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Abstract. [Context and motivation] System requirements specifi-
cations are normally written in natural language. These documents are
required to be complete with respect to the input documents of the
requirements definition phase, such as preliminary specifications, tran-
scripts of meetings with the customers, etc. In other terms, they shall
include all the relevant concepts and all the relevant interactions among
concepts expressed in the input documents. [Question/Problem]Means
are required to measure and improve the completeness of the require-
ments with respect to the input documents. [Principal idea/results]
To measure this completeness, we propose two metrics that take into
account the relevant terms of the input documents, and the relevant re-
lationships among terms. Furthermore, to improve the completeness, we
present a natural language processing tool named Completeness As-
sistant for Requirements (CAR), which supports the definition of
the requirements: the tool helps the requirements engineer in discovering
relevant concepts and interactions. [Contribution] We have performed
a pilot test with CAR, which shows that the tool can help improving the
completeness of the requirements with respect to the input documents.
The study has also shown that CAR is actually useful in the identifi-
cation of specific/alternative system behaviours that might be overseen
without the tool.

Keywords: Requirements analysis, requirements completeness, require-
ments quality, natural language processing, terminology extraction,
relation extraction.

1 Introduction

The starting point of a requirements definition process is very rarely a blank
paper. More often, several input documents are placed on the desk of the re-
quirements engineer, from legacy system documentation to reference standards,
from transcripts of meetings with the customers to preliminary specifications.
The content of these documents has to be taken into account when writing the
requirements [1, 2], since it settles the background on which the future system
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can start to take its form. Such input documents are normally written in nat-
ural language (NL), and suitable natural language processing (NLP) tools can
help identifying all the information that is relevant for the requirements. NLP
approaches have been proposed in the past to identify significant abstractions
that can aid the requirements process (e.g., [3, 4]). However, none of the existing
approaches considers the completeness of the requirements with respect to the
existing documentation. A requirements document that does not include the rel-
evant information of the input documents - i.e., it is incomplete - could bring to
several problems: if the missing information resides in the transcripts of meetings
with the customers, the product might not address the customer’s expectations;
if some information is overseen from the reference standards, the resulting prod-
uct might not comply to the norms; when concepts from legacy documentation
and preliminary specifications are not taken into account, re-work on the product
or on the process artifacts is hard to avoid.

In this paper, we propose a NLP-based approach to measure and improve
the completeness of a requirements specification with respect to the input doc-
uments of the requirements definition process. A requirements document is
complete with respect to the input documents if all the relevant concepts and
interactions among concepts expressed in the input documents are also treated in
the requirements. We refer to this type of completeness as backward functional
completeness. In order to measure such completeness, we provide two metrics
that take into account the relevant terms and relevant relations among terms
of the input documents. Furthermore, we provide a NLP approach to automati-
cally extract such terms and relations. A prototype tool named Completeness
Assistant for Requirements (CAR) has been developed, which suggests rel-
evant information during the requirements definition phase, and automatically
computes the degree of completeness of the requirements specification produced.

We evaluate the effectiveness of the approach with a pilot test, which is also
used as a reference example in the remainder of the paper. The pilot test concerns
the definition of the requirements for an Automatic Train Supervision (ATS)
component of a Communications-based Train Control system (CBTC). CBTC
systems are signalling and control platforms tailored for metro, standardized by
the IEEE Std 1474.1-2004 [5]. These systems provide automatic train protection,
train monitoring, and automated train driving. The ATS component of a CBTC
is a centralized system that monitors and regulates the movement of the trains.
The system automatically routes trains, and sends them speed profiles that shall
be followed while moving through the railway network. It is normally equipped
with a user interface where the ATS operator can view the position of all the
trains, their schedule, and other information.

From the pilot test, we find that the CAR tool actually helps in improving
the completeness of the requirements specification with respect to the input
documents – in our case, the ATS reference standard. The tool suggests relations
about concepts that do not appear evident while reading the input document,
and facilitates the identification of specific/alternative behaviours of the ATS
system.
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The paper is structured as follows. In Sect. 2, we give some background on
requirements specifications completeness. In Sect. 3, the research questions ad-
dressed by the current paper are presented. In Sect. 4, we introduce two metrics
to evaluate the backward functional completeness of a requirements specifica-
tion. In Sect. 5, the CAR tool is described. Sect. 6 presents the evaluation of the
approach through a pilot test. Sect. 7 provides conclusions and future works.

