
Camille Salinesi
Inge van de Weerd (Eds.)

 123

LN
CS

 8
39

6

20th International Working Conference, REFSQ 2014
Essen, Germany, April 7–10, 2014
Proceedings

Requirements Engineering:
Foundation
for Software Quality



Lecture Notes in Computer Science 8396
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Camille Salinesi Inge van de Weerd (Eds.)

Requirements Engineering:
Foundation
for Software Quality
20th International Working Conference, REFSQ 2014
Essen, Germany, April 7-10, 2014
Proceedings

13



Volume Editors

Camille Salinesi
Université Paris 1 Panthéon - Sorbonne, Centre Pierre Mendes France
90, rue de Tolbiac, 75634 Paris Cedex 13, France
E-mail: camille.salinesi@univ-paris1.fr

Inge van de Weerd
VU University Amsterdam, KIN Research Group
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
E-mail: i.vande.weerd@vu.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-05842-9 e-ISBN 978-3-319-05843-6
DOI 10.1007/978-3-319-05843-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933802

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Requirements Engineering is a dominant factor that influences the quality of
software, systems, and services. The REFSQ working conference series is well
established as one of the leading international forums for discussing RE and its
many relations to quality.

This year, 2014, we celebrate REFSQ’s 20th anniversary. In 2006, REFSQ
became a working conference and since 2010, it has been organized as a stand-
alone event. However, REFSQ used to be a workshop associated with the CAiSE
Conference. And really, everything started back in 1994, in Utrecht, 20 years ago.

Anyway, enough with history, the bottom line is: we are extremely pleased
to present you the REFSQ 2014 proceedings that compiles 23 papers presented
during the 8th and 10th of April 2014 in Essen, Germany.

This collection of papers results from a thorough reviewing process. 89 pa-
pers were initially submitted. After filtering out the papers that only submitted
abstracts, we were left with 64 papers, of which 3 were desk rejected either
because they were clearly out of scope or because they did not respect the au-
thoring guidelines and formatting constraints. Three members of the Program
Committee reviewed each paper. Then, a discussion was undertaken in order
to check consistency of evaluations, enrich reviews, and search for a consensus
on the final decision. Last, papers were discussed at the Program Committee
meeting. Even though each paper was discussed for its own qualities and issues,
the meeting helped reach a homogenous evaluation between all papers. 23 papers
were finally selected. Authors of rejected papers were encouraged to submit their
papers at the REFSQ workshops, or as a poster.

The REFSQ conference is organized as a three-day symposium with two
days devoted to scientific papers presentation with a one-day industry track
in-between. Both the industry and scientific presentations concern a variety of
topics, which show the liveliness of the requirements engineering domain. These
topics are for instance: scalability in RE, communication issues, compliance with
law and regulations, RE for self adaptive systems, requirements traceability,
new sources of requirements, domain specific RE, natural language issues, and
of course games. ‘Games for RE and RE for Games’ was the special topic of
REFSQ 2014. This was materialized by a plenary session at the conference, and
by a keynote given by Catherine Rolland, a serious games expert and project
manager at KTM Advance, a French company specialized in serious games. As
Catherine showed in her keynote, games are a very specific kind of software,
whose development involves very specific RE concerns from the special role of
art directors in software game projects, to the theoretical foundations of ludicity,
probably the most important requirement when it comes to games!

REFSQ is a collaborative effort. As program co-chairs, we would like to thank
the Steering Committee, all the members of the Program Committee, and the



VI Preface

organizing team, especially Roxana Klippert and Tobias Kaufmann who were
invaluable in the organization of this conference. We also want to thank the
industry track co-chairs Erik Kamsties and Martin, the poster session co-chairs
Krzysztof Wnuk and Vincenzo Gervasi, the workshop co-chairs Birgit Penzen-
stadler and Anne Persson, the doctoral symposium co-chairs Daniel M. Berry
and Roel Wieringa, and the empirical track co-chairs Jolita Ralyte and Xavier
Franch. All the publications associated with the satellite events can be found in
the REFSQ workshop proceedings published at CEUR.

We hope you will enjoy these proceedings and hope to see you soon at REFSQ
where we will have the opportunity to discuss research results, but also ground
breaking ideas as well as return on experience!

January 2014 Camille Salinesi
Inge van de Weerd



Conference Organization

Programme Co-Chairs

Camille Salinesi Université Paris 1 Panthéon - Sorbonne, France
Inge van de Weerd VU University Amsterdam, The Netherlands

Organizing Team

Tobias Kaufmann University of Duisburg-Essen, Germany
Stella Roxana Klippert University of Duisburg-Essen, Germany

Secretary of the Organizing Team

Selda Saritas University of Duisburg-Essen, Germany

Industry Track Co-Chairs

Erik Kamsties Fachhochschule Dortmund, Germany
Martin Glinz University of Zurich, Switzerland

Poster Session Co-Chairs

Krzysztof Wnuk Lund University, Sweden
Vincenzo Gervasi University of Pisa, Italy

Workshop Chairs

Birgit Penzenstadler University of California at Irvine, USA
Anne Persson University of Skövde, Sweden

Doctoral Symposium Co-Chairs

Daniel M. Berry University of Waterloo, Canada
Roel Wieringa University of Twente, The Netherlands



VIII Conference Organization

Empirical Track Co-Chairs

Jolita Ralyte University of Geneva, Switzerland
Xavier Franch Universitat Politècnica de Catalunya, Spain

Steering Committee

Daniel M. Berry University of Waterloo, Canada
Samuel Fricker Blekinge Institute of Technology, Sweden
Daniela Damian University of Victoria, Canada
Joerg Doerr Fraunhofer IESE, Germany
Andreas L. Opdahl University of Bergen, Norway
Anne Persson University of Skövde, Sweden
Klaus Pohl University of Duisburg-Essen, Germany
Camille Salinesi Université Paris 1 Panthéon - Sorbonne, France
Kurt Schneider Leibniz Universität Hannover, Germany
Inge van de Weerd VU University Amsterdam, The Netherlands
Roel Wieringa University of Twente, The Netherlands

Program Committee

Benoit Baudry Inria, France
Richard Berntsson Svensson Department of Computer Science,

Lund University, Sweden
Dan Berry University of Waterloo, Canada
Travis Breaux Carnegie Mellon University, USA
Sjaak Brinkkemper Utrecht University, The Netherlands
David Callele University of Saskatchewan, Canada
Jane Cleland-Huang DePaul University, USA
Rolland Colette Université Paris 1 Panthéon-Sorbonne, France
Daniela Damian University of Victoria, Canada
Maya Daneva University of Twente, The Neherlands
Joerg Doerr Fraunhofer IESE, Germany
Eric Dubois CRP Henri Tudor, Luxembourg
Sergio España PROS Research Centre, Canada
Xavier Franch Universitat Politècnica de Catalunya, Spain
Samuel Fricker Blekinge Institute of Technology, Sweden
Donald Gause Binghamton University, USA
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Tony Gorschek Blekinge Institute of Technology, Sweden
Olly Gotel Independent Researcher, USA
Paul Gruenbacher Johannes Kepler University Linz, Austria



Conference Organization IX

Peter Haumer IBM Rational, USA
Andrea Herrmann Free Software Engineering Trainer, Germany
Patrick Heymans University of Namur (FUNDP)/PReCISE

Research Centre, Belgium
Jennifer Horkoff DISI, University of Trento, Italy
Erik Kamsties University of Applied Sciences and Arts

Dortmund, Germany
Marjo Kauppinen Aalto University, Finland
Eric Knauss University of Victoria, Canada
Kim Lauenroth Adesso AG, Germany
Soren Lauesen IT University of Copenhagen, Denmark
Pericles Loucopoulos Loughborough University, UK
Raimundas Matulevicius University of Tartu, Estonia
Raul Mazo Université Paris 1 Panthéon-Sorbonne, France
Isabelle Mirbel I3S, France

John Mylopoulos University of Toronto, Canada
Cornelius Ncube Bournemouth University, UK
Andreas L Opdahl University of Bergen, Norway
Barbara Paech Universität Heidelberg, Germany
Oscar Pastor Lopez Valencia, Spain
Anne Persson University of Skövde, Sweden
Kai Petersen Blekinge Institute of Technology/Ericsson AB,

Sweden
Klaus Pohl University of Duisburg-Essen, Germany
Jolita Ralyté University of Geneva, Switzerland
Gil Regev Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Bjorn Regnell Lund University, Sweden
Kristian Sandahl Linkoeping University, Sweden
Pete Sawyer Lancaster University, UK
Kurt Schneider Leibniz Universität Hannover, Germany
Norbert Seyff University of Zurich, Switzerland
Guttorm Sindre NTNU, Norway
Janis Stirna Stockholm University, Sweden
Thorsten Weyer University of Duisburg-Essen, Germany
Roel Wieringa University of Twente, The Netherlands
Krzysztof Wnuk Lund University, Sweden
Eric Yu University of Toronto, Canada
Didar Zowghi University of Technology, Sydney, Australia



X Conference Organization

Additional Reviewers

Bano, Muneera
Dalpiaz, Fabiano
de La Vara, Jose Luis
Hesse, Tom-Michael
Hübner, Paul
Knauss, Alessia
Maier, Andreas

Riegel, Norman
Sannier, Nicolas
Todoran, Irina
Villela, Karina
Vlaanderen, Kevin
Zorn-Pauli, Gabriele



Conference Organization XI

Sponsors

Platinum Level Sponsors 

 

Gold Level Sponsors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Silver Level Sponsors 
 
 
 
 
 
 



Keynotes (Abstract)



Do Not Fear the Plumber

Catherine Rolland, KTM Advance, Serious Game Lab

Paris, France
catherine.rolland@ktm-advance.com

What do Tetris, World of Warcraft, Assasin’s Creed and Fold It have in common?
And what can they do for Requirements Engineering? They are all games, video
games. Either created for fun or for more serious purposes, each of them has
marked the history of the video game industry and illustrated the various uses
one can have of it. If consumers have quite quickly been attracted by this engag-
ing tool to the point of making it the first cultural good worldwide, its industry
is still under development and the width of its potential not yet exploited.

A video game is a complex mix between informatics, graphical arts, technics
and game design. Either made by one person or a team of more than 200 experts,
the suc-cess of a game is still difficult to predict/determine. Numbers of methods
and methodologies for its creation are being conceived, tested, adapted and a
huge effort is done in order to industrialize its production. Influences from other
areas where indus-trialization has long been proven and optimized can be of key
value but challenges have still to be met in order to keep a space for creativity,
design and playability in these processes.

With the infatuation of Serious Game and Serious Gaming, more and more
illustra-tions of the use of games in very diverse areas are being described. Suc-
cessful con-ception of adapted games, discovery of adequate use, concrete ben-
efits’ evaluation. . . are among the challenges still ahead for several domains.
Nevertheless the game itself has proven its efficiency in enhancing the finding
of new solutions. Thanks to the space of freedom the game offers, the player
explores, he tries, fails and finally un-leashes his imagination. The conditions
created by the game, encourage different thinking, which is key for innovation.



Table of Contents

Is Requirements Engineering Useless in Game Development? . . . . . . . . . . 1
Jussi Kasurinen, Andrey Maglyas, and Kari Smolander

Towards Model-Driven Requirements Engineering for Serious
Educational Games: Informal, Semi-formal, and Formal Models . . . . . . . . 17

Kendra M.L. Cooper, Eman S. Nasr, and C. Shaun Longstreet

Measuring and Improving the Completeness of Natural Language
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Alessio Ferrari, Felice dell’Orletta, Giorgio Oronzo Spagnolo, and
Stefania Gnesi

(Semi-) automatic Categorization of Natural Language Requirements . . . 39
Eric Knauss and Daniel Ott

A Systematic Literature Review of Requirements Modeling
and Analysis for Self-adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Zhuoqun Yang, Zhi Li, Zhi Jin, and Yunchuan Chen

Requirements-Driven Social Adaptation: Expert Survey . . . . . . . . . . . . . . . 72
Malik Almaliki, Funmilade Faniyi, Rami Bahsoon, Keith Phalp, and
Raian Ali

A Requirements Monitoring Infrastructure for Very-Large-Scale
Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Michael Vierhauser, Rick Rabiser, and Paul Grünbacher

State of Practice of User-Developer Communication in Large-Scale IT
Projects - Results of an Expert Interview Series . . . . . . . . . . . . . . . . . . . . . . 95

Ulrike Abelein and Barbara Paech

Digital Addiction: A Requirements Engineering Perspective . . . . . . . . . . . 112
Amen Alrobai, Keith Phalp, and Raian Ali

Feedback-Aware Requirements Documents for Smart Devices . . . . . . . . . . 119
Erik Kamsties, Fabian Kneer, Markus Voelter, Burkhard Igel, and
Bernd Kolb



XVIII Table of Contents

INCREMENT: A Mixed MDE-IR Approach for Regulatory
Requirements Modeling and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Nicolas Sannier and Benoit Baudry

Systematic Elaboration of Compliance Requirements Using Compliance
Debt and Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bendra Ojameruaye and Rami Bahsoon

Answer-Set Programming in Requirements Engineering . . . . . . . . . . . . . . . 168
Wenbin Li, David Brown, Jane Huffman Hayes, and
Miroslaw Truszczynski

Improving the Understandability of Formal Specifications:
An Experience Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Felix Kossak, Atif Mashkoor, Verena Geist, and Christa Illibauer

Problem-Based Requirements Interaction Analysis . . . . . . . . . . . . . . . . . . . 200
Azadeh Alebrahim, Stephan Faßbender, Maritta Heisel, and
Rene Meis

Analyzing the Effect of the Collaborative Interactions on Performance
of Requirements Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Nelly Condori-Fernández, Sergio España, Klaas Sikkel,
Maya Daneva, and Arturo González

Argumentation-Based Discussion for User Forum: A Research
Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Itzel Morales-Ramirez and Anna Perini

A Requirements-Led Approach for Specifying QoS-Aware Service
Choreographies: An Experience Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Neil Maiden, James Lockerbie, Konstantinos Zachos,
Antonia Bertolino, Guglielmo De Angelis, and
Francesca Lonetti

Experience-Oriented Approaches for Teaching and Training
Requirements Engineering: An Experience Report . . . . . . . . . . . . . . . . . . . . 254

Andrea Herrmann, Anne Hoffmann, Dieter Landes, and
Rüdiger Weißbach

An Analysis of Priority-Based Decision Heuristics for Optimizing
Elicitation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Norman Riegel and Joerg Doerr

The Effects of Requirements Elicitation Issues on Software Project
Performance: An Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Neetu Kumari Sethia and Anitha S. Pillai



Table of Contents XIX

Requirements Reuse and Patterns: A Survey . . . . . . . . . . . . . . . . . . . . . . . . 301
Cristina Palomares, Xavier Franch, and Carme Quer

Safety Evidence Traceability: Problem Analysis and Model . . . . . . . . . . . . 309
Sunil Nair, Jose Luis de la Vara, Alberto Melzi, Giorgio Tagliaferri,
Laurent de-la-Beaujardiere, and Fabien Belmonte

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 1–16, 2014. 
© Springer International Publishing Switzerland 2014 

Is Requirements Engineering Useless  
in Game Development? 

Jussi Kasurinen, Andrey Maglyas, and Kari Smolander 

Software Engineering and Information Management 
Lappeenranta University of Technology, Finland 

{jussi.kasurinen,andrey.maglyas,kari.smolander}@lut.fi 

Abstract. [Context/motivation] Game development is characterized by a high 
level of creativity when compared to other fields of software development. 
Games cover a multitude of themes and genres, and represent a heterogeneous 
group of different products with varying requirements and business goals. 
[Question/problem] Requirements engineering (RE) should be relevant to 
game development, but is this true and if it is, how does game industry apply 
RE in practice? [Principal ideas/Results] We interviewed 27 software 
professionals in seven organizations to understand how requirements 
engineering is applied in game developing organizations. The results suggest 
that in game development business practicalities and drive for “fun” dominate 
the areas associated with requirements engineering. Additionally, game 
development organizations apply approaches and methods that are comparable 
to requirements engineering and requirement management, but do not 
consciously apply common RE practices. [Contribution] This paper extends 
our understanding of requirements engineering in video game development and 
contributes to the requirements engineering body of knowledge. 

Keywords: game development, requirements engineering, requirements 
management, game design. 

1 Introduction 

The game industry is characterized by a high level of creativity and uncertainty [1]. Its 
products are directed at a mass public and they are developed for entertainment rather 
than for a clearly utilitarian purpose [2]. The game industry products include hits 
(successful and popular games) and misses (failed and unpopular games) [3] and its 
products differentiate horizontally, which means the creation of novel products without 
making them fundamentally different from other products [4]. Due to the creativity-
oriented approach to the development and entertainment, the value of games and the 
role of requirements engineering in the game industry remain unclear.  However, 
computer games have several features distinguishing them from other consumer 
products. The end products of other creative industries like fashion, music, and movies 
are unchangeable after the release or production, but games are similar to conventional 
software products that can evolve incrementally with updates. These updates may add 



2 J. Kasurinen, A. Maglyas, and K. Smolander 

 

new characters, levels, and tools to the existing game and at the same time, extend the 
time a user spends playing the game. Nevertheless, the game evolution cycle is often 
based on the game company vision rather than on the requirements collected from the 
users. This raises a question whether the methods, tools, and practices of requirements 
engineering can be applied to game development, or are game products results of 
chaotic creativity. 

In this paper, we aim to answer to the following research questions: 

(i) What is the role of requirements engineering in game development? 
(ii) How does requirements engineering fit together with a high level of 

creativity and uncertainty of game development? 
(iii) How do game companies develop prototypes of new games? 

Our research team interviewed 27 game development professionals in seven game 
developing organizations to examine their game development processes and to 
understand how these organizations function. We were especially interested in 
understanding if requirements engineering methods were applied – or not - in game 
development processes.  

The rest of the paper is structured as follows: Section 2 discusses related research. 
Section 3 introduces the research process, and Section 4 reports the results of the 
analysis. Section 5 discusses the results, their validity and applicability. Section 6 
concludes the paper. 

2 Related Research 

Callele at al. studied requirements engineering in the video game industry and 
concluded that the success of games depends on solving the communication issues 
between stakeholders with technical and art backgrounds, the impact of previously 
developed games, integration between media and technology, and the impact of non-
functional requirements [5]. The role of non-functional requirements like fun, 
aesthetic, look and feel is especially important in games but they are difficult to 
manage and trace [5]. 

Fun, or enjoyment, has been called as the main aim of computer games [6]. This 
relates to the intrinsic motivation to play games but other, extrinsic, motivators such 
as learning can be involved in playing as well [6]. In order to be attractive and played 
repeatedly, digital games should deal with the emotions of a player and, as a result, 
games include emotional requirements. These requirements can be managed using 
emotional terrain maps, emotional intensity maps, and emotion timelines [7].  

Another attempt to apply requirements engineering in user experience design, so-
called experience requirements, were done in order to provide a mechanism for game 
developers to predict impressions and experiences of a player. The idea was to allow 
companies to apply requirements engineering techniques early in the game 
development, but the complexities of using this technique were greater than 
anticipated [8]. 

The creation of games is also tightly coupled with iterations and prototyping. It is 
usual to create several prototypes in order to meet the requirements for fun and 
enjoyment [8]. Prototyping takes place in the preproduction stage in order to help the 



 Is Requirements Engineering Useless in Game Development? 3 

 

game designers to find the type of game they would like to create. Kanode and 
Haddad discuss that requirements engineering should take place at the end of the 
preproduction phase when the final game idea has been identified [9]. Other 
researchers argue that requirements engineering practices should be introduced to the 
game project at the earlier stage [7, 8]. In this regard, the place of requirements 
engineering in the process models of game development has not been confirmed yet.  

A process model is defined as “an abstract representation of a process 
architecture, design, or definition” [10]. Its goal is to improve process understanding 
in order to facilitate human communication, process improvement, and management 
[10, 11]. There is a number of process models developed for managing requirements 
changes [12], project management [10], and others, but a process model viewpoint 
has not been widely studied in the game industry, which is assumed to be dominated 
by the waterfall model [9]. 

Overall, requirements engineering in the game industry has been periodically 
studied by researchers in order to bring “more engineering” into creativity. However, 
these practices are not widely used in companies mainly because of the creative side 
in game companies, including designers, artists, and producers who are against 
bringing strict engineering approaches into their day-to-day work [7]. Therefore, we 
conducted this study in order to understand the place, if this place exists, of 
requirements engineering in game development. 

3 Research Method 

The goal of this study was to understand and clarify how requirements engineering 
practices are used in game companies. It was designed as an interpretive qualitative 
study using the Grounded Theory research method. The Grounded Theory was chosen 
because it is suited well for discovering and analyzing the activities in companies 
within their social and organizational context [13]. 

Developed by Glaser and Strauss in 1967 as a pragmatic approach for conducting 
social science research [14], Grounded Theory is built upon two main concepts: 
constant comparison and theoretical sampling [15]. The idea of constant comparison 
is that every new piece of collected data is compared with other data to find 
similarities and differences. Therefore, data is collected and analyzed simultaneously. 
The concept of theoretical sampling represents an iterative process of theory building 
in which the next source of data, such as an interviewee, is selected based on the 
analysis of the previous samples [15]. 

In this study we follow the Strauss and Corbin version of grounded theory. This 
method relies on systematic codification and categorization process for observations 
[16]. It enabled us to study and understand the processes and underlying connections 
between different activities in a large context such as game development. The 
interpretation of the field study results was completed in accordance with principles 
derived from [17] and [18]. 



4 J. Kasurinen, A. Maglyas, and K. Smolander 

 

3.1 Data Collection 

The initial set of companies for the interviews was selected from our research partners 
and then supplemented with other volunteering organizations. Our objective was to 
have a heterogeneous group of different target audiences, development platforms, and 
organizational histories. In total, we selected seven organizations representing small 
to medium-sized professional game developers to the sample. We applied the EU 
SME scale as the size measure for the companies [19]; less than 50 employees for a 
small organization, less than 200 for a medium and more than 200 for a large. 
However, since we also observed that the case organizations applied outsourcing and 
insourcing assets to a significant degree, we graded the development team and project 
sizes separately from the organizations. As it can be observed in Table 1, several case 
organizations (A, C and D) had larger projects than what the company size would 
have indicated. For example, Case A had less than one hundred own employees, but 
frequently developed products that had approximately three hundred contributors. In 
contrast, our smallest observed project had three developers and two outsourced 
artists. 

We aimed to cover differences between organizations and therefore used the polar 
type selection to include cases from different target platforms and different sizes of 
development. Five of the seven were either recent business startups or new game 
development companies that have released less than five products. The other two 
companies were more experienced in product development and had released more 
than five products. The target release platforms also varied from different handheld 
devices (smartphones, tablets) to PCs and console systems (PlayStation, Xbox, etc.) 
and to browser-based games played online. Two of the seven interviewed 
organizations also reported that they would expand to new platforms in the future, 
Case A to handheld devices and Case B to PCs. All cases were commercial 
companies and game development was their main source of income. 

Table 1. Organizations participating in the study 

Case Organization 
size 

Development 
team size 

Release 
platform 

Future 
platforms 

Organizational 
maturity 

A Medium Large PC,  
Consoles 

Handheld 
devices 

>10 products 

B Small Small Handheld 
devices 

PC <5 products 

C Medium Medium Consoles,  
PC 

 >5 products 

D Small Medium Handheld 
devices 

 <5 products 

E Small Small Handheld 
devices 

 <5 products 

F Medium Medium PC  Making the first 
product 

G Small Small Browser- 
based 

 Making the first 
product 



 Is Requirements Engineering Useless in Game Development? 5 

 

The selection of interviewees was guided by our existing contacts in the studied 
organizations. The companies selected their most representative employees based on 
our short description of the interviewee roles (see Table 2). Overall, 27 interviews 
were conducted during the spring, summer, and fall of 2012 by seven researchers 
from two research laboratories. The interviews were grouped into four rounds. The 
goal of conducting several rounds was to gain a broader understanding of the game 
development practice and to identify the general factors affecting design and 
innovation in game development. The semi-structured interviews [20] were guided by 
questionnaires developed in advance by our research team. In total we developed four 
set of questions corresponding to the interview rounds and included questions related 
to development methods, quality requirements, and design processes. Before the first 
interview round the first set of questions was peer reviewed internally to check  
its sanity. Between the interview rounds some follow-up-questions were added  
to collect a richer data set. All of the sets of questions are available at 
http://www.it.lut.fi/project/SOCES/. 

The interviews lasted approximately one hour and were recorded for further 
transcription and analysis. They were arranged with one or two participants from the 
case organizations with one or two researchers present.   

The project managers were interviewed first to understand the software 
development practices in the studied companies. These interviews allowed us also to 
compare game companies with the observations and experiences we had from 
conventional software development companies [18]. The more technical second round 
of interviews was conducted with developers and testers. During these interviews we 
discussed software development and programming techniques, quality requirements, 
software development processes and tools. In the third round of interviews with the 
owners and the upper management representatives, we concentrated on the overall 
process of game development starting from the idea to its release to the market. 
During this round additional themes beyond the software development, such as 
marketing, innovation and financing, were collected to better understand the context 
in which the game industry operates. The last, fourth, round of interviews investigated 
the creativity aspects of game development. During this round we discussed the 

Table 2. Interview rounds and their descriptions 

Interview rounds Interviewee  Description 
Round 1: Qualitative 
interview with 7 
organizations 

Team leader or 
project manager 

The interviewee is responsible for the management of 
the development of one product, or one phase of 
development for all products. 

Round 2: Qualitative 
interview with 6 (+1*) 
organizations 

Developer or 
tester 

The interviewee was responsible for the development 
tasks, preferably also with the responsibilities of 
software testing activities. 

Round 3: Qualitative 
interview with 7 
organizations 

Upper 
management or 
owner 

The interviewee was from the upper management, or a 
business owner with an active role in the organization.   

Round 4: Qualitative 
interview with 7 
organizations 

Lead designer or 
Art designer 

The interviewee was a game designer, or managerial 
level person with the ability to affect the product design 
and selection of the implement features. 

* Interview themes discussed during later rounds with other representatives of the organization 



6 J. Kasurinen, A. Maglyas, and K. Smolander 

 

importance and impact of the creativity aspects to the final design of the developed 
product with game designers and managers. 

3.2 Data Analysis 

In grounded theory the fundamental process to analyze data and generate a theory is 
coding. The coding consists of three basic steps: open coding, axial coding, and 
selective coding [16]. Open coding is “the interpretive process by which data are 
broken down analytically” [15]. The goal of open coding is to understand what data 
really means, compare different pieces of data in order to find differences and 
similarities, and attach a conceptual label to each observation/phenomena/action. 
Then, the identified concepts are grouped together to form categories with 
subcategories, dimensions, and properties that represent a higher level of abstraction 
than the original data. Often the process starts with seed categories [33] that come 
from the goals of the study, the research questions, and predefined variables of 
interest. In this study, the selection of seed categories was guided by utilizing the 
concepts from research questions and included categories like creativity, requirements 
engineering, game company, and game industry. Overall, at the end of the open 
coding, we had 172 codes with 1547 observations, collected from over 1400 minutes 
of recordings from 27 interview sessions. 

In axial coding relationships between the categories are established and tested 
against data. For example, the identified codes like Design process: objectives, Test 
process: effect on product, Marketing: effect on product formed a chain of evidence 
on how the organizations design their software, on what their actual objectives are 
and on what kind of impact different stakeholders and process activities have on the 
design work. In our data, these categories occurred repeatedly and therefore we were 
able to establish a connection “is related to” between them as in most organizations 
testing and marketing had a clear effect on the design process. 

Selective coding aims at identification of the core category and relating it 
systematically to the other categories. The core category can be one of the existing 
categories or a new category that is broad enough to cover the central phenomenon 
and explain its relationships to other categories observed [16]. In this study, the core 
category was formed by abstracting the categories as none of the existing categories 
was considered influential enough to explain the entire phenomenon. Since the 
objective was to assess requirements engineering in game organizations, we collected 
a number of observations from business aspects, testing methods, development 
processes and general development process models to provide a chain of evidence. As 
the core category we selected an abstract category “Requirements and change 
management in game development”, which explains how requirements are handled, 
verified and validated during the game development process. By concentrating on this 
we were able to discuss the applicability of requirements engineering in game 
developing organizations. 



 Is Requirements Engineering Useless in Game Development? 7 

 

4 Results  

The data analysis uncovered seven categories which had relevance to requirements 
engineering, which led to four main observations on the applied RE activities. In 
addition, the analysis of how the organizations functioned gave us more insight into 
the existence and applicability of RE in the game industry. In the following we will 
introduce the categorized observations (summarized in Table 3), and then discuss the 
main findings. After this we introduce two stereotypical process models used in the 
studied organizations.  

4.1 Categories 

The category Design objective summarizes the objective that the organization has on 
the first design phase of a new product. We included this category to the analysis to 
understand the types of requirements needed to achieve these design objectives. 
Marketable demo means that the organization aims to design a version of the product, 
which can be used as marketing material for publishers or financiers. Proof-of-
concept means that the organization designs and develops the first version which tests 
that the core features of the new product work as intended and that the concept is 
sound from the technological point of view. 

The category Design method indicates the way the organization does the design 
work. Vision indicates that the organization has one or few people, who design the 
first version based on their initial idea. In these cases, the role of requirements 
engineering is limited to the vision of experts who decide what should be done. Idea 
pitching means that the organization has separate design and idea pitching events, 
from which the most promising candidates are examined further. Prototypes means 
that the organization starts with a very simple idea such as a theme and a genre, and 
examines with prototypes what sorts of functionality and content would work. 
Brainstorming indicates that the organization has design discussions in a group, trying 
to come up with new concepts for game products. Finally, Drawings means that the 
designers work by drawing out their ideas and by creating mock screenshots, concept 
art and such to give an idea on how the new product should look like. In all cases 
requirements were collected internally or externally through initial prototypes and 
collecting the feedback from their use. 

The category Changes between the first and published version indicates roughly 
the amount of changes that typical game products go through from the first functional 
version to the final published product. Large indicates that there may be shifts in 
game genre, theme or that several core features might be added, dropped or changed 
during the development. Small indicates that the published games are mostly similar 
to the design version, with minimum changes on features, themes or game rules. 

The category Level of details in the first design indicates the amount of details the 
organizations bring to their initial game design. Functional prototype indicates that 
the organizations design and build entirely functional proof-of-concept prototype with 
all the core features before starting to develop the actual product. The category Basic 
gameplay elements indicates that the organizations design most of the game content, 



8 J. Kasurinen, A. Maglyas, and K. Smolander 

 

but may not commit resources to develop anything functional such as a prototype. 
Core features and concept art means that the design consists only of core features, 
some early forms of rule sets and a decision on the artistic style of the game visuals.  

The category Testing on design implies the amount of influence the testing 
activities in the organization have on the product design. Large implies that testing 
results may warrant large changes to the game, even dropping core features or major 
content or change in the genre or theme of the game. Medium indicates that the testing 
work can cause large changes to the game content and features, such as dropping 
content or making changes to the story, but that the main features more or less stay 
the same. Small indicates that the testing activities are mostly used to balance rules or 
game mechanics, and do not affect features or content to a large degree. 

Similarly, Marketing on design indicates the power the marketing has on the 
product design. High indicates that the marketing team has the ability to dictate what 
sort of features the products need, change features of existing products and based on 
the feedback from publishers, what sort of games should be developed in the future. 
Medium indicates that the marketing team can dictate themes and core features of the 
games or, for example, affect the theme of the game or its visual style. Low means 
that the marketing team mostly suggests the changes that have little to no impact on 
the final product. 

The category Main testing objective in development summarizes the objectives that 
the organization has in testing activities. User experience means that the organization 
tests the usability aspects and how “fun” the game product is to use. In terms of RE, it 
can be considered as collecting non-functional requirements from a target audience. 
As part of usability experience, game mechanics indicates that the testing is used to 
balance the internal game rules so that there are no always winning strategies. 
Technical aspects indicate that the company focuses on ensuring that everything 
functions technically correctly, models load correctly, effects are displayed, and that 
the game is stable. Minor and major issues identified during testing can lead to new 
functional requirements in the game engine and/or platform. In organizations where 
several goals are listed the goals are in the order of priority. 

4.2 Findings 

Finding 1: Game developers need to manage plans and product requirements, as 
the product may vary greatly between the first design and release. 

In game development the first design may not be close to the final product. Cases 
A, C and F reported that there is usually a big difference in the product between the 
first design and the final product. In the other organizations the first design was more 
simplified and covered only the core features and concept art, which in many cases 
stayed relatively stable. 

“Putting the core ideas in - that does not take that many months, but the final 
version always seems to take time. We have to change stuff, take things away, put new 
stuff in and keep doing so until everything works.” – Case F, Upper management  

 
 



 Is Requirements Engineering Useless in Game Development? 9 

 

Table 3. Categorized observations 

 

“I’d say that they [first and published version] differ to some degree, but the basic 
idea stays the same, and the core design, is still the same.” – Case B, Designer  

“Our first functional prototype was quite close to the designs we had. Of course we 
had to make some changes during development, mostly from new ideas emerging 
during development.”  -Case E, Designer 

In the game industry it is not common to collect requirements in advance. Instead, 
the approach of test and tune is widely used. The initial idea is generated and 
developed inside the game company and then it is tested on the target audience to 
identify what will be liked and what will not. However, the feedback from users is 
rarely systematically documented. Brainstorming, pitching, and drawing were the 
main instruments to get new insights on how the game should be further developed in 
the studied companies. 
Finding 2: Game products can be changed significantly based on the feedback 
from marketing and testing. 

In all case organizations, marketing and testing teams affected the design process 
to a large degree. In all organizations except in Case D, the testing phase had the 
possibility to affect the product design and change features in the product. 

 
 

Case A B C D E F G 
Design 
objective 

Marketable 
demo 

Proof-of-
concept  

Proof-of-
concept  

Marketable 
demo 

Proof-of-
concept  

Marketable 
demo 

Proof-of-
concept  

Design 
method 

Idea pitching, 
prototypes, 
brainstorming 

Vision, 
brain-
storming 

Vision, 
Idea pitch-
ing, proto-
types 

Vision, 
drawings 

Brainstorming, 
prototypes, 
drawings 

Prototyping, 
Vision 

Vision 

Changes 
between the 
first and 
published 
design 

Large Small Large Small Small Large Small 

Level of 
details in the 
first design 

Functional 
prototype 

Basic 
gameplay 
elements 

Functional 
prototype 

Core 
features, 
concept art 

Basic game-
play elements 

Core fea-
tures, con-
cept art 

Basic 
gameplay 
elements 

Testing on 
design 

Large, able to 
affect fea-
tures 

Medium, 
able to 
affect 
features 

Large, 
may cause 
major 
changes 

Small, 
some 
changes 
possible 

Large, may 
cause major 
changes 

Large, may 
cause major 
changes 

Large, 
able to 
affect 
features 

Marketing 
on design 

Low High Low High High Medium Medium 

Main testing 
objective in 
development 

User experi-
ence, tech-
nical aspects 

User 
experience, 
technical 
aspects 

Technical 
aspects, 
game 
mechanics, 
user expe-
rience 

Game 
mechanics, 
user expe-
rience, 
technical 
aspects 

Technical 
aspects, user 
experience 

Technical 
aspects, 
Game 
mechanics 

Game 
mechanics, 
technical 
aspects 



10 J. Kasurinen, A. Maglyas, and K. Smolander 

 

“No [the testing work] does not affect that much”…”Mostly the bigger things are 
decided and thought out on the early stages of development.” – Case D, Manager 

“You can design all for all the things you want, but the only way to know for sure 
[if the design works] is to test things with users.” – Case E, Designer 

“It [testing results] does affect and it should affect.”…”Even in late stages, if we 
find out that something is [expletive], we do it again and again until it works.” – Case 
C, Designer 

However, the organizations which were doing large productions (Cases A and C) 
were also the only organizations to say that marketing has only small impact on their 
products. They were also the only organizations in which the design work was done to 
the degree of a marketable prototype, meaning that when the product is sold to the 
financiers or publishers, it is already relatively mature, fully designed package. In 
other organizations, the marketing had quite a large impact on the product design. 

“We try to understand the pros and cons of our design, and assess the design from 
the financial point of view. After that concept design we make a proof-of-concept 
prototype to get the overall design”…”after the proof-of-concept prototype comes 
actual demo. What separates the demo and actual product is the amount of content.” 
– Case C, Designer 

“And then there is the business aspect. Obviously, [our games] have to make 
money.” – Case B, Upper management 

“The crude fact is that you have to make what sells, not what you necessarily 
personally like.” – Case D, Upper management 

“Even if our idea in business is to make great games, we still have to have enough 
financial perspective to get food on the table.” – Case G, Designer 
Finding 3: Requirement analysis is conducted mostly with user tests and 
usability testing. 

In all examined cases, the organizations reported that testing had at least some 
effect on product features. In addition, all organizations except Cases F and G, one of 
the main test objectives was the user experience.  

“Our testing is more like finding out if, for example, the controls feel appropriate. 
It is more like reacting to feedback [from user testing] than hunting down bugs.” – 
Case E, Project manager 

Based on these observations, organizations do requirements analysis in form of 
usability testing and assessment of their product features. Since the features of game 
products are usually associated with the user experience – “the fun factor”- analysis of 
the requirements is usually done with usability testing or user tests since the objective 
is to understand what the target demographic may want from the product. 

“We sometimes make drastic changes because [the result is not considered fun]”. 
–Case F, Designer 
Finding 4: Game developers try to minimize the amount of functional 
requirements that should be implemented. 

In Cases A, B, C, D and F the organization was using third party game engines 
instead of designing and implementing their own. In these organizations the decision 
was usually made to cut complexity and, from the viewpoint of game development, 
unnecessary work which could be outsourced. The technical solutions to problems 



 Is Requirements Engineering Useless in Game Development? 11 

 

such as physics modeling or 3d object manipulations were left to the third party. In 
this regard, these companies attempted to minimize efforts in managing functional 
requirements by using 3rd party components. 

[Using engine] helps a lot; a game engine is a huge piece of software.”…”People 
from our company may not have an answer, but somebody from another company 
may have come across the same problem, and can give the answer [via support 
service provided by the engine provider]”. – Case F, Developer  

“If I already have things available in the engine format, I just include them from 
our repository. Using existing resources leaves people free [to do other things].” –
Case A, Developer 

However, most of these organizations still had to do technical development. Cases 
E and G still have their own game engines, and Case B was recently using an own 
solution. In addition, Case organizations A, C, and F reported that they sometimes do 
extensive modifications to their third party game engines. In addition, all 
organizations reported that they test their product for technical aspects.  

“I think that most important is that the game functions without crashing. Of 
course, the game content is also balanced…” Case C, Project manager 

“Our leading principle is that nothing leaves the office unless QA lead has 
accepted it, whatever the reason.” – Case A, Project manager 

Based on these observations, we conclude that game companies try to minimize 
technical requirements in favor to non-functional ones, which are mostly related to 
usability and user experience. However, functional requirements cannot be fully 
avoided in the development of new games.  

4.3 Process Models 

The organizations were also asked to describe how their game development processes 
were organized. We used the models drawn according to these descriptions to assess 
how requirements engineering could be applied systematically in the game 
development context. 

Based on the models made according to the descriptions, we divided the 
organizations into two groups. We call these stereotypical process models as 
development pipelines (cases A, B, C and D, Fig. 1A) and iterative models (cases E, F 
and G, Fig. 1B). The division between the two models is on the expected amount and 
role of iteration; in pipelines the expected model is that the product matures from one 
main phase to another with minimal iterations, whereas in the iterative model the 
development is expected to return to design and requirements gathering, and the 
development work is interlaced between multiple phases of design and testing. 

The pipeline model is a straightforward waterfall-type approach to game 
development. The reason why organizations applied this method was that the design 
was developed to a functional prototype before the contract to develop a full game 
was sold (Cases A and C), or that the testing work had only a low influence on the 
product (Case D) or that the organization applied strict phases and deadlines in their 
development process (Case B). The common denominator in all these organizations 
was that the process minimized the need for testing requirements or changing features  



12 J. Kasurinen, A. Maglyas, and K. Smolander 

 

when the organization committed to the development work. In most cases this 
behavior was related to the business aspects: “real” development started only when 
there was a clear demand, at least partial return of investment was ensured and the 
amount of required effort was relatively well-known. Interestingly, all the pipeline 
processes, except for Case B, considered themselves to be agile organizations, 
applying variations of Scrum or a similar method in daily work, but in the bigger 
picture doing development work with a rather plan-driven approach. 

The iterative model used by case organizations E, F and G starts with a less-than-
complete plan, where existing features are tested and assessed periodically and if 
needs arise, are changed in the next iteration. These organizations apply collected 
feedback extensively during development and are willing to make major changes to 
their product. The decision to apply iterative approach can be explained with 
organizational experience: Cases F and G were developing their first commercial 
product and this approach allowed more control to steer the product towards the 
intended objectives. In Case E, the organization had good experiences with “user 
testing”-driven development; one of their earlier products underwent drastic changes 
after user tests discovered a new, well-received unintended feature from the product. 

5 Discussion 

The in-depth investigation of development processes and discussions with the 
professional game developers in the companies lead us to the conclusion that the 
organizations may not strictly apply requirements engineering principles, but they do 
have process activities which can be characterized as “requirements analysis” and 
“requirements identification.” In most organizations the development process and 

 
Fig. 1. Different development models adopted by organizations: pipeline 
approach (cases A, B, C and D) and iteration approach (cases E, F and G) 



 Is Requirements Engineering Useless in Game Development? 13 

 

applied process models were rather informal (only Cases A and C had assigned roles 
and documented process model), and the need to do these activities originated from 
the practical needs related to things like testing objectives or design methods.  

The development of games often starts with an idea generated through 
brainstorming or pitching. In this phase, the elicitation of functional and non-
functional requirements is rarely done, but the analysis of fun and enjoyment plays an 
important role [6, 7]. In the following phases, the role of requirements engineering is 
important for collecting and analyzing the requirements coming from testing the game 
design. Callele et. al. call these requirements as experience requirements [8]. In this 
study, we found that the decision about continuing or stopping the development of a 
game can be made based on the collected experience requirements. Some designs and 
ideas for products may simply be rejected after proof-of-concept studies. This was 
also the reason why game companies develop several prototypes that are not very 
different from each other, and test different approaches to the same problem with 
focus groups. They do this in order to find the well-received solutions to components 
such as user interfaces and internal game mechanics. In contrast to the high attention 
to non-functional requirements, game companies pay less attention to functional 
requirements and try to minimize them by using 3rd party engines and platforms. This 
is especially important for small companies like Cases B, D, E, G, which lack 
resources to develop, maintain, and support their own game platform. For large game 
companies the development of an own platform or engine is also a resource-
consuming activity that has little chance to provide a competitive advantage to the 
company because most games differentiate horizontally [4] and therefore a new 
product platform can rarely be fundamentally different from the existing ones.  

Game development is an area where engineering meets creativity [8]. In our study, 
the game companies generated new game ideas mainly in-house. However, as soon as 
the idea is identified and the game design documents are created, most of the process 
deals with engineering rather than with creative activities like brainstorming new 
characters, levels, or story canvases. In this regard, our results are similar to the 
viewpoint of Kanode and Haddad who said that RE should be used when the game 
idea is identified and agreed to be implemented [9]. It seems to be difficult to adopt 
engineering practices like RE at the earlier stage as suggested by [7, 8], because it is 
common to generate tens of ideas initially but a few of them will be considered for 
detailed evaluation and implementation. Overall, in this study we did not observe a 
conflict between creative and engineering activities. Instead, these activities supported 
each other at different stages of the development cycle.  

As a result of our attempt to get a deep understanding of the game development 
process, we sketched out two stereotypical process models of game development. We 
called these two models pipeline-type and iterative-type processes. The pipeline-type 
process in the game industry, or waterfall model [9], was already identified 
previously. This process is suitable for mature companies that do not heavily rely on 
testing their prototypes with end users and mainly produce games in-house without 
constant collaboration and communication with the market they aim at. This process 
in the game industry is very similar to the waterfall model used for development of 
other software products and therefore RE practices can be used in the same way, 



14 J. Kasurinen, A. Maglyas, and K. Smolander 

 

before starting developing a prototype or a proof-of-concept. The iterative-type 
process model relies on the feedback from customers and the role of the feedback is 
critical for making decisions about continuing, releasing, or withdrawing a game. In 
this type of process there are no predetermined requirements in the beginning, but as 
the feedback is collected and analyzed, new requirements are introduced into the 
developed game. However, the feedback is rarely documented systematically and in 
the form of requirements. More often they are managed informally by changing 
directly the source code and testing a newer version again. In this regard, we see that 
there are benefits in a more formal approach to managing requirements in the 
iterative-type process model as it could help to decrease the number of iterations 
needed before the game release. 

There are several threats to the validity of this study as for any qualitative study 
[21]. The collected observations, findings, and process models are dynamic rather 
than static [15] meaning that the collected data could be extended by collecting and 
analyzing more data. However, already this set of data that includes game companies 
of different size, working with different game platforms, and aiming at different 
markets enabled us to identify the variety of approaches to the adoption of RE 
practices in the game industry. Our purpose was not to describe all possible ways to 
adopt RE in game companies. Instead, our aim was to understand if RE has its own 
place in game development or if it is obsolete for the industry that is dominated by 
insights, ideas, fun, and enjoyment. The study has also a territorial bias as we 
interviewed game companies in Finland only. However, due to the size of Finnish 
market, these companies all aim at the international market, which decreases this bias. 

6 Conclusion 

Game developing organizations do not significantly differ from other organizations 
that develop software products. However, the focus on non-functional requirements 
and quality assurance with user testing has an impact on how game organizations 
operate: the game developers apply mostly informal processes, with two stereotypical 
approaches which in this paper were identified as waterfall-like pipeline model and 
iteration approach which basically is a prototype-driven incremental development 
model. As for findings, the game developers do need requirements management, as 
the products may have significant differences between the first prototypes and the 
final product, based on customer and market feedback. Nevertheless, RE practices are 
not widely adopted by game organizations. In addition, many game developers try to 
minimize the amount of implemented functional requirements simply by insourcing 
the technically challenging parts from the development process. This little focus on 
managing non-functional requirements and outsourcing of functional requirements 
lead to the situation when RE practices have not been adopted by game organizations 
consciously but they do apply concepts from requirements engineering, especially 
requirements identification and requirement management and manage risks caused by 
the non-functional requirements with constant prototyping and user testing. Overall 
with this evidence it can be argued that requirements engineering needs to be adopted 



 Is Requirements Engineering Useless in Game Development? 15 

 

by game organizations more systematically because RE methods do not contradict 
with creativity, but support it and provide solutions to dealing with game development 
in the turbulent market environment.  

Acknowledgement. This study was supported by the European Union Regional 
Development Fund projects A31814, “Kaakon Peliklusteri” and A32139 “Game 
Cluster”. A part of the funding came also from the Academy of Finland grant 
#259454. We would also like to thank InnoVire research group at LUT Kouvola for 
their cooperation. 

References 

1. Tschang, T.: When Does an Idea Become an Innovation? The Role of Individual and 
Group Creativity in Videogame Design. Presented at the DRUID Conference (2003) 

2. Hirsch, P.M.: Processing Fads and Fashions: An Organization-Set Analysis of Cultural 
Industry Systems. American Journal of Sociology 77, 639–659 (1972) 

3. Lampel, J., Shamsie, J.: Critical Push: Strategies for Creating Momentum in the Motion 
Picture Industry. Journal of Management 26, 233–257 (2000) 

4. Lampel, J., Lant, T., Shamsie, J.: Balancing Act: Learning from Organizing Practices in 
Cultural Industries. Organization Science 11, 263–269 (2000) 

5. Callele, D., Neufeld, E., Schneider, K.: Requirements engineering and the creative process 
in the video game industry. In: 13th IEEE International Conference on Requirements 
Engineering, pp. 240–250 (2005) 

6. Draper, S.W.: Analysing fun as a candidate software requirement. Personal 
Technologies 3, 117–122 (1999) 

7. Callele, D., Neufeld, E., Schneider, K.: Emotional Requirements in Video Games. In: 14th 
IEEE International Conference on Requirements Engineering, pp. 299–302. IEEE (2006) 

8. Callele, D., Neufeld, E., Schneider, K.: An Introduction to Experience Requirements. In: 
18th IEEE International Conference on Requirements Engineering, pp. 395–396 (2010) 

9. Kanode, C.M., Haddad, H.M.: Software Engineering Challenges in Game Development. 
In: 6th International Conference on Information Technology: New Generations,  
pp. 260–265. IEEE Computer Society, Washington, DC (2009) 

10. Feiler, P.H., Humphrey, W.S.: Software process development and enactment: concepts and 
definitions. In: 2nd International Conference on the Continuous Software Process 
Improvement, pp. 28–40 (1993) 

11. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Communications of the ACM 35,  
75–90 (1992) 

12. Harjani, D.-R., Queille, J.-P.: A process model for the maintenance of large space systems 
software. Presented at the The International Conference on Software Maintenance (1992) 

13. Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Qualitative 
Analysis. Sage Publications (2010) 

14. Suddaby, R.: From the Editors: What Grounded Theory is Not. Academy of Management 
Journal 49, 633–642 (2006) 

15. Corbin, J., Strauss, A.: Grounded Theory Research: Procedures, Canons, and Evaluative 
Criteria. Qualitative Sociology 13, 3–21 (1990) 

16. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for 
Developing Grounded Theory. SAGE Publications (2008) 



16 J. Kasurinen, A. Maglyas, and K. Smolander 

 

17. Paré, G., Elam, J.J.: Using case study research to build theories of IT implementation. 
Presented at the International Conference on Information Systems and Qualitative 
Research, London, UK (1997) 

18. Kasurinen, J., Taipale, O., Vanhanen, J., Smolander, K.: Exploring perceived quality in 
software organizations. In: 5th International Conference on Research Challenges in 
Information Science (RCIS), pp. 1–12 (2011) 

19. The commission of the European Communities: Commission recommendation concerning 
the definition of micro, small and medium-sized enterprises (2003) 

20. Robson, C.: Real World Research - A Resource for Social Scientists and Practitioner-
Researchers. Blackwell Publishing, Malden (2002) 

21. Onwuegbuzie, A.J., Leech, N.L.: Validity and Qualitative Research: An Oxymoron? 
Quality & Quantity 41, 233–249 (2006) 



C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 17–22, 2014. 
© Springer International Publishing Switzerland 2014 

Towards Model-Driven Requirements Engineering  
for Serious Educational Games: Informal, Semi-formal, 

and Formal Models 

Kendra M.L. Cooper1,*, Eman S. Nasr2, C. Shaun Longstreet3 

1 The University of Texas at Dallas, Richardson, U.S.A. 
kendra.m.cooper@gmail.com 

2 Independent Researcher, Cairo, Egypt 
nasr.eman.s@gmail.com 

3 Marquette University, Wisconsin, U.S.A. 
christopher.longstreet@marquette.edu 

Abstract. Serious educational games (SEGs) are receiving significant attention, 
as they provide immersive, engaging learning environments with a rigourous 
pedagogical foundation. SEG engineering requires an interdisciplinary ap-
proach involving game developers, educators, and software engineers. The re-
quirements engineering (RE) community has substantial expertise in processes, 
notations, tools, and techniques. Here, we explore how can we tailor and adopt 
this expertise for developing SEGs with a three step model-based approach that 
integrates established techniques: create an informal model of the SEG re-
quirements (narrative captured like a storyboard); transform the narrative into a 
semi-formal, tailored UML use case model (visual and tabular, using tem-
plates); transform the semi-formal model into formal models for testing and ve-
rification. A collection of SEGs (test games) has been created using the process; 
currently the transformations are performed manually. The formal model is 
represented in XML, which can be loaded, played, and tested in the game en-
gine. In the future, we will explore semi-automatically transforming the models 
and creating Statechart models, which can be verified using simulations. 

Keywords: requirements engineering, serious educational games, model-driven. 

1 Introduction 

Serious educational games (SEGs) have significant pedagogical potential as they 
provide immersive, engaging and fun environments that require deep thinking and 
complex problem solving within a construct of overcoming obstacles and challenges 
[1]. They create interactive student-centered environments rather than a passive con-
tent-centered classroom environment. SEGs are complex applications, requiring  
expertise from multiple disciplines including game development, education, and soft-
ware engineering. Established game development approaches are document-centric, 
often using a pre-production game design document and production game software 



18 K.M.L. Cooper, E.S. Nasr, and C.S. Longstreet 

requirements specification [2]. Recently, the potential value using model-driven engi-
neering (MDE) [3] approaches for games [4] and more specifically to SEGs [5] has 
been presented. UML-based game specifications have also been considered that focus 
on tailoring Statecharts [6]; they offer a rigorous, state machine foundation, but may 
be more difficult for some stakeholders (e.g., game designers) to use. Game designers 
with experience using Storyboards [7], for example, may find a tabular use case (UC) 
specification format quite familiar, as Storyboards are often presented as a sequence 
of cells in a tabular format. Tabular specifications are well-established [8]; they are 
considered straightforward to define, understand, and maintain.  

To improve the development of SEGs, our research project, SimSYS, is underway. 
SimSYS is a MDE approach that uniquely integrates elements of traditional game 
design, pedagogical content, and software engineering methodologies. Our proposed 
approach has three main steps: create an informal model of the SEG requirements 
(captured like a storyboard with textual descriptions of the learning objectives and 
game play in addition to user interface concepts e.g., graphics, audio); transform the 
informal model into a semi-formal tailored UML UC model (visual and tabular, tem-
plate based specifications) [9]; transform the semi-formal model into formal, executa-
ble models (Statechart for comprehensive simulation and XML [10], which can be 
loaded and played in the game engine). Our approach adopts and tailors well-
established solutions (e.g., Storyboards, UML UC, XML, Statecharts) as the need for 
a completely new solution is not evident at this time. Our MDE-based approach can 
be applied in an agile, iterative development process, for example, by describing a 
part of the game and allowing earlier assessment and feedback. Learning objectives, 
for both topic specific subject matter and transferable skills, are thoroughly integrated.  

In previous work, we have presented an underlying meta-model for SimSYS [11] 
and preliminary work on the models, with a focus on the semi-formal, tabular tem-
plates [12]. The meta-model facilitates the development of high-quality, engaging, 
educational games because it explicitly ties knowledge requirements, transferable 
skills and course outcomes to game production. The templates, which embody the 
meta-model concepts, help to systematically and efficiently structure SimSYS games 
into Acts, Scenes, Screens, and Challenges.      

Here, we present initial results on our proposed three step approach to create and 
refine informal, semi-formal, and formal (XML, Statechart) models. The validation 
uses an internally defined collection of simple test games, which currently has six 
symbolic games, an algebra game for grade four students, and a software engineering 
game on design patterns. The approach is illustrated with part of a Challenge from the 
software engineering test game; we focus on the transformation to an XML represen-
tation that can be loaded and tested in a game engine. An overview of the new  
approach is presented in Section 2. The manual transformations (informal to semi-
formal and semi-formal to formal) are introduced in Sections 3 and 4. Conclusions 
and future work are in Section 5.  



 Towards Model-Driven Requirements Engineering for Serious Educational Games 19 

2 Overview 

The SimSYS approach to engineering games has three main steps (Figure 1). The first 
step is to create an informal, high level model of the SEG as a narrative. The narrative 
captures the game like a Storyboard with textual descriptions of the learning objec-
tives and game play in addition to user interface concepts (e.g., graphics, audio). This 
model is important as it allows the game designers to focus on the creative aspects of 
the game play, in place of a pre-production game design document. 

The second step is to transform the informal model into a semi-formal tailored 
UML UC model (visual and tabular, template-based specifications). UML UCs have 
been adopted as they are a well-known notation that can be tailored. The overall game 
is organized into Acts, Scenes, Screens, and Challenges. Each of these has a tabular 
template to assist in the game development. Tabular, template-based representations 
are considered straightforward to develop, review, and maintain; they allow the mod-
ularization of a specification into sub-tables to manage complexity. As this semi-
formal model is developed and reviewed, errors can be identified and corrected.  

The third step is to transform the semi-formal model into formal models (Statechart 
and XML). The Statechart model can undergo comprehensive simulation/animation to 
verify its behavior using commercial tool support. The XML model is the game speci-
fication, which can be loaded, played, and tested using the SimSYS Game Play En-
gine. The errors identified using testing or simulation/animation techniques can be 
rapidly corrected, across the formal and semi-formal models.  

 

 
 

Fig. 1. Overview of Models in the SimSYS Approach (informal, semi-formal, formal) 

Semi-formal Model 
Tailored UML Use Case 

XML 

Statechart 

  

Informal Model 
Narrative 

C
hallenges 

G
am

e

A
cts 

Scenes

Screens

Formal Models 
XML and Statechart 

<!—Act 1, Scene 1, Screen 1, Challenge 1 --> 
<challengeStructure>  
<gameElement 

xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance" xsi:type="prop"> 

     <gameElement 
xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance"   

xsi:type="IDENTIFIER">

Visual model 

Tabular model 

Transform Informal to 
Semi-formal 

Transform semi-formal 
to formal 

(revisions needed) (revisions needed) 

Unique template for each part



20 K.M.L. Cooper, E.S. Nasr, and C.S. Longstreet 

3 Transforming the Informal to Semi-formal Model 

The informal model is organized into a title, overview of the game (number of acts, 
scenes, screens, challenges), the learning objectives (both topic specific and transfera-
ble skills), initial conditions for the game (such as number of points a player starts 
with, backdrop for the scenes), and rules that need to be applied as the game is played. 
After this, the game play is described as a sequence of game play interactions over 
time, followed by the conditions at the end of the game (Figure 2). The game play 
interactions include Challenges for the player that address specific learning objectives. 
 

Fig. 2. Informal Model of a (Partial) Test Game 

The narrative is manually, iteratively refined into a tailored UC model (visual, tex-
tual). The approach has a stereotyped UC for the Game, Act, Scene, Screen, and  
Challenge; each has a corresponding tabular template [12]. The Game captures the 
learning objectives for the game, the one or more acts it is organized into with their 
transitions, and the player and non-player characters. The Act captures the learning 
objectives addressed and the one or more scenes each one is organized into; the tran-
sitions from one scene to another in the act are defined. The Scene captures the learn-
ing objectives addressed; the one or more screens each one is organized into with 
their transitions, in addition to the backdrop and background music. The Screen and 
Challenge capture the detailed game play. The Screen UC captures the learning objec-
tives addressed, the characters and props involved, with their placement, animation, 
sound effects. Props include generic interaction elements (e.g., information boxes, 
conversation bubbles, information bubbles), domain specific elements (e.g., white-
board, blackboard), and set decorations (e.g., furniture, coffee cup). Background  
material for the storyline or educational material could be included in the game by 
presenting it on a whiteboard or as a conversation bubble for a character. A screen 
may have an optional challenge, which could be a dialog based quiz (untimed, timed, 
competition, non-competitive) or a problem solving exercise in a sandbox. Part of a 
Challenge in the semi-formal representation is illustrated in Figure 3 (left-hand side). 

4 Transforming Semi-formal to XML Formal Model 

The collection of tabular, semi-formal representations of the Game, Acts, Scenes, 
Screens, and Challenges is transformed into a single XML file that can be loaded into 

Title: Test Game 4 SE Design 
 

Overview: The game consists of one act; the act has one scene; the scene has two screens. The first 
screen has a challenge, which is a multiple choice quiz. The quiz has one question on design patterns; it 
is a dialogue question requiring critical thinking, problem solving, and analysis skills in addition to 
SWEBOK Software Design topics (general, process, context). The Bloom’s taxonomy categories are 
knowledge and application. There is no introduction or summary for this quiz. The second screen pro-
vides a summary of the player’s progress in the game.  
 

Initial conditions: The player starts the game with 1000 points and is a student intern; the 
BlueSky backdrop is presented (BlueSky.png).  
 

Game rule (how to win): If the player accumulates more than 1000 points… 



 Towards Model-Driven Requirements Engineering for Serious Educational Games 21 

the SimSYS Game Play Engine. The manual transformation is done one part at a 
time, using tags in a schema definition to organize the content. There are tags, for 
example, to organize the overall model with respect to the Game, Acts, Scenes, 
Screens, and Challenges. The tags are nested, to reflect the composition relationships 
(a Game has one or more Acts, an Act has one or more Scenes, a Scene has one or 
more Screens, a Screen has an optional Challenge). Part of the XML file is illustrated 
in Figure 3 (right-hand side), focusing on the Challenge. Within a Challenge, for ex-
ample, one question in the quiz is related to subject specific topics in SE Design and 
transferable skills described in the tabular specification (What kind of knowledge is in 
the challenge?); these are represented in XML using two kinds of tags to define lists 
of topics (<domainKnowledgeList>, <transferableKnowledgeList>). Following this 
(not presented in the Figure), the assessment approach (e.g., Bloom taxonomy catego-
ries) and one or more quiz question with answer options, evaluation, hints, rewards, 
and feedback for the player are defined. As the mapping proceeds, errors are detected 
and corrected in the semi-formal and informal models, making the approach highly 
iterative. The manual mapping from the semi-formal tabular model to the XML model 
is time consuming, but not too difficult. 
 

 

5 Conclusions and Future Work 

Initial results on an iterative, three step, model-based RE approach for SEGs is pre-
viewed here. The approach begins with an informal narrative, like a Storyboard, 
which is subsequently transformed into a tailored semi-formal UML UC model (with 
visual and tabular specifications) and lastly into a formal XML model. Learning  
objectives, for example, are initially captured in natural language in the informal  

Identifier Challenge 1 
Purpose Design pattern selection. 

