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Abstract. Context and motivation: Requirements of todays
industry specifications need to be categorized for multiple reasons, in-
cluding analysis of certain requirement types (like non-functional require-
ments) and identification of dependencies among requirements.This is a
pre-requisite for effective communication and prioritization of require-
ments in industry-size specifications. Question/problem: Because of
the size and complexity of these specifications, categorization tasks must
be specifically supported in order to minimize manual efforts and to
ensure a high classification accuracy. Approaches that make use of (su-
pervised) automatic classification algorithms have to deal with the prob-
lem to provide enough training data with excellent quality. Principal
ideas/results: In this paper, we discuss the requirements engineering
team and their requirements management tool as a socio-technical sys-
tem that allows consistent classification of requirements with a focus on
organizational learning. We compare a manual, a semi-automatic, and
a fully-automatic approach for the classification of requirements in this
environment. We evaluate performance of these approaches by measur-
ing effort and accuracy of automatic classification recommendations and
combined performance of user and tool, and capturing the opinion of
the expert-participants in a questionnaire. Our results show that a semi-
automatic approach is most promising, as it offers the best ratio of qual-
ity and effort and the best learning performance. Contribution: Our
contribution is the definition of a socio-technical system for requirements
classification and its evaluation in an industrial setting at Mercedes-Benz
with a team of ten practitioners.
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1 Introduction

In current industry specifications it is essential to categorize requirements, partly
because of their growing size and complexity [1], but also to allow for a number
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of requirements related activities [2]: Identification of requirements of different
kinds (e.g. technical or non fun-functional requirements) is a necessity (1) for
having specific guidelines for developing and analyzing these requirement types,
(2) for architectural decisions, (3) for identifying equipment needed, its quantity
and permitted suppliers, and (4) for identifying dependencies among these re-
quirements, especially to detect risks and for scheduling needs during the project.
Related to this, Knauss et al. [3] propose an automatic classifier for identifying
security-related requirements early in the project, which is crucial in order to pre-
vent substantial security problems later [4–6]. More recent, Ott [7] also reports
the need to categorize requirements for inspection tasks to support reviewers
with the detection of consistency or completeness defects over large document
sets. Note that in this work, we use the term classification to refer to the specific
algorithmic task of mapping requirements to topics and categorization to refer
to general goal of establishing a good mapping between requirements and topics
for a specification.

Efficient classification can enable focussed communication and prioritization
of requirements. As the examples show, categorization of requirements allows
filtering relevant requirements for a given important aspect. Considering large
specifications, for example in the automotive domain (a single specification at
Mercedes-Benz can consist of up to 50.000 requirements and headings [8]), it
is necessary to minimize the manual efforts in categorization tasks. Automatic
classification is promising [3, 7], but depends on a sufficient amount of high
quality training data which is not available in many realistic scenarios.

Contribution: In this work, we model a socio-technical system for requirements
classification, consisting of the requirements engineering team and their require-
ments management tool. This socio-technical system allows different modes of
operation, ranging from full-automatic over semi-automatic to manual classifi-
cation of requirements. Our model has a special focus on learning, i.e. gaining
shared understanding of a classification scheme in a team and generating high
quality training data. For example, our semi-automatic approach learns and ad-
justs its suggestions with each new requirement according to the user’s choices.

We explore the performance of the different operation modes of the socio-
technical system in an experiment in cooperation with Mercedes-Benz, driven
by the following research questions:

– RQ1: If applied to a new specification domain, how are the relative quality
levels that can be achieved with the three operation modes fully-automatic,
semi-automatic, and manual classification?

– RQ2: If applied to a new specification domain, how high are the relative
efforts of these operation modes?

Our results suggest that the semi-automatic approach is most promising: it
offers significantly better quality than the fully automatic approach, causes less
effort than the manual approach, and in addition generates valuable training
data as a by-product. In Section 2 we describe related work. Thereafter, we
present our model of a socio-technical system (the planned user interactions and
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classification mechanisms) in Section 3. Section 4 gives a short overview of our
technical solutions and we present the exploratory experiment with Mercedes-
Benz in Section 5. We discuss the results in Section 6 and conclude the paper
with an outlook on future research in this field.