2 Defining and Measuring Completeness

In general, a requirements specification is complete if all the necessary require-
ments are included [6]. Several works have been presented in the literature to
define and to measure the completeness of a requirements specification. In this
paragraph, we review some definitions, which give a framework to understand
the concept of backward functional completeness provided by the current paper.

Completeness. A largely agreed definition of completeness of a requirements
specification can be found in Boehm [7]. The definition states that a complete
specification shall exhibit five properties: 1) No To-be-determined (TBD) items
2) No nonexistent references 3) No missing specification items (e.g., missing
interface specifications) 4) No missing functions 5) No missing products (i.e.,
part of the actual software that are not mentioned in the specification).

Internal/External Completeness. The definition is further conceptualized
by Zowghi and Gervasi [8]. The first two properties defined by Bohem [7] are
associated to internal completeness, and the second three properties to external
completeness. Internal completeness can be measured by considering solely the
information included in the specification. Instead, measuring external complete-
ness requires additional information provided by domain experts, for example in
the form of a domain model.

Feasible Semantic Completeness. A more formal definition of external com-
pleteness - referred as semantic completeness - is given in Lindland et al. [9].
They look at the requirements specification as a conceptual model M , and they
state thatM has achieved semantic completeness if it contains all the statements
about the domain D that are correct and relevant (i.e., D \M = ∅). They ob-
serve that total semantic completeness cannot be achieved in practice, and they
define the concept of feasible semantic completeness as D \M = S �= ∅. The set
S is composed of correct and relevant statements, but there is no statement in
S such as the benefit of including it in the specification exceeds the drawback of
including it.

Functional Completeness.A further refinement of the concept, which goes to-
ward the definition of a completeness measure, is provided by España et al. [10].
In line with the observations of Zwoghi and Gervasi [8], the authors argue that,
in order to compute the feasible semantic completeness, a reference model Mr

shall be defined to conceptualize the domain D. By focusing on functional re-
quirements, they consider the subset FMr ⊂ Mr, which is a model of the func-
tional requirements. Such a model is composed of functional encapsulations Fr,
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roughly “functions”, and linked communications LCr, roughly “messages”. More
formally, Fr = Fr ∪ LCr.

A functional requirements specification FM shall be compared against this
reference model FMr to evaluate its completeness. Therefore, the specification
FM shall be regarded as a composition of functional encapsulations F and linked
communications LC (i.e., FM = F ∪LC). The introduced concepts are used to
define two aspects of functional completeness :

– functional encapsulation completeness: all functional requirements specified
in the reference model have been specified in the model (i.e., Fr \ F = ∅).

– linked communication completeness: all linked communications specified in
the reference model have been specified in the model (i.e., LCr \ LC = ∅).

In order to provide metrics associated to these aspects, the authors define the
degree of functional encapsulation completeness as degFEC = |F |/|Fr|, and
the degree of linked communication completeness as degLCC = |LC|/|LCr|. In
practice, computing these metrics requires the definition of a reference model for
the functional requirements in terms of functions and linked communications.

3 Motivation

Besides the one applied by España et al. [10], several other measures for
functional requirements completeness have been proposed in the literature
(e.g., [11–15]). Nevertheless, the majority of such metrics deal with functional
completeness defined with respect to the future implementation of the system1.
Indeed, domain models [10], ontologies [15], identification of components [14],
identification of system states [12], or expert analysis [11] are required to com-
pute this kind of completeness. In other terms, domain experts are called to
foresee a possible implementation of the system, possibly through a reference
functional model FMr. According to this vision, we refer to this kind of com-
pleteness as forward functional completeness. Instead, in our work we wish to
focus on the completeness of the requirements with respect to the available input
documents of the requirements definition process. The input documents might
be transcripts of meeting with customers, preliminary specifications, reference
implementation standards, or any other information specifically regarding the
system under development. We refer to the completeness of a functional require-
ments specification with respect to the input documents as backward functional
completeness.

Backward functional completeness is achieved by a functional require-
ments specification when (1) all the relevant concepts expressed in the input
documents are treated in the requirements specification; (2) all the relevant in-
teractions among concepts expressed in the input documents are treated in the
requirements specification.