Challenge type: Multiple 
choice quiz (dialogue) 

 Learning 
Objectives 

Domain Specific Skills  
Software Engineering, 

Software Design                         
Standard: SWEBOK 2004            
1. Software Design Fundamen-

tals 
1.1 General Design Concepts 
1.2 Context of Software 
Design 

1.3 Software Design Process 
 1.3.2 Detailed Design 

3. Software Structure and 
Architecture 

3.2 Design Patterns  

Transferable Skills 
   Analysis  
   Critical Thinking 
   Problem Solving 

Bloom’s Taxonomy: 
knowledge, application 
Understand the purpose of 

established design patterns …

<Challenge> 
<id>Challenge 1<\id> 
<scope>design pattern selection<\scope> 
<type>Multiple  choice quiz<\type>… 
<! What kind of knowledge is in the challenge? --> 
<domainKnowledgeList> 
  <domainKnowledge>software engineering <\domainKnowledge> 

<standard>SWEEBOK 2004<\standard> 
<area>Software Design</area> 
<subarea>Software Design Fundamentals<\subarea> 

   <topic_list> 
    <topic>General_Design_Concepts<\topic> 
    <topic>Context_of_Software_Design<\topic> 
    <topic>Software_Design_Process<\topic> 
    <subtopic>Detailed Design<\subtopic> 
    <subarea>Software Structure and Architectures<\subarea> 
    <topic>Design Patterns<\topic> 
   </topic_list> 
 <\domainKnowledgeList> 
 

 <transferableKnowledgeList> 
  <transferableKnowledge>analysis </transferableKnowledge> 

  <transferableKnowledge>critical_thinking </transferableKnowledge> 
    <transferableKnowledge>problem_solving 
</transferableKnowledge>       
<\transferableKnowledgeList> 
 

Fig. 3. Semi-formal Model and Formal Model for a (partial) Test Game 

Test Game on SE Design Patterns - Act 1, Scene 1, Screen 1, Challenge 1 



22 K.M.L. Cooper, E.S. Nasr, and C.S. Longstreet 

narrative; transformed into the semi-formal model in a learning objective row, then 
represented with nested XML tags in the formal model. The XML model can be 
loaded and tested in the SimSYS Game Play Engine. In applying the three step ap-
proach to engineering a collection of test games, we have found it to be straightfor-
ward, but labor intensive. In particular, the formal XML model required significant 
time to create. An Intelligent Semi-Automated Game Generation module is currently 
being prototyped to alleviate the effort in populating the informal narrative and semi-
formal models; a goal is to automatically generate the formal models. Related work is 
available on automating UC transformations, indicating this is feasible [13]. In the 
future, additional validation is needed, both by continuing our own project and by 
external educational game researchers and educators. The transformation from the 
semi-formal model to the Statechart model is also planned to explore model verifica-
tion via simulation/animation using commercial tool support.   

References 

1. Gee, J.P.: What video games have to teach us about learning and literacy. Macmillan, 
U.S.A. (2003) 

2. Adams, E.: Fundamentals of Game Design, 2nd edn. New Riders Publishing (2010) 
3. Object Management Group, OMG Model Driven Architecture (MDA) Guide Version 1.0.1 

(2003), http://www.omg.org 
4. Dormans, J.: The Effectiveness and Efficiency of Model Driven Game Design. In:  

Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 542–548. 
Springer, Heidelberg (2012) 

5. Tang, S., Hanneghan, M.: Fusing Games Technology and Pedagogy for Games-Based 
Learning Through a Model Driven Approach. In: Proceedings of the 2011 IEEE Collo-
quium on Humanities, Science, and Engineering Research, pp. 380–385 (2011) 

6. Sauer, S., Engels, G.: UML-based Behavior Specification of Interactive Multimedia Ap-
plications. In: Proceedings of the IEEE 2001 Symposia on Human Centric Computing 
Languages and Environments, pp. 248–255 (2001) 

7. Truong, K., Hayes, G., Abowd, G.: Storyboarding: an empirical determination of best 
practices and effective guidelines. In: Proceedings of the 6th Conference on Designing In-
teractive Systems, pp. 12–21 (2006) 

8. Pollack, S.L., Hicks, H.T., Harrison, W.J.: Decision tables: theory and practice. Wiley-
Interscience (1971) 

9. Object Management Group, OMG Unified Modelling Language, version 2.2 (2009), 
http://www.omg.org 

10. World Wide World Consortium, Extensible Markup Language (XML) 1.0, 4th edn. (Au-
gust 2006), http://www.w3.org/TR/xml/ 

11. Longstreet, C., Cooper, K.: A meta-model for developing simulation games in higher edu-
cation and professional development training. In: Proceedings of the IEEE 17th Interna-
tional Conference on Computer Games, pp. 39–44 (2012) 

12. Cooper, K., Longstreet, C.: Towards Model-driven Game Engineering for Serious Educa-
tional Games: Tailored Use Cases for Game Requirements. In: Proceedings of the IEEE 
17th International Conference on Computer Games, pp. 208–212 (2012) 

13. Riebisch, M., Hübner, M.: Refinement and Formalization of Semi-Formal Use Case De-
scriptions. In: Proceedings on the 2nd Workshop on Model-Based Development of Com-
puter Based Systems: Appropriateness, Consistency and Integration of Models (2004) 



Measuring and Improving the Completeness

of Natural Language Requirements

Alessio Ferrari1, Felice dell’Orletta2, Giorgio Oronzo Spagnolo1,
and Stefania Gnesi1

1 ISTI-CNR, Pisa, Italy
{alessio.ferrari,giorgio.oronzo.spagnolo,stefania.gnesi}@isti.cnr.it

2 ILC-CNR, Pisa, Italy
felice.dellorletta@ilc.cnr.it

Abstract. [Context and motivation] System requirements specifi-
cations are normally written in natural language. These documents are
required to be complete with respect to the input documents of the
requirements definition phase, such as preliminary specifications, tran-
scripts of meetings with the customers, etc. In other terms, they shall
include all the relevant concepts and all the relevant interactions among
concepts expressed in the input documents. [Question/Problem]Means
are required to measure and improve the completeness of the require-
ments with respect to the input documents. [Principal idea/results]
To measure this completeness, we propose two metrics that take into
account the relevant terms of the input documents, and the relevant re-
lationships among terms. Furthermore, to improve the completeness, we
present a natural language processing tool named Completeness As-
sistant for Requirements (CAR), which supports the definition of
the requirements: the tool helps the requirements engineer in discovering
relevant concepts and interactions. [Contribution] We have performed
a pilot test with CAR, which shows that the tool can help improving the
completeness of the requirements with respect to the input documents.
The study has also shown that CAR is actually useful in the identifi-
cation of specific/alternative system behaviours that might be overseen
without the tool.

Keywords: Requirements analysis, requirements completeness, require-
ments quality, natural language processing, terminology extraction,
relation extraction.

1 Introduction

The starting point of a requirements definition process is very rarely a blank
paper. More often, several input documents are placed on the desk of the re-
quirements engineer, from legacy system documentation to reference standards,
from transcripts of meetings with the customers to preliminary specifications.
The content of these documents has to be taken into account when writing the
requirements [1, 2], since it settles the background on which the future system

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 23–38, 2014.
c© Springer International Publishing Switzerland 2014



24 A. Ferrari et al.

can start to take its form. Such input documents are normally written in nat-
ural language (NL), and suitable natural language processing (NLP) tools can
help identifying all the information that is relevant for the requirements. NLP
approaches have been proposed in the past to identify significant abstractions
that can aid the requirements process (e.g., [3, 4]). However, none of the existing
approaches considers the completeness of the requirements with respect to the
existing documentation. A requirements document that does not include the rel-
evant information of the input documents - i.e., it is incomplete - could bring to
several problems: if the missing information resides in the transcripts of meetings
with the customers, the product might not address the customer’s expectations;
if some information is overseen from the reference standards, the resulting prod-
uct might not comply to the norms; when concepts from legacy documentation
and preliminary specifications are not taken into account, re-work on the product
or on the process artifacts is hard to avoid.

In this paper, we propose a NLP-based approach to measure and improve
the completeness of a requirements specification with respect to the input doc-
uments of the requirements definition process. A requirements document is
complete with respect to the input documents if all the relevant concepts and
interactions among concepts expressed in the input documents are also treated in
the requirements. We refer to this type of completeness as backward functional
completeness. In order to measure such completeness, we provide two metrics
that take into account the relevant terms and relevant relations among terms
of the input documents. Furthermore, we provide a NLP approach to automati-
cally extract such terms and relations. A prototype tool named Completeness
Assistant for Requirements (CAR) has been developed, which suggests rel-
evant information during the requirements definition phase, and automatically
computes the degree of completeness of the requirements specification produced.

We evaluate the effectiveness of the approach with a pilot test, which is also
used as a reference example in the remainder of the paper. The pilot test concerns
the definition of the requirements for an Automatic Train Supervision (ATS)
component of a Communications-based Train Control system (CBTC). CBTC
systems are signalling and control platforms tailored for metro, standardized by
the IEEE Std 1474.1-2004 [5]. These systems provide automatic train protection,
train monitoring, and automated train driving. The ATS component of a CBTC
is a centralized system that monitors and regulates the movement of the trains.
The system automatically routes trains, and sends them speed profiles that shall
be followed while moving through the railway network. It is normally equipped
with a user interface where the ATS operator can view the position of all the
trains, their schedule, and other information.

From the pilot test, we find that the CAR tool actually helps in improving
the completeness of the requirements specification with respect to the input
documents – in our case, the ATS reference standard. The tool suggests relations
about concepts that do not appear evident while reading the input document,
and facilitates the identification of specific/alternative behaviours of the ATS
system.



Measuring and Improving the Completeness of NL Requirements 25

The paper is structured as follows. In Sect. 2, we give some background on
requirements specifications completeness. In Sect. 3, the research questions ad-
dressed by the current paper are presented. In Sect. 4, we introduce two metrics
to evaluate the backward functional completeness of a requirements specifica-
tion. In Sect. 5, the CAR tool is described. Sect. 6 presents the evaluation of the
approach through a pilot test. Sect. 7 provides conclusions and future works.

2 Defining and Measuring Completeness

In general, a requirements specification is complete if all the necessary require-
ments are included [6]. Several works have been presented in the literature to
define and to measure the completeness of a requirements specification. In this
paragraph, we review some definitions, which give a framework to understand
the concept of backward functional completeness provided by the current paper.

Completeness. A largely agreed definition of completeness of a requirements
specification can be found in Boehm [7]. The definition states that a complete
specification shall exhibit five properties: 1) No To-be-determined (TBD) items
2) No nonexistent references 3) No missing specification items (e.g., missing
interface specifications) 4) No missing functions 5) No missing products (i.e.,
part of the actual software that are not mentioned in the specification).

Internal/External Completeness. The definition is further conceptualized
by Zowghi and Gervasi [8]. The first two properties defined by Bohem [7] are
associated to internal completeness, and the second three properties to external
completeness. Internal completeness can be measured by considering solely the
information included in the specification. Instead, measuring external complete-
ness requires additional information provided by domain experts, for example in
the form of a domain model.

Feasible Semantic Completeness. A more formal definition of external com-
pleteness - referred as semantic completeness - is given in Lindland et al. [9].
They look at the requirements specification as a conceptual model M , and they
state thatM has achieved semantic completeness if it contains all the statements
about the domain D that are correct and relevant (i.e., D \M = ∅). They ob-
serve that total semantic completeness cannot be achieved in practice, and they
define the concept of feasible semantic completeness as D \M = S �= ∅. The set
S is composed of correct and relevant statements, but there is no statement in
S such as the benefit of including it in the specification exceeds the drawback of
including it.

Functional Completeness.A further refinement of the concept, which goes to-
ward the definition of a completeness measure, is provided by España et al. [10].
In line with the observations of Zwoghi and Gervasi [8], the authors argue that,
in order to compute the feasible semantic completeness, a reference model Mr

shall be defined to conceptualize the domain D. By focusing on functional re-
quirements, they consider the subset FMr ⊂ Mr, which is a model of the func-
tional requirements. Such a model is composed of functional encapsulations Fr,



26 A. Ferrari et al.

roughly “functions”, and linked communications LCr, roughly “messages”. More
formally, Fr = Fr ∪ LCr.

A functional requirements specification FM shall be compared against this
reference model FMr to evaluate its completeness. Therefore, the specification
FM shall be regarded as a composition of functional encapsulations F and linked
communications LC (i.e., FM = F ∪LC). The introduced concepts are used to
define two aspects of functional completeness :

– functional encapsulation completeness: all functional requirements specified
in the reference model have been specified in the model (i.e., Fr \ F = ∅).

– linked communication completeness: all linked communications specified in
the reference model have been specified in the model (i.e., LCr \ LC = ∅).

In order to provide metrics associated to these aspects, the authors define the
degree of functional encapsulation completeness as degFEC = |F |/|Fr|, and
the degree of linked communication completeness as degLCC = |LC|/|LCr|. In
practice, computing these metrics requires the definition of a reference model for
the functional requirements in terms of functions and linked communications.

3 Motivation

Besides the one applied by España et al. [10], several other measures for
functional requirements completeness have been proposed in the literature
(e.g., [11–15]). Nevertheless, the majority of such metrics deal with functional
completeness defined with respect to the future implementation of the system1.
Indeed, domain models [10], ontologies [15], identification of components [14],
identification of system states [12], or expert analysis [11] are required to com-
pute this kind of completeness. In other terms, domain experts are called to
foresee a possible implementation of the system, possibly through a reference
functional model FMr. According to this vision, we refer to this kind of com-
pleteness as forward functional completeness. Instead, in our work we wish to
focus on the completeness of the requirements with respect to the available input
documents of the requirements definition process. The input documents might
be transcripts of meeting with customers, preliminary specifications, reference
implementation standards, or any other information specifically regarding the
system under development. We refer to the completeness of a functional require-
ments specification with respect to the input documents as backward functional
completeness.

Backward functional completeness is achieved by a functional require-
ments specification when (1) all the relevant concepts expressed in the input
documents are treated in the requirements specification; (2) all the relevant in-
teractions among concepts expressed in the input documents are treated in the
requirements specification.

1 One exception is [13], where completeness is evaluated against higher-level
requirements.



Measuring and Improving the Completeness of NL Requirements 27

Consider for example the input document of our pilot test [5]. The document
contains the sentence “An ATS system shall have the capability to automatically
track, maintain records of, and display on the ATS user interface the locations,
[...], the train schedule and [...]”. Besides the other content, such a sentence tells
that the ATS user interface is supposed to display the schedule of the trains.
Therefore, the requirement specification is expected to include the concepts of
“ATS user interface” and “train schedule”. Furthermore, requirements shall be
provided that define the interaction among the two concepts (i.e., the fact that
the ATS user interface shall display the train schedule).

Achieving backward functional completeness ensures that no relevant infor-
mation contained in the input documents is left out from the specification. Mea-
suring this type of completeness can give higher confidence on the quality of the
specification. Therefore, a metric is required to measure this kind of complete-
ness. Furthermore, we are also interested in establishing whether a positive corre-
lation holds between such completeness and the completeness of the specification
with respect to the system to be (i.e., the forward functional completeness).

Bearing these observations in mind, we define three research questions, which
are addressed by the current paper: RQ1. How to measure the backward func-
tional completeness of a requirements specification document? RQ2. How to
improve the backward functional completeness of a requirements specification
document? RQ3. Does the backward functional completeness help in improving
the forward functional completeness of the specification?

The first question is answered by computing two completeness metrics that
consider the number of relevant terms that are used in the input documents, and
the number of relevant relations among terms (Sect. 4). Roughly, a document
is more complete than another if more relevant terms and more relevant rela-
tions are included in the document. The second question is answered through a
prototype tool that suggests relevant terms to be included in the requirements,
and that considers the relations among terms (Sect. 5). The third question is
answered through a pilot test, where we have evaluated the forward functional
completeness of the requirements produced with the proposed tool, and without
the proposed tool (Sect. 6).

4 Metrics for Backward Functional Completeness

Measuring the backward functional completeness of a requirements specification
requires the definition of specific metrics (Research Question 1). Here, we
define two metrics. The first one, named degree of concept completeness, mea-
sures how many relevant concepts that are expressed in the input documents are
treated also in the specification. The second one, named degree of interaction
completeness, measures how many relevant interactions that are expressed in
the input documents are treated also in the specification.

More formally, we define the two metrics as follows. Let T be the set of
relevant concepts expressed in the input documents, and let Q ⊆ T be the set of
such concepts expressed in the requirements specification. We define the degree



28 A. Ferrari et al.

of concept completeness of a requirements document D with respect to a set of
input documents I as degCC(D, I) = |Q|/|T |.

Now, let U be the set of relevant interactions among concepts expressed in
the input documents, and let R ⊆ U be the set of relevant interactions among
concepts expressed in the requirements specification. We define the degree of
interaction completeness of a requirements document D with respect to a set of
input documents I as degIC(D, I) = |R|/|U |.

Given a requirements document and the corresponding input documents, we
would like to compute the two metrics in an automated manner.

We argue that the relevant concepts expressed in the input documents can be
approximated with the relevant terms included in such documents. Furthermore,
relevant interactions among concepts can be approximated with the relevant
relations among terms. Therefore, we define a NLP approach to automatically
identify relevant terms and relations among terms in the input documents.

4.1 Identification of Relevant Terms

The proposed method for the identification of relevant terms is based on a novel
natural language processing approach, named contrastive analysis [16], for the
extraction of domain-specific terms from natural language documents. In this
context, a term is a conceptually independent linguistic unit, which can be com-
posed by a single word or by multiple words. For example, consider the doc-
ument that we have used in our pilot test [5]. In such document, “Automatic
Train Supervision” is a term, while “Supervision” is not a term, since in the
textual documents considered in our study it often appears coupled with the
same words (i.e., “train”, “route”), and therefore it cannot be considered as
conceptually independent.

The contrastive analysis technology aims at detecting those terms in a docu-
ment that are specific for the domain of the document under consideration [16, 17].
Roughly, contrastive analysis considers the terms extracted from domain-generic
documents (e.g., newspapers), and the terms extracted from the domain-specific
document to be analysed. If a term in the domain-specific document highly oc-
curs also in the domain-generic documents, such a term is considered as domain-
generic. On the other hand, if the term is not frequent in the domain-generic
documents, the term is considered as domain-specific.

In our work, the documents from which we want to extract domain-specific
terms are the input documents of the requirements definition phase. The pro-
posed method requires two steps. First, conceptually independent expressions
(i.e., terms) are identified (Identification of Terms). Then, Contrastive Analysis
is applied to select the terms that are domain-specific.

Identification of Terms. Given a set I = {I1, . . . , In} of input documents, we
aggregate the documents in a single input document I. From this document,
which collects the content of all the input documents, we identify a ranked list
of terms. To this end, we perform the following steps.



Measuring and Improving the Completeness of NL Requirements 29

1. POS Tagging: first, Part of Speech (POS) Tagging is performed with an
english version of the tool described in [17]. With POS Tagging, each word is
associated with its grammatical category (noun, verb, adjective, etc.).

2. Linguistic Filters: after POS tagging, we select all those words or groups
of words (referred in the following as multi-words) that follow a set of specific
POS patterns (i.e., sequences of POS), that we consider relevant in our context.
For example, we will not be interested in those multi-words that end with a
preposition, while we are interested in multi-words with a format like <adjective,
noun, noun> (such as “Automatic Train Supervision”).

3. C-NC Value: terms are finally identified and ranked by computing a
“termhood” metric, called C-NC value [16]. This metric establishes how much a
word or a multi-word is likely to be conceptually independent from the context
in which it appears. The computation of the metric is rather complex, and the
explanation of such computation is beyond the scope of this paper. The inter-
ested reader can refer to [16] for further details. Here we give an idea of the spirit
of the metric. Roughly, a word/multi-word is conceptually dependent if it often
occurs with the same words (i.e., it is nested). Instead a word/multi-word is
conceptually independent if it occurs in different context (i.e., it is normally ac-
companied with different words). Hence, a higher C-NC rank is assigned to those
words/multi-word that are conceptually independent, while lower values are as-
signed to words/multi-words that require additional words to be meaningful in
the context in which they are uttered.

After this analysis, we have a ranked list of k words/multi-words that can be
considered terms, together with their ranking according to the C-NC metric, and
their frequency (i.e., number of occurrences) in I. The more a word/multi-word
is likely to be a term, the higher the ranking.

Contrastive Analysis. The previous step leads to a ranked list of k terms where
all the terms might be domain-generic or domain-specific. With the contrastive
analysis step, terms are re-ranked according to their domain-specificity. To this
end, the proposed approach takes as input: 1) the ranked list of terms extracted
from the document I; 2) a second list of terms extracted from a set of documents
that we will name the contrastive corpora. The contrastive corpora is a set of
documents containing domain-generic terminology. In particular, we have con-
sidered the Penn Treebank corpus, which collects articles from the Wall Street
Journal. The reasonable assumption here is that a term that frequently occurs in
the Wall Street Journal is not likely to be a domain-specific term of the domain
of a technical requirements specification. The new rank TRank(t) for a term t
extracted from the document I is computed according to the function [16]:

TRank(t) = log(f(t)) · ( f(t)
Fc(t)
Nc

)

where f(t) is the frequency of the term t extracted from I, Fc(t) is the sum of the
frequencies of t in the contrastive corpora, and Nc is the sum of the frequencies
of all the terms extracted from I in the contrastive corpora. Roughly, if a term
is less frequent in the contrastive corpora, it is considered as a domain-specific



30 A. Ferrari et al.

term, and it is ranked higher. Consider again our pilot test. After the contrastive
analysis, a term such as “train” – which is highly frequent in the document (57
occurrences), but is also frequent in the contrastive corpora – is ranked lower
than “ATS user interface”. Indeed, this term has 8 occurrences in the document,
but is uncommon in the contrastive corpora.

After this analysis, we have a list of terms, together with their ranking accord-
ing the function TRank, and their frequency in I. The more a term is likely to be
domain-specific, the higher the ranking. From the list, we select the terms that
received the higher ranking. The choice shall be made according to a domain
relevance threshold τ . If TRank(t) ≥ τ the term will be selected as relevant.
The value of τ is defined over normalized values, where the rank of each term is
divided by the maximum value of TRank. The selection of τ shall be performed
by a domain expert after reviewing the lists of terms extracted. Normally, a
value of τ = 0.99 allows selecting most of the relevant terms.

Assuming that the set of selected terms T̄ provides an approximation of
the relevant concepts of the input documents T , we can approximate the de-
gree of concept completeness as degCC(D, I) ≈ |Q̄|/|T̄ |, where T̄ = {t ⊂ I :
TRank(t) ≥ τ}, and Q̄ = D∩T̄ . For example, in our case study, we have |T̄ | = 67
relevant terms extracted from the input documents (see Table 1 for examples). In
the first experiment, the requirements produced by subject A included |Q̄| = 46
of such terms. Therefore degCC(D, I) ≈ 68.7%.

4.2 Identification of Relevant Relations

In order to identify relevant relations among terms, we first select all the terms
t extracted in the previous step, regardless of their ranking. Then, we search
for possible relations among such terms. We state that there is a relation u =
(tj , th) between two terms tj , th if such terms appear in the same sentence or
in neighboring sentences. In our case, we select the previous and the following
sentence. In order to give a rank to such relation, we use the Log-likelihood metric
for binomial distributions as defined in [18]. The explanation of such metric is
beyond the scope of this paper. Here, we give an idea of the spirit of the metric.
Roughly, a relation holds between two terms if such terms frequently appear
together. Moreover, the relation is stronger if the two terms do not often occur
with other terms. In other words, there is a sort of exclusive relation among the
two terms. For each couple of terms tj, th occurring in neighboring sentences
of the input document I, we associate a rank according to the Log-likelihood
metric, which represents the degree of their relation u = (tj , th):

RRank(u) = Log-likelihood(tj , th)

In our pilot test, the term “re-routing of trains” has a relation with “movement
of trains” and with “ATS user interface”. However, the relation is stronger (i.e.,
more exclusive) with the former (RRank = 14.88 vs RRank = 8.85), since the
latter often occurs with other terms. Indeed, the ATS user interface is required
to show several information, besides those concerning re-routing of the trains.



Measuring and Improving the Completeness of NL Requirements 31

After this analysis, we have a list of relations, together with their ranking
according the function RRank. From the list, we select the terms that received
the higher ranking. The choice shall be made according to a relation degree
threshold ρ. If RRank(u) ≥ ρ, the relation will be selected as relevant. The
selection of ρ shall be performed by a domain expert after reviewing the lists of
relations extracted with the proposed method. Normally, a Log-likelihood above
10.83 is recommended to select only relevant relations. However, lower thresholds
can be chosen, if more relations are required.

Assuming that the set of selected relations Ū provides an approximation of
the relevant interactions U in the input documents, we can approximate the
degree of interaction completeness as degIC(D, I) ≈ |R̄|/|Ū |, where Ū = {u ∈
T̄ × T̄ : RRank(u) ≥ ρ}, and Q̄ = (D ×D) ∩ Ū . For example, in our case study,
we have |Ū | = 316 relations extracted from the input documents (see Table 2
for examples). In the first experiment, the requirements produced by subject A
included |R̄| = 54 of such relations. Therefore degIC(D, I) ≈ 17.1%.

5 A Word-Game to Support Requirements Definition

We would like to provide means to improve the backward functional completeness
of a requirements specification (Research Question 2). We argue that the
backward functional completeness of a requirements specification is normally
hampered by two problems: (1) missing concepts: the person who writes the
requirements might forget to consider relevant concepts of the problem, either
because she postpones their analysis, or because they are unclear and hard to
specify, or because the input documents include too many concepts to consider
them all; (2) missing concept interaction: when one writes a requirement, she
might be concentrated on the specific function that she is defining, and oversee
possible interactions among elements.

We have implemented a prototype tool named Completeness Assistant
for Requirements (CAR), which addresses these problems by automatically
suggesting possible relevant terms and possible relevant relations among terms
to be used in the requirements. The relevant terms and relations are extracted
from the input documents (e.g., transcripts of meeting with the customers, refer-
ence standards, preliminary requirements) according to the approach explained
in Sect. 4. Therefore, the tool starts with a set T̄ of relevant terms, and a set Ū of
relevant relations. Furthermore, the degree of concept completeness and the de-
gree of interaction completeness is computed at run-time while the requirements
manager writes down the requirements.

Fig. 1 shows the interface of CAR. The figure is used as a reference example
to explain the working principles of the tool. The example, adapted from our
pilot test, concerns the definition of the requirements for an Automatic Train
Supervision (ATS) system. An ATS system is a component of a metro control
system that takes care of monitoring and routing trains. Furthermore, an ATS
provides capabilities to remotely issue commands to the trains. The input doc-
ument, in the example, is a reference international standard [5], which is used



32 A. Ferrari et al.

Fig. 1. User interface of the tool

as a starting point to write the requirements for the ATS system. In general,
the tool can work with any kind of natural language input document, such as
interviews, transcripts of meetings with the customers, etc.

The tool is a sort of word-game. The main steps of the game are summarized
below:

1. The tool suggests to write a requirements with three terms. The first term
( conductor , in Fig. 1) is extracted from the set of relevant terms, while
the other two terms ( control , train doors ) are extracted from the
set of relevant relations. The three terms are also highlighted in the original
document, which is loaded to the bottom frame of the interface. In the
current version of the tool, the extraction is random. Nevertheless, smarter
approaches can be devised that choose the terms by taking into account their
relevance, their position, or the previously written requirements.

2. The user writes a requirement, possibly using the three terms suggested. An
example requirement that employs the three terms is “The ATS system shall
notify the inhibition of control of the train doors to the train conductor”.



Measuring and Improving the Completeness of NL Requirements 33

Then, the user adds the requirement to the central panel by pressing the
button Add. It is worth noting that a requirement like the one presented
above could not be deduced by simply reading the text of the input docu-
ment. It is actually an additional behaviour inspired by the suggested terms.
Indeed, a relation between the “conductor” and the “train doors” was not
specified in the original input document, as one can see from the fragment
displayed in Fig. 1.

3. The system checks if the user used any relevant term or relevant relations,
and consequently increases the degree of Concept Completeness and
the degree of Interaction Completeness. These values are computed as
|Q̄|/|T̄ | and |R̄|/|Ū |, respectively, as explained in Sect. 4.1 and 4.2. When
relevant concepts are found within the requirement, these are added to the
set Q̄. When relevant relations are found, these are added to the set R̄.
The current values of the metrics are shown below the panel that lists the
requirements.

4. The system automatically suggest other terms to be used in the following
requirement.

If a relevant term or relation is suggested twice, and the user does not employ
it in the requirement, such term/relation is marked as not relevant. Therefore,
the completeness scores are adjusted consequently (i.e., |T̄ | or |Ū | are decreased).

In some cases, the user might not be interested in writing a requirement that
includes all the suggested terms. In other cases, the user might want to focus
on the suggested terms/relations to write more than one requirement. With
the normal behaviour of the tool, new terms/relations would be automatically
suggested in these cases after pressing the button Add. As explained, if such
terms/relations are not used, they are marked as not relevant, and will not be
presented anymore among the suggestions. Therefore, we added the Suspend
Terms and Suspend Relations buttons, to suspend the automated suggestion
of terms and relations, and prevent the tool from marking them as not relevant.

If new relations among terms are reported in a requirement, these new rela-
tions shall be added to the relevant relations Ū . In our case, the relations between
“conductor” and the other two terms are added to Ū . Similarly, if some terms
are used that were not identified as relevant in the initial analysis, such terms
shall be stored among the relevant terms T̄ . These situations do not influence
the computation of the backward completeness (also |Q̄| and |R̄| increase like |T̄ |
and |Ū |). Nevertheless, we argue that storing and reviewing the new concepts
and relations can help understanding if the requirements specification provides
additional information with respect to the input documents.

6 Pilot Test

We have performed a pilot test to assess the effectiveness of the proposed ap-
proach, and to evaluate the correlation between the backward functional com-
pleteness and the forward functional completeness (Research Question 3) of
a requirements specification.



34 A. Ferrari et al.

In the pilot test, the first and third author, referred as subject A and subject
B, were required to write requirements for an ATS system, according to the
generic requirements provided by the standard IEEE Std 1474.1-2004 [5].

The requirements have been written with the support of the tool, and without
the support of the tool. The goal was to compare the degree of backward func-
tional completeness and the degree of forward functional completeness achieved
in the two cases.

More specifically, the pilot test required four steps, which are described below.

1. Input document reading: the chapter concerning the ATS of the IEEE
Std 1474.1-2004 [5] - about 5 pages long - was used as input document for the
requirements definition task. Subject A and B were asked to read the input
document to have a first understanding of the general needs of the system.
2. Tool set-up: from the input document, 67 relevant terms and 316 relevant
relations have been automatically extracted. To this end, a threshold of 99%
and a threshold of 10 were chosen as domain relevance threshold τ , and relation
degree threshold ρ, respectively. In Table 1 and 2, we provide representative
examples of relevant terms and relevant relations extracted from the document.
These terms and relations have been fed into the tool to support the definition
of the requirements.
3. Requirements definition Phase 1: subject A and B were asked to write
the requirements. Subject A operated with the support of the tool, and subject
B operated without the tool. The requirements definition lasted one hour.
4. Requirements definition Phase 2: subject A and B were asked again to
write the requirements. Subject B operated with the tool, and subject A operated
without the tool until they produced the same amount of requirements produced
in the previous step (i.e., if a subject produced n requirements in Phase 1, he
should have produced n requirements also in the Phase 2). Given a subject, this
choice allows comparing the completeness scores achieved in the two phases on
the same amount of requirements.

The subjects chosen for the test - first and third author - were involved in
the definition of the principles of CAR, while the approach for term/relation
extraction was defined and implemented by the second author only. Therefore, we
argue that the expectations of the two test subjects on the success of the solution
had a limited influence on the result of the test. Indeed, they did not know which
types of terms/relations would be considered relevant by the tool, and could not
influence the test by avoiding the usage of relevant terms/relations when the
tool was not used. This is especially true for Subject B, who performed his first
experiment without the tool. But it is also true for Subject A, since during the
first experiment he viewed only a limited part of the terms/relations extracted
by the tool (i.e., the suggested terms/relations).

6.1 Quantitative Evaluation

We evaluated the results of the test by computing the backward functional com-
pleteness of the produced requirements for the two subjects. Then, we computed
the forward functional completeness according to the metrics provided by España



Measuring and Improving the Completeness of NL Requirements 35

Table 1. Examples of relevant terms

Term TRank (%) Freqency

CBTC 100.0 44

ATS 99.99999 + 0.99769 × 10−6 43

ATS system 99.99999 + 0.8456 × 10−6 19

ATS user interface 99.99999 + 0.29614 × 10−6 8

train location 99.99999 + 0.1231 × 10−6 7

train 99.99999 + 0.1185 × 10−6 57

conductor 99.99997 + 0.73215 × 10−6 8

station 99.99979 + 0.57378 × 10−6 12

Table 2. Examples of relevant relations

Relation RRank Freqency

(conductor, ATS system) 35.1402383629 6

(ATS user interface, position of trains) 17.9938334306 2

(station, train at station) 16.1777267317 2

(speed regulation function, service brake rates) 14.8834871304 1

(train fault reporting, train health data) 14.8834871304 1

(re-routing of trains, movement of trains) 14.8834871304 1

(equipment, supplier) 13.1023727742 2

(ATS user interface, movement authorities) 12.4872415276 2

(station departure time, train service) 12.1108984081 1

et al. [10]. The degree of functional encapsulation completeness degFEC, and
the degree of linked communication completeness degLCC require the definition
of a reference model for the system. In our case, we have employed a preliminary
system specification where functions and linked communications were listed. The
reference model defines 21 functions and 10 linked communications for the ATS
system. The document was edited in the context of the Trace-IT project, a
project for technology-transfer, which involves ISTI-CNR and a medium-sized
railway signalling company. It is worth noting that the reference model was
provided before the definition of the method presented in this paper. Table 3
summarizes the results of the test.

Backward functional completeness. We see that, for both subjects, the backward
functional completeness, estimated with degCC and degIC, is higher when the
tool is employed (ΔdegCC = 12.7% and ΔdegIC = 8.6% in average). Therefore,
in our pilot test, the usage of the tool actually helped in improving the backward
functional completeness of the requirements specification. Furthermore, we argue
that if a larger amount of input documents would be employed, the benefit given
by the usage of the tool would be even more evident. The CAR tool helps in the
navigation of the input documents. Without tool support, coherent navigation
would be hardly practicable in the case of many documents. Moreover, with
a larger amount of information, the statistics that bring to the set of relevant
terms/relations would be more accurate, and the consequent suggestions given
by the tool would be more meaningful.



36 A. Ferrari et al.

Table 3. Results of the pilot tests

Subject
Num.
Reqs

Tool degCC degIC degFEC degLCC

A 36
Yes 68.7% 17.1% 47.6% 40%

No 52.3% 12.8% 61.9% 50%

B 21
Yes 67.2% 24.5% 47.6% 50%

No 58.2% 11.6% 33.3 % 50%

Forward Functional Completeness. Conflicting results have been found concern-
ing the effectiveness of the approach with respect to forward functional complete-
ness, estimated through degFEC and degLCC. Indeed, we see that subject A
achieved a lower value for both metrics when using the tool with respect to
the values obtained when the tool was not employed (ΔdegFEC = −14.3%,
ΔdegLCC = −10%). Instead, subject B achieved a higher value for degFEC
when using the tool (ΔdegFEC = 14.3%), while equivalent values for degLCC
were obtained in Phase 1 and 2. Therefore, from our test, we cannot identify a
positive correlation between the degree of backward functional completeness and
the degree of forward functional completeness. Instead, we argue that the results
obtained might be related to the order that was followed by the two subjects
in performing the tasks. Subject A performed the experiment with CAR before
writing the requirements without the tool, while for subject B was the other way
around. Both subjects achieved a higher degree of completeness during Phase 2.
Basically, a higher degree of completeness was obtained when the subjects ac-
quired a higher confidence with the topic of the requirements, since they already
defined requirements for the system in Phase 1.

6.2 Qualitative Evaluation

We have performed a qualitative analysis of the produced requirements to un-
derstand which were the main differences between the requirements produced
with CAR and those produced without the tool. Interesting results have been
found. We have identified two main differences: 1) requirements produced with
CAR tend to be more specific, while requirements produced without the tool are
more high-level; 2) requirements produced with CAR tend to identify alterna-
tive behaviors of the system. Representative examples of requirements produced
without the support of the tool by subject A are:

– R1. The ATS system shall send the desired speed profile to the trains
– R2. The ATS system shall have the capability to define temporary speed restrictions

for the trains
– R3. The ATS system shall implement the functionality of train routing



Measuring and Improving the Completeness of NL Requirements 37

These requirements are quite generic, and do not add too much content compared
to the input document. Instead, more specific requirements are produced with
the tool. For example, the following requirement was produced when the tool sug-
gested the term “emergency brake application” and the relations <“response”,
“wet rail”>: The ATS system shall adjust the speed profile of the trains in re-
sponse to wet rail conditions in order to avoid emergency brake application”.
Such requirement can be regarded as a specialization of R1 and R2, since it
explains the specific condition (i.e., the wet rail) that requires temporary speed
restrictions. The following requirement is an example of an alternative behavior
identified with the support of the tool. In this case, the relations suggested was
<“re-routing”, “service disruptions”>: The ATS system shall be capable of sup-
porting re-routing of trains in response to service disruptions”. This requirement
shows an alternative behavior (i.e., re-routing) of the routing functionality iden-
tified by requirement R3. According to this preliminary analysis, we argue that
the proposed tool can play a complementary role during requirements definition.
Indeed, it can be used as a support tool to identify specific cases, and alternative
behaviors that tend to be overseen in requirements definition approaches based
solely on the analysis of the input documents.

7 Conclusions

In this paper, the novel concept of backward functional completeness of a re-
quirements specification has been defined as the completeness of a specification
with respect to the input documents of the requirements definition process. Met-
rics to measure such completeness have been provided, as well as a NLP-based
tool named CAR to improve it. Further development of the principles of CAR
are currently under analysis. We would like to give a type to the relations that
are extracted from the input documents. For example, “ATS user interface” and
“train schedule” are related in our input document, and their relation is of type
“display”. Furthermore, we would like to explore different approaches for choos-
ing the terms to be suggested to the user of CAR. Such approaches should also
take into account the structure of the input documents, the structure of the
requirements specification itself, and the requirements previously written by the
user. Other similarity metrics, such as the cosine similarity, are currently under
analysis to evaluate the relations among the terms.

After improving the principles of CAR, we plan to assess the tool with both
academic and industrial case studies. In particular, we plan to consider systems
of different domains, as well as different types of input documents, in order to
identify possible refinements and domain-specific optimizations of the approach.

Acknowledgements. This work was partially supported by the PAR FAS 2007-
2013 (TRACE-IT) project.



38 A. Ferrari et al.

References

1. Rayson, P., Garside, R., Sawyer, P.: Recovering legacy requirements. In: Proc. of
REFSQ 1999, pp. 49–54 (1999)

2. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-
dations, principles, and techniques. Springer (2005)

3. Goldin, L., Berry, D.M.: Abstfinder, a prototype natural language text abstraction
finder for use in requirements elicitation. Autom. Softw. Eng. 4(4), 375–412 (1997)

4. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language require-
ments with CIRCE. Autom. Softw. Eng. 13(1), 107–167 (2006)

5. IEEE: IEEE Standard for Communications Based Train Control (CBTC) Perfor-
mance and Functional Requirements. IEEE Std 1474.1-2004 (Revision of IEEE Std
1474.1-1999) (2004)

6. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley (2002)
7. Boehm, B.: Verifying and validating software requirements and design specifica-

tions. IEEE Software 1(1), 75–88 (1984)
8. Zowghi, D., Gervasi, V.: The three cs of requirements: Consistency, completeness,

and correctness. In: Proc. of REFSQ 2002, pp. 155–164 (2002)
9. Lindland, O., Sindre, G., Solvberg, A.: Understanding quality in conceptual mod-

eling. IEEE Software 11(2), 42–49 (1994)
10. España, S., Condori-Fernandez, N., Gonzalez, A., Pastor, O.: Evaluating the com-

pleteness and granularity of functional requirements specifications: A controlled
experiment. In: Proc. of RE 2009, pp. 161–170 (2009)

11. Yadav, S.B., Bravoco, R.R., Chatfield, A.T., Rajkumar, T.M.: Comparison of anal-
ysis techniques for information requirement determination. Commun. ACM 31(9),
1090–1097 (1988)

12. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Identifying
and measuring quality in a software requirements specification. In: Proc. of SMS
1993, pp. 141–152 (1993)

13. Costello, R.J., Liu, D.B.: Metrics for requirements engineering. J. Syst.
Softw. 29(1), 39–63 (1995)

14. Menzel, I., Mueller, M., Gross, A., Dörr, J.: An experimental comparison regarding
the completeness of functional requirements specifications. In: Proc. of RE 2010,
pp. 15–24 (2010)

15. Kaiya, H., Saeki, M.: Ontology based requirements analysis: lightweight semantic
processing approach. In: Fifth International Conference on Quality Software (QSIC
2005), pp. 223–230 (2005)

16. Bonin, F., Dell’Orletta, F., Montemagni, S., Venturi, G.: A contrastive approach
to multi-word extraction from domain-specific corpora. In: Proc. of LREC 2010,
pp. 19–21 (2010)

17. Dell’Orletta, F.: Ensemble system for part-of-speech tagging. In: Proc. of Evalita
2009, Evaluation of NLP and Speech Tools for Italian (2009)

18. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Com-
put. Linguist. 19(1), 61–74 (1993)



(Semi-) automatic Categorization

of Natural Language Requirements

Eric Knauss1 and Daniel Ott2

1 Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden

eric.knauss@cse.gu.se
2 Research and Development, Daimler AG

P.O. Box 2360, 89013 Ulm, Germany
daniel.ott@daimler.com

Abstract. Context and motivation: Requirements of todays
industry specifications need to be categorized for multiple reasons, in-
cluding analysis of certain requirement types (like non-functional require-
ments) and identification of dependencies among requirements.This is a
pre-requisite for effective communication and prioritization of require-
ments in industry-size specifications. Question/problem: Because of
the size and complexity of these specifications, categorization tasks must
be specifically supported in order to minimize manual efforts and to
ensure a high classification accuracy. Approaches that make use of (su-
pervised) automatic classification algorithms have to deal with the prob-
lem to provide enough training data with excellent quality. Principal
ideas/results: In this paper, we discuss the requirements engineering
team and their requirements management tool as a socio-technical sys-
tem that allows consistent classification of requirements with a focus on
organizational learning. We compare a manual, a semi-automatic, and
a fully-automatic approach for the classification of requirements in this
environment. We evaluate performance of these approaches by measur-
ing effort and accuracy of automatic classification recommendations and
combined performance of user and tool, and capturing the opinion of
the expert-participants in a questionnaire. Our results show that a semi-
automatic approach is most promising, as it offers the best ratio of qual-
ity and effort and the best learning performance. Contribution: Our
contribution is the definition of a socio-technical system for requirements
classification and its evaluation in an industrial setting at Mercedes-Benz
with a team of ten practitioners.

Keywords: requirements, classification, categorization, natural language.

1 Introduction

In current industry specifications it is essential to categorize requirements, partly
because of their growing size and complexity [1], but also to allow for a number

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 39–54, 2014.
c© Springer International Publishing Switzerland 2014



40 E. Knauss and D. Ott

of requirements related activities [2]: Identification of requirements of different
kinds (e.g. technical or non fun-functional requirements) is a necessity (1) for
having specific guidelines for developing and analyzing these requirement types,
(2) for architectural decisions, (3) for identifying equipment needed, its quantity
and permitted suppliers, and (4) for identifying dependencies among these re-
quirements, especially to detect risks and for scheduling needs during the project.
Related to this, Knauss et al. [3] propose an automatic classifier for identifying
security-related requirements early in the project, which is crucial in order to pre-
vent substantial security problems later [4–6]. More recent, Ott [7] also reports
the need to categorize requirements for inspection tasks to support reviewers
with the detection of consistency or completeness defects over large document
sets. Note that in this work, we use the term classification to refer to the specific
algorithmic task of mapping requirements to topics and categorization to refer
to general goal of establishing a good mapping between requirements and topics
for a specification.

Efficient classification can enable focussed communication and prioritization
of requirements. As the examples show, categorization of requirements allows
filtering relevant requirements for a given important aspect. Considering large
specifications, for example in the automotive domain (a single specification at
Mercedes-Benz can consist of up to 50.000 requirements and headings [8]), it
is necessary to minimize the manual efforts in categorization tasks. Automatic
classification is promising [3, 7], but depends on a sufficient amount of high
quality training data which is not available in many realistic scenarios.

Contribution: In this work, we model a socio-technical system for requirements
classification, consisting of the requirements engineering team and their require-
ments management tool. This socio-technical system allows different modes of
operation, ranging from full-automatic over semi-automatic to manual classifi-
cation of requirements. Our model has a special focus on learning, i.e. gaining
shared understanding of a classification scheme in a team and generating high
quality training data. For example, our semi-automatic approach learns and ad-
justs its suggestions with each new requirement according to the user’s choices.

We explore the performance of the different operation modes of the socio-
technical system in an experiment in cooperation with Mercedes-Benz, driven
by the following research questions:

– RQ1: If applied to a new specification domain, how are the relative quality
levels that can be achieved with the three operation modes fully-automatic,
semi-automatic, and manual classification?

– RQ2: If applied to a new specification domain, how high are the relative
efforts of these operation modes?

Our results suggest that the semi-automatic approach is most promising: it
offers significantly better quality than the fully automatic approach, causes less
effort than the manual approach, and in addition generates valuable training
data as a by-product. In Section 2 we describe related work. Thereafter, we
present our model of a socio-technical system (the planned user interactions and



(Semi-) automatic Categorization of NL Requirements 41

classification mechanisms) in Section 3. Section 4 gives a short overview of our
technical solutions and we present the exploratory experiment with Mercedes-
Benz in Section 5. We discuss the results in Section 6 and conclude the paper
with an outlook on future research in this field.

2 Related Works

In this section, we discuss a spectrum of approaches for classification of re-
quirements. On the one side of this spectrum are approaches that are based on
purely manual classification, as supported by most state-of-the-art requirements
management tools. Analysts specify the classification of requirements in a user-
defined attribute. As one such example, Song and Hwong [2] report about their
experiences with manual categorizations of requirements in a contract-based sys-
tem integration project. The contract for this project contains over 4,000 clauses,
which are mostly contract requirements.

On the other side of the spectrum are approaches that classify requirements
only based on automatic classification. Examples include QuARS tool by Gnesi
et al. [9], which automatically detects linguistic defects like ambiguities, using
an initial parsing of the requirements. Thereby, QuARS creates a categorization
of requirements to topics as a byproduct.

Especially when based on machine learning, such approaches face the problem
to obtain large enough training sets in sufficient quality. Knauss et al. [3] evaluate
to what extent security-relevant requirements can be automatically identified
in specifications based on Naive Bayesian Classifiers. Accordingly, satisfactory
results can be achieved, if both training and testing data were derived from
the same specification. This is probably due to the fact that writing style and
domain specific concepts have a strong impact on the classifier’s performance.
Ott [7] reports similar results for automatic classification of requirements in
multiple categories for supporting review activities. For this reason, Ko et al.
[10] propose to automatically create the training data for topic classification.
Based on a clustering algorithm they categorize requirements and use these to
train Naive Bayesian classifiers. Their evaluation results are promising, but only
based on small English and Korean specifications (less than 200 sentences).

Hussain et al. [11] developed the tool LASR that offers an interactive modus
for supporting groups in annotation tasks. By not relying on a fully automatic
classification approach they mitigate the problem of insufficient training data. In
contrast to our work, they try to support a group in collaboratively creating and
agreeing on a categorization, whereas we focus on supporting single annotators
with a special focus on cost and quality, as well as continuous improvement.

3 Socio-technical Requirements Classification

We define a topic as any crosscutting concern that demands for the ability to
filter related requirements. Examples include qualitative requirements, such as
performance or security-relevance, and crosscutting design issues or constraints



42 E. Knauss and D. Ott

such as regulatory concerns. A requirement can be assigned to a set of topics.
Technically, this can be done by adding an attribute topic to the requirement
and specify relevant topics as a comma separated list.

When requirements are categorized into topics, certain tasks (e.g. creating
a security concept, reviewing, prioritizing) become much simpler. As shown by
related work, automatic topic classification of natural language requirements is
technically feasible but prone to writing style and domain specificity. The main
reason for these problems is the lack of sufficient training data in high quality.
Thus, the integration of such algorithms in the requirements specification process
needs to be considered carefully.

To get a good categorization, the socio-technical system needs to support
four main use cases: It should support the author of a requirements document
in choosing topics during the documentation of requirements, it should propose
relevant topics when the user chooses a topic for a given requirement, it should
allow the user to add new topics to the socio-technical system, and it should
support assigning topics to a set of requirements that are already documented.

A system for requirements categorization needs to be able to learn, because
otherwise it could not adjust to domain specific concepts or writing style. This
learning can be observed on several levels. First, users learn a suitable system of
topics during working with the requirements. Second, the classification system
itself should learn from previous classifications and gain more and more accuracy
in proposing relevant topics.

The value of requirements categorization depends on its quality. For example,
consider designing a security concept. In this case it is very important that all
security relevant requirements are identified. Moreover, the value of the topic
classification needs to be higher than the cost to create it.

Figure 1 shows our model of a socio-technical system for requirements classi-
fication which can offer different modi of operation. First of all, it allows manual
classification (automatic classification support = no), the modus with the high-
est level of freedom. Users can specify a number of requirements, then classify
them, before they continue with the specification. We assume that this modus
can generate a high quality categorization at high cost.

Secondly, it allows to rely on fully automatic classification (in Figure 1: auto-
matic classification support = yes, user confirms classification = no). By elim-
inating the need for human intervention, the cost to create the classification is
minimal (consequently, the dashed transitions in Figure 1 are unusual in this
modus. Instead, the user would write the specification and then finalize it by
triggering the automatic classification). As has been shown before [7], this ap-
proach is highly effective, if enough high quality training data is available, i.e.
classified requirements in a closely related domain. Even though this is not un-
likely in product centered or software evolution scenarios, there will often be
situations where such training data is not available. Consequently, quality of
fully automatic topic classification might just be too low for many tasks.

Thus, we are especially interested in a third modus, the semi automatic classi-
fication. In this case the system recommends relevant topics and allows the user



(Semi-) automatic Categorization of NL Requirements 43

Open 
specification

Write 
requirement

Classify 
requirement

Close 
specification

Classify requirement

Initial trainingsdata?
yes: use training data from 
    other specifications
no: use only training data 
    from this specification

Identify suitable 
class manually

Identify suitable 
class automatically

Automatic 
classification 
support?

yes

no

Manually add class 
to requirement

Automatically add 
class to 

requirement

User confirms 
classification?

yes

no

Update 
training 
data for 
this 
specification

Fig. 1. A socio-technical system for requirements classification

to interact by confirming or rejecting recommendations (automatic classification
support = yes, user confirms classification = yes). This interaction can be used
to train supervised learning algorithms as discussed in the following section, thus
generating high quality training data for future versions of this specification.

The screenshot in Figure 2 shows a prototype of a supporting tool for the
socio-technical requirements classification system. The prototyp allows working
on data from typical requirements management tools, e.g. an authentic, publicly
available specification for a door control unit [7] stored in IBM Doors, as shown
in the figure. Users can add, remove, and edit requirements. If the user selects
or changes a requirement r1, the prototype updates the recommendation list (3
in Figure 2). If the user selects another requirement r2, the prototyp analyses
the user’s topic classification of requirement r1 and updates its training data ac-
cordingly. Depending on the modus, parts of the UI are deactivated and hidden,
e.g. the recommendation list in manual modus or both lists in fully automatic
modus.

4 Text Classification Algorithms

In requirements engineering and management, text classification algorithms can
be used to categorize huge document landscapes to certain topics: In past



44 E. Knauss and D. Ott

1 
3 

2 

Fig. 2. Prototype of a specification tool as part of the socio-technical system. The main
area (1) allows editing the requirements specification, (2) allows to assign a category
to a requirement from the list of all available categories, (3) a shorter recommendation
list allows to asign recommended categories.

research [7], we showed at typical large-scale, German automotive specifications
of Mercedes-Benz that an automatic classification using text classification is pos-
sible with sufficient quality. Therefore, we identified a well-working combination
of pre-, post-processing, and classification steps, out of many alternatives. We
will use this combination in the current work, too.

Figure 3 shows details to the individual processing steps. The chosen pre-
processing, post-processing, and classification steps have many alternatives, but
after a comparison, we got the best results with the illustrated setting in pre-
vious work for German natural-language specifications from Mercedes-Benz [7].
A more detailed description to the individual process steps can also be found in
this previous work.

Fig. 3. Processing Steps



(Semi-) automatic Categorization of NL Requirements 45

The support vector machine (SVM) approach works as follows (based
on Witten et al. [12]) : A nonlinear mapping is used to transform the train-
ing data into a higher dimension. Within this new dimension, the classifier
searches for the optimal separating hyperplane, which separates the class of
topic relevant and topic irrelevant requirements. If a sufficiently high dimension
is used, data from two classes can always be separated by a hyperplane. The
SVM finds the maximum-margin hyperplane using support vectors and mar-
gins. The maximum-margin hyperplane is the one with the greatest separation
between the two classes.

The maximum-margin hyperplane can be written as [12]:

x = b+
∑

i is support vector

αi ∗ yi ∗ a(i) · a

Here, yi is the class value of training instance a(i), while b and αi are numeric
parameters that have to be determined by the SVM. a(i) and a are vectors. The
vector a represents a test instance, which shall be classified by the SVM.

Based on external training data (manually classified requirements), the SVM
then calculates for each topic such a maximum-margin hyperplane with the
greatest separation between the training requirements belonging to the topic
and the ones that do not. With this hyperplane the SVM can assign a new
requirement to the topic or not.

In the pre-processing step k-gram indexing [13], each word of each require-
ment is separated in each ongoing combination of k letters and the classifier
is then trained with these k-grams instead of the whole words. For example,
a k-gram indexing with k = 4 separates the word “require” to “requ”, “equi”,
“quir”, “uire”.

The post-processing step called topic generalization takes the structure of
Mercedes-Benz specifications into account. All specifications at Mercedes-Benz
are written using a template, which provides a generic structure and general
requirements, and are filled later with system specific contents. Because of this
structure, we assume that if a heading was assigned to a topic, then we can also
assign each of the requirements and subheadings below it to this topic. This
allows to relate requirements represented by tables or figures (i.e. elements that
are not accessible to text classification at all) to the topics of their headings.
Tables are implemented as OLE objects in our requirement management tool,
so the content of a table is not accessible to our algorithms.

5 Evaluation

5.1 Research Method

The purpose of this experiment is to test in which way automatic classification
helps to reduce effort and to increase quality of topic classifications in industrial
requirements specifications. We are also interested in learning effects. For this
reason, we explore the impact of initial training and user/tool interaction on
learning, i.e. changes of effort and quality over time.



46 E. Knauss and D. Ott

Based on our model of the socio-technical classification system (Figure 1),
we defined the following independent variables: Automatic classification support
can be activated or deactivated. Initial training of the automatic classifier might
provide better suggestions in the beginning, but take longer to adjust to a special
problem domain. User confirms classification determines if the user confirms the
classification and potentially overrides automatic classifications.

We monitored the following dependent variables: effort to provide a require-
ments specification with topic classification and quality of the topic classification.
Finally, we controlled for the quality of the requirements specification itself.

In previous work, we showed the fully automatic classification of requirements
to multiple topics with satisfactory results, when high quality training data is
available [7]. In contrast, we are now applying the socio-technical classification
system to new specifications, in different domains, and with new authors. We
are especially interested in how difficult it is to adjust the approach to such new
environments and if we can derive new training data during that process.

Based on our research questions on effort and quality of the different oper-
ation modes of the socio-technical classification system, the independent and
dependent variables lead us to the following hypotheses :

H1: Automatic classification leads to lower quality than manual classification.
H2: Automatic classification leads to less effort than manual classification.
H3: Starting with an initially trained classifier leads to better classifications

than starting with an untrained automatic classifier.
H4: An untrained classifier adjusts faster to the problem domain than an ini-

tially trained classifier.
H5: The combination of automatic classification and user confirmation leads to

higher quality of classifications than automatic classification.
H6: The combination of automatic classification and user confirmation leads to

less effort than manual classification.

We evaluated our hypotheses in an experiment and semi-structured follow-up
interviews with the participants (especially for determining a good ratio of effort

size
for practical use). For this experiment, we define four different (sets of) treat-
ments (Table 1).

Our model of the socio-technical system offers four relevant modi of inter-
action for categorizing requirements while writing a requirements specification,

Table 1. Four relevant sets of treatments of independent variables

Treatment Automatic classi-
fication support

Initial training User confirms
classification

T1 no no yes
T2 yes yes no
T3 yes no yes
T4 yes yes yes



(Semi-) automatic Categorization of NL Requirements 47

which are defined by specific values of the independent variables (treatments).
Treatment 1 describes the manual modus of interaction, where requirements are
written and classified in parallel without any tool support. Treatment 2 describes
the fully automatic operation of the socio-technical system, where users are not
involved with classification. This treatment provides us with a baseline on how
good the automatic classifier performs on the requirements that are specified
during the experiment.

Together, Treatment 1 and 2 allowed us to control for particularities resulting
from specific writing styles of the participants. These treatments did not require
us to observe the interaction of humans and the system, but provided us with
a baseline for the two established operation modi manual and fully automatic:
We established a ground truth based on (manual) expert classification of all
requirements written in the experiment and measured classification quality by
comparing against it. To ensure sufficient quality of the ground truth, we let
two experts classify the requirements iteratively and measure their agreement in
their classification. If the agreement level is below a threshold (based on inter-
rater agreement, e.g. Cohen’s Kappa [14]), the raters need to discuss situations
where they disagree and improve for the next iteration.

Treatment 3 defines the semi-automatic classification modus, where require-
ments authors write requirements and classify them interactively. In this case,
the classification tool was not initialized with any training data and needed to
learn the classification from the user. Treatment 4 is equal to 3, except that in
this case the classification tool was initialized with training data from other re-
quirements specifications. Both, in Treatment 3 and 4, the socio-technical system
learned through interaction between user and classification tool. For Treatment 3
and 4, we randomly assigned the participants in the experiment (controlling only
for similar levels of experience in both groups) and provided them with an ex-
emplary implementation of our classification tool prototype that was configured
according to the treatment.

5.2 Participants and Data Collection

The participants of the experiment were ten developers fromMercedes-Benz with
a typical mix of experience (relatively new to expert). Each participant wrote
approximately 100 - 300 functional and interface requirements for different parts
of two car systems, an outside light system and a speed control system. During
the writing tasks, they categorized the requirements with the semi-automatic
approaches described in section 5.1. For the categorization tasks we provided
the participants with a list of topics relevant for the specification domain in
advance. This list consists of 62 topics like, for example, “speed”, “ignition”, or
“communication” which are suitable for supporting specific review tasks [7].

To compare the results of this semi automatic classification with manual clas-
sifications, two independent persons manually classified these requirements later.
The manual classification of requirements to topics was done by separating the
data into parts of 150 objects. Each of these parts was then manually and in-
dependently classified by two persons and then synchronized in a review session



48 E. Knauss and D. Ott

using Cohen’s Kappa [14] as an aid. Cohen’s Kappa is a statistical measure
to calculate the inter-rater agreement between two raters, who each classify n
items to x categories. If the agreement level is below a threshold (< 0.9), the
raters need to discuss situations, where they disagree and improve for the next
iteration.

For the fully automatic classification (Treatment T2) and the semi automatic
classification (Treatment T4) with trained classifier we used the same training
data. We derived this training data from additional documents describing the
outside light system and the speed control system and from two public specifica-
tions of previous work [15]. All in all we used approximately 2,000 requirements
for training. The additional documents with descriptions of these two systems
were also provided during the experiment to help participants describing the
functionality of their parts of the systems.

5.3 Descriptive Statistics

Our experiment provided us with three sources of data. Firstly, we compared the
endresults with our ground truth (see Section 5.1). Secondly, the prototype of
our supporting classification tool was logging all interactions between user and
tool. This allowed us to compare how often a user accepts a recommendation.
Finally, the questionnaire provided us with insights into the opinion of our expert
classifiers.

Endresults vs. Ground Truth. Table 2 shows the recall and precision results
of of the 10 participants (last three columns). Column 2-4 present the results
of Treatment 2 (the fully automatic classifications), applied to the requirements
specidied by our participants. The first 5 rows show results for requirements
specifications that were created with Treatment 3 (semi-automatic classification
without initial training). The last 5 rows show the results for Treatment 4.

Table 2. Analyses Results

automatic semi-automatic

participant recall precision f-measure recall precision f-measure

T3: P1 0.42 0.36 0.39 0.30 0.77 0.43
T3: P2 0.55 0.58 0.57 0.15 0.66 0.25
T3: P3 0.62 0.45 0.52 0.83 0.76 0.79
T3: P4 0.48 0.46 0.47 0.80 0.89 0.84
T3: P5 0.50 0.42 0.46 0.82 0.91 0.87

T4: P6 0.43 0.33 0.37 0.56 0.76 0.65
T4: P7 0.47 0.56 0.51 0.49 0.73 0.59
T4: P8 0.47 0.33 0.39 0.40 0.72 0.51
T4: P9 0.56 0.46 0.51 0.90 0.69 0.78
T4: P10 0.46 0.33 0.38 0.34 0.57 0.43



(Semi-) automatic Categorization of NL Requirements 49

Complete list Recommendations Ratio (Secondary axis) 

Fig. 4. Results of telemetry: Cumulative amount of user picks from complete list,
recommendations, and ratio between both

Telemetry. During the experiment, each participant could categorize a require-
ment by either choosing the category from a complete list of all categories, or
by accepting a recommendation. Our prototype logs such events and we accu-
mulate how many categories were assigned with each method in Figure 4 (note
that telemetry data of two participants was corrupted and is missing).

The figure shows that our participants only preferred the full list over the
recommendations for the first 20-30 categorizations, if at all. Later, they tend
to assign categories from the recommendation list significantly more often.

Figure 4 also shows the ratio between both ways of assigning categories to
requirements. It appears that in both groups this ratio typically ends up around
the Factor 2, i.e. twice as many categories are assigned based on recommenda-
tions. In Group 3 (left hand side), the ratio is a little bit lower, which might have
been caused by the insufficient amount of training. The trajectories in Group 4
seem to have in common that during the first 30 categorizations, a depression
occurs (the ratio drops drastically).

Questionnaires. Figure 5 shows an excerpt from our questionnaire results,
where our participants report on their trust in the automatic classification. Par-
ticipants in Treatment 4 were more optimistic towards automatic classification.
The confidence of participants in Treatment 3 even decreased.

In similar question blocks we asked whether the participants were happy with
amount, quality, and improvement rate of the recommendations (Treatment 4:



50 E. Knauss and D. Ott

60%

0%

40%

100%

80%

20%

20%

80%

40%

67%

60%

33%

75%

50%

25%

50%

100%

50%

0%

50%

I have high confidence in the correctness of topic recommendations.

