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Abstract Vegetation fires are an important source of air pollution in several
regions of the world including Asia. An important question with respect to satellite
retrievals of air pollutants is ‘‘how well do they capture temporal and spatial
variations and how well do they relate to episodic events such as fires?’’ We
addressed this question using MOPITT surface CO and MODIS fire retrievals. We
also evaluated MODIS aerosol optical depth (AOD) as well as small mode aerosol
fraction (SMAF) variations in relation to fire seasonality. Results from temporal
analysis (2003–2012) of fires in Asia suggested 22 % of all fires occurring in
Myanmar, followed by India (20.91 %), Indonesia (18.31 %), Thailand (9.42 %),
etc. Fire frequencies were highest in northeast India and Southeast Asia countries.
Further, we observed significant spatial variation and seasonality in fires in
Southeast Asia. In the northern Southeast Asia, the peak fire season was during
January–March whereas in the south, the fires peak is from August through
October. AOD followed a similar trend as that of fires, however, small mode
aerosol fraction showed some discrepancies. Locally weighted regression yielded
good results between vegetation fires and CO emissions. Results showed that areas
with high vegetation fires were also areas of high CO emissions, with highest
spatial correlation during the month of March. Among the fire counts and FRP, the
correlations varied for individual months, however, both showed significant
(P \ 0.001) positive correlations suggesting that either of them can be used as
predictor of CO concentrations. Locally weighted regression maps revealed how
the relationship between fire counts versus CO and FRP versus CO change across
time and space. The study captures the influence of vegetation fires on CO
pollution in Asia using satellite data.
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1 Introduction

Vegetation fires have significant regional and global impacts on the tropospheric
chemistry and air pollution. In addition to slash and burn from forests (Prasad et al.
2008), agricultural residue burning to clear crop waste is another major source of
air pollution in the Asian region (Li et al. 2010; Miettinen et al. 2011; Vadrevu
et al. 2011, 2013). Historically, fires in the Asian region attracted international
attention during 1997/1998 when a severe haze episode occurred due to wildfires
in Indonesia. In the Indonesia, the area burned during 1997/1998 is estimated at
9.7 million hectares of forest and non-forest land, with some 75 million people
affected by smoke, haze, and the fires themselves (Murdiyarso and Adiningsih
2007). The haze covered the entire area of Sumatra and Kalimantan and extended
up to Malaysia, Singapore and the Southern part of Thailand due to long-range
transport (Page et al. 2009; Bonnet and Garivait 2011). Impacts included damage
to health, loss of life, property and reduced livelihood options. The economic costs
were estimated to exceed 9 billion USD (Dennis et al. 2005). The impacts of the
atmospheric pollution on health, transport and tourism, largely were borne by
Indonesia, Brunei Darussalam, Singapore and Malaysia (Radojevic 2003). Fires in
the Asian region were also associated with carbon emissions, environmental and
economic losses (Vadrevu and Badarinath 2009; Vadrevu et al. 2010). For
example, recent estimates suggest that the peat lands of southeast Asia cover
approximately 250,000 km2 (Page et al. 2011) and represent an immense reservoir
of fossil carbon (Page et al. 2002; Jaenicke et al. 2008). CO2 emissions from Peat
fires are estimated at about *30 % of the global CO2 emissions (Hooijer et al.
2012). Similarly, in India, the Himalayan forest fires during 1995 consumed nearly
6 Mha and caused huge economic losses (Kimothi and Jadhav 1998). The regular
agricultural residue burning events that occur till date in the Punjab province of
India were shown to cause enormous pollution problems including enhancing of
direct radiative forcing in the Indo-Ganges region (Ramanathan and Carmichael
2008; Vadrevu et al. 2010). Likewise, Chan et al. (2000) from the ozonesonde
profiles, fire count, Carbon monoxide (CO) data and back air trajectory analysis
showed that biomass burning emissions in the south east Asia are the source of
ozone enhancement in the lower troposphere in springtime at Hong Kong. More
examples of the impacts of fires on the local environment specific to Asia can be
found in Chan et al. (2000), Hsu et al. (2003), Ramanathan et al. (2005), Lau et al.
(2010), Vadrevu et al. (2011), (2012a, b), Fu et al. (2012), etc. In addition to these
climate impacts, adverse health impacts have been reported due to biomass
burning pollutants. The aerosols released from biomass can cause asthma, bron-
chitis, emphysema, or pneumonia (Seaton et al. 1995; Nawahda et al. 2012).
Carbon monoxide released from biomass burning can damage the respiratory
system by interfering with the blood’s ability to absorb oxygen (Suji et al. 1990).
Considering the climate and health impacts of vegetation fires, accurate infor-
mation on fires (location, frequency, extent, seasonality) is necessary to make
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informed decisions on the fire management and resulting ecological and air pol-
lution impacts.