1 One exception is [13], where completeness is evaluated against higher-level
requirements.
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Consider for example the input document of our pilot test [5]. The document
contains the sentence “An ATS system shall have the capability to automatically
track, maintain records of, and display on the ATS user interface the locations,
[...], the train schedule and [...]”. Besides the other content, such a sentence tells
that the ATS user interface is supposed to display the schedule of the trains.
Therefore, the requirement specification is expected to include the concepts of
“ATS user interface” and “train schedule”. Furthermore, requirements shall be
provided that define the interaction among the two concepts (i.e., the fact that
the ATS user interface shall display the train schedule).

Achieving backward functional completeness ensures that no relevant infor-
mation contained in the input documents is left out from the specification. Mea-
suring this type of completeness can give higher confidence on the quality of the
specification. Therefore, a metric is required to measure this kind of complete-
ness. Furthermore, we are also interested in establishing whether a positive corre-
lation holds between such completeness and the completeness of the specification
with respect to the system to be (i.e., the forward functional completeness).

Bearing these observations in mind, we define three research questions, which
are addressed by the current paper: RQ1. How to measure the backward func-
tional completeness of a requirements specification document? RQ2. How to
improve the backward functional completeness of a requirements specification
document? RQ3. Does the backward functional completeness help in improving
the forward functional completeness of the specification?

The first question is answered by computing two completeness metrics that
consider the number of relevant terms that are used in the input documents, and
the number of relevant relations among terms (Sect. 4). Roughly, a document
is more complete than another if more relevant terms and more relevant rela-
tions are included in the document. The second question is answered through a
prototype tool that suggests relevant terms to be included in the requirements,
and that considers the relations among terms (Sect. 5). The third question is
answered through a pilot test, where we have evaluated the forward functional
completeness of the requirements produced with the proposed tool, and without
the proposed tool (Sect. 6).

4 Metrics for Backward Functional Completeness

Measuring the backward functional completeness of a requirements specification
requires the definition of specific metrics (Research Question 1). Here, we
define two metrics. The first one, named degree of concept completeness, mea-
sures how many relevant concepts that are expressed in the input documents are
treated also in the specification. The second one, named degree of interaction
completeness, measures how many relevant interactions that are expressed in
the input documents are treated also in the specification.

More formally, we define the two metrics as follows. Let T be the set of
relevant concepts expressed in the input documents, and let Q ⊆ T be the set of
such concepts expressed in the requirements specification. We define the degree
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of concept completeness of a requirements document D with respect to a set of
input documents I as degCC(D, I) = |Q|/|T |.

Now, let U be the set of relevant interactions among concepts expressed in
the input documents, and let R ⊆ U be the set of relevant interactions among
concepts expressed in the requirements specification. We define the degree of
interaction completeness of a requirements document D with respect to a set of
input documents I as degIC(D, I) = |R|/|U |.

Given a requirements document and the corresponding input documents, we
would like to compute the two metrics in an automated manner.

We argue that the relevant concepts expressed in the input documents can be
approximated with the relevant terms included in such documents. Furthermore,
relevant interactions among concepts can be approximated with the relevant
relations among terms. Therefore, we define a NLP approach to automatically
identify relevant terms and relations among terms in the input documents.

4.1 Identification of Relevant Terms

The proposed method for the identification of relevant terms is based on a novel
natural language processing approach, named contrastive analysis [16], for the
extraction of domain-specific terms from natural language documents. In this
context, a term is a conceptually independent linguistic unit, which can be com-
posed by a single word or by multiple words. For example, consider the doc-
ument that we have used in our pilot test [5]. In such document, “Automatic
Train Supervision” is a term, while “Supervision” is not a term, since in the
textual documents considered in our study it often appears coupled with the
same words (i.e., “train”, “route”), and therefore it cannot be considered as
conceptually independent.

The contrastive analysis technology aims at detecting those terms in a docu-
ment that are specific for the domain of the document under consideration [16, 17].
Roughly, contrastive analysis considers the terms extracted from domain-generic
documents (e.g., newspapers), and the terms extracted from the domain-specific
document to be analysed. If a term in the domain-specific document highly oc-
curs also in the domain-generic documents, such a term is considered as domain-
generic. On the other hand, if the term is not frequent in the domain-generic
documents, the term is considered as domain-specific.

In our work, the documents from which we want to extract domain-specific
terms are the input documents of the requirements definition phase. The pro-
posed method requires two steps. First, conceptually independent expressions
(i.e., terms) are identified (Identification of Terms). Then, Contrastive Analysis
is applied to select the terms that are domain-specific.