I have high confidence in the completeness of topic recommendations.

Before the Experiment, my confidence in fully−automatic topic classification was high.

After the Experiment, my confidence in fully−automatic topic classification was high.

I would prefer fully−automatic topic classification over semi−automatic topic classification.

Treatment 3

Treatment 4

Treatment 3

Treatment 4

Treatment 3

Treatment 4

Treatment 3

Treatment 4

Treatment 3

Treatment 4

100 50 0 50 100
Percentage

Response strong disagree disagree rather disagree rather agree agree

Fig. 5. Excerpt from questionnaire: Confidence in automatic classification

answer was generally positive, Treatment 3: less positive and recommendations
were not found helpful), whether they think that the semi automatic approach
would scale for real world specifications and if they would like to work with such
a tool (answer was yes for both treatments), and whether their ability to do the
topic classification improved (inconclusive for the scope of this experiment). We
also controlled for usability issues of our prototype (see Section 6.4)

6 Discussion

6.1 Performance of Fully Automatic Classification (H1 and H2)

With respect to (H1) – automatic classification leads to lower quality than man-
ual classification – the results in Table 2 confirm hypothesis and observations
we made in previous work [7]. Typical goals for sufficient classification quality
(e.g. recall > 70% and precision > 60% as proposed for example in [3, 7]) are
never met. This is due to the fact that training data from a specification in one
domain was used to classify requirements in another specification and domain,
leading to a drastic loss of quality of the automatic classification.

Concerning the comparison of effort for manual and automatic classification
(H2), the naive answer is of course yes: The effort of automatic classification
(ca. 5 min for initialization with training data and < 1 min for classification)
is lower than the effort of manual classification (> 1 hr). However, this does
not include the effort to create training data in sufficient quality. For the task
of creating training data, we employed similar to the manual classification of



(Semi-) automatic Categorization of NL Requirements 51

the experiment data two experts that iteratively classified and compared their
classification results with Cohen’s Kappa to increase the classification quality.
From our experience with the public and confidential DCU [7], we know that
such a high quality manual classification of a typical specification with 2000-
3000 requirements takes at least 150hrs. In the context of this experiment, we
used similar amounts of training data and again the total effort for creating this
data was at least 150hrs. Since training is not necessarily portable from one
application of the tool to another, this effort will not pay off over time.

6.2 Cold Start and Ability to Adjust to Domain (H3 and H4)

Concerning the question if initial training of the classifier leads to better clas-
sifications (H3), we get mixed results. The boxplot in Figure 6 (left) compares
results of semi-automatic classifications by participants with Treatment T3 and
T4 with our ground truth. Surprisingly, the deviation of classification results is
smaller, but the median of the f-measures is lower, if initial training data (T4)
was used.

We were also interested in how quick the recommender system adjusts to a new
domain (H4). Our data does not allow to give a clear answer to this. However, it
is noteworthy, that participants working with Treatment T4 did encounter some
phase of depression during the first 30 classifications, where the ratio of accepted
recommendations per classification drastically dropped (Figure 4). This is prob-
ably due to the fact that participants were initially having high confidence in the
recommendations and realized only later that better classifications were avail-
able. The confidence (and ratio) dropped, before it was slowly re-established.
This phenomen is not as clearly visible for participants with Treatment T3,
where recommendations in the beginning were obviously suboptimal. In addi-
tion, participants of T3 mention the phenomen that every topic they choose
is automatically recommended in the next requirement, regardless of the con-
tent (due to the lack of negative training data). Thus, participants seemingly
circumvent the phase of over-confidence.

T3 T4

0.
3

0.
5

0.
7

Treatment

F
−M

ea
su

re

fully semi

0.
3

0.
5

0.
7

Level of automation

F
−M

ea
su

re

Fig. 6. Comparison of classification quality between treatments (left) and level of
automation (right)



52 E. Knauss and D. Ott

The overview of the responses in Figure 5 shows a mixed picture for this
hypothesis. Participants that were confronted with Treatment 3 (with no ini-
tial training data) lost confidence in the automatic classification and strongly
oppose fully automatic approaches. Participants that worked with Treatment 4
are indecisive about favouring the semi or fully automatic approach, but slightly
gained confidence in the automatic classification.

In summary, all participants generally liked the semi automatic approach and
participants with Treatment 4 gave even better ratings than those with Treat-
ment 3. This is no wonder, since the initial suggestions in Treatment 3 were
random and therefore not useful. Participants seemed to be more sceptic about
recommendations in this situation, leading to a better overall classification per-
formance. In contrast, the higher trust in the recommendations by participants
in Treatment 4 lead to more consistent quality and results.

6.3 Performance of Semi-automatic Approach (H5 and H6)

We were interested if the semi automatic approach leads to better quality than
the fully automatic (H5) and to less effort than the manual approach (H6).

For (H5), the box plot in Figure 6 on the right indicates that indeed the semi-
automatic classification is better (in comparison to our ground truth). In fact,
the f-measures in Table 2 are always better for the semi automatic approaches
compared to the full-automatic classification in the same row.

The telemetry shown in Figure 4 shows that our participants accepted recom-
mendations roughly twice as often as not (ratio ≥ 2), leaving about 1

3 of cases
where the automatic classification could be improved in the semi-automatic work
modus and indicates a quality improvement of the semi automatic approach.

In the questionnaire, we asked our participants to give us the (1) total number
of hours, as well as hours (2) for specifying and (3) classifying the requirements.

With respect to (H6) we need to compare these times with typical times for
classifying requirements manually. At Mercedes-Benz these times are frequently
normalized by number of requirements. Due to their experience, the raters in our
experiment were able to classify 150 requirements in 4 h, which equals 1.6 min
per requirement. Our participants had less experience with classification of re-
quirements. In average, they reported a total effort of 3.76 min per requirement,
consisting of 2.99 min for specifying and 0.77 min for classifying it. This signifi-
cant speedup in classifying requirements is due to the fact that the participants
needed less time to read and understand the requirements they had just written.

6.4 Threats to Validity

In this section, we discuss the threats to validity based on Runeson et al.’s classi-
fication in construction validity, internal validity, external validity and reliability
[16]. One obvious threat of the construction validity is the manual classifi-
cation. There is no unique classification and it is reviewer dependent. By using
Cohens’ Kappa we slightly mitigated this threat, but is still there. Another ques-
tion is, whether there are no better algorithms for our text classification tasks,



(Semi-) automatic Categorization of NL Requirements 53

better/additional pre- and post-processing steps or better/additional ways to
automatically extract training data, but the results show that we have at least
chosen promising candidates. Usability issues of the prototype might be a con-
founding factor and threat to the internal validity. We controlled for this factor
by doing System Usability Scale test [17] which showed that no major problems
affected the outcome. Concerning the external validity, there are limitations in
the transferability of our results on natural language specifications drawn from
the Mercedes-Benz passenger car development to specifications from other com-
panies in the automotive industry or even to specifications from other industries
because of different specification structures, the content and complexity of the
specifications, and other company specific factors. In addition, because of the
German language, we may have advantages with certain pre-processing steps
compared to other languages, while other well known pre-processing steps, for
example stemming, do not work on our data sets [7].

In our study we aimed at investigating a socio-technical system for classify-
ing requirements in an industrial setting. We prioritized working in an industrial
setting with professional requirements analysts and real world requirements over
statistical significance. In our setup, we did not plan to work with enough par-
ticipants to achieve statistical significance in one of our hypotheses. Thus, the
reliability of our results has to be considered low, as a different choice of par-
ticipants with similar background might lead to different results.

7 Conclusion and Outlook

In this paper, we introduced a model of a socio-technical system for requirements
classification, which consists of a requirements engineering team and their re-
quirements management tool with automatic classification support. The model
offers three different operation modes and we argue that the semi-automatic
classification can mitigate some major problems in automatic requirements clas-
sification: According to our exploratory study it offers a reasonable ratio of ef-
fort and quality when compared with the alternatives. It supports organizational
learning in that it automatically adjusts to new domains. Thus, it mitigates the
problem of insufficient training data that impedes the use of fully automatic
classification approaches in many industrial settings. During the evaluation, we
learned first hand how difficult it is to agree on a specific classification scheme
in a team. The semi automatic approach seems to offer an advantage over the
manual approach in that the recommendations transport some shared knowledge
across the team. Future work should investigate these effects. We hope that oth-
ers will profit from our model of a socio-technical requirements classification
system as well as from its empirical exploration.

References

1. Regnell, B., Svensson, R.B., Wnuk, K.: Can we beat the complexity of very
large-scale requirements engineering? In: Rolland, C. (ed.) REFSQ 2008. LNCS,
vol. 5025, pp. 123–128. Springer, Heidelberg (2008)



54 E. Knauss and D. Ott

2. Song, X., Hwong, B.: Categorizing requirements for a contract-based system in-
tegration project. In: Requirements Engineering Conference (RE), pp. 279–284.
IEEE (2012)

3. Knauss, E., Houmb, S., Schneider, K., Islam, S., Jürjens, J.: Supporting require-
ments engineers in recognising security issues. In: Berry, D. (ed.) REFSQ 2011.
LNCS, vol. 6606, pp. 4–18. Springer, Heidelberg (2011)

4. Neumann, P.G.: Requirements-related risks in critical systems. In: Proceedings
of the 4th International Conference on Requirements Engineering (ICRE 2000),
Schaumburg, IL, USA, p. 3 (2000)

5. Chung, L.: Dealing with Security Requirements During the Development of Infor-
mation Systems. In: Rolland, C., Cauvet, C., Bodart, F. (eds.) CAiSE 1993. LNCS,
vol. 685, pp. 234–251. Springer, Heidelberg (1993)

6. Dubois, E., Wu, S.: A framework for dealing with and specifying security require-
ments in information systems. In: Katsikas, S., Gritzalis, D. (eds.) SEC. IFIP
Conference Proceedings, vol. 54, pp. 88–99. Chapman & Hall, Boca Raton (1996)

7. Ott, D.: Automatic requirement categorization of large natural language specifica-
tions at mercedes-benz for review improvements. In: Doerr, J., Opdahl, A.L. (eds.)
REFSQ 2013. LNCS, vol. 7830, pp. 50–64. Springer, Heidelberg (2013)

8. Houdek, F.: Challenges in Automotive Requirements Engineering. In: Industrial
Presentations at REFSQ 2010, Essen (2010)

9. Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F., Fusani, M.: An automatic tool for
the analysis of natural language requirements. International Journal of Computer
Systems Science & Engineering 20(1), 53–62 (2005)

10. Ko, Y., Park, S., Seo, J., Choi, S.: Using classification techniques for informal re-
quirements in the requirements analysis-supporting system. Information and Soft-
ware Technology 49, 1128–1140 (2007)

11. Hussain, I., Ormandjieva, O., Kosseim, L.: Lasr: A tool for large scale annotation
of software requirements. In: Second IEEE International Workshop on Empirical
Requirements Engineering (EmpiRE), pp. 57–60. IEEE (2012)

12. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and
Techniques: Practical Machine Learning Tools and Techniques. Morgan Kaufmann
(2011)

13. Hollink, V., Kamps, J., Monz, C., De Rijke, M.: Monolingual document retrieval
for european languages. Information Retrieval 7(1), 33–52 (2004)

14. Carletta, J.: Squibs and discussions assessing agreement on classification tasks:
The kappa statistic. Computational Linguistics 22(2), 249–254 (1996)

15. Ott, D., Raschke, A.: Review improvement by requirements classification at
mercedes-benz: Limits of empirical studies in educational environments. In: IEEE
Second International Workshop on Empirical Requirements Engineering (Em-
piRE), pp. 1–8. IEEE (2012)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Eng. 14(2), 131–164 (2009)

17. Brooke, J.: SUS: A quick and dirty usability scale. In: Jordan, P.W., Thomas,
B., Weerdmeester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry.
Taylor and Francis, London (1996)



C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 55–71, 2014. 
© Springer International Publishing Switzerland 2014 

A Systematic Literature Review of Requirements 
Modeling and Analysis for Self-adaptive Systems 

Zhuoqun Yang1, Zhi Li2,3, Zhi Jin3, and Yunchuan Chen1 

1 Institute of Mathematics, Academy of Maths and Syst. Sci., Chinese Academy of Sciences, 
Haidian Dstr, Beijing 100190, P.R. China 

zhuoqun.y@gmail.com, yunchuan001@163.com 
2 Software Engineering Dept., College of Computer Science and Information Technology 

Guangxi Normal University, Guilin, Guangxi 541004, P.R. China 
zhili@gxnu.edu.cn 

3 Key Laboratory of High Confidence Software Technologies (MoE), Peking University 
Ministry of Education, Beijing 100871, P.R. China 

zhijin@sei.pku.edu.cn 

Abstract. [Context and motivation] Over the last decade, researchers and 
engineers have developed a vast body of methodologies and technologies in 
requirements engineering for self-adaptive systems. Although existing studies 
have explored various aspects of this topic, few of them have categorized and 
evaluated these areas of research in requirements modeling and analysis. [Ques-
tion/Problem] This review aims to investigate what modeling methods, RE ac-
tivities, requirements quality attributes, application domains and research topics 
have been studied and how well these studies have been conveyed. [Principal 
ideas/results] We conduct a systematic literature review to answer the research 
questions by searching relevant studies, appraising the quality of these studies 
and extracting available data. The results are derived by synthesizing the ex-
tracted data with statistical methods. [Contributions] This paper provides an 
updated review of the research literature, enabling researchers and practitioners 
to better understand the research trends in these areas and identify research gaps 
which need to be further studied. 

Keywords: systematic literature review, self-adaptive systems, modeling me-
thod, RE activity, requirements quality attribute 

1 Introduction 

Self-adaptive systems (SASs) are able to adjust their behaviors in response to the 
dynamic changes in the environment and themselves. Due to the inherent volatility of 
the deployed environment and frequent interactions between software systems and the 
environment, SASs are faced with the challenges of meeting demands on some quali-
ty attributes, such as fault-tolerance, replaceability, etc. To maintain these attributes, 
we need to build adaptation mechanisms in SASs for endowing them with the capabil-
ity of self-reconfiguring, self-healing, self-protecting and self-optimizing, which are 



56 Z. Yang et al. 

known as self-* properties [1]. Therefore, when developing SASs, engineers should 
take both domain logic and adaptation logic into account. 

Requirements engineering (RE) is known as the first stage in the lifecycle of soft-
ware development, aiming at defining domain logic, identifying stakeholders’ needs 
and documenting information for subsequent analysis and implementation [2]. Differ-
ent from traditional RE, RE for SASs focuses more on defining adaptation logic, since 
SASs need adaptation mechanisms. Thus, during RE for SASs, engineers must ad-
dress what changes in the environment and the system themselves to be monitored, 
what to adapt, when to adapt and how to adapt. Requirements modeling is a funda-
mental activity in RE. Various kinds of artifacts produced during the modeling 
process are involved in the latter analysis, such as specifying requirements, diagnos-
ing requirements, verifying requirements, etc. 

Over the last decade, researchers and engineers have developed a vast body of 
work on requirements modeling and analysis for SASs. Existing studies [3-7] have 
summarized some of the achievements, provided insight in this field and outlined 
challenges in each direction. However, to the best of our knowledge, no systematic 
study has been performed on categorizing and evaluating these emerged modeling 
methods and corresponding RE activities. Thus, there is no clear view on where the 
researches are conducted and where the results are published, to what extend each 
kind of modeling method or RE activity is studied, how the method is evaluated, how 
the quality of studies varies against each method and what the most active topics are. 

The objective of this paper is to systematically investigate the research literature of 
requirements modeling and analysis for self-adaptive systems, summarize the state-
of-the-art research trends, categorize the used modeling methods and relevant RE 
activities, classify the quality attributes and application domains, assess the quality of 
current studies and generate the most active research topics. To conduct the investiga-
tion and report analysis results, we adopt the research methodology of systematic 
literature review [8] [9] in the evidence-based software engineering paradigm [10]. 

The rest of the paper is structured as follows. Section 2 briefly describes the syste-
matic review and the protocol underpinning this study, followed by the presentation 
of the analysis results in Section 3. Section 4 discusses the results and threats to valid-
ity, followed by the conclusions and discussions on future work in Section 5. 

2 Research Method 

Evidence-based software engineering (EBSE) aims to improve decision making re-
lated to software development and maintenance by integrating current best evidence 
from research with practical experience and human values [11]. The core tool of the 
evidence-based paradigm is the Systematic Literature Review (SLR), which is a sys-
tematic methodology of defining answerable research questions, searching the litera-
ture for the best available evidence, appraising the quality of the evidence, collecting 
and aggregating available data for answering the identified questions. The whole 
process of SLR is presented in Figure 1. To complete SLR, three phases are needed: 
planning, conducting and reporting. During the planning phase, a protocol is produced 
for defining basic review procedures, on which the conducting phase should depend.  
 



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 57 

 

Fig. 1. Process of Systematic Literature Review 

Due to the limitation of space, a detailed account of our SLR protocol is beyond the 
scope of this paper, but can be found in [12], which is available online.  

2.1 Research Questions 

The high-level goal of this literature research is to review the existing research work 
in the literature of requirements modeling and analysis for self-adaptive systems. To 
achieve this goal, we refine it into seven answerable questions in Table 1. These ques-
tions can be categorized into four types: a) publication type is related to the questions 
that are related to publication information, such as published time, venues and au-
thors; b) content type contains the questions that should be answered by extracting the 
corresponding data from the texts of papers; c) quality type consists of the questions 
which are answered by assessing the quality of papers; d) topic type includes the 
questions which are related to the topics of relevant studies. 

Table 1. Research Questions and Corresponding Types 

Research question Type 

RQ1: What is the time/venue/research group/region distribution of the publications? Publication 

RQ2: What modeling methods and RE activities are studied? 
RQ3: What requirements quality attributes and application domains are involved? 

Content 

RQ4: Which methods are better applied and have more rigorous evaluation? 
RQ5: Which RE activities are presented and discussed more detailedly? 

Quality 

RQ6: What topics can we generalize based on the content of selected studies? 
RQ7: What is the relationship between topics and modeling methods? 

Topic 

2.2 Search Process 

Figure 2 presents the mechanism underpinning the search process. The objective of 
the search process is to identify relevant studies based on search strategies. Defining 
search strategies includes defining search sources and defining search strings.  

Search sources consist of some search engines, e.g. IEEE Xplore, and publication 
venues. Search engines are chosen for conducting automated search, which means 
researchers use these online databases to thoroughly retrieve relevant studies with 
some search strings adapted to the given search syntax and rules. Publication venues 
are chosen for conducting manual search, in which researchers manually scan confe-
rence proceedings or journals for relevant studies.  

Protocol
• Background
• Research Question
• Selection Criteria
• Search Strategy
• Quality Assessment 

Checklist
• Data Extraction 
• Data Synthesis

Specify Research 
Questions

Phase 1: Planning

Develop Review 
Protocol

Identify Relevant 
Research

Select Primary Studies

Phase 2: Conducting

Extract Required Data

Write Review 
Report

Phase 3: Reporting
Report

of 
SLR

General 
Need for a 

SLR

Result

• Descriptive
Synthesis

• Quantitative
Synthesis

Assess Study Quality

Synthesize Data



58 Z. Yang et al. 

To improve the reliability and the repeatability of our study, we adopt the quasi-
gold standard (QGS) [13] method, which is a set of known studies established by 
manual search within certain venues and time span, to objectively define search 
strings and evaluate the performance of search strings. The retrieved results from 
automated search complement manual search by expanding the coverage of the rele-
vant studies. Moreover, we conduct the “snowball” search, which means investigators 
scan the references in each paper derived by manual search and automated search and 
pick out the most relevant ones. Therefore, the final set of relevant studies consists of 
search results from manual search, automated search and “snowball” search. 

 

Fig. 2. Mechanism Underpinning the Search Process 

Defining Selection Criteria. Inclusion criteria and exclusion criteria are defined for 
selecting relevant studies. Retrieved papers are firstly checked with exclusion criteria. 
If one paper meets any one of the exclusion criteria, i.e. C5 OR C6 OR C7 OR C8, it 
will be excluded. The remaining papers are checked with inclusion criteria. If one 
paper meets all the inclusion criteria, i.e. C1 AND C2 AND C3 AND C4, then it will 
be included. 

Table 2. Inclusion and Exclusion Criteria 

Inclusion criteria Exclusion criteria 
C1: Published time between 2003.1-2013.9 
C2: Focus on requirement modeling and 
analysis for self-adaptive systems. 
C3: Related to concrete RE activity 
C4: Involve concrete modeling methods and 
evaluation to the methods 

C5: In the form of books 
C6: In the form of editorial, abstract, keynote, 
poster or a short paper (less than 6 pages) 
C7: Opinion pieces or Position papers 
C8: Focus on summarizes the existing research 
work, e.g. roadmap or survey 

Defining Selection Procedure. We use the above criteria for establishing QGS from 
the manual search and deriving relevant studies from the automated search and the 
“snowball” search. The selection procedure consists of three rounds: 

Manual
search

Automated 
search

Research 
Questions

Search terms 
and strings

Relevant Studies

Retrieved
Studies

Quasi-gold
Stand

Publication 
Venues

Identify search
engines

Identify publication
venues

Search 
Engines

Retrieve withinRetrieve
with

Objectively
elicit

Scan within

Evaluate

Complement

“Snowball” Search
Scan References



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 59 

• Round 1: We first scan each paper by title, aiming to eliminate any irrelevant pa-
pers. Any paper that any researcher thinks should be included or is unsure about 
should be kept in the set of candidate papers for Round 2. 

• Round 2: Scan the abstracts of candidate papers from Round 1 and appraise each 
paper with selection criteria. Any paper that any researcher considers should be in-
cluded or is unsure about should be kept in the set of candidate papers for Round 3. 

• Round 3: Look through the full texts of the candidate papers from Round 2 and 
assess each paper with the selection criteria. Any paper on which researchers can-
not reach agreement should be resolved by a joint meeting. 

During the selection procedure, we also consider duplicate papers and repeat stu-
dies. A duplicated paper refers to the same paper that can be retrieved from more than 
one search engine. In this situation, we retain only one of the duplicates in the final 
set of relevant studies and remove all the duplication. A repeated study means the 
same study published in more than one venue with the same authors’ order or differ-
ent authors’ order. In this situation, we remove the repeated studies and retain the 
most comprehensive or the most recent version, except for answering RQ1. 

Defining Search Sources. Search engines function as the databases for the automated 
search and the digital library where publication venues are provided. To ensure tho-
rough retrieval, we choose six search engines that cover the RE literature: ACM Digi-
tal Library, IEEE Xplore, Science Direct, Springer, EI Compendex and Web of 
Knowledge. 

Publication venues consist of a collection of proceedings and journals where the 
community tend to publish their research results. To ensure the quality of this study, 
we choose the qualified conferences and journals (Table 3) according to the Australi-
an ERA (Excellence in Research for Australia) Outlet Ranking [14]. 

Establishing QGS. The manual search is conducted by two researchers individually 
and should be terminated when the Kappa value depicts a good or very good agree-
ment. We scan all papers in the chosen venues by title, abstract and full texts with the 
selection criteria. The Kappa value is above 0.8, which indicates good agreement [15] 
and disagreement is eliminated by discussion with other investigators. Finally, the 
QGS is established by aggregating the selected results of two researchers. Table 3 
provides the frequency and percentage of the 61 papers that compose QGS. 

Defining Search Strings. Search terms are derived by using text mining. A frequency 
analysis of information of papers in QGS is undertaken followed by a statistical anal-
ysis of most frequently occurring words or phrases by using QDA Miner and 
WordStat [16]. We import the title-abstract-keyword segment of each paper in to 
QDA Miner and derive search strings (Table 4). The use of the search strings can be 
combined with Boolean operator as: S1 AND (S2 OR S3 OR S4 OR S5 OR S6 OR 
S7 OR S8 OR S9 OR S10). 



60 Z. Yang et al. 

Table 3. Publication Venues and Paper Frequency 

Conference Frequency % ERA Journal Frequency % ERA 
SEAMS 12 27% N/A REJ 4 25% B 
RE 6 14% A JSS 3 19% A 
RE@runtime 5 10% N/A SESAS 2 19% N/A 
REFSQ 5 10% B ASEJ 1 6% A 
ICSE 4 8% A IST 1 6% B 
MODELS 4 8% B SoSyM 1 6% B 
ASE 3 6% A TAAS 1 6% B 
ICAC 2 6% B ToSEM 1 6% A 
CAiSE 2 4% B TSE 0 0% A 
FSE 2 4% A ESE 0 0% A 
SASO 1 2% N/A — — —  
Total 46 100%  Total 15 100%  

Table 4. Derived Search Strings 

Item Search string 

S1 

(“self-adaptive systems” OR “dynamically adaptive systems” OR “adaptive system” OR 
“Adaptive software” OR “self-adaptive software” OR “adaptive service” OR “web sys-
tems” OR “socio-technical system” OR “self-adjusting systems” OR “autonomic compu-
ting” OR “self-adapting software”) 

S2 “model requirements” OR “modeling requirements” OR “Requirements modeling” 

S3 
 “specify requirements” OR ”specifying requirements” OR “requirements specifying” OR 
“requirements specification” 

S4 “monitor requirements” OR “monitoring requirements” OR “requirements monitoring” 

S5 
“aware requirements” OR “requirements-aware” OR “requirements awareness” OR 
“requirements-awareness” 

S6 
“diagnose requirements” OR “diagnosing requirements” OR “requirements diagnosing” 
OR “requirements diagnosis” 

S7 “detect requirements” OR “detecting requirements” OR “requirements detection” 

S8 
“verify requirements” OR “verifying requirements” OR “requirements verifying” OR 
“requirements verification” 

S9 
“requirements” AND (“self-adaptation” OR “self-reconfiguration” OR “self-repair” OR 
“self-healing” OR “self-tuning” OR adaptation OR configuration OR reconfiguration OR 
“decision making” OR “decision-making” OR “adaptation behavior” OR “behavior”) 

S10  “evolution requirements” OR “requirements evolution” 

Automated Search and Evaluating Search Strings. We conduct automated search 
within each search engine by splitting and inputting the strings according to the search 
syntax demanded. After eliminating disagreement, we finally record 79 papers and 47 
of them can be found in QGS (Figure 3). 

Quasi-sensitivity is an important criterion for evaluating the quality and efficiency 
of search strategies [13]. It refers to the proportion of relevant studies covered by the 
QGS. Thus, the value of our quasi-sensitivity is 77.04% (47/61), which is between 
72%~80%. It means that the search strategies are acceptable according to [13]. 

 

Fig. 3. Relationship between QGS and Automated Search Results 



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 61 

2.3 Quality Assessment Checklist 

To answer RQ4 and RQ5, a quality assessment checklist (Table 5) is defined based on 
the assessment items introduced in [9] and [17]. We use the checklist to evaluate 
whether a method or an activity is maturely or rigorously conveyed in the literature. 

Table 4. Quality Assessment Checklist 

Assessment question Optional answer and score 
A1: How clearly is the problem of study described? Explicitly=1/Vaguely=0.5/No description=0 

A2: How clearly is the research context stated? 
With references =1/Generally=0.67/ 
Vaguely=0.33/No statement=0 

A3: How detailedly is the modeling method con-
veyed? 

Step by step=1/Relatively detail=0.67/ 
Generally=0.33/Vaguely conveyed=0 

A4: How detailedly is the RE activity elaborated? 
Explicitly=1/General steps=0.67/ 
Vaguely=0.33/Disorderly=0 

A5: How rigorously is the method evaluated? 
Simulation=1/Detailed case study=0.67/ 
General case study=0.33/No evaluation=0 

A6: How explicitly are the contributions presented? Explicitly=1/Generally=0.5/No presentation=0 
A7: How explicitly are the limitations discussed? Explicitly=1/Generally=0.5/No discussion=0 
A8: How explicitly are the insights and issues for 

future work stated?  
With recommendations=1/Generally=0.5/ 
No statement=0 

2.4 Data Extraction 

To answer RQ1, corresponding information can be extracted directly from the papers. 
To answer RQ2, we extend the modeling method category presented in [2], investi-
gate RE activities at requirements time, design time and runtime. To answer RQ3, we 
classify requirements quality attributes based on ISO 9126 Software Quality Charac-
teristics [18]. Application domains can be elicited from the motivating example of 
each paper. To answer RQ4 and RQ5, we read full texts and appraise each paper ac-
cording to the quality assessment checklist.  To answer RQ6 and RQ7, we extract 
text segments, coding texts, and translate codes into topics or themes [19, 20]. 

More details on how the data is extracted and synthesized can be found in [21] and 
the theory underpinning the extraction process is elaborated in our protocol [12]. 

3 Results and Discussion 

RQ1: What is the time/venue/research group/region distribution of the publications? 
After the search process, we select a total of 101 relevant papers, in which 11 of 

them are identified as repeated studies. The time distribution of the studies is provided 
in Figure 4. Publication venue distribution can be found in Table 3. 

To derive the research group and region distribution, we investigate the authors’ 
affiliations. The results depict that the selected papers are from 29 research groups in 
13 regions and the researchers are from 43 groups in 17 regions. Most of these papers 
are from European countries (58/101), followed by American countries (25/101) and 
Asian countries (18/101). Figure 5 and Figure 6 present the top 10 research groups 
and regions with the frequency of published papers and corresponding researchers. 



62 Z. Yang et al. 

 

Fig. 4. Time Distribution of Selected Papers and Studies 

 

 

Fig. 5. Top 10 Research Groups and Researchers 

 

Fig. 6. Top 10 Region and Researchers 

RQ2: What modeling methods and RE activities are studied? 
Figure 7 presents the modeling methods and the corresponding frequency of stu-

dies. These modeling methods are categorized and synthesized according to the objec-
tive of modeling activities, including requirements, context and system. Goal-oriented 
methodologies, including KAOS [25], i* [26] and Tropos [27], are the most popular 
requirements modeling methods in the literature. They can clearly describe stakehold-
ers’ intension and systems’ requirements. Temporal logic, including LTL [28], CTL 
[29] and FBTL [30] are always used as specification languages. They are utilized to 
specify the properties that should be held by the system. When modeling context, 
context models [31] are always built to capture the environmental properties. Z nota-
tion [32] is used to specify systems’ behavior. Transition systems including Markov 
Chain [33], Petri Net [34] and DDN [35] are adopted to describe systems’ states and 
state transitions. In addition, UML models [36] are also used to model systems’ beha-
vior. Problem frame, feature model and feedback control mechanism are more close 
to design level. Business process model and domain-specific model focus more on 
business logic and domain logic, respectively. 

0 0 1 3 4
6

13 12

19

32

11

0 0 0 2 2
5

10 11

17

32

11

0

5

10

15

20

25

30

35

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

papers

studies

14
11

8
7 7

5 4 4 3 3

9 10

7

4

8
7 7

1

4 5

0
2
4
6
8

10
12
14
16

papers

researchers

24

17 17
15

6 6 5
3 2 2

24

15
14

27

16 15
11

5
7

3

0

5

10

15

20

25

30

papers

researchers



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 63 

Figure 8 presents the categories of RE activities and the corresponding frequency 
of studies. RE activities are classified into activities at requirements time, activities at 
design time and activities at runtime. Activities at requirements time focus on model-
ing and specifying requirements [30], modeling adaptation mechanism [37] and veri-
fication [38]. Activities at design time mainly aim to map requirements model to  
architecture model [39] or derive design decisions based on requirements [40]. Activi-
ties at runtime include achieving adaptation through MAPE loop [41], runtime verifi-
cation [33], runtime reconfiguration [42] and runtime evolution [43]. 

  

Fig. 7. Modeling Methods and Corresponding Frequency of Studies 

 

Fig. 8. RE activities and Corresponding Frequency of Studies 

Challenges in Modeling Methods and RE Activities. Figure 7 depict that context 
modeling in RE for SASs still lacks study. The modeling method proposed in [31] 
may inspire us to work out other innovative context models. Promising research top-
ics related to context may include: model and specify context uncertainty, reasoning 
with context uncertainty and requirements-driven adaptation with context uncertainty. 
Figure 8 depicts that there are research gaps in mapping requirements to architectures. 
Promising research topics may include: requirements-driven architecture adaptation 
and requirements-driven evolution. 

RQ3: What requirements quality attributes and application domains are involved? 
We investigate the requirements quality attributes (Figure 9) related to SASs ac-

cording to ISO 9126. We do not intend to elaborate the definitions of these quality 
attributes, but reveal the relations implied behind. According to [18], adaptability and 
replaceability belong to portability. These two quality attributes are involved in the 
studies of building adaptation mechanism or runtime adaptation. Analyzability is 
considered in the studies of monitoring or diagnosing requirements. Time behavior 

27

16
11 11

8 6 4 4 3 3 3 2 2 2 1 1
0
5

10
15
20
25
30

10 9

14

1 1 2 1 1 1 1

10

25

14

0

5

10

15

20

25

30

requirements time

design time

runtime



64 Z. Yang et al. 

and resource behavior are always concerned in the evaluation of the adaptation 
process. Reliability is studied in the work on the topic of verification. Fault tolerance 
is always derived by relaxing the requirements. Security is discussed in security re-
quirements engineering. Understandability is involved in the study of producing more 
understandable requirements model.  

 

Fig. 9. Requirements Quality Attributes and Frequency of Studies 

The application domains are presented in Figure 10. The top 5 most widely cited 
application domains depict that the community concentrate on investigating online 
applications, web services, mobile computing systems, social-technical systems and 
smart living systems. We find the common characteristic of this application domain is 
that they all need to interact with other software, systems or the human. These results 
will benefit researchers and practitioners to choose the most appropriate demonstra-
tions and design the most reasonable experiments for their research work. 

 

Fig. 10. Application Domains and Frequency of Studies 

Challenges in Requirements Quality Attributes and Application Domains. Figure 
9 shows the gaps in research on security requirements engineering, adaptation me-
chanisms that can provide explanations to the human and compositional adaptation. 
Researchers can also consider other quality attributes, e.g. recoverability. Besides, the 
application domain should be chosen to underpin the quality attributes. 

RQ4: Which methods are better applied and more rigorously evaluated? 
Relevant studies are appraised according to the quality assessment checklist (Table 

5). Figure 11 depicts that KAOS and i* both have relatively low score, because some 
of modeling methods and adaptation mechanisms proposed based on KAOS or i* lack 
rigorous evaluation. The highest scored logic is CTL&PCTL, for they are widely used  
 

39

15
9 8 8 7 5 3 3 1

0
10
20
30
40
50

12
11

7 7
5

4
3 3

2 2 2
1 1 1 1 1

0
2
4
6
8

10
12
14



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 65 

 

Fig. 11. Quality Score of Modeling Methods 

to model system properties for model checking, which is inherently a rigorous ap-
proach. Domain-specific models, UML models, feature model, business process mod-
el and feedback control need more exploration and more rigorous evaluation.  
RQ5: Which RE activities are presented and discussed more detailedly? 

Figure 8 depicts the first three activities at requirements time and the last three ac-
tivities at runtime are almost explored in more than 10 studies. Therefore, the scores 
of these activities are more convincing than others’. In these six activities, require-
ments verification at runtime has the highest score, for the verification process is al-
ways based on rigorous reasoning or mathematical methods. System reconfiguration 
at runtime comes after runtime verification, because this process is related to decision 
making and the evaluation process is always elaborately designed. The next is runtime 
monitoring, which also includes rigorous analysis processes. The three activities at 
requirements time are lower scored because they are always involved in qualitative 
studies and most of the evaluations are based on qualitative demonstrations. 

  

Fig. 12. Quality Score of RE activity 

Challenges in Quality of Research. To achieve more precise and more effective 
adaptation decisions, we expect to derive quantitative models and quantitative  
representations during requirements modeling and analysis. Therefore, we should 
incorporate research results in other disciplines into RE for SASs. Fuzzy set theory, 
probabilistic theory and probability theory can be applied to describing uncertainties 
of both requirements and context. Control theory can be utilized to design adaptation 
mechanisms in SASs. Optimization theory, decision theory and game theory can be 
used to derive adaptation decisions. In this way, the quality of modeling methods and 
RE activities may get improved. 
 

7.45 7.25 7 6.95 6.59 6.56 6.53 6.42 6.17 5.83 5.67 5.49 5.45 5.42 5.27

0
1
2
3
4
5
6
7
8

5.73 6.15 6.22
7.01 7 6.67 7

6

8

4.67

6.3 6.35
6.65

0
1
2
3
4
5
6
7
8
9

requirements time

design time
runtime



66 Z. Yang et al. 

RQ6: What topics can we generalize based on the content of selected studies?  
RQ7: What is the relationship between topics and modeling methods? 

We code segments of relevant studies with 135 key phrases and 44 of them are 
kept after removing duplicate phrases. Then, these codes are categorized into 7 topics 
according to the content of each paper. Table 6 presents the relationship between 
topics and the related modeling methods. The bar in the table indicates the relative 
frequency of each method. One study may have more than one code and adopt more 
than one modeling method. 

Table 6. Relationship between Topics and Modeling Methods 

 

KAOS

i* Tro
po

s

Fea
tu

re
 M

od
el

Con
te

xt 
m

od
el

Pro
ble

m
 F

ra
me

UM
L

Bus
ines

s p
ro

ce
ss

 m
od

el

Dom
ain

-S
pe

cif
ic 

Mode
l

Tra
ns

itio
n 

sy
ste

m

LT
L

CTL
&PCTL

FBTL
Z no

ta
tio

n

Utili
ty 

Fu
nc

tio
n

Fee
db

ac
k c

ont
ro

l

M
o

d
el

in
g

 r
e

qu
ire

m
e

n
ts

, c
o

n
te

xt
s 

an
d

 s
ys

te
m

s context modeling and analysis 1 1 1

defining SAS development framework 2

describing adaptation in feedback loop 1 1

modeling adaptation mechanism 5 2 1 1 1 1

model adaptation with security requirements 2

modeling and resoning on NFR 1

modeling domain requirements for SAS 1

modeling requirements evolution 1

modeling RE activities of SAS 1

modeling security requirements 1

modeling systems behavior 1

modeling variant of self-adaptive systems 1

cope with requirements changes 2

customize software with preferences 1

specifying and managing self-* properties 1

specifying adaptation mechanism 1

specifying adaptation semantics 3 2

specifying adaptive programs 2

specifying adaptive requirements 1

specifying self-adaptive systems 1 1 1

addressing environmental uncertainty 1 1

decision making with uncertainty 1 2 1

mitigating uncertainty through adaptation 1 1 1

modeling sources of uncertainty 1

modeling uncertainty in requirements 1

QoS verification 1 1

requirements modeling and validation 1

validating the qualities of system 1 1

validating  requirements at design time 1

verifying NFR at runtime 1 1

verifying adaptive programs 3

verifying requirements at runtime 3 1 3

monitoring requirements 2 1 1 1 1

detecting inconsistency within contextual req. 1

detecting requirements violation 1 1 1

self-tunning with unanticipated changes 1

dealing with runtime variability reconfiguration 1

requirements-driven runtime reconfiguration 5 2 1 2 1

runtime evolution by dynamic reconfiguration 1 1

runtime reconfiguration with model evolution 1

decision making to protect security req. 1

optimizing design decision 1

trade-off between FR and NFR 1

m
a

p
p

in
g

mapping requirements model to arch. model 1 2

A
da

p
ta

tio
n 

a
n

d
 d

e
ci

si
o

n
m

a
ki

n
g

M
o

d
el

in
g

 r
e

qu
ire

m
e

n
ts

, c
o

n
te

xt
s 

an
d

 s
ys

te
m

s
S

p
e

ci
fy

in
g

 a
d

a
pt

iv
e

e
le

m
e

n
ts

D
e

a
lin

g 
w

ith
u

n
ce

rt
a

in
ty

V
e

rif
ic

a
tio

n
 a

nd
va

lid
a

tio
n

M
o

n
ito

rin
g

 a
n

d
d

e
te

ct
in

g



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 67 

Challenges in Research Topics 

Researchers can refer to this table for investigating how different modeling methods 
are applied to a certain research topic. They can also explore how a certain modeling 
method can be adopted into different research topics. The blank areas in the table 
present research gaps in requirements modeling and analysis for self-adaptive sys-
tems. Promising topics may include: quantitative reasoning with NFR, modeling 
adaptation behavior with transition systems, runtime verification with context uncer-
tainty. Indeed, to generate new topics or new motivation, a flexible way is incorporat-
ing uncertainty into the existing topics, since uncertainty has been a first-class concept 
in requirements engineering for self-adaptive systems. 

4 Threats to Validity 

Potential Bias. During conducting the review, researcher’s bias may affect the 
analysis results. We adopt Kappa coefficient to assess the selection results and catego-
rizing results of different researchers. When there is disagreement, we eliminate it by 
conducting a joint meeting and discussing with external researchers. 

Internal Threats. Internal threats to validity deal with systematic errors in design 
and conduct of the review. To reduce this threat, we establish a rigorous protocol in 
advance and the protocol is reviewed by external reviewers. When conducting the 
review, the participants are divided into two groups. The final results are derived by 
integrating their individual results together. 

External Threats. There may be some threats to external validity with respect to the 
generalization of the conclusions of this study. We note that with the increasing num-
ber of works in the literature we cannot guarantee complete capture of all the material 
in this area. There are still numerous unpublished papers, which cause the decrease of 
paper frequency in 2013 (Figure 4). We diminish this threat by taking into account all 
the primary venues in this area and integrating manual search, automated search and 
“snowball” search together to get the final set of relevant studies. 

5 Related Roadmaps and Surveys 

During the last decade, roadmaps and surveys of the literature have summarized the 
achievements and provide insight is this field. Cheng, et al. [5] and Salehie, et al. [7] 
are both highly qualified roadmaps in the literature. The former one presented chal-
lenges of software engineering for self-adaptive systems in four aspects: modeling 
dimensions, requirements, engineering and assurances. The latter one provided more 
details and insights in requirements engineering, design, implementation and test. 
More recently, Weyns, et al. [22] summarized several interesting research areas based 
on the research results of SEAMS from 2006 to 2011 and Dagstuhl seminar in 2008. 
Besides, they [23] also investigated the formal methods used in self-adaptive systems 
with research work between 2000 to 2011. Moreover, Patikirikorala, et al. [24] sum-
marized various kinds of control engineering approaches used in designing self-
adaptive systems with the publications between 2000 to 2010. 



68 Z. Yang et al. 

Different from these works, our review not only investigates the modeling methods 
and RE activities, but also explores how well these methods and activities are con-
veyed. In addition, we consider a wider time span and more publication venues for 
ensuring the coverage of existing research work. We present the state-of-the-art re-
search trends and research gaps based on rigorously statistical results, which we hope 
to make this review more reliable than others. We believe that the SLR methodology 
we have adopted can make our review more trustworthy. 

6 Conclusion and Future Work 

The objective of this systematic literature review is to summarize the state-of-the-art 
trends of research on requirements modeling and analysis for self-adaptive systems. 
We found that most of these research works are from European countries and Ameri-
can countries, where the research groups produce more results than groups in other 
regions. A total of 16 modeling methods are used in 11 RE activities, and about 10 
requirements quality attributes are studied, while adaptability is the most frequently 
concerned attribute. Online applications and service-based systems are the mostly 
cited application domains. It is found that some of the modeling methods need more 
exploration and most of the qualitative studies need more rigorous evaluation. The 
results of thematic synthesis (Table 6) show the gaps in using these modeling me-
thods. In addition to these statistical results, we also analyzed the reasons implied 
behind the results and put forward some promising challenges implied by the results. 

Our future work focuses on further investigating the relationship between require-
ments modeling methods and RE activities, the relationship between requirements 
quality attributes and modeling methods, and the relationship between requirements 
quality attributes and RE activities. Furthermore, we will also explore how the model-
ing methods and RE activities are evaluated in case studies and how the application 
domains are chosen for illustration. We also plan to publish all the research details 
and the relevant studies in the form of journal paper for helping researchers and prac-
titioners better understand our research results and the research literature. 
 
Acknowledgements. We thank Prof. Barbara A. Kitchenham and her team at Keele 
University for reviewing our protocol and all the received advice. This research is 
supported by the National Natural Science Foundation of China under Grant Nos 
61232015 and 91318301. This research is also supported in part by the Natural 
Science Foundation of Guangxi Province under Grant No. 2012GXNSFCA053010. 

References 

1. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Syst. J. 42, 
5–18 (2003) 

2. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE 2000 Pro-
ceedings of the Conference on The Future of Software Engineering, pp. 35–46 (2000) 

3. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36, 41–50 
(2003) 



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 69 

4. Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., 
Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM 
Trans. Auton. Adapt. Syst. 1, 223–259 (2006) 

5. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research 
Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) 
Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, 
Heidelberg (2009) 

6. de Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., 
Tamura, G., Villegas, N.M., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo, N., 
Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Göschka, K.M., 
Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S., 
Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., 
Schäfer, W., Schlichting, R., Smith, D.B., Sousa, J.P., Tahvildari, L., Wong, K., Wuttke, 
J.: Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In: de 
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013) 

7. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. 
ACM Trans. Auton. Adapt. Syst. 4, 1–42 (2009) 

8. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from apply-
ing the systematic literature review process within the software engineering domain. Jour-
nal of Systems and Software 80, 571–583 (2007) 

9. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in 
Software Engineering. EBSE Technical Report (2007) 

10. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-based software engineering. In: 
26th International Conference on Software Engineering, pp. 273–281 (2004) 

11. Dyba, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for 
practitioners. IEEE Software 22, 58–65 (2005) 

12. Protocol for A Systematic Literature Review of Requirements Modeling and Analysis for 
Self-adaptive Systems,  
https://www.dropbox.com/s/t6i4ock5g11zo2x/SASProtocol.pdf 

13. Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in software engineering. In-
formation and Software Technology 53, 625–637 (2011) 

14. ERA Outlet Rankings Access, 
http://lamp.infosys.deakin.edu.au/era/?page=hmain 

15. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. 
Biometrics 33, 159–174 (1977) 

16. QDA Miner V4 and WordStat V6, http://provalisresearch.com/products/ 
17. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-

view. Information and Software Technology 50, 833–859 (2008) 
18. ISO 9126 software quality model definition, 

http://www.sqa.net/iso9126.html 
19. Cruzes, D.S., Dyba, T.: Recommended Steps for Thematic Synthesis in Software Engi-

neering. In: International Symposium on Empirical Software Engineering and Measure-
ment, pp. 275–284 (2011) 

20. Cruzes, D., Mendonca, M., Basili, V., Shull, F., Jino, M.: Extracting Information from Ex-
perimental Software Engineering Papers. In: 26th International Conference of the Chilean 
Society of Computer Science, pp. 105–114 (2007) 

 



70 Z. Yang et al. 

21. Extracted Data of Systematic Literature Review of Requirements Modeling and Analysis 
for Self-adaptive Systems,  
https://www.dropbox.com/s/lksksvcyjsxhg0n/SASData.xlsx 

22. Weyns, D., Iftikhar, M.U., Malek, S., Andersson, J.: Claims and supporting evidence for 
self-adaptive systems: A literature study. In: ICSE Workshop on Software Engineering for 
Adaptive and Self-Managing Systems, pp. 89–98 (2012) 

23. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal methods in 
self-adaptive systems. In: 5th International Conference on Computer Science and Software 
Engineering, pp. 67-79 (2012)  

24. Patikirikorala, T., Colman, A., Han, J., Liuping, W.: A systematic survey on the design of 
self-adaptive software systems using control engineering approaches. In: ICSE Workshop 
on Software Engineering for Adaptive and Self-Managing Systems, pp. 33–42 (2012) 

25. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. 
Sci. Comput. Program. 20, 3–50 (1993) 

26. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements engi-
neering. In: 3rd International Symposium on Requirements Engineering, pp. 226–235 
(1997) 

27. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems 
engineering: the Tropos project. Information Systems 27, 365–389 (2002) 

28. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program semantics. 
Journal of Systems and Software 79, 1361–1369 (2006) 

29. Filieri, A., Ghezzi, C., Leva, A., Maggio, M.: Self-adaptive software meets control theory: 
A preliminary approach supporting reliability requirements. In: 26th International Confe-
rence on Automated Software Engineering (ASE), pp. 283–292 (2011) 

30. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: RELAX: a language to 
address uncertainty in self-adaptive systems requirement. Requir. Eng. 15, 177–196 (2010) 

31. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements 
modeling and analysis. Requir. Eng. 15, 439–458 (2010) 

32. Weyns, D., Malek, S., Andersson, J.: FORMS: Unifying reference model for formal speci-
fication of distributed self-adaptive systems. ACM Trans. Auto. Adapt. Syst. 7, 1–61 
(2012) 

33. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software: conti-
nuous assurance of non-functional requirements. Form. Asp. Comp. 24, 163–186 (2012) 

34. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive software. In: 
The 28th International Conference on Software Engineering, pp. 371–380 (2006) 

35. Bencomo, N., Belaggoun, A.: Supporting Decision-Making for Self-Adaptive Systems: 
From Goal Models to Dynamic Decision Networks. In: Doerr, J., Opdahl, A.L. (eds.) 
REFSQ 2013. LNCS, vol. 7830, pp. 221–236. Springer, Heidelberg (2013) 

36. Goldsby, H.J., Cheng, B.H.: Automatically Generating Behavioral Models of Adaptive 
Systems to Address Uncertainty. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, 
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 568–583. Springer, Heidelberg (2008) 

37. Cheng, B.H., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to 
Develop Requirements of an Adaptive System with Environmental Uncertainty. In: 
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Hei-
delberg (2009) 

38. Weyns, D.: Towards an integrated approach for validating qualities of self-adaptive sys-
tems. In: The 2012 Workshop on Dynamic Analysis, pp. 24–29 (2012) 



 A Systematic Literature Review of Requirements Modeling and Analysis for SASs 71 

39. Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.: Deriving software 
architectural models from requirements models for adaptive systems: the STREAM-A ap-
proach. Requir. Eng. 17, 259–281 (2012) 

40. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-
adaptive systems. In: Proceedings of the 2008 International Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems, pp. 9–16 (2008) 

41. Wang, Y., Mcilraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing software 
requirements. Automated Software Engg. 16, 3–35 (2009) 

42. Yiqiao, W., Mylopoulos, J.: Self-Repair through Reconfiguration: A Requirements Engi-
neering Approach. In: 24th International Conference on Automated Software Engineering, 
pp. 257–268 (2009) 

43. Inverardi, P., Mori, M.: Requirements models at run-time to support consistent system 
evolutions. In: 2nd International Workshop on Requirements@Run.Time, pp. 1–8 (2011) 



Requirements-Driven Social Adaptation: Expert Survey

Malik Almaliki1, Funmilade Faniyi2, Rami Bahsoon2, Keith Phalp1, and Raian Ali1

1 Bournemouth University, UK
2 University of Birmingham, UK

Abstract. [Context and motivation] Self-adaptation empowers systems with
the capability to meet stakeholders’ requirements in a dynamic environment.
Such systems autonomously monitor changes and events which drive adaptation
decisions at runtime. Social Adaptation is a recent kind of requirements-driven
adaptation which enables users to give a runtime feedback on the success and
quality of a system’s configurations in reaching their requirements. The system
analyses users’ feedback, infers their collective judgement and then uses it to
shape its adaptation decisions. [Question/problem] However, there is still a lack
of engineering mechanisms to guarantee a correct conduction of Social Adapta-
tion. [Principal ideas/results] In this paper, we conduct a two-phase Expert Sur-
vey to identify core benefits, domain areas and challenges for Social Adaptation.
[Contribution] Our findings provide practitioners and researchers in adaptive
systems engineering with insights on this emerging role of users, or the crowd,
and stimulate future research to solve the open problems in this area.

Keywords: Requirements Engineering, Adaptive Systems, Social Adaptation.

1 Introduction

In self-adaptive software community there has been a great deal of emphasis on archi-
tectures to support design and development of adaptation, models for anticipating and
reacting to changes in the managed system and methods for verifying properties of these
systems [1,2]. Ultimately, self-adaptivity is a meta-computing capability which enables
a system to reason about itself and its dynamic environment so that it can formulate the
right decisions to reach stakeholders’ requirements [3].

While success on these foundational fronts has contributed significantly to the field,
the role of users in the adaptation process has only recently become a main focus.
This can be partly attributed to lessons learnt from successfully deployed self-adaptive
systems such as Rainbow [4], where it was found that the adaptation process was not
transparent to users. An example of such transparency limitations can be illustrated
by the insufficient explanation offered by self-adaptive system about why a course of
actions was chosen instead of alternative actions to meet the users’ requirements.

Early research in self-adaptive systems limited users’ ability to steer adaptation with
the good intention of maximizing system autonomy and minimizing human efforts.
However, this would lead to adaptation decisions that were valid but only temporarily
since users were not given a voice in the iterative validation of these decisions after
software was deployed [5]. Consequently, one of the identified research challenges in
the engineering of self-adaptive software systems road map is:

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 72–87, 2014.
c© Springer International Publishing Switzerland 2014



Requirements-Driven Social Adaptation: Expert Survey 73

[To devise a way of] “analysing feedback types from human-computer interaction
and devising novel mechanisms for exposing the control loops to the users, keeping the
users of self-adapting systems in the loop to ensure their trust” [1].

Although the role of users in the adaptation process has recently been recognized
[5,6,7,8], there is still a lack of consensus and holistic approaches on how to engage the
users and the crowd in that process. In this paper, we address this problem and conduct
an expert survey to gather and analyse the knowledge of experts in adaptive systems
research. We give the acquisition of users’ feedback a special focus due to its vital role
in enabling this kind of adaptation. Our survey provides practitioners and researchers
in self-adaptive systems with insights and challenges to consider when involving users,
individually or as a crowd, in the adaptation process.

The paper is structured as follows. In Section 2 we briefly discuss Social Adaptation.
In Section 3 we describe the study’s objectives and design. In Section 4 and Section
5 we present the results of the first and second phase of the survey, respectively. We
discuss threats to validity in Section 6 and conclude the paper in Section 7.

2 Social Adaptation

Social Adaptation is defined as a system’s autonomous ability to analyse users’ feed-
back and choose an alternative behaviour which is collectively shown to be the best
for meeting requirements in a context [5]. Social Adaptation claims to have the benefit
of improving the transparency of the self-adaptive system and raising users’ trust in it,
since users are treated as first-class entities in both the engineering and also the opera-
tion of such systems. In fact, over time of using the software, users may be able to shape
the decision-making process in a way that can only be done by today’s experts.

Some researchers have pursued similar visions under themes such as requirement-
aware self-adaptive systems [9], requirement monitoring at run-time [3], and social
adaptation in pervasive software systems [6]. All these efforts adhere to a notion of
representing users’ requirements or trust relationship among users (in [6]) as run-time
objects that can be used by the system to reason about the adaptation process. Other
researchers use the term of socially-adaptive software differently to refer to software
agents which are socially adaptive in the sense of their ability to comply to social norms,
e.g. [10]. Social Adaptation, as described in [5], is unique in the sense that instead of
catering to the requirement of a user or subset of users at run-time, it harnesses the
“wisdom of the crowd” to adapt the system in a way that is deemed best by end-users’
collective judgement rather than the decisions of an elite group of users or those of
developers. To put it another way, Social Adaptation pursues the goal of a democratic-
like, consensus-based social approach to adapting software systems to meet users’
requirements.

In Social Adaptation, users act as monitors and provide software with information
via their feedback. This introduces a range of challenges for the engineering of this
human-based monitor. Reviewing the literature, we could not identify systematic ap-
proaches for feedback acquisition at runtime. The impact of users’ feedback and how
users behave when providing feedback is still ambiguous as discussed in [11].

The lack of engineering processes for feedback acquisition would lead to poorly de-
signed feedback collection mechanisms and this could harm the quality of collected



74 M. Almaliki et al.

feedback, users’ experience and the quality of adaptation and evolution decisions [7].
Owing to its importance, our Expert Survey will give a particular focus on the engineer-
ing challenges of feedback acquisition in Social Adaptation.

3 Expert Survey Design

The study’s objectives were to poll the opinion of experts on (i) the principles and
primitives for enabling Social Adaptation (ii) the role of users’ feedback in steering
software adaptation, and (iii) the engineering of software-based feedback acquisition.

3.1 Experts Selection

Experts selection can have a high effect on the survey outcomes and the acceptability
of the result in the wider community [12]. Since we are tackling a multidisciplinary
research area and in order to have a diversity of viewpoints, we targeted experts from
Requirement Engineering and Adaptive Systems research community with additional
focus on at least one different related domain: HCI, Human Factors in Computing, Psy-
chology, Privacy and Security Engineering, Socio-Technical Systems Engineering and
Social Computing. Our inclusion criteria allowed for experienced participants who are
knowledgeable in their respective fields, evidenced by proven publication track record.
Although the majority of our experts work in academia, they either worked in industry
previously or were engaged in collaborative projects involving industrial partners. To
make sure these participants had sufficient experience and knowledge about the dis-
cussed issue, some assessment questions regarding their knowledge and experience
were asked at the beginning of the questionnaire.

According to expert elicitation practitioners, the number of experts to be included
should be at least six, otherwise we would not be confident about the quality of the
conclusions and their generalizability [13]. In the first phase of our survey 35 experts
were invited; 29 forms were returned. Considering the average actual time taken to
complete the survey (35 minutes), the size of the form and the amount of effort required
to complete it, we consider this as a good response rate. In the second phase we invited
the 29 experts who participated in the first phase and only 21 forms were returned. We
invited additional 5 experts so that we got a total of 26 forms completed.

3.2 Design, Test and Distribution of the Survey

We used online questionnaires as a data collection method for our study because our
experts were widely distributed geographically (five countries). The questionnaire con-
tained both types of questions: open-ended questions and close-ended questions. The
open-ended questions were used to ensure that we minimize the risk of missing signif-
icant information and to give participants a space to include information they felt was
relevant. Closed questions were employed to ensure that we get a high response rate
and to put less effort on participants when answering the questionnaire [14].

Survey questions were deduced and extracted from two talks, given by two of the
authors, followed by a brainstorming session on Requirements-driven Social Adapta-
tion. The sessions took place on March 2013 as a part of a project meeting, which



Requirements-Driven Social Adaptation: Expert Survey 75

included academics in the computing departments of three universities. The partici-
pants set included 12 researchers who have a variety of relevant expertise including
Requirements Engineering, Self-adaptive Systems, Dynamic Software Product Lines,
Cloud Computing, Machine Learning and Human Factors in Computing.

The questions focused on the value and benefits of Social Adaptation for both de-
velopers and clients, its application areas, whether it has to be autonomous or semi-
autonomous and its technical development challenges. A good part of the discussion
focused on the acquisition of users’ feedback, how to engineer it, and whether it should
be adaptive as well. The survey script contained 25 questions discussing and investigat-
ing these points.

Questionnaires need to be tested on typical respondents before the actual data col-
lection stage begins to ensure their readiness and clarity [15]. Our questionnaire was
tested first on three respondents who met our inclusion criteria. After the test and re-
vision, experts were sent an email containing a brief description of our purpose of the
survey and asking them to participate in the Expert Survey. We gave a period of two
weeks for them to come back to us with their input. Surprisingly, the response rate was
high (29 out of 35) which is an indicator that the field is relevant and timely especially
to Requirements Engineering which is a primary research area of our surveyed experts.

4 First Phase Results

The returned survey forms were analysed and responses were cleaned up and irrele-
vant/inconsistent answers were excluded. A descriptive analysis on the quantitative part
of the survey was conducted to describe the data and to get the feel of it. A qualitative
analysis was applied to the open-ended questions of the survey which included coding
the response and creating categories to identify patterns and trends in the responses.

4.1 Social Adaptation Benefits and Value

Social Adaptation claims to offer valuable benefits for both developers and users. This
claim raises important questions that need to be addressed by experts. The following 4
questions attempt to dig a little deeper, that is to understand, not only to what extent
Social Adaptation is beneficial but also to understand better the nature and context of
those benefits among different groups. The questions also vary in their focus. In brief,
Q1 to 3 consider benefits for developers and clients or users with Q4 attempting to
consider areas that are either particularly fruitful or, in contrast do not offer particular
benefits.

Q1: How would you rate the benefits of Social Adaptation: (a) For software
developers? (b) For software clients.

Beneficiary / Rating High Medium Low
Developer 13 14 2
Client 20 8 1



76 M. Almaliki et al.

A rating of Low implies Social Adaptation is not beneficial; Medium implies that
there are benefits but not necessarily significant; significant benefits are rated as High.
There is a consensus among experts that Social Adaptation, if realised, is a useful con-
cept to developers (93% chose medium/high) and clients (96% chose medium/high).
The higher perceived benefit to clients is perhaps not surprising, as users will have
more active role in steering the adaptation process.

Q2: What are the benefits of Social Adaptation for software developers?

Social Adaptation, as indicated by experts’ responses, offers valuable benefits for
both developers and users of adaptive software. [Finding 2.1] Acquired knowledge
through users’ feedback can be used to build and refine models used by the system or to
improve the accuracy of reactive or predictive adaptive algorithms for various aspects
of the self-adaptive system. New knowledge may also reveal latent requirements that
were not known before. Developers of self-adaptive systems can therefore use Social
Adaptation to: (1) improve problem resolution tactics by identifying bugs and scenar-
ios that cause software crashes and poor performance, (2) better prioritise requirements
and maximise the productivity of limited development resources, (3) identify the distri-
bution of software use across age groups, geo-location, time of day etc., and (4) build
knowledge-bases of contextual profiles, which are hard to elicit at design time where
the users have not used the system in real settings yet.

In contrast to Q1, where the numbers are revealing; this open question gave us a great
deal of insightful comments from the expert survey. In terms of benefits, respondents
noted that Social Adaptation: “Provides insights from the user perspective to software
developers on aspects of the system that need to change.” (EX24). “Learning about
and adapting to new (or un-elicited) requirements and making software more aware of
new contexts seamlessly.” (EX25). “Up-to-date knowledge - accessible unobservable
knowledge - able to react to new events (in a faster way) - more knowledge shared
knowledge” (EX1). “Considering adaptation early avoids making hard and expensive
changes afterwards when the system is running.” (EX12).

