eliminate stop words
from feature set in preprocessing phase.

3.2 Term Weighting

In vector space model a text document is symbolized as vectors, words (features,
terms) in this text document are symbolized as dimensions of vector. In vector space
model every word has a weight value if it is in text document. In this chapter, term
frequency-inverse document frequency (tf-idf) is used for weighting for features.
In related works show that selection of weighting approach is more important than
selection of kernel function for Support Vector Machines classifier [9, 10].

In tf-idf weighting term frequency, tf, gives number of times a term occurs in a text
document. Inverse document frequency, idf, gives number of times a term occurs in
whole text documents. If any terms occur in every document, it is worthless feature for
classification. Valuable features for classification have high term frequency score and
low inverse document score. Equations 1 and 2 show calculation of term frequency
and inverse document frequency and Eq. 3 shows tf-idf weighting calculation. In this
study tf-idf weighting is used as term weighting.

tf(d, f) =
{

0, if(d, t) = 0
1 + log(1 + log (frequency (d, t)))

(1)

idf(t) = log
n

|dft| (2)

tf-idf(d, t) = tf(d, f) × idf(t) (3)

3.3 Feature Selection and Term Count Threshold

In vector space model contains high dimensional sparse feature vectors. In text mining
works every term is represented as feature so this makes vector high dimensional.
A RSS news feed is summary of news content so it doesn’t have many features but
3337 RSS news feeds generate high dimensional feature space. Classification is hard,
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ineffective and time consuming to implement in high dimensional feature space so
dimension reduction is necessity. We eliminate stop words and taking only nouns
and pronouns therefore we put term count threshold value for training data.

Two common approaches are used in dimension reduction. These are feature
selection methods and feature extraction methods. Feature extraction methods com-
bine different features to make new and low dimension feature set. Feature selection
methods try to select the best subset of feature set. Two different types of feature
selection approach are used in literature. These are wrapper methods and filtering
methods. Wrapper methods find best subset with testing all subset combinations.
Filtering methods order all features according to filtering approaches. Chi square
statistics, document frequency, information gain, mutual information is well known
feature selection filtering methods. In similar works [11, 12] chi square statistics and
information gain methods give better result than other filtering methods so these two
methods are applied separately as feature selection methods in this study.

Chi square statistics and information gain methods are applied to RSS news feeds
for dimension reduction. The most successful classification result ,which is equal to
92.2 % F1-Measure, are taken with using Multinominal Naive Bayes classifier and
chi square statistics. 9,477 features are reduced to 1,296 features with chi square
statistics method.

Equation 4 shows chi square statistics of t-th feature in class c. Chi square statistics
value is calculated with occurrence of term in class and absence of the same term
in the same class. Chi square statistics give good results in high dimensional sparse
feature set.

X2(t, c) = N

[
P(t, c) · P(t−c−) − P(t, c−) · P(t−, c)

P(t) · P(t−) · P(c) · P(c−)

]2

(4)

3.4 Retrieval of Test Data

This study aims to evaluate contents of microblogs. 32 bot users’ tweets and 30
normal users’ tweets are taken as test data. Study also makes comparison between
bots and normal users according to their contributions. Categorical information of
bots and normal users are taken from wefollow.com. After retrieval of tweets from
these two different user types, removal of punctuations and tokenization, which are
preprocessing steps, are implemented to test data. Links of images and videos are
omitted from tweets. Hashtags are also omitted from tweets. Some tweets consist of
only links so after elimination of links make tweets featureless. Featureless tweets
or tweets that have one or two features decrease classification success rate. So in test
phase description of term count threshold is necessity. We specify three term count
threshold values for tweets.

Tweets that are used as test data are arranged according to its term count in testing.
Tweets which have more than two terms, three terms and four terms are only evaluated
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Table 1 User tweets and
term count threshold values

Term count threshold
values
>2 >3 >4

Number of normal users’ tweets 921 416 162
Number of bots’ tweets 2,115 1,039 435

as test data. Table 1 shows that if term counts in tweets and number of tweets which
have more than specified term count threshold value is inversely proportional.