Identification of Terms. Given a set I = {I1, . . . , In} of input documents, we
aggregate the documents in a single input document I. From this document,
which collects the content of all the input documents, we identify a ranked list
of terms. To this end, we perform the following steps.
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1. POS Tagging: first, Part of Speech (POS) Tagging is performed with an
english version of the tool described in [17]. With POS Tagging, each word is
associated with its grammatical category (noun, verb, adjective, etc.).

2. Linguistic Filters: after POS tagging, we select all those words or groups
of words (referred in the following as multi-words) that follow a set of specific
POS patterns (i.e., sequences of POS), that we consider relevant in our context.
For example, we will not be interested in those multi-words that end with a
preposition, while we are interested in multi-words with a format like <adjective,
noun, noun> (such as “Automatic Train Supervision”).

3. C-NC Value: terms are finally identified and ranked by computing a
“termhood” metric, called C-NC value [16]. This metric establishes how much a
word or a multi-word is likely to be conceptually independent from the context
in which it appears. The computation of the metric is rather complex, and the
explanation of such computation is beyond the scope of this paper. The inter-
ested reader can refer to [16] for further details. Here we give an idea of the spirit
of the metric. Roughly, a word/multi-word is conceptually dependent if it often
occurs with the same words (i.e., it is nested). Instead a word/multi-word is
conceptually independent if it occurs in different context (i.e., it is normally ac-
companied with different words). Hence, a higher C-NC rank is assigned to those
words/multi-word that are conceptually independent, while lower values are as-
signed to words/multi-words that require additional words to be meaningful in
the context in which they are uttered.

After this analysis, we have a ranked list of k words/multi-words that can be
considered terms, together with their ranking according to the C-NC metric, and
their frequency (i.e., number of occurrences) in I. The more a word/multi-word
is likely to be a term, the higher the ranking.

Contrastive Analysis. The previous step leads to a ranked list of k terms where
all the terms might be domain-generic or domain-specific. With the contrastive
analysis step, terms are re-ranked according to their domain-specificity. To this
end, the proposed approach takes as input: 1) the ranked list of terms extracted
from the document I; 2) a second list of terms extracted from a set of documents
that we will name the contrastive corpora. The contrastive corpora is a set of
documents containing domain-generic terminology. In particular, we have con-
sidered the Penn Treebank corpus, which collects articles from the Wall Street
Journal. The reasonable assumption here is that a term that frequently occurs in
the Wall Street Journal is not likely to be a domain-specific term of the domain
of a technical requirements specification. The new rank TRank(t) for a term t
extracted from the document I is computed according to the function [16]:

TRank(t) = log(f(t)) · ( f(t)
Fc(t)
Nc

)

where f(t) is the frequency of the term t extracted from I, Fc(t) is the sum of the
frequencies of t in the contrastive corpora, and Nc is the sum of the frequencies
of all the terms extracted from I in the contrastive corpora. Roughly, if a term
is less frequent in the contrastive corpora, it is considered as a domain-specific
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term, and it is ranked higher. Consider again our pilot test. After the contrastive
analysis, a term such as “train” – which is highly frequent in the document (57
occurrences), but is also frequent in the contrastive corpora – is ranked lower
than “ATS user interface”. Indeed, this term has 8 occurrences in the document,
but is uncommon in the contrastive corpora.

After this analysis, we have a list of terms, together with their ranking accord-
ing the function TRank, and their frequency in I. The more a term is likely to be
domain-specific, the higher the ranking. From the list, we select the terms that
received the higher ranking. The choice shall be made according to a domain
relevance threshold τ . If TRank(t) ≥ τ the term will be selected as relevant.
The value of τ is defined over normalized values, where the rank of each term is
divided by the maximum value of TRank. The selection of τ shall be performed
by a domain expert after reviewing the lists of terms extracted. Normally, a
value of τ = 0.99 allows selecting most of the relevant terms.

Assuming that the set of selected terms T̄ provides an approximation of
the relevant concepts of the input documents T , we can approximate the de-
gree of concept completeness as degCC(D, I) ≈ |Q̄|/|T̄ |, where T̄ = {t ⊂ I :
TRank(t) ≥ τ}, and Q̄ = D∩T̄ . For example, in our case study, we have |T̄ | = 67
relevant terms extracted from the input documents (see Table 1 for examples). In
the first experiment, the requirements produced by subject A included |Q̄| = 46
of such terms. Therefore degCC(D, I) ≈ 68.7%.