[Finding 2.2] Future socially-driven adaptive systems may disrupt the current de-
velopment paradigm of self-adaptive systems, in terms of time to market or deploy, by
reducing the upfront effort in design phase to the barest minimum. By taking the so-
cialized view of adaptation, the system will only provide a platform for users to express
their preferences, whilst design decisions are collectively made by users at run-time.
This indeed makes Social Adaptation different from other approaches (e.g. Agile soft-
ware development ) in which the variability points of the software and execution envi-
ronment will be learnt at run-time based on feedback provided by users which makes.
This is a realistic assessment since users of today’s software system vary widely in their
preferences (perhaps, influenced by culture, norms, age group, location etc). Design-
ers of adaptive systems will focus on engineering open, configurable, and extensible
platforms, instead of debating functionality choices.

Q3: What are the benefits of Social Adaptation for users?

The ultimate goal of Social Adaptation is to satisfy users’ requirements efficiently
by enabling users to steer and tailor the adaptation process. Our experts agreed that
Social Adaptation was of most benefit to users. This correlates with responses to the



Requirements-Driven Social Adaptation: Expert Survey 77

first question. [Finding 3.1] The benefits cited included improved trust (users feel their
voice is considered), [Finding 3.2] user satisfaction (software behaves according to
users’ judgement), [Finding 3.3] transparency (adaptation decisions is visible to users),
and [Finding 3.4] confidence in self-adaptive system “1- Acknowledgement of clients’
opinion 2 Visible involvement of clients in the adaptation” (EX22), “ Having a software
with an adaptive behaviour based on similar users / past experience and participation
/ involvement in a community is very gratifying to many users” (EX5).

The data also revealed that the involvement of users and their ability to collectively
configure the software on the fly at run-time could result in users perceiving the software
as a partner rather than a tool “Clients will have more user-friendly software as a result
of the analysis performed on information received from them. Their confidence and
trust in the adaptive systems may grow. They will be able to provide focused and real-
time feedback to the developers which can in return empower them.” (EX3). Indeed this
is consistent with the overarching objective of self-adaptation, where the software is
expected to adapt to users’ needs and not the other way around. Since Social Adaptation
is a group-based adaptation, the software will be able to quickly adapt to group norms
and beliefs, without the conventional maintenance-evolution phases.

Experts also indicated that users’ involvement should be accommodated under some
constraints and users should not be always involved in shaping and validating software
adaptation. Restricting users’ involvement is due to a negative effect on users’ expe-
rience (e.g. annoyance), which might arise when involving them too much “if every
system would ask often to confirm something, the end-users would be overwhelmed and
they would not react at all” (EX1).

Aside from the apparent benefits of Social Adaptation to users (as listed above),
one unusual finding is the perceived impact on the software life-cycle of self-adaptive
software systems. The idea of fully automated user-driven evolution or reduced human
involvement in the evolution process already raises many challenges. An example of
these challenges could be the way users’ feedback is being collected and analysed by the
system. The findings and challenges in this area will be discussed in another question.

Q4: Can you nominate certain areas and application domains where Social
Adaptation: (a) has distinguished benefits (b) should not be used?

A common theme raised by our respondents was the need for a user-centred or
human-oriented software and user bases in which preferences of the entire user pop-
ulation collectively steer the adaptation. We classify the identified application areas as
follows:

– [Finding 4.1] Mobility intensive systems where software is used in different con-
texts, e.g., driving navigation systems “Telecom industry will be highly interested
in such applications, Content intensive applications” (EX10).

– [[Finding 4.2] Large-scale systems such as SaaS clouds, where the software is in
global demand and developers are unable to elicit preferences of groups of users
distributed around the world “Any software system that has a very large community
of users, e.g., smartphone applications.” (EX7).

– [Finding 4.3] Real time management systems where crowd-sourcing will em-
power the system monitor and enhance the decision making. For example,



78 M. Almaliki et al.

evacuation scenarios or congestion management at train stations or airports “- un-
observable areas - areas with lots of traffic and different end-users and needs (air-
port, central train stations, shopping malls) - mobile devices (apps with unknown
end users)” (EX1).

– [Finding 4.4] Highly interactive systems: These are software that is frequently
used for variety of purposes where it is hard to know a priori how users will judge
quality in the diverse contexts of use and human-computer interaction. Mobile,
pervasive, and social networking applications fall into this category of highly in-
teractive systems. “Systems with repetitive tasks. The driving navigation system is
a good example. Perhaps an operating system, adapts to common usage. Also em-
bedded electronics like refrigerators, heating, etc. could adapt to behaviour without
criticality.” (EX14).

– [Finding 4.5] Prototyping tools in moderately dynamic systems, where feedback
from Social Adaptation can be used to infer user needs before a final implementa-
tion is carried out. Here, there is an assumption that the rate of adaptation is rela-
tively controllable by human development effort after the final system is deployed
“in prototyping for requirements engineering activities possibly, to find out which
model to focus on in the actual implementation” (EX16)

Our experts considered Social Adaptation inapplicable in the following domains:

– [Finding 4.6] Critical systems where wrong Social Adaptation could result in
disaster or huge financial loses.

– [Finding 4.7] Security sensitive applications.
– [Finding 4.8] Non- or less-interactive systems under the control of centralised

authorities such as payroll system or an embedded system. A comment from an
expert in regard to areas outside the scoop of Social Adaptation “Safety Critical
Systems where real-time data input may results in disasters e.g. a nuclear power
plant. High Secure Systems - that is sealed/closed systems e.g. military missile sys-
tems.” (EX3).

It is interesting to uncover the subtle difference between “personalised” adaptation
and “social” adaptation as evident in candidate application areas listed above. The for-
mer refers to a type of user-driven adaptation where the objective is to meet the require-
ment of user(s) with mutual non-conflicting preferences. Crucially, some users may
choose not to conform to popular opinion, therefore, they should be given the freedom
to deviate from the choice deemed best by the group (e.g. for some privacy reasons). On
the other hand, social adaptation is a different concept as the preferences of the entire
user base (including conflicting ones) is collectively used by the system to adapt in a
way deemed best for the group. Figure 1 illustrates the difference between these con-
cepts. Applying Social Adaptation in the previous domains is a promising opportunity
to empower adaptation quality. The reason is that the potential to get a wide range and
large volume of users’ feedback is high and that the users’ feedback is meaningful as
the interaction between users and the software is intensive.



Requirements-Driven Social Adaptation: Expert Survey 79

Personalised Adaptation Space Social Adaptation Space

Self-Adaptive Software System
User

Group

Fig. 1. Personalised Adaptation Versus Social Adaptation in Self-Adaptive Software

4.2 Challenges to Supporting Benefits to Developers and Users

Utilising on-line Learning: The role of on-line learning is a key in realising open plat-
forms for socially-driven adaptation since there is a question of: how do we build a
system when little is known about the users of the system. Existing work in the self-
adaptation literature mainly uses learning-based approaches to model decision-making
about computational configurations at run-time (e.g. [16,17]). Unlike these efforts, the
role of learning here is that of learning user trends, behaviours, and adaptively resolving
conflicts among user preferences at run-time. Since user behaviour and preferences are
not static, i.e. users themselves evolve, a fully open social-adaptation platform should
empower users to decide the protocols and resolution tactics for their collaboration.
Consequently, [Challenge 1] there is the problem of identifying what learning models
to use for enabling user interaction and conflict resolution at run-time and [Challenge
2] how the process of mining users’ feedbacks should be conducted to inform recom-
mendations which are consistent with the system’s requirements.
Gauging User Involvement: The challenges include [Challenge 3] how to measure
users’ involvement with the system as a main descriptor of their feedback, [Challenge
4] identifying the degree to which users are allowed to configure the software on the
fly at run-time and [Challenge 5] and specifying restrictions for their involvement (e.g.
users can provide feedback after a certain period of use).
Monitoring Adaptation Spaces: From Figure 1, it can be observed that while a user
is able to independently tune parameters in his/her personalised adaptation space, the
system’s social adaptation space, which also affects the user, is a product of a collec-
tive configuration. [Challenge 6] The research challenge here is to develop models and
languages to allow users to specify their preference on the way their requirements are
reached (e.g. when to rely on the crowd and when to take their personal choices). An-
other challenge [Challenge 7] is to develop mechanisms to allow software to deduce
such users’ preference without getting them explicitly involved.

4.3 Implementation Choices (Autonomy and Feedback Acquisition)

The following questions dig much deeper and attempt to look at issues to consider in
implementing Social Adaptation, with Q5 examining autonomy and Qs 6-8 focussing
on aspects and developments challenges of users’ feedback acquisition process since it
plays a significant role in enabling Social Adaptation.

Q5: Knowing that relying on Social Adaptation is a user’s choice, are there cases
where software should still ask users to confirm its adaptation decision?



80 M. Almaliki et al.

The degree of autonomy in socially-adaptive systems has been always debated. Should
the system take an autonomous full control on the adaptation process? Or should the
user interfere sometimes? We extract, analyse and discuss experts’ opinion in regard to
autonomy in Social Adaptation.

96% of the respondents agree that user confirmation is essential before an adapta-
tion action autonomously suggested by software is allowed to impact the system. The
remaining 4% claim that adaptation actions should not require user confirmation since
this is why self-adaptive systems are autonomous “User should be not too much both-
ered. Moreover I think that user identification should be automatic in the mechanism
adopted to get user feedback.” (EX20).

Even though the consensus tilts towards user involvement in confirming adaptation
actions, many experts believe that the answer to this question is not a binary (yes or no).
In many cases, the choice of whether user should be involved depends on the type of
services provided by the adaptive system (e.g. its criticality), the implication of the ac-
tion on user’s privacy, security, and financial spending. Also, “nice to have” autonomous
social adaptation actions should not outweigh core functionalities of the system, hence
users need to choose what is important to them in each context.

Q6: Can the quality of collected feedback be affected by the way it is collected?

All respondents agreed that the way feedback is collected has an effect on the quality
of the feedback. The exact implication of the collection mechanism can be manifested
in terms of:

– [Finding 6.1] Time: Asking users for feedback when they are busy may result to
poor responses or it may be discarded. Finding the right time to ask for feedback
is important “Asking in a busy moment of the end-user will result in only yes/no
answers. Asking if the end-user is bored will result maybe in creative feedback, but
not necessarily high quality.” (EX1).

– [Finding 6.2] User interface: Short, concise, clear questions should be preferred
to long, complicated ones. The user interface should allow users to express their bi-
ases using wider band of options, such as Likert scale [18], rather than conventional
yes or no options.

– Finding 6.3] Language: The phrasing of the question, for example based on the
language proficiency of the user, will determine how users interpret and respond
to questions. Even for experienced users, misinterpretation is sometimes inevitable
due to the ambiguity inherent in natural languages “simple interfaces are essential,
avoid long texts or complicated questions. Things such as “like” and “dislike” may
be especially effective” (EX5).

– [Finding 6.4] Quality of users: This involves asking the right user population for
feedback and ensuring the size of users is representative of the group characteristics
“Is it the right user group? How representative is the feedback? User profiles?
Can you capture user’s perception or viewpoint of the question asked? How is the
feedback question phrased? Any domain specific language?” (EX3).

– [Finding 6.5] User’s mood: Some interesting responses suggest strongly that the
mood of users should be factored into the feedback acquisition process. While the
mood of users may impact the quality of feedback, it is still hard to monitor the



Requirements-Driven Social Adaptation: Expert Survey 81

emotional state of users (e.g. happy, bored, excited, angry etc.) during feedback ac-
quisition. Perhaps advances in recognizing emotions through facial expression [19]
could be helpful in this area.

Q7: Is the development feedback acquisition mechansims technically challenging?

Experts stress that developing software-based feedback acquisition poses a variety
of technical challenges due to changing context of use and users’ evolvement. Almost
two-thirds (65%) of the responses indicated that the users selection and interaction style
is a key challenge which includes incentivising users to give feedback, when to ask for
feedback, who to ask for feedback, how to interact with users without annoying them
and the usability degree when giving feedback “Uncertainty, building a user-friendly
interface, convincing the user of the importance of it.”(EX7). “The design should in-
centivize impatient and ignorant users to give feedback. Implementation would not be
the problem, designing is the main challenge.”(EX18).

Responses also indicated that, engineering of users’ feedback acquisition is a mul-
tidisciplinary process and it has a potential usefulness and strong relationships with
various domains such as, Requirement Engineering, Ubiquitous systems, HCI, Context-
aware systems Social Science, Psychology, Recommendation Systems and Machine
learning.

From the various experts’ answers to the engineering challenges of a software-based
feedback acquisition we can deduce that the engineering of an adaptive software-based
feedback acquisition stands out as a technically challenging process. The first step of
gathering feedback already raises many questions: What type of feedback should be
asked of users? How should feedback be cleansed, represented, processed, filtered, and
selectively adopted for use by the systems? If users are relied upon to steer the adap-
tation process, then the system must be equipped with capabilities to cope with the
ambiguity flaws of natural languages.

Additionally and in relation to the findings of the previous question (Q6), the ex-
tracted engineering challenges of the feedback acquisition can also be considered as
factors that can affect negatively/positively the quality of collected feedback. Address-
ing these challenges can possibly improve the quality of collected feedback. For exam-
ple, developing an incentive scheme for users might improve the quality of their given
feedback.

Q8: If feedback acquisition is adaptive, what could be the adaptation drivers?

Context is important for the choice of feedback acquisition methods, and experts
agreed that an adaptive feedback acquisition mechanism is a necessary enabler to de-
cide ways of acquiring feedback. Some possible drivers for such adaptive mechanism
suggested were:

– [Finding 8.1] User experience: E.g. usage frequency. This could inform how of-
ten users should be asked for feedback. For example, a less frequent user may
find providing feedback meaningless, since they hardly use the software in the first
place “Usage information of user’s laptop (or other smart devices). E.g. if a user
is browsing web sites or watching a video, probably he/she is free.” (EX17).



82 M. Almaliki et al.

– [Finding 8.2] Application constraints: Such as the application model, domain
model, and level of interactivity of the software are likely to influence ways of ac-
quiring feedback “this should include several components, including a user model,
application model, domain model, and a general feedback or adaptation model.”
(EX8).

– [Finding 8.3] Direct enquiry: Involves asking the users if they wish to provide
feedback, if yes, how often they wish to do so and what methods they would like to
use for providing such feedbacks “Ask the user what they prefer. When is the best
time to give feedback, what form would they like?” (EX14).
The identified trend here is that drivers of adaptive feedback acquisition should
not be studied in isolation. Such drivers may trade-off against each other. A user
that provides feedback frequently, for example, will only find answering the direct
enquiry questions useful, as a way of improving his/her feedback provision.

4.4 Research Challenges to Implementing Social Adaptation

Degree of Autonomy: It is interesting to observe that although experts advocate that
Social Adaptation is useful for meeting users’ requirements, autonomously, based on
the crowd feedback, they still believe individual users should be in the loop during the
decision-making process of their software. [Challenge 8] It raises the question of how
much control users are willing to surrender to software systems. For example, in modern
autopilot assistant systems, pilots take a supervisory role while software controls the
flight of airplanes. The challenge here seems to be psychological in nature, since users
are happy to trust the system when they are involved in the decision-making. Does
this mean users trust their own socially-generated decisions less than expert knowledge
encoded in systems such as Auto-pilot? Suppose, users were able to collaboratively
fly an aircraft, would it land safely? Perhaps, this trustworthiness issue is why experts
believe that Social Adaptation should not be used in critical systems but in less critical
systems (See Q4).
Impact of Collection Approach and Importance of Mood: Investigation into the im-
pact of user mood on the quality of feedback in specific application domains may re-
quire evidences from psychology “This is mainly a psychological issue, finding the
right time and modality and give incentives to the user for providing a good feedback”
(EX5). Advances in neuroinformatics could be helpful in this area. Some experts sug-
gest that feedback should only be requested for features that are frequently used by the
user. [Challenge 9] This will require mechanisms for monitoring user’s feature usage
statistics/trends and using these results to inform which feedbacks are requested from
the user.

[Challenge 10] Some domain-specific feedback acquisition languages and mecha-
nisms might be needed. Some feedback mechanisms may work better in some applica-
tion areas than others. This challenge is akin to problem in requirement elicitation based
on application areas and user experience. Perhaps some lessons can be learnt from the
requirements community to address this challenge.

[Challenge 11] Additionally, we could turn to mature fields like HCI to learn how
interfaces are built to gather feedback from users in a variety of contexts or even to
use innovative features such as voice-based feedback acquisition rather than purely text



Requirements-Driven Social Adaptation: Expert Survey 83

which might make the process easier and more enjoyable for users “[users] will provide
more feedbacks to a system that can support voice recognition than others without this
feature.” (EX17).
Impact of User Selection and Interaction Styles: In a software-based feedback acqui-
sition, a further important challenge is catering for the users selection and inter-action
style. More specifically, there are challenges in the following aspects [Challenges 12-
18]: 1) modelling users styles (including incentives, 2) deciding when to ask for feed-
back, 3) deciding what type of feedback to ask for, 4) deciding with whom to interact,
5) deciding how to interact and avoid annoying or confusing users, 6) deciding how to
design for maximized usability in feedback acquisition and 7) deciding how to ensure
trust and reliability of acquired feedback.
Feedback Acquisition Drivers: [Challenge 19] The challenge here is indeed the need
to identify the relevant drivers of the adaptive acquisition of users feedback and [Chal-
lenge 20] engineer these drivers in a way that is non-intrusive to users. In addition, So-
cial Adaptation is applicable and useful in various domains and the availability of a sys-
tematic approach for engineering an adaptive users’ feedback acquisition is highly valu-
able. It could bring promising benefits for users and developers in the different domain
where adaptation is recommended and, perhaps, different disciplines like marketing and
e-commerce. [Challenge 21] Therefore, the development of an application-independent
framework for an adaptive users’ feedback acquisition is also a key challenge of users’
feedback acquisition.

5 Second Phase Results

From our Expert Survey responses, we were able to deduce and extract a set of core
findings and challenges in the area of Social Adaptation and engineering of users’ feed-
back acquisition. In order to confirm the set of extracted findings and the degree of
relevance and difficulty of our extracted challenges to the Requirements Engineering
research community, we conducted a second phase survey. We invited the 29 experts
who responded in the first phase and 21 forms were returned. Then we invited 5 new
experts who attended at least one of the seminars given by one of the authors on Social
Adaptation. They all responded which made a total of 26 completed form in this phase.

The survey was designed and delivered following our approach in designing the
previous Expert Survey (see Section 3). Before experts answer the survey, they were
given a brief reminder about the purpose of our first-phase Expert Survey and then a
brief description about the second-phase survey and the purpose of it. In addition, a
brief description before each set of challenges was given to highlight why it was ex-
tracted/identified as a challenge to give a clearer vision to experts before answering the
questions.

The questions were developed to discuss and gather experts’ opinion in regard to the
following three points:

– Confirming our findings of the first phase. We focused on the debatable findings
which did not receive a high percentage of consensuses in the first phase. We
marked the findings using the tag [Finding x.y] in Section 4. We gave three op-
tions for each finding: Agree, Partially Agree, and Disagree.



84 M. Almaliki et al.

– Measuring the degree of challenge in each of the extracted challenges (we marked
the challenges using the tag [Challenge x.y] in Section 4). We gave the follow-
ing three options: [Ch: A]: It is challenging and it requires significantly new ap-
proaches, [Ch: B]: It is challenging but it can still be solved by extending and
customizing existing approaches. [Ch: C]: It is not really challenging and solutions
already exist in the literature.

– Measuring the relevance degree of each challenge to the area of Requirement Engi-
neering (RE). We gave the experts three options here: [RE: A]: It is very relevant to
RE research. [RE: B]: It is not strictly relevant to RE research, but having a solution
for it is still beneficial to RE. [RE: C]: The challenge and solution are not relevant
to RE research and practice.

The following tables present a summary of our second survey findings.

Table 1. The confirmation of experts on the findings of the first phase

Finding Agree Partially Disagree Finding Agree Partially Disagree
[2.1] 50% 46% 4% [4.6] 81% 15% 4%
[2.1] 69% 27% 4% [4.7] 34% 54% 12%
[3.1] 65% 34% 4% [4.8] 50% 38% 12%
[3.2] 73% 27% 0% [6.1] 92% 8% 0%
[3.3] 38% 58% 4% [6.2] 85% 15% 0%
[3.4] 58% 31% 11% [6.3] 88% 12% 0%
[4.1] 69% 23% 8% [6.4] 77% 19% 4%
[4.2] 50% 38% 12% [6.5] 69% 31% 0%
[4.3] 46% 46% 8% [8.1] 81% 19% 0%
[4.4] 85% 15% 0% [8.2] 65% 30% 4%
[4.5] 65% 27% 8% [8.3] 50% 46% 4%

In Table 2, a high degree of challenge is given to engineering challenges related to
enabling users to steer the adaptation process and the degree in which they are willing
to steer it (e.g. challenge 6 and 8). This high degree of challenge is perhaps due to the
lack of models and languages for enabling users to express their adaptation preferences
and the lack of studies on the degree of autonomy in socially-adaptive systems. Another
noticeable high degree of challenge was given to challenges related to engineering feed-
back acquisition for different application areas and empowering adaptivity in it (e.g.
challenge 10, 19 and 20). The reason behind this high degree of challenge could be the
obvious lack of systematic approaches for engineering feedback acquisition.

In addition, challenges related to users’ involvement, feedback collection and inter-
action styles and feedback mining to inform adaptations show a high degree of rele-
vance to RE (e.g. challenge, 2, 5, 6, 10, 13, 14 and 16). This high degree is perhaps
because experts believe that users’ involvement in the adaptation process, ability to
provide feedback in their preferable way and the system’s ability to react to their feed-
back accordingly is a user’ requirement that should be systematically engineered and
efficiently met.



Requirements-Driven Social Adaptation: Expert Survey 85

Table 2. The challenge degree and the relevance to RE of each of the challenges of the first phase

Challenges [Ch:A] [Ch:B] [Ch:C] [RE:A] [RE:B] [RE:C]
[1] 46% 46% 7% 50% 42% 8%
[2] 15% 77% 7% 65% 27% 8%
[3] 38% 54% 7% 42% 46% 12%
[4] 27% 57% 15% 50% 42% 8%
[5] 15% 65% 19% 61% 35% 4%
[6] 61% 34% 7% 84% 11% 4%
[7] 50% 50% 0% 50% 42% 8%
[8] 58% 34% 7% 65% 27% 7%
[9] 15% 77% 7% 57% 27% 15%

[10] 61% 35% 4% 69% 31% 0%
[11] 15% 54% 30% 27% 57% 15%
[12] 42% 50% 8% 46% 34% 19%
[13] 35% 50% 15% 65% 27% 7%
[14] 19% 58% 23% 62% 34% 4%
[15] 24% 50% 8% 50% 42% 8%
[16] 31% 61% 8% 65% 23% 12%
[17] 35% 46% 19% 54% 38% 8%
[18] 35% 57% 7% 58% 35% 7%
[19] 58% 42% 0% 46% 50% 4%
[20] 54% 46% 0% 54% 42% 4%
[21] 46% 46% 8% 50% 46% 4%

6 Threats to Validity

Our expert survey has three main threats to validity:

– The first threat is one of the common issues when designing a questionnaire and
relates to ensure whether the questions were understood by all experts as intended.
This threat is somehow addressed as we conducted a pilot test on typical respon-
dents then some questions were revised and modified to ensure clarity. This was
done for both phases of our survey.

– The second relates to the low percentage of our experts who have industrial expe-
rience in adaptive systems. The reason is that adaptive systems are not yet widely
applied in industry and much of the work is still in academia. This could mean
that our results are flavoured with more judgements coming from academia than
industry.

– The third relates to the fact that Social Adaptation is a forward-looking way of de-
veloping adaptive systems. This would mean that the answers of our experts are
fairly speculative. However, given that most of the elements of this domain as well
as the survey questions are directly related to the main areas of expertise of our ex-
perts (e.g. requirements engineering, adaptive systems, HCI, and social computing)
we would consider that the answers are good enough to draw credible insights.



86 M. Almaliki et al.

7 Conclusion

This paper has synthesized findings from a two-phase Expert Survey of 29 experts in
the first phase and 26 experts in the second phase on the topic of Social Adaptation
and the challenges posed by the mechanisms for collecting user feedback, to steer the
adaptation process. The consensus among experts is that Social Adaptation is a highly
beneficial concept to both developers and clients of self-adaptive systems. However,
enabling Social Adaptation is a technically challenging process due to the lack of mod-
els and mechanisms for enabling such a concept. Engineering approaches are highly
needed for Social Adaptation to empower users’ involvement in shaping adaptation de-
cisions and to systematically develop the feedback collection process and interaction
styles as well as feedback mining. The paper has highlighted research challenges in
the areas of providing an enabling platform for Social Adaptation and the design of
adaptive feedback acquisition mechanisms that fits user context.

Acknowledgement. The research was supported by an FP7 Marie Curie CIG grant (the
SOCIAD Project) and by Bournemouth University through the Fusion Investment Fund
(the BBB and the VolaComp projects) and the Graduate School PGR Development
Fund. We would also like to thank Sarah Williams for insights on conducting qualitative
research.

References

1. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research roadmap.
In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engi-
neering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

2. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems and Their Applications 14(3), 54–62 (1999)

3. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Pro-
ceedings of the Second IEEE International Symposium on Requirements Engineering,
pp. 140–147. IEEE (1995)

4. Cheng, S.W., Huang, A.C., Garlan, D., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
based self-adaptation with reusable infrastructure. In: International Conference on Auto-
nomic Computing, pp. 276–277. IEEE (2004)

5. Ali, R., Solis, C., Omoronyia, I., Salehie, M., Nuseibeh, B.: Social adaptation at runtime.
In: Maciaszek, L.A., Filipe, J. (eds.) ENASE 2012. CCIS, vol. 410, pp. 110–127. Springer,
Heidelberg (2013)

6. Esfahani, N., Malek, S.: Social computing networks: a new paradigm for engineering self-
adaptive pervasive software systems. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, vol. 2, pp. 159–162. ACM (2010)

7. Pagano, D., Brügge, B.: User involvement in software evolution practice: A case study. In:
Proceedings of the 2013 International Conference on Software Engineering, ICSE 2013,
pp. 953–962. IEEE Press, Piscataway (2013)

8. Ali, R., Solis, C., Salehie, M., Omoronyia, I., Nuseibeh, B., Maalej, W.: Social sensing:
When users become monitors. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 476–479. ACM, New York (2011)



Requirements-Driven Social Adaptation: Expert Survey 87

9. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware sys-
tems: A research agenda for re for self-adaptive systems. In: The 18th IEEE International
Requirements Engineering Conference (RE), pp. 95–103. IEEE (2010)

10. Van Riemsdijk, B.: Socially adaptive software. Awareness Magazine (2013)
11. Pagano, D., Maalej, W.: User feedback in the appstore: An empirical study. In: The 21st

IEEE International Requirements Engineering Conference (RE), pp. 125–134 (2013)
12. Linstone, H.A., Turoff, M.: The delphi method. Addison-Wesley Reading, MA (1975)
13. Cooke, R.M., Probst, K.N.: Highlights of the Expert Judgment Policy Symposium and Tech-

nical Workshop. Resources for the Future, Washington, DC (2006)
14. Leung, W.C.: How to design a questionnaire. Student BMJ 9(11), 187–189 (2001)
15. Franklin, S., Walker, C.: Survey methods and practices. Statistics Canada, Social Survey

Methods Division (2003)
16. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-tuning self-

adaptive software systems. In: Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 7–16. ACM (2010)

17. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid reinforcement learning approach
to autonomic resource allocation. In: The IEEE International Conference on Autonomic
Computing, ICAC 2006, pp. 65–73. IEEE (2006)

18. Likert, R.: A technique for the measurement of attitudes. Archives of Psychology (1932)
19. Adolphs, R.: Recognizing emotion from facial expressions: Psychological and neurological

mechanisms. Behavioral and Cognitive Neuroscience Reviews 1(1), 21–62 (2002)



A Requirements Monitoring Infrastructure
for Very-Large-Scale Software Systems

Michael Vierhauser, Rick Rabiser, and Paul Grünbacher

Christian Doppler Laboratory MEVSS
Johannes Kepler University Linz, Austria

michael.vierhauser@jku.at

Abstract. [Context and motivation] Approaches for requirements
monitoring check the compliance of systems with their requirements dur-
ing operation. [Question/problem] Despite many advances, require-
ments monitoring remains challenging particularly for very-large-scale
software systems (VLSS) with system-of-systems architectures. [Prin-
cipal ideas/results] In this research preview we describe key charac-
teristics of industrial VLSS and discuss implications for requirements
monitoring. Furthermore, we report on our ongoing work of developing
a requirements monitoring infrastructure addressing these characteris-
tics. [Contribution] Our infrastructure supports runtime monitoring
of requirements across systems; variability management of requirements-
based monitors; and the integration of monitoring data from different
sources in a VLSS.

Keywords: Requirementsmonitoring, very-large-scale software systems.

1 Introduction

Many very-large-scale software systems are systems of systems (SoS) with
decentralized control; support for multiple platforms; inherently volatile and
conflicting requirements; continuous evolution and deployment; as well as het-
erogeneous, inconsistent, and changing components [1,9,12,13]. Due to their scale
the behavior of VLSS cannot be fully tested or predicted and only emerges dur-
ing operation. This means that detecting violations of requirements and desired
properties at runtime plays an important role. Different research communities
have developed approaches for monitoring system properties at runtime. Exam-
ples cover requirements monitoring [11, 15], complex event processing [17], or
runtime verification [3,8] to name but a few. However, it has been reported that
simply applying existing approaches and techniques to large-scale systems will
likely lead to problems [1, 9]. The size, scale, and heterogeneity of VLSS imply
significant challenges for requirements monitoring: for instance, different tech-
nologies and architectural paradigms need to be considered. VLSS also operate
in a complex environment and interact with third-party and legacy systems.
Furthermore, requirements in VLSS exist at different levels and across different

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 88–94, 2014.
c© Springer International Publishing Switzerland 2014



A Requirements Monitoring Infrastructure for VLSS 89

systems and are defined in different artifacts, which are owned by diverse stake-
holders. The requirements are often overlapping, conflicting, or cross-cutting and
cannot easily be allocated to the involved systems. Still, when different systems
are composed, their requirements need to be aligned to satisfy the overall VLSS
requirements.

In our ongoing research we are developing an infrastructure for monitoring
requirements in VLSS. The infrastructure will provide capabilities for monitoring
requirements across systems in the VLSS during development and operation.
It will also address variability management of requirements-based monitors to
support different system variants and versions. Event models are used as a unified
representation of monitoring data collected from the involved systems. Our work
is carried out in cooperation with Siemens VAI Metals Technologies (SVAI) in the
context of VLSS for metallurgical plants in the domain of industrial automation.
In this research preview paper we present a brief problem description based on
an industrial example and summarize our ongoing work.

2 Industrial Motivation and Challenges

VLSS automating metallurgical plants in the iron and steel making industries
provide capabilities for production planning, material tracking and optimization,
as well as basic hardware automation. Metallurgical plants comprise different
mechanical systems each relying on complex interdependent software systems
sizing up to several million lines of code. For instance, our industry partner
Siemens VAI provides a wide range of software-intensive systems for operat-
ing blast furnaces, electric arc furnaces, continuous casting machines, or rolling
mills in steel plants. These self-contained software systems are engineered inde-
pendently. However, there are manifold dependencies that need to be considered
when planning their joint operation. Rolling mills in a plant, for example, depend
on the production capacity of the casting machines while the casting machines
rely on the material input they receive from steel making. The VLSS is fur-
ther connected to legacy or third-party systems. The requirements of all these
systems are often cross-cutting and interrelated. Requirements about the pro-
duction capacity of the caster for example are related with requirements about
the production speed of the rolling mills. Similarly, the requirements about la-
dle handling in the caster system are related with the requirements on finishing
ladles in the steel making system.

Although such dependencies are carefully managed during development, it is
crucial to monitor them also during runtime to detect inaccurate and erroneous
behavior. While the production process is monitored by operators in control
rooms, the consequences of operator settings can have unforeseen effects on the
automation software. For instance, the cut length defined by an operator of the
caster system might conflict with some required plan characteristics, or the ladle
finished event might be lacking from steel making. There are also dependencies
between requirements at different levels, such as the machine level and the au-
tomation level. For instance, the minimal length allowed for cutting a steel slab



90 M. Vierhauser, R. Rabiser, and P. Grünbacher

in the caster system might depend on the maximum load capacity of the cranes
available in the plant.

Numerous research areas have proposed approaches addressing these issues.
Requirements monitoring approaches allow determining compliance of a system
with its requirements during runtime. Monitors are used to detect possible viola-
tions and serve as a starting point for revealing the root cause of problems. For
instance, Robinson [15] describes a framework for checking a software system
using requirements defined as constraints in the Object Constraint Language.
Cleland-Huang et al. [4] describe a framework for event-based traceability to un-
cover errors between distributed artifacts. Complex event processing (CEP) [10]
is an approach for monitoring arbitrary business processes. It aims at combin-
ing event streams gathered from multiple sources to infer events or patterns of
events. Event patterns are typically described by implementing rules in some
higher programming language or in an Event Description Language. Runtime
verification approaches in various peculiarities have been proposed as viable so-
lution for monitoring and verifying system properties. For instance, Calinescu
et al. [3] emphasize the need for quantitative runtime verification in the context
of self-adaptive systems. They propose a three-staged process of monitoring,
analysis, and planning. A system model is verified to detect violations of re-
quirements. Ghezzi et al. [8] present the SPY@RUNTIME approach that relies
on behavior models which are represented by finite state automata. An initial
model is inferred in a setup phase and then used at runtime to detect changes.

While these approaches provide important building blocks for requirements
monitoring in VLSS their focus is typically on single systems. However, VLSS are
frequently systems of systems which have recently received more attention in the
literature. For instance, Dahmann and Baldwin [6] distinguish between directed
SoS which are centrally managed (cf. our industrial example), collaborative SoS
in which the systems voluntarily collaborate to fulfill the agreed purposes, vir-
tual SoS with little or no central management authority and highly emergent
behavior, as well as acknowledged SoS which share a common management and
resources but remain in independent ownership.

The characteristics of VLSS [1], however, impose a number of additional
challenges for requirements monitoring: Operational independence of their con-
stituent systems, meaning that the systems in the VLSS are only weakly inte-
grated and often have not been designed with their interaction in mind.
Current requirements monitoring approaches do not adequately support mon-
itoring across different systems in VLSS. Managerial independence and stake-
holder diversity, meaning that the systems are developed, maintained, and put
into operation by independent teams and often even by multiple different com-
panies. However, current requirements monitoring approaches are not designed
to offer their capabilities to different independent teams and stakeholders. Evolu-
tionary independence, meaning that the different systems in a VLSS evolve inde-
pendently and at different speeds, which requires their continuous validation to
avoid unexpected behavior. This strengthens the need for requirements monitor-
ing after changes. Furthermore, it is important to manage the variability of the



A Requirements Monitoring Infrastructure for VLSS 91

monitoring solutions to cover different system variants. Emergent behavior, lead-
ing to challenges in predicting the effects of cumulative actions and interactions
of the constituents of a VLSS and making it difficult to define the requirements
to be monitored. It has been reported that simply applying existing approaches
and techniques to large-scale systems will likely lead to problems [1, 9]. Boehm
and Lane [2], for instance, reported that traditional 20th century development
processes do not work well on developing large-scale software-intensive systems
with system-of-systems architectures.

3 Infrastructure Capabilities for Requirements
Monitoring in VLSS

We are developing an infrastructure for requirements monitoring that provides
different services for stakeholders developing or using tools for diagnosing prob-
lems in VLSS. The infrastructure aims at replacing the perspective of "building
a house" with the perspective of "building a city" [14].

The infrastructure provides capabilities to support engineers who instrument
systems in a VLSS. Engineers can register probes in the infrastructure to col-
lect information about events and related data at runtime. Monitored events
and data are stored in a unified event model. Different systems in a VLSS can
be instrumented using arbitrary techniques and the probes provide information
about events and data to the unified model. Based on the requirements, en-
gineers can define monitors using constraints about the event model to detect
violations. Furthermore, our infrastructure provides capabilities for variability
management to allow the customization of constraints, probes, and monitors.
Engineers can use the services provided by our infrastructure to develop cus-
tom solutions for specific use cases. For instance, we are currently using the
infrastructure to develop a tool that allows service engineers to display moni-
tored events and constraint violations. More specifically, our infrastructure will
support the following activities:
Define requirements of different systems to be monitored. Requirements are doc-
umented in arbitrary artifacts such as specification documents, developer doc-
umentation, or models and need to be selected and refined by requirements
engineers to allow their monitoring. The infrastructure (cf. Fig. 1–A) supports
the definition of requirements using a domain-specific language (DSL) to monitor
constraints across system boundaries. In our example of the VLSS in metallur-
gical plants, such a constraint could define that “prepare casting” requires that
“ladle finished” has occurred. The first is handled in the steelmaking system while
the latter is managed in the continuous casting system. In our industrial context,
people defining and maintaining constraints are engineers and project managers
who are familiar with third-generation programming languages. Our current pro-
totype implementation thus uses an embedded DSL with Java as a host lan-
guage. Additionally, we are currently evaluating other constraint languages such
as the OCL regarding their usefulness in our context. Our implementation also
allows to add constraints at runtime, making it possible to monitor emerging
requirements.



92 M. Vierhauser, R. Rabiser, and P. Grünbacher

Monitoring Infrastructure

VLSS

Con-
straints Probes

Monitors Event
Model

VLSS

3rd party
system

Legacy
system

Variability
Management

D

C

A

BDSL

Iron Steel Caster

3rd party
system

E

instrument VLSS

unify data representation

select
requirements

and define
constraints

customize
constraints

configure
probes

evaluate
constraints

Requirements System
instrumentation

query events/data needed
for constraint evaluation

Fig. 1. Key elements of our Requirements Monitoring Infrastructure for VLSS

Define variability of probes, constraints, and monitors. To overcome the often
tedious and error-prone task of adapting constraints and monitors to specific sys-
tems the monitoring infrastructure provides integrated variability management
(cf. Fig. 1–B). For instance, certain constraints might be relevant in specific
system configurations only and some monitors might need to be deactivated to
reduce unnecessary overhead. Our example constraint could be customized, for
instance, by defining a specific time span in which the “prepare casting” event
must follow the “ladle finished” event in a particular plant. We will use our exist-
ing approach for variability management [7] to provide these capabilities. More
specifically, we plan to represent the variability of probes, events, and constraints
using decision-oriented variability models [5]. This allows us to define different
variants and versions of probes, events, and constraints to ease the adaptation
of the infrastructure. We plan integrate the DOPLER tool suite [7] with the
monitoring infrastructure for that purpose.

Register probes collecting and aggregating data from the instrumented system.
The infrastructure provides capabilities for implementing probes to allow in-
strumentation of the VLSS at various levels (cf. Fig. 1–C). For example, it is
necessary to retrieve information about the interaction between different com-
ponents, different systems forming the VLSS, or between the systems and legacy
systems or third-party systems. Our model-based approach for data collection
allows managing this diversity.

Define event models for different systems. Our event model (cf. Fig. 1–D) allows
a unified representation of arbitrary data collected from various systems in the



A Requirements Monitoring Infrastructure for VLSS 93

VLSS to abstract from concrete systems and instrumentation techniques. The
model allows, for example, to capture data about system events, related event
data, and event dependencies across systems. For instance, the steelmaking sys-
tem could be monitored to recognize a “ladle finished” event, while the “prepare
casting” event would be detected in the caster system.

Formalize requirements and define monitors. Monitors can be defined to evaluate
the defined constraints (cf. Fig. 1–E). Runtime monitoring presumes continuous
(re-)evaluation of constraints as the system and its environment are subject
of continuous change. Thus, an incremental evaluation strategy is advisable to
ensure fast evaluation feedback to users in case of deviations from the desired be-
havior. Our prototype infrastructure utilizes an incremental consistency checker
we used in our previous work in the area of product line models [16].

4 Summary and Outlook

In this research preview we discussed our ongoing work on requirements monitor-
ing in VLSS. We identified problems and challenges that hamper the application
of approaches for single systems in a VLSS environment. We propose an in-
frastructure for flexible constraint and monitor definition and management that
considers variability. Our infrastructure provides three novel features: runtime
monitoring of requirements across systems to detect violations of requirements
that cannot be found by considering only single systems; variability management
of requirements-based monitors to support the customization of constraints and
their related monitors to specific systems; and the integration of monitoring data
from different sources in a VLSS to ease the analysis of erroneous behavior (e.g.,
by engineers that were not involved in original development).

We are currently implementing the described infrastructure and are frequently
evaluating prototypes with industrial users. We already have developed the event
model as well as prototypes of several probes to instrument VLSS on different
layers. Furthermore, we started implementing different event viewers to filter,
search, and visualize collected events and data. Our next steps are the definition
and evaluation of constraints as well as the persistence of monitored system
events and data. In parallel, we are working on the variability management
support for constraints and monitors.

Acknowledgements. This work has been conducted in cooperation with
Siemens VAI Metals Technologies and has been supported by the Christian
Doppler Forschungsgesellschaft, Austria.

References

1. Boehm, B.: A view of 20th and 21st century software engineering. In: 28th Inter-
national Conference on Software Engineering, Shanghai, China, pp. 12–29. ACM
(2006)



94 M. Vierhauser, R. Rabiser, and P. Grünbacher

2. Boehm, B., Lane, J.: 21st century processes for acquiring 21st century software
intensive systems of systems. Cross Talk 19(5), 4–9 (2006)

3. Calinescu, R., Ghezzi, C., Marta: Kwiatkowska, Z.: Raffaela Mirandola. Self-
adaptive software needs quantitative verification at runtime. Communications of
the ACM 55(9), 69–77 (2012)

4. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for
managing evolutionary change. IEEE Transactions on Software Engineering 29(9),
796–810 (2003)

5. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A.: Cool fea-
tures and tough decisions: A comparison of variability modeling approaches. In:
6th International Workshop on Variability Modelling of Software-Intensive Sys-
tems, Leipzig, Germany, pp. 173–182. ACM (2012)

6. Dahmann, J.S., Baldwin, K.J.: Understanding the current state of us defense sys-
tems of systems and the implications for systems engineering. In: 2nd Annual IEEE
Systems Conference, Montreal, Canada, pp. 1–7. IEEE (2008)

7. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-
oriented variability modeling: A multiple case study. Automated Software Engi-
neering 18(1), 77–114 (2011)

8. Ghezzi, C., Mocci, A., Sangiorgio, M.: Runtime monitoring of component changes
with Spy@Runtime. In: 34th International Conference on Software Engineering,
Zurich, Switzerland, pp. 1403–1406. IEEE (2012)

9. Keating, C.B., Padilla, J.J., Adams, K.: System of systems engineering require-
ments: challenges and guidelines. Engineering Management Journal 20(4), 24–31
(2008)

10. Luckham, D.C.: Event processing for business: Organizing the real-time enterprise.
John Wiley & Sons (2011)

11. Maiden, N.: Monitoring our requirements. IEEE Software 30(1), 16–17 (2013)
12. Maier, M.W.: Architecting principles for systems-of-systems. Systems Engineer-

ing 1(4), 267–284 (1998)
13. Ncube, C.: On the engineering of systems of systems: Key challenges for the RE

community. In: Workshop on Requirements Engineering for Systems, Services and
Systems-of-Systems, Trento, Italy, pp. 70–73. IEEE (2011)

14. Northrop, L.: Ultra-large-scale systems: Challenges and promising research areas.
Journal of Software Technology 11(4) (2008)

15. Robinson, W.N.: A requirements monitoring framework for enterprise systems.
Requirements Engineering 11(1), 17–41 (2006)

16. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexi-
ble and scalable consistency checking on product line variability models. In:
25th IEEE/ACM International Conference on Automated Software Engineering,
Antwerp, Belgium, pp. 63–72. ACM (2010)

17. Völz, M., Koldehofe, B., Rothermel, K.: Supporting strong reliability for distributed
complex event processing systems. In: 13th International Conference on High Per-
formance Computing & Communication, Banff, Canada, pp. 477–486. IEEE (2011)



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 95–111, 2014. 
© Springer International Publishing Switzerland 2014 

State of Practice of User-Developer Communication  
in Large-Scale IT Projects 

Results of an Expert Interview Series  

Ulrike Abelein and Barbara Paech 

Institute of Computer Science, University of Heidelberg, Im Neuenheimer Feld 326,  
69120 Heidelberg, Germany 

{abelein,paech}@informatik.uni-heidelberg.de 

Abstract. [Context and motivation] User participation in software 
development is considered to be essential for successful software systems. 
Especially missing direct communication between users and developers can 
cause various issues in large-scale IT projects.[Question/Problem] We want to 
understand current practices of user–developer communication in large-scale IT 
projects, the factors for, and consequences of communication gaps, and what 
experts suggest to prevent them. [Principal ideas/results]: We conducted a 
series of semi-structured interviews with twelve experts. The experts work on 
the coordination of Business and IT and describe their experiences gained in 69 
large-scale IT projects. The analysis of our interviews showed that direct user–
developer communication is limited and that no commonly used method for the 
user–developer communication in the design and implementation activity 
exists. [Contribution]: The interviews helped us to understand current 
practices and issues resulting from missing communication. Furthermore, we 
can confirm the need for a method enhancing user–developer-communication in 
large-scale IT projects.  

Keywords: user–developer communication, collaboration, coordination issues, 
software development, large-scale IT projects, expert interviews. 

1 Introduction 

User participation and involvement (UPI) are widely studied in different fields, such 
as information systems (IS), human-computer-interaction (HCI), and requirements 
engineering (RE). Many empirical studies revealed that an increase in UPI and in 
particular in user-developer communication (UDC) in software (SW) development 
increases system success [10]. The terms “user participation” and “user involvement” 
are often used interchangeably, but there are also publications that distinguish be-
tween them. In our study, we use the two separate definitions of [2]. Thus, we define 
user involvement as a ‘psychological state of the individual, defined as the importance 
and personal relevance of a system to a user’ and user participation as ‘behaviors and 
activities users perform in the system development process’. User participation takes 
place when the end user takes an active part in the development or design process 



96 U. Abelein and B. Paech 

 

together with the designer [12]. User-Developer Communication is a specific form of 
user participation and we define it as communication, evaluation, and approval activi-
ties that take place between users and IS staff [2], also the frequency, content and 
direction of that communication [7]. 

For example, Amoako-Gympah and White found a positive correlation derived 
from the level of communication between the users and the IS team towards user 
satisfaction as a measurement for system success [1]. In addition, Barki and Hartwick 
[2–4] studied the dependencies between the user-IS relationship on UPI and con-
firmed that informal and formal communication of users with the IS team and senior 
management significantly influences the management of a software project and the 
system design, but not necessarily the satisfaction with the system [3, 4]. McKeen et 
al. [9] investigated contingency factors for user satisfaction and found that UDC is an 
independent predictor for user satisfaction. There are several methods to support UPI 
in software development projects and an analysis of practices of proposed solutions in 
our previously conducted systematic mapping study on UPI showed the importance of 
the setup of structures to enable communication within these methods [10]. For ex-
ample, several authors suggest to clarify roles of users and mediators to reduce com-
munication barriers [11–15]. However we did find method that supports UDC in the 
design and implementation phase of software development. 

Begier [16] mentions that it is important to keep people (e.g. users) informed and 
to give them timely feedback. Particularly in the design and implementation phase, 
Kautz [17] suggests to have weekly feedback meetings with onsite customers during 
the presentations of working software. Several research studies on agile methods have 
targeted communication problems in software development (e.g. [12, 18]). 

However, we have seen from our experience as a management consultant for IT 
projects that a lot of large-scale IT projects still use traditional methods, i.e. the water-
fall approach. Therefore, we wanted to understand current practices of large-scale IT 
projects, mainly with a focus on projects using traditional development methods.  
We define large-scale IT projects as projects which at least fulfill two or more of the 
following characteristics: large amount of users (over 1000 users), rollout of the sys-
tem in multiple countries or business units, large budget (over 1 million EUR), project 
duration of one year minimum (12 calendar months).  

For the term user-developer communication, we build upon a definition of [2], and 
include: ‘all interaction (e.g. communication, evaluation, or approval activities) that 
take place between the users and developers of an IT project; we also include com-
munication interactions that are mediated through project management.’  

The role of a user includes all users from the (business) organization using the 
new system and their managers for approval interactions [19]. The role developer 
includes all IT personnel, e.g. designers, architects, coders, IT managers that are in-
volved in the software development project.  

There are other studies on communication issues and structures (e.g., regular 
meetings or workshops) in software development [20–22]. However, none of these 
studies focusses on UDC in large-scale IT projects.  

We conducted an interview series with experts in large-scale IT projects to find 
out how and how well large-scale IT projects support UDC. In particular, we are  
interested to answer the following research questions: 

 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 97 

 

RQ 1: Do users and developers communicate in large scale IT projects?  
RQ 2: What are possible organizational obstacles that prevent large-scale  
T projects from implementing UDC?  
RQ 3: What factors might cause communication gaps between users and de-
velopers and what are the consequences of these communication gaps?  
RQ 4: What do experienced practitioners suggest to overcome the obstacles 
for the implementation of UDC and to eliminate the factors that cause com-
munication gaps? 

 
So far, the research on UDC in large-scale IT projects provides only limited em-

pirical insights from practitioners. We do believe that it is important to consider their 
perspectives and knowledge on the existing communication between users and de-
velopers and why they think it is hard to implement processes that ensure effective 
cooperation between the two parties. This is especially essential for the design of 
methods to improve UDC in large-scale IT projects.  

The paper is structured as follows. In Section 2, we present related work and in 
Section 3, we explain the research method of the interviews and the data of the inter-
view partners. We present the results and the discussion on the state of practice of 
UDC in large-scale IT projects in Section 4. Further, in Section 5, we describe the 
threats to validity. We conclude our work and describe future areas for research in 
section 6. 

2 Related Work  

In the introduction we referenced research on the importance of UDC: Here we 
present other empirical studies, which explored communication in various software 
development projects or settings. None of the presented studies focuses on the com-
munication from the developer to the users in large-scale IT projects, but we will 
compare their results to ours and discuss similarities in Section 4. An interesting study 
has been done by Bjarnason et al. in 2011 [20]. They empirically studied communica-
tion gaps in terms of their root causes, causes, and effects with practitioners in one 
large company that develops market-driven software. However, the study focuses on 
the communication of requirements and as the context was market-driven software 
development, the results do not include communication with customers, i.e. users of 
the software. Stapel and Schneider [23] propose an approach of how to manage know-
ledge on communication and information flows in global software projects. They 
identified poor communication as a main obstacle to successful collaboration. How-
ever, they focus on distributed development settings and not on large-scale IT 
projects. Marczak et al. [24] explored information flow patterns in requirement-
dependent social networks. In particular, they studied communication and coordina-
tion in cross-functional teams that work on the same or on interrelated requirements. 
They only looked into the communication between IT personnel and did not study the 
communication with the users. Lastly, Gallivan and Keil [25] studied the UDC 
process in a software project that failed despite a high level of user involvement. They 
found out that communication gaps occurred because the developers were not in-
formed about the underlying reasons of why the users did not accept the software 



98 U. Abelein and B. Paech 

 

system. However, their results are based on only one project, and thus include insights 
from a limited perspective.  

3 Research Method  

In order to answer our research questions, we conducted a series of interviews with 
twelve experts in large-scale IT projects from October until December 2012. The first 
interview was used as a prototype interview, in order to refine the questionnaire and 
estimate the time frame. We conducted qualitative interviews, which is the most im-
portant data gathering tool in qualitative research and is extensively used in IS re-
search [26]. The interviews were semi-structured, which means they were based on a 
questionnaire (see Appendix), but we improvised and changed the order of questions 
whenever the discussion moved in another direction, as recommended by [26]. In the 
following, we describe the identification of the experts, the interview process, and the 
data analysis. 
Identification of Experts. In order to ensure the right target group for our interviews, 
we developed a role description for people working on the coordination of Business 
and IT (Table 1). We believe that people fulfilling this description have a project 
management perspective and thus are knowledgeable about existing communication 
structures between developers and users. In addition, we wanted to ensure that our 
interview partners were experts in large-scale IT projects with experience in one or 
more large-scale IT projects. As we wanted to support projects using traditional me-
thods, we searched for experts who ideally have been involved in projects not us-
ing/applying agile methods, but did not limit our search to those. As consultants are 
typically not involved in the whole IT project timeline, we set a minimum time of 
three months of participation. We used these role descriptions together with some 
information about our research area and the goals of the interviews to contact possible 
interview partners. We mainly used already existing relationships of all the authors to 
contact possible experts.  

Table 1. Role description 

Coordinator between Business and IT 
 Involved in more than 1 large-scale IT project  
 Ideally experiences in projects with no usage of agile development methods  
 Involved for at least 3 months in the projects (for consultants)  
 Person (internal or consultant) who had a leading role in the development/ implementa-

tion/customizing in a large-scale IT project and was involved in discussions with users 
during the project or in change request management after go-live OR who had a leading 
role in the requirements analysis, concept development, or project management in a 
large-scale IT project and was involved in defining requirements and in discussions with 
developers during the project and/or involved in the change request process after go-live 

Overall, we could attain twelve experts for our interview series. The educational 
background of the interview partners is very widespread (Table 2). Furthermore, the 
study background covered seven different areas, with half of them in IT- related  
subjects (4 in Computer Science and 2 in Information Technology).  



 State of Practice of User-Developer Communication in Large-Scale IT Projects 99 

 

Table 2. Overview of base data of experts 

No. Role in Company Perspective (Industry) Educational Back-
ground

# of 
Projects 

1 Project manager Internal IT (Pharma) Mathematics 15 

2 Business project manager Management consulting
Business Adminis-
tration and Engi-

neering
6 

3 Developer, architect, re-
quirements engineer IT consulting Computer Science 3 

4 Business project manager Management consulting Mechanical Engi-
neering 3 

5 Developer, head of research 
department IT consulting Computer Science 5 

6 IT project manager IT consulting Information Tech-
nology 6 

7 Business project manager Internal IT (Insurance) Mathematics 2 

8 Head of IT Strategy Internal IT (Public Sec-
tor) Computer Science 3 

9 IT project manager IT consulting Computer Science 4 

10 CEO Management Consultant 
and Software Company

Physics 14 

11 IT project manager IT consulting Apprenticeship as 
Bank Clerk 5 

12 Head of IT Strategy Internal IT (Insurance) Information Tech-
nology 3 

  Sum / Average 69 / 6 
  Min - Max 2 - 15 

 
Seven experts are employed by IT or management consultancies, four experts work 

in internal IT departments of large organizations, and one expert works for software 
providers. If we consider the current roles of the experts within their companies, we 
can see that all experts have a leading role, which enables them to have a broad over-
view of IT projects. We also asked the interview partners in how many large-scale IT 
projects they were involved. On average, the interview partners were involved in six 
large-scale IT projects (minimum two projects and maximum 15 projects) throughout 
their carriers in various roles (e.g. developer, project manager, architect, requirement 
engineer, consultant, quality manager), which ensures a wide expertise of all of them. 

In order to get an overview of the previous experience of the experts and to under-
stand what large-scale IT projects are performed in practice, we asked the interview 
partners about the main characteristics of their projects respectively System Type, 
Development Type, Industry, Project Length, Project Volume, Number of Users, Rol-
lout in Countries/Business Units, Development Method, Role/Task. Even though the 
experts could not name all characteristics of each project (also for confidentiality 
reasons), we were able to record data of 42 projects (see Appendix Figure 1).  

 
Interview Process. Four interviews were done in person; the other eight interviews 
were conducted via telephone. The average time for one interview was 90 min, with a 
minimum of 44 minutes and a maximum of 125 minutes. In total, we collected about 
18 hours of interview time. In the interviews, we explained the purpose of our re-
search on UDC. We asked the interview partners about their experience in large-scale 
IT projects (see questionnaire in Appendix). With regard to our research questions, 
we did a mapping of the interview questions to the research questions. RQ 1  



100 U. Abelein and B. Paech 

 

corresponds to question 6. RQ 2 and 3 correspond to question 7 and RQ 4 to question 
8.  Within the interviews we used different terms and formulations than in the RQs, 
in order to ensure understandability for our practice experts.  
 
Data Analysis. All interviews were recorded with the permission of the interviewees 
and transcribed for analysis purposes. Three experts reviewed their transcripts and all 
experts validated the derived results, i.e. reviewed them and approved for publication. 
We coded the interviews which helped us in the analysis of the results [27]. We built 
a code tree based on our research questions with descriptive codes and extended and 
reorganized the code tree in two cycles of coding [27]. We used the software MaxQ-
DA and therefore were able to also do cross-interview or cross-code analysis (e.g. 
between the factors for communication gaps and ideas to overcome the factors). For 
the representation we use tables, which show the descriptive codes and the corres-
ponding number of occurrences in the interviews (see Section 4). One occurrence 
means an expert did describe something in an interview that we mapped to a descrip-
tive code. Thus it is possible to have two occurrences for one research question in one 
interview. For example, if in one interview an expert described the factors for com-
munication gaps ‘Lack of motivation of developers or users’ and ‘Lack of common 
language between Business and IT’, we counted one occurrence for each of the de-
scriptive codes. However, we ensured that each descriptive code got a maximum of 
one occurrence per interview. Thus, it is not possible to have more than twelve occur-
rences per descriptive code. 

4 Results and Discussion  

In this section, we describe the interview results on current communication structures 
(e.g., meetings, reports, workshops) in large-scale IT projects. We use tables, which 
show the descriptive codes and the corresponding number of occurrences in the inter-
views (for detailed explanation see Section 3). Within each subsection, we first 
present the results and the table and then discuss and compare them to the existing 
literature. To answer our research questions, we analyzed whether the interview part-
ners experienced UDC in large-scale IT projects (section 4.1.). We report on organi-
zational obstacles (section 4.2.), factors for communication gaps, and consequences of 
these communication gaps within the IT projects (section 4.3.). And, we describe the 
experts’ ideas to overcome these obstacles and factors for communication gaps  
(section 4.4.). 

4.1 Existence of UDC in Large-Scale IT Projects (RQ 1) 

To understand the current practice of UDC in large-scale IT projects, we asked all 
interview partners, what communication took place within their projects. We wanted 
to understand UDC on a detailed level, thus asked exactly who communicated with 
whom in the project. Overall, only three experts reported of projects where communi-
cation between users and software coders (i.e. developers) took place. However, two 
of these three experts also participated in projects where no direct communication 
between those parties existed. Hence, eleven experts told us about large-scale IT 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 101 

 

projects, in which they did not experience direct communication between software 
coders and users (Table 3). In total, less than one fifths of all 69 projects our experts 
were involved in had any communication between users and developers.  

Nevertheless, some projects had other forms of UDC, such as: communication be-
tween the IT consultant and the users, communication between the architect and the 
users, or communication between the requirements engineer and the expert users (not 
users, but rather business personnel with broad context knowledge or a management 
role). Even though our analysis of existing methods for UPI in the systematic map-
ping study [10] indicated that methods affect all activities of software development, 
we learnt from our interview partner that in practice most of the communication is 
done either in the early or the late activities of software development (i.e. in specifica-
tion or acceptance). 

Table 3. Existence of direct communication between developers and users 

Existence of UDC (Descriptive Code) # of Int. 1 
Communication between software coders (i.e. developers) and users 3 

No communication between software coders (i.e. developers) and users 11 

  

Other forms of communication with users  

 Communication between IT consultant and users 3 

 Communication between architect and users 2 

 Communication between requirements engineer and expert user 2 
 

Based on the experiences of our experts, we can conclude that direct communica-
tion between developers and users does not exist in most large-scale IT projects. This 
is in contrast to Chang et al.’s results [5], who found that the presence of mutual in-
fluence among IT staff and users, which enables open and direct communication and 
coordination, is significantly associated with project performance. However, their 
context was not within large-scale IT projects. The reported setup of communication 
between requirements engineers and expert users is in line with Kanungo and Bagchi 
[6], as they suggest moving user participation upstream in the implementation process 
and using representatives of user groups. The finding that most of the communication 
is done either in the early or the late activities of software development shows a lack 
of communication in the middle of the development, i.e. in the design and implemen-
tation activity. Even though, there are suggested methods in literature, e.g. Kautz [17] 
and Korkola [15] suggest to have weekly feedback meetings with onsite customers 
during working software presentations or at least mid-iteration communication with 
users, our findings show that the implementation of such methods is limited in  
practice.  

                                                           
1 Number of interviewees that mentioned an experience mapped to descriptive code. 



102 U. Abelein and B. Paech 

 

4.2 Organizational Obstacles for UDC (RQ 2) 

We identified four obstacles whereof three concern the users or access to them  
(Table 4). In total, we did discuss the topic of organizational obstacles with half of the 
experts; the other experts did not mention any organizational obstacles. Firstly, two 
experts mentioned that users are not a homogeneous group, but different user groups 
or business units with often different opinions and organizational power within a 
company. In such cases, developers (and other IT personnel) face an additional chal-
lenge, as they need to mediate between these groups. Secondly, it seems to be hard to 
find user representatives with the right qualification and knowledge for an IT project. 
We think, this can be explained by the fact that knowledgeable key users are very 
important for the business operations and thus will not be released to fulfill tasks 
within IT projects. Thirdly, one expert mentioned that in several projects the real us-
ers are not defined during the project, thus the developers (and other IT personnel) 
cannot access them. Fourthly, one expert reported that no mediators were available to 
establish and uphold the relationship between the users and the developers.  

Table 4. Organizational obstacles for implementing communication with users 

ID Organizational Obstacles (Descriptive Code) # of Int.  
O1 Different opinions between user groups 2

O2 Get the right user representatives for large-scale projects 2

O3 No access to users/users unknown 1

O4 Lack of local mediators 1

 
The obstacles O1 and O2 correspond with the findings of Bjarnason et al. [20], 

who also identified scale effects through complex products and large organization. In 
addition, they describe gaps between roles over time through distributed environment 
as root causes for communication gaps. Even though they studied a different setup 
without direct contact to users, these obstacles also seem to be present for UDC. Ob-
stacle O4 is supported by the findings of Marczak et al., who studied communication 
and coordination in cross-functional teams that work on the same or interrelated re-
quirements [24]. They found out that the power of information flows lies with a few 
key members who control information flows between dependent networks. Our find-
ings indicate that this is also true for UDC.  