2 Related Works

In this section, we discuss a spectrum of approaches for classification of re-
quirements. On the one side of this spectrum are approaches that are based on
purely manual classification, as supported by most state-of-the-art requirements
management tools. Analysts specify the classification of requirements in a user-
defined attribute. As one such example, Song and Hwong [2] report about their
experiences with manual categorizations of requirements in a contract-based sys-
tem integration project. The contract for this project contains over 4,000 clauses,
which are mostly contract requirements.

On the other side of the spectrum are approaches that classify requirements
only based on automatic classification. Examples include QuARS tool by Gnesi
et al. [9], which automatically detects linguistic defects like ambiguities, using
an initial parsing of the requirements. Thereby, QuARS creates a categorization
of requirements to topics as a byproduct.

Especially when based on machine learning, such approaches face the problem
to obtain large enough training sets in sufficient quality. Knauss et al. [3] evaluate
to what extent security-relevant requirements can be automatically identified
in specifications based on Naive Bayesian Classifiers. Accordingly, satisfactory
results can be achieved, if both training and testing data were derived from
the same specification. This is probably due to the fact that writing style and
domain specific concepts have a strong impact on the classifier’s performance.
Ott [7] reports similar results for automatic classification of requirements in
multiple categories for supporting review activities. For this reason, Ko et al.
[10] propose to automatically create the training data for topic classification.
Based on a clustering algorithm they categorize requirements and use these to
train Naive Bayesian classifiers. Their evaluation results are promising, but only
based on small English and Korean specifications (less than 200 sentences).

Hussain et al. [11] developed the tool LASR that offers an interactive modus
for supporting groups in annotation tasks. By not relying on a fully automatic
classification approach they mitigate the problem of insufficient training data. In
contrast to our work, they try to support a group in collaboratively creating and
agreeing on a categorization, whereas we focus on supporting single annotators
with a special focus on cost and quality, as well as continuous improvement.

3 Socio-technical Requirements Classification

We define a topic as any crosscutting concern that demands for the ability to
filter related requirements. Examples include qualitative requirements, such as
performance or security-relevance, and crosscutting design issues or constraints
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such as regulatory concerns. A requirement can be assigned to a set of topics.
Technically, this can be done by adding an attribute topic to the requirement
and specify relevant topics as a comma separated list.

When requirements are categorized into topics, certain tasks (e.g. creating
a security concept, reviewing, prioritizing) become much simpler. As shown by
related work, automatic topic classification of natural language requirements is
technically feasible but prone to writing style and domain specificity. The main
reason for these problems is the lack of sufficient training data in high quality.
Thus, the integration of such algorithms in the requirements specification process
needs to be considered carefully.

To get a good categorization, the socio-technical system needs to support
four main use cases: It should support the author of a requirements document
in choosing topics during the documentation of requirements, it should propose
relevant topics when the user chooses a topic for a given requirement, it should
allow the user to add new topics to the socio-technical system, and it should
support assigning topics to a set of requirements that are already documented.

A system for requirements categorization needs to be able to learn, because
otherwise it could not adjust to domain specific concepts or writing style. This
learning can be observed on several levels. First, users learn a suitable system of
topics during working with the requirements. Second, the classification system
itself should learn from previous classifications and gain more and more accuracy
in proposing relevant topics.

The value of requirements categorization depends on its quality. For example,
consider designing a security concept. In this case it is very important that all
security relevant requirements are identified. Moreover, the value of the topic
classification needs to be higher than the cost to create it.

Figure 1 shows our model of a socio-technical system for requirements classi-
fication which can offer different modi of operation. First of all, it allows manual
classification (automatic classification support = no), the modus with the high-
est level of freedom. Users can specify a number of requirements, then classify
them, before they continue with the specification. We assume that this modus
can generate a high quality categorization at high cost.