4.2 Identification of Relevant Relations

In order to identify relevant relations among terms, we first select all the terms
t extracted in the previous step, regardless of their ranking. Then, we search
for possible relations among such terms. We state that there is a relation u =
(tj , th) between two terms tj , th if such terms appear in the same sentence or
in neighboring sentences. In our case, we select the previous and the following
sentence. In order to give a rank to such relation, we use the Log-likelihood metric
for binomial distributions as defined in [18]. The explanation of such metric is
beyond the scope of this paper. Here, we give an idea of the spirit of the metric.
Roughly, a relation holds between two terms if such terms frequently appear
together. Moreover, the relation is stronger if the two terms do not often occur
with other terms. In other words, there is a sort of exclusive relation among the
two terms. For each couple of terms tj, th occurring in neighboring sentences
of the input document I, we associate a rank according to the Log-likelihood
metric, which represents the degree of their relation u = (tj , th):

RRank(u) = Log-likelihood(tj , th)

In our pilot test, the term “re-routing of trains” has a relation with “movement
of trains” and with “ATS user interface”. However, the relation is stronger (i.e.,
more exclusive) with the former (RRank = 14.88 vs RRank = 8.85), since the
latter often occurs with other terms. Indeed, the ATS user interface is required
to show several information, besides those concerning re-routing of the trains.
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After this analysis, we have a list of relations, together with their ranking
according the function RRank. From the list, we select the terms that received
the higher ranking. The choice shall be made according to a relation degree
threshold ρ. If RRank(u) ≥ ρ, the relation will be selected as relevant. The
selection of ρ shall be performed by a domain expert after reviewing the lists of
relations extracted with the proposed method. Normally, a Log-likelihood above
10.83 is recommended to select only relevant relations. However, lower thresholds
can be chosen, if more relations are required.

Assuming that the set of selected relations Ū provides an approximation of
the relevant interactions U in the input documents, we can approximate the
degree of interaction completeness as degIC(D, I) ≈ |R̄|/|Ū |, where Ū = {u ∈
T̄ × T̄ : RRank(u) ≥ ρ}, and Q̄ = (D ×D) ∩ Ū . For example, in our case study,
we have |Ū | = 316 relations extracted from the input documents (see Table 2
for examples). In the first experiment, the requirements produced by subject A
included |R̄| = 54 of such relations. Therefore degIC(D, I) ≈ 17.1%.

5 A Word-Game to Support Requirements Definition

We would like to provide means to improve the backward functional completeness
of a requirements specification (Research Question 2). We argue that the
backward functional completeness of a requirements specification is normally
hampered by two problems: (1) missing concepts: the person who writes the
requirements might forget to consider relevant concepts of the problem, either
because she postpones their analysis, or because they are unclear and hard to
specify, or because the input documents include too many concepts to consider
them all; (2) missing concept interaction: when one writes a requirement, she
might be concentrated on the specific function that she is defining, and oversee
possible interactions among elements.

We have implemented a prototype tool named Completeness Assistant
for Requirements (CAR), which addresses these problems by automatically
suggesting possible relevant terms and possible relevant relations among terms
to be used in the requirements. The relevant terms and relations are extracted
from the input documents (e.g., transcripts of meeting with the customers, refer-
ence standards, preliminary requirements) according to the approach explained
in Sect. 4. Therefore, the tool starts with a set T̄ of relevant terms, and a set Ū of
relevant relations. Furthermore, the degree of concept completeness and the de-
gree of interaction completeness is computed at run-time while the requirements
manager writes down the requirements.

Fig. 1 shows the interface of CAR. The figure is used as a reference example
to explain the working principles of the tool. The example, adapted from our
pilot test, concerns the definition of the requirements for an Automatic Train
Supervision (ATS) system. An ATS system is a component of a metro control
system that takes care of monitoring and routing trains. Furthermore, an ATS
provides capabilities to remotely issue commands to the trains. The input doc-
ument, in the example, is a reference international standard [5], which is used
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Fig. 1. User interface of the tool

as a starting point to write the requirements for the ATS system. In general,
the tool can work with any kind of natural language input document, such as
interviews, transcripts of meetings with the customers, etc.