4.3 Factors for and Consequences Caused by Communication Gaps (RQ 3) 

We identified three factors for communication gaps and four consequences caused by 
communication gaps (Table 5). Common factors for communication gaps are ‘lack of 
motivation of either the users or the developers’, as well as the ‘lack of a common 
language between the business and IT side’. Another factor, which is somehow re-
lated to both of the other factors, is lack of appreciation between these two sides. The 
consequences most frequently named among interviewees is the misunderstanding of 
requirements, i.e. developers either interpret requirements in a wrong way or users do 
not specify requirements on a detailed level and are later surprised by the results.  
 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 103 

 

Table 5. Factors for and consequences caused by communication gaps 

ID Factors for communication gaps (Descriptive Code) # of Int.  

F1 Lack of motivation of developers or users 4 

F2 Lack of common language between Business and IT 4 

F3 Lack of appreciation between Business and IT 1 

 Consequences caused by Communication Gaps (Descriptive Code) # of Int.  

C1 Misunderstanding of requirements 8 

C2 Ad-hoc changes required due to unclear requirements  3 

C3 Increased implementation cost 3 

C4 Increased test effort due to rework 1 

 
This also often leads to the need of ad-hoc changes or, as one expert named it, a 
‘scope creep’ during implementation. In addition, increased implementation cost or 
test effort were named as consequences of communication gaps.  

The results of RQ 3 show that the consequences are severe as misunderstandings 
and ad-hoc changes have an impact on cost and schedule of the project. The factor F1 
is similar to Bjarnason et al.’s [20] identified effect of “low motivation to contribute 
to requirements work” and F2 is a commonly known issue in IT projects. However, 
the factor F3 of missing appreciation has not been described so far and is also interest-
ing, as the required actions to improve appreciation between IT and Business are  
different from overcoming barriers of a common domain language. The identified 
consequences C1 and C2” are in line with Bjarnason et al’s effect [20] described as 
“problems with the system requirements specification”. C3 and C4 are similar to their 
effect “wasted effort”. However, it is quite interesting that our results show that the 
experts stated a clear connection between communication gaps and increased imple-
mentation costs and a higher test effort. In addition, the consequences C1 to C4 cor-
respond to the named benefits of UPI [10], such as improved quality due to more 
precise requirements and the prevention of expensive features.  

4.4 Ideas to Overcome Obstacles for the Implementation of UDC and Factors 
for Communication Gaps (RQ 4)  

In total, the experts suggested twelve different approaches to overcome factors for 
communication gaps or obstacles. We classified these approaches into three catego-
ries, user-centered approaches, developer-centered approaches, and organizational 
approaches. We mapped them in our analysis phase to the addressed factors for com-
munication gaps and organizational obstacles wherever possible and identified similar 
approaches from the literature (Table 6). The user-centered approaches are ideas that 
include the involvement of the user. The second category clusters ideas that have to 
be realized by the developer. The third category of organizational approaches is  
for ideas that need to be considered in the setup of the project organization and  
management.  

 



104 U. Abelein and B. Paech 

 

Table 6. Ideas to overcome obstacles or factors for communication gaps 

Cate-
gory Ideas (Descriptive Code) # of 

Int
Litera-

ture ID Addressed Fac-
tor/Obstacle 

User-
cen-
tered 
ap-
proach
es 

Presentation of (UI) prototypes or 
proof of concepts to users 3 [14, 28, 

29] O2
Get the right user repre-
sentatives for large-scale 
projects

House tours in different business units 
with running SW 1 [17, 30]

F2
Lack of common lan-
guage between business 
and IT Description of added value to users to 

increase acceptance 1 n/a 

Incentive system for the participation 
of business users 1 [31] 

F1 Lack of motivation of 
developers or users 

O2
Get the right user repre-
sentatives for large-scale 
projects

Involvement of users in the organiza-
tion of rollout and change manage-
ment 

1 n/a O2
Get the right user repre-
sentatives for large-scale 
projects

Devel-
oper-
cen-
tered 
ap-
proach
es 

Developers must mediate between 
different user groups 2 [13] 

O1 Different opinions be-
tween user groups 

O4 Lack of local mediators 

F2
Lack of common lan-
guage between Business 
and IT

F3 Lack of appreciation 
between Business and IT 

End-to-end feature responsibility of 
developers 1 n/a 

F2
Lack of common lan-
guage between Business 
and IT 

Developer writes informal description 
of how to implement requirements. 1 n/a 

Obligation to justify all technical 
decisions with functional need 1 n/a 

Orga-
niza-
tional 
ap-
proach
es 

Usage of test data early in project 2 [32]

 n/a 
Agile methods e.g. frequent review 
meetings 2 e.g. [17, 

33]
Definition of usability guidelines to 
avoid detailed UI discussions 1 n/a 

In the first category of user-centered approaches, five ideas were named. 
One idea is to show the users prototypes (often called ‘proof of concept’ by the ex-

perts). One expert described a successful project: the software was very complex, 
therefore the project members wrote down all requirements in large workshops with 
about 50 users and then invited two vendors to build up prototypes as a ‘proof of con-
cept’ before the actual design and implementation activity began. The users were 
highly involved in this activity, as the vendors presented the status of the prototype in 
regular meetings to them. At the end of the proof of concept activity, a prototype, 
implementing about 80% of the functionality, had been built and was aligned with the 
users. The vendor selected for implementation could proceed with implementing the 
rest of the requirements, integrating the prototypes into the system’s landscape, and 
building up the data structures. Even though this is a promising approach, the expert 
mentioned that it will be hard to implement in large-scale IT projects such as an ERP 
implementation, because those systems’ functionality is too wide for a prototype ap-
proach. Nevertheless, two other experts suggested showing users mockups or even 
integrate users as beta customers within the software development by showing them 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 105 

 

running prototypes. In general, this idea of using prototypes is not new and has been 
described in the literature, e.g.[14, 28, 29]. However, the detailed description of how 
such an approach was used within a real-life IT project can be helpful for the research 
community.  

Another suggested approach that is similar to the prototype approach described 
above is to do house tours with running software. The difference to the proof of con-
cept approach is that after about half of the actual implementation time, the project 
team presents the running software in different business units to different users. This 
approach allows small changes of the system based on user feedback and it ensures an 
early change and expectation management with the users. A similar approach has 
been described by [17, 30]. They call it “road shows” and suggest having onsite users 
conducting them with other users.  

One approach in response to the factor ‘lack of common language between busi-
ness and IT’ was to explain the added value of the system to the users. The expert 
suggests doing that with posters, result descriptions, and several meetings with the 
users.  

To include users in the rollout and change management planning was also named 
by an expert. According to the expert, this leads to a higher integration of users in the 
project. For these two suggestions, we could not identify an approach from the litera-
ture, thus these are particularly interesting findings for the design of a new method.  

The last suggestion in that category has been for years in the head of one of our in-
terview partners, namely to create an incentive system for the participation of busi-
ness users. The expert wants to overcome the factor ‘lack of motivation of users’ and 
the obstacle ‘get the right user representatives for large-scale projects’. One issue, in 
the opinion of the expert, is that users are not rewarded either through promotions or 
higher wages for their work in IT projects in addition to their usual daily work. This 
lack of appreciation leads to a low interest and thus low involvement of the user. A 
similar idea has been presented by Finck et al. [31] They suggested an incentive sys-
tem for the software evolution activity, i.e. after the first rollout of a system.  

In the category of developer–centered approaches, four ideas were named.  
Especially in response to the obstacle ‘different opinions between user groups,” 

two experts recommended that developers need to mediate between different user 
groups. As different user groups (e.g. the finance and the marketing department) often 
have different opinions, the developers need to solve their communication gap and 
dissolve their disagreement.  

In addition, one interview partner referred to the factor ‘lack of appreciation be-
tween Business and IT’ and ‘lack of common language between Business and IT’ by 
explaining: “Most (non IT) users do not think in structures…thus the IT personnel 
need to learn to talk in examples to explain their structure, even though it is not rele-
vant to them.” Therefore, this expert suggests always having someone in the project, 
who has experience with the to-be-implemented business domain. This person can 
then fulfill the mediator role. In general, the idea to clarify roles and mediators is 
described in the literature, e.g. [13], but to assign/fill this role to/with a developer is a 
new suggestion. With reference to the factor ‘lack of common language between 
Business and IT’, one expert suggested to ensure end-to-end feature responsibility for 
each developer. That means, you do not need a developer who is responsible for one 
technical cross over area, e.g. database or UI, you rather need a developer who is 



106 U. Abelein and B. Paech 

 

responsible for the implementation of one use case, including the UI, the business 
logic, the database, and the interfaces.  

A similar approach is to oblige the developer to write an informal description of 
how to implement a given requirement so the users should be able to read and under-
stand information related to implementation. Before the implementation starts, this 
informal description must be aligned with the users. We think this also helps to miti-
gate all the above mentioned four consequences of communication gaps. In order to 
mitigate the lack of a common language, one interesting approach is the obligation for 
developers to justify all technical decisions with a functional need. For example, the 
need for another database can only be justified with a higher service level for the 
business unit, but not out of narcissistic technical preferences of a developer. The last 
three developer-centered approaches have so far not been described in the UPI litera-
ture. Thus, it is important to include these suggestion is future work of methods to 
improve UDC.  

In the category of organizational approaches three ideas were named.  
The usage of test data very early in the software development process is supposed 

to give the users a possibility to challenge the logic and the quality of the system. One 
expert suggested using extreme test data to provoke situations where complications 
can occur. Another expert suggested having usability tests with real data as early as 
possible within a large-scale IT project, which has also been suggested in [32]. 

Another suggested approach was, to use agile methods, e.g. have weekly or 
monthly meetings (often called sprint meetings) together with user representatives. 
Even though this expert suggested this approach, he also reported that those meetings 
had not been a success, which he attributes to the too finely-grained level, i.e. on a 
bug tracker level. This was too detailed for the users and they lost attention after two 
minutes. Furthermore, these meetings had been held as a telephone conference which, 
according to the expert, is not the ideal setting. Agile methods including a high level 
of feedback towards the users have been described extensively in the literature, e.g., 
[17, 33].  

In addition, one expert mentioned that it is not only important to involve users by 
offering workshops or by showing prototypes to them, but also to ensure clear guide-
lines for the user interface. This is particularly important in terms of the user inter-
face, as several unnecessary discussions about screen details occur in meetings with 
users. The expert also mentioned that if these guidelines are missing this can have 
high cost implications for the project.  

Overall, we can conclude that the experts’ ideas try to overcome all factors for 
communication gaps (F1 – F3) and the organizational obstacles (O1, O2, O4), except 
obstacle O3, namely the “lack of access to users“. Nevertheless, the experts did not 
report of a successful, sustainable solution to overcome the communication gaps in 
large-scale IT projects and in particular in the design and implementation phase. 

5 Threats to Validity  

We analyzed threats to validity based on the scheme suggested from Runeson [34].  
Construct validity – as described in the research method section, the interviews 

were semi-structured thus interviewees and interviewer could influence the direction 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 107 

 

of the discussion, which sometimes led to the fact that we did not pose all questions of 
our interview guideline explicitly. Furthermore, eight interviews were conducted via 
telephone, which prevents visual cues and sometimes limited the understanding. We 
mitigated that threat through the recording of all interviews. This also enabled us to 
rewind for the transcripts in the case of poor acoustic reception.  

Internal validity – we relied on our personal relationships for the identification of 
experts, this can be a threat to internal validity, as three of the experts knew the inter-
viewer before the interviews and therefore they might be biased. However, the ma-
jority of the experts did not know the interviewer.  

External validity – a possible threat to external validity is that we only interviewed 
twelve experts. Nevertheless, the experts’ backgrounds were very widespread and 
they all had been involved in a minimum of two large-scale IT projects. Therefore, we 
are confident that our results show a broad overview of communication structures in 
large-scale IT projects and can be transferred to other projects outside of the expe-
riences of our interviewees.  

Reliability – The interviews as well as the coding of the interviews were conducted 
by one person. On the one hand, this ensured the consistency of the interviews and 
their analysis. On the other hand, it can also be a threat to the reliability, as another 
researcher could interpret the results in another direction.  

6 Conclusion  

In this paper, we reported on the results of an interview series with experienced prac-
titioners in large-scale IT projects. We conducted twelve semi-structured interviews, 
transcribed all interviews and coded them with descriptive codes based on our re-
search questions. Our experts described experiences from 69 large-scale IT projects, 
which ensure widespread experience. In the context of our larger research on UDC in 
large-scale IT projects, we wanted to determine how and how well large-scale IT 
projects support UDC.  

With regard to current communication structures in large-scale IT projects, the re-
sults of the study indicate that direct communication between developers and users 
does not exist in most large-scale IT projects. The experts describe some setups for 
communication with the users, e.g. communication between IT consultant and users, but 
none of them seems to focus on our research target the design and implementation 
activity.  

The identified obstacles for implementation and factors for communication gaps 
seem to be in line with the literature [20, 35], e.g. lack of motivation of user or devel-
oper or a lack of a common language of Business and IT. However, an interesting 
result is that the experts stated a clear connection between communication gaps and 
increased implementation costs and a higher test effort.  

We classified the ideas from experts to overcome the obstacles in user-centered 
approaches, e.g. show user prototypes, developer-centered approaches, e.g. develop-
ers must mediate between different user groups and organizational approaches, e.g. 
use test data early in the project. Some of the suggestions have also been described in 
the literature, however the detailed descriptions of which setup was successful in 
large-scale IT projects and the developer-centered approaches are important findings 



108 U. Abelein and B. Paech 

 

for our future work. The experts did not report on a successful, sustainable solution to 
overcome the communication gaps in large-scale IT projects and in particular to im-
prove UDC in the design and implementation activity.  

In our future work, we plan to detail our method to support UDC in large-scale IT 
projects. We already published a first proposal and a descriptive classification of user-
relevant decisions in two other papers [36, 37] Furthermore, we plan to evaluate the 
implementation feasibility as well as measure the benefits of the method in a case 
study in a large-scale IT project. 
 
Acknowledgement. We would like to thank all experts for their time and support of 
this research. 

References 

1. Amoako-Gyampah, K., White, K.: User involvement and user satisfaction: An exploratory 
contingency model. Inf. Manag. 25, 25–33 (1993) 

2. Barki, H., Hartwick, J.: Measuring User Participation, User Involvement, and User Atti-
tude. MIS Q. 18, 59 (1994) 

3. Hartwick, J., Barki, H.: Communication as a dimension of user participation. IEEE Trans. 
on. Prof. Comm. 44(1), 21–36 (2001) 

4. Hartwick, J., Barki, H.: Delineating the dimensions of user participation: A replication and 
extension. Rev. Lit. Arts Am. (1997) 

5. Chang, K., Shin, T., Klein, G., Jiang, J.J., Sheu, T.S.: User commitment and collaboration: 
Motivational antecedents and project performance. Inf. Softw. Technol. 52, 672–679 
(2010) 

6. Kanungo, S., Bagchi, S.: Understanding User Participation and Involvement in ERP Use. 
J. Manag. Res. 1, 47–64 (2000) 

7. Kristensson, P., Gustafsson, A., Witell, L.: Collaboration with Customers – Understanding 
the Effect of Customer–Company Interaction in New Product Development. In: 2011 44th 
Hawaii International Conference on System Sciences, pp. 1–9. IEEE (2011) 

8. Kujala, S., Kauppinen, M., Lehtola, L., Kojo, T.: The Role of User Involvement in Re-
quirements Quality and Project Success. In: 13th IEEE Int. Conf. Requir. Eng., pp. 75–84 
(2005) 

9. McKeen, J., Guimaraes, T., Wetherbe, J.: The Relationship between User Participation and 
User Satisfaction: An Investigation of Four Contingency Factors. MIS Q. 18, 427–451 
(1994) 

10. Abelein, U., Paech, B.: Understanding the Influence of User Participation and Involvement 
on System Success – a Systematic Mapping Study. Empir. Softw. Eng. (2014), 
doi:10.1107/S10664-013-9278-4 

11. Amoako–Gyampah, K., White, K.: When is user involvement not user involvement? Inf. 
Strateg. Exec. J. 13, 40–45 (1997) 

12. Hope, K., Amdahl, E.: Configuring designers? Using one agile project management me-
thodology to achieve user participation. New Technol. Work Employ 26, 54–67 (2011) 

13. Eckhardt, A.: Lost in Translation?! – The Need for a Boundary Spanner between Business 
and IT. In: SIGMIS–CPR 2010, Vancouver, BC, Canada, May 20-22, pp. 75–82 (2010) 

14. Humayoun, S.R., Dubinsky, Y., Catarci, T.: A Three–Fold Integration Framework to In-
corporate User – Centered Design into Agile Software Development. In: Kurosu, M. (ed.) 
HCD 2011. LNCS, vol. 6776, pp. 55–64. Springer, Heidelberg (2011) 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 109 

 

15. Korkala, M., Abrahamsson, P., Kyllönen, P.: A Case Study on the Impact of Customer 
Communication on Defects in Agile Software Development. In: Abrahamsson, P., Kyllo-
nen, P. (eds.) AGILE 2006, pp. 76–88. IEEE (2006) 

16. Begier, B.: Evolutionally Improved Quality of Intelligent Systems Following Their Users ’ 
Point of View. In: Nguyen, N.T., Katarzyniak, R., Chen, S.-M. (eds.) Advances in Intelli-
gent Information and Database Systems. SCI, vol. 283, pp. 191–203. Springer, Heidelberg 
(2010) 

17. Kautz, K.: Investigating the design process: participatory design in agile software devel-
opment. Inf. Technol. People. 24, 217–235 (2011) 

18. Takats, A., Brewer, N.: Improving Communication between Customers and Developers. 
In: Agil. Dev. Conf. Database Conf., pp. 243–252 (2005) 

19. Carmel, E., Whitaker, R.D., George, J.F.: PD and joint application design: a transatlantic 
comparison. Commun. ACM. 36, 40–48 (1993) 

20. Bjarnason, E., Wnuk, K., Regnell, B.: Requirements are slipping through the gaps — A 
case study on causes & effects of communication gaps in large–scale software develop-
ment. In: 2011 IEEE 19th International Requirements Engineering Conference, pp. 37–46. 
IEEE (2011) 

21. Stapel, K., Knauss, E., Schneider, K., Zazworka, N.: FLOW Mapping: Planning and Man-
aging Communication in Distributed Teams. In: 2011 IEEE Sixth Int. Conf. Glob. Softw. 
Eng., pp. 190–199 (2011) 

22. Marczak, S., Kwan, I., Damian, D.: Social Networks in the Study of Collaboration in 
Global Software Teams, pp. 7–8 (2007) 

23. Stapel, K., Schneider, K.: Managing knowledge on communication and information flow 
in global software projects. Expert Syst., doi: 10.1111/j.1468-0394.2012.00649.x (2012) 

24. Marczak, S., Damian, D., Stege, U., Schröter, A.: Information Brokers in Requirement–
Dependency Social Networks. In: 2008 16th IEEE Int. Requir. Eng. Conf., pp. 53–62 
(2008) 

25. Gallivan, M.J., Keil, M.: The user–developer communication process: a critical case study. 
Inf. Syst. J. 13, 37–68 (2003) 

26. Myers, M.D., Newman, M.: The qualitative interview in IS research: Examining the craft. 
Inf. Organ. 17, 2–26 (2007) 

27. Saldana, J.: The Coding Manual for Qualitative Researchers (Google eBook) (2009) 
28. Cohen, S., Dori, D., De Haan, U.: A Software System Development Life Cycle Model for 

Improved Stakeholders’ Communication and Collaboration. Int. J. Comput. Commun. 
Control 5, 20–41 (2010) 

29. Dean, D., Lee, J., Pendergast, M., Hickey, A., Nunamaker, J.: Enabling the Effective In-
volvement of Multiple Users: Methods and Tools for Collaborative Software Engineering. 
J. Manag. Inf. Syst. 14, 179–222 (1998) 

30. Martin, A., Biddle, R., Noble, J.: An Ideal Customer: A Grounded Theory of Requirements 
Elicitation, Communication and Acceptance on Agile Projects. In: Agile Software Devel-
opment: Current Research and Future Directions, pp. 111–141. Springer, Berlin (2010) 

31. Finck, M., Gumm, D., Pape, B.: Using Groupware for Mediated Feedback. In: Proceedings 
of the Eighth Conference Biennial Participatory Design Conference 2004: Artful Integra-
tion: Interwearing Media, Toronto, Canada, July 27-July 7, vol. 2 (2004) 

32. Teixeira, L., Saavedra, V., Ferreira, C., Santos, B.: Using Participatory Design in a Health 
Information System. In: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,  
pp. 5339–5342 (2011) 



110 U. Abelein and B. Paech 

 

33. Korkala, M., Pikkarainen, M., Conboy, K.: Combining Agile and Traditional: Customer 
Communication in Distributed Environment. In: Šmite, D., Moe, N.B., Ågerfalk, P.J. 
(eds.) Agility Across Time and Space, pp. 201–216. Springer, Heidelberg (2010) 

34. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engi-
neering. Wiley–Blackwell (2012) 

35. Harris, M., Weistroffer, H.: A New Look at the Relationship between User Involvement in 
Systems Development and System Success Development and System Success. Commun. 
Assoc. Inf. Syst. 24, 739–756 (2009) 

36. Abelein, U., Paech, B.: A proposal for enhancing user–developer communication in large 
IT projects. In: Proceedings of the 5th International Workshop on Cooperative and Human 
Aspects of Software Engineering (CHASE 2012) at the ICSE 2012, Zurich (June 2, 2012) 

37. Abelein, U., Paech, B.: A Descriptive Classification for End User –Relevant Decisions of 
Large–Scale IT Projects. In: 2013 6th International Workshop on Cooperative and Human 
Aspects of Software Engineering (CHASE) (2013) 

7 Appendix 

Interview questionnaire 
1. What is your role in your company? What is your educational background? 
2. How many large IT projects (either large amount of users, multiple countries 

or business units involved, large budget, project duration minimum of 1 year, 
e.g. ERP implementation) have you been involved in? 

3. What were the main characteristics of these projects (type of system, project 
length, amount of users)? 

4. What was your role and what were your tasks within these projects? 
5. Would you classify yourself on the IT or on the Business side? 
6. Was there communication between users and developers of the project? If 

yes in what setup did the communication take place? In what SW activities 
of the project did the communication take place? 

7. Did you experience any issues/consequences in these projects that might be 
caused by communication gaps? If yes, please specify the issues. In what 
SW activities did the issues occur? 

8. What would you do to prevent these issues in your next project?  

 



 State of Practice of User-Developer Communication in Large-Scale IT Projects 111 

 

 

Fig. 1. Base Data of Large-Scale IT Projects 

 



Digital Addiction:

A Requirements Engineering Perspective

Amen Alrobai, Keith Phalp, and Raian Ali

Bournemouth University, UK
{aalrobai,kphalp,rali}@bournemouth.ac.uk

Abstract. [Context and motivation] Digital Addiction, (hereafter
referred to as DA), has become a serious issue that has a diversity of
socio-economic side effects. [Question/problem] In spite of its high
importance, DA got little recognition or guidance as to how software en-
gineering should take it into account. This is in stark contrast to other
domains known for traditional addiction (e.g., drugs, gambling, and al-
cohol) in which there are clear rules and policies on how to manufacture,
market and sell the products. [Principal ideas/results] In this position
paper, we suggest that software engineering in general and requirements
engineering in particular need to consider DA as a first class concept in
developing software systems. [Contribution] As an early step in this
area, we conduct an empirical investigation of DA by reviewing the liter-
ature and analysing web discussion forums on the topic and use that to
design a mind-map of its main causes. We also provide a basic model to
articulate the DA problem from requirements perspective and elaborate
research challenges for a future work.

Keywords: Digital Addiction, Requirements Engineering.

1 Introduction

Digital Addiction (DA) can be described as a significant degree of dependent
behaviour that is triggered and facilitated by software products. It can lead to
both pleasure and relief of discomfort, but unfortunately, in a way that can harm
a person socially, physically and psychologically. However, despite its impact on
society, DA is still considered outside the boundary of the software engineering
community. That is, unlike the situation with drugs or alcohol, software engi-
neering has, so far, not been charged with the responsibility for dealing with or
mitigating the effects of DA.

DA is still seen as a problem on the user’s side, rather than the responsibility
of the software or the software developers. Hence, the problem of DA is typically
articulated in a way that makes the solution entirely within the domain of other
disciplines, such as psychology, sociology and health care. For example, Beard
[1] highlighted different factors related to the content, style of use and activity.
Widyanto and Griffiths [2] emphasized the addiction ‘on’ rather than ‘to’ the
Internet. As such, the Internet is treated as a single entity, without considering

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 112–118, 2014.
c© Springer International Publishing Switzerland 2014



Digital Addiction: A Requirements Engineering Perspective 113

the features of the applications used, the way they are designed or the goals and
values they help to achieve. Similarly, software is still seen, implicitly, as just a
medium in which its requirements, features, values and design are not studied
as primary causes of DA. In contrast, this paper suggests that the study of these
factors inherently belongs to the early stages of developing software; namely
requirements engineering. DA strongly relates to the requirements of users in
the first place. People use software as a means to reach certain requirements,
however, while doing so, they may get addicted.

There are a variety of different perspectives and debates on DA. While some
works view it as a mental disorder, others believe that it is no more than a
personal choice [2]. Similar debate could be found for tradition addiction [3].
However, individuals’ exposure to technology advancements has led to patterns
of use that seem to match the criterion of Diagnostic and Statistical Manual
of Mental Disorders (DSM). Therefore, the American Psychiatric Association
has added this type of addiction as an Appendix in DSM-5, which is the latest
version of DSM. Such a debate in the application domain is not new to the world
of software engineering, e.g., we still lack consensus in a variety of domains, such
as Green Computing, Digital Citizenship and Agent Computing. For this reason,
we would encourage approaches that do not interfere with the decision-making
about DA, but rather provide tools and platforms to facilitate taking those
decisions effectively.

DA has roots in the software design, the requirements or goals for which this
software is being used and the context of use. Other latent causes relate to the
personal, physiological and mental characteristics of the user, over which we,
as software engineers, have little control. However, we may still aim to accom-
modate these factors in the design of software, similar to disciplines like design
for accessibility and universal design [4]. We contend that software engineering
is required to attempt to provide ways to develop software that do not lead to
addiction and to accommodate users who are genuinely vulnerable to addictive
behaviour.

DA raises new challenges to software engineering in general and requirements
engineering in particular. This paper argues for novel approaches, which are able
to cater for the diversity, subjectivity and also the private nature of information
related to DA. We review the literature and analyse a discussion thread in a
set of online forum discussions about DA and present a mind-map articulating
the causes of DA. Some of these causes are within a software engineering remit.
Finally, we use our findings to suggest a foundation, or baseline ontology for
DA, and propose areas of research on DA for the software and requirements
engineering community.

2 Empirical Investigation of DA

There are already existing studies on sub-areas of DA (internet addiction [2]
and game addiction [5,6]) which focus on the perception of users and those user
characteristics which lead to DA. However, crucially, these studies do not focus



114 A. Alrobai, K. Phalp, and R. Ali

on the peculiarities of the object on which DA is centred, i.e., the software.
This lack of consideration of the software motivated us to carry out our own
investigation by reviewing the literature to identify those factors that appeared
to lead to DA and then to analyse discussion forums on DA which we found
in widely accessed and well-reputed websites to validate and enhance our initial
findings. In doing so, we identified a range of factors and then classified them
under five main categories, namely; software-mediated activity, attractiveness,
personal, cultural and situational. The last three categories are directly related
to qualities of the software while the personal and cultural dimensions are factors
that would fit studies in psychology and sociology. Our findings are summarized
in Figure1.

Fig. 1. A mind-map for Digital Addiction

This mind-map merely provides answers for the“what” question, that is, what
has an impact on DA? Ultimately we might hope that studying user experience
(UX) could, ideally, provide insights on the “why” question. Several studies,
e.g., [7,8,9,10], showed that user experience is not negatively affected even when
social software such as YouTube, Facebook, Wikipedia have poor compliance
to usability principles [11]. Therefore, to understand the true nature of DA, the
broader scope of UX may need to incorporate not only the “felt experience” such
as “pleasure, curiosity, and self- expression”, but also what users gain, rightly or
wrongly, from particular behaviours. To some extent, we could see these users
as using the ‘addictive’ behaviour to satisfy some ‘internal’ requirement (an
aspect which we explore more fully below). Hence, it may not be enough simply
to describe the associations among aspects of the software and specific, possibly
addictive, behaviours, but rather to understand the nature of the satisfaction and
how it relates to user’s internal and private requirements, and their individual
values.

However, whilst ultimately wanting to reach such rich understanding, a more
pragmatic, or medium term, view would be that, even should we not be able to
understand fully, say the psychological reasons for why certain features appear to



Digital Addiction: A Requirements Engineering Perspective 115

trigger or exacerbate particular addictive behaviours, we could still learn which
features have those impacts. That is, from a behavioural perspective, we should
be able to learn to produce software products that are less likely to stimulate
addictive behaviours. Hence, in having such an engineering goal, we turn again
to consideration of DA from a requirements perspective.

3 Digital Addiction: A Requirements Perspective

There is a wide debate on the meaning of DA [2]. In brief there is a general
agreement on the existence of the phenomenon but different viewpoints on its
nature. In order to make practical progress, for a discipline like requirements
engineering, we suggest a working definition. Hence, we take the initiative here
and define DA from a requirements perspective as:

Digital Addiction is the excessive use of certain software-mediated operations
to reach certain requirements. This includes the case when the use itself is com-
pulsive or impulsive and also the case when the user cannot switch to other
available alternatives to reach the same requirements without a good reason.

Requirements Engineering is the natural place in which users’ goals and values
are captured and analysed. Users’ goals and values are different in that the
values are ‘cognitive representations’ of the goals and are able to sustain users’
positive emotion towards a software design [12]. On the other hand, goals are
the explicit requirements that users can express. In terms of DA, values are very
hard to identify due to their private nature. For example, increasing the number
of followers in a social network, e.g., Twitter, is the explicit goal for some users,
while raising the reputation in the virtual community is the latent value. If we
can validate such values, we might help users to switch to another goal and/or
alternative software design, perhaps less addictive, as long as it still can satisfy
that value. Understanding what and how to do to achieve that is a requirements
challenge in the first place.

A further challenge is whether we can help stakeholders to articulate these
hidden requirements. Conventional elicitation methods, such as workshops, in-
terviews and focus groups, suffer from a threat to validity when used for DA.
This is due to the private nature and the tacit nature of users’ values. To han-
dle this, we suggest exploiting techniques that enable stakeholders, say addicts,
to communicate through a lifelong collaborative and social activity, e.g. desig-
nated forums, and facilitate capturing this knowledge at runtime. Techniques like
Crowdsourcing [13] used in the context of obtaining knowledge about software,
as in [14], could be promising here.

One might argue that design time surveys can provide similar results. How-
ever, these requirements are dynamic as users’ interactions with the system
evolve with time, e.g., due to changes in different factors including users’ famil-
iarity with the software, the competitive technology or peer pressure. Hence, ad-
diction not only arises from software features, but also depends on the interaction
with the software in a particular context (technical, environmental and social).
The fact that DA is both dynamic and context dependent makes it necessary to



116 A. Alrobai, K. Phalp, and R. Ali

have more novel elicitation technique to sustain the validity of elicited DA knowl-
edge. Software could utilize that knowledge from addicts at runtime and use it
to switch to a behaviour shown by the users to be less-addictive or addiction-
free. Such adaptation is called Social Adaptation [15] and it aims to harness the
“wisdom of crowd” [16] in the context of software adaptation.

Social networking websites provide a wide range of features that have distinct
functional traits such as tagging, likes, notifications, walls, and new features will
continue to emerge. Kietzmann et al. [17] presented the Honeycomb framework as
an attempt to define social media based on the peculiarity of their activities. The
framework consists of seven functional blocks, identity, conversations, sharing,
presence, relationships, reputation and groups. This contribution aimed to help
firms to understand the engagement needs of their audiences. Such approach
could provide a starting point and help to analyse software features, mainly social
features, based on the addiction aspects (see Figure 1) the users’ engagement
requirements and values.

In our preliminary suggested approach, we first create links between users’
values and requirements and analyse the software features against the mind-map
factors. This analysis can be done individually, by user, or collectively through
designated social platform or community of interests. The challenge is on how
to adapt and provide users with alternative feature configuration that are less
addictive whilst at the same time maintain users’ values and requirements. We
can view this as a particular kind of Dynamic Software Product Lines [18] where
the addictive aspects of features, as shown by users feedback or patterns of
use, could be the driver for adaptation. Figure 2 shows the meta-model which
contains the main concepts of our suggested direction.

We emphasise that there is a fine line between a commitment to a task or a
high level of satisfaction with software and DA. As requirements engineering we
cannot, and perhaps should not, impose our definition of an addictive behaviour.
Hence, we advocate that users, individually or in groups, provide and update
that knowledge. Developing that user-led knowledge elicitation is an obviously
challenging problem.

Fig. 2. DA from Requirements Perspective



Digital Addiction: A Requirements Engineering Perspective 117

4 Challenges and Future Work

Having articulated a vision for Requirements Engineering accommodating DA,
we note that there are still a number of significant challenges, notably, those
outlined below.

– Diversity of both Software and Users: both product features and user diver-
sity in terms of their needs and patterns of use justify the need for enabling
users to act as modellers to express personal perception toward software. A
key challenge is to develop the social platform to act as a communication
channel so we understand better addiction sources and stimuli within the
different users groups and software features.

– Elicitation: DA relates heavily to users perceptions, expectations and per-
sonal requirements which are not easy to express in words for most users, i.e.
tacit [19], fuzzy in nature and also very sensitive and private. This maximizes
the challenge of capturing DA knowledge even via Crowdsourcing.

– We have identified some addictive aspects of different social software prod-
ucts. Questions remain as to how, or even whether, users would like to be
aware of DA when they have it, what decisions would be taken by software
and what other decisions are to be taken by users when the software is run-
ning? This introduces also ethical and legal issue on the accountability and
responsibility of software, developers, and users.

– From a developer’s (business) perspective, user’s satisfaction should not be
compromised. Thus, how can we, as software engineers, regulate addiction
or even prevent it without affecting negatively users’ experience?

– Our work focuses on the software as a core entity within DA. However,
complementary work should be conducted to look at a particular set of
personality traits that make individuals predisposed to DA.

5 Conclusions

Digital Addiction (DA) is as a growing and important societal issue. In this
paper we suggest the need to recognise DA, and our responsibilities for it within
Requirements Engineering (RE). We also suggest some potential approaches
to incorporating consideration of DA within RE and articulate key challenges
for DA. We expect a multidisciplinary research to address the many diverse
aspects of DA aiming to develop addiction-aware software. Our future work will
investigate approaches which allow not only experts but also users to contribute
knowledge on the addictive aspects of a software. We anticipate that this will
lead to a more holistic view of the reasons and potential treatment of DA.

Acknowledgement. The research was supported by an FP7 Marie Curie CIG
grant (the SOCIAD Project) and by Bournemouth University through the Fu-
sion Investment Fund (the BBB and the VolaComp projects) and the Graduate
School PGR Development Fund.



118 A. Alrobai, K. Phalp, and R. Ali

References

1. Beard, K.W., Yarnall, C.: Internet addiction in children and adolescents. Computer
Science Research Trends, 59–70 (2008)

2. Widyanto, L., Griffiths, M.: Internet addiction: a critical review. International Jour-
nal of Mental Health and Addiction 4(1), 31–51 (2006)

3. Davies, J.B.: Myth of Addiction. Routledge (2013)
4. Story, M.F.: Maximizing usability: the principles of universal design. Assistive

Technology 10(1), 4–12 (1998)
5. Schüll, N.D.: Addiction by Design: Machine Gambling in Las Vegas. Princeton

University Press (2012)
6. Park, S., Hwang, H.S.: Understanding online game addiction: Connection between

presence and flow. In: Jacko, J.A. (ed.) HCI International 2009, Part IV. LNCS,
vol. 5613, pp. 378–386. Springer, Heidelberg (2009)

7. Hart, J., Ridley, C., Taher, F., Sas, C., Dix, A.: Exploring the facebook experience:
a new approach to usability. In: Proceedings of the 5th Nordic Conference on
Human-Computer Interaction: Building Bridges, pp. 471–474. ACM (2008)

8. McCarthy, J., Wright, P.: Technology as experience. Interactions 11(5), 42–43
(2004)

9. Silva, P.A., Dix, A.: Usability: not as we know it? In: Proceedings of the 21st
British HCI Group Annual Conference on People and Computers: HCI... but not
as we know it, vol. 2, pp. 103–106. British Computer Society (2007)

10. Thompson, A.J., Kemp, E.A.: Web 2.0: extending the framework for heuristic
evaluation. In: Proceedings of the 10th International Conference NZ Chapter of
the ACM’s Special Interest Group on Human-Computer Interaction, pp. 29–36.
ACM (2009)

11. Rosson, M.B., Carroll, J.M.: Usability engineering: scenario-based development of
human-computer interaction. Morgan Kaufmann (2002)

12. Kujala, S., Väänänen-Vainio-Mattila, K.: Value of information systems and prod-
ucts: Understanding the users’ perspective and values. Journal of Information Tech-
nology Theory and Application 9(4), 23–39 (2009)

13. Howe, J.: The rise of crowdsourcing. Wired Magazine 14(6), 1–4 (2006)
14. Ali, R., Solis, C., Salehie, M., Omoronyia, I., Nuseibeh, B., Maalej, W.: Social

sensing: When users become monitors. In: Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE 2011, pp. 476–479. ACM, New York (2011)

15. Ali, R., Solis, C., Omoronyia, I., Salehie, M., Nuseibeh, B.: Social Adaptation
at Runtime. In: Maciaszek, L.A., Filipe, J. (eds.) ENASE 2012. CCIS, vol. 410,
pp. 110–127. Springer, Heidelberg (2013)

16. Surowiecki, J.: The wisdom of crowds. Random House Digital, Inc. (2005)
17. Kietzmann, J.H., Hermkens, K., McCarthy, I.P., Silvestre, B.S.: Social media? get

serious! understanding the functional building blocks of social media. Business
Horizons 54(3), 241–251 (2011)

18. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41(4), 93–95 (2008)

19. Gacitua, R., Ma, L., Nuseibeh, B., Piwek, P., Roeck, A.D., Rouncefield, M., Sawyer,
P., Willis, A., Yang, H.: Making tacit requirements explicit. In: Second Interna-
tional Workshop on Managing Requirements Knowledge (MaRK 2009) (September
2009)



Feedback-Aware Requirements Documents
for Smart Devices

Erik Kamsties1, Fabian Kneer1, Markus Voelter2, Burkhard Igel3, and Bernd Kolb3

1 Dortmund University of Applied Sciences and Arts,
Emil-Figge-Str. 42, 44227 Dortmund, Germany

{erik.kamsties,fabian.kneer}@fh-Dortmund.de
http://www.fh-dortmund.de

2 independent/itemis, Germany
voelter@acm.org
3 itemis AG, Germany

{igel,kolb}@itemis.de

Abstract. [Context/ Motivation] A smart device is a software-intensive system
that operates autonomously and interacts to some degree with other systems over
wireless connections. Such systems are often faced with uncertainty in the envi-
ronment. Runtime representations of requirements have recently gained more in-
terested to deal with this challenge and the term requirements at runtime has been
established. Runtime representations of requirements support reasoning about the
requirements at runtime and adapting the configuration of a system according
to changes in the environment. [Questions/Problems] The research question is
how the results of runtime monitoring of requirements and the system’s decisions
about changes in the configuration are communicated back to the requirements
engineer to better understand the environment. There is a gap between the written
requirements document and the dynamic requirements model inside the system.
This problem is exacerbated by the fact that a requirements document are mostly
informal while the dynamic requirements model is formal. [Principal ideas/re-
sults] This paper introduces an approach to bridge the gap between development
time and runtime representations of requirements in order to keep them consis-
tent and to facilitate better understanding. We propose to weave the feedback
from the runtime system into requirements documents using a domain-specific
language that largely retain the informal nature of requirements. An annotated
requirements document helps get a better understanding of the system’s actual
behavior in a given environment. The approach is implemented using mbeddr, a
novel set of domain-specific languages for developing embedded systems, and
illustrated using a running example.

Keywords: Smart Device, Embedded System, Domain-specific Language,
mbeddr, Requirements at Runtime, Self-Adaptivity.

1 Introduction

Runtime representations of requirements have received increased interest over the last
years. Runtime representations are the basis for reflection on requirements, that is to

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 119–134, 2014.
c© Springer International Publishing Switzerland 2014

http://www.fh-dortmund.de


120 E. Kamsties et al.

understand, explain, and modify requirements at runtime, in order to deal with continu-
ously changing environmental needs [1] – a significant challenge for today’s software-
intensive systems.

We propose in this paper an approach for relating runtime representations of require-
ments with development time representations. The goal is to gain insights into how
requirements evolve over time and how the system is actually used from the perspective
of a requirements engineer. The focus is on resource-constrained embedded systems.

For the development time representation, we use mbeddr1, a set of modular domain-
specific extensions to the C programming language. mbeddr is also capable of repre-
senting requirements, it stores them along with code and maintains traceability. That is,
mbeddr provides an integrated view on requirements and implementation in C, which
are maintained in the same formalism and same tool (see Fig. 1). Requirements docu-
ments can be generated from mbeddr in the usual formats (e.g., HTML, PDF).

Fig. 1. Bridging the gap between development time and runtime artifacts

For the runtime representation of requirements, we make use of a goal-oriented
approach. The runtime requirements (i.e., the goal model) are extracted from the
development time requirements expressed in mbeddr. A requirements monitor utilizes
the runtime requirements. That is, the monitor is able to spot violations of assumptions
the system imposes on its environment and is able to recalculate a configuration for the
system based on the runtime requirements.

If environmental changes results in an update of the configuration, then this feedback
is woven into the mbeddr development time requirements. These changes are high-
lighted after re-generation also in the PDF/HTML requirements document.

A code generation step is part of our approach, as shown in Fig. 1. During develop-
ment time, a developer creates an implementation of the application using the mbeddr

1 http://mbeddr.wordpress.com/

http://mbeddr.wordpress.com/


Feedback-Aware Requirements Documents for Smart Devices 121

domain-specific C language. The system itself is then generated from the domain-
specific C code. The code generator adds some hooks for requirements monitoring.

Contribution. The contribution of this paper is a formal, tool supported link between
the development time and runtime representations (bold arrows in Fig. 1). The benefit is
two-fold. First, a requirements engineer better understands the adaptations of systems
as they run in the field. Second, a user can be better informed about the actual system
behavior.

Structure. The remainder of this paper is organized as follows. Section 2 outlines
the background of our research. Section 3 introduces mbeddr and explains how it is
used as an development time representation for requirements and for domain-specific
code generation. Section 4 discusses the runtime representation of requirements and
the missing link between the two representations. Our approach is illustrated using a
running example of a vacuum cleaner. Section 5 reviews the related work. Section 6
concludes with a summary and an overview on our future work.

2 Background

Embedded Systems. The focus of our work is in particular on smart systems, which
are a subclass of embedded systems. Embedded systems impose heavy constraints on
software. First, as these systems are mass-produced, the capabilities of the hardware are
optimized to the purpose of the respective system. That is, the power of the CPU and the
memory size are limited. We often see 8-bit microcontrollers running at 16 MHz and
providing 256 KB flash memory (e.g., in wireless sensor networks). Embedded Linux
systems come with a 32-bit typically clocked at 400 MHz or higher and 512 MB of
memory. Constraints on energy consumption prohibit more powerful hardware, since
many embedded systems run on batteries. The C programming language is prevalent.

Smart systems are embedded systems that collaborate with each other, typically over
wireless connections. For example, a warning about an iced bridge may be passed
through a sequence of vehicles. The systems are only loosely coupled and a smart sys-
tem must adapt its behavior to the current situation (e.g., when there are not enough
networked cars available).

Self-adaptive Systems. Many embedded systems act autonomously, that is they make
decisions without the confirmation of a human operator. The software cannot be easily
maintained or tuned to changing conditions manually. Therefore, there is a need for
adaptivity. However, adaptivity conflicts with other design goals such real-time behav-
ior, safety considerations, and the resource constraints mentioned above.

A self-adaptive system has the ability to dynamically and autonomously reconfigure
its behavior in order to respond to changing environmental conditions [1]. We con-
sider a self-adaptive system as consisting of two parts: the system and a requirements
monitor (see Fig. 1). The system implements the development time requirements. The
requirements monitor contains a requirements model, which is a machine-processable
representation of the system’s requirements. The requirement model is the basis for
computing new configurations at runtime in case of environmental changes. Often, a
goal-oriented model is used for this purpose (see Related Work in Sec. 5).



122 E. Kamsties et al.

3 Development Time Representation Using mbeddr

mbeddr is an open source project supporting embedded software development based on
incremental, modular domain-specific extension of C. It also supports languages that
address other aspects of software engineering such as requirements or documentation.
Fig. 2 shows an overview, details are in [2] and [3].

We selected mbeddr for the development time representation of requirements, be-
cause it provides an integrated, model-driven approach for dealing with development ar-
tifacts such as requirements, component-based design, and code. Moreover, it is geared
to the embedded domain, it allows for code generation for the abstractions in the domain
(e.g., state machines).

3.1 mbeddr Overview

mbeddr builds on the JetBrains MPS language workbench2, a tool that supports the
definition, composition and use of general purpose or domain-specific languages. MPS
uses a projectional editor, which means that, although a syntax may look textual, it is not
represented as a sequence of characters which are transformed into an abstract syntax
tree (AST) by a parser. Instead, a user’s editing actions lead directly to changes in the
AST. Projection rules render a concrete syntax from the AST. Consequently, MPS sup-
ports non-textual notations such as tables, and it also supports unconstrained language
composition and extension – no parser ambiguities can ever result from combining lan-
guages (see [4] for details).

The next layer in mbeddr is an extensible implementation of the C programming lan-
guage (C99, ISO/IEC 9899:1999) in MPS. On top of that, mbeddr ships with a library of
reusable extensions relevant to embedded software. As a user writes a program, he can

Fig. 2. mbeddr rests on the MPS language workbench. Above it, the first language layer contains
an extensible version of the C programming language plus special support for logging/error re-
porting and build system integration. On top of that, mbeddr comes with a set of C extensions
(components, state machines, units) plus cross-cutting support for requirements, traceability, doc-
umentation, visualization and variability.

2 http://jetbrains.com/mps/

http://jetbrains.com/mps/


Feedback-Aware Requirements Documents for Smart Devices 123

import language extensions from the library into his program. Major extensions include
test cases, interfaces and components, state machines, decision tables and data types
with physical units. For many of these extensions, mbeddr provides an integration with
static verification tools (model checking state machines, verifying interface contracts or
checking decision tables for consistency and completeness; see also [5]).

3.2 Requirements in mbeddr

mbeddr exploits language engineering to provide a powerful tool for embedded soft-
ware engineering: the vast majority of problems is solved by providing domain-specific
languages that express different aspects of the overall system. This is also true for re-
quirements. Requirements are captured using an extensible language specific to the
requirements domain. Like any other requirements management tool, the mbeddr re-
quirements language primarily describes requirements with a short title, a unique ID
and a prose description (see Fig. 3). However, it also supports a number of unique fea-
tures, which we utilize in our approach:

– Extensibility: The mbeddr requirements language can be extended in any direction.
That is, we are able to add e.g., goal-oriented modeling (see Sec. 3.3).

– The right degree of formality: Most industrial embedded systems are specified us-
ing a mixture of formal and informal/semi-formal representations of requirements.
This observation imposes a challenge to our goal of requirements feedback: how
to feed formal3 results from executing a system into the requirements if require-
ments are described informally? mbeddr supports partial formalization by formal
concepts that are introduced directly into informal requirements.

– Traceability and consistency: As requirements and code are maintained by mbeddr,
traceability is supported between requirements and to other artifacts. If informal
requirements are partially formalized (e.g., using parameters), mbeddr maintains
consistency between requirements and code such that a change of a parameter in
the code changes the value in the requirement and vice versa. We extend traceability
in our approach towards runtime representation of requirements.

3.3 Extension of mbeddr to Deal with Runtime Requirements

We extend mbeddr to cover parameters, optional requirements, and i* goal models
[6] to establish the missing link between development time and runtime requirements.
These extensions are discussed below. As a running example throughout the paper, we
use a vacuum cleaner case study that was originally introduced in [7] and [1].

Parameters. The use of parameters in functional requirements is a common technique
for embedded systems e.g., to enforce adaptability regarding a technical environment,
or particular customers. Parameters are added to the original mbeddr requirements lan-
guage in a way so they can be embedded in the requirements prose description ([8]
explains how to do this). Like variables in programs, parameters have a name, a type

3 We use the term formal here in the sense of machine-readable as it is usually done in model-
driven engineering.



124 E. Kamsties et al.

and an initial value. Fig. 3 shows an example: the Requirement RE3 is completely in-
formal, except for a formal concept parameter called maxSuction and annotated as
@param.

Optional Requirements. Some requirements for an embedded system are considered
optional. That is, the respective function can be enabled or disabled at runtime. We as-
sume in the following that these requirements are initially enabled and become disabled
at runtime if a conflict arises between requirements due to change in the environment.
RE1 and RE2 in Fig. 3 are optional.

Fig. 3. Example requirements with parameters and an option attribute

i* Goal Models. We use an i* goal model to resolve possible conflicts at runtime. For
this purpose, we developed a new mbeddr language module to describe a goal model
and to link it to the requirements. The goal model is basically a textual description of
the classic i* goal model shown in Fig. 5 therefore we do not provide an example.

Finally, the exchange of information between mbeddr at development time and an
embedded system at runtime needs consideration. From a practical viewpoint, this
means that we need to exchange information between a machine used for development
(host) and an embedded system (target). The exchange is currently realized using XML
files. Listing 1 shows part of the information sent from mbeddr to the embedded system
derived from the requirements in Fig. 3 (again, the goal model is omitted).

Listing 1. XML representation with optional requirements and a parameter

1 <parameters>
2 <requirement option=”true” name=”RE1” />
3 <requirement option=”true” name=”RE2” />
4 <requirement name=”RE3”>
5 <param name=”maxSuction” type=”int32”>50</param>
6 </requirement>
7 </parameters>



Feedback-Aware Requirements Documents for Smart Devices 125

4 Runtime Representation of Requirements

This section describes our runtime representation of requirements. The runtime require-
ments are maintained by a requirements monitor as mentioned in Sec. 2. The require-
ments monitor shown Fig. 1 consists of three components: (1) monitor, (2) requirements
model, and (3) impact analyzer. Fig. 4 illustrates the relationships between these com-
ponents. In the following, we explain briefly the interaction of the components.

The monitor is implemented by a rule engine, which monitors assertions. Assertions
are Boolean conditions describing assumptions about the environment, which usually
should be fulfilled. If an assertion fails, a requirement may be violated and the im-
pact analyzer is invoked. The impact analyzer assesses which parts of the requirements
model are affected and whether a change in the model is really necessary. Sometimes
a change is postponed in order to keep a different, but more important goal satisfied.
If a change is necessary, a new configuration is computed and the system switches to
that new configuration eventually. The monitor registers itself at the system and gets
invoked when a relevant environmental property observed by the system changes.

The technical details of the concept shown in Fig. 4 are described in the remainder
of this section.

Fig. 4. Concept for runtime representation and monitoring of requirements

4.1 Requirements Model

To represent requirements at runtime we use the i* goal-oriented modeling language [6].
A simple implementation of i* is provided by the openOME4 tool. We use its meta
model which is defined based on the Eclipse Modeling Framework5(EMF).

We extend the openOME meta model with a new attribute Priority of a goal. The
attribute is defined as an enumeration with the values VeryLow, Low, High, VeryHigh,

4 https://se.cs.toronto.edu/trac/ome/
5 http://www.eclipse.org/modeling/emf/

https://se.cs.toronto.edu/trac/ome/
http://www.eclipse.org/modeling/emf/


126 E. Kamsties et al.

Unknown. The attribute is needed for the impact analyzer, which must find the goal
with the highest priority to decide how to change the requirements model to maintain
the satisfaction of this goal. Fig. 5 shows an i* model for the vacuum cleaner. The
elements task, goal, soft goal and resource have an attribute EvaluationLabel which
represents the satisfaction of that element. Note that in Fig. 5 goals have the additional
attribute Priority.

Fig. 5. i* model of the vacuum cleaner

The extended i* EMF model is used as the runtime representation of requirements. This
model is developed by a requirements engineer using mbeddr at development time, it
is imported by the requirements monitor, and can be changed and displayed at runtime.
The underlying source code for accessing the runtime requirements is generated by
EMF.

4.2 Monitor

The monitor observes assertions. An assertion is a Boolean condition on parameters
which is evaluated by the rule engine. For example, in Listing 2 the parameter is time.
The assertion fails if the current time is not between timeMin and timeMax.

An assertion is evaluated on the current values of parameters. For this purpose, these
parameters are observed by the monitor according to the Observer pattern: the monitor
registers itself as an observer to the system and gets a notification whenever one of the
parameters change.

An assertion is assigned to the requirements model. We define two kinds of asser-
tions. The first is assigned to a soft goal. If the assertion breaks,
the satisfaction of the assigned soft goal is set to Denied. Otherwise, the satisfaction
is set to Satisfied. The second kind of assertion is assigned to a contribution link. If the



Feedback-Aware Requirements Documents for Smart Devices 127

assertion breaks, the assigned contribution link is set to a new type. This new type is de-
termined by a developer and is stored along with the assertion. In the case of a fulfilled
assertion, the type is set to unknown.

The following assertions are defined for the vacuum cleaner i* model:

1. No tripping hazard
2. Lowest energy cost between 22 and 8 o’clock
3. Noise level too high when suction power over 50%

Assertion 1 is assigned to the contribution link between the elements clean at night and
avoid tripping hazard. If the assertion breaks, the new type of the contribution link shall
be break. Assertion 2 is important to satisfy the soft goal minimize energy cost. It means
this soft goal can only be satisfied between 22 and 8 o’clock. Assertion 3 is described
in the next subsection.

To implement the rule engine we use Roolie6, a framework that supports defin-
ing, changing and checking rules at runtime. Listing 2 is the Roolie representation of
Assertion 2.

Listing 2. Implementation of a rule with Roolie

1 boolean passes = time > timeMin && time < timeMax;

4.3 Impact Analyzer

The impact analyzer is notified by the monitor when an assertion breaks: the notifica-
tion contains the affected soft goal (or contribution link) and its new satisfaction (or
new type). This change is first applied to a copy of the requirements model to avoid
premature changes.

The impact analyzer performs an evaluation of the requirements model based on the
model evaluation process for i* proposed by Grau et al. 7. This process starts at the
affected soft goal (or the soft goal connected to the affected contribution link), traverses
all elements of the requirements model, and ends when all satisfactions have been re-
computed.

Fig. 6 shows an example calculation for the vacuum cleaner. Assume Assertion 1 is
broken, which is assigned to the contribution link between clean at night and avoid trip-
ping hazard (bold contribution link). The type of the contribution link changes to break.
From the target avoid tripping hazard of this contribution link we start to compute the
satisfactions of the other model elements.

Rules for Computing the Satisfaction of an Element. The satisfaction for a goal is
calculated over the mean-ends link. The mean-ends link is an or-relationship between a
goal and one or more tasks. The goal satisfaction is taken from the highest satisfaction
of one of the linked tasks. In Fig. 6 the goal clean apartment gets the satisfaction from
the task clean when empty.

6 http://roolie.sourceforge.net/
7 http://istar.rwth-aachen.de/tiki-view_articles.php

http://roolie.sourceforge.net/
http://istar.rwth-aachen.de/tiki-view_articles.php


128 E. Kamsties et al.

Fig. 6. i* model with computed satisfaction of elements

A task can have decomposition links to a task, goal, soft goal, or resource. This is
an and-relationship. Every linked element must be satisfied to satisfy the task. So, all
elements get the satisfaction of the task. In Fig. 6, the resource suction power gets the
satisfaction from the task clean at night.

The value of the contribution link must be determined from the desired satisfaction
of the target and the type of the contribution. The result is the value the source must
have in this relationship to get the desired satisfaction of the target. Fig. 7 shows how to
combine a soft goal satisfaction and a contribution link type. The values were derived in
a pragmatic fashion. In the example in Fig. 6, the satisfaction partiallyDenied is com-
puted for the task clean at night. It is the result of the sum of the assigned contribution
links. The results are 50 (combination of help and satisfied) and -100 (combination of
break and satisfied, see Fig. 7)

Fig. 7. Combination of soft goal satisfaction and contribution link type



Feedback-Aware Requirements Documents for Smart Devices 129

Delay Reconfigurations. The evaluation process above results in new satisfaction
values of goals (and other elements), which in turn would lead to a new configura-
tion. To avoid premature reconfigurations, the threshold of an assertion can be relaxed
at runtime under specific conditions described by the procedure in Listing 3. Thus, a
reconfiguration can be delayed.

Listing 3. Pseudocode for the delay of changes

1 if (assertion_has_threshold() == false) {
2 change_original_requirements_model(); // reconfigure
3 return;
4 }
5 old_number = number_of_satisfied_goals(); // before change
6 old_priority = sum_of_priorities_of_satisfied_goals();
7 change_copy_of_requirements model();
8 new_number = number_of_satisfied_goals(); // after change
9 new_priority = sum_of_priorities_of_satisfied_goals();

10

11 if (old_number < new_number)
12 change_original_requirements_model(); // reconfigure
13 else
14 if (old_priority > new_priority)
15 relax_threshold(); // delay
16 else
17 change_original_requirements_model(); // reconfigure

An assertion cannot be relaxed if there are no thresholds as in Assertion 1 (see Lines
1-4 in pseudocode of Listing 3). Otherwise, the impact of a change is tested on the
a copy of the requirements model (Lines 5-9). Under specific conditions described in
Lines 11-17, the system is reconfigured or the threshold of an assertion is relaxed. An
assertion has the ability to incrementally relax the threshold. The step size and the
maximum threshold are predefined by a developer.

For example, Assertion 3 is assigned to the soft goal minimize noise level and can be
relaxed by changing the threshold from 50% to 60%. Consequently, the change to the
requirements model is delayed to assure the satisfaction of a goal with a high priority.

Generate Configurations. Finally, the impact analyzer generates a new configuration
for the system. A configuration is a new assignment of values to parameters and options
of the runtime requirements shown in Listing 1. For a requirement assigned to a task
with a positive satisfaction, the option is set to true. For a requirement assigned to a
task with a negative satisfaction, the option is set to false. In the example, the option
attribute of Requirement RE1 is set to false, i.e., the function clean at night is disabled
in the new configuration. RE2 remains true.

4.4 System

The system, i.e., the embedded software, reads sensor data and writes to actuators. Two
additional interfaces are required. First, the system provides an interface to allow for



130 E. Kamsties et al.

monitoring parameters. The monitor can register itself with this interface and gets a
notification if a parameter changes its value.

Second, the system provides an interface to read a new configuration after a modifi-
cation of the requirements model. When the system is started up, it reads a configuration
generated by the requirements monitor.

This configuration contains parameter values and which functions are active under
the current environmental situation. The state of a function is related to the enabled or
disabled state of a requirement (see Listing 1).

4.5 Requirements Feedback

The information about changes is collected by the requirements monitor and is sent
to mbeddr at some point in time (note that we are doing a post-mortem analysis of
a system using mbeddr). This is the last step in our feedback cycle shown in Fig. 1.
The information is again represented using XML and contains the concrete parameter
values, enabled requirements, and the changes to the goal model.

It is important to note that there is a 1-to-many relationship between development
time and runtime requirements, i.e., the development time requirements receive feed-
back from many runtime instances. Thus, a system identifier is added to the feedback,
see Listing 4.

Listing 4. XML file with system identification

1 <parameters systemID=”42”>

Finally, the feedback file is imported by mbeddr. The parameter values are stored as
child nodes of the parameter definition in the requirements description, separately for
each system ID. In mbeddr, the requirements engineer can use a filter to focus on a
specific system and show the values of the parameters directly in the requirements. It is
also possible to inspect all parameter values of all systems that provided feedback.

Fig. 8 shows the change of the requirements from Fig. 3. Now the requirements RE1
and RE2 have a value for the option tag. For the system with the ID 42, requirement
RE1 is disabled and requirement RE2 is enabled. Also, for system 42, the value of the
maxSuction parameter is 50.

mbeddr supports generating requirements documents (e.g., HTML or PDF) from
mbeddr requirements. This generator is modified in order to highlight the changes that
happened at runtime so that a requirements engineer is able to better understand how
systems evolve.

4.6 Scenario

The following scenario illustrates how the system, monitor, impact analyzer, and re-
quirements model interact in a given situation.

The vacuum cleaner cleans different surfaces in an apartment. Depending on the
environment and prioritization of the goals, one of the realization strategies is selected.
Assume the robot cleans at night. A person walks into the apartment. Now, because of
a power failure the lights switch off. The following steps are carried out:



Feedback-Aware Requirements Documents for Smart Devices 131

Fig. 8. Requirements with Feedback

1. The monitor notices a change in the apartment and triggers the rule engine.
2. The rule engine checks all assertions and notices that Assertion 1 no tripping hazard

is broken.
3. The rule engine informs the impact analyzer that the contribution link must be set

to break.
4. The changes are applied to a copy of the model and the satisfaction of each element

is calculated.
5. Both goals are satisfied by the task clean when empty (see Fig. 6). This means the

copy became the original model.
(a) The information about the change is stored in a file.
(b) mbeddr imports this file and weaves the information into the requirements (see

Listing 8).
(c) This definition is used to generate a requirements document in PDF or HTML

with highlighted deltas.
6. From the new requirements model the analyzer generates a new configuration for

the system where clean at night is disabled and clean when empty is enabled.
7. The system reads the configuration and switches to the new strategy.

5 Related Work

Many approaches have been developed to deal with adaptivity, including neural net-
works, rule engines, and dynamic decision networks. In the domain of embedded
systems, adaptive fuzzy controllers are a typical solution. These approaches can be
subdivided into approaches targeting continuous and discrete systems. The focus of our
work is on discrete systems. Thus, neural networks and fuzzy controllers are not further
discussed.



132 E. Kamsties et al.

The following discussion of related work in adaptivity in RE follows the reference
model shown in Fig. 4. For the requirements model most authors [1, 9–13] use a goal-
orientated model such as KAOS [14], i* [6] or an extension such as Tropos [15] or adap-
tiveRML [9]. The system is usually attached to the requirements model using domain
assumptions [1, 9–11, 16], claims [12], or assertions [13]. Assertions are monitored
by a monitor system such as Flea [13], ReqMon [10, 17], or SalMon [10, 18].