Links between biomass burning and air pollution need thorough investigation.
In particular, CO is one of the dominant greenhouses released due to incomplete
combustion of either fossil fuels or biomass. CO also has a relatively long
atmospheric lifetime on the order of months and strongly influences the abundance
of the OH radical, thereby altering the lifetime of methane and other greenhouse
gases (Montzka et al. 2011). It is estimated that biomass burning accounts for
about 331.1–351.52 Tg CO/yr with large inter-annual variations (van der Werf
et al. 2006; Kaiser et al. 2012). Surface CO measurements over South Asia are
extremely sparse and measurements of the vertical distribution of CO do not exist
over the region (Kumar et al. 2013). Specific to the Asian region, biomass burning
contributes to *62–420 Tg C/yr (Streets et al. 2003; Hoelzemann et al. 2004; Van
der Werf et al. 2006). Recently, Chang and Song (2010) using L3JRC and
MCD45A1 satellite burned area products and following the Seiler and Crutzen
approach (1980) estimated *8.6 and 6.3 Tg CO/yr from forest/shrub and grass-
land burning compared to an earlier estimate of 35 Tg CO/yr (Streets et al. 2003).
Chang and Song (2010) using satellite data also estimated that crop residue
burning accounts for about 2.9–3.0 Tg/yr compared to 35 Tg CO/yr (Streets et al.
2003). These estimates clearly suggest significance of vegetation fires in releasing
CO and also some discrepancies in the CO emission estimates.

The use of satellite remote sensing for characterizing the greenhouse gases in
the troposphere is a science that has developed within the past twenty years
(Burrows et al. 2011). For air quality mapping and monitoring, direct measure-
ments of CO from space might resolve some uncertainties in emission estimates.
CO has a strong absorption in the thermal infrared (4.7 lm) and shortwave
infrared (2.3 lm) region of the spectrum. Based on this a number of space-borne
instruments have been measuring tropospheric CO globally over the past decade,
including MOPITT, SCIAMACHY, AIRS, ACE-FTS TES and IASI and as a
result, the measurement of trace gas emissions from satellites has improved con-
siderably (Kopacz et al. 2010). An important question with respect to satellite
retrievals of air pollutants is ‘‘how well do they capture temporal and spatial
variations and how well do they capture emissions from episodic events such as
fires?’’ In this work, we address this question through analyzing the spatial vari-
ability in CO and vegetation fires in the Asia using MOPITT and MODIS datasets.
Nine years of vegetation fire data has been used in conjunction with MOPITT data
to characterize fire–CO relationships spatially and temporally. We focused on the
below questions:

(a) What is the influence of vegetation fires on CO emissions in the Asian
region? (b) How do active fires and fire radiative power (FRP) relate to CO
emissions? (c) Which product, active fires or FRP better relates to CO emissions?
(d) What are the spatial patterns in correlation strength between vegetation fires and
CO emissions in the Asian region? (e) Does the correlation strength vary among
different months, if so by how much? (f) How does aerosol optical depth and
aerosol small mode fraction vary in relation to fires and how do they relate to CO?
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In this study, in addition to fire counts, we also used FRP as a predictor of CO as
FRP has been shown to directly relate to fire intensity and biomass consumption
(Wooster et al. 2004; Ichoku et al. 2008). Thus, it was hypothesized that FRP should
be well correlated with surface CO emissions retrieved from the MOPITT datasets.

2 Data Sets and Methodology

2.1 Vegetation Fires

For characterizing the vegetation fires in the region, we used daily active fire
detections from the MODIS instruments onboard the Aqua and Terra satellites.
The two MODIS sun-synchronous, polar-orbiting satellites pass over the Equator
at approximately 10:30 a.m./p.m. (Terra) and 1:30 p.m./a.m. (Aqua) with a revisit
time of 1–2 days. MODIS Advanced Processing System (MODAPS) processes the
resulting data using the enhanced contextual fire detection algorithm (Giglio et al.
2003) combined into the Collection 5 Active Fire product. For this study, we
analyzed the data from 2003–2012. The fire data are at 1 km spatial resolution at
nadir; however, under ideal conditions it can detect flaming fires as small as 50 m2.
FRP is the rate of fire energy released per unit time, measured in megawatts
(Kaufman et al. 1998). The MODIS algorithm for FRP is calculated as the rela-
tionship between the brightness temperature of fire and background pixels in the
middle infrared (band center near 4 lm). It is given as (Kaufman et al. 1998),

FRP ¼ 4:34� 10�19ðT8
MIR � T8

bgMIRÞ

where FRP is the rate of radiative energy emitted per pixel,
4.34 9 10-19 MW km-2 K8 is the constant derived from the simulations, TMIR

(Kelvin) is the radiative brightness temperature of the fire component, TbgMIR

(Kelvin) is the neighboring non-fire background component, and MIR refers to the
middle infrared wavelength here, 3.96 lm. In this study, we utilized the Collection
5 Terra and Aqua monthly climate modeling grid datasets (MOD14CMH/
MYD14CMH) that represent cloud and overpass corrected fire pixels data along
with the mean FRP data.

2.2 MOPITT CO Retrievals

For characterizing the geographical extent of CO pollution, we used the MOPITT
CO datasets. MOPITT instrument, launched in December 1999 aboard the NASA
EOS Terra satellite, is a thermal nadir-viewing gas correlation radiometer
(Drummond 1992; Deeter et al. 2003). It measures CO at a spatial resolution of
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22 km 9 22 km. Terra has a near polar sun-synchronous orbit with a descending
equator crossing time of approximately 10:30 a.m. local time (ascending 10:30
p.m.). CO profiles are retrieved from radiance measurements in the thermal
infrared channel at 4.7 mm (Deeter et al. 2003) and MOPITT achieves a global
coverage within 3 days. We used the Version 4 Level 3 (L3) product which
includes CO concentrations, averaging kernels and error co-variances at 10 pres-
sure levels retrieved in linear space in surface, 900, 800, 700, 600, 500, 400, 300,
200, and 100 hPa) (Deeter et al. 2009). Of these columnar data, we used only
surface data (*900 hPa) to infer fire–CO variations. Retrieved CO total columns
are calculated by integrating the retrieved mixing ratio profile and each retrieval
‘level’ corresponds to a uniformly weighted layer immediately above that level.
For example, the surface-level retrieval product corresponds to the mean volume-
mixing ratio over the layer between the surface and 900 hPa. For CO vertical
profiles, estimated errors are available in the error field of the ‘‘retrieved CO
Mixing ratio profile’’ and ‘‘retrieved CO Surface mixing ratio’’ variables of the
MOPITT files. These values represent the cumulative error from smoothing error,
model parameter error, forward model error, geophysical noise, and instrument
noise (Deeter and MOPITT team 2009) contributing to *20–30 % uncertainty
with 5 % difference in the monthly mean CO. A detailed review on the use satellite
datasets for characterizing CO emissions from biomass burning has been reviewed
by Monks and Beirle (2011).

2.3 Aerosol Optical Depth (AOD) and Aerosol Small Mode
Fraction (SMAF)

We used the MODIS Collection 5.1 Terra (MOD08_M3) AOD at 550 nm (Remer
et al. 2005; Levy et al. 2007) level 3 monthly product for characterizing the
variations in relation to fires. The aerosol properties are derived by the inversion of
the MODIS-observed reflectance using pre-computed radiative transfer look-up
tables based on aerosol models (Remer et al. 2005; Levy et al. 2007). In addition,
we also used the aerosol small/fine mode AOD fraction (SMAF) data at 500 nm
for spatial variations in fire affected regions. SMAF is the ratio of small mode
optical depth (thickness) to the total AOD.

2.4 Spatial Gridding, Ordinary Linear Regression (OLR)
and Locally Weighted regression

We spatially gridded the vegetation fire data at 10-min intervals (*9.3 km2 cells)
to infer fire frequencies. We calculated the fire frequency per grid cell to see how
many times an individual cell is impacted by fires over a period of nine years
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(2003–2011). First, we summed the total number of fires reported by each data

record NMODIS;A;T
k;m falling within a grid box, k, for each month (m) taking daily

observations of Aqua and Terra MODIS fire counts, Mk;m the number of months of
MODIS observations (2003–2011). Then, we determined the frequency of fire per

grid cell as NMODIS;A;T
k;m

.
Mk;m for each month. The resulting map thus had a range of

values from 0–9, with zero values suggesting that no fires occurred during the
assessed period while a maximum of 9 suggesting that the pixel is impacted by fires
every year starting (2003–2011). In addition to fire frequencies, for the same
time period we also gridded the FRP. For CO, for spatial gridding, we used
0.5 9 0.5 degree resolution, as the MOPITT CO original data was in 22 9 22 km2.
Corresponding fire counts and FRP data were retrieved from MODIS climate
modeling grid product (CMG) (Giglio et al. 2006). Fire counts and FRP data were
then used in a regression framework for assessing the relationships using an
ordinary linear regression as well as locally weighted regression.

An ordinary linear regression can be expressed as (Huang and Leung 2002),

Yi ¼ a0 þ
XP

k¼1

akxik þ hi i ¼ 1; . . . n

where Y is the dependent variable and is represented as a linear combination of
independent variables Xk, k = 1, 2, P; a0, a1…, ap are the parameters and hi are
independent normally distributed error terms with zero mean and constant vari-
ance. In the OLR model, the parameters are assumed to be the same across the
study region, which may not be true because different locations might have dif-
ferent parameters.

In this study, to better account for the spatial variations and relationships
(spatial non-stationarity) in Fire/FRP versus CO, locally weighted regression also
known as geographically weighted regression has been used (Cleveland and
Devlin 1988; Fotheringham et al. 2002). The locally weighted regression accounts
for the spatial heterogeneity in responses to variables by estimating separate
regression for each sample observation including the location of interest and other
spatially weighted observations. The weights represent the adjacency effects for
neighboring locations within a specified distance (or bandwidth). Following the
assumption that more proximate locations are more alike, the weights decay with
distance following a bi-square decay function for an adaptive kernel. When
regression points and observation points are the same, one regression is estimated
for each observation, allowing parameter estimates to vary across the sample
space. The locally weighted regression model is specified as

yi ¼ bi0 þ bi1xi1 þ bi2xi2 þ � � � þ bikxik þ ei; ei�Nð0; r2Þ; i ¼ 1; 2; . . . n;
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where, the ‘I’ subscripts on the parameters indicate that there is a separate set of
(k + 1) parameters for each of the n-observations. The parameter estimates are
given as,

b̂i ¼ ðXiWiXÞ�1X
0
WiY ; i ¼ 1; 2; . . . n

where, Wi is the n 9 n weight matrix whose off-diagonal elements are zero land
the diagonal elements are the weights of each observation relative to I, i.e., Wi =
diagonal (wi1, wi2, … win). The optimal bandwidth distance used in each obser-
vations regression is determined by the Akaike Information Criterion (AIC) test.
The results obtained from this approach were reported in addition to OLR results.

3 Results and Discussion

Annual MODIS fire counts obtained through averaging the data from 2002–2012
for the south Asian countries are shown in Table 1 along with the percent con-
tribution. Of the different countries, 22 % of all fires occurred in Myanmar, fol-
lowed by India (20.91 %), Indonesia (18.31 %), Thailand 9.42 %), Cambodia
(8.15 %), etc. Temporal statistics of fire counts for different countries are shown in
Fig. 1a, b. Of the different years, 2004 had the highest number of fire counts in the
Asian region with 406,627 fires, 2009 (367,534 fires), 2007 (358,433) and others.
Spatial patterns in MODIS Aqua and Terra fire occurrences for the period of

Table 1 Annual fire counts
for different countries in
South Asia obtained through
averaging eleven years
(2002–2012) of MODIS aqua
and terra datasets

Country Fire counts % occurrence

Afghanistan 234 0.074
Bangladesh 3,114 0.980
Bhutan 223 0.070
Brunei 32 0.010
Cambodia 25,921 8.156
India 66,479 20.918
Indonesia 58,198 18.312
Laos 31,759 9.993
Malaysia 4,334 1.364
Maldives 0 0.000
Nepal 2,268 0.714
Pakistan 7,104 2.235
Philippines 4,475 1.408
Myanmar 67,503 21.240
Sri Lanka 1,289 0.406
Thailand 29,959 9.427
Vietnam 14,907 4.691
Singapore 6 0.002

Percent values are also shown
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October agricultural residue burning in Punjab and May forest burning for the
study region are shown in Fig. 2a, b. The images clearly suggest significant
amount of spatial variation in fires in Asia. The peak burning season is March with
3,702 fire counts per 10-min grid cells with a mean FRP (MW) of 226.28 MW
(Figs. 3, 4). Although April recorded fewer fires (2,622) per 9.3 km2 grid cell, it
had a higher mean FRP (226.28 MW) than March (152.53 MW) suggesting rel-
atively higher intensity (Fig. 4).

Fire frequency map calculated using nine years of MODIS data for the month of
March at a 9.3 km2 gridded data is shown in Fig. 5. Results clearly suggested
highest fire frequencies in northeast India and southeast Asia countries, mainly
Myanmar, Laos, Thailand, Vietnam, etc. Further, we observed significant spatial
variation, seasonality as well as fire frequencies in Southeast Asia countries
(Fig. 6a, b). For example, in the northern part of southeast Asia, the peak fire
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Fig. 1 a MODIS aqua and terra fire counts for individual countries (2002–2012). b MODIS total
fire counts for different years

Fig. 2 a Fires over Punjab, India on October 22nd, 2012 and southeast Asia on May 11th, 2012.
b MODIS aqua and terra fires were overlaid on MODIS aqua surface reflectance product (7:2:1)
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season was observed during January–March, especially in the region covering
Cambodia, Laos PDR, Myanmar, Thailand and Vietnam; whereas in the southern
southeast Asian countries of Indonesia and Malaysia, the peak burning season is
from August through October (Fig. 6a, b). The fire seasonality has a significant
impact on air pollution including CO concentrations.

CO data has been analyzed corresponding to fire counts in grid cells. CO
concentrations peaked during March reaching above 700 ppbv during that month
followed by April (625.6 ppbv). During winter, December had the highest CO
concentrations (548.8 ppbv), followed by November (423.6 ppbv) (Table 2).

Fig. 3 MODIS aqua and terra monthly fire counts (averaged from 2002–2012)

Fig. 4 MODIS fire counts and FRP (MW) aggregated at 9.3 km2 grid cells (2010)
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Spatial patterns suggested highest CO concentrations in the northeast India and
Southeast Asia countries around 80–90� latitude and 20–30� longitude (Figs. 7, 8). In
conjunction with the MODIS fire counts, AOD and SMAF showed temporal varia-
tions (Fig. 8). The seasonal trend in monthly average AOD suggested a steady
increase of AOD from January (0.17) with a peak in March (0.61) and April (0.49)
during summer and a second peak during October (0.22). Fine mode biomass burning
aerosols were found to be quite high during Jan–March and also in November
(Fig. 8). Although the Drastic increase in November SMAF coincides with agri-
cultural residue burning (Gadde et al. 2011; Vadrevu et al. 2011), the increase could
not be explained by fire counts and FRP alone (Fig. 8). One of the recent studies
suggests that in addition to emission sources, relative humidity explains large
increases or decreases in the SMAF (Bose 2012). Thus, more intense study is needed
to evaluate SMAF variations in relation to meteorological parameters.

To assess the correlation strength between fire counts versus CO and also FRP
versus CO, we tested the locally weighted regression approach in addition to OLR.
We opted for locally weighted regression as the standard OLR approach estimates
one fixed global set of regression coefficients. However, spatially clustered data
such as fires and the resulting emissions (CO) could have residuals that can be
either over or underestimated. In standard approaches, the ensuing spatial corre-
lation caused by the underlying heterogeneity in the regression coefficients would
be indistinguishable from standard spatial error correlation that is generated by
clustered data (Fotheringham et al. 2002). Locally weighted regression can
account for such errors and the results from fire counts versus CO and FRP versus
CO for the peak biomass burning months were shown in (Fig. 9a, b and Table 3).

Fig. 5 Fire frequency per 9.3 km2 grid cells during the month of March (2003–2011)
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Fig. 6 a Spatial variation in fire frequencies in southeast Asia for the month of March and
September (2003–2011). b A clear north–south gradient in fire frequencies and seasonality was
observed in the region
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Table 2 Monthly MOPITT surface CO (ppbv) statistics for 0.5 9 0.5 km2 grid cells obtained
from averaging 2002–2010 datasets over the South Asia region

Months Minimum Maximum Mean St. Dev

Jan 0 567.04 164.38 117.25
Feb 0 570.07 182.52 118.67
Mar 80.34 704.58 271.7 129.07
Apr 0 625.6 159 117.1
May 0 388.83 120.27 77.06
Oct 0 529.21 118.3 85.25
Nov 0 423.65 124.08 90.72
Dec 0 548.81 148.15 120.83

Fig. 7 MOPITT CO (ppbv) concentrations during the peak biomass burning month of March
(2010)
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We observed a clear increase in ‘‘goodness of fit’’ and adjusted R2 using the locally
weighted regression approach compared to the OLR. For example, during the peak
biomass burning month of March, fire counts versus CO using OLR showed r2 of
0.37 while locally weighted regression showed r2 of 0.82, almost 45 % increase in
correlation and explanation of variance. Among the fire counts and FRP, the
correlation strength varied for individual months, however, the relationship was
strong and highly significant with both variables (P \ 0.001) suggesting that either
fire counts or FRP can be used as predictor of CO concentrations (Table 3). For
example, for the peak biomass burning month of March, fire counts could explain
81 % of variance, whereas FRP could explain 77 %. For other months of January,
February and April, both the fire counts and FRP had almost similar adjusted r2.

Spatial correlation maps of Fire–CO and FRP–CO relationships suggested
highest correlation over northeast India and Southeast Asia countries of Myanmar,
Thailand, Laos, Vietnam, etc. The lowest correlation was evident over Rajasthan
desert regions which didn’t have fires and also over Pakistan, Afghanistan, west
coast of India with very few fire counts, thus low CO concentrations. The fire
counts versus CO and FRP versus CO spatial correlations were consistent with the
location and intensity of MODIS fires. In general, when solving for emissions
within a selected region or a grid cell, contribution from outside such as through
long range transport needs addressing such as through 3D atmospheric transport
modeling (Pfister et al. 2005; Stohl 2002). Even without transport modeling, using

Fig. 8 Variations in fire counts, FRP (MW), CO (ppbv), AOD and small mode AOD in southeast
Asia during the peak biomass burning months (2010). The values are mean per 9.3 km2 grid cells
averaged across southeast Asia
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the locally weighted regression approach, we could explain 80 % of variance in
CO datasets from fires during the peak biomass burning months. Our analysis
clearly suggests biomass burning influence on CO concentrations, both spatially
and temporally in the Asian region. Further, we used surface CO retrievals from
MOPITT that are more representative of surface processes and emission sources in
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Fig. 9 a Spatial correlations between MODIS fire counts (FC), FRP and CO for individual
months at 0.5 9 0.5 degree grid cells. b The correlation values from ordinary least square
regression (OLR) and local regression are shown in Table 3
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contrast to the total columnar measurements. Thus, our results also highlight the
potential of surface level CO retrievals from MOPITT in capturing spatial and
temporal variations and fire episodic events. In contrast, more work is needed to
resolve discrepancies in SMAF variations and its’ relationship with biomass
burning and other emission sources.
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