The tool is a sort of word-game. The main steps of the game are summarized
below:

1. The tool suggests to write a requirements with three terms. The first term
( conductor , in Fig. 1) is extracted from the set of relevant terms, while
the other two terms ( control , train doors ) are extracted from the
set of relevant relations. The three terms are also highlighted in the original
document, which is loaded to the bottom frame of the interface. In the
current version of the tool, the extraction is random. Nevertheless, smarter
approaches can be devised that choose the terms by taking into account their
relevance, their position, or the previously written requirements.

2. The user writes a requirement, possibly using the three terms suggested. An
example requirement that employs the three terms is “The ATS system shall
notify the inhibition of control of the train doors to the train conductor”.
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Then, the user adds the requirement to the central panel by pressing the
button Add. It is worth noting that a requirement like the one presented
above could not be deduced by simply reading the text of the input docu-
ment. It is actually an additional behaviour inspired by the suggested terms.
Indeed, a relation between the “conductor” and the “train doors” was not
specified in the original input document, as one can see from the fragment
displayed in Fig. 1.

3. The system checks if the user used any relevant term or relevant relations,
and consequently increases the degree of Concept Completeness and
the degree of Interaction Completeness. These values are computed as
|Q̄|/|T̄ | and |R̄|/|Ū |, respectively, as explained in Sect. 4.1 and 4.2. When
relevant concepts are found within the requirement, these are added to the
set Q̄. When relevant relations are found, these are added to the set R̄.
The current values of the metrics are shown below the panel that lists the
requirements.

4. The system automatically suggest other terms to be used in the following
requirement.

If a relevant term or relation is suggested twice, and the user does not employ
it in the requirement, such term/relation is marked as not relevant. Therefore,
the completeness scores are adjusted consequently (i.e., |T̄ | or |Ū | are decreased).

In some cases, the user might not be interested in writing a requirement that
includes all the suggested terms. In other cases, the user might want to focus
on the suggested terms/relations to write more than one requirement. With
the normal behaviour of the tool, new terms/relations would be automatically
suggested in these cases after pressing the button Add. As explained, if such
terms/relations are not used, they are marked as not relevant, and will not be
presented anymore among the suggestions. Therefore, we added the Suspend
Terms and Suspend Relations buttons, to suspend the automated suggestion
of terms and relations, and prevent the tool from marking them as not relevant.

If new relations among terms are reported in a requirement, these new rela-
tions shall be added to the relevant relations Ū . In our case, the relations between
“conductor” and the other two terms are added to Ū . Similarly, if some terms
are used that were not identified as relevant in the initial analysis, such terms
shall be stored among the relevant terms T̄ . These situations do not influence
the computation of the backward completeness (also |Q̄| and |R̄| increase like |T̄ |
and |Ū |). Nevertheless, we argue that storing and reviewing the new concepts
and relations can help understanding if the requirements specification provides
additional information with respect to the input documents.

6 Pilot Test

We have performed a pilot test to assess the effectiveness of the proposed ap-
proach, and to evaluate the correlation between the backward functional com-
pleteness and the forward functional completeness (Research Question 3) of
a requirements specification.
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In the pilot test, the first and third author, referred as subject A and subject
B, were required to write requirements for an ATS system, according to the
generic requirements provided by the standard IEEE Std 1474.1-2004 [5].

The requirements have been written with the support of the tool, and without
the support of the tool. The goal was to compare the degree of backward func-
tional completeness and the degree of forward functional completeness achieved
in the two cases.

More specifically, the pilot test required four steps, which are described below.

1. Input document reading: the chapter concerning the ATS of the IEEE
Std 1474.1-2004 [5] - about 5 pages long - was used as input document for the
requirements definition task. Subject A and B were asked to read the input
document to have a first understanding of the general needs of the system.
2. Tool set-up: from the input document, 67 relevant terms and 316 relevant
relations have been automatically extracted. To this end, a threshold of 99%
and a threshold of 10 were chosen as domain relevance threshold τ , and relation
degree threshold ρ, respectively. In Table 1 and 2, we provide representative
examples of relevant terms and relevant relations extracted from the document.
These terms and relations have been fed into the tool to support the definition
of the requirements.
3. Requirements definition Phase 1: subject A and B were asked to write
the requirements. Subject A operated with the support of the tool, and subject
B operated without the tool. The requirements definition lasted one hour.
4. Requirements definition Phase 2: subject A and B were asked again to
write the requirements. Subject B operated with the tool, and subject A operated
without the tool until they produced the same amount of requirements produced
in the previous step (i.e., if a subject produced n requirements in Phase 1, he
should have produced n requirements also in the Phase 2). Given a subject, this
choice allows comparing the completeness scores achieved in the two phases on
the same amount of requirements.