The work by Fickas et al. [13, 16], Robinson et al. [17, 19], and Wang et al. [6]
showed that it is important to use a representation of requirements at runtime. But this
work does not support adaption at runtime. The solutions proposed by Baresi et al. [20],
Oriol et al. [10, 18] and Qureshi et al. [9] support adaption, they can switch between
different services at runtime.

Qureshi et al. [9] introduced a visual language called AdaptiveRML to model and
analyze requirements in adaptive systems. They tried to handle premature changes of
the model with monitor configurations for the assertions that can be modified at runtime.
Their solution also supports goal reasoning, which mean that the impact on the goals
are evaluated before an adaption is performed.

Oriol et al. [10] are working on notifications to involve users in decision processes,
for example which type of connectivity should be used (Wi-Fi, Bluetooth, etc.). Also
new monitor configurations can be generated from the runtime requirements.

Further research aims at improving the decision process by using dynamic decision
networks (DDNs). Bencomo et al. [7] transfer an i* goal model into a DDNs to get
a more dynamic representation of the requirements. The DDNs choose tasks with dy-
namically evolving nodes instead of the static contribution links. The weights of the
notes are initialized with the domain knowledge inside the i* model. These weights are
refined through a learning process at runtime. The work of Bencomo et al. focuses on a
better learning process and to improve the adaption support. Premature changes shout
be avoided and the system must learn to handle the unknown environment at runtime.

Our approach is based on previously mentioned work, but focuses on the traceability
between development time and run time requirements. In this respect, the use of a DDN
is an interesting approach, but the outcome of the learning process inside the network
cannot be retranslated in terms of runtime requirements changes. Thus, changes cannot
be traced back to the development time requirements.

Because we work in the area of embedded systems we have to handle resource con-
straints as mentioned in Chapter 2. The approaches from Oriol, Qureshi, Robinson, and
Wang are all based on service-oriented architectures, which are not well established in
the area of embedded systems.

6 Discussion

This paper identifies a problem in a RE, which arises for self-adaptive systems: how are
possible changes to the runtime requirements communicated to requirements engineers
and users?

The goal of our work is from the perspective of a requirements engineer to gain in-
sights into how requirements evolve over time and how the system is actually used.
One challenge lies in the representation of requirements at development time in a way



Feedback-Aware Requirements Documents for Smart Devices 133

they can be easily extracted and used at runtime. The feedback from the system to the
development time requirements imposes another challenge, as requirements are repre-
sented as a mixture of informal and formal representations. However, the feedback from
system is formal.

We proposed an approach to establish the missing link between development time
and runtime representations of requirements in the context of embedded systems. Es-
pecially smart/embedded systems are interesting, as a human operator is often not
available to give a confirmation to a system’s decision. Thus the system must decide
autonomously.

We suggested in this paper a concept for making adaptivity explicit. Nevertheless,
discrete adaptivity can also be ”programmed” directly into an application. The bene-
fits of an explicit documentation of adaptivity are similar to the benefits of an explicit
documentation of variability in case of software product lines: understanding and com-
munication are improved. Changes in the runtime requirements (due to changes in the
environment) are communicated to a requirements engineer. This leads eventually to a
better understanding of the environment.

Our future work addresses the communication of the changes to the users and the
formalization and monitoring of further aspects of requirements (beside parameters)
such as conditions and relations between requirements. Regarding embedded real-time
systems in particular, execution times, violations of deadlines, etc. are of interest. This
information can also be collected at runtime and feed back into the requirements. MPS
provides tables for a visualization of this more complex information. Further work is
also underway on how to automatically resolve conflicts in goal models. Finally, a case
study is planned in the context of an industrial research project on automotive software
development tool chains.

References

1. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection:
requirements as runtime entities. In: 2010 ACM/IEEE 32nd International Conference on
Software Engineering, vol. 2, pp. 199–202 (2010)

2. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: Journal of Automated Software Engineering
(2013)

3. Voelter, M., Ratiu, D., Schaetz, B., Kolb, B.: mbeddr: an extensible c-based programming
language and ide for embedded systems. In: Proc. of the 3rd Conf. on Systems, Program-
ming, and Applications: Software for Humanity, SPLASH 2012, pp. 121–140. ACM, New
York (2012)

4. Voelter, M.: Language and IDE Development, Modularization and Composition with MPS.
In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–430.
Springer, Heidelberg (2013)

5. Ratiu, D., Voelter, M., Schaetz, B., Kolb, B.: Language Engineering as Enabler for Incre-
mentally Defined Formal Analyses. In: FORMSERA 2012 (2012)

6. Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J.: Automated Software Engineering 16, 3
(2009)

7. Bencomo, N., Belaggoun, A.: Supporting decision-making for self-adaptive systems: From
goal models to dynamic decision networks. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013.
LNCS, vol. 7830, pp. 221–236. Springer, Heidelberg (2013)



134 E. Kamsties et al.

8. Voelter, M.: Integrating prose as a first-class citizen with models and code. In: 7th Workshop
on Multi-Paradigm Modelling (2013)

9. Qureshi, N.A., Jureta, I.J., Perini, A.: Towards a requirements modeling language for self-
adaptive systems. In: Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195,
pp. 263–279. Springer, Heidelberg (2012)

10. Oriol, M., Qureshi, N.A., Franch, X., Perini, A., Marco, J.: Requirements monitoring for
adaptive service-based applications. In: Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS,
vol. 7195, pp. 280–287. Springer, Heidelberg (2012)

11. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware sys-
tems: A research agenda for re for self-adaptive systems, in. In: 2010 18th IEEE International
Requirements Engineering Conference (RE), pp. 95–103 (2010)

12. Welsh, K., Sawyer, P., Bencomo, N.: Towards requirements aware systems: Run-time res-
olution of design-time assumptions, in. In: 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 560–563 (2011)

13. Feather, M., Fickas, S., Van Lamsweerde, A., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: Proceedings of the Ninth International Workshop on Software
Specification and Design, pp. 50–59 (1998)

14. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML Models to
Software Specifications. Wiley (2009)

15. Brinkkemper, J., Mylopoulos, J., Solvberg, A., Yu, E.: Tropos: A framework for
requirements-driven software development (2000)

16. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: Proceedings
of the Second IEEE International Symposium on Requirements Engineering, pp. 140–147
(1995)

17. Robinson, W.: Implementing rule-based monitors within a framework for continuous re-
quirements monitoring. In: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences, HICSS 2005, p. 188a (2005)

18. Oriol, M., Marco, J., Franch, X., Ameller, D.: Monitoring adaptable soa-systems using
salmon. In: Workshop on Service Monitoring, Adaptation and Beyond (Mona+), pp. 19–28
(2008)

19. Robinson, W.: Requirements Engineering 11, 17 (2006)
20. Baresi, L., Pasquale, L.: Live goals for adaptive service compositions. In: Proceedings of the

2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2010, pp. 114–123. ACM, New York (2010)



INCREMENT: A Mixed MDE-IR Approach
for Regulatory Requirements Modeling

and Analysis�

Nicolas Sannier and Benoit Baudry

Inria Rennes Bretagne Atlantique
Campus de Beaulieu

35042 Rennes Cedex, France
{nicolas.sannier,benoit.baudry}@inria.fr

Abstract. [Context and motivation] Regulatory requirements for
Nuclear instrumentation and control (I&C) systems are first class re-
quirements. They are written by national safety entities and are com-
pleted through a large documentation set of national recommendation
guides and national/international standards. [Question/Problem] I&C
systems important to safety must comply to all of these requirements.
The global knowledge of this domain is scattered through these different
documents and not formalized. Its organization and traceability relation-
ships within this domain is mainly implicit. As a consequence, such long
lasting nuclear I&C projects set important challenges in terms of tacit ex-
pertise capitalization and domain analysis. [Principal ideas/results]
To tackle this domain formalization issue, we propose a dual Model-
driven Engineering (MDE) and Information Retrieval (IR) approach
to address the nuclear regulatory requirements domain definition, and
assisted traceability based on the acquired requirements model. [Con-
tributions] In this paper, we present the Connexion metamodel that
provides a canvas for the definition and capitalization of the nuclear reg-
ulatory requirements domain. We also present an hybrid MDE/IR-based
approach, named INCREMENT, for acquiring, modeling and analyzing
these regulatory requirements. This approach is supported by a tool that
is developed in the context of the CONNEXION project, which gathers
French major nuclear I&C industrial actors.

Keywords: Nuclear Instrumentation and Control Systems, Regulatory
Requirements, Standards, Metamodeling, Traceability, Information
Retrieval.

1 Introduction

In addition to their systems requirements, systems with high level of security,
privacy, or safety must also conform to regulatory requirements. For example, in
the avionics domain, most regulators impose the application and compliance to
� This work is partially supported by the French BGLE Project CONNEXION.

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 135–151, 2014.
© Springer International Publishing Switzerland 2014



136 N. Sannier and B. Baudry

the RTCA DO-178B/C. All healthcare related products in the USA must comply
with the Health Insurance Portability and Accountability Act (HIPAA). Costs
of noncompliance and incentives toward conformance are significant [1,2] and
many initiatives, such as OPENCOSS [3], have emerged to tackle the regulatory
requirements compliance issue from the safety certification perspective.

In the nuclear domain, regulatory requirements are completed using a large
set of national recommendation guides and national/international standards.
Putting these requirements in an international context showed important gaps
between requirements and practices in different countries [4]. Since January 2011,
the French nuclear industry and academic partners have joined forces in the
CONNEXION project1 to develop the major innovations in the design and im-
plementation of the future nuclear power plants’ Instrumentation and Control
(I&C) systems. One aspect of the project consists in the formalization and the
understanding, from a high level global perspective, of regulatory requirements
the nuclear industry partners has to face in their licensing projects.

In this paper, we aim to address the following research questions. (1) How
to formalize and organize the domain knowledge in a way that is relevant from
an industrial experts perspective? (2) Once formalized, How to browse and ma-
nipulate this knowledge? (3) As the domain is large, not formalized, and hard
to handle, can we analyze this domain and retrieve traceability links between
regulatory requirements?

To tackle these questions, we propose a mix of Model-driven Engineering
(MDE) and Information Retrieval (IR) to respectively address domain formal-
ization and requirements traceability. The paper contributions are organized
around the INCREMENT approach (Instrumentation aNd Control Regulatory
Requirement Modeling Environment) that respectively addresses the challenges
previously introduced. In particular, they consist in: (1) the domain formal-
ization by proposing a metamodel that allows a high level capitalization of a
requirements corpus and its organization. This metamodel was built through
intensive interactions with our industrial partners. (2) A tool-support basis
to gather partial knowledge from the textual documents, and manipulate such
models. This tool basis is evaluated with both empirical and industrial feedback.
(3) The proposal of an original hybrid approach, mixing both meta-
modeling and information retrieval to support better domain analysis and
that has been empirically evaluated.

The remainder of the paper is organized as follows. Section 2 presents the
I&C Regulatory requirements global picture as well as an illustrative example. In
section 3, we present the metamodel that supports the INCREMENT approach.
Section 4 presents the environment we built on top of the metamodel while
section 5 discusses the hybridization MDE-IR in our approach and the empirical
evaluation of its benefits. In section 6, we expose threats to validity of our work.
Section 7 reviews related work while section 8 concludes the paper.

1 http://www.cluster-connexion.fr

http://www.cluster-connexion.fr


INCREMENT for Regulatory Requirements 137

Fig. 1. Global picture of the Nuclear Regulatory Requirements Domain

Requirements for Software in Category 1E Programmed Systems

Reliability

Reliability is addressed within qualitative perspectives
Ea 2.1 Software design and documentation shall allow performing verification and validation methods in order to
demonstrate ... An acceptable practice, related to methods and techniques of verification, is described in chapters
6 (verification) and 7 (software/component integration) of the IEC 60880 publication (1986) ...
Similarly, simulation is an acceptable technique for the validation of the executable program, especially for time
performances. This technique can be combined with prescriptions of chapter 8 of IEC 60880 publication (1986).

Fig. 2. V&V in French regulatory text RFS II.4.1.a

2 Analyzing Nuclear Regulatory Requirements in the
Large: An Example

Figure 1 proposes a global picture of the nuclear regulatory landscape in terms
of concepts and traceability concerns. To illustrate the heterogeneity of the do-
main (different stackholders, different perspectives, different levels of details),
we propose ask a simple question and browse the corpus to find out elements
related to it. More details are proposed in our previous work [5], and we recall
it for the sake of clarity regarding the paper contribution.

Considering specific analysis such as finding V&V regulatory requirements
in safety systems for different countries, one should initially think that these
requirements are close enough to be compared. We propose an example of what
nuclear operators have to face from the regulatory text perspective, and refine
it to the normative level in two different contexts: France and USA.

At the Regulatory Level. In France, in the RFS (basic safety rule) II.4.1.a
(2000), the requirements or principles are written in French. About the concern
Verification and Validation, Figure 2 proposes a translation. In the USA, we
shall consider the 10CFR50 and in particular following excerpt in Figure 3.



138 N. Sannier and B. Baudry

Par55a(a)(1): Codes and Standards

(a) Quality standards, ASME Codes and IEEE standards, and alternatives.
(1) Structures, systems, and components must be designed, fabricated, erected, constructed, tested, and inspected
to quality standards commensurate with the importance of the safety function to be performed. ...
(h) Protection and safety systems.
(2) Protection systems. For nuclear power plants ... must meet the requirements stated in either IEEE Std. 279 ...
or in IEEE Std. 603-1991 ...
(3) Safety systems. Applications ... must meet the requirements for safety systems in IEEE Std. 603–1991 and the
correction sheet dated January 30, 1995.
Appendix A to Part 50–General Design Criteria for Nuclear Power Plants

I. Overall Requirements

Criterion 1- Quality standards and records.
Structures, systems, and components important to safety shall be designed, fabricated, erected, and tested to
quality standards commensurate with the importance of the safety functions to be performed. ...

Fig. 3. US Regulation: 10CFR50 and Appendix A

At this level, we can agree that there are mainly common points regarding
verification and validation even if it is not mentioned in the US regulation (apart
from the word "tested". In France, independent V&V is already explicit. Fitness
to specification (validation) is present. Both of them mention quality assurance
programs. The notion of compliance with standards is expressed everywhere
with more or less importance. Software safety life cycle is approached using
different terms or enumeration of activities in the US, fitness to specification,
V&V methods in France). We also observe the emergence of different level of
application of standards as acceptable approaches (FR, USA), best in process
and applicability (USA) and mandatory items (USA).

At the Regulatory Guidance Level. There is no document at this level
in France. Nevertheless, the RFS explicitly mention that use of Chapter 6, 7
and 8 of the IEC60880 (1986) are acceptable practices for software V&V of
category 1E systems. The French safety authority has endorsed the RCC (Rules
for Design and Construction) series issued by EDF (considered as a technical
operator code in Figure 1). In particular, RCC-E (for electrical devices) requires
conformance with several international standards such as IEC60880, IEC62138,
etc. depending on the safety function category performed by the software. In the
US, it is described partially into the regulatory guide 1.168 that will later lead
us to the analysis of the IEEE standard 1012.

At the Normative Level. The next step finally leaves us with two docu-
ments from the IEC and IEEE community. If both IEC60880 and IEEE1012
deal with software validation and verification, the chosen perspective of descrip-
tion is rather different.

IEC 60880 (chapter 8) deals with: 1. independence of the verification; 2. ver-
ification plan; 3. design verification; 4. implementation verification (with both
general purpose and application-oriented languages and respective test reports);
5. configuration of pre-developed software. IEEE 1012 deals with: 1. software

V&V processes: management, acquisition, supply, development, operation, main-
tenance; 2. software V&V reporting, administration and documentation; 3. de-
tailing a software V&V plan outline.

If we want to sum the two standards, IEC 60880 expresses objectives to
reach whereas IEEE 1012 details activities to perform to reach these objectives.



INCREMENT for Regulatory Requirements 139

More generally, there is a gap between the IEC corpus, which is specifically writ-
ten by the IEC subcommittee SC45-A and that issues nuclear specific to nuclear
industry and IEEE standards which are not always nuclear specific.

This example describes two different regulatory practices with their own par-
ticularities and the issue is to formalize this domain if we want to be able to
compare them [6]. We address in next section our first research question, con-
cerning the domain formalization issue.

3 Formalizing the Nuclear Requlatory Requirements
Domain

3.1 Toward a Domain Specific Modeling Approach in the Industry

One major issue when working with industrial partners is their level of adoption
of MDE or, at least, modeling concerns [7]. In the CONNEXION project, we
face research and development engineers with very heterogeneous background,
from senior project leaders with mainly low expertise on modeling to junior and
senior engineers with or without knowledge in MDE neither in requirements
engineering (or from the Systems Engineering point of view).

The key question here is to propose a modeling approach that meet our part-
ners’ intuition of how the domain should be represented and that is close to
their current practice. As a consequence, we decided to go through a classic
MDE-based approach and the creation of a domain specific metamodel.

3.2 The Connexion Metamodel

In figure 4, we propose an excerpt of the Connexion metamodel we built with our
industrial partners in the CONNEXION project. This metamodel2 structures the
different kind of elements one may find while looking at the nuclear regulations.

1. Modeling Regulations Atomic Elements. Though our industrial part-
ners mainly focus on requirements, they also want to put these requirements
in context and keep the document structural information. The metamodel
does not only focus on requirements and its different specializations but also
on side elements such as definitions, recommendations, descriptive texts, etc.
This whole set of typed elements (TypedElement), contained into a Type-
dElementCorpus are acquired through the documentation or may be tacit
knowledge (NonWrittenElement) acquired from past or existing projects.

2. Modeling the Regulatory Hierarchy. We defined the different types of
documents and their structure that we handle in the project. It goes from
the different regulatory documents to standards as well as documents from
the licensee (engineering documents, technical codes, etc.). These documents
are modeled as a Corpus of refinable Documents and possess a composite
structure of refinable DocumentFragments.

2 A more detailed version as well as specific perspectives are available at
http://wp.me/P1tUd5-6I

http://wp.me/P1tUd5-6I


140 N. Sannier and B. Baudry

3. Modeling Clustering of Elements. Built as-is, the proposed require-
ments referential includes an important amount of information that must
be organized. To analyze this set of elements, Different kinds of wrappers
are required. These TypedElementWrappers define: (1) structural similarities
that clusters TypedElements regarding their nature (regulatory, normative,
engineering), but also (2) thematic similarities within a Topic collection,
(3) large general elements that are specific to a Project or a more general
GenericProject.

4. Modeling the Bridge between Requirements, Architecture and
Qualification. As high level ambiguous requirements [8,9], it is very difficult
to cope with the traditional set <Requirement, Architecture,
Qualification>. The architecture part is addressed separately in the CON-
NEXION project with a specific metamodel. However, we link the architec-
ture elements through the satisfaction of design rules, that are industry-based
clauses. It is the same process for qualification and certification concerns
while defining a justification. As a consequence, we have defined high level
DesignRules that allow an indirect validation of the related requirements as
well as Justifications to address the safety evidence process. These concerns
are close to the actual OMG proposal around the SAEM/SACM standard
metamodels [10].

5. Modeling Elements Interactions. Carlhamre et al. [11] defined a set of
interdepencies in order to address requirements prioritization and planning.
However, regulatory requirements are more abstract, more complex and can-
not be seen in terms of marketable or temporal priority.

To tackle the traceability concern we highlighted in figure 1, we propose
a set of traceability links where comparison links are made to define equiv-
alence between or conflicting elements. On the other hand, the interaction
links are made to describe relationships within the requirements domain.
We have defined two families of Interactions: ElementsComparisons that
describe equivalence and conflict links, as well as ElementInteractions that
describes inter-requirements relationships such as basic References or more
evaluated Generalization, Contribution relationships. These relationships are
complementary to those defined by Zhang et al[12] or Maxwell et al.[13].

For the nuclear industry, which owns a very precise vocabulary, determining
the correct metamodel often depends on the terminology of terms and concepts.
The metamodel fitness is built among a long iterative process. To the best of
our knowledge, the process of building a domain specific modeling language in
the industry has not much been assessed in terms of activity length or number
of iterations. We mainly spent two years of interviews and meetings to built
and provide examples for this metamodel with various minor (new attributes,
renaming attributes) and major changes (brand new concepts, major concept
shifts). For the major changes, we had three different versions of the metamodel.



INCREMENT for Regulatory Requirements 141

Fig. 4. The Connexion Metamodel



142 N. Sannier and B. Baudry

Fig. 5. The INCREMENT Contribution

If we analyze the different factors for our major changes, the following aspects
had some impact on the metamodel life cycle:

– Concepts arise or change from the natural, mutual, and iterative process of
domain understanding and elicitation.

– Being proactive and proposing concepts or providing examples may help to
make domain experts describe tacit knowledge [14]. Clustering requirements
within topics is a natural practice as the number of requirements grows up
but was not determined explicitly.

– Academic and industrial definitions or visions upon particular concepts can
co-exist but may lead to the final choice or definition modification. We ob-
served a significant granularity gap between our visions of topic/theme def-
initions. We defined topics or themes as a set <topic name, topic signature,
tracks>, which is close to the Gotel proposition [15] instead of an industrial
hierarchical and composite structure.

– Basic state of the art concepts and structures may not ensure their adop-
tion as experts are very demanding concerning their own domain lexicon.
They may question academic approaches though concepts are similar but
not expressed in the "correct" way.

– Experts are also involved in different projects where they acquire new per-
spectives or ideas related to the CONNEXION project.

4 Breathing Life into a Regulatory Requirements Model

Providing a domain metamodel is one first thing. Making this metamodel man-
ageable for nuclear engineers and ensure its adoption, with a concrete represen-
tation, is one another, and much more difficult, point. For the nuclear industry,
most of our partners do read and interpret UML diagrams. However, it’s hard



INCREMENT for Regulatory Requirements 143

for them understand (meta)modeling. In particular, our partners wrongly asso-
ciate metamodels, models that conform to them and tooling that manipulate
and exploit models.

This metamodel allows to formalize the I&C regulatory requirements domain.
However, CONNEXION engineers require additional features in order to provide
ways to populate and analyze models that are the concrete domain representa-
tions and knowledge capitalization. To this end, we have proposed different soft-
ware solutions that leverage the metamodel and, in addition to the Connexion
metamodel, form the global INCREMENT approach (Fig. 5. In particular, we
propose:

– IncrementParser as a configurable parser, that allow us to extract informa-
tion from the regulation and model them as Connexion model elements.

– IncrementGUI is a graphical environment for the model browsing and anal-
ysis and is presented in Fig. 6.

– IncrementIndex is a model-based indexing and searching engine. It leverage
the metamodel information to propose an indexing step based on the model
elements. We address this concern in the next section.

A Parser for Systematic Requirements Model Acquisition. Despite the
variety of documents, regulation can be organized with respect to reading rules,
which allow the readers to have a systematic and efficient reading of the doc-
ument. Some rules may be explicit, written in the documents, or implicit and
provided by domain experts such as keywords. It is worth noticing that these
reading rules are specific to each document and may evolve from one another.

It is possible to automate the extraction of textual information and generate
an instance of the metamodel, leveraging the reading rules. To perform the
extraction task, we have developed a configurable parser (IncrementParser) that
uses, for each document, a set of regular expressions that defines the parsing
rules to determine the different fragments types while reading the input file. All
clauses of standards are then typed and generated as model elements.

This tool was evaluated on the acquisition of 8 international nuclear standards,
and validated by sampling. We provide some details in Table 1. 1. software sys-

Table 1. Details from the 8 Acquired International Standards

Standard 1st year of
publication

# of pages Structure Reqts. Recoms. Defs. Ind. docu-
ments

IEC60880-2006 1986 110 15 sections and 10 normative
or informative annexes

308 92 43 939

IEC60987-2007 1989 30 13 sections and 3 informa-
tive annexes

53 17 18 219

IEC61226-2009 2009 32 7 sections and 1 informative
annex

67 12 22 261

IEC61500-2009 1996 14 10 sections 43 10 8 136
IEC61513-2011 2001 98 8 sections and 5 informative

annexes
238 48 62 1098

IEC62138-2004 2004 47 6 sections 180 48 36 555
IEC62340-2007 2007 22 9 sections + 1 informative

annex
46 4 26 226

IEC62566-2011 2011 52 17 sections + 2 informative
annexes

243 33 14 646

totals 405 107 1st level
structures

1178 structural elements 264 94 229 4080



144 N. Sannier and B. Baudry

tems performing category A functions (IEC 60880), B and C functions (IEC
62138); 2. hardware design requirements (IEC 60987); 3. classification of safety
functions (IEC61226); 4. data communication (IEC 61500); 5. general criteria
for I&C systems (IEC 61513); 6. common cause failure (IEC 62340); and 7. de-
velopment of HDL-programmed Integrated Circuits (IEC62566).

These 8 standards cover a large scope from very general concerns (IEC 61513,
IEC 60880, IEC 62138) to very precise ones (IEC 62340, IEC 62566). Publication
dates vary from 2001 to 2011 but first publication record start in 1986. These
8 standards illustrate the diversity of the documentation in terms of temporal
evolution, scope heterogeneity, amount of statements, etc.

An Environment for the Corpus Browsing and Analysis. IncrementGUI,
illustrated in Fig. 6, proposes a domain description over three dimensions. The
left part proposes to navigate the model through the different wrappers: Type-
dElements, semantic wrappers, topics, projects, interactions, design rules, and
justifications. The center part details the content of these wrappers and focus
on the elements types and verbatims. The right part proposes a detailed and
navigable view of the selected element through its attributes and its references.

We originally proposed a first prototype to represent such requirements models
with a diagram perspective, which exhibits interactions, similarly to the the
visualization proposed by Carlhamre et al. [11]. However, this perspective was
not adopted as very far from their common vision of requirements and what they

Fig. 6. The Increment environment



INCREMENT for Regulatory Requirements 145

would like to manipulate. In particular, they wanted to manipulate the textual
documents they are used to read and analyze. The second proposition is based
on the IncrementGUI interface (Fig. 6 ), and is based on a requirements library
metaphor with a strong focus put on elements verbatim.

IncrementGUI layout had a "sufficient correctness", said differently, the pro-
totype was close enough of the industrial intuition of what the domain concepts
and the supporting tool should be. The prototype is currently under evaluation
regarding navigation and the basic CRUD (create, read, update, delete) features.

Though we had a domain formalization through the metamodel, acquired
from the documentation and domain experts, we also wanted to perform anal-
yses on this domain. In particular, we wanted to be able to search within our
documentation and ease the definition of topics or retrieve requirements. Due
to the textual nature of our model elements, these features were not possible at
the modeling level. However, information retrieval techniques for requirements
traceability offer such analysis capability. In next section, we propose to describe
our hybridization of MDE and IR for requirements analysis and traceability con-
cerns.

5 Hybridizing MDE and IR in the Tool

In a previous work [16], we presented the challenges to keep both a model and
a index synchronized in order to have a consistent use of information retrieval
on such requirements models. Basically, the main concept of indexing engines is
based around the Document, and its fields. Fields are textual entries that may
describe any property of the document, its verbatim among others, but without
any further semantics such as typing, structure, references, etc.

Fig. 7 describes the mapping we operated to perform the hybridization. The
Clusters of the Metamodel can be used as different indexes. Model element types
are stored as a field as well as TypedElement and DocumentModelElement at-
tributes. By the way, instead of slicing flat standard documents, we use the Con-
nexion model as root for a richer indexation, provided the elements attributes.

One major drawback of Information retrieval approaches, in particular, TF-
IDF similarity scoring, is the huge amount of false positives candidate links
that are generated [17]. In the literature, this is handled through the use of an
arbitrary cut-off value upon the document’s score below which, the document is
not considered as a valuable candidate link [18].

Fields inherited from the model, in particular type and classification, can be
used efficiently to filter the candidate link generation and remove inconsistent
document while searching this large amount of documents. In particular, our
metamodel defines not only requirements but a substantial set of different con-
cepts that are also indexed as they may provide contextual information upon
their neighbor requirements. With large requirement index such as we have, re-
moving inconsistent information from the expert further operation is crucial as
it prevents the expert from rejecting inconsistent (by construction) elements.

Table 2 presents the results of our experiments regarding the search space
reduction while leveraging the model information against a standard approach



146 N. Sannier and B. Baudry

Fig. 7. Hybridizing MDE and IR

with an empirically defined cut-off value (0.2). It proposes a comparison be-
tween a « standard » information retrieval TF-IDF similiarity scoring based on
a simple index (set of flat documents, without any information but the docu-
ments text) (left half) and the same scoring based on our model-based index
with richer information provided by the model (right half). In particular, the
table provides, respectively, the total number of retrieved documents, the num-
ber of candidate links (documents whose score are above the cut-off value), the
number of retrieved requirements and recommendations, and the proportion on
"noise" (documents that are not requirements or recommendations). The right
half proposes the number of retrieved documents and the number of require-
ments and recommendations using our model-based index. Finally we propose
an evaluation of our approach concerning the search space reduction against the
standard approach.

The cut-off value has a rather low impact on the "noise" removal. Worse, it
also cuts possible consistent elements, from a typing point of view. On the other
side, the model-based index does not remove these elements and also remove
the related noise (which are type inconsistent) and further reduced the research
space, compared to the standard approach, at an average 65% more. This tends
to show that our model-based pruning heuristic performs much better than an
arbitrary cutoff-value in our particular context.

6 Threat to Validity

External Threats. Our study is based on an empirical analysis and informal
industrial feedbacks on our work. However, we have not evaluated the consistency
and the adoption of the tool at a larger scale. We plan to extend this evaluation



INCREMENT for Regulatory Requirements 147

Table 2. Leveraging the Model’s Information to Reduce the Number of Candidate
Links

Standard Index (with a cutoff value) Model-based Index
query links candidates Rqts/Rcms % noise links Rqts/Rcms reduction
config. mngt. 438 221 72 67,42 106 106 52,04%
cmon. cause failure 602 154 17 88,96 115 115 25,32%
specification 668 576 216 62,5 216 216 62,5%
independence 102 64 14 78,13 14 14 78,13%
validation 404 347 96 72,33 96 96 72,33%
verification 555 445 169 62,02 171 171 61,57%
quality assurance 421 259 84 67,57 106 106 59,07%
defence in depth 141 81 8 90,12 14 14 82,72%
integration 280 237 65 72,57 65 65 72,57%
self supervision 125 92 25 72,83 25 25 72,83%
modification 271 214 70 67,29 70 70 67,29%
diversity 114 103 16 84,47 16 16 84,47%

with more formal and quantitative measures in a more advanced dissemination
phase.

Internal Threats. We progressively defined the metamodel according to our
interviews with experts and analysis of the domain. As our partners have no
experience in metamodeling, we have to manage this task and further empirically
validate it with them.

Construction Threats. The metamodel is still evolving. Factors of change we
identified can be biased with our partners’ MDE practice, though many factors
are known from the RE community. The metamodel evolution is more related to
adding new concepts or refining and organizing concepts. We have not observed
inconsistent concepts or associations. Our partners are highly experiences I&C
experts and they do know what concepts have to be defined and then refined.

7 Related Work

On Using Models and Indexes. To the best of our knowledge, there is no
existing work that proposes requirements traceability using information retrieval
that is based on a domain metamodel and its instances. Recently, Dumitru et
al. [19] or Tung et al. [20] mined Softpedia products information to propose en-
hanced recommending systems. These approaches mined static contents that do
not require further synchronization accordingly to a more changing and dynamic
model. Moreover, these approach did not address traceability but recommenda-
tions and were not concerned with the search space reduction issue but with
small and precise information.

On MDE Approaches for Requirements Modeling and Analysis. Apart
of the popular goal-oriented approaches such as KAOS [21], i* [22] that are



148 N. Sannier and B. Baudry

specification oriented, or URN [23] that has been recently standardized, more
domain specific modeling languages have been proposed. Some are based on
UML/SysML profiling. Panesar et al., in CRESCO, proposed a UML profil for
the certification task and was specific to the IEC 61508 standard [24]. In a
similar approach, Zoughbi et al. proposed a UML profile that was specific to
the requirements to code traceability within the DO-178B perspective [25]. In
a different context, de la Vara and Panesar proposed the metamodel SafetyMet
[3] and aimed to fit a more general purpose but was activity-driven. Helming
et al. [26,27] had different concern and dealt with requirements models version
management with EMFStore in Unicase. All these work did not take into account
the diversity of concepts and traceability issues that are contained in regulations.
They did not also embrace the global domain in the large, but focus, at most,
one specific standard, or very specific requirements analyses.

On Regulatory Requirements Analysis. About regulatory requirements and
compliance concerns, extensive studies had been done in healthcare domain and,
particularly around HIPAA. In [28], production rules are developed to translate
regulatory texts and formalize forms of legal knowledge and ambiguity. In [29],
the authors derive rights and obligations from HIPAA and compare different
stakeholders’ interpretations. In [30], specific legal statements from multiple ju-
risdictions are refined using a requirement specification language. Statements are
then neighbored and similar ones are organized to identify gaps, conflicts and try
to reconcile them. In [13], the authors focus on explicit external cross-reference
links and propose a legal cross-reference taxonomy. In [31], the authors use User
Requirements Notation (URN), a combination of NFR and i* frameworks and
use-case maps, to model both the regulation and a hospital business process. All
these works, however, did not consider regulatory requirements in the large but
focused, in the small, very specific aspects of a regulations such as privacy or
data breaches analyses.

On Requirements Traceability and Information Retrieval. Natural
language processing (NLP) and information retrieval approaches have been pre-
viously used for Requirements Analysis. At the system’s scale, it has been
pioneered by Sawyer et al. [32] within the REVERE project and distinguish
between requirements types. Kiyavitskaya et al. [33] use GaiusT to extract rights,
obligations, on both HIPAA and equivalent Italian regulations. It relies on text
decomposition in a parse tree. Cleland et al. [34,35,36] use NLP and probabilistic
techniques to trace regulatory requirements from HIPAA in several software ap-
plications. Leuser and Ott [37] also wanted to tackle requirements traceability in
large specifications in the automotive domain at Daimler, but leverage specifica-
tions in controlled natural language and already formalized domain knowledge.
Tackling the candidate link generation is a major issue in the IR community.
Niu and Mahmoud proposed to rely on clustering algorithm to sort between
good and bad quality clusters [17]. Our approach is based on a pre-processing
enrichment of the documents, synchronized with the model information and can
be seen as a complementary work.



INCREMENT for Regulatory Requirements 149

8 Conclusion

In this paper, we addressed the question of formalizing the regulatory require-
ments for the nuclear domain. In this domain, nuclear I&C engineer face a large
amount of regulatory and normative requirements as well as tacit practices. All
these requirements express multiple different concerns, scatter and hinder the
domain knowledge capitalization.

In the context of the CONNEXION project, we iteratively defined a meta-
model that defines the different domain concepts as well as its organization. We
proposed an Hybrid MDE/IR approach and a tool to assist engineers in the
quest for the domain navigation, manipulation, and analysis. We evaluated the
hybridization of MDE and IR in terms of non arbitrary candidate link search
space management. For the particular nuclear I&C domain, we have shown an
average 65% reduction of this search space, without having to rely on a cut-off
value.

As the CONNEXION goes on, our current work is on an improvement of the
definition in the metamodel of tacit (non written) requirements and practices.
We also plan to address the requirements variability inside such requirements
Metamodel. In particular, we want to address the meaning of regulatory require-
ments variability, find the good variability formalism and evaluate the impact of
requirements variability in terms of design rules validity and architecture design.

References

1. Otto, P.N., Antón, A.I., Baumer, D.L.: The choicepoint dilemma: How data brokers
should handle the privacy of personal information. IEEE Security & Privacy 5(5),
15–23 (2007)

2. Maxwell, J.C., Antón, A.I., Swire, P.: Managing changing compliance requirements
by predicting regulatory evolution. In: RE 2012, pp. 101–110 (2012)

3. de la Vara, J.L., Panesar-Walawege, R.K.: Safetymet: A metamodel for safety stan-
dards. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MOD-
ELS 2013. LNCS, vol. 8107, pp. 69–86. Springer, Heidelberg (2013)

4. RHWG, W.R.H.W.G.: Harmonisation of reactor safety in wenra countries. Tech-
nical report, WENRA (2006)

5. Sannier, N., Baudry, B.: Defining and retrieving themes in nuclear regulations. In:
RELAW 2012, pp. 33–41. IEEE (2012)

6. Johnson, G.: Comparison of iec and ieee standards for computer-based control
systems important to safety. In: IEEE Nuclear Science Symposium Conference
Record, vol. 4, pp. 2474–2481. IEEE (2001)

7. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in
industry. In: ICSE 2011, pp. 633–642 (2011)

8. Kamsties, E.: Understanding ambiguity in requirements engineering. In: Engineer-
ing and Managing Software Requirements, pp. 245–266. Springer (2005)

9. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security
requirements. IEEE Trans. Software Eng. 34(1), 5–20 (2008)

10. OMG: Documents associated with software assurance evidence metamodel (saem)
version 1.0 - beta 1, http://www.omg.org/spec/SAEM/1.0/Beta1/ (2010)

http://www.omg.org/spec/SAEM/1.0/Beta1/


150 N. Sannier and B. Baudry

11. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B.: och Dag, J.N.: An industrial
survey of requirements interdependencies in software product release plannin. In:
RE 2001, pp. 84–93 (2001)

12. Zhang, W., Mei, H., Zhao, H.: A feature-oriented approach to modeling require-
ments dependencies. In: RE 2005, pp. 273–284 (2005)

13. Maxwell, J.C., Antón, A.I., Swire, P.: A legal cross-references taxonomy for iden-
tifying conflicting software requirements. In: RE 2011, pp. 197–206. IEEE (2011)

14. Sawyer, P., Gervasi, V., Nuseibeh, B.: Unknown knowns: Tacit knowledge in re-
quirements engineering. In: RE 2011, p. 329 (2011)

15. Gotel, O., Morris, S.J.: Out of the labyrinth: Leveraging other disciplines for re-
quirements traceability. In: RE 2011, pp. 121–130 (2011)

16. Sannier, N., Baudry, B.: Toward multilevel textual requirements traceability using
model-driven engineering and information retrieval. In: MoDRE 2012, pp. 29–38
(2012)

17. Niu, N., Mahmoud, A.: Enhancing candidate link generation for requirements trac-
ing: the cluster hypothesis revisited. In: RE 2012, pp. 81–90. IEEE (2012)

18. Chen, X., Grundy, J.: Improving automated documentation to code traceability
by combining retrieval techniques. In: ASE 2011, pp. 223–232. IEEE Computer
Society (2011)

19. Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-
Herrera, C., Mirakhorli, M.: On-demand feature recommendations derived from
mining public product descriptions. In: Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE 2011, pp. 181–190. ACM, New York (2011)

20. Thung, F., Wang, S., Lo, D., Lawall, J.: Automatic recommendation of api methods
from feature requests. In: ASE 2013, pp. 290–300 (2013)

21. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley (2009)

22. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Requirements Engineering, RE 1997, pp. 226–235. IEEE (1997)

23. Amyot, D., Mussbacher, G.: User requirements notation: The first ten years, the
next ten years (invited paper). Journal of Software (JSW) 6(5), 747–768 (2011)

24. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.C.: A model-driven engineer-
ing approach to support the verification of compliance to safety standards. In:
ISSRE 2011, pp. 30–39 (2011)

25. Zoughbi, G., Briand, L.C., Labiche, Y.: Modeling safety and airworthiness (rtca
do-178b) information: conceptual model and uml profile. SOSYM 10(3), 337–367
(2011)

26. Li, Y., Narayan, N., Helming, J., Koegel, M.: A domain specific requirements model
for scientific computing. In: ICSE 2011, pp. 848–851 (2011)

27. Helming, J., Koegel, M.: Managing iterations with unicase. In: ICSE 2010,
pp. 313–314 (2010)

28. Maxwell, J.C., Antón, A.I.: Developing production rule models to aid in acquiring
requirements from legal texts. In: RE 2009, pp. 101–110 (2009)

29. Breaux, T.D., Antón, A.I., Doyle, J.: Semantic parameterization: A process for
modeling domain descriptions. TOSEM 18(2) (2008)

30. Gordon, D.G., Breaux, T.D.: Reconciling multi-jurisdictional legal requirements:
A case study in requirements water marking. In: RE 2012, pp. 91–100 (2012)

31. Ghanavati, S., Amyot, D., Peyton, L.: Towards a framework for tracking legal
compliance in healthcare. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007. LNCS, vol. 4495, pp. 218–232. Springer, Heidelberg (2007)



INCREMENT for Regulatory Requirements 151

32. Sawyer, P., Rayson, P., Garside, R.: Revere: Support for requirements synthesis
from documents. Information Systems Frontiers 4(3), 343–353 (2002)

33. Kiyavitskaya, N., Zeni, N., Breaux, T.D., Antón, A.I., Cordy, J.R., Mich, L., My-
lopoulos, J.: Automating the extraction of rights and obligations for regulatory
compliance. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231, pp. 154–168. Springer, Heidelberg (2008)

34. Cleland-Huang, J., Czauderna, A., Gibiec, M., Emenecker, J.: A machine learning
approach for tracing regulatory codes to product specific requirements. In: ICSE
2010, pp. 155–164 (2010)

35. Mirakhorli, M., Shin, Y., Cleland-Huang, J., Çinar, M.: A tactic-centric approach
for automating traceability of quality concerns. In: ICSE 2012, pp. 639–649 (2012)

36. Cleland-Huang, J., Heimdahl, M., Huffman Hayes, J., Lutz, R., Maeder, P.: Trace
queries for safety requirements in high assurance systems. In: Regnell, B., Damian,
D. (eds.) REFSQ 2011. LNCS, vol. 7195, pp. 179–193. Springer, Heidelberg (2012)

37. Leuser, J., Ott, D.: Tackling semi-automatic trace recovery for large specifications.
In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 203–217.
Springer, Heidelberg (2010)



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 152–167, 2014. 
© Springer International Publishing Switzerland 2014 

Systematic Elaboration of Compliance Requirements 
Using Compliance Debt and Portfolio Theory 

Bendra Ojameruaye and Rami Bahsoon 

University of Birmingham, UK 
{Beo136,r.bahsoon}@cs.bham.ac.uk 

Abstract. [Context and motivation] Eliciting compliance requirements often 
results in requirements, which might not be satisfied due to uncertainty and un-
availability of resources. The lack of anticipation of these factors may increase 
the cost of achieving compliance. [Question/problem] Managing compliance 
is an investment activity that requires making decisions about selecting the right 
compliance goals under uncertainty, handling the obstacles to those goals and 
minimising risks. [Principal ideas/results] (1) We define the concept of tech-
nical debt for managing compliance and we explore its link with obstacles to 
compliance goals. (2) We propose goal-oriented method and obstacles handling 
with a portfolio-based thinking for systematically managing obstacles and refin-
ing compliance goals. [Contribution]We use an exemplar to illustrate and eva-
luate the approach. The results show that our approach can provides analysts 
and compliance managers with an objective tool to assess and rethink their in-
vestment decisions when elaborating compliance requirements.  

Keywords: Compliance requirements, compliance debt, Economics-driven 
software Engineering. 

1 Introduction 

Compliance refers to an organization’s responsibility to operate in agreement with 
established laws, regulations, standards, and specifications [1]. Security requirements 
need to be aligned with the relevant laws and other prevailing regulations to control 
compliance and non-compliance issues; conversely, compliance is one of the driving 
factors for eliciting security requirements.  Though the correlation between com-
pliance and the likelihood of security breaches is unclear, data from Verizon’s PCI 
compliance report shows that organisations that suffered data loss, as a common ex-
ample of a security breach, were much less likely to be compliant. 

While compliance goals capture desired properties, obstacles to those goals capture 
undesirable ones, which are likely to cause situations of incompliance. The violation 
may place the system and the organisation at risk. Managing compliance is ultimately 
an investment activity that requires value-driven decision making – about selecting 
the right compliance goals and handling the obstacles to those goals for mitigating 
risks. Analysts and managers often disagree about decisions on how to invest limited 
resources into compliance goals that are crucial to the business sustainability as they 



 Systematic Elaboration of Compliance Requirements 153 

 

do not generate revenue and their value tends to be invisible. The value is usually 
questioned and the situation is aggravated in organisations that must balance very 
limited resources with requirements that have visible value chain.  It has been ac-
knowledged that the selection of requirements have an impact on the system’s success 
[1] [2]. Consequently, the choice of requirements selected and how obstacles to those 
requirements are resolved will significantly determine the extent to which the com-
pliance goals are achieved along with their cost and likely risks.  

The need to prioritise and resolve obstacles for the compliance goals is necessary 
to manage cost, create value, sustain the solution and reduce risk. Though it could be 
possible to use existing requirements prioritisation techniques to prioritise obstacles, 
such as the Analytical Hierarchy Process (AHP) [3] [4], these techniques do not clear-
ly include uncertainty and incomplete knowledge of the real world [5].  Factors such 
as minimising cost and risk generally have a higher impact on creating value [5]. The 
management of compliance goals and their obstacles handling shall anticipate for 
uncertainty, cost, incomplete knowledge, likely risks and the associated trade-offs.  

The novel contribution of this paper is as follows.  We introduce the concept of 
Compliance Debt. Compliance Debt is a form of a technical debt, which is result of 
neglected compliance when engineering requirements of software. We propose an 
economics-driven solution, which elaborates on the notion of obstacles handling in 
goal-oriented requirements engineering by using portfolio-based thinking and com-
pliance debt analysis to systematically manage compliance goals and their obstacles. 
This stems from the necessity to anticipate potential hindrances that may block the 
fulfilment of the compliance goals and to resolve those obstacles at the best cost with 
minimum risk, while accounting for uncertainty. In this context, we posit that ob-
stacles and their resolution decisions may introduce compliance debt that needs to be 
managed for creating value and mitigating risks. One way to reason about compliance 
debt in relation to goals and obstacles is to characterise it as the gap between what 
level of compliance can be achieved with the available resources and the hypothesised 
“ideal” environments, where the goals are successfully achieved. In addition, ob-
stacles which can be temporarily tolerated can be deemed as compliance debt, which 
needs to be managed for risk. In finance, a portfolio denotes a collection of assets 
(investments) by an investor, usually used as a strategy for minimising risk and max-
imising returns [6]. The goal of modern portfolio theory is to select the combination 
of assets using a formal mathematical procedure that can minimise risk for an ex-
pected level of return on investment while accounting for uncertainty of the real 
world. This can be applied to the process of managing compliance goals and obstacles 
management, where analysts make decisions on what compliance obstacles are most 
critical and likely to expose the business into risk. Likely risk will also inform in-
vestment decisions in handling the obstacles for compliance. Portfolio has been cited 
as one of the promising techniques for predicting and managing compliance debt in 
software engineering. Our portfolio-based approach determines the optimum selection 
of obstacles that needs to be managed for risks along with the compliance debt that 
can be tolerated. Combining goals and obstacles analysis with portfolio-based analy-
sis provide systematic means for elaborating compliance requirements, handling their 
obstacles and likely compliance debt. The approach is value driven, risk-aware, and 



154 B. Ojameruaye and R. Bahsoon 

 

systematic; it leverage on influential work in goal-oriented requirements and obstacles 
handling. It uses portfolio thinking to make the link between obstacles, risks and 
compliance debt explicit and transparent to compliance mangers and security re-
quirements engineers. The approach allocates resources to resolving obstacles as well 
as looks at their resolution tactics and the associated compliance debts, risk and value 
trade-offs. The objective is to inform the decision of investment in compliance, derive 
more realistic compliance requirements based on their economics, risks and com-
pliance debt. 

The remainder of this paper is organised as follows: Section 2 provides the motiva-
tion and background material on goal oriented requirement engineering, obstacles, 
compliance debt and portfolio management. Section 3 explores the link between 
compliance debt and obstacles and presents a modified obstacle analysis technique 
that integrates portfolio reasoning and compliance debt management. Section 4 eva-
luates the effectiveness of our approach using an example. Section 5 concludes the 
paper and explores directions for future work. 

2 Motivation and Related Work 

We refer to closely related work to motivate the need for our approach. We explore 
concepts, which are necessary for understanding our contribution.  

2.1 Managing Compliance Using Goal-Driven Requirement Engineering  

Organizations’ heavy reliance on information systems (IS) requires them to manage 
the risks associated with those systems. Today, risks related to information security 
are a major challenge for many organizations, since these risks may have dire conse-
quences, including corporate liability, loss of credibility, and monetary damage [7]. 
Ensuring information security compliance has become one of the top managerial 
priorities in many organizations [8]. The need for compliance arises when stakehold-
ers establish that there is a need to operate in agreement with established laws, regula-
tions, standards, and specifications [9] so as to protect themselves from any risk, cost 
or loss of value involving the consequences of non-compliance. Compliance goals 
express this need, describing the risk to be prevented. It is vital to elicit from these 
regulations and standards, prioritised information security compliance requirements 
that can be satisfied with the available resources. These requirements shall respond 
stakeholders’ needs.  

Compliance requirements can be considered as non-functional or quality require-
ments. These requirements do not have simple true or false satisfaction criteria; rather 
their level of satisfaction can vary [10]. Although compliance requirements are crucial 
to the business sustainability, they do not have clear link to revenue generation. Hen-
ceforth, the benefits and returns of compliance investments are difficult to compre-
hend and visualize. The value is usually questioned and the situation is intensified in 
projects that must balance very limited resources. Satisfying a compliance require-
ment can depend on the risk value attached to not complying with that requirement. 



 Systematic Elaboration of Compliance Requirements 155 

 

Furthermore, compliance is difficult to measure as it can crosscut many concerns 
within a system. This makes the measurement for compliance hard to simplify and 
bound the problem space. Furthermore, compliance involves a dynamic mix of chang-
ing regulations, interaction between different stakeholders in the organisation. Anoth-
er challenge, which faces compliance managers is ensuring that the specified  
compliance requirements are neither too idealist nor too weak with respect to business 
goals [11] as well as finding trade-offs between achieving compliance requirements 
and the available resources.  

Goal-orientation is a widely used approach for managing requirements [11]. Van 
Lamsweerde [12] presented a detailed study of Goal-oriented requirements engineer-
ing. A goal is an objective or a “statement of intent that a system should satisfy” [12] 
and requirements are represented in the form of goals.  Goals range from high-level 
business objectives, to well-defined compliance properties. Agents are components, 
which are capable of performing operations to satisfy goal [11]. In requirement engi-
neering, goal driven approaches focuses on why the system needed, expressing the 
justification for a specific requirement. 

While goals capture the objectives to be satisfied, obstacles capture undesired 
properties that may prevent the goal from being satisfied [13] [11]. An obstacle ob-
structs a goal if the obstacle negates the goal in the domain [13]. 

There is need to apply proven requirement engineering methods and demonstrate 
how best to apply these methods within the context of analysing legal regulatory re-
quirements. Requirements for compliance are derived from a variety of sources and 
the need to include security policies among those information sources has been rec-
ognized as important [14]. Researchers have investigated different methods for ana-
lysing security requirements using goals [15] [16], with more recent work focusing on 
the extraction of requirements from security policies [14] [17]. The work of Anton 
and Breaux [14] takes this further by systematically extracting rights and obligations 
from legal texts. These techniques recognise the need to manage compliance require-
ments; however, none of these attempts to have linked compliance to value creation 
under uncertainty.  

An important contribution is the work of Burgemeestree et al [18], they discussed 
how value-based augmentation theory can be applied to formalising compliance deci-
sion. This approach models a control system and the justification for compliance deci-
sions/choosing control in a state transition diagram. It operationalizes legislations into 
control objectives and identifies the control measures. This approach also takes into 
account the organisational context of the legislation. Although this approach helps to 
formalise compliance decisions, it does not present a value-based approach for man-
aging uncertainty  

2.2 Portfolio Management and Requirements 

Modern Portfolio theory [19] was introduced in 1952 by Harry Markowitz. The goal 
of modern portfolio theory is to select the combination of assets using a formal ma-
thematical procedure that can minimise risk for an expected level of return on invest-
ment while accounting for uncertainty of the real world.  In finance, a portfolio  



156 B. Ojameruaye and R. Bahsoon 

 

denotes a collection of weighed compositions of assets (investments) by an investor, 
usually used as a strategy for minimising risk and maximising returns. 

Portfolio theory attempts to show the benefits of holding a diversified portfolio of 
risky assets rather than assets selected individually. The theory can also assist in de-
termining the optimal strategy for diversification of assets to minimise risk and max-
imise return. This is can be linked to the process of analysing compliance obstacles, 
where analysts make decisions on which obstacles should be resolved given a certain 
amount of resources for minimum risks.  

In modern portfolio theory, the risk of a portfolio RP is determined by the individu-
al risks associated with each asset R1, the weight of each asset in the portfolio W1 and 
the correlations between the assets PIJ. These correlation coefficients range from -1 (a 
perfectly negative correlation between the two items) to +1 (a perfectly positive corre-
lation and 0 indicates no relationship between the items.  ∑ 1 1  ∑ ∑                   (1) 

The link between selection of requirements and market value using portfolio has 
been first explored by [5]. They proposed market driven, systematic, and more objec-
tive approach to supplement the selection of requirements, which accounts for uncer-
tainty and incomplete knowledge in the real world using portfolio reasoning [5]. Our 
use of portfolio is different: We identify an optimal portfolio of obstacles to be re-
solved along with their resolution tactics. We employ the analysis on the gaol and 
elaboration levels. We explicitly look at linking compliance goals and their resolu-
tions to risk and compliance debt. 

2.3 Technical Debt, Compliance Debt, Obstacles and Portfolio 

Cunningham used the Technical debt metaphor in his 1992 report [4] to describe a 
situation in which long-term code quality is traded for short-term gain. The link be-
tween technical debt and financial analysis using portfolio analysis has been explored 
[20], Seaman et al. discussed four decision approaches to deal with Technical debt: 
Cost-Benefit Analysis, Analytic Hierarchical Process (AHP), Portfolio Management 
Model and Options. In addition, [21] proposed an approach using portfolio theory to 
diversify the allocation of web services in the cloud. However, none of the available 
work has looked at compliance debt as a type of technical debt in compliance man-
agement and goal-obstacles analysis for compliance. The concept of linking com-
pliance debt as types of technical debt to compliance goals and their obstacles using 
portfolio thinking is novel. We identify an optimal portfolio of obstacles to be re-
solved. We then quantify the likely compliance debt that may be incurred by selecting 
different obstacle resolution tactics when elaborating compliance goals and under-
standing the link to value.  



 Systematic Elaboration of Compliance Requirements 157 

 

3 Analysing Compliance Obstacles Using Portfolio Reasoning 
and Compliance Debt. 

Brown el al. opined that “like financial debt, compliance debt incurs interest pay-
ments in the form of increased future costs owing to earlier quick and dirty design and 
implementation choices” [22].  The term compliance debt has been developed broad-
ly and has covered wider aspects associated with the overall systems development life 
cycle.  

Unlike previous work, we introduce a new dimension of using compliance debt as 
a decision factor for elaborating and managing compliance goals through obstacles 
handling. We incorporate compliance debt analysis at the goal refinements and ob-
stacles resolution levels. While compliance goals capture desired objectives, obstacles 
to those goals capture undesirable properties that may obstruct those goals, which are 
likely to cause situations of incompliance. The violation may place the system and the 
organisation at risk. Compliance debt can inform the obstacle analysis process and the 
decision for investing in resolving obstacles at early stages of the requirements and 
the goal definition and elaboration lifecycle. Our objective is to avoid inappropriate 
selection of obstacles resolution decisions that are not value- and risk-driven and 
debt-aware. The key principle here is to tackle and manage the increased and unjusti-
fied compliance debt, which can be associated with the selection and consequently the 
inappropriate resolution tactics of the compliance obstacles, expressed in risk, cost 
and value. We assume that compliance debt can vary with the different obstacle reso-
lution tactics that can be used for realising compliance. Each tactic can deliver its own 
trade-offs for risk, value, cost and compliance debt reduction.  

3.1 Reasoning of Compliance Debt in Handling Obstacles for Compliance 

We now define relationship between obstacles and compliance debt more precisely; 
the integration of compliance debt and portfolio reasoning as an obstacle analysis and 
resolution method is then discussed. We suggest a predictive approach for anticipat-
ing and managing compliance debt at the goal refinements and obstacle analysis stag-
es. A predictive approach can be applied during the early stages of the engineering 
process to predict the debt, its impact on compliance, when it will be incurred, when it 
will pay off, and the interest if any. Classical approaches to managing compliance 
debt in software development lifecycle tend to be retrospective. Unlike retrospective 
approaches, predictive approaches allow planning. 

Compliance debt in compliance management can be traced back to requirements – 
the way requirements are engineered, elicited, selected, prioritised and analysed. 
Compliance is difficult to measure as compliance policies are often open to different 
interpretations and are subjective. This makes it difficult to simplify and bound the 
problem space. Compliance involves a dynamic mix of changing regulations and lack 
of insight into historical performance of security operations as well as the interaction 
between different stakeholders in the organisation. As a result, the solutions chosen to 
aid compliance may not completely meet the requirements.  Fixes may be required 



158 B. Ojameruaye and R. Bahsoon 

 

reengineer the solution to better meet requirements or compliance will be required 
introducing compliance debt that needs to be managed. This particularly makes the 
process of goals elaboration for compliance through obstacles resolution prone to 
compliance debt. Compliance debt can be linked to the resolution tactics used and 
their appropriateness, resources used, expertise, etc. Moreover, the absence of histori-
cal performance data, metrics and benchmarks for compliance makes managing and 
assessing compliance, resolving obstacles for compliance a mere difficult exercise. 
The trial and error handling of the process can introduce unnecessary compliance debt 
in situations when the costs of managing compliance (capital and operational costs) 
tends exceed that of the generated value and the risk tends to prevail. Furthermore, 
compliance debt can occur accidentally when poor and quick decisions for managing 
and resolving obstacles for compliance may add a value in the short-term but can 
introduce long-term debt. Compliance debt may be intentionally incurred when cor-
rective measures for compliance becomes unavoidable.  

One way to understand compliance debt in relation to goals and obstacles is to cha-
racterise it as the gap between what can be achieved with the available resources and 
the hypothesised “ideal” environments, where the goals are successfully achieved.  
Uncertainty about whether or not a decision is appropriate or will have an associated 
penalty may incur a compliance debt. In this sense, compliance debt can be consi-
dered as a particular type of risk; the problem of managing compliance debt boils 
down to managing risk and making informed decisions [20]. Obstacles resolution 
decisions are examples of these decisions. Obstacles can be resolved by generating 
alternative resolutions and selecting one resolution among the different alternatives. 
Compliance debt may also occur when the obstacle is tolerated and nothing is done to 
completely resolve the obstacles and consequently the likely risks.  If the risk mate-
rializes, the system may accumulate interest signalling debt. We can attribute com-
pliance debt in obstacle analysis to different obstacle resolution tactics, this can also 
be seen as the cost of reducing or tolerating the obstacle to the cost of eliminating that 
obstacle. We can manage compliance debt at the obstacle level by switching from one 
obstacle resolution alternative to another, while considering cost, risk and value. 

3.2 Portfolio-Based Approach for Managing Compliance Debt 

We now examine the integration of portfolio reasoning and compliance debt in ob-
stacle analysis and resolution. Once obstacles have been identified, they need to be 
assessed and prioritised. We assert that the risk value of an obstacle is the product of 
the likelihood of the obstacle occurring and its criticality. We describe an approach 
for allocating resources for resolving obstacles as well as selecting the obstacle reso-
lution tactic by considering the amount of compliance debt that each obstacle may 
incur and the interest that might accumulate as the deciding factors.  

Consider a compliance goal that has been specified and its obstacles have already 
been identified, the basic steps of our value and risk-aware approach for elaborating 
the compliance requirements can be stated as follows:  

• Prioritise Obstacles that Needs to be Resolved: The fundamental component of 
this approach is to put the obstacles in a “list”. Each item includes the obstacle, the 



 Systematic Elaboration of Compliance Requirements 159 

 

goal it obstructs, and estimates of the expected interest amount and interest probabili-
ty as well as an estimate of the principal. The principal refers to the cost required to 
completely resolve the obstacle, the interest probability refers to the likelihood that 
the obstacle will occur and the interest amount is the extra cost that will be required if 
this obstacle is not resolved as well as the cost of the consequence. Since it is uncer-
tain that extra cost will be required, we use expected interest amount and interest 
probability to capture the uncertainty. Every obstacle has a risk value. We can priori-
tise the obstacles by quantifying the risk value of the obstacles. The value of an ob-
stacle is the product of the likelihood of the obstacle occurring and the criticality. 

 RO = IP * IA (2) 

 VO= P * IP * IA (3) 

Where Ro is the risk value of the obstacle, VO is the value of the obstacle, P is the 
principal; IP is the likelihood that the obstacle will occur and IA the extra cost that will 
be needed if this obstacle is not resolved as well as the cost of the consequence. For 
simplicity, these (P, IP , IA) are assigned values of high (3), medium (2), or low (1). 
Initially, when a debt item is created, the principal, expected interest amount, interest 
standard deviation and correlations with other debt items can be estimated subjective-
ly according to the maintainer’s experience. These rough estimates can be adjusted 
later using historical data. Historical effort data can be used to achieve a more accu-
rate estimation as the more accurate and detailed the data is, the more reliable the 
approach.  

• Determine the Weight of Each Asset in the Portfolio: Some obstacle may be re-
solved to a certain degree but may not fully. In order to optimize the global risk of the 
portfolio and find the optimum solution, we need to find how much weight should be 
invested in resolving each obstacle to construct a low risk portfolio. This can be cal-
culated using a non-linear optimisation technique or the AHP [3]. 

• Determine the Correlation Coefficient: Since we will apply the Modern Portfolio 
Theory model to decision making in selecting and prioritising the obstacles, we need 
to include “correlations with other debt items” as a property to be estimated. We use 
the idea of correlation coefficients to represent the correlation between two obstacles, 
these correlation coefficients range from -1 (a perfectly negative correlation between 
the two items) to +1 (a perfectly positive correlation). For simplicity, we speculate 
that the correlation coefficient would be either1, 0, or -1 for most pairs of the ob-
stacles. For more accurate analysis, the correlations could be determined through 
dependency analysis. 