Secondly, it allows to rely on fully automatic classification (in Figure 1: auto-
matic classification support = yes, user confirms classification = no). By elim-
inating the need for human intervention, the cost to create the classification is
minimal (consequently, the dashed transitions in Figure 1 are unusual in this
modus. Instead, the user would write the specification and then finalize it by
triggering the automatic classification). As has been shown before [7], this ap-
proach is highly effective, if enough high quality training data is available, i.e.
classified requirements in a closely related domain. Even though this is not un-
likely in product centered or software evolution scenarios, there will often be
situations where such training data is not available. Consequently, quality of
fully automatic topic classification might just be too low for many tasks.

Thus, we are especially interested in a third modus, the semi automatic classi-
fication. In this case the system recommends relevant topics and allows the user
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Fig. 1. A socio-technical system for requirements classification

to interact by confirming or rejecting recommendations (automatic classification
support = yes, user confirms classification = yes). This interaction can be used
to train supervised learning algorithms as discussed in the following section, thus
generating high quality training data for future versions of this specification.

The screenshot in Figure 2 shows a prototype of a supporting tool for the
socio-technical requirements classification system. The prototyp allows working
on data from typical requirements management tools, e.g. an authentic, publicly
available specification for a door control unit [7] stored in IBM Doors, as shown
in the figure. Users can add, remove, and edit requirements. If the user selects
or changes a requirement r1, the prototype updates the recommendation list (3
in Figure 2). If the user selects another requirement r2, the prototyp analyses
the user’s topic classification of requirement r1 and updates its training data ac-
cordingly. Depending on the modus, parts of the UI are deactivated and hidden,
e.g. the recommendation list in manual modus or both lists in fully automatic
modus.

4 Text Classification Algorithms

In requirements engineering and management, text classification algorithms can
be used to categorize huge document landscapes to certain topics: In past
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Fig. 2. Prototype of a specification tool as part of the socio-technical system. The main
area (1) allows editing the requirements specification, (2) allows to assign a category
to a requirement from the list of all available categories, (3) a shorter recommendation
list allows to asign recommended categories.

research [7], we showed at typical large-scale, German automotive specifications
of Mercedes-Benz that an automatic classification using text classification is pos-
sible with sufficient quality. Therefore, we identified a well-working combination
of pre-, post-processing, and classification steps, out of many alternatives. We
will use this combination in the current work, too.

Figure 3 shows details to the individual processing steps. The chosen pre-
processing, post-processing, and classification steps have many alternatives, but
after a comparison, we got the best results with the illustrated setting in pre-
vious work for German natural-language specifications from Mercedes-Benz [7].
A more detailed description to the individual process steps can also be found in
this previous work.

Fig. 3. Processing Steps
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The support vector machine (SVM) approach works as follows (based
on Witten et al. [12]) : A nonlinear mapping is used to transform the train-
ing data into a higher dimension. Within this new dimension, the classifier
searches for the optimal separating hyperplane, which separates the class of
topic relevant and topic irrelevant requirements. If a sufficiently high dimension
is used, data from two classes can always be separated by a hyperplane. The
SVM finds the maximum-margin hyperplane using support vectors and mar-
gins. The maximum-margin hyperplane is the one with the greatest separation
between the two classes.

The maximum-margin hyperplane can be written as [12]:

x = b+
∑

i is support vector

αi ∗ yi ∗ a(i) · a

Here, yi is the class value of training instance a(i), while b and αi are numeric
parameters that have to be determined by the SVM. a(i) and a are vectors. The
vector a represents a test instance, which shall be classified by the SVM.

Based on external training data (manually classified requirements), the SVM
then calculates for each topic such a maximum-margin hyperplane with the
greatest separation between the training requirements belonging to the topic
and the ones that do not. With this hyperplane the SVM can assign a new
requirement to the topic or not.

In the pre-processing step k-gram indexing [13], each word of each require-
ment is separated in each ongoing combination of k letters and the classifier
is then trained with these k-grams instead of the whole words. For example,
a k-gram indexing with k = 4 separates the word “require” to “requ”, “equi”,
“quir”, “uire”.