The subjects chosen for the test - first and third author - were involved in
the definition of the principles of CAR, while the approach for term/relation
extraction was defined and implemented by the second author only. Therefore, we
argue that the expectations of the two test subjects on the success of the solution
had a limited influence on the result of the test. Indeed, they did not know which
types of terms/relations would be considered relevant by the tool, and could not
influence the test by avoiding the usage of relevant terms/relations when the
tool was not used. This is especially true for Subject B, who performed his first
experiment without the tool. But it is also true for Subject A, since during the
first experiment he viewed only a limited part of the terms/relations extracted
by the tool (i.e., the suggested terms/relations).

6.1 Quantitative Evaluation

We evaluated the results of the test by computing the backward functional com-
pleteness of the produced requirements for the two subjects. Then, we computed
the forward functional completeness according to the metrics provided by España
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Table 1. Examples of relevant terms

Term TRank (%) Freqency

CBTC 100.0 44

ATS 99.99999 + 0.99769 × 10−6 43

ATS system 99.99999 + 0.8456 × 10−6 19

ATS user interface 99.99999 + 0.29614 × 10−6 8

train location 99.99999 + 0.1231 × 10−6 7

train 99.99999 + 0.1185 × 10−6 57

conductor 99.99997 + 0.73215 × 10−6 8

station 99.99979 + 0.57378 × 10−6 12

Table 2. Examples of relevant relations

Relation RRank Freqency

(conductor, ATS system) 35.1402383629 6

(ATS user interface, position of trains) 17.9938334306 2

(station, train at station) 16.1777267317 2

(speed regulation function, service brake rates) 14.8834871304 1

(train fault reporting, train health data) 14.8834871304 1

(re-routing of trains, movement of trains) 14.8834871304 1

(equipment, supplier) 13.1023727742 2

(ATS user interface, movement authorities) 12.4872415276 2

(station departure time, train service) 12.1108984081 1

et al. [10]. The degree of functional encapsulation completeness degFEC, and
the degree of linked communication completeness degLCC require the definition
of a reference model for the system. In our case, we have employed a preliminary
system specification where functions and linked communications were listed. The
reference model defines 21 functions and 10 linked communications for the ATS
system. The document was edited in the context of the Trace-IT project, a
project for technology-transfer, which involves ISTI-CNR and a medium-sized
railway signalling company. It is worth noting that the reference model was
provided before the definition of the method presented in this paper. Table 3
summarizes the results of the test.

Backward functional completeness. We see that, for both subjects, the backward
functional completeness, estimated with degCC and degIC, is higher when the
tool is employed (ΔdegCC = 12.7% and ΔdegIC = 8.6% in average). Therefore,
in our pilot test, the usage of the tool actually helped in improving the backward
functional completeness of the requirements specification. Furthermore, we argue
that if a larger amount of input documents would be employed, the benefit given
by the usage of the tool would be even more evident. The CAR tool helps in the
navigation of the input documents. Without tool support, coherent navigation
would be hardly practicable in the case of many documents. Moreover, with
a larger amount of information, the statistics that bring to the set of relevant
terms/relations would be more accurate, and the consequent suggestions given
by the tool would be more meaningful.
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Table 3. Results of the pilot tests

Subject
Num.
Reqs

Tool degCC degIC degFEC degLCC

A 36
Yes 68.7% 17.1% 47.6% 40%

No 52.3% 12.8% 61.9% 50%

B 21
Yes 67.2% 24.5% 47.6% 50%

No 58.2% 11.6% 33.3 % 50%

Forward Functional Completeness. Conflicting results have been found concern-
ing the effectiveness of the approach with respect to forward functional complete-
ness, estimated through degFEC and degLCC. Indeed, we see that subject A
achieved a lower value for both metrics when using the tool with respect to
the values obtained when the tool was not employed (ΔdegFEC = −14.3%,
ΔdegLCC = −10%). Instead, subject B achieved a higher value for degFEC
when using the tool (ΔdegFEC = 14.3%), while equivalent values for degLCC
were obtained in Phase 1 and 2. Therefore, from our test, we cannot identify a
positive correlation between the degree of backward functional completeness and
the degree of forward functional completeness. Instead, we argue that the results
obtained might be related to the order that was followed by the two subjects
in performing the tasks. Subject A performed the experiment with CAR before
writing the requirements without the tool, while for subject B was the other way
around. Both subjects achieved a higher degree of completeness during Phase 2.
Basically, a higher degree of completeness was obtained when the subjects ac-
quired a higher confidence with the topic of the requirements, since they already
defined requirements for the system in Phase 1.

6.2 Qualitative Evaluation

We have performed a qualitative analysis of the produced requirements to un-
derstand which were the main differences between the requirements produced
with CAR and those produced without the tool. Interesting results have been
found. We have identified two main differences: 1) requirements produced with
CAR tend to be more specific, while requirements produced without the tool are
more high-level; 2) requirements produced with CAR tend to identify alterna-
tive behaviors of the system. Representative examples of requirements produced
without the support of the tool by subject A are:

– R1. The ATS system shall send the desired speed profile to the trains
– R2. The ATS system shall have the capability to define temporary speed restrictions

for the trains
– R3. The ATS system shall implement the functionality of train routing
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These requirements are quite generic, and do not add too much content compared
to the input document. Instead, more specific requirements are produced with
the tool. For example, the following requirement was produced when the tool sug-
gested the term “emergency brake application” and the relations <“response”,
“wet rail”>: The ATS system shall adjust the speed profile of the trains in re-
sponse to wet rail conditions in order to avoid emergency brake application”.
Such requirement can be regarded as a specialization of R1 and R2, since it
explains the specific condition (i.e., the wet rail) that requires temporary speed
restrictions. The following requirement is an example of an alternative behavior
identified with the support of the tool. In this case, the relations suggested was
<“re-routing”, “service disruptions”>: The ATS system shall be capable of sup-
porting re-routing of trains in response to service disruptions”. This requirement
shows an alternative behavior (i.e., re-routing) of the routing functionality iden-
tified by requirement R3. According to this preliminary analysis, we argue that
the proposed tool can play a complementary role during requirements definition.
Indeed, it can be used as a support tool to identify specific cases, and alternative
behaviors that tend to be overseen in requirements definition approaches based
solely on the analysis of the input documents.

7 Conclusions

In this paper, the novel concept of backward functional completeness of a re-
quirements specification has been defined as the completeness of a specification
with respect to the input documents of the requirements definition process. Met-
rics to measure such completeness have been provided, as well as a NLP-based
tool named CAR to improve it. Further development of the principles of CAR
are currently under analysis. We would like to give a type to the relations that
are extracted from the input documents. For example, “ATS user interface” and
“train schedule” are related in our input document, and their relation is of type
“display”. Furthermore, we would like to explore different approaches for choos-
ing the terms to be suggested to the user of CAR. Such approaches should also
take into account the structure of the input documents, the structure of the
requirements specification itself, and the requirements previously written by the
user. Other similarity metrics, such as the cosine similarity, are currently under
analysis to evaluate the relations among the terms.

After improving the principles of CAR, we plan to assess the tool with both
academic and industrial case studies. In particular, we plan to consider systems
of different domains, as well as different types of input documents, in order to
identify possible refinements and domain-specific optimizations of the approach.
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14. Menzel, I., Mueller, M., Gross, A., Dörr, J.: An experimental comparison regarding
the completeness of functional requirements specifications. In: Proc. of RE 2010,
pp. 15–24 (2010)

15. Kaiya, H., Saeki, M.: Ontology based requirements analysis: lightweight semantic
processing approach. In: Fifth International Conference on Quality Software (QSIC
2005), pp. 223–230 (2005)

16. Bonin, F., Dell’Orletta, F., Montemagni, S., Venturi, G.: A contrastive approach
to multi-word extraction from domain-specific corpora. In: Proc. of LREC 2010,
pp. 19–21 (2010)

17. Dell’Orletta, F.: Ensemble system for part-of-speech tagging. In: Proc. of Evalita
2009, Evaluation of NLP and Speech Tools for Italian (2009)

18. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Com-
put. Linguist. 19(1), 61–74 (1993)


	Measuring and Improving the Completenessof Natural Language Requirements
	1 Introduction
	2 Defining and Measuring Completeness
	3 Motivation
	4 Metrics for Backward Functional Completeness
	4.1 Identification of Relevant Terms
	4.2 Identification of Relevant Relations

	5 A Word-Game to Support Requirements Definition
	6 Pilot Test
	6.1 Quantitative Evaluation
	6.2 Qualitative Evaluation

	7 Conclusions
	References