•Evaluate the Portfolio of Obstacles to be Resolved: Since compliance require-
ments do not have simple true or false satisfaction criteria; but are satisfied up to a 
level [10], we can determine how well the obstacles to a goal needs to be resolved 
with the available resources. With the measurements of the value of the obstacles as 
described above, all input information for the portfolio approach is ready.  We can 
start making decisions using the portfolio approach. Each obstacle O1 has a risk value 
R1, a cost P1 and W1 as the weight of the obstacle. Based on these values, we can then 



160 B. Ojameruaye and R. Bahsoon 

 

decide on how many instances of the obstacles to the goal need to be resolved so that 
global risk of the goal being obstructed is reduced.  ∑ Ep 1                                     (4)  ∑ 1 1  ∑ ∑                     (5) 

• Evaluate and Select the Best Resolution Tactic: Evaluating and selecting the best 
resolution tactic is a core activity for resolving the obstacles in the compliance re-
quirement elaboration process. We evaluate the resolution alternatives by considering 
the amount of compliance debt that each resolution tactic may incur as the deciding 
factor. We calculate and assign the compliance debt of each alternative, so that the 
sum of the alternatives is 1. 
• As with selecting the obstacles, we put the resolution tactics in a “list”. This con-
tains items, each of which represents an obstacle resolution tactic for resolving a spe-
cific obstacle. Each item includes the goal, the obstacle which it is meant to resolve, 
the resolution tactic, an estimate of the principal, estimates of the expected interest 
amount and interest probability. The principal refers to the cost required by the reso-
lution tactic; the interest is the extra cost that will be needed if this resolution tactic 
does not fully mitigate the risk of the obstacle as well as the cost of the consequences. 
For simplicity, these (principal, interest probability, and interest amount) are assigned 
values of high (3), medium (2), or low (1).  
• We formulated the value of the resolution tactic using the following equation:  

 RT = P * IP * IA   (6) 

Where RT is the cost of the resolution tactic, P is the principal, IP is the interest 
probability and IA is the interest amount.  
• From our earlier explanation of the compliance debt metaphor in relation to goals 
and obstacles as the gap between what can be achieved with the available resources 
and the hypothesised “ideal” environments where the goals are successfully achieved.  
We formulate the value of the compliance debt using (6): 

 TD = IRT – RT (7) 

Where TD is the compliance debt, IRT is the cost of an “ideal” resolution tactic and 
RT is the cost of the selected resolution tactic. The ideal value is context dependent. 
The ideal value is application and business dependent. Assuming security engineers 
and architects voted for Tactic IR as the ideal resolution tactic. TD for any other tactic 
is calculated as the gap between value of tactic k (IRT) and the value of the tactic in 
question.  

This technique provides decision makers with a metric for reasoning about com-
pliance debt in conjunction with obstacle resolution tactics. The process of goal  
refinement and elaboration through obstacle analysis and handling is iterative and 
continuous. Our technique can inform the decision for further refinements for com-
pliance and the need for further resolutions of the obstacles for managing debt.  



 

 

The metric can also inform
resolution processes. Using
ed value and cost in the hea

4 Illustrative Exam

We use a hypothetical case
approach. We describe the 
ty compliance through obs
extend on the goal elaborat
and compliance debt can 
security requirements. The
shows the goal tree and o
achieved. Blue parallelogr
obstacles obstructing thos
refinement as any of obstac
nario for the simplicity of e
which prohibits personal da
cloud computing, the user 
hence this becomes a poten

 

Fig. 1. Po

 
Identifying Compliance O
data” goal from the goal mo

 

Ta

Goal  O
Achieve [Store Per-

sonal Data in United 
Kingdom] 

D
Uni

S
prov

Systematic Elaboration of Compliance Requirements 

m the desirable stopping criteria for the refinements 
g compliance debt and portfolio thinking, we put risk, a
art of refinements and elaboration process.  

mple 

e referred to as SmartBank to exemplify and evaluate 
steps for managing compliance debt in engineering sec
stacle analysis and goal refinements for SmartBank. 
tion for SmartBank [23]. We describe how portfolio the
assist the process of resolving obstacles and elaborat

e initial goal model is shown in Figure 1. The goal t
obstacles that may prevent the security goal from be
rams show the goals and green parallelograms are 
se goals. Hexagons represent agents. We assume O
cles can obstruct the compliance goal. Looking at one s
exposition, SmartBank is bound by the data protection 
ata from being stored outside its country of operation. W
has very little knowledge about where the data is stor
tial obstacle. 

ortion of the goal elaboration for Smart Bank 

Obstacles: - Table 1 shows an obstacle to the “locality
odel in figure 1 

able 1. Obstacles to Achieving Goal 1 

Obstacle  Agent  
Data centre not located in the
ited Kingdom 
Subcontracting to another cloud
vider as a backup plan 

Cloud Provider  

161 

and 
add-

the 
uri-
We 

eory 
ting 
tree 
eing 
the  

OR-
sce-
 act 

With 
red; 

 

y of 



162 B. Ojameruaye and R. Bahsoon 

 

In this table, the cloud provider (agent) is shown to be responsible for the goal of 
storing data within the United Kingdom. We have thereby obtained the obstacles to 
this goal of storing data in the United Kingdom. In defining this obstacle, we took into 
consideration that cloud providers generally do not specify where the data will be 
stored. 

Assessing and Selecting the Obstacles Using Portfolio Theory: Once obstacles 
have been identified, they need to be assessed, prioritised and be allocated with re-
sources for resolving them. We can prioritise the obstacles by quantifying the risk 
value of the obstacles. The value of an obstacle is the product of the likelihood of the 
obstacle occurring and the criticality. In order to optimize the global risk of the port-
folio and find the optimum solution, we calculated how much weight should be in-
vested in resolving each obstacle to construct a low risk portfolio. This is calculated 
using their relative risk value in an optimisation algorithm. These weights imply that 
we will be able to construct the minimum risk portfolio for resolving the obstacles by 
allocation x-unit of resources. For this example, we assume no correlations between 
the obstacles.   ∑ 1 1                                (8) 

Table 2. Obstacle Analysis 

 
 
Assuming we have 9 units of resources available for resolving the obstacle, we can 

either decide to resolve the obstacles based on their priority using AHP (3) or their 
cost. If the obstacles to be resolved are selected based on their AHP priority, we will 
allocate the 9 units of resources to the resources with the highest priorities. Using this 
approach, we will be left with a combined risk of 18.2% for the obstacles not resolved 
(i.e. we resolved the obstacle by doing nothing).   

On the other hand, if the obstacles to be resolved are selected based on their cost, 
we will allocate the 9 units of resources to the cheapest obstacles to resolve. Using 
this approach, we will be left with a risk of 18.2% for the obstacle not resolved.  

Obstacle Likelihood Crit icality 
Risk 

Value R1 (%)
Cost / 

Principal

Optimum 

Weights % 
(W1) 
(AHP)

Amount to 

be invested
Loss of 

governance 1 3 3 9.09 1 0.06 0.54

Malicious 

Insiders 1 3 3 9.09 2 0.06 0.54

Incomplete 

data delet ion 3 2 6 18.18 1 0.16 1.45

Locality of 

data 3 3 9 27.27 2 0.40 3.59

Shared 

technology 
issue 3 2 6 18.18 3 0.16 1.45

Data Loss or 

leakage 2 3 6 18.18 3 0.16 1.45

Portfol io 
Risk Value 12.01%



 Systematic Elaboration of Compliance Requirements 163 

 

From the results allocation process in table 2, It can be concluded that portfolio 
based approach has the minimum risk profile (12.01%)  because it utilizes the concept 
portfolio to diversify the allocation of resources to resolving the obstacles instead of 
resolving just some of the obstacles based on priority alone. 

Instead of focusing the investment on resolving some of the obstacles, the ap-
proach spreads the investment into a portfolio of multiple obstacles. The diversifying 
process is a risk mitigating strategy. This is believed to be a powerful risk mitigating 
strategy in situations where analysts and compliance managers lack the experience 
and make ad hoc decisions, which fail to justify the choice of obstacles to be resolved 
under uncertainty. In such context, the conclusion would have been different if portfo-
lio was not in use: the analyst may have focused the investment on prioritised ob-
stacles that may be driven by cost, time, risk profile and resources. The result from 
the portfolio analysis process shows that the new global risk of portfolio is 12.01% 
when resolving the obstacles based on the optimal weight of the available resources. 

Resolving the Obstacles: To resolve the “locality of data” obstacle, we have  
catalogued different obstacle resolution tactics. We have explored some potential 
resolutions to this obstacle. We have listed different resolution in order to guide the 
selection of the preferred resolution tactic as illustrated in Table 3. Once a resolution 
tactic has been selected, we probed further for possible obstacles and new resolution 
tactics for this obstacle. We report on an iteration of this process.  

Table 3. Resolving the Compliance Obstacle Data-centre not located in the United Kingdom 

Goal: Achieve [Store Personal Data in United Kingdom] 

Obstacles:   Data-centre not located in the United Kingdom 

The cloud provider subcontracting to another provider as a backup plan 

Resolution Strategies 

Goal Substitution None because the obstructed goal is essential 

Agent Substitution Store and process personal data in-house 

Assign the responsibility of  obstructed goal to trusted cloud platform 

Obstacle Prevention Avoid the obstacle by negotiating terms and conditions with cloud provider   

Obstacle Reduction Reduce the obstacle by getting a US-EU safe harbor certification that will allow 

data to be stored in a wider area  

Goal Weakening Relaxing the requirements to include storing of data in the EU as this is covered 

by the Data Protection Act.  

Goal Restoration and Obstacle

Mitigation 

 These include the requirement to alert the organization when that won’t be able 

to store the data in the United Kingdom. 

Obstacle Tolerance – Do Noth-

ing  

Do nothing  

 
Our objective is to use compliance debt as risk metric for informing the resolution 

process for this obstacle. We calculate and assign the compliance debt of each alterna-
tive, so that the sum of the alternatives is equal 100%. P is the relative cost of the 
resolution tactics. For this example, we assume that ideal value is the tactic with the 
least risk value.  



164 B. Ojameruaye and R. Bahsoon 

 

Table 4. TD for Resolving the Compliance Obstacle 

 
 
In table 4, we can see that the ideal solution with the lowest risk has the highest 

principal. If we decide that we only have 2units of resources to spend on resolving 
this obstacle, the next best resolution tactic will be tactic 1 has it incurs the lowest 
compliance debt of 4% for using 2units. Likewise if we decide that we only have 1 
unit of resources to spend on resolving this obstacle, the next best resolution tactic 
will be tactic 6 has it incurs the lowest compliance debt of 13% for using 1 unit. 

We have now applied the technique described in the previous section. The main 
objective of the approach is to improve compliance by reducing the risks associated 
with goals obstruction through a diversified portfolio. The compliance debt metric 
provides better insights on the significance of a tactic in mitigating risks given the 
resources in hand. This is calculated as the gap between the values of tactic in ques-
tion relative to the ideal tactic for resolving this obstacle. As investing in the ideal 
tactic is not always affordable, the metric is an expression for the risks tolerated if this 
tactic is chosen. It also expresses the likely consequences if the risk materialises. This 
analysis provides analysts and compliance managers with a powerful and objective 
tool to assess and rethink their investment decisions in elaborating compliance 
 requirements. The use of compliance debt metric had made both the short term and 
long term risk visible in the selection and allocation process. 

Resolution Tactic P IP IA Value 
Risk 
Value Risk % TD% 

 Store and process personal 
data in-house 2 1 2 4 2 7% 4% 

Assign the responsibility of 
obstructed goal to trusted cloud 
platform 3 1 1 3 1 3% 0% 

 Avoid the obstacle by nego-
tiating terms and conditions with 
cloud provider   2 1 3 6 3 10% 13% 

Reduce the obstacle by getting 
a US-EU safe harbour certifica-
tion that will allow data to be 
stored in a wider area  2 2 2 8 4 14% 22% 

Relaxing the requirements to 
include storing of data in the EU 
as this is covered by the Data 
Protection Act.  2 2 2 8 4 14% 22% 

The requirement to alert the 
organisation when that won’t be 
able to store the data in the Unit-
ed Kingdom. 1 3 2 6 6 21% 13% 

 Do nothing  1 3 3 9 9 31% 26% 



 Systematic Elaboration of Compliance Requirements 165 

 

5 Discussion and Limitations 

Reflecting on the application of the method, we discuss its limitations and threats to 
validity of what has been observed in section 4. The main objective of the approach is 
to improve compliance by reducing the risks associated with goals obstruction 
through a diversified portfolio. The compliance debt metric provides better insights 
on the significance of a tactic in mitigating risks given the resources in hand. This is 
calculated as the gap between the values of tactic in question relative to the ideal tac-
tic for resolving this obstacle. As investing in the ideal tactic is not always affordable, 
the metric is an expression for the risks tolerated if this tactic is chosen. It also ex-
presses the likely consequences if the risk materialises. This analysis provides ana-
lysts and compliance managers with a powerful and objective tool to assess and re-
think their investment decisions in elaborating compliance requirements. The use of 
compliance debt metric had made both the short term and long term risks visible in 
the selection and allocation process. Further empirical investigation and application of 
the method to an extended real case is required to confirm the validity of these claims. 

Portfolio theory is a well-accepted concept for diversifying risk; it is well grounded 
in theory. The framework presented here although useful, has its limitations. Analys-
ing the portfolio depends on identifying threats and estimating their likelihood. This 
approach assumes sufficient awareness and experience of compliance standards which 
are related to the case. Furthermore it assumes that stakeholders are confident enough 
to anticipate the probabilities and the likely risks involved. Nevertheless, anticipating 
risks is rather a subjective exercise, which can be biased to the perspective and the 
experience of the stakeholders involved. Consequently, due to the different variables 
that might be estimated in a subjective way; this approach can only provide a best-
case portfolio rather optimal portfolio.  

The exemplar has looked at an aspect of security compliance, its goals and sub-
goals to illustrate the feasibility of the approach. In the practice, the modelling tends 
to be complex involving many security goals and inter-dependencies between the 
goals. Though the goal modelling is inherently scalable to accommodate for such, 
completeness of the refinements process and the number of iterations tend to vary 
with the expertise and knowledge of the domain experts involved. Consequently, the 
mode of application and the quality of the results tends to vary. This is subject for 
future investigation. 

Standards tend to change by time. Though the current exemplar does not explicitly 
cater for change and evolution of compliance, the prioritisation process assumes the 
considered requirements provide baseline for realising compliance at that specific 
time. However, the same process can be reiterated with any incoming requirements 
and changes in compliance standards. 

In this example, the correlation between the obstacles was assumed to be zero. This 
does not cater for the dependencies and how resolving an obstacle will affect the reso-
lution of other obstacles and the constructed portfolio. 

In practice, software like any other system shall be subject to continual review and 
audit for compliance. Though it is not widely adopted practice for periodically audit-
ing software for compliance, the compliance debt metric and the approach can  



166 B. Ojameruaye and R. Bahsoon 

 

provide useful input and support to the process. Beyond what we have reported in the 
exemplar, it would be interesting to see how real life scenarios can leverage on the 
reported approach to motivate and inform the auditing process. 

6 Conclusion 

Our working hypothesis is that goal refinement and obstacle resolution for com-
pliance may introduce compliance debt that needs to be managed for mitigating risks.  
We have explored the link between obstacles and compliance debt when managing 
compliance. We have proposed a portfolio-based approach to quantify the compliance 
debt and risk for compliance. The approach can determine the candidate obstacles that 
need to be managed along with the compliance debt and risks that can be tolerated. 
Our technique is integrated into existing methods for handling obstacles in goal-
oriented requirements engineering with the aim of managing trade-offs and deriving 
more realistic compliance requirements based on their economics, risks and com-
pliance debt.  We have illustrated the approach using an example. The process goal 
refinement and elaboration through obstacle analysis and handling is iterative and 
continuous. Our future work will look at how compliance debt can be further  
estimated and used as a metric to inform stopping criteria and further refinements, 
elaborations and resolution of obstacles hindering compliance. We will also look at 
including correlation coefficient as a property to be estimated for the portfolio and 
determining the correlations between the obstacles through dependency analysis.  

References  

1. Jansen, W., Grance, T.: Guidelines on Security and Privacy in Public Cloud Computing. 
In: National Institute of Standards and Technology (2011) 

2. Lubars, M., Potts, C., Richter, C.: A Review of the State of the Practice in Requirements 
Modelling. In: IEEE International Symposium on Requirements Engineering, pp. 2–14 
(1993) 

3. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. In: Proceedings of 
the Conference on the Future of Software Engineering, pp. 4–11 (2000) 

4. Saaty, L.: The Analytical Hierarchy Process. McGraw-Hill (1980) 
5. Karlsson, J., Olsson, S., Ryan, K.: Improved Practical Support for Large-scale Require-

ments Prioritising. Requirements Engineering 2(1), 51–60 (1997) 
6. Sivzattian, S., Nuseibe, B.: Linking the Selection of Requirements to Market Value: A 

Portfolio-Based Approach. In: Proceedings of 7th International Workshop on Require-
ments Engineering: Foundation for Software Quality (2001) 

7. Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetro, A.: Using tech-
nical debt data in decision making: Potential decision approaches. In: 2012 Third Interna-
tional Workshop on Managing Technical Debt (MTD), pp. 45–48 (2012) 

8. Benbasat, I., Cavusoglu, H., Bulgurcu, B.: Information Security compliance: An empirical 
study of rationality-based beliefs and information security awareness. MIS Quarterly,  
523–548 (2010) 



 Systematic Elaboration of Compliance Requirements 167 

 

9. Ransbotham, S., Mitra, S.: Choice and Chance: A Conceptual Model of Paths to Informa-
tion Security Compromise. Information Systems Research 20, 121–139 (2009) 

10. Haley, C., Laney, R., Moffett, J., Nuseibeh: Security Requirements Engineering: A 
Framework for Representation and Analysis. IEEE Transactions on Software Engineer-
ing 34, 133–151 (2008) 

11. Duboc, L., Letier, E., Rosenblum, D.: Systematic Elaboration of Scalability Requirements 
through Goal-Obstacle Analysis. IEEE Transactions on Software Engineering 39, 119–140 
(2013) 

12. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Pro-
ceedings of 5th IEEE International Symposium on Requirements Engineering,  
pp. 249–263 (2001) 

13. Letier, E., Lamsweerde, A.: Handling Obstacles in Goal-Oriented Requirements Engineer-
ing. IEEE Transactions on Software Engineering, Special Issue on Exception Han-
dling 26(10), 978–1005 (2000) 

14. Breaux, T., Anton, A., Vail, M.: Towards Compliance: Extracting Rights and Obligations 
to Align Requirements with Regulations. In: 14th IEEE International Conference on Re-
quirements Engineering, pp. 49–58, 11–15 (2006) 

15. Giorgini, P., Mylopoulos, J., Massacci, F.: Modelling Security Requirements through 
Ownership, Permission and Delegation. In: Proceedings of the 13th IEEE International 
Conference on Requirements Engineering, pp. 167–176 (2005) 

16. Van Lamsweerde, A.: Elaborating security requirements by construction of intentional an-
ti-models. In: Proceedings of 26th International Conference on Software Engineering,  
pp. 148–157 (2004) 

17. May, M., Gunter, C., Lee, I.: Privacy APIs: Access Control Techniques to Analyse and 
Verify Legal Privacy Policies. In: 19th IEEE Computer Security Foundations Workshop, 
pp. 13–97 (2006) 

18. Burgemeestre, B., Hulstijn, J., Tan, Y.: Value-Based Argumentation for Justifying Com-
pliance. In: Governatori, G., Sartor, G. (eds.) Deontic Logic in Computer Science,  
pp. 214–228. Guido Governatori (2010) 

19. Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. John Wi-
ley & Sons, New York (1957) 

20. Guo, Y., Seaman, C.: A Portfolio Approach to Technical Debt Management. In: Proceed-
ings of the 2nd Workshop on Managing Technical Debt, MTD 2011, pp. 31–34 (2011) 

21. ALRebeish, F., Bahsoon, R.: Risk-Aware Web Service Allocation in the Cloud Using 
Portfolio Theory. In: Proceedings of the 2013 IEEE International Conference on Services 
Computing, pp. 675–682 (2013) 

22. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, 
A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K.: Zazworka. N.: Managing 
technical debt in software-reliant systems. In: Proceedings of the FSE/SDP Workshop on 
Future of Software Engineering Research, FoSER 2010, pp. 47–52 (2010) 

23. Zardari, S., Faniyi, F., Bahsoon, R.: Using Obstacles for Systematically Modelling, Ana-
lysing and Mitigating Risks in Cloud Adoption. In: Aligning Enterprise, System and Soft-
ware Architectures, pp. 275–296. IGI Global (2013) 



Answer-Set Programming in Requirements Engineering

Wenbin Li, David Brown, Jane Huffman Hayes, and Miroslaw Truszczynski

Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA
{wenbin.li,david.b.brown}@uky.edu, {hayes,mirek}@cs.uky.edu

Abstract. [Context and motivation] Requirements form the foundation of soft-
ware systems. The quality of the requirements influences the quality of the de-
veloped software. [Question/problem] One of the main requirement issues is
inconsistency, particularly onerous when the requirements concern temporal con-
straints. Manual checking whether temporal requirements are consistent is te-
dious and error prone and may be prohibitively expensive when the number of
requirements is large. [Principal ideas/results] We show that answer-set pro-
gramming tools (ASP) can be successfully applied to detect inconsistencies in
software and system requirements. Our assumption is that these requirements
are given in a formal requirement specification language called Temporal Ac-
tion Language (TeAL). [Contribution] We present a translation from TeAL to
the ASP language format accepted by clingcon. We show that clingcon can an-
alyze requirements for several real software systems, verifying their consistency
or identifying inconsistencies. We also examine the performance of the clingcon
translation.

Keywords: temporal requirements, requirement engineering, knowledge
representation.

1 Introduction

It is well documented in the software engineering literature that software malfunc-
tion can frequently be traced back to problems with software or system requirements
[10,6,9]. The analysis of requirements for ambiguity, inconsistency, or incompleteness,
if performed manually, is labor intensive, tedious, and error-prone. Indeed, a specifi-
cation of a system may contain so many requirements that it is simply not feasible to
check them manually.

We focus our work on consistency checking of temporal requirements. As many
software systems support real-time operations, temporal requirements are common. For
instance, a mission-critical financial trading system requires that certain transactions
occur within a certain amount of time of other transactions (such as posting the proceeds
of a stock sale or logging realized dividend payments); an e-commerce system requires
that a payment be received a specified time prior to submitting an order for processing;
a safety-critical pacemaker system requires that pacing occur within milliseconds of
certain detected events. Moreover, as these examples implicitly suggest, high quality of
temporal requirements is essential. Errors in specifying, interpreting, or implementing
temporal requirements can lead to disastrous consequences. If one or more requirements

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 168–183, 2014.
c© Springer International Publishing Switzerland 2014



Answer-Set Programming in Requirements Engineering 169

related to the pacing of the heart are in conflict, a negative heart event might not trigger
a necessary lifesaving pacing event.

In this paper we show that answer-set programming (ASP), with its program pro-
cessing tools, can play an important role in the analysis of temporal requirements. The
system we are designing addresses the problem in two main steps. First, textual require-
ments are analyzed to identify temporal requirements and additional relevant informa-
tion. These are then translated into a high-level temporal requirement representation
language called Temporal Action Language or TeAL [15]. TeAL extends the action
language AL [5] with dedicated, intuitive syntax to capture temporal constraints in a
way that reflects common linguistic patterns. The language was designed to help re-
quirement engineers build correct TeAL representation of the original textual require-
ments, as well as support partial automation of that step [14]. Second, TeAL theory is
translated to the ASP language accepted by the ASP solver clingcon [12]. This vari-
ant ASP language provides syntax for stating integer constraints that are common in
temporal constraints present in software requirements, and clingcon is a state-of-the-art
solver designed specifically for that language.

With the use of clingcon, the consistency of the TeAL theory (and effectively, of the
original textual requirements) is verified. This step is the focus of the present paper. In
the main contributions, we provide the details of the translation from TeAL to clingcon
and show its correctness. Practitioners may wonder if formal methods can be applied
to non-trivial systems in a timely manner. To address their concerns, we demonstrate
the effectiveness of clingcon in analyzing several example requirement sets from real
software systems and examine the performance of the translation to clingcon.

The paper is organized as follows. In the next section, we present several bench-
mark requirement documents. They will be used to illustrate our approach. Section 3
provides a brief overview of the language TeAL [14] for representing system specifi-
cations. Next, we discuss the translation from TeAL to clingcon. Section 6 discusses
TeAL representations of benchmark requirement documents and their translations into
ASP (clingcon input language). That section also presents the results of our benchmark
example studies. Our findings are discussed in the last section of the paper, where we
also present conclusions and problems for future work.

2 Benchmark Examples of System Requirements

Throughout the paper we will refer to several benchmark examples of requirement doc-
uments specifying (fragments of) real software systems. As we are interested in the
analysis of temporal requirements, in some cases we modified these examples from
their original form by varying durations of actions and including additional temporal
constraints. Our objective was to better illustrate both the current functionality of TeAL
as well as all aspects of the translation from TeAL to ASP. We describe one of the ex-
amples, CM1, in detail. We outline the others and provide just one sample requirement
(full descriptions at http://progit.netlab.uky.edu/teal).

CM1. This example is derived from a requirement document produced by NASA for
one of its science instruments. The document was “sanitized” (hence the presence of
variables rather than specific constants) and released by NASA for use by the software
engineering research community [1].

http://progit.netlab.uky.edu/teal


170 W. Li et al.

The Control Component shall send the heart beat message to the Interface of Instru-
ment Control Unit at an interval of E milliseconds. The interface will send the message
to the Instrument Control Unit. The Control Component shall process commands within
F milliseconds of receipt from the Interface of Instrument Control Unit or the Space-
craft Control Unit. The Instrument Control Unit shall send real-time commands to the
Interface of Control Component every B milliseconds. Whenever the Interface of In-
strument Control Unit receives a message from the Instrument Control Unit, it verifies
the message within J milliseconds. If an error is detected, the message is discarded
within K milliseconds, then an error report will be sent to the Control Component,
and a NAK message transmitted to the Instrument Control Unit within L milliseconds.
If the message is correct, the Interface of Instrument Control Unit shall forward real-
time commands to the Control Component within C units of receipt from the Instrument
Control Unit.

511Phone. This example is derived from a requirement document for the Regional Real
Time Transit Information System. These requirements focus on the performance of the
511 System and the data transfers with the transit agencies. They are based on the
existing procedures and features of the existing real-time system. [4].

If request, then transit agency system sends predictions and vehicle location within
var1 seconds after receiving data request from the 511 System.

MODIS. This example is derived from the open source NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) documents [2].

Each MODIS standard input data shall be produced every var1 seconds.

UAVTCS. This example is derived from a requirement document for an Unmanned
Aerial Vehicle (UAV) Tactical Control System (UAVTCS) of the US Department of
Defense for the control of tactical UAVs. [3]

The TCS in the Normal Startup Mode shall initialize the system to the Operation
State within 60 seconds from the time power is supplied.

EasyClinic. This dataset describes a variety of artifacts from a small healthcare applica-
tion. It was developed at the University of Salerno to manage a medical ambulatory [7].

The response time of the service shall be less than A seconds.

iTrust. This dataset is derived from the iTrust project which involves the development
of an application through which doctors can obtain and share essential patient informa-
tion and can view aggregate patient data [7].

An HCP can reassign a previously created lab procedure to a different Lab Techni-
cian if the lab procedure is not yet in time.

3 TeAL Overview

TeAL is an extension of the action language AL [5] with expressions to represent tem-
poral constraints. One of our goals in this paper is to demonstrate the feasibility of using
ASP tools to address the problem of testing temporal constraints for consistency. The
choice of AL is motivated by the availability of effective translations of AL theories
into ASP.



Answer-Set Programming in Requirements Engineering 171

The TeAL syntax of temporal constraints follows common linguistic patterns to help
analysts construct and revise TeAL theories representing textual requirements. We pro-
vide here a brief overview of TeAL’s syntax and semantics to facilitate understanding
of the main results of the paper concerning the translation from TeAL to ASP. For a
detailed description of TeAL, we refer to our earlier work [15,14].

Syntax. A TeAL theory is a quadruple Δ = 〈SI ,AD ,TC , IC 〉, where SI is the signa-
ture, AD is an action language (AL) theory [5], TC is the set of temporal constraints,
and IC is the set of initial state constraints. The signature SI contains the names
for sorts (for instance, data and agency in the TeAL representation of the 511Phone
example discussed below), the constants that are assigned to sorts (d1 and a1 in the
same example), and the names of fluents and actions. As usual, fluents represent atomic
(boolean) properties of the system. Complete and consistent sets of (possibly negated)
fluents describe the state of the system. For example, the fluent received(p511,d1,a1)
represents the property that the data item d1 has been received by the phone system
p511. Actions change fluents and, consequently, the state of the system. Actions are
performed by agents. For example, send(a1,d1,p511) represents an action performed
by the agent a1 to send the data item d1 to the phone system p511.

The role of an AL theory AD is to specify the action domain, that is, fluents and
actions (their preconditions and effects but not durations). Namely, AD uses state con-
straints (to specify conditions that must hold in every state), dynamic causal laws (to
describe the effects of an action when performed in a state), and executability condi-
tions (to specify preconditions for an action to be executable). The action language is
well known and we do not discuss it in any more detail here.

The component TC in a TeAL theory Δ distinguishes TeAL from AL. It specifies
action durations and temporal constraints on actions. To refer to time we use a special
term startTime that represents the initial time moment with respect to which we in-
terpret Δ. We also refer to time indirectly by means of the prompts commence a and
terminate a that stand for the times when action a starts and ends, respectively. At
present, we assume that once actions are started they terminate successfully. For exam-
ple, commence update(p511, d1) gives the time when the action update(p511, d1)
was initiated. The modifiers previous and next can be used with prompts to identify
the time moments when the previous (next) prompt occurred. For example, to specify
the time when the most recent update(p511, d1) was initiated we may use the expres-
sion commence previous update(p511, d1). In the present version of TeAL, the
keywords previous and next cannot be nested.

A fluent appearing in a temporal condition represents the time when this fluent has
become true. Similarly, the negation of a fluent in a temporal condition represents the
time when this fluent has become false [14]. A fluent can change from true to false
(or conversely) only because of actions or passage of time. The specification “a file
becomes old if it has not been written to for 10 seconds” involves the fluent “old” (a
property of files) that becomes true just because of the passage of time. The passage of
time is handled by two special prompts totrue(fluent) and tofalse(fluent). We will not
discuss this in detail because of space.

Time moments represented by prompts and fluents are connected by temporal rela-
tionships before, after, and at the same time as that can also be annotated with specified



172 W. Li et al.

quantities of time. TeAL provides several keyword phrases to allow the user to express
these relationships. For example, the temporal constraint

commence update(p511, d1)

noLaterThan 10 seconds after received(p511, d1, a1)

encodes the constraint: the phone system starts to update the data within 10 seconds
after receiving the data.

These basic temporal constraints, called temporal conditions in TeAL, can be com-
bined by boolean connectives into more complex ones of the form:

if A1 & . . . & Ak, then B1 | . . . | Bm (1)

where A1, . . . , Ak and B1, . . . , Bm are temporal conditions or their negations (repre-
sented by not) and | stands for “or.”

TeAL also provides a dedicated syntax to specify the durations of actions:

duration a d units

where a is an action, d is a positive integer, and units is a time unit. TeAL allows
multiple time units, such as minutes and seconds, but all time units are converted to the
smallest unit during the translation.

The fourth part of Δ, IC , defines constraints on the initial state. Initial state con-
straints are of the form:

initially F (2)

where F is a list (conjunction) of fluent literals (intuitively, that must hold in any initial
state).

Below, we show a TeAL representation of the 511Phone requirement document,
shortened due to space limitations. It starts with declarations of sorts, constants, agents,
fluents, and actions, including action durations. Next, it specifies the initial conditions
as well as the effects and preconditions of actions. Lastly, it specifies temporal con-
straints (each preceded by the textual constraint it represents).

sort agency;
sort p511;
sort data;
constant agency a1;
constant p511 phone;
constant data d1;
agent agency, p511;

fluent received(p511, data, agency);
fluent available(data);
action send(agency, data, p511);
action update(p511, data);
duration send(a1, d1, p511) 1 second;
duration update(p511, d1) 1 second;

initially available(d1);
update(p511, d1) causes available(d1);
impossible update(p511, d1) if not received(p511, d1, a1);



Answer-Set Programming in Requirements Engineering 173

Once the data is sent, it will be received in three seconds.
if terminate send(a1, d1, p511)

then received(p511, d1, a1) noLaterThan 3 seconds after;

The agency shall send data within 60 seconds after the system starts.
commence send(a1, d1, p511) noLaterThan 60 seconds after startTime;

The agency shall send data at least once every 60 seconds.
commence send(a1, d1, p511) noLaterThan 60 seconds

after terminate previous send(a1, d1, p511);

The phone system shall update the data within 10 seconds after receiving the data.
commence update(p511, d1)

noLaterThan 10 seconds after received(p511, d1, a1);

If a piece of data is not updated for 60 seconds, it shall become unavailable to users.
if not terminate update(p511, d1)

noEarlierThan 10 seconds before then not available(d1);

Semantics. We now discuss the semantics of a TeAL theory Δ = 〈SI ,AD ,TC , IC 〉.
It is largely based on the semantics of AL theories [5]. The key notion is that of a
transition system, which is defined based on the AL theory AD . We will denote it by
TΔ. Following Baral and Gelfond [5], we define a path of Δ to be a sequence

〈s0, pr0; s1, pr1; . . . ; sk−1, prk−1; sk〉
such that s0 . . . , sk are states; pr0, . . . , prk−1 are sets of prompts;1 for every expression
initially F in IC , the state s0 satisfies F ; and for each i = 0, . . . , k−1, 〈si, pri, si+1〉
is an edge in TΔ. It should be noted that TeAL supports the case that prompts are
performed by “time” instead of any entities. This allows the representation of “system
changes because of the passage of time”, e.g. “two seconds after receiving the message,
it becomes old.”

Paths of a TeAL theory Δ represent valid evolutions of the system based on actions.
They ignore durations of actions and temporal constraints. To take the temporal aspects
of TeAL theories into consideration, we define timed paths. Given a TeAL theory Δ, a
timed path with the horizon h (of Δ) is a sequence:

〈s0, pr0, t0; s1, pr1, t1; . . . sk−1, prk−1, tk−1; sk〉, (3)

where 〈s0, pr0; s1, pr1; . . . ; sk−1, prk−1; sk〉 is a path and 0 ≤ t0 < t1 < tk−1 < h.
We assume that all time parameters ti, 0 ≤ i ≤ k−1, and h are scaled to the same time
unit and are integers. Intuitively, ti represents the time when the prompts in the set pri
are executed, causing the system to change to si+1 in the next time moment.

We now present the semantics of a temporal condition C = α TE β, which reads “α
occurs in relation TE to β.” Here α and β are prompts or fluents and TE is a relation
between time points, for instance, noLaterThan x seconds after. The relation p, t |=
C, which we read as “C holds (or, is satisfied) on p at time t,” is defined as follows (we
mention only two representative cases of the definition here and refer to an earlier paper
[14] for details):

1 This is the only difference from the transition system of Baral and Gelfond. In our work,
prompts play the role of actions.



174 W. Li et al.

1. If α = prtSymb A and β = prtSymb B, the condition C states that the A has
to be commenced (or terminated, depending on the prompt prtSymb) at the time
point that is in the relation TE to the time point of commencing (or terminating,
depending on the prompt) the action B (for instance: “forward message 10 seconds
after logging message”). Since there is no connection to t, p, t |= C does not depend
on t and holds if for every time s, 0 ≤ s ≤ h(p), such that α holds at time s, there
is a time s′ such that β holds at time s′ and s and s′ are in the relation TE , or if no
time point s′ in the relation TE with s falls in the range [0, h(p)].

2. If α = prtSymb next A and β = prtSymb next B, the condition C states that
the time of the next occurrence of prtSymb A must be in the relation TE to the
next occurrence of of prtSymb B. Here the concept of “next” is understood with
respect to the time t. Thus, we define p, t |= C if (1) there is no occurrence of
prtSymb B after t; or if (2) there is an occurrence of prtSymb B after t, the first
one after t takes place at time s, and there are no times s′ within the range (t, h(p)]
that are in the relation TE with s′; or if (3) there is an occurrence of prtSymb B
after t, the next one after t takes place at time s, there are times s′ within the range
(t, h(p)] that are in the relation TE with s′ and in one of them the first occurrence
of prtSymb A after t takes place.

All other cases (different combinations of prompts and fluents for α and β), and the
case of temporal conditions C = α TE , can be handled similarly.

We say that a temporal condition C holds on a timed path p (or is satisfied on p),
written p |= C, if for every t, 0 ≤ t ≤ h(p), p, t |= C. These definitions extend in an
obvious way to arbitrary temporal constraints as they are simply boolean combinations
of temporal conditions.

In principle, in order to check that p |= C holds, one has to check that p, t |= C for
every t, 0 ≤ t ≤ h(p). However, for each horizon h and temporal condition C there is
a finite set of time points CP(h,C), we call them checkpoints for C, with the following
property: for every timed path p, p |= C if and only if for every t ∈ CP(h(p), C)
p, t |= C holds. This property implies an algorithm to check whether p |= C holds.

We say that a TeAL theory is consistent if for every h there is a timed path p such
that p |= C, for every temporal constraint C in the theory. Otherwise, the theory is
inconsistent.

We note that the choice of the horizon h may have a significant effect on whether
constraints are satisfied on timed paths. For instance, given two prompts pr1, pr2, and a
timed path p in which pr1 occurs every 4 seconds starting from time 0, and pr2 occurs
every 5 seconds starting from time 0, it is obvious that the constraint

if pr1 then pr2 noLaterThan 2 seconds after

is satisfied if the horizon is less than 15, but violated on all timed paths with the horizon
greater than or equal to 15. The techniques we use later to determine consistency require
that the horizon be specified. This example shows that the selection of the right horizon
value is important. We comment on this matter later on.



Answer-Set Programming in Requirements Engineering 175

4 From TeAL to clingcon Language

We designed a translation from TeAL to clingcon based on two integer parameters: the
horizon h (a positive integer) and the number of state changes n (clearly, n ≤ h), so
that each answer set of the translated program represents a valid timed path with the
horizon h traversing n states (not counting the initial state) and, conversely, each such
path corresponds to an answer set. Given a TeAL theory Δ, we write Π(Δ) for the
corresponding clingcon program. Π(Δ)h,n means that the parameters H (horizon) and
N (number of states) are evaluated as h and n. Additionally, Π(Δ) can be divided into
two parts: Πntemp(Δ), which corresponds to 〈SI ,AD , IC 〉, and Πtemp(Δ), which
corresponds to 〈TC 〉. Therefore, Πntemp(Δ) represents the system behavior without
the temporal constraints (legal sequences of N states when temporal aspects are dis-
regarded). We write Πntemp(Δ)n for that program with the parameter N instantiated
to n.

Similarly, Πtemp(Δ) represents the temporal constraints of Δ. It involves the param-
eter H that specifies the time horizon within which the constraints are to be considered.
In other words, this time horizon determines the space of timed paths on which the con-
straints are to be satisfied. We write Πtemp(Δ)h for the program Πtemp(Δ) with H
instantiated to h.

The program Πntemp(Δ)n contains all names in SI and a new sort: state with a
set of constants {0 . . . n}, where n is configurable number. In addition, Πntemp(Δ)n
contains predicates that specify following relations:

– holds(F, S) (fluent F is true at state S)
– happen(Pr, S) (prompt Pr happens at state S, and changes the system to the next

state)
– agent(Ag) (Ag is an agent)
– act(Act) (Act is an action)
– action(Ag,Act) (Agent Ag performs the action Act)
– dur(action(Ag,Act), Dur) (The duration of action(Ag,Act) is Dur)
– prompt(Pr) (pr is a prompt, an event that can change the value of a fluent; the

available prompts are com(action(Ag,Act)), ter(action(Ag,Act)), totrue(F )
and tofalse(F ), the latter two representing the change caused by passage of time)

– init(F ) (fluent F holds in the initial state)
– engaged(Ag) (agent Ag is performing some action)
– progress(action(Ag,Act), S) (agent (Ag) is performing action Act in state S)
– previous(happen(Pr, S1), S) (the latest occurrence of prompt Pr before state S

is in state S1)
– next(happen(Pr, S1), S) (the earliest occurrence of prompt Pr after state S is in

state S1)

Πntemp(Δ)n contains rules that represent the state constraints, dynamic causal laws
and executability conditions from AD , and the constraints on the initial state from IC .
The translation is based on the translation from AL to answer set programming [5]. The
use of prompts instead of actions introduces additional constraints in Πntemp(Δ)n to
specify preconditions and effects of the prompts. Intuitively, starting an action a (that
is, executing commence a) requires that the action is not in “progress.” Moreover, an



176 W. Li et al.

agent starting this action must not be “engaged” in the execution of another. Finally, to
terminate an action, the action has to be in progress, and terminating an action makes
an agent no longer engaged. To model these constraints, w e use predicates progress
(progress(a) says that action “a is in progress”) and engaged (engaged(ag) says that
“agent ag is engaged”). The following rules show how the constraints pertaining to
commence can be expressed in ASP. To this end, we recall some elements of the ASP
(clingcon syntax). A rule of the form :- cond expresses a constraint that cond must
not hold, an expression kS, where S is a set, represents the constraint that at least k
elements in S must be true, and finally, a rule of the form a :- b, c, . . ., says that a can
be derived as true if b, c, . . . have been derived as true.

:- 2{happen(com(action(Ag,Ac)), S) : act(Ac)}, agent(Ag), state(S). (4)

happen(totrue(progress(action(Ag,Ac))), S)

:- happen(com(action(Ag,Ac)), S), state(S), action(Ag,Ac). (5)

:- happen(totrue(progress(Ac)), S), not happen(com(Ac), S), state(S). (6)

happen(totrue(engaged(Ag)), S)

:- happen(com(action(Ag,Ac)), S), state(S), action(Ag,Ac). (7)

:- happen(totrue(engaged(Ag)), S), agent(Ag), state(S),

{happen(com(action(Ag,Ac)), S) : action(Ag,Ac)}0. (8)

:- holds(engaged(Ag), S), happen(com(action(Ag,Ac)), S),

action(Ag,Ac). (9)

The constraints discussed above are not mentioned explicitly in requirement docu-
ments. They represent a common (shared) knowledge and must be made explicit in
Πntemp(Δ). Here is yet another example of an implicit constraint that must be in-
cluded in Πntemp(Δ): each state must be associated with at least one prompt, because
only prompts can change the states of the system. It can be expressed in ASP as follows:

1{happen(Pr, S) : prompt(Pr)}:- state(S). (10)

Given Πntemp(Δ)n, the transition diagram TΔ is constructed according to the rules
in Baral and Gelfond’s work [5]. We also incorporate prompts and extend the results of
AL [5] to our theorem.

Theorem 1. Let Δ be a TeAL theory 〈SI ,AD , IC ,TC 〉 and n an integer. A sequence
p = 〈s0, pr0, . . . , sn−1, prn−1, sn〉 is a valid path in TΔ if and only if Πntemp(Δ)n
has an answer set A such that for every i, 1 ≤ i ≤ n,

1. if f is a fluent, then f ∈ si if and only if holds(f, i) ∈ A
2. if pr is a prompt, then pr ∈ pri if and only if happen(pr, i) ∈ A

Moreover, for every answer set A of Πntemp(Δ)n there is a valid path p = 〈s0, pr0,
. . . , sn−1, prn−1, sn〉 in TΔ such that A and p satisfy the two conditions above.

This result establishes a correspondence between valid paths in the transition system
TΔ and answer sets of the program Πntemp(Δ)n. It opens a way to compute valid



Answer-Set Programming in Requirements Engineering 177

paths of length n in the transition system TΔ by applying an ASP solver to the program
Πntemp(Δ)n. This is a stepping stone to computing timed paths for Δ, a key element
of our approach to checking consistency of temporal constraints that we are to discuss
next.

Next, we outline the structure of the programΠtemp(Δ). A valid timed path requires
that all temporal constraints are satisfied in every time moment on this timed path.
However, checking every time moment is infeasible. As we observed in the previous
section, it can be replaced by checking the condition on a finite set of check points.
Given a temporal condition C, the check points for C are chosen so that if C is satisfied
(not satisfied, respectively) at the check point t, it is satisfied (not satisfied, respectively)
at all time moments in the interval between t and the next check point (or the horizon).
Thus, the task of checking satisfiability along a timed path can be reduced to checking
satisfiability at every check point.

For instance, let C be: α noLaterThan x seconds after. We write occur(α, t)
for the statement “α happens at time t.” If p |= occur(α, t1) holds, then for every
t′ ∈ [max(0, t1 − x), t], p, t′ |= C holds. Additionally, let us suppose that for some
t2 > t1 + x, we have (i) p |= occur(α, t2), and (ii) for no t3 such that t2 > t3 > t1,
p |= occur(α, t3) holds. Then, for every t′′ ∈ [t1 +1, t2− x− 1], p, t′′ �|= C. It follows
that the check points for C are: min(t + 1, horizon) and max(t − x, 0), for all t such
that p |= occur(α, t) holds.

There are two types of check points. The first type comprises the time moments when
the system changes, that is, the last time moments when the system is still in its present
state. These happen to be the time moments when prompts occur. The second type
comprises the time moments when nothing changes in the system, but the satisfaction
of temporal conditions changes as the result of passing time. For instance, given a timed
path p, in which a prompt pr1 only occurs at second 5, the temporal condition

pr1 laterThan 10 seconds before

is satisfied from the 6th to 14th second, and violated at the 15th second.
Each temporal condition is associated with a group of such check points. Each check

point has an ID, which is based on its sequence in the timed path, and a value, which is
a time moment. Typical answer set solvers will use a relation to represent that a check
point is assigned a time moment, and the grounding process will generate instances for
all possible time moments, which is very inefficient. The key aspect of clingcon is that
it combines answer set programming with constraint solving. The assignment of time
moments to check points, represented as integer variables time(CPi), where CPi is a
check point, is handled using constraint solving techniques. The rest of the program is
constructed according to the standard ASP methodology. This prevents the generation
of huge numbers of ground instances of rules.

Πtemp(Δ)h contains rules that set up check points. The following rules are applied
to all check points:

$domain(0..horizon). (11)

1{map(C, S) : check(C)}1 :- state(S). (12)

:- map(C1, S1),map(C2, S2), S1 > S2, not time(C1) > time(C2). (13)



178 W. Li et al.

:- check(C1), check(C2), C1 > C2,

time(C1) < horizon, time(C1) ≤ time(C2). (14)

checkhappen(Pr,C) :- happen(Pr, S),map(C, S). (15)

checkholds(F,C) :- holds(F, S),map(C, S). (16)

We use the relation map(C, S) to represent that state S is mapped to check point C.
Rule (11) states that the range of check points must be within the horizon. Rule (12)
states that only one state can be mapped to a check point. Rules (13) and (14) state that
the time assignment of states and check points must be based on their sequence in the
path. Rules (15) and (16) use two new relations: checkhappen and checkholds. They
are the “check point” version of the happen and holds relations that are used above.
These two rules mean that whatever happens or holds in a state must happen or hold in
its corresponding check point.

The Temp module also contains rules for specifying check points for each temporal
condition. Using the temporal condition C above, Temp contains the following rules:

exist(cp1, C1) :- check(C2), time(C2)$ == time(C1) + 1, check(C1),

checkhappen(α,C1). (17)

:- checkhappen(α,C1), not exist(cp1, C1),

horizon >= time(C1) + 1. (18)

Rule (17) uses the relation exist(cp1, C1) to define that for any check point C1 (when
α occurs), there exists another check point immediately after it. Rule (18) means that if
α occurs at a check point, and the horizon is large enough, then there must be another
check point as defined by exist(cp1, C1). Πtemp(Δ)h also contains similar rules for
the check points t− x− 1.

Πtemp(Δ)h uses the relation sat(C, arguments,CP) to represent that “the tempo-
ral condition C is satisfied on the check point CP”. The arguments are the actions and
fluents involved in C. Let C be the example above, Temp contains the following rules:

sat(C,α,CP1) :- checkhappen(α,CP2), CP2 > CP1,

time(CP2)− time(CP1) <= x. (19)

-sat(C,α,CP1) :- not sat(C,α,CP1), horizon >= time(CP1) + x. (20)

Rule (19) defines when p, time(CP1) |= C, and rule (20) defines when p, time(CP1)
�|= C.

Given a temporal constraint of the form (1), Πntemp(Δ)n uses the following rule to
check that for each check point, the temporal constraint is satisfied.

:- sat(A1, args,CP), . . . , sat(Ak, args,CP),

-sat(B1, args,CP), -sat(Bm, args,CP), check(CP). (21)

This rule means that for each check point CP, if all the temporal conditionsA1, . . . , Ak

are satisfied on CP, then at least one of B1, . . . , Bm shall be satisfied on CP as well.
Rules of type (21) complete the description of Πtemp(Δ) and so, also of Π(Δ). The

following result establishes the correspondence between valid timed paths for a TeAL
theory Δ and answer sets of the program Πtemp(Δ)n,h.



Answer-Set Programming in Requirements Engineering 179

Theorem 2. Let Δ be a TeAL theory and h and n integers such that 0 < n ≤ h. A
sequence p = 〈s0, t0, pr0, . . . , sn−1, tn−1, prn−1, sn〉 is a valid timed path of Δ if and
only if Π(Δ)h,n has an answer set A such that for every i, 1 ≤ i ≤ n,

– if f is a fluent, then f ∈ si if and only if holds(f, i) ∈ A
– if pr is a prompt, then pr ∈ pri if and only if happen(pr, i) ∈ A
– there is j, 1 ≤ j ≤ n, such that map(j, i) ∈ A and time(j) = ti.

Moreover, for every answer setA ofΠ(Δ)n,h there is a valid timed pathp = 〈s0, t0, pr0,
. . . , sn−1, tn−1, prn−1, sn〉 such that A and p satisfy the conditions above.

This theorem shows that timed paths of horizon h and n state changes can be com-
puted by ASP tools such as clingcon, thus providing useful information concerning con-
sistency of temporal requirements. We discuss this issue in detail in the next
section.

5 Tools Developed for Processing TeAL Theories

Theorem 1 suggests an approach to testing consistency of temporal requirements rep-
resented by a TeAL theory D. First, one constructs the program Π(D), as described in
the previous section. It involves two integer parameters representing the horizon and the
number of states. Instantiating these parameters with specific values h and n of these
parameters (we recall that we must have 0 < n ≤ h), yields the program Π(D)h,n that
we then process with the clingcon solver.

If for every n = 1, . . . , h, the program Π(D)h,n has no answer sets, then the tran-
sition system TD has no valid timed path of the horizon h. In other words, there is no
way to implement the system so that it runs for h time units. This indicates that the
requirements are inconsistent.

If, on the other hand, for some n, 1 ≤ n ≤ h, Π(D)h,n has answer sets, it means that
the requirements are consistent, as long as we only consider running the system for h
time units. This is not an absolute guarantee of consistency. It may be that the problem
with the requirements shows up only for some larger values of the horizon. For instance,
the temporal constraint “Prompt noLaterThan 10 second after startTime” is
not satisfied by a timed path p if Prompt does not occur on p within the first 10 seconds.
However, if p has a horizon less than 10 then, according to our definition, this temporal
constraint is satisfied on p even if Prompt does not occur on p. This is because paths of
horizon shorter than 10 cannot be used as counterexamples to the constraint — there is
always a possibility that should the path be extended, the Prompt would occur on it and
the constraint would hold. Thus, to demonstrate a problem with this requirement, paths
with the horizon of at least 10 must be considered. In general, the larger the horizon for
which valid timed paths can be found, the stronger the assurance of consistency.

We built a tool, TeALTrans that implements the approach to consis-
tency testing outlined above (full description and the source code at
http://progit.netlab.uky.edu/teal). To compute answer sets of
programs Π(D)h,n the tool uses clingcon, an ASP solver integrated with a specialized
integer constraint solver gecode [16]. Delegating solving linear-integer constraints to

http://progit.netlab.uky.edu/teal


180 W. Li et al.

gecode gives clingcon a significant performance advantage over “pure” ASP solvers
such as clasp [11]. The latter compile all integer constraints into boolean ones, which
results in a dramatic blow-up of the theory size.

The lack of the absolute guarantee of consistency is a limitation due to our choice
of ASP tools for processing. A more traditional approach to checking consistency of
temporal requirements based on LTL [13] and model checking tools such as Nusmv [8]
in theory does not suffer from these difficulties. We designed a translation from TeAL
to Nusmv and studied the effectiveness of this approach, too.

6 Study Results

We studied the correctness and efficiency of our tool using the six benchmark ex-
amples described in Section 2. For each, we created its corresponding TeAL repre-
sentation. We recall that the temporal constraints in our examples involve constants
(parameters). Consistency of the constraints depends on specific values one chooses for
these parameters. For each benchmark problem, we considered four parameter settings:
(1) underconstrained-relaxed or UR, the temporal constraints leave much room for the
system to evolve, they are “easy” to satisfy; (2) underconstrained-tight or UT, the con-
straints are still satisfiable but they significantly restrict the ways in which the system
can evolve; (3) overconstrained-barely or OB, the constraints are inconsistent, but a
small relaxation of some of them would make them consistent; and (4) overconstrained-
much or OM, the constraints are significantly overconstrained and no small relaxations
make them consistent. Finally, we studied three values for the horizon: h = 50, 100,
and 200 and set the time-out limit at 7200 seconds.

The following table shows the results of our study. For each of the problems, it
shows the number of constraints, the parameter settings (UR, UT, OB, and OM), and
the running time. For problems that are consistent, the table also shows the number of
states, n, for which the constraints were shown to be satisfiable. There were no time-
outs when the theories were consistent. For overconstrained cases, the tool timed out
several times (for one problem for h=50, for five problems for h = 100, and for all
problems for h = 200). Whenever the tool timed-out, we show in the table the last
value of n, for which inconsistency was successfully demonstrated.

As mentioned above, the choice of the horizon h may affect our confidence in the
determination that the requirements are consistent, and in general the larger the horizon,
the stronger the evidence of consistency. However, there is a flip side to this observa-
tion. As the results show, the larger the horizon, the more computationally intensive the
computing task becomes. This is because the number of possible values for the num-
ber of states grows with h. Estimating a value for the number of states, with which the
constraints are consistent, is difficult. So our tool considers all of them in turn starting
with n = 1. If clingcon finds an answer set, we assert that the TeAL theory does not
contain inconsistency within the horizon and terminate. Otherwise, we proceed to the
next value of n or terminate (and declare inconsistency) if n = h.

Our results also show that if the TeAL theory is consistent, the consistency could be
established within the time limit imposed (even for h = 200). This is a strong indication
of the practical potential of our tool.



Answer-Set Programming in Requirements Engineering 181

Table 1. Results of the study; six problems, 4 parameter settings

Example # Constraints Type
Horizon

50 100 200

CM1 23

UR 395 sec, 9 states 1139 sec, 17 states 2151 sec, 34 states
UT 429 sec, 9 states 1353 sec, 17 states 2328 sec, 34 states
OB 5962 sec > 2 hours, 40 states > 2 hours, 37 states
OM 5913 sec > 2 hours, 40 states > 2 hours, 37 states

511Phone 11

UR 564 sec, 9 states 2551 sec, 18 states 3571 sec, 35 states
UT 572 sec, 9 states 2732 sec, 18 states 3691 sec, 35 states
OB > 2 hours, 42 states > 2 hours, 38 states > 2 hours, 36 states
OM > 2 hours, 42 states > 2 hours, 38 states > 2 hours, 36 states

MODIS 10

UR 204 sec, 7 states 589 sec, 12 states 1787 sec, 20 states
UT 221 sec, 7 states 594 sec, 12 states 1901 sec, 20 states
OB 4212 sec 7009 sec > 2 hours, 47 states
OM 4204 sec 6878 sec > 2 hours, 47 states

UAVTCS 13

UR 681 sec, 9 states 1677 sec, 17 states 4104 sec, 33 states
UT 696 sec, 9 states 1783 sec, 17 states 4143 sec, 33 states
OB 5813 sec > 2 hours, 42 states > 2 hours, 35 states
OM 5771 sec > 2 hours, 42 states > 2 hours, 35 states

iTrust 12

UR 606 sec, 7 states 1574 sec, 13 states 3945 sec, 24 states
UT 601 sec, 7 states 1591 sec, 13 states 4043 sec, 24 states
OB 6042 sec > 2 hours, 37 states > 2 hours, 25 states
OM 5906 sec > 2 hours, 37 states > 2 hours, 25 states

EasyClinic 10

UR 306 sec, 8 states 1025 sec, 14 states 2775 sec, 29 states
UT 323 sec, 8 states 1236 sec, 14 states 2834 sec, 29 states
OB 6194 sec > 2 hours, 38 states > 2 hours, 31 states
OM 6275 sec > 2 hours, 38 states > 2 hours, 31 states

The situation is different when the theory is inconsistent. It takes a long time for
the tool to determine inconsistently. The reason is obvious and related to the discussion
above. If the TeAL theory is inconsistent, then for each number of states, n, 1 ≤ n ≤ h,
clingcon will attempt to determine consistency (that is, find an answer set) and even-
tually fail. However, especially when n is large, the grounding bottleneck reappears
(variables representing states have to be instantiated). This makes it hard for clingcon
to handle large values of n.

Our results suggest two practical steps to address the problem. First, for all problems
and overconstrained parameter settings (when the constraints are inconsistent), the in-
consistency demonstrated itself already when h = 50. Thus, if a tool times out with a
particular value of h, one might try smaller values of h. If the theory is inconsistent,
the tool might now succeed in determining that. Secondly, one might run the tool un-
til it times out. If the last value of n for which the computation succeeded with n is
sufficiently large (for instance, at least h/5), one might take this as an indication of a
possible problem with the requirements.

The results also show that changing the parameter combinations from UR to UT
does not affect the time for computing answer sets. Similarly, there seems to be no such
effect when we change from OB and OM (but here we have fewer data points to draw
conclusions).

Next, the study shows that the number of constraints in the TeAL theory has much
impact on the effectiveness of our tool as does the value of h. The example system with
the largest number of constraints, CM1, does not turn out to be more difficult than the
others. Finally, the study demonstrates the correctness of our tool. In all cases, the re-
sults produced by the tool were consistent with our “manual” analysis of the problems.



182 W. Li et al.

We also performed experiments based on LTL, but our translation of the six problems
into the input format of Nusmv resulted in theories that Nusmv could not handle (timed-
out in all cases).

7 Discussion, Conclusions, and Future Work

We presented an approach for analyzing software requirements using answer-set pro-
gramming (ASP). We presented a translation from the TeAL language for describing
temporal requirements to ASP and stated results establishing the correctness of the
translation. We used several benchmark examples taken from real software systems to
test the correctness and efficiency of our tool.

The results we presented indicate the potential of our approach to assist requirement
engineers verify the consistency of temporal requirements. In the six examples that we
studied, the tool provided strong evidence of consistency, whenever the requirements
were consistent. With one exception, it also was able to detect inconsistency when the
theory was inconsistent (with the choice of h = 50).

It has to be noted that when we determine consistency, we do not obtain an absolute
proof of consistency but only a proof of consistency within the specified horizon. For
hard problems, when the tool times out even with smaller values of h, we similarly
only obtain support to the claim of inconsistency but not an absolute proof. This is a
limitation of our approach.

A more traditional approach to checking consistency of temporal requirements based
on LTL [13] and model checking tools such as Nusmv [8] in theory does not suffer from
these difficulties. However, our paper shows that ASP tools that give rise to an approach
based on the parameters h and n are more effective. While the results do not always
provide absolute assurances of consistency (inconsistency), by appropriately choosing
the parameters we can obtain some balance between the strength of the guarantee we
get and the time in which we compute this guarantee.

Our future work involves improving the efficiency of our tool. One possible approach
is to estimate the lower bound and upper bound on the number of states n for which it is
sufficient to run clingcon. Another direction is to study the completeness threshold for
the horizon h, that is, find the value of h such that consistency with respect to h gives
an absolute guarantee of consistency (for every TeAL theory such a threshold exists).
Finally, we intend to work on optimizations to our current translation.

At present, when we report inconsistency, we provide no indication which require-
ments cause the problem. We will develop extensions to the present tool that will sug-
gest to the analyst likely combinations of requirements that might be responsible for the
inconsistency.