The post-processing step called topic generalization takes the structure of
Mercedes-Benz specifications into account. All specifications at Mercedes-Benz
are written using a template, which provides a generic structure and general
requirements, and are filled later with system specific contents. Because of this
structure, we assume that if a heading was assigned to a topic, then we can also
assign each of the requirements and subheadings below it to this topic. This
allows to relate requirements represented by tables or figures (i.e. elements that
are not accessible to text classification at all) to the topics of their headings.
Tables are implemented as OLE objects in our requirement management tool,
so the content of a table is not accessible to our algorithms.

5 Evaluation

5.1 Research Method

The purpose of this experiment is to test in which way automatic classification
helps to reduce effort and to increase quality of topic classifications in industrial
requirements specifications. We are also interested in learning effects. For this
reason, we explore the impact of initial training and user/tool interaction on
learning, i.e. changes of effort and quality over time.
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Based on our model of the socio-technical classification system (Figure 1),
we defined the following independent variables: Automatic classification support
can be activated or deactivated. Initial training of the automatic classifier might
provide better suggestions in the beginning, but take longer to adjust to a special
problem domain. User confirms classification determines if the user confirms the
classification and potentially overrides automatic classifications.

We monitored the following dependent variables: effort to provide a require-
ments specification with topic classification and quality of the topic classification.
Finally, we controlled for the quality of the requirements specification itself.

In previous work, we showed the fully automatic classification of requirements
to multiple topics with satisfactory results, when high quality training data is
available [7]. In contrast, we are now applying the socio-technical classification
system to new specifications, in different domains, and with new authors. We
are especially interested in how difficult it is to adjust the approach to such new
environments and if we can derive new training data during that process.

Based on our research questions on effort and quality of the different oper-
ation modes of the socio-technical classification system, the independent and
dependent variables lead us to the following hypotheses :

H1: Automatic classification leads to lower quality than manual classification.
H2: Automatic classification leads to less effort than manual classification.
H3: Starting with an initially trained classifier leads to better classifications

than starting with an untrained automatic classifier.
H4: An untrained classifier adjusts faster to the problem domain than an ini-

tially trained classifier.
H5: The combination of automatic classification and user confirmation leads to

higher quality of classifications than automatic classification.
H6: The combination of automatic classification and user confirmation leads to

less effort than manual classification.

We evaluated our hypotheses in an experiment and semi-structured follow-up
interviews with the participants (especially for determining a good ratio of effort

size
for practical use). For this experiment, we define four different (sets of) treat-
ments (Table 1).

Our model of the socio-technical system offers four relevant modi of inter-
action for categorizing requirements while writing a requirements specification,

Table 1. Four relevant sets of treatments of independent variables

Treatment Automatic classi-
fication support

Initial training User confirms
classification

T1 no no yes
T2 yes yes no
T3 yes no yes
T4 yes yes yes
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which are defined by specific values of the independent variables (treatments).
Treatment 1 describes the manual modus of interaction, where requirements are
written and classified in parallel without any tool support. Treatment 2 describes
the fully automatic operation of the socio-technical system, where users are not
involved with classification. This treatment provides us with a baseline on how
good the automatic classifier performs on the requirements that are specified
during the experiment.

Together, Treatment 1 and 2 allowed us to control for particularities resulting
from specific writing styles of the participants. These treatments did not require
us to observe the interaction of humans and the system, but provided us with
a baseline for the two established operation modi manual and fully automatic:
We established a ground truth based on (manual) expert classification of all
requirements written in the experiment and measured classification quality by
comparing against it. To ensure sufficient quality of the ground truth, we let
two experts classify the requirements iteratively and measure their agreement in
their classification. If the agreement level is below a threshold (based on inter-
rater agreement, e.g. Cohen’s Kappa [14]), the raters need to discuss situations
where they disagree and improve for the next iteration.

Treatment 3 defines the semi-automatic classification modus, where require-
ments authors write requirements and classify them interactively. In this case,
the classification tool was not initialized with any training data and needed to
learn the classification from the user. Treatment 4 is equal to 3, except that in
this case the classification tool was initialized with training data from other re-
quirements specifications. Both, in Treatment 3 and 4, the socio-technical system
learned through interaction between user and classification tool. For Treatment 3
and 4, we randomly assigned the participants in the experiment (controlling only
for similar levels of experience in both groups) and provided them with an ex-
emplary implementation of our classification tool prototype that was configured
according to the treatment.

5.2 Participants and Data Collection

The participants of the experiment were ten developers fromMercedes-Benz with
a typical mix of experience (relatively new to expert). Each participant wrote
approximately 100 - 300 functional and interface requirements for different parts
of two car systems, an outside light system and a speed control system. During
the writing tasks, they categorized the requirements with the semi-automatic
approaches described in section 5.1. For the categorization tasks we provided
the participants with a list of topics relevant for the specification domain in
advance. This list consists of 62 topics like, for example, “speed”, “ignition”, or
“communication” which are suitable for supporting specific review tasks [7].

To compare the results of this semi automatic classification with manual clas-
sifications, two independent persons manually classified these requirements later.
The manual classification of requirements to topics was done by separating the
data into parts of 150 objects. Each of these parts was then manually and in-
dependently classified by two persons and then synchronized in a review session
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using Cohen’s Kappa [14] as an aid. Cohen’s Kappa is a statistical measure
to calculate the inter-rater agreement between two raters, who each classify n
items to x categories. If the agreement level is below a threshold (< 0.9), the
raters need to discuss situations, where they disagree and improve for the next
iteration.

For the fully automatic classification (Treatment T2) and the semi automatic
classification (Treatment T4) with trained classifier we used the same training
data. We derived this training data from additional documents describing the
outside light system and the speed control system and from two public specifica-
tions of previous work [15]. All in all we used approximately 2,000 requirements
for training. The additional documents with descriptions of these two systems
were also provided during the experiment to help participants describing the
functionality of their parts of the systems.

5.3 Descriptive Statistics

Our experiment provided us with three sources of data. Firstly, we compared the
endresults with our ground truth (see Section 5.1). Secondly, the prototype of
our supporting classification tool was logging all interactions between user and
tool. This allowed us to compare how often a user accepts a recommendation.
Finally, the questionnaire provided us with insights into the opinion of our expert
classifiers.

Endresults vs. Ground Truth. Table 2 shows the recall and precision results
of of the 10 participants (last three columns). Column 2-4 present the results
of Treatment 2 (the fully automatic classifications), applied to the requirements
specidied by our participants. The first 5 rows show results for requirements
specifications that were created with Treatment 3 (semi-automatic classification
without initial training). The last 5 rows show the results for Treatment 4.

Table 2. Analyses Results

automatic semi-automatic

participant recall precision f-measure recall precision f-measure

T3: P1 0.42 0.36 0.39 0.30 0.77 0.43
T3: P2 0.55 0.58 0.57 0.15 0.66 0.25
T3: P3 0.62 0.45 0.52 0.83 0.76 0.79
T3: P4 0.48 0.46 0.47 0.80 0.89 0.84
T3: P5 0.50 0.42 0.46 0.82 0.91 0.87

T4: P6 0.43 0.33 0.37 0.56 0.76 0.65
T4: P7 0.47 0.56 0.51 0.49 0.73 0.59
T4: P8 0.47 0.33 0.39 0.40 0.72 0.51
T4: P9 0.56 0.46 0.51 0.90 0.69 0.78
T4: P10 0.46 0.33 0.38 0.34 0.57 0.43
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Complete list Recommendations Ratio (Secondary axis) 

Fig. 4. Results of telemetry: Cumulative amount of user picks from complete list,
recommendations, and ratio between both

Telemetry. During the experiment, each participant could categorize a require-
ment by either choosing the category from a complete list of all categories, or
by accepting a recommendation. Our prototype logs such events and we accu-
mulate how many categories were assigned with each method in Figure 4 (note
that telemetry data of two participants was corrupted and is missing).

The figure shows that our participants only preferred the full list over the
recommendations for the first 20-30 categorizations, if at all. Later, they tend
to assign categories from the recommendation list significantly more often.

Figure 4 also shows the ratio between both ways of assigning categories to
requirements. It appears that in both groups this ratio typically ends up around
the Factor 2, i.e. twice as many categories are assigned based on recommenda-
tions. In Group 3 (left hand side), the ratio is a little bit lower, which might have
been caused by the insufficient amount of training. The trajectories in Group 4
seem to have in common that during the first 30 categorizations, a depression
occurs (the ratio drops drastically).

Questionnaires. Figure 5 shows an excerpt from our questionnaire results,
where our participants report on their trust in the automatic classification. Par-
ticipants in Treatment 4 were more optimistic towards automatic classification.
The confidence of participants in Treatment 3 even decreased.

In similar question blocks we asked whether the participants were happy with
amount, quality, and improvement rate of the recommendations (Treatment 4:
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Fig. 5. Excerpt from questionnaire: Confidence in automatic classification

answer was generally positive, Treatment 3: less positive and recommendations
were not found helpful), whether they think that the semi automatic approach
would scale for real world specifications and if they would like to work with such
a tool (answer was yes for both treatments), and whether their ability to do the
topic classification improved (inconclusive for the scope of this experiment). We
also controlled for usability issues of our prototype (see Section 6.4)

6 Discussion

6.1 Performance of Fully Automatic Classification (H1 and H2)

With respect to (H1) – automatic classification leads to lower quality than man-
ual classification – the results in Table 2 confirm hypothesis and observations
we made in previous work [7]. Typical goals for sufficient classification quality
(e.g. recall > 70% and precision > 60% as proposed for example in [3, 7]) are
never met. This is due to the fact that training data from a specification in one
domain was used to classify requirements in another specification and domain,
leading to a drastic loss of quality of the automatic classification.

Concerning the comparison of effort for manual and automatic classification
(H2), the naive answer is of course yes: The effort of automatic classification
(ca. 5 min for initialization with training data and < 1 min for classification)
is lower than the effort of manual classification (> 1 hr). However, this does
not include the effort to create training data in sufficient quality. For the task
of creating training data, we employed similar to the manual classification of
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the experiment data two experts that iteratively classified and compared their
classification results with Cohen’s Kappa to increase the classification quality.
From our experience with the public and confidential DCU [7], we know that
such a high quality manual classification of a typical specification with 2000-
3000 requirements takes at least 150hrs. In the context of this experiment, we
used similar amounts of training data and again the total effort for creating this
data was at least 150hrs. Since training is not necessarily portable from one
application of the tool to another, this effort will not pay off over time.

6.2 Cold Start and Ability to Adjust to Domain (H3 and H4)

Concerning the question if initial training of the classifier leads to better clas-
sifications (H3), we get mixed results. The boxplot in Figure 6 (left) compares
results of semi-automatic classifications by participants with Treatment T3 and
T4 with our ground truth. Surprisingly, the deviation of classification results is
smaller, but the median of the f-measures is lower, if initial training data (T4)
was used.

We were also interested in how quick the recommender system adjusts to a new
domain (H4). Our data does not allow to give a clear answer to this. However, it
is noteworthy, that participants working with Treatment T4 did encounter some
phase of depression during the first 30 classifications, where the ratio of accepted
recommendations per classification drastically dropped (Figure 4). This is prob-
ably due to the fact that participants were initially having high confidence in the
recommendations and realized only later that better classifications were avail-
able. The confidence (and ratio) dropped, before it was slowly re-established.
This phenomen is not as clearly visible for participants with Treatment T3,
where recommendations in the beginning were obviously suboptimal. In addi-
tion, participants of T3 mention the phenomen that every topic they choose
is automatically recommended in the next requirement, regardless of the con-
tent (due to the lack of negative training data). Thus, participants seemingly
circumvent the phase of over-confidence.

T3 T4
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7

Level of automation

F
−M

ea
su

re

Fig. 6. Comparison of classification quality between treatments (left) and level of
automation (right)
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The overview of the responses in Figure 5 shows a mixed picture for this
hypothesis. Participants that were confronted with Treatment 3 (with no ini-
tial training data) lost confidence in the automatic classification and strongly
oppose fully automatic approaches. Participants that worked with Treatment 4
are indecisive about favouring the semi or fully automatic approach, but slightly
gained confidence in the automatic classification.