This study use only training feature set in training phase and testing phase. After
tokenization steps of tweets, features are obtained. If a feature of tweet doesn’t occur
in RSS news feeds then feature is eliminated from test data set. Tweets have 140
character limitations so microbloggers use abbreviations and nonsense words that
belong to social networks. Elimination of words which don’t occur in training feature
set provides to omit abbreviations and nonsense words so this process enables to make
correct classification.

Tweet of normal users and bots are taken in the same time period with RSS news
feeds for checking users’ up-to-dateness.

3.5 Classification

Multinominal Naive Bayes (MNNB) and Support Vector Machines (SVM) are used
as classifier in training and test phases. SVM is popular classifier in text classification
area. SVM outperforms k-Nearest Neighbor, Linear Least Square, Naive Bayes,
Neural Networks and Decision Methods in terms of classification results [13, 14].
SVM is also good classifier in many other classification areas whose dimensions are
high. Multinominal Naive Bayes are especially used in information retrieval and text
mining works. It gives good results in these work areas.

3.5.1 Support Vector Machines

Support Vector Machines try to determine the most suitable decision boundary which
separate data into their correct classes. The decision boundary must be as far away
from data of all class as possible.

Dashed lines show boundaries of each class. Thick line indicates the decision
boundary. Samples that are on the dashed lines are called as support vectors. Decision
boundaries are determined by support vectors. Data except support vectors has no
weights for determination of decision boundaries. Equation 5 shows that for an
optimal decision boundary margin (m) must be maximized.
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Fig. 2 SVM and decision
boundary

m = 2

||w|| (5)

In other words distance between decision boundary and boundaries of each class
is aimed to maximize with minimizing ||w||. Assume that class labels of xi are yi e
{1,−1} and {x1, x2, x3, .., xn} is data set. The decision boundary should classify all
data correctly with following constraint that is described in Eq. 6. Equation 6 tries
to prevent data from falling into margin.

yi(wtx + b) ≤ 1 (6)

In some cases data can’t be separated like Fig. 2 with linear boundary. Data are
transformed to higher dimensional space for linear separation with kernel functions.
Polynomial, hyperbolic tangent and radial bases functions are used as kernel func-
tions. In this study we prefer linear classifier that generally gives good results.

3.5.2 Multinominal Naive Bayes

Naive Bayes assumes that occurrence of terms are independent from each other.
Multinominal Naive Bayes (MNNB) differs from Naive Bayes according to count of
term occurrences in text document. Count of term occurrences is used for calculating
probability which shows occurrence of term in related class. Equation 7 shows that
multiplication of the conditional probabilities for all terms which occurs in the same
class gives probability of related class. After probabilities of all classes are calculated,
the class which has the highest probability value is selected as correct class among
all the probable classes. Equation 8 aims to eliminate zero probability for class so
Laplace smoothing is used for it. Class label is given as c and term in a text document
is given as t.

P(c|d) = arg maxce CP(c)
∏

1∗k∗V
P(tk|c) (7)

P(t|c) = Tct + 1∑
t∈eVTct + B∈ (8)
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4 Experiment Results and Discussion

Training model is formed by 3337 RSS news feeds. Categorical information of RSS
news feeds is given by content suppliers. Four categories are used in this study.
These categories are sport, economy, entertainment and technology. RSS news feeds
which are preprocessed for text classification are used to form training models by
Multinominal Naive Bayes and Support Vector Machines separately.

In testing phase 32 bot users’ tweets and 30 normal users’ tweets are taken as
test data. Categorical information of users is taken from wefollow.com application.
Table 2 shows categorical information of user. Number of bot users whose category
is sport is higher than other users who have different category. However, numbers
of tweets which are taken from bot users whose category is sport are less than other
users.

Tweets of two different types of users are given as test data to the training model
which is formed by RSS news feeds. Three different term count threshold values
are used for test data. These threshold values are more than two, more than three
and more than four. More than two means tweets must contain more than two terms,
more than three means tweets must contain three terms and more than four means
tweets must contain more than four terms. Table 1 shows the number of tweet in
terms of threshold values.

F-measure measures for evaluating the performance of classification. F-measure
is weighted harmonic mean of precision and recall. Precision and recall weights are
taken equal to each other. This is also know F1 measure. Table 3 gives F-measure
values of classification results. First value that is given under the threshold value
indicates F-measure of SVM and second indicates F-measure of MNNB. Table 3
shows performance of classification.

Bot users’ tweets demonstrate more successful results than normal user’s tweets
by using tweets that have more than two and three terms. However, F-measure values
of bot users’ tweets are higher than F-measure value of normal users, classification
result of normal users’ tweets is higher than classification result of bot users’ tweets
where SVM and tweets that have more than four terms are used for classification.

Table 3 shows that bot users’ tweets are more valuable than normal users’ tweets
in terms of their categorical information. Contents of bot users reflect their own
category more than contents of normal users.

According to the classification performance results, Multinominal Naive Bayes
outperforms than Support Vector Machines with any given threshold value and user
type. Figure 3 shows the results of Table 3.

Figure 3 and Table 3 shows that using Multinominal Naive Bayes as classifier
and tweets of bot users as test data gives the best classification results. Choosing
of a classifier affects classification results more than choosing of different types of
users’ content. Classification performance is also increased by term count threshold
value. Selecting of tweets which has more than four terms gives the best classification
results with any given classifier. It proves that if a tweet consists of more terms, this
makes tweet valuable as test data.
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Table 2 Categorical
information of users

Number of normal users Number of bot users

Sport 8 12
Entertainment 7 7
Technology 7 6
Economy 8 7

Table 3 Classification
results, F-measure
values (%)

SVM|| Term count threshold values
MNNB >2 >3 >4

Bot users 82.8 95.2 87.2 96.9 89,9 97.9
Normal users 78.4 86.7 84.2 92.8 91.6 95.7

Fig. 3 Classification results

Rate of correctly classified data is changeable from class to class. Normal users
whose categorical information is sport supply more categorical tweets. Rate of cor-
rectly classified data is higher than data of other normal users whose categorical
information isn’t sport. Bot users whose categorical information is economy supply
more categorical tweets. Rate of correctly classified data is higher than data of other
bots users whose categorical information isn’t economy. Both normal users and bot
users whose categorical information is technology has the lowest rate of correctly
classified data.

5 Conclusion

In our study, we want to check up-to-dateness of users’ tweets with using RSS feeds
and it is also intended to measure how users reflect their categories.

Bot users’ content is more categorical than normal users’ content. Classifica-
tion performance of bot users’ tweets are higher than normal users’ tweets. 97.9 %
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F-measure value can be assumed as good result for microblogs. Microblogs consists
of abbreviations and nonsense words because of character limitation so we use only
training feature set as complete feature set. In the future, we can collect more than
3337 RSS news feeds for training for precision of classification. After putting term
count threshold for tweets it decreases number of tweets which has more terms than
threshold values so we can get more tweet for precision of classification.

Working on content mining of microblogs is popular recently. Microblogs reflects
microbloggers’ thoughts and field of interests. Companies observe content of
microbloggers for marketing. Police department also follows contents of microblog-
gers. Police department observe microbloggers’ thoughts and action with using
contents of microblogs. Activities of terrorism or crime can be distinguished by
this observation. To sum up content mining of microblogs can be used in different
areas. Popularity of microblogs is increasing rapidly so works on content mining of
microblogs are important for all these different areas.
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5. Pilavcılar IF (2007) Metin Madenciliğiyle Metin Sınıflandırma. Master’s thesis, Yıldız Teknik
Universitesi

6. Güç B (2010) Information filtering on micro-blogging services. Master’s thesis, Swiss Federal
Institute of Technology, Zurich

7. Chua S (2008) The role of parts-of-speech in feature selection. In: The international conference
on data mining and applications-IAENG

8. Masuyama T, Nakagawa H (2002) Applying cascaded feature selection to SVM text catego-
rization. In: The DEXA workshops, pp 241–245

9. Lan M, Sung S, Low H (2005) A comparative study on term weighting schemes for text
categorization. In: IEEE international conference on neural networks-IJCCN’05

10. Leopold E, Kindermann J (2002) Text categorization with support vector machines. How to
represent texts in input space? Mach Learn 46(1–3):423–444

11. Yang Y, Pedersen J (1997) A compartive study on feature selection in text categorization. In:
The proceedings of ICML-97

12. Zheng Z, Srihai R (2003) Optimally combining positive and negative features for text catego-
rization. In: ICML workshop

13. Yang Y, Liu X (1999) A re-examination of text categorization methods. In: The proceedings of
SIGIR-99, 22nd ACM international conference on research and development in information
retrieval Berkeley, US, pp 42–49

14. Joachims T (1998) Text categorization with support vector machiness: learning with many
relevant features. In: The European conference on machine learning (ECML)



Glossary

Agent-based Modeling A computational model for simulating the actions and
interactions of autonomous individuals or organizations or groups for assessing
their effects on the system.

Ant Colony Optimization Algorithm A probabilistic technique, which is fun-
damentally based on the behavior of ants seeking a path between their colony
and a source of food, used for solving computational problems such as com-
munity detection.

Brandes’ Algorithm A method that determines the shortest paths between all
pairs of vertices in a sparse, un-weighted, directed graph and aims to calculate
both betweenness and closeness of all vertices in a graph.

Clique Percolation Method A technique for analyzing the overlapping com-
munity structure of networks.

Clustering A computational process that places similar items into the same group
and dissimilar items into different groups.

Collaborative Filtering A recommender system implementation technique that
combines preferences of several users.

Community A group of social actors sharing common properties.

Community Evolution Describes trends of objects and communities whose
behavior changes with time.

Community Mining A sub graph, community, identification process in a social
network.

Data Mining A computational process that aims to discover hidden patterns in a
large data set.

Differential Privacy A privacy model that obscures individuals’ contributions to
aggregate results in data mining.

Ground Truth A set of data tagged by human experts to prove or disprove
research hypotheses.
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Hadoop HBase A distributed database which is built on top of distributed file
system Hadoop.

Machine Learning A branch of artificial intelligence that studies construction of
systems that can learn from data.

Micro-blogging Expressing opinions on a blogging service using short text,
images or video links.

Naive Bayes A probabilistic machine learning technique used for classification
that uses Bayes’ theorem with strong/naive independence assumptions.

Network Evolution Similar to community evolution it describes trends of net-
work events such as birth, growth, shrinkage, merge, split, and death.

Recommender System An information filtering system that aims to predict user
preferences for several items of interest.

Sentiment Analysis (Opinion Mining) Aims to determine the opinion expressed
in a given text with respect to some topic or the general contextual polarity of a
document.

Social Actors A set objects of interest in social network analysis, such as humans,
organizations, web pages etc.

Social Network A social structure composition with a set social actors and a set
of links representing relationships among these actors.

Social Network Analysis Examines the structure of relationships among the
actors of a social network using network theory.

Social Network Mining A computation process that involves the use of data
mining techniques within the context of social networks.

Support Vector Machines (SVM) A machine learning technique used for clas-
sification that aims to separate categories as wide as possible.

Tweet Small messages used in twitter.

Twitter A micro-blogging platform: https://twitter.com/.

Web Forum An online discussion site.
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