References

1. CM-1 Dataset PROMISE Website,
http://promisedata.org/promised/trunk/
promisedata.org/data/cm1-maintain/cm1-maintain.txt
(accessed: April 18, 2013)

http://promisedata.org/promised/trunk/promisedata.org/data/cm1-maintain/cm1-maintain.txt
http://promisedata.org/promised/trunk/promisedata.org/data/cm1-maintain/cm1-maintain.txt


Answer-Set Programming in Requirements Engineering 183

2. MODIS Science Data Processing Software Requirements Specification Version 2, SDST-
089, GSFC SBRS (November 1997),
http://www.fas.org/irp/program/collect/uav_tcs.htm

3. UAV Tactical Control System (May 2010),
http://www.fas.org/irp/program/collect/uav_tcs.htm

4. Regional Real-Time Transit Information System System Requirements Version 3.0 (2012),
http://www.mtc.ca.gov/planning/tcip/
Real-Time TransitSystemRequirements v3.0.pdf
(accessed: April 18, 2013)

5. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Minker, J. (ed.) Logic-
Based Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers, Norwell (2000)

6. Boehm, B., Papaccio, P.: Understanding and Controlling Software Costs. IEEE Transactions
on Software Engineerin 14(10), 1462–1477 (1988)

7. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the Role of
the Nouns in IR-based Traceability Recovery. In: IEEE 17th International Conference on
Program Comprehension, ICPC 2009, pp. 148–157. IEEE (2009)

8. Cimatti, A., Giunchiglia, E., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: Integrating
BDD-based and SAT-based Symbolic Model Checking. In: Armando, A. (ed.) FroCos 2002.
LNCS (LNAI), vol. 2309, pp. 49–56. Springer, Heidelberg (2002)

9. Firesmith, D.: Specifying Good Requirements. Journal of Object Technology 2(4), 77–87
(2003)

10. Firesmith, D.: Common Requirements Problems, Their Negative Consequences, and the In-
dustry Best Practices to Help Solve Them. Journal of Object Technology 6(1), 17–33 (2007)

11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven Answer Set
Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 260–265. Springer, Heidelberg (2007)

12. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: Hill, P.M., War-
ren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02846-5_22

13. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press (2004)

14. Li, W., Hayes, J.H., Truszczyński, M.: Temporal Action Language (TAL): a Controlled Lan-
guage for Consistency Checking of Natural Language Temporal Requirements. In: Goodloe,
A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 162–167. Springer, Heidelberg
(2012)

15. Li, W., Truszczynski, M., Huffman Hayes, J., Brown, D.B.: Temporal Action Language. Uni-
versity of Kentucky Computer Science Department Technical Report (2012-521-12) (2012)

16. Schulte, C., Lagerkvist, M., Tack, G.: Gecode. Software Download and Online Material at
the Website (2006), http://www.gecode.org

http://www.fas.org/irp/program/collect/uav_tcs.htm
http://www.fas.org/irp/program/collect/uav_tcs.htm
http://www.mtc.ca.gov/planning/tcip/Real-Time_TransitSystemRequirements_v3.0.pdf
http://www.mtc.ca.gov/planning/tcip/Real-Time_TransitSystemRequirements_v3.0.pdf
http://dx.doi.org/10.1007/978-3-642-02846-5_22
http://www.gecode.org


Improving the Understandability
of Formal Specifications: An Experience Report

Felix Kossak, Atif Mashkoor, Verena Geist, and Christa Illibauer

Software Competence Center Hagenberg GmbH,
Hagenberg, Austria

firstname.lastname@scch.at

Abstract. [Context and motivation] The understandability of formal specifica-
tions is often considered as one of the main factors that limit the employment
of formal methods in industrial applications. [Question/problem] Two reasons
account for this issue: intricate notations and a coarse style of writing speci-
fications. [Principal ideas/results] In this paper, we present our experience of
rendering formal specifications understandable yet rigorous. [Contribution] The
main contribution of the paper is the proposition of intuitive writing style guide-
lines, based on the ASM method, that enable formal specifications to become
understandable.

Keywords: Formal Methods, Software Requirements Specifications, Validation,
Understandability, Abstract State Machines.

1 Introduction

In 1995, Bowen et al. [1] proposed several practical guidelines to promote the use of rig-
orous techniques in software development. Unfortunately, almost two decades, several
success stories in high-assurance systems, and numerous appealing notations and tools
later, the share of formal techniques in overall software development is still marginal.

One of the major reasons that account for the failure of formal methods to capture a
larger market share is associated with the notion of validation. Many stakeholders are
still wary of seeing their requirements encrypted behind complex formulas for numer-
ous reasons. For example, domain experts want to validate a specification against their
expectations, developers and architects have to transform it into an admissible solution,
and managers and customers have to sign off the contracts. The stakeholders cannot
approve what they do not fully comprehend.

Validation of a formal model requires an extensive walk-through process. A model
is often comprised of formulas and expressions that are even complex for experts. By
definition, formal models are sets of mathematical formulas and logical predicates. Fur-
thermore, they are complemented with advanced tactics that can assist (preferably auto-
matic) discharge of proofs. As a result, specifications are written in a counter-intuitive
style containing elements enabling automation. The struggle many people already have
with mathematics is then multi-fold. In fact, even when each formula in a model can
be understood rather easily, the interactions between the formulas and consequences

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 184–199, 2014.
c© Springer International Publishing Switzerland 2014



Improving the Understandability of Formal Specifications 185

induced by the composition of the formulas make it difficult to assess. The problem is
not always the specification language but also the style of writing formal specifications.

Commonly used formal validation techniques can be classified into three categories:
animations, prototypes, and reviews. Each technique has its own merits and demer-
its. More importantly, their applicability depends crucially upon the state of the model
development.

Model animation is a form of program visualization where fundamental behavior of
a specification is displayed, usually graphically and interactively. This is achieved by
invoking the operational semantics of the specification language. The advantage of this
technique is that the user can directly execute and consequently observe the behavior of
the specification. The major difficulty, however, concerns the fidelity of the executional
behavior to the original model. Either due to the limitations of the employed tool or due
to the specification technique (abstraction, use of non-constructive definitions), specifi-
cations often have to undergo a process of transformation [2] that may alter the original
behavior of the model. Some of the judgments made on these models then may not be
fully trustworthy.

Model prototyping is the process of producing a preliminary version of the final
artifact. A prototype is an actual implementation of the model that is often automatically
generated. Of course, this can happen only when the model is concrete enough. As an
advantage, validation is performed on the real artifact and observations relate directly to
the actual model. However, the drawback of this approach is that the development stage
where this technique can be applied comes quite late as far as validation is concerned.
In an ideal scheme of development, errors must be corrected in earlier phases where
they cost less to fix.

The working principle of reviews is to set up readings of the formal description so
that all critical issues are raised and examined. Thanks to refinement, this technique of
validation can be applied at any stage of development. However, the procedure relies on
the assumption that the readers must be able to build a consistent and complete mental
image of the model that is sufficiently precise to assess its correctness.

Except for reviews, all other techniques raise a common issue: how to guarantee
the fidelity of the executable behavior to the original model? The traditional answers
based on semantic preservation are not appropriate: most models are not executable as
they are either non-deterministic or contain non-constructive definitions. Resolving the
non-executable traits may render the specification incorrect [3].

In such a context, the notation used for describing the model is of crucial importance.
Graphical notations, such as UML, are quite effective. Unfortunately, they lack the pre-
cise mathematical basis that is required to express and assert critical properties. On the
other hand, mathematical-logical based formalisms, such as Z [4] or Event-B [5], are
more appropriate for the latter purpose, however, they are difficult to understand.

A specification is considered as understandable when the purpose of its elements is
clear to the inspector [6]. The understandability issue with formal specifications arises
because of two reasons: a complex notation and a counter-intuitive style of writing.
We therefore propose certain guidelines, based on the Abstract State Machine (ASM)
method [7], that help improve understandability of formal specifications. The ASM
method is a formal technique that facilitates the formalization of requirements at the



186 F. Kossak et al.

level of abstraction determined by the given application domain while maintaining the
correct-by-construction paradigm and also keeping specifications easy to understand.

The main objective of this paper is to share the salient points of our experience of
writing understandable formal specifications by using a few intuitive specification writ-
ing style guidelines based on the ASM method. The paper is organized as follows:
Section 2 discusses related work. Section 3 briefly introduces the ASM method. Sec-
tion 4 details our proposed guidelines followed by their demonstration in Section 5.
Section 6 provides the criteria for measuring the understandability of formal specifica-
tions and then makes an evaluation of our proposed guidelines. The paper is concluded
in Section 7.

2 Related Work

Zimmermann et al. [8] present an investigation about the readability of state-based for-
mal requirements specification languages in which they test the following six factors:
the structure of the state machine, the expression of triggering conditions, the usage of
macros, the use of internal broadcast events, the transition perspective, and the usage of
hierarchies.

In order to discuss the trade-off between legibility and formality in formal specifi-
cations, Vinter et al. [9] present a model for predicting human error in reasoning about
formal specifications. They stress that “application of the model has strong implications
for the ways in which formal specifications are written and for the levels of expertise
acquired by those people who work with them.”

Similarly, Finney [10] presents an experiment to investigate whether the use of math-
ematical notations in formal specifications is too complicated for the masses. The study
revealed that even participants “already trained in discrete mathematics and the speci-
fication notation performed very poorly.” This also emphasises the importance to con-
sider the abilities of the “average” domain experts, developers, managers, and customers
in order to establish formal specifications in overall software development.

Bidoit and Gaudel [11] offer an experiment in writing an algebraic specification
by using Proposition of a Language Useable for Structured Specifications (PLUSS) to
evaluate the adequacy of some criteria, mainly the legibility and understandability as
well as the reusability of specifications. They state that formal specifications can and
should be readable even for someone not so familiar with the underlying formalism and
believe that their specification is legible, because most of the axioms can be read as
English sentences and because each piece of the specification is quite small.

Choppy [12] presents different, intermingled issues to be addressed in teaching to
write formal specifications. One important issue is how to extract the relevant elements
to be specified from the corresponding problem description that in turn can be described
in a precise, mathematical way. Another important issue is to choose a suitable spec-
ification language and to make the best use of it to get a clear and legible specifica-
tion. The paper focuses on Common Algebraic Specification Language (CASL) and its
extensions.

All of these aforementioned approaches address the issues related to the understand-
ability of formal specifications like us, however, choice of the formal notation is the



Improving the Understandability of Formal Specifications 187

main difference. In addition, [12] focuses on the teaching aspect and approaches like
[9,10] state that readability depends on the experience of the related persons. Like [8],
we also discuss different factors which influence the readability (e.g., rule and variable
names). Just like us, [11] also highlights the importance of using whole sentences in
formal specifications.

3 The ASM Method

We base our suggestions for improving understandability of formal specifications on the
ASM method, because this method comes with a small set of intuitive core constructs
and is very flexible regarding notation. ASMs can be seen as “a rather intuitive form
of abstract pseudo-code”, though based on a precise yet minimal mathematical theory
of algorithms, yet also as “Virtual Machine programs working on abstract data” [7].
Although the ASM language is very intuitive, we give a brief introduction to hint at the
formal background.

The ASM method consists of a notation for state-based models (automata) and a
method for refinement. Models can be arbitrarily abstract, and abstract models can be
stepwise refined towards programming code. Even while compiling and designing a
specification, one can start with a very abstract model which is then stepwise refined
until it contains all the provisions required (see the demonstration part of this paper).

The main elements of an ASM specification are rules and derived functions. A rule
describes a state transition of the machine. A state is determined by particular values
of arbitrary data structures, which are described by functions. An example of a simple
function would be “emergency”, ranging over the standard universe Boolean and indi-
cating whether the system in question is in emergency mode or not. A function can have
an arbitrary number of parameters, e.g., a function “floor(lift)” indicating the position
of a particular lift. If the value of at least one function for particular parameter values
is changed by a rule, the state of the machine changes. Several rules may execute in
parallel.

Whether a rule fires or not is typically determined by a guard (condition) in the form
of an “if ... then ...” statement. This guard will typically query the value of one or more
functions. If the query is more complex, or we want to leave it abstract for the time be-
ing, we can use derived functions, which combine the values of proper (state-defining)
functions by arbitrary logical expressions. For instance, “getDirection(currentPosition,
target)” may give us the direction from some current position to a given target, where
the parameters are the values of proper functions or of other derived functions. Derived
functions do not have an effect on the state of the machine.

The “choose” construct, which is part of the core of the ASM language, models an
arbitrary choice. This can be very helpful in abstract models, including specifications;
for instance, we might not want to specify in which order certain objects are processed,
leaving more leeway for the developer to come up with an efficient implementation. For
the same reason, rules as well as derived functions can be left abstract in a specification
if their meaning is obvious.



188 F. Kossak et al.

4 How to Render Specifications Understandable

The issue of understandability and need for training associated with formal notations
may be resolved by combining rigor with a way of expression that is closer to natu-
ral language. Thereby, both wording (e.g., naming of identifiers but possibly also of
keywords) and structure have to be considered.

We will show that we can get relatively close to natural language without actually
losing rigor, in particular, such that automated parsing is still possible (albeit sometimes
more difficult). But also a language which is strictly regimented yet close to natural
language has drawbacks which we will have to consider in their due places. However,
the simple insight that there are drawbacks suggests that we should not simply propose
one rigid guideline for improving readability. We have to stay flexible and be able to
adapt to particular sets of stakeholders and to stipulate with them a suitable notation
and style in each case.

We will explore how far we can actually get without losing rigor. We discuss draw-
backs, in particular of extreme solutions which may, however, still be desirable in in-
dividual cases. This shall enable us to adapt our methods and languages for rigorous
specifications to the needs and wishes of stakeholders. Most of the examples below are
taken from real projects, by the way.

We will discuss the following possibilities for improving the readability of rigorous
specifications:

– Naming of identifiers;
– Getting rid of brackets;
– Naming of keywords and respective structuring of expressions; and
– “Defusing” set expressions.

One may wonder how flexibility might be compatible with tool support. Our answer
is threefold. First, the choice of identifiers (names for rules, functions, parameters and
local variables) is independent of any tool, and identifiers play a very important part
in our approach. Secondly, a model-driven approach to the language allows to have
a meta-model of the language to which different concrete syntaxes can be mapped.
Thereby also keywords can be made configurable in a tool. Asmeta provides just such
an approach for ASMs with the meta-model AsmM (see [26], [27]). And thirdly, we
see that tools which allow for, e.g., simulation, model checking, or automated theorem
proving always come not only with their custom syntax but also with an amount of
overhead which is necessary for the respective task (such as simulation) yet an obstacle
to overview and human understandability; thus we think that such a special tool-centric
language is not useful for a human-readable specification document, and translations to
different concrete languages for different tasks will have to be done anyway.

4.1 Identifiers

The easiest way to improve readability seems to be the naming of identifiers (names of
rules, functions, variables, etc.). However, it must be realised that increasing length of
names increases the overall bulk of statements, thereby reducing overview.



Improving the Understandability of Formal Specifications 189

For instance, consider the following ASM rule:

rule ConsumeOneToken(incomingSequenceFlow, instance) =
choose token in tokensOfSequenceFlowForInstance(

incomingSequenceFlow, instance) do
remove token from tokensInSequenceFlow(incomingSequenceFlow)

If we choose abbreviations, we can get something like this:

rule ConsumeOneToken(inSF, inst) =
choose t in tokensOfSFForInst(inSF, inst) do

remove t from tokensInSF(inSF)

The algorithm itself is more clearly visible in the second style, and this becomes even
clearer with bigger rules. Which style may be preferable will depend on the particular
stakeholders, and there is much room for compromise.

Expressive (and thus potentially long) naming is more important for global identi-
fiers than it is for parameters and local variables, because the latter do not have to be
remembered beyond the scope of the rule or derived function in question. Thus, abbre-
viations should be avoided for names of rules and functions, and if possible, also for
rule or function parameters. If abbreviations are used for local variables, they should be
explained (in natural language) in situ if confusion seems possible.

However, also within longer rules and derived functions, too short abbreviations may
cause confusion, and then an “a” suddenly but clandestinely changes its type (e.g. from
process to process instance) within a single rule, which can happen even to experienced
specifiers, as we noticed. This is particularly dangerous with an untyped language such
as that of standard ASMs, of course, but one should not overlook the advantages of an
untyped language for abstract models.

It is also important to use names consistently throughout the document, even when
it comes to local variables in different places. Furthermore, it is important to stick to
technical terms of the domain experts in question. For instance, in the context of a
business process management system, it is tempting to abbreviate “flow node” with
“node”, but “node” may be ambiguous for a domain expert. Thus, in the example given
above, “SF” is a better choice for abbreviation than, e.g., “arc” because the correct
technical term is “sequence flow” while “arc” is never used in the original document.

4.2 Reducing Brackets

Consider the following example (adapted from [13], with identifiers already improved):

rule FlowNodeBehavior(flowNode) =
if eventCondition(flowNode)

and controlCondition(flowNode)
and dataCondition(flowNode)
and resourceCondition(flowNode) then

DataOperation(flowNode)
ControlOperation(flowNode)
EventOperation(flowNode)
ResourceOperation(flowNode)



190 F. Kossak et al.

For someone familiar with the ASM method, it is usual to assume that all the “Oper-
ations” can be performed in parallel. However, most people, including developers, will
interpret this statement sequentially.

Both strictly sequential processing and possible parallelism should be expressly in-
dicated. On the other hand, people are not good at parsing nested brackets; instead, they
are better in interpreting geometric structures as given by the indentations above. Brack-
eting and indentation can be combined, of course. For instance, for parallel blocks, the
tool CoreASM [14] allows to use either set braces or the keywords “par ... endpar”.

However, we propose to use keywords which are better understandable by lay people,
such as “parallelblock ... endparallelblock”. The explicit use of “block” would also fit
in more consistently with the keywords “seqblock ... endseqblock”, which CoreASM
uses for sequential blocks. Set braces may put off lay people while being considered
useful by developers, so their use should be discussed in a particular setting.

Still, such brackets (be it set braces or words) use additional lines, and within larger,
nested structures, this can reduce overview. A more radical alternative which also gets
us closer to natural sentences could look like this:

rule FlowNodeBehavior(flowNode) =
if ... then
do in parallel

DataOperation(flowNode)
ControlOperation(flowNode)
EventOperation(flowNode)
ResourceOperation(flowNode)

One may wonder whether the latter notation would still be unambiguous within
nested “if ... then .. else” structures. But both line breaks and spaces can be parsed,
albeit considerably harder. So with a consistent use of indentation, ambiguity can be
avoided.

In any case, people should not be forced to detect nested structures by brackets alone,
so a consistent use of nesting corresponding to semantics is strongly suggested. Ac-
cording to our experience and after some experimentation, we suggest the following
guideline:

– To signify semantic dependence (e.g., the scope of “then”, “forall”, etc.), use a
2-digit indentation with respect to the respective dominant line.

– To continue a long line after a forced line break, use a 4-digit or 6-digit indentation.

There are certainly limits for the capability of human parsing also with indentations.
Longer rules or derived functions can easily become hard to overlook. We advise to
prevent longer structures through modularization techniques as far as possible.

4.3 Keywords and Structure of Expressions

Some keywords can lead to confusion. Amongst them is “forall”, which is typically
used for both imperative statements (“ forall ... do ...”) and within Boolean expressions
(“if forall ... then ...”). To keep those two different uses apart, we suggest to consistently



Improving the Understandability of Formal Specifications 191

use an additional keyword like “holds” (see examples below). To be consistent, we also
suggest to use “forsome ... holds” instead of “exists”:

if forsome inSet ∈ inputSets(flowNode) holds isAvailable(inSet, instance) then
...

There is yet another problem with “forall”, as can be seen in the following example:

forall vehicles ∈ vehiclesOnBridge holds weight(vehicles) ≤ 20t

Here, “weight(vehicles)” is confusing due to the plural form of “vehicles” – it sug-
gests the combined weight of all vehicles, when in fact the weight of each vehicle is to
be considered separately. On the other hand, “forall vehicle with ...” sounds unnatural.
Therefore, we suggest to use “foreach” instead.

Sometimes additional keywords can make statements considerably shorter and sim-
pler, as in this example:

do completionQuantity times
ProduceToken(outSequenceFlow, instance)

The standard alternative would be to use a “while” or “for” loop (in which the counter
variable would actually not be used except for counting iterations). This produces quite
a bit of extra bulk which obfuscates the core algorithm. Such keywords can be added
when needed (and should not be added to the standard set as they will be required
relatively rarely). But note that extra keywords or symbols make the whole language
more complex.

4.4 Set Expressions

We found expressions concerning sets particularly hard to tackle, because on the one
hand, set theory seems to be specially repulsive for relatively many people, and on
the other hand, we can hardly do without sets in technical specifications. Consider the
following example:

derived occurredGatewayEventNodes(flowNode, instance) =
{node | node ∈ eventGateTargetNodes(outgoingSequenceFlows(flowNode))

and ... }

An alternative expression would be:

derived occurredGatewayEventNodes(flowNode, instance) =
the set containing each node for which holds

node is-in eventGateTargetNodes(outgoingSequenceFlows(flowNode))
and ...

This latter version looks not only forced (while still containing the same bits of set
theory), but also more bulky, somewhat impeding overview. But some may still prefer
it. We could even drop “the set containing”, just returning “each node for which holds



192 F. Kossak et al.

...”; but this may bear the danger that people are no longer aware that the result is a
collection of objects. A compromise can be found in the following demonstration.

In our experience, especially nested set expressions have repeatedly led to confusion
even with developers, even though they typically yield much more concise expressions
with a clearer structure (for people used to mathematical notation). Also symbols for
union, in particular for a generalized union (∪{...}), or for set difference, etc., are prone
to confuse. Instead, words like “union” can aid understandability.

We suggest to use the usual set notation if possible, but with care and avoiding com-
plex structures through modularization with informative names for auxiliary functions,
even if the result is less concise. However, replacing e.g. a set constructor ({x | Px}) with
words (as above) will usually confuse developers while still not be necessarily leading
to a clear understanding by lay people and should therefore be used with caution; see
the compromise in the following demonstration.

5 Demonstration

We now demonstrate what some of our suggestions will look like in practice. We choose
the lift example from [15] for its middling complexity, which is just as much as can be
handled within the available space (with only a few omissions).

The purpose of this specification is to lay down the requirements for a lift controller
such that they are consistent, unambiguous, and complete with respect to the intentions
of the customer. The specification must be understandable for the customer’s hardware
engineers, managers, and maybe also lawyers, as well as for the developers who shall
implement the controller. Experience shows that informal specifications tend to be in-
consistent, ambiguously worded, and incomplete with respect to gaps between what is
“self-evident” for the customer and what is “self-evident” for developers, while classi-
cal formal specifications are typically not sufficiently understandable, if at all, for most
or even all of the stakeholders named. Our version of a specification aims at meeting all
of the given meta-requirements (except from explicit gaps due to lack of space).

The ASM model is accompanied by natural-language text which, in this case, serves
one of two purposes. First, we give at least examples of explanatory text for the intended
readers of the specification to better understand the formal part – which we think cannot
be dispensed within a specification. And secondly, we want to draw the attention of the
readers of this paper to certain points we want to make as well as to problems and
possible solutions (which will have to be solved case by case).

We start with the informal specification as stated in [15] (without the properties to
be proven):

Design the logic to move n lifts between m floors satisfying the following
requirements:

1. Each lift has for each floor 1 button which, if pressed, illuminates and
causes the lift to visit (read: move to and stop at) that floor. The illumina-
tion is canceled when the floor is visited by the lift.



Improving the Understandability of Formal Specifications 193

2. Each floor (except ground and top) has two buttons to request an up-lift
and a down-lift. They are canceled when a lift visits the floor and is either
traveling in the desired direction, or visits the floor with no requests out-
standing. In the latter case, if both floor request buttons are illuminated,
only one should be canceled.

3. A lift without requests should remain in its final destination and await fur-
ther requests.

4. Each lift has an emergency button which, if pressed, causes a warning to
be sent to the site manager. The lift is then deemed “out of service”. Each
lift has a mechanism to cancel its “out of service” status.

In each step, we choose one lift and decide what it shall do. If there is an emergency,
however (see point (4) above), we send an emergency warning. (How the latter is done
is not specified, i.e., “SendEmergencyWarning” is left abstract.)

main rule LiftSystem =
if emergency = false then

choose lift in LIFTS do
NextMove(lift)

else
SendEmergencyWarning

In rule “LiftSystem”, we use “choose” instead of “forall” in order to avoid conflicts
when reacting to new requests (two or more lifts might independently choose to react
to the same request while other requests are kept waiting).

Note that in this rule, we use several notions – functions and sub-rules – which have
not yet been defined. This means we commit the Sixth Sin of the Specifier according to
Meyer [16]: “The presence in the text of an element that uses features of the problem not
defined until later in the text.” But while we cannot deny that Meyer has good reasons
for declaring this a “sin”, we do not think that starting with all the details and ending up
with the main rule is really good for human understanding. The problem is that readers
are first confronted with notions which they cannot yet fit into the greater picture and
for which they sometimes cannot even guess the motivation. Moreover, they have to
remember all this until they are able to put the jigsaw puzzle together at the very end.

Instead, we rely on names (of functions and sub-rules) which already convey suffi-
cient (albeit not detailed and formal) meaning for understanding what is supposed to
happen. Thereby, we can follow a method of stepwise refinement already in the course
of the specification – in the course of requirements analysis as well as in the presen-
tation of the specification. The readers first get the big picture and are then stepwise
introduced to the details.

A major factor for deciding what the chosen lift should do is the state which it is in:

rule NextMove(lift) =
if state(lift) = Halt then

NextMoveInHaltState(lift)
else if state(lift) = Move then

NextMoveInMoveState(lift)



194 F. Kossak et al.

If the lift had been halting, we first check whether it has a destination, i.e., a request
already chosen by the lift to fulfill, for then it shall simply move in the respective di-
rection. Else, we look if there is a pending request which is not yet being dealt with by
another lift; if so, we select such a request and make it the lift’s new destination. (Note
that we cannot move the lift before setting the new destination and direction first.)

rule NextMoveInHaltState(lift) =
if destination(lift) != undefined then

MoveLift(lift)
else if pendingRequests(lift) != empty then

choose request in pendingRequests(lift) do
if floor(request) = position(lift) then

CancelRequest(request)
else

let newDirection = getDirection(position(lift), floor(request)) in
do sequentially

destination(lift) := request
direction(lift) := newDirection
MoveLift(lift)

The derived function “pendingRequests” will return only requests not yet chosen by
some lift as a destination. To simply “choose” some pending request means that we
do not prioritize some requests above others, which is not demanded in the original
requirements either.

If the lift is currently moving, we check whether the current destination has been
reached; if so, the lift halts and the respective request is canceled. Else, we check
whether the lift can satisfy a request at its current position, even if this is not the current
destination; if so, the lift halts and the respective request is canceled (but the current
destination is kept; note, however, that this was not originally specified). Else, the lift
simply keeps moving on in its current direction (i.e., towards its current destination):

rule NextMoveInMoveState(lift) =
// assert: direction(lift) �= undefined and destination(lift) �= undefined

if floor(destination(lift)) = position(lift) then
do in parallel

state(lift) := Halt
destination(lift) := undefined
direction(lift) := undefined
CancelRequest(destination(lift))

else if forsome request in pendingRequests(lift) holds
floor(request) = position(lift)
and (direction(request) = undefined

or direction(request) = direction(lift)) then
do in parallel

state(lift) := Halt
foreach request in pendingRequests(lift)

with floor(request) = position(lift)



Improving the Understandability of Formal Specifications 195

and (direction(request) = undefined
or direction(request) = direction(lift)) do

CancelRequest(request)
else

MoveLift(lift)

Above, we made an explicit assertion in the form of a comment. Alternatively, the
assertion could be conjoined to the guard, or “assert” could be made a keyword with
a formal semantics. What we want to express here is, first, that if this expression does
not evaluate to true, something has gone wrong already in the calling rule (NextMove)
or before; thus, putting it into the guard should actually not be necessary; it would
constitute a redundancy with all its formal problems. And secondly, we want to make
the reader aware that this condition is supposed to hold in this place in order to aid
understanding. For both reasons, a comment (i.e., a non-formal element) suffices.

Also note the lack of indentation of “do in parallel” with respect to “if ... then”.
One might feel that this should be indented. However, in our experience, too much
indentation often leads to extra line breaks to the detriment of a clear structure, and
in the case of a “do in ...” clause following a then, we think that the indenting can be
omitted without ambiguity. However, some find this confusion, so this must be left open
to discussion.

We omit the rules “MoveLift” and “CancelRequest” for lack of space, and because
they do not give much more insight into our proposals. And with that, we are finished
with the update rules. Now we need to specify what constitute pending requests as far as
they are relevant for a particular lift. These requests correspond to those pressed buttons
which are either within the lift in question or on some floor (characterized by lift(button)
= undefined). We also exclude those requests which have already been chosen by some
(other) lift as its destination.

derived pendingRequests(lift) =
{ every button for which holds

button is-in BUTTONS
and pressed(button) = true
and (lift(button) = lift or lift(button) = undefined)
and not forsome otherLift in LIFTS holds

button = destination(otherLift) }

The last two lines above state that there is no lift which has already chosen the given
request (button) as its destination. Thereby, we rule out that two or more lifts are trying
to fulfill the same request while other requests are kept waiting.

The last line above is particularly difficult to understand. However, the natural lan-
guage equivalent given in the previous paragraph would certainly pose tremendous
problems to a machine parser. Thus, we have to explain this part to the reader in accom-
panying natural-language text. (Note that such explanatory text should always stand
right next to the formal text to facilitate maintenance.)

Another issue that may be raised in connection with “pendindRequests” is the equa-
tion of requests and (pressed) buttons. Typically, one should stick to one consistent
name. This example shows that compromises must sometimes be made. An expression



196 F. Kossak et al.

like “pendingButtons(lift)” would be just as confusing as “pressed(request)”. The equa-
tion happens explicitly at one point, which is the derived function “pendingRequests”,
and we expect it to be intuitively understandable by anyone who is not “indoctrinated”
to keep names consistent. Still, consistent names are very important indeed and the
respective rule should be flouted with good reasons and great care only.

Note also that the local variable “otherLift” (in “pendingRequests”, above), while
clearly expressing the intention behind this variable, does not quite fit the respective
quantification over LIFTS, which includes the currently considered lift. However, the
whole expression is still formally correct as the currently considered lift currently does
not have any destination anyway. Replacing “LIFTS” by “LIFTS without lift” would be
more confusing than helpful. So this is yet another example of common-sense compro-
mises which can hardly be avoided in practice.

The derived function “getDirection” will be omitted here. It is trivial and may be left
abstract in such a specification if all stakeholders agree.

Next, it will be necessary to state the signature, including all universes and proper
functions. An appendix will have to list and explain the keywords used, auxiliary rou-
tines, linguistic conventions (including naming conventions) and font conventions (the
use of italics, bold font, typewriter font, etc.), a glossary, etc. We skip this here.

6 Discussion and Evaluation

The demonstration in Section 5 has already shown that the targeted exploitation of the
suggested approach can lead to improved understandability. In order to assess the qual-
ity of the approach, we propose an initial framework for measuring the understandabil-
ity of formal specifications and evaluate our approach along the proposed cornerstones.

There are several approaches for applying software metrics to formal specifications,
e.g., [9,17,18]. Relevant criteria for practitioners that are closely related to understand-
ability are, for example, complexity, readability, required know-how, usability, modi-
fiability, consistency, and traceability. With respect to most of these criteria, the use
of formal methods generally enhances quality considerably, and the ASM method is
no exception. Thus, without making claims for completeness, a notation suitable for
understandable formal specifications should at least provide support for:

– conventions and guidelines – The notation needs to come up with naming conven-
tions as well as structural and lexical guidelines in order to cope with complexity.

– multilingual specifications – Different dialects for different audiences to support
multilingual specifications, i.e., one abstract model and different concrete syntaxes
(cf. Asmeta), for example programming-like or natural-language syntaxes, should
be offered to tackle the issue of readability and required know-how.

– graphical representation – The notation should provide support for graphical rep-
resentation to enhance usability.

– integrated tool support – A set of integrated tools is important to facilitate analysis
of formal specifications and to improve further quality criteria, e.g., modifiability,
consistency, and traceability.



Improving the Understandability of Formal Specifications 197

Complexity of specifications can be significantly reduced by considering an appropri-
ate naming of identifiers (see Section 4.1) and enforcing a cognitive structuring of rules
and functions (see Section 4.2). However, a critical factor for reviewing formal speci-
fications – even for experts in formal notations – is the size of the specification. When
applying formal validation techniques, users often set up a mental model by walking
through the specification. Regarding the capability of human parsing, the ASM method
allows for specifying individual parts of the specification and horizontal/vertical addi-
tions targeted at the respective stakeholders. Thus, reviewers do not need to have the
whole model in mind but are able to work with small, well-designed model fragments.
This decreases the overall complexity, which can also be investigated via complexity
measures. For example, regarding the Halstead Metrics [19], the difficulty measure is
proportional to the number of distinct operators and the ratio between the total number
of operands and the number of distinct operands. A further advantage of the suggested
approach is that, in contrast to the assumption that “people find formal specifications
difficult to read because of the large use of symbols” [10], additional keywords can
make statements considerably shorter and simpler, as suggested in Section 4.3.

Of particular importance for enhancing the understandability of formal specifications
are factors like the expertise level of the user, the extent to which the specifications are
abstract, and the logical constructs used within the specifications [9]. We have already
commented on the issue of readability in Section 4, which we see as a major advantage
of the ASM method in light of the diverse readership a specification may have. ASMs
provide a formal way to write specifications and can be adjusted to be “readable” for
different target users without losing rigor (see the demonstration in Section 5). Thus,
by using multilingual specifications to support different views with different levels of
detail for different aspects also tailored to different user groups, the required know-how
of actual users can be taken into account. For example, applying “user-friendly” naming
and keywords (see Sections 4.1 and 4.3) might make it easier to express propositions
that most people will understand, whereas using set theory might be challenging for
most non-mathematicians (see Section 4.4).

Another way to enhance the understandability is visualization. Graphical represen-
tations “provide cognitive support by highlighting the most relevant interactions and
aspects of a specification for a particular use” [20]. By using static visualization, parts
of the specification that are not of current interest, e.g., precisely defined mathematical-
logical expressions describing system properties, can be hidden. Dynamic visualization
presents the system behavior as it changes over time (animation). Both kinds of visual-
ization help stakeholders to develop, validate, and understand formal specifications.

Given the notion of ASMs, a combination of the graphical Statecharts notation [21]
and a tabular notation would make sense to visualize the textual specifications in a more
“user-friendly” notation. Currently, there is no tool support for graphically representing
ASMs. However, well-known methods from model checking can be used to generate
state-machine diagrams from code. There also exists work in progress for developing
a graphical editor for the Asmeta tool set [22] by using the Eclipse Graphical Mod-
eling Framework (GMF). In addition, several research approaches provide principles
for designing graphical representations of formal specifications, e.g., [23,20,24], from
which we can benefit. (Problems may arise due to the fact that states in ASMs are



198 F. Kossak et al.

implicitly given by variables/functions. In order to cope with infinite state sets we can
define bounds.)

In addition, to scale effectively, formal methods must be supported by powerful and
easy-to-use tools. According to our experiences, a set of integrated tools should at least
consist of a specification editor, a consistency checker, a graphical visualizer, a simu-
lation component, and a verifier. The availability of such a central tool box for formal
specifications can improve quality criteria such as modifiability, consistency, and trace-
ability. A problem of modifiability is rooted in the consistency between the specification
and the program code. ASM models can be stepwise refined from the ground model of
the specification via design right down to code of any programming language. Provided
that changes are introduced on the respective level of abstraction, they can be subse-
quently propagated to all the lower levels of abstraction. Thereby, the ASM refinement
method obviously also helps to make changes traceable.

Unfortunately, tool support for ASMs is limited. However, there do exist interpreters
for certain dialects (with respective constraints), such as CoreASM [14]. Such inter-
preters allow simulation, which is an important tool for validation. General ASM mod-
els can typically be refined relatively easily to interpretable models, which is valuable
since specifications can be tested from early development phases in order to gain confi-
dence in their correctness. Formal verification of an ASM model with the employment
of tools like proof checkers or automated theorem provers will certainly require much
more effort than when using methods like Event-B, and Z, where such tool support is
already integrated. However, for most practical purposes, manual verification on a high
abstraction level is sufficient, and this is easily possible within the ASM method.

7 Conclusion

In this paper, we have proposed several intuitive specification writing style guidelines,
based on the ASM method, that improve the understandability of formal specifications.
The set of proposed guidelines is based on our experience that has been gathered while
working in industrial projects. Though the guidelines have been conceived while work-
ing with ASM specifications, yet most of them are generic enough and can be adopted
for other formal methods as well. However, more rigorous empirical analysis is required
to assess up to what extent that generalization is possible.

As this is an experience report focusing on the understandability issue of formal
specifications, we have intentionally omitted the discussion about the possible impacts
of our propositions on provability, automated parsing, semantic consistency, and tool
support. Of course, proofs can always be discharged manually on papers but their au-
tomation would really be a sought-after trait. We have experienced that, despite the
appealing notation, the tool support of ASM is a concern. Either already available tools
for ASM can be improved in this direction or other successful tool sets, such as Rodin
[25], can be extended to support this method.

References

1. Bowen, J.P., Hinchey, M.G.: Ten Commandments of Formal Methods. Computer 28, 56–63
(1995)



Improving the Understandability of Formal Specifications 199

2. Mashkoor, A., Jacquot, J.-P., Souquières, J.: Transformation Heuristics for Formal Require-
ments Validation by Animation. In: SafeCert 2009, York, UK (2009)

3. Mashkoor, A., Jacquot, J.-P.: Stepwise Validation of Formal Specifications. In: APSEC 2011,
pp. 57–64 (2011)

4. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Inc. (1989)
5. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-

sity Press (2010)
6. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality. In: ICSE

1976, pp. 592–605 (1976)
7. Börger, E., Stärk, R.: Abstract State Machines - A Method for High-Level System Design

and Analysis. Springer (2003)
8. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the Readability of State-based

Formal Requirements Specification Languages. In: ICSE 2002, pp. 33–43 (2002)
9. Vinter, R., Loomes, M., Kornbrot, D.: Applying Software Metrics to Formal Specifications:

A Cognitive Approach. In: METRICS 1998, pp. 216–223 (1998)
10. Finney, K.: Mathematical Notation in Formal Specification: Too Difficult for the Masses?

IEEE Trans. Softw. Eng. 22(2), 158–159 (1996)
11. Bidoit, M., Gaudel, M.-C., Mauboussin, A.: How to Make Algebraic Specifica-

tions More Understandable? In: Algebraic Methods: Theory, Tools and Applications,
pp. 31–67 (1989)

12. Choppy, C.: Teaching Formal Specifications What About Abstraction. In: SEEFM 2007,
pp. 188–199 (2007)

13. Börger, E., Sörensen, O.: BPMN Core Modeling Concepts. In: Handbook of Conceptual
Modeling: Theory, Practice and Research Challenges. Springer (2011)

14. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An Extensible ASM Execution Engine.
In: 12th Int. Workshop on Abstract State Machines, pp. 153–165 (2005)

15. Davis, M.: The Universal Computer: The Road from Leibniz to Turing. W.W. Norton (2000)
16. Meyer, B.: On Formalism in Specifications. IEEE Software 2, 6–26 (1985)
17. Briand, L.C., Morasca, S.: Software Measurement and Formal Methods: A Case Study Cen-

tered on TRIO+ Specifications. In: ICFEM 1997, pp. 315–325 (1997)
18. Olszewska, M., Sere, K.: Specification Metrics for Event-B Developments. In: CONQUEST

2010, pp. 20–22 (2010)
19. Halstead, M.H.: Elements of Software Science. Operating and Programming Systems Series.

Elsevier Science Inc. (1977)
20. Dulac, N., Viguier, T., Leveson, N.G., Storey, M.-A.D.: On the Use of Visualization in Formal

Requirements Specification. In: RE 2002, pp. 71–80 (2002)
21. Harel, D.: Statecharts - A Visual Formalism for Complex Systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)
22. Gargantini, A., Riccobene, E., Scandurra, P.: AsmEE: An Eclipse Plug-in in a Metamodel

based Framework for the Abstract State Machines. In: First Int. Conf. on Eclipse Techn.
(2007)

23. Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual
Notations in Software Engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

24. Kim, S.-K., Carrington, D.: Visualization of Formal Specifications. In: APSEC 1999,
pp. 102–109 (1999)

25. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin: An Open
Toolset for Modeling and Reasoning in Event-B. Journal on Software Tools for Technology
Transfer 12(6), 447–466 (2010)

26. Asmeta - Overview, http://asmeta.sourceforge.net
27. Gargantini, A., Riccobene, E., Scandurra, P.: Metamodelling a Formal Method: Applying

MDE to Abstract State Machines, Tech. Rep. 97, DTI Dept., University of Milan (2006)

http://asmeta.sourceforge.net


Problem-Based Requirements Interaction Analysis�

Azadeh Alebrahim, Stephan Faßbender, Maritta Heisel, and Rene Meis

paluno - The Ruhr Institute for Software Technology – University of Duisburg-Essen
firstname.lastname@paluno.uni-due.de

Abstract. [Context] The ability to address the diverse interests of different stake-
holders in a software project in a coherent way is one fundamental software qual-
ity. These diverse and maybe conflicting interests are reflected by the requirements
of each stakeholder. [Problem] Thus, it is likely that aggregated requirements for a
software system contain interactions. To avoid unwanted interactions and improve
software quality, we propose a structured method consisting of three phases to find
such interactions. [Principal ideas] For our method, we use problem diagrams,
which describe requirements in a structured way. The information represented in
the problem diagrams is translated into a formal Z model. Then we reduce the
number of combinations of requirements, which might conflict. [Contribution]
The reduction of requirements interaction candidates is crucial to lower the effort
of the in depth interaction analysis. For validation of our method, we use a real-life
example in the domain of smart grid.

Keywords: Requirements interactions, problem frames, feature interaction,
Z notation.

1 Introduction

Nowadays, for almost every software system various stakeholders with diverse interests
exist. These interests give rise to different sets of requirements. The combination of
these sets leads to unwanted interactions among the requirements. Such interactions
among requirements cannot be detected easily.

In general, the deviation between the intended behavior and structure as formulated
by single requirements of a stakeholder and the overall behavior and structure of the
resulting system- or software-to-be is called requirement inconsistency [1,2]. Such in-
consistencies can stem from different sources. The first source is the different under-
standing of terms and different views on the system-to-be of different stakeholders.
Missing or misleading information also adds to this class of inconsistencies [1], [3]. A
second source are inconsistencies which stem from the transformation between differ-
ent kinds of representations and models [1]. Another important source are interactions
between requirements which lead to an unexpected behavior. For functional require-
ments this source is already known as feature interaction for a long time, e.g. in the

� Part of this work is funded by the German Research Foundation (DFG) under grant number
HE3322/4-2 and the EU project Network of Excellence on Engineering Secure Future Internet
Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy ICT, Grant No. 256980).

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 200–215, 2014.
c© Springer International Publishing Switzerland 2014



Problem-Based Requirements Interaction Analysis 201

domain of telecommunication [4,5]. For interactions, one can distinguish between un-
wanted and desirable interactions. The strongest type of interactions are conflicts in
which requirements deny each other, and dependencies where one requirement can be
only fulfilled when another requirement is also fulfilled. Between these extrema, there
are different shades of negative or positive influences [2], [6]. For this paper, we assume
that inconsistencies in terms of the first and second source are solved and we will focus
on conflicts. But our method also allows to find other kinds of interactions.

Requirements engineering is concerned with describing the problem that the soft-
ware has to solve in a precise way [7]. The problem is located in the environment in
which the machine will be integrated and not in the computer [8]. Therefore, reasoning
about the requirements involves reasoning about the environment and the assumptions
made about it [7]. Zave and Jackson define the three terms requirements (R), domain
knowledge (D), and specification (S) in their extensive work [9]. The requirements de-
scribe the desired system after the machine is built. The domain knowledge represents
the relevant parts of the problem world. The specifications describe the behavior of the
machine in order to meet the requirements. These three descriptions are related through
the entailment relationship D, S |= R, expressing that the specification within the con-
text of the domain knowledge should satisfy the requirements.

As a basis for requirements analysis, we use the problem frames approach [8] based
on the work of Zave and Jackson [9]. It suggests to decompose the overall software
problem into simple subproblems. Each subproblem is related to one or more require-
ments. The solutions of the subproblems will be composed to solve the overall software
problem. The composition will only be successful if there is a consistent set of require-
ments (subproblems). Therefore, the identification of interactions and inconsistencies
in the requirements analysis is essential to avoid costly modifications later on in the
software development life cycle and to improve the overall software quality.

In this paper, we propose a formal and structured method composed of three phases
to identify interactions among functional requirements involving the environment. We
start with a full set of requirements representing subproblems. In all three phases, we
narrow down the set of combinations of requirements which might interact. The nar-
rowing process is formally defined using the Z notation [10,11] for each step of our
method. The formal Z specification is the basis for the tool support of our method. We
developed our specifications using the Community Z Tools1. After the final phase, the
remaining candidates have to be analyzed in detail to choose appropriate measures to
avoid the interactions. The analysis of the remaining candidates is out of the scope of
this paper, but our method reduces the amount of candidates and thus the effort neces-
sary for further analysis.

The rest of the paper is organized as follows: Section 2 gives a brief overview of the
problem frames our method relies on. As running example, we introduce a sun blind
control system in Section 3. Our method to detect interacting requirements is described
and applied to the sun blind control system in Section 4. We validate our method by
using a real-life example of smart grids in Section 5. Section 6 presents related work,
while Section 7 concludes the paper and suggests recommendations for future work.

1 http://czt.sourceforge.net/

http://czt.sourceforge.net/


202 A. Alebrahim et al.

2 Background

We use the problem frames [8] approach proposed by Jackson to build our requirements
interaction method on. Jackson introduces the concept of problem frames, which is
concerned with describing, analyzing, and structuring software problems. According
to Jackson, the computer and the software represent the solution, called machine. The
requirements and the environment are called system.

A problem frame represents a class of software problems. It is described by a frame
diagram, which consists of domains, interfaces between them, and a requirement. Do-
mains describe entities in the environment. Jackson distinguishes the domain types bid-
dable domains that are usually people, causal domains that comply with some physical
laws, and lexical domains that are data representations. Interfaces connect domains, and
they contain shared phenomena. Shared phenomena may be events, operation calls,
messages, and the like. They are observable by at least two domains, but controlled
by only one domain, as indicated by the name of that domain and “!”. For instance, the
shared phenomena openCommand, closeCommand, and stopCommand in Fig. 1 are ob-
servable by the domains UserOpenControl and User, but controlled only by the domain
User. When we state a requirement, we want to change something in the world with
the machine (i.e., software) to be developed. Therefore, each requirement constrains at
least one domain. Such a constrained domain is the core of any problem description be-
cause it has to be controlled according to the requirements. Hence, a constrained domain
triggers the need for developing a new machine which provides the desired control. A
requirement may refer to several domains in the environment of the machine.

We describe problem frames using UML class diagrams, extended by stereotypes as
proposed by Hatebur and Heisel [12]. All elements of a problem frame act as placehold-
ers which must be instantiated to represent concrete problems. In doing so, one obtains
a problem diagram that belongs to a specific class of problems. Figure 1 shows a prob-
lem diagram in UML notation. It describes that the UserOpenControl machine pulls
up, lowers or stops the sun blind on behalf of user commands openCommand, closeC-
ommand, or stopCommand. The requirement R4 constrains the SunBlind domain. This
is expressed by a dependency with the stereotype �constrains�. It refers to the
User, as expressed by a dependency with the stereotype �refersTo�.

3 Running Example

We demonstrate our approach using a sun blind control system. A sun blind is made
up of metallic fins which are attached to the outer side of the window. Additionally,
we have a sun sensor which measures the sun intensity, a wind sensor which measures
the wind speed, and a display which is suitable to display the current sun intensity and
wind speed. The sun blind is sensitive to sun and wind. A machine shall be built that
lowers the sun blind on sunshine and pulls it up on strong wind. For individual settings
it shall be possible to control the sun blind manually, too. The following requirements
are given:

(R1) If there is sunshine for more than one minute, the sun blind will be lowered.
(R2) If there is no sunshine for more than 5 minutes, the sun blind will be pulled up.



Problem-Based Requirements Interaction Analysis 203

Fig. 1. Problem diagram for the requirement R4

(R3) If there is strong wind for more than 10 seconds, the sun blind will be pulled up,
to avoid destruction of the sun blind.

(R4) If the user issues an open/close/stop command, the sun blind will be pulled up/-
lowered/stopped.

(R5) If the user interacts with the sun blind, then sunshine and no sunshine are ignored
within the next 4 hours.

(R6) If the user deactivates the holiday mode, then the sun blind is turned on.
(R7) If the user activates the holiday mode, the sun blind is pulled up and turned off.
(R8) Sunshine intensity and wind speed shall be displayed on the weather display.

We modeled the requirements as problem diagrams, which are used as input for our
method. The problem diagram for the requirement R4 is shown in Fig. 1. The other
requirements are modeled in a similar way. Throughout the paper we will refer to this
example to describe the proposed method.

4 Interaction Detection Method

Our method starts with a set of problem diagrams. Based on the information provided
by these problem diagrams, the structure-based pruning (phase one) takes place and
removes all requirements for which the structure of problem diagrams already implies
that they will not interact. The result is a first set of interaction candidates. In the second
phase, those candidates can be further reduced using the information if requirements
have to be satisfiable in parallel (phase two). The sets of requirements that have to be
satisfiable in parallel have to be known beforehand and these are an external input to
our method. The remaining interaction candidates are finally reduced in the last phase
(phase three) by checking whether the conjunction of preconditions of possibly inter-
acting requirements is satisfiable. Our formalization is built on the following sets and
relations that can be derived from the given problem diagrams.



204 A. Alebrahim et al.

Requirement is the set of all requirements occurring in at least one problem diagram.
Domain is the set of all domains occurring in at least one problem diagram.
Phenomenon is the set of all phenomena which are referred to or constrained by at least

one requirement in a problem diagram.
constrains : Requirement × Domain → PPhenomenon is the function that assigns to a

pair of requirement r and domain d the set of phenomena P that r constrains on d.
refersTo : Requirement × Domain → PPhenomenon is the function that assigns to a

pair of requirement r and domain d the set of phenomena P that r refers to on d.

Please note that constrains and refersTo are total functions. If a requirement does not
constrain or refer to a domain, then the value of the respective function is an empty set
of phenomena. In Z notation [10,11], we define the above sets and relations as follows:

[Requirement, Domain, Phenomenon]

constrains : Requirement × Domain → PPhenomenon
refersTo : Requirement × Domain → PPhenomenon

4.1 Phase One: Structure-Based Pruning

In phase one, we make use of the structure of the problem diagrams. The steps for select-
ing the requirements which are candidates of a requirements interaction are described
as follows:

Step One: Initial Setup. First, we define a Z schema Interaction consisting of three
variables, which we will use to describe the actual state of our method. The sets Relevant-
Domain and RelevantRequirement contain all domains and requirements which are con-
sidered to be relevant for an interaction. The function MinReqInteraction returns for each
relevant domain the minimal sets of requirements that may interact with each other. A
set of requirements is considered as minimal interacting if each strict subset of it does
not contain a possible interaction [2].

Interaction
RelevantDomain : PDomain
RelevantRequirement : PRequirement
MinReqInteraction : Domain �→ PPRequirement

dom MinReqInteraction = RelevantDomain⋃
(
⋃
(ran MinReqInteraction)) = RelevantRequirement

∀ d : RelevantDomain • ∀R : MinReqInteraction(d) •
#R ≥ 2 ∧ ∀Q : MinReqInteraction(d) | R �= Q • ¬ Q ⊆ R

Initially, we assume that all pairs of requirements which constrain the same domain
possibly cause an interaction on it. Formally, we define the initial interaction schema
Init as follows:



Problem-Based Requirements Interaction Analysis 205

Table 1. Initial requirements interaction table

Requirement /
Domain

SunSensor
(CausalDomain)

SunBlind
(CausalDomain)

WindSensor
(CausalDomain)

User (Biddable-
Domain)

WeatherDisplay
(CausalDomain)

R1 sunshine lowered
R2 no sunshine pulled up
R3 pulled up heavy wind
R4 pulled up, low-

ered, stopped
openCommand ,
closeCommand ,
stopCommand

R5 on, off openCommand,
closeCommand,
stopCommand

R6 off, pulled up activateHoliday
R7 on deactivate-

Holiday
R8 sun intensity wind speed displayed sun-

shine intensity,
displayed wind
speed

Init
Interaction

RelevantDomain = Domain
∀ d : Domain • MinReqInteraction(d) =

{r1, r2 : Requirement | r1 �= r2 ∧
constrains (r1, d) �= ∅ ∧ constrains (r2, d) �= ∅ • {r1, r2}}

We will visualize our method using so called requirement interaction tables (see Ta-
ble 1). In these tables, we represent the functions constrains and refersTo with the re-
stricted domain RelevantRequirement×RelevantDomain. We highlight the phenomena
P of a cell (r, d) in bold font if requirement r constrains phenomena P of the domain
d. If r refers to phenomena P, then they are written in italic font. The initial interaction
table for our running example is given in Table 1. We start with 21 possible combina-
tions of interacting requirements because we have to assume that each combination of
the seven requirements constraining the sun blind causes an interaction.

Step Two: Reducing Relevant Domains. We check for each column, and therefore
for each domain, if the domain is constrained at least by two requirements (at least
two cells with bold entries). If this is not the case, then the domain is not relevant. The
reason is that interactions only occur on domains which are constrained by at least two
requirements. Formally, we can define this step with the following Z operation schema.

P1S2
ΔInteraction

RelevantDomain′ = {d : Domain | ∃ r1, r2 : Requirement | r1 �= r2 •
constrains (r1, d) �= ∅ ∧ constrains (r2, d) �= ∅}

MinReqInteraction′ = RelevantDomain′ � MinReqInteraction



206 A. Alebrahim et al.

Table 2. Requirements interaction table after step 2 of phase 1

Requirement / Domain SunBlind (CausalDomain)
R1 lowered
R2 pulled up
R3 pulled up
R4 pulled up, lowered, stopped
R5 on, off
R6 off, pulled up
R7 on

From Table 1 we can see that no requirements interactions can occur on the sun
sensor, wind sensor and user because these domains are only referred to by the re-
quirements in the problem diagrams. Since there is only one requirement constraining
the weather display, we also do not expect any requirements interactions on it. On the
sun blind domain, we expect requirements interactions from the table because every
requirement besides R8 constrains this domain. Hence, after the second step of phase
one, we only identify domain SunBlind as relevant for interactions. When we apply
the operation schema P1S2 on the initial interaction schema (Init o

9 P1S2), we get the
interaction table shown in Table 2.

Step Three: Reducing Relevant Requirements. Third, we have to check for each
phenomenon of a relevant domain if it is interacting with a combination of phenomena
of the interaction table which refer to or constrain the same domain. A set of phe-
nomena is interacting if it is not possible to observe them or different characteristics
of them at the same time. Please note that different characteristics of a phenomenon
could not be observable at the same time. In such cases, we consider these phenom-
ena as self-conflicting. For each combination, we have to decide whether we can reject
the assumption that there is an interaction or not. If we cannot reject this assumption
for sure, we have to consider this combination of phenomena as interacting. We are
interested in the interactions of phenomena of a domain because these are the source
of interactions between requirements that refer to or constrain them. We define the
set of the minimal interacting sets of phenomena for each domain using the function
MinPhenInteraction : Domain → PPPhenomenon. A set P ∈ MinPhenInteraction(d)
contains a number of interacting phenomena of the domain d - at least two - and each
strict subset Q ⊂ P is free of interactions [2]. This is expressed in the Z notation as
follows:

MinPhenInteraction : Domain → PPPhenomenon

∀ d : Domain • ∀P : MinPhenInteraction(d) •
P �= ∅ ∧ ∀Q : MinPhenInteraction(d) | P �= Q • ¬ Q ⊆ P

We have to define the function MinPhenInteraction manually for the given problem
frames model. For this step it is sufficient to define it for the relevant domains of the
interaction schema after step two of phase one ((Init o

9 P1S2).RelevantDomain′). For
the precondition analysis in phase three, we also need the interacting requirements on
the other domains. For our running example, we identify the following sets of minimal
interacting phenomena.



Problem-Based Requirements Interaction Analysis 207

Sunblind, SunSensor, WindSensor,User : Domain
lowered, pulledUp, stopped, on, off , sunshine, noSunshine : Phenomenon
strongWind, openCommand, closeCommand, stopCommand : Phenomenon

MinPhenInteraction(Sunblind) =
{{lowered, pulledUp}, {lowered, stopped}, {pulledUp, stopped}, {on, off}}

MinPhenInteraction(SunSensor) = {{sunshine, noSunshine}}
MinPhenInteraction(WindSensor) = MinPhenInteraction(User) = ∅

Using the minimal interacting sets of phenomena, we can update the function Min-
ReqInteraction from the interaction schema, which maps a relevant domain to the sets
of requirements that possibly interact on the domain. We distinguish two cases. First,
two requirements are interacting on a domain if there is a self-conflicting phenomenon
where both requirements refer to or constrain. Second, if we can define a bijection
between a set of at least two requirements and a set of interacting phenomena, with the
property that if the bijection maps a requirement to a phenomenon then the requirement
also refers to or constrains it, then these requirements may interact with each other.
Formally, we define the following operation schema:

P1S3
ΔInteraction

MinReqInteraction′ = λ d : RelevantDomain •
{r1, r2 : Requirement | r1 �= r2 ∧ ∃ p : Phenomenon •

{p} ∈ MinPhenInteraction(d) ∧
p ∈ constrains (r1, d) ∪ refersTo (r1, d) ∧
p ∈ constrains (r2, d) ∪ refersTo (r2, d) • {r1, r2}}∪

{R : PRequirement | ∃P : MinPhenInteraction(d) • ∃F : R �→ P •
∀ r : R; p : P • F(r) = p ⇒ p ∈ constrains (r, d) ∪ refersTo (r, d)}

RelevantDomain′ = RelevantDomain \ dom(MinReqInteraction′ � {∅})

Based on the updated function MinReqInteraction′, also the interaction table is re-
duced by the above operation schema. All requirements that are not in one of the in-
teracting sets can be left out because they are irrelevant. Furthermore, all domains for
which no set of possible interacting requirements exists are also irrelevant.

With the above definition of MinPhenInteraction(Sunblind), we get the following
sets of possibly interacting requirements for our running example:

R1, R2,R3,R4,R5,R6,R7 : Requirement

(μ S : Init o
9 P1S2 o

9 P1S3).MinReqInteraction′(Sunblind) =
{{R1, R3}, {R1, R4}, {R1, R2}, {R1, R6}, {R2, R4}, {R3,R4}, {R4,R6},

{R5, R6}, {R5,R7}, {R6,R7}}

In this step, we have reduced the 21 initial combinations of possibly interacting require-
ments to 10.

4.2 Phase Two: Check for Parallel Requirements

We now investigate whether the possibly interacting requirements have to be satisfiable
at the same time. In the case that they do not have to be satisfiable all at the same time,



208 A. Alebrahim et al.

we do not expect interactions among them. Hence, we need a set of sets of requirements
parallelReq as input for this phase. This set has to be set up manually and shall contain
the maximal sets of requirements that have to be satisfiable at the same time, i.e. if we
add a new requirement to a set, then there is a requirement in the set that has not to be
satisfiable at the same time with the new requirement.

parallelReq : PPRequirement
⋃

parallelReq ⊆ (μ S : Init o
9 P1S2 o

9 P1S3).RelevantRequirement′

For our running example, we see that R6 and R7 are exclusive requirements that do
not have to be satisfiable at the same time with others. Furthermore, R4 and R5 have
not to be satisfiable at the same time because R5 refers to the user interaction of R4 as
precondition. The requirements R1, R2, and R3 that are concerned with the observation
of the environment have all to be satisfiable at the same time, together with R4 or R5.
Hence, we get the following sets of parallel requirements:

parallelReq = {{R1, R2, R3,R4}, {R1, R2,R3,R5}}

We can now use the set of sets of parallel satisfiable requirements to reduce the
sets of minimal interacting requirements. A set of requirements is only interacting if all
requirements of it have to be satisfiable at the same time. We get the following operation
schema:

P2
ΔInteraction

MinReqInteraction′ = λ d : RelevantDomain • {R : MinReqInteraction(d) |
∃P : parallelReq • R ⊆ P}

RelevantDomain′ = RelevantDomain \ dom(MinReqInteraction′ � {∅})

For our running example, we get the following reduced set of sets of minimal interacting
requirements.

(μ S : Init o
9 P1S2 o

9 P1S3 o
9 P2).MinReqInteraction′(Sunblind) =

{{R1, R3}, {R1, R4}, {R1, R2}, {R2, R4}, {R3, R4}}

Beginning from the 21 combinations of possibly interacting requirements, we have now
reduced the number of relevant combinations to 5.

4.3 Phase Three: Precondition-Based Pruning

We now have a reduced set of sets of possibly interacting requirements (Init o
9 P1S2 o

9

P1S3 o
9 P2).MinReqInteraction′. For each of these sets, we investigate whether there

is a system state that fulfills the preconditions of all requirements of this set. We only
consider those parts of the preconditions that are not influenced by the software to
be built, i.e. phenomena of domains that are only referred by requirements. We only
consider those parts of the precondition because two requirements with contradicting
preconditions can interact in the case that one requirement establishes the precondition



Problem-Based Requirements Interaction Analysis 209

of the other requirement, such that the postconditions of both requirements could not
be satisfied.

As argued in Section 1, requirements have to be expressed in terms of the environ-
ment. Therefore, they are normally written according to the general textual pattern: “If
the environment is like this, then it shall be changed like that.” Hence, a requirement has
a pre- and a postcondition, both talking about phenomena of the environment [13]. We
formalize the textual description of each relevant requirement to a formula pre ⇒ post.
The formula pre describes the system state in terms of the referred to and controlled
phenomena of the requirement when the requirement has to be fulfilled, and the for-
mula post describes the system state to be achieved by the requirement.

For example, the requirement R3 states “If there is strong wind for more than 10
seconds, the sun blind will be pulled up, [...]”, and we can express it with the formula
strong wind ⇒ pulled up.

To determine whether a set of requirements is satisfiable, we have to define the func-
tion precondition : Requirement → PPPhenomenon that returns the phenomena of
only referred domains (see above) occurring in the precondition of the requirement in
disjunctive normal form (DNF). E.g., a precondition (a ∧ b) ∨ c ∨ (d ∧ e ∧ f ) is
represented as {{a, b}, {c}, {d, e, f}}. We assume that the preconditions of all require-
ments in isolation are free of interaction. Otherwise the requirement is not satisfiable
and can be left out.

precondition : Requirement → PPPhenomenon

∀ d : Domain; r : Requirement •
∀ I : MinPhenInteraction(d); P : precondition(r) | #I ≥ 2 • ¬ I ⊆ P ∧

∀ p : P • ∃1 d : ran(dom(constrains �∅)) • p ∈ refersTo(r, d)

We define the precondition function as following for our running example.

precondition(R1) = {{sunshine}}
precondition(R2) = {{noSunshine}}
precondition(R3) = {{strongWind}}
precondition(R4) = {{openCommand}, {closeCommand}, {stopCommand}}

For each relevant domain d ∈ (Init o
9 P1S2 o

9 P1S3 o
9 P2).RelevantDomain′, we

now consider each set of possibly interacting requirements R ∈ (Init o
9 P1S2 o

9 P1S3 o
9

P2).MinReqInteraction′(d) and combine the preconditions of the requirements in R by
conjunction and restore the disjunctive normal form using the generic function dunion.

[X]
dunion : PPPX → PPX

dunion = λ S : PPPX •
{T : PX | ∃ f : S → PX | ∀ s : S • f (s) ∈ s • T =

⋃
(ran f )}

For our running example, we get the following combined preconditions in disjunctive
normal form.



210 A. Alebrahim et al.

dunion(precondition(| {R1,R2} |)) = {{sunshine, noSunshine}}
dunion(precