
Chapter 4
Credit Scoring

Abstract The recent financial crisis has highlighted the importance of credit risk
assessment for financial institutions, firms, and supervisors. Credit scoring systems
are important tools for credit risk evaluation and monitoring. This chapter describes
the process for building and testing credit scoring models and illustrates how multicri-
teria techniques based on disaggregation analysis can be used in this area. Empirical
results are also presented, derived from an application to a large sample of Greek
firms.
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4.1 Credit Scoring Systems

Credit risk modeling plays a crucial role in financial risk management, in areas such
as banking, corporate finance, and investments. Credit risk management has evolved
rapidly over the past decades, but the global credit crisis of 2007–2008 highlighted
that there is still much to be done at multiple levels. Altman and Saunders [3] list
five main factors that have contributed to the increasing importance of credit risk
management:

1. the worldwide increase in the number of bankruptcies,
2. the trend towards disintermediation by the highest quality and largest borrowers,
3. the increased competition among credit institutions,
4. the declining value of real assets and collateral in many markets, and
5. the growth of new financial instruments with inherent default risk exposure, such

as credit derivatives.

Credit risk refers to the probability that an obligor will not be able to meet sched-
uled debt obligations (i.e., default). Early credit risk management was primarily based
on empirical evaluation systems of the creditworthiness of a client. CAMEL has been

M. Doumpos and C. Zopounidis, Multicriteria Analysis in Finance, 43
SpringerBriefs in Operations Research, DOI: 10.1007/978-3-319-05864-1_4,
© The Author(s) 2014



44 4 Credit Scoring

the most widely used system in this context, which is based on the empirical combina-
tion of several factors related to capital, assets, management, earnings, and liquidity.
It was soon realized however, that such empirical systems cannot provide a solid
and objective basis for credit risk management. This led to an outgrowth of studies
from academics and practitioners on the development of new credit risk assessment
systems. These efforts were also motivated by the changing regulatory framework
that now requires banks to implement specific methodologies for managing and
monitoring their credit portfolios [18].

The existing practices are based on sophisticated analytic modeling techniques,
which are used to develop a complete framework for measuring and monitoring credit
risk. Credit scoring systems are in the core of this framework and are widely used
to assess the creditworthiness of firms and individuals, estimate the probabilities of
default, and classify the obligors into risk groups.

The aim of credit scoring models is to assess the probability of default for an
obligor and differentiate individual credits by the risk they pose. This allows creditors
to monitor changes and trends in risk levels, thus promoting safety and soundness in
the credit granting process. Credit scoring models are also used for credit approval
and underwriting, loan pricing, relationship management and credit administration,
allowance for loan and lease losses and capital adequacy, credit portfolio management
and reporting [48].

Generally, a credit scoring model can be considered as a mapping function
F(x;α), defined by a vector of modeling parameters α, such that F(x;α):RK → G.
The credit scoring model provides estimates for the probability of default for an
obligor described by a vector x ∈ R

K of K attributes and maps the result to a set G
of risk categories.

The attribute vector x represents all the relevant information that describes the
obligor, including financial and non-financial data. For instance, for corporate loans,
financial ratios, measuring the company’s profitability, liquidity, leverage, etc., are
usually considered to be important quantitative attributes. Non-financial criteria are
related to the company’s activities, its market position, management quality, growth
perspectives, credit history, the trends in its business sector, etc. Empirical evidence
has shown that such non-financial attributes significantly improve the estimates of
credit scoring and default prediction models [107]. Furthermore, market data and
estimates from the Black-Scholes-Merton model have also been shown to be strong
predictors of credit risk [68, 250].

Credit risk assessments can be obtained either through models developed internally
by financial institutions [244] or are provided externally by credit rating agencies
(CRAs). The latter, provide credit ratings for firms in a multi-grade risk scale. Despite
the criticisms on their scope and accuracy [93, 190, 241], they are widely used by
investors, financial institutions, and regulators, and they have been extensively stud-
ied in academic research [130]. However, external ratings, even if considered to
be reliable, they do not have a global coverage as they are available only for large
corporations, they are not always provided in a timely manner, and they do not differ-
entiate between companies in the same rating class. On the other hand, credit scoring
models provide a unique credit score to each rated borrower and they are applicable
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to all borrowers (including corporate loans and consumer credit), thus providing a
full coverage of a loan portfolio.

4.2 Construction and Validation Process

The credit scoring modeling process can be described through the five steps illustrated
in Fig. 4.1.

The process begins with the collection of appropriate data involving obligors with
known creditworthiness status. In a typical setting, data for defaulted and non-default
cases are collected. These data can be obtained from the historical data base of a credit
institution or from external sources. At this stage, some preprocessing of the data is
necessary in order to transform them into meaningful attributes, to eliminate outliers,
and to select the appropriate set of attributes for the analysis. These steps lead to the
final data {xi , yi }m

i=1, where xi is the input attribute vector for obligor i , yi in the
known status of the obligor, and m in the number of observations in the data set. These
data, which are used for model development, are usually referred to as training data.

The second stage involves the model fitting process, which refers to the identifi-
cation of the model’s parameters that best describe the training data. For instance,
assume the following linear model:

F(x) = α0 + xα

where α ∈ R
K is the vector with the coefficients of the selected attributes and α0

is a constant term. In this case, model fitting is involved with finding the optimal
parameters α and α0 on the basis of the information provided by the training data.
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This can be expressed as an optimization problem of the following general form:

min
α∈A

L(α, X) (4.1)

where A is a set of constraints that define the feasible (acceptable) values for the
parameters of the model, X is the training data set and L is a loss function measuring
the differences between the model’s output and the given classification of the training
observations.

On the algorithmic side, several statistical, data mining, and operations research
techniques are used to implement the model fitting process. The most widely used
methods include logistic regression and probit models, but non-parametric techniques
have also gained much interest among researchers and practitioners. Some examples
include, neural networks, rule-induction algorithms, support vector machines, fuzzy
models, ensembles, and hybrid systems (e.g., neuro-fuzzy models). Comprehensive
reviews and discussion of popular methods can be used in Abdou and Pointon [1],
Crook et al. [54], and Papageorgiou et al. [193].

The result of the model optimization process are validated using another sample
of obligors with known status. This is referred to as the validation sample. Typically
it consists of cases different than the ones of the training sample and for a future time
period. The optimal model is applied to these new observations and its predictive
ability is measured, usually using statistical measures (for an overview see [228]).
The economic aspects of the model’s predictive results are also important [30, 92,
147, 188].

The validation of the scoring model is followed by mapping the model’s outputs
(credit scores) to risk rating classes consisting of borrowers with similar levels
of creditworthiness [157]. The defined rating needs also to be validated in terms
of its stability over time, the distribution of the obligors in the rating groups, and
the consistency between the estimated probabilities of default in each group and the
empirical ones which are taken from the population of rated obligors.

4.3 Multicriteria Aspects of Credit Scoring

From the methodological point of view, credit scoring for business and consumer
loans is a statistical pattern classification problem, as the decision models are con-
structed on the basis of historical default data.1 Nevertheless, some features that ana-
lysts often require scoring models to have [147], make MCDA techniques appealing
in this context. In particular:

• Credit scoring models are usually required to be monotone with respect to the
inputs. From an economic and business perspective, the monotonicity assumption

1 In other specialized credit granting contexts (e.g., project finance), the risk assessment process is
mostly based on empirical quantitative and qualitative models [181] (Chaps. 8, 10), which fit well
the context of MCDA.

http://dx.doi.org/10.1007/978-3-319-05864-1_8
http://dx.doi.org/10.1007/978-3-319-05864-1_10
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implies that as the input information for a given applicant improves, the esti-
mated probability of default should decrease. Assuming that all attributes are in
a maximization form, the monotonicity assumption can be formally expressed as
follows:

Pr(D|xi ) ≤ Pr(D|x j ), ∀ xi � x j (4.2)

where Pr(D|xi ) is the estimated probability of default for credit applicant i and
� represents the dominance relationship, defined as follows: xi � x j ⇔ xi ≥ x j

and xik > x jk , for at least one attribute k.
Models that violate monotonicity in an arbitrary manner may fail to be accepted,
simply because they lack economic sense, thus providing counterintuitive results
from an economic perspective. Furthermore, empirical results have shown that
introducing monotonicity in credit scoring models actually improves their predic-
tive performance and robustness, through the elimination of the over-fitting effect
[72].

• Credit scoring models should be transparent and comprehensible. The predictive
accuracy of credit scoring models is not the sole decisive factor for their success in
practice. In addition to being accurate, the modes should also be easy to understand
by analysts, end users, and regulators. A comprehensible model enables its user to
understand its underlying logic and provide justifications on its recommendations
[170, 172], instead of simply being used as a black-box analytic recommendation
tool.

• Risk grades are ordinal. This is often ignored by many popular statistical and com-
putational intelligence techniques used for model building, which often assume
that the classes are nominal (i.e., in no particular order).

Multicriteria decision models fit well these requirements: (a) they are by definition
ordinal, (b) they provide evaluation results that are monotone with respect to the
evaluation criteria, and (c) they promote transparency, enabling the credit analyst
to calibrate them on the basis of his/her expert domain knowledge, and allow for
justification of the obtained results. Among others, MCDA methods have been used
in the area of credit scoring (and the relevant field of bankruptcy prediction) in
different ways:

1. As tools for building accurate and transparent credit scoring systems, customized
to the needs of particular financial institutions [51, 99]. This is particularly
important for special types of credit (e.g., project finance) for which historical
data may be lacking. In such cases, MCDA methods can greatly enhance peer
expert judgment scoring systems, facilitating the structuring of the credit grant-
ing evaluation process and providing formal procedures for aggregating multiple
credit evaluation criteria.

2. In combination with other modeling and learning techniques, including rough
sets, fuzzy models, case-based reasoning, and neural networks [39, 120, 252, 262].
Such computational intelligence techniques provide strong data analysis capabil-
ities. MCDA on the other hand, provides axiomatic decision models of different
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forms. The combination of these paradigms [64] provides a new set of powerful
hybrid systems for credit scoring.

3. As optimization approaches for model fitting under multiple performance
measures [113, 154, 186]. The performance of a credit scoring model has differ-
ent aspects, including statistical (e.g., different measures of predictive accuracy)
and economic (profit/costs derived from actions taken on the basis of the results
of a credit scoring model). Multiobjective optimization techniques enable the
consideration such multiple performance measures when building a credit scoring
model.

4. As alternatives to popular statistical and machine learning approaches providing
more accurate rating results [69, 74, 121]. The results from several studies show
that credit scoring models constructed using MCDA preference disaggregation
techniques provide robust and accurate results, and often actually outperform
other popular approaches. Thus, they could be considered as potential candidates
for constructing credit scoring and rating models.

The next section illustrates the application of a multicriteria methodology for
developing a credit scoring model and its comparison to popular statistical and non-
parametric techniques.

4.4 Using Preference Disaggregation Analysis for the
Construction of a Credit Scoring Model

MCDA provides a variety of approaches for credit risk modeling and the construction
of credit scoring systems, including outranking techniques [74, 121], rule-based
models [39, 61, 252, 262], and value models [51, 69, 63].

To facilitate the presentation we shall focus on additive value models in the frame-
work of the UTADIS method [70, 265]. Additive models are popular approaches for
credit risk modeling, as they are intuitive scoring systems, that are simple to under-
stand and implement, as they are compatible with the scorecard structure of credit
rating systems used in practice [219]. For instance, Krahnen and Weber [147] con-
ducted a survey among major German banks and found that all of them used credit
scoring models expressed in the form of an additive value function:

V (xi ) =
K∑

k=1

wkvk(xik) (4.3)

where the global value V (xi ) is an estimate of the overall creditworthiness and default
risk of obligor i .

In this model, the overall assessment is a weighted average of partial scores
v1(xi1), . . . , vK (xi K ) defined over a set of K credit risk assessment criteria. Without
loss of generality, we shall assume that the weighting trade-off constants are non-
negative and normalized such that w1 + w2 + · · · + wK = 1. On the other hand, the
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marginal value functions v1(·), . . . , vK (·), which define the partial scores, are scaled
such that vk(xk∗) = 0 and vk(x∗

k ) = 1, where xk∗ and x∗
k are the most and least risky

level of risk attribute k, respectively. For simplicity, henceforth it will be assumed
that all risk assessment criteria are expressed in maximization form (thus implying
that all marginal value functions are non-decreasing).

The construction of the credit scoring model (4.3) can be simplified by setting
uk(xk) = wkvk(xk), which leads to a rescaled set of marginal value functions
u1, . . . , uK normalized in [0, wk]. With this transformation, the evaluation model
(4.3) can be re-written in the following equivalent form:

V (xi ) =
K∑

k=1

uk(xik) (4.4)

This decision model can be linear or nonlinear depending on the form of the
marginal value functions. The marginal value functions can be either pre-specified
by the decision maker or inferred directly from the data using a preference disaggre-
gation approach. In the context of credit scoring the latter approach is the preferred
one, particularly when there are historical data available for constructing the model.
Under this scheme, a convenient and flexible way to take into consideration a wide
class of monotone marginal value functions, is to assume that they are piecewise
linear. In that regard, the range of each risk criterion k is split into sk + 1 subin-
tervals defined by sk break-points βk

0 < βk
1 < · · · < βk

sk+1, between the least and

the most preferred levels of the criterion (denoted by βk
0 and βk

sk+1, respectively), as
illustrated in Fig. 4.2. Thus, the marginal value of any alternative i on criterion k can
be expressed as:

uk(xik) =
sk∑

r=1

pr
ikdkr (4.5)

where dkr = uk(β
k
r ) − uk(β

k
r−1) ≥ 0 is the difference between the marginal values

at two consecutive levels of criterion k and

pr
ik =

⎧
⎪⎨

⎪⎩

0 if xik < βk
r−1

xik−βk
r−1

βk
r −βk

r−1
if xik ∈ [βk

r−1, β
k
r ]

1 if xik > βk
r

(4.6)

With the above piecewise linear modeling of the marginal value functions, the
scoring model (4.4) can be expressed as a linear function of the step differences in
the marginal values between consecutive break-points in the criteria’s scale:

V (xi ) =
K∑

k=1

p

ikdk (4.7)

where pik = (p1
ik, p2

ik, . . . , psk
ik) and dk = (dk1, dk2, . . . , dksk ).
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Fig. 4.2 Piecewise linear
modeling of a marginal value
function
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The parameters of model (4.7) can be estimated in the context of the MCDA
disaggregation paradigm [128] with non-parametric linear programming formula-
tions, using data for obligors classified into predefined risk classes. Such data can be
collected from historical data bases of financial institutions. Usually the data consist
of defaulted and non-defaulted obligors, but multi-grading schemes are also possible,
such as the credit ratings issued by credit rating agencies [69].

In a general setting, let us assume that reference (training) data for M1, M2, . . . , MN

obligors are available from N risk classes C1, . . . , CN , defined such that C1 is the
low risk category and CN the higher risk one. The decisions based on a credit scoring
model V (x) are made on the basis of the following classification rule:

Obligor i belongs in risk category � ⇐⇒ t� < V (xi ) < t�−1 (4.8)

where 1 > t1 > t2 > · · · > tN−1 > 0 are score thresholds that distinguish the risk
classes. The scoring model and thresholds that best fit the above rule, according to
the available training data for M obligors can be estimated through the solution of
the following linear programming problem [71]:

min
N∑

�=1

1

M�

∑

xi ∈C�

(ε+
i + ε−

i ) + λ

K∑

k=1

1
dk

s.t. V (xi ) =
K∑

k=1
p


ikdk i = 1, 2, . . . , M

V (xi ) − tn + ε+
i ≥ 1, ∀ xi ∈ C�, � = 1, . . . , N − 1

V (xi ) − tn−1 − ε−
i ≤ −1, ∀ xi ∈ C�, � = 2, . . . , N

t�−1 − t� ≥ 0, � = 2, . . . , N − 1
dk, t�, ε

+
i , ε−

i ≥ 0 ∀ i, k, �

(4.9)
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where 1 is a vector of ones. The first set of constraints defines the credit scores for
the training cases according to the additive model (4.7). The second set of constraints
defines the violations (ε+) of the lower bound of each risk class (this applies only
to obligors belonging to classes C1, . . . , CN−1), whereas the third set of constraints
defines the violations (ε−) of the upper bound of each risk category (this applies
only to the obligors belonging to classes C2, . . . , CN ). The last constraint is used to
ensure that the thresholds are monotonically non-increasing.

The objective function combines two terms. The first involves the minimization
of model’s fitting error. This is defined as the weighted sum of the errors for cases
belonging into different classes, where the weights are defined in terms of the number
of sample observations in each class. In this way, it is possible to handle reference sets
with considerable imbalanced class sizes, which are very common in credit scoring
(e.g., the number of obligors is default is much lower than the non-defaulted obligors).
The second term in the objective function is a regularization term in accordance with
Tikhonov’s regularization principle [242]. The parameter λ > 0 defines the trade-off
between the minimization of the fitting error and the complexity of the model, which
can be set by trial-and-error or with statistical resampling techniques such as such
as cross-validation [233] and the bootstrap [79].

Denoting by d∗
k (k = 1, . . . , K ) the optimal parameters of the model resulting

from the solution of the above linear program, the constructed additive value function
is scaled between zero and θ = ∑K

k=1 1
dk . Rescaling the model in [0, 1] can be
easily done simply by dividing the optimal solution by θ .

The use of linear programming for model fitting enables the handing of big data
sets. This is particularly important for credit scoring, as the available data become
larger, particularly after the introduction of the Basel II regulatory framework. Fur-
thermore, a linear programming model enables the risk analyst to incorporate special
domain knowledge, which can be very useful for calibrating the model with expert
judgment, in order to capture aspects of the problem not adequately covered by the
data. Finally, post-optimality techniques can be employed to analyze the robustness
of the results and the obtained model [75].

This modeling framework is also applicable with other types of decision models
for credit scoring and alternative optimization techniques for model fitting. For
instance, Doumpos [63] presented an evolutionary algorithm for constructing a non-
monotone value function, whereas Doumpos and Zopounidis [74] used a similar
algorithm for an outranking model. Bugera et al. [37] introduced goal programming
models for developing a credit scoring model in the form of a quadratic value func-
tion, whereas Doumpos et al. [65] used the MHDIS method [266], which is based
on multiple additive value models. Other optimization formulations (linear and non-
linear) for fitting multicriteria credit scoring models have been also been proposed
in several studies [99, 113, 197, 263].
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Table 4.1 Number of sample observations in each year and category

Years Non-defaulted Defaulted Total

2007 2,748 252 2,800
2008 2,846 253 2,899
2009 2,731 299 2,830
2010 2,143 244 2,187
Total 10,468 248 10,716

4.5 An Application

4.5.1 Data

To illustrate the usefulness and performance of MCDA methods in credit scoring,
a large sample of Greek firms from the commercial sector (wholesale and retail
trade) is used. The sample is taken from the database of ICAP S.A., which is a
leading business information and consulting firm in Greece. The data span the period
2007–2010. In each year throughout that period, the firms in the database were
classified either in the default or in the non-default group. The default group consists
of firms that declared bankruptcy as well as firms with other default events such as
protested bills, uncovered cheques, payment orders. Table 4.1 presents the number
of observations from the two groups for each year in the sample.

The firms in the sample are described over seven financial ratios (Table 4.2), which
cover three main aspects of corporate performance in accordance with the framework
of Courtis [53]:

• Profitability: Profitability ratios assess the ability of a firm to generate earnings.
The profitability ratios considered in this study include the gross profit margin
(gross profit/sales) and return on assets (earnings before interest and taxes/total
assets). The gross profit margin ratio is used to assess the sales profitability of
the firms, after controlling for the cost of sales, whereas the return on assets ratio
provides an overall evaluation of the operating profitability of the firms, taking
into consideration all types of operating expenses.

• Solvency and liquidity: Solvency assesses the dependency of the firms on debt
financing and their overall level of leverage. Liquidity, on the other hand, deter-
mines a company’s ability to pay off its short-term debt obligations. In this study,
total liabilities/total assets is used to assess the firms’ solvency, whereas the liq-
uidity of the firm is considered through the current ratio (current assets/current
liabilities).

• Managerial performance: Managerial performance ratios focus on the efficiency
of a firm’s policies towards its creditors and clients as well as its financial efficiency.
The former dimension is taken into consideration through two ratios, namely the
receivables turnover ratio (accounts receivables×365/sales) and the sales to cur-
rent liabilities ratio. On the other hand, financial efficiency is analyzed through the
interest expenses ratio (interest expenses/sales).
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Table 4.2 Financial ratios for credit risk assessment

Financial ratios Abbreviation Relationship to credit risk

Profitability
Gross profit/sales GP/S −
Earnings before interest and taxes/total assets EBIT/TA −

Solvency and liquidity
Total liabilities/total assets TL/TA +
Current assets/current liabilities CA/CL −

Managerial performance
Accounts receivables×365/sales AR/S +
Sales/current liabilities S/CL −
Interest expenses/sales IE/S +

The risk of default increases with ratios that are positively related to credit risk

Table 4.3 Averages and standard deviations (in parentheses) of the financial ratios for each group
of firms

Non-default Default

GP/S 0.30 (0.20) 0.23 (0.20)
EBIT/TA 0.04 (0.12) −0.04 (0.14)
TL/TA 0.72 (0.27) 0.88 (0.25)
CA/CL 1.67 (1.55) 1.22 (1.07)
AR/S 237.31 (247.79) 342.55 (371.90)
S/CL 2.57 (2.96) 1.51 (2.41)
IE/S 0.03 (0.04) 0.07 (0.08)

The selection of the financial ratios was based on the combination of three main
factors: (a) the research literature and the current best practices in the area of credit
scoring by international organizations, (b) the judgment of credit scoring analysts
with significant expertise on the characteristics of Greek firms, and (c) the discrimi-
nating power of the ratios.

Table 4.3 provides some basic statistics for the selected financial ratios for each
group of firms. As expected, firms in default have lower profitability, higher debt
burden and lower liquidity, higher interest expenses, and are less efficient in terms
of the credit they provide to their clients (accounts receivable turnover) and the
management of their short-term liabilities (S/CL ratio). The differences between the
two groups are all found to be significant at the 1 % level through the Mann-Whitney
non-parametric test.

4.5.2 Results

In order to be able to assess the predictive performance of a credit scoring model,
a holdout sample is required, ideally involving data for different obligors and time
period compared to the data set used to construct the scoring model [228]. In that
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Table 4.4 Contribution of the financial rations in the model

UTADIS LR

GP/S 0.009 −0.684(0.068)

EBIT/TA 0.184 −3.645(0.195)

TL/TA 0.180 1.791 (0.207)
CA/CL 0.199 −0.332(0.158)

AR/S 0.104 0.001 (0.152)
S/CL 0.131 0.047 (0.069)
IE/S 0.194 8.113 (0.151)
Constant −1.497

regard, the sample described in the previous section is split in two parts. The first
covers the period 2007–2008 and it is used as the training sample, whereas the data
for the period 2009–2010 are employed to test the performance of the credit scoring
models (i.e., holdout sample).

Following this procedure, Table 4.4 reports the trade-offs of the financial ratios
in the multicriteria additive model, as estimated through the solution of the linear
program (4.9) using the 2007–2008 data. For comparative purposes the coefficients
of the ratios in a logistic regression (LR) model are also reported, together with their
relative contribution in the model (in parentheses). LR is the most popular statistical
approach for constructing credit scoring models and it is widely used in this field by
both researchers and practitioners. In the context of LR, the relative importance of
the ratios can be assessed through the following index:

wk = |αk |σk

K∑

k=1

|αk |σk

where αk is the regression coefficient of ratio k and σk is the standard deviation of the
ratio. Measured in this way, wk represents the relative influence of ratio k on the LR
result in terms of the absolute impact of a standard deviation change in the ratio as
a proportion of the total absolute change in the dependent variable, given a standard
deviation change in all ratios [2].

In the multicriteria model, liquidity (CA/CL), interest expenses (IE/S), return
on assets (EBIT/TA), and solvency (TL/TA) have the highest trade-offs and conse-
quently they are important factors in the credit scoring process. The same variables
also contribute significantly in the LR model (all coefficients are significant at the
1 % level). However, it is worth noting that the coefficient of the sales/short-term
liabilities ratio has an incorrect sign in the LR model, as its positive regression coef-
ficient indicates that the probability of default increases with this ratio, which does
not comply with the economic interpretation of this ratio.
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Fig. 4.3 Marginal value functions

Figure 4.3 illustrates the marginal value functions of the four most significant
ratios in the multicriteria model. These functions provide further insights into how
the overall credit score of the firms is affected by their performance on these ratios.
For instance, EBIT/TA has a type of a step function, with the marginal value (partial
credit score) increasing for positive values of the ratio. Thus, the likelihood of default
is significantly lower for firms with positive return on assets. A similar behavior is also
observed for liquidity; the credit score increases (improves) linearly when CA/CL
is below one, but improves significantly for higher values. On the other hand, the
marginal value functions for the solvency and the interest expenses ratios have a
nearly linear form. As far as the TL/TA ratio is concerned, the partial credit score
decreases almost linearly for firms with TL/TA<0.9, but it is significantly lower
for firms facing a higher debt burden. On the other hand, the marginal value for the
IE/S ratio remains at high levels for firms with IE/S lower than 5 % and decreases
linearly for firms with higher interest expenses. This kind information derived from
the marginal value functions of the credit assessment criteria can be of great help for
credit analysts, as it enables them to have a better understanding of the credit scoring
model.

Except for analyzing the structure of a credit scoring model and the role of the
credit assessment criteria, the relationship between the probability of default and
the credit scores of the model as well as the model’s predictive performance, are also
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Fig. 4.4 Distribution of
sample observations in the
credit rating classes
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critical issues for the implementation of the model in practice. In this application,
these issues are analyzed by applying the constructed multicriteria model to the
2009–2010 holdout data. In order to examine the relationship between the probability
of default and the credit scores of the model, the latter are mapped to a five-point
credit rating scale. The rating scale is defined on the basis of the global values (credit
scores) of the observations in the training sample, as follows:

• class 1: very low risk firms with V (xi ) ≥ 0.899,
• class 2: low risk firms with 0.82 ≤ V (xi ) < 0.899,
• class 3: medium risk firms with 0.617 ≤ V (xi ) < 0.82,
• class 4: high risk firms with 0.513 ≤ V (xi ) < 0.617,
• class 5: very high risk firms with V (xi ) < 0.513.

The thresholds are set such that the firms are approximately normally distributed in
the five rating classes, according to the available data for the calibration of the model
(i.e., the training data). In that regard, the top 10 % of the training cases are assigned
to class 1 (i.e., the threshold 0.899 is the 90 % percentile of the global values of the
training observations). The next 22.5 % of the training cases are assigned to class 2
(i.e., the threshold 0.82 is the 67.5 % percentile of the global values of the training
observations). Following the same approach, the threshold 0.617 that distinguishes
medium risk firms from high risk ones, corresponds to the 32.5 % percentile of the
scores in the training sample (i.e., the medium risk category consists of 35 % of the
cases), whereas the threshold 0.513 that distinguishes high risk firms from very high
risk ones corresponds to the 10 % percentile of the scores in the training sample (the
high risk group includes 22.5 % of the training observations and the very high risk
class includes the bottom 10 %). The score thresholds specified in this way are then
used to rate the firms in the holdout sample. As shown in Fig. 4.4, the distribution
of the sample observations in the five rating classes exhibits good stability when
comparing the results for the training and holdout samples.

On the basis of this five-point rating, the probability of default in each rating class
can be estimated as the number of cases in default to the total number of cases in each
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Fig. 4.5 Empirical probabil-
ity of default for each rating
class (holdout sample)
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category. Figure 4.5 illustrates the results for the holdout sample. It is evident that
the risk of default increases exponentially when moving from low risk grades to high
risk ones (by a factor of about two). This is an appealing feature for a credit scoring
model, as it indicates that the model provides a clear differentiation of the obligors in
terms of their risk level, and its results are in accordance with the empirical default
frequency in the data.

To further analyze the predictive ability of the multicriteria model, different
performance measures are employed:

• Accuracy rates: On the basis of the credit scores estimated through a model and a
cut-off point, obligors are classified in the pre-defined risk categories (default and
non-default). Then, different accuracy measures can be defined. In this application
we use two main accuracy criteria:

– Overall classification accuracy (OCA): the ratio between the model’s correct
classifications to the total number of obligors evaluated. Similar calculations
can be made (separately) for each risk category. Thus, the accuracy rate αN D

for the non-default group is defined as the percentage of non-defaulted obligors
classified correctly by the model. The accuracy rate αD for the default group is
defined in the same way (i.e., the percentage of defaulted obligors classified by
the model in the default category).

– Average classification accuracy (ACA): the average of αN D and αD . This
averaging can be justified for the most common setting where a credit scor-
ing model is constructed with data for defaulted and non-defaulted obligors,
taking into account the expected misclassification cost. In particular, denoting
by pD the a-priori probability of default, the expected misclassification cost of
a credit scoring model is:

E(C) = pDCDαD + (1 − pD)CN D DaN D,
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where CD is the cost of misclassifying an obligor in default and CN D is the cost
for a non-defaulted obligor. The former is associated with losses due to default,
whereas the latter is related to the opportunity cost derived by rejecting credit to
a creditworthy client. Obviously CD is much higher than CN D , but on the other
hand, the a-priory probability of default (pD) is generally low (e.g., typically
around 5 %). Thus, it is reasonable to assume that pDCD ≈ (1− pD)CN D = P ,
in which case:

E(C) ≈ 2P
αN D + αD

2
= 2P × AC A

Thus, ACA is (in general) a reasonable proxy for the expected cost that arises
from using a credit scoring model.

• Area under the receiver operating characteristic curve: (AUROC) The AUROC
provides an overall evaluation of the generalizing performance of a classification
model without imposing any assumptions on the misclassification costs or the prior
probabilities [87] and it is commonly used to assess the discriminating power of
credit rating models [30, 82, 222]. Formally, the AUROC represents the probability
that a non-defaulted obligor will receive a higher credit score compared to one in
default. Thus, it can be calculated as follows:

AUROC = 1

MD MN D

∑

i∈N D

∑

j∈D

I (xi , x j )

where MD, MN D denote the number of observations in default and non-default
respectively and I (xi , x j ) is defined for a credit scoring model V (x) as follows:

I (xi , x j ) =

⎧
⎪⎨

⎪⎩

1 ifV (xi ) > V (x j )

0.5 ifV (xi ) = V (x j )

0 ifV (xi ) < V (x j )

• Kolmogorov-Smirnov distance: (KS) The Kolmogorov-Smirnov distance is the
maximum absolute difference between the cumulative distribution functions of
the credit scores of the obligors belonging into different groups. The highest is
this difference the more powerful is a credit scoring model in discriminating the
risk classes.

Table 4.5 presents detailed results on the predictive ability of the multicriteria
credit scoring model according to the above performance measures. For comparison
purposes, the results of LR are reported as well as those of a support vector machine
(SVM) model developed with a radial basis function kernel (SVM-RBF) using the
LIBSVM library in MATLAB R2013 [42]. SVMs have become an increasingly
popular statistical learning methodology for developing classification and regres-
sion models [249] with many successful applications in financial decision-making
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Table 4.5 Comparative results for the predictive performance of the models

Measures Methods 2009 2010 2009–2010

αND UTADIS 0.720 0.723 0.721
LR 0.676 0.690 0.682
SVM-RBF 0.735 0.745 0.739

αD UTADIS 0.707 0.818 0.741
LR 0.697 0.795 0.727
SVM-RBF 0.687 0.750 0.706

ACA UTADIS 0.713 0.771 0.731
LR 0.687 0.743 0.705
SVM-RBF 0.711 0.748 0.723

OCA UTADIS 0.719 0.725 0.722
LR 0.677 0.692 0.683
SVM-RBF 0.733 0.745 0.738

KS UTADIS 0.442 0.567 0.479
LR 0.393 0.515 0.429
SVM-RBF 0.435 0.512 0.453

AUROC UTADIS 0.769 0.826 0.786
LR 0.756 0.815 0.775
SVM-RBF 0.767 0.825 0.785

The best result for each performance measure is marked in bold

problems, including credit scoring [23, 123, 171, 234]. The use of the RBF kernel
enables the development of nonlinear classification models, as opposed to the linear
modeling setting of LR and the additive nature of the MCDA approach used in this
analysis.

The results of Table 4.5 indicate that the multicriteria credit scoring model
consistently outperforms LR on all performance measures and time periods, while
being quite competitive to the SVM-RBF nonlinear model. In particular, the UTADIS
model outperforms LR and SVM-RBF in identifying firms in default. Throughout
the two-years period 2009–2010, the accuracy of the multicriteria model for the
firms in default is 74.1 % versus 72.7 and 70.6 % for LR and SVM-RBF. On the
other hand, the SVM-RBF model performs better for the non-default group, whereas
LR performs poorly compared to the other methods. Overall, the UTADIS model
achieves the best balance between the accuracy rates for the two risk groups. As
a result, it outperforms the other models in terms of ACA (73.1 % overall versus
72.3 % for the SVM-RBF models, and 70.5 % for the LR model). The good per-
formance of the SVM-RBF model for the non-default group (which is the largest
one; cf. Table 4.1) leads to its high OCA. The UTADIS model follows second in
terms of its OCA. Finally, as far as the two performance measures that do not involve
accuracy rates are concerned, the UTADIS model performs consistently better than
LR and SVM-RBF. The differences are higher for the KS distance, whereas in terms
of AUROC the multicriteria model and SVM-RBF perform almost equally well.
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