In summary, all participants generally liked the semi automatic approach and
participants with Treatment 4 gave even better ratings than those with Treat-
ment 3. This is no wonder, since the initial suggestions in Treatment 3 were
random and therefore not useful. Participants seemed to be more sceptic about
recommendations in this situation, leading to a better overall classification per-
formance. In contrast, the higher trust in the recommendations by participants
in Treatment 4 lead to more consistent quality and results.

6.3 Performance of Semi-automatic Approach (H5 and H6)

We were interested if the semi automatic approach leads to better quality than
the fully automatic (H5) and to less effort than the manual approach (H6).

For (H5), the box plot in Figure 6 on the right indicates that indeed the semi-
automatic classification is better (in comparison to our ground truth). In fact,
the f-measures in Table 2 are always better for the semi automatic approaches
compared to the full-automatic classification in the same row.

The telemetry shown in Figure 4 shows that our participants accepted recom-
mendations roughly twice as often as not (ratio ≥ 2), leaving about 1

3 of cases
where the automatic classification could be improved in the semi-automatic work
modus and indicates a quality improvement of the semi automatic approach.

In the questionnaire, we asked our participants to give us the (1) total number
of hours, as well as hours (2) for specifying and (3) classifying the requirements.

With respect to (H6) we need to compare these times with typical times for
classifying requirements manually. At Mercedes-Benz these times are frequently
normalized by number of requirements. Due to their experience, the raters in our
experiment were able to classify 150 requirements in 4 h, which equals 1.6 min
per requirement. Our participants had less experience with classification of re-
quirements. In average, they reported a total effort of 3.76 min per requirement,
consisting of 2.99 min for specifying and 0.77 min for classifying it. This signifi-
cant speedup in classifying requirements is due to the fact that the participants
needed less time to read and understand the requirements they had just written.

6.4 Threats to Validity

In this section, we discuss the threats to validity based on Runeson et al.’s classi-
fication in construction validity, internal validity, external validity and reliability
[16]. One obvious threat of the construction validity is the manual classifi-
cation. There is no unique classification and it is reviewer dependent. By using
Cohens’ Kappa we slightly mitigated this threat, but is still there. Another ques-
tion is, whether there are no better algorithms for our text classification tasks,
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better/additional pre- and post-processing steps or better/additional ways to
automatically extract training data, but the results show that we have at least
chosen promising candidates. Usability issues of the prototype might be a con-
founding factor and threat to the internal validity. We controlled for this factor
by doing System Usability Scale test [17] which showed that no major problems
affected the outcome. Concerning the external validity, there are limitations in
the transferability of our results on natural language specifications drawn from
the Mercedes-Benz passenger car development to specifications from other com-
panies in the automotive industry or even to specifications from other industries
because of different specification structures, the content and complexity of the
specifications, and other company specific factors. In addition, because of the
German language, we may have advantages with certain pre-processing steps
compared to other languages, while other well known pre-processing steps, for
example stemming, do not work on our data sets [7].

In our study we aimed at investigating a socio-technical system for classify-
ing requirements in an industrial setting. We prioritized working in an industrial
setting with professional requirements analysts and real world requirements over
statistical significance. In our setup, we did not plan to work with enough par-
ticipants to achieve statistical significance in one of our hypotheses. Thus, the
reliability of our results has to be considered low, as a different choice of par-
ticipants with similar background might lead to different results.

7 Conclusion and Outlook

In this paper, we introduced a model of a socio-technical system for requirements
classification, which consists of a requirements engineering team and their re-
quirements management tool with automatic classification support. The model
offers three different operation modes and we argue that the semi-automatic
classification can mitigate some major problems in automatic requirements clas-
sification: According to our exploratory study it offers a reasonable ratio of ef-
fort and quality when compared with the alternatives. It supports organizational
learning in that it automatically adjusts to new domains. Thus, it mitigates the
problem of insufficient training data that impedes the use of fully automatic
classification approaches in many industrial settings. During the evaluation, we
learned first hand how difficult it is to agree on a specific classification scheme
in a team. The semi automatic approach seems to offer an advantage over the
manual approach in that the recommendations transport some shared knowledge
across the team. Future work should investigate these effects. We hope that oth-
ers will profit from our model of a socio-technical requirements classification
system as well as from its empirical exploration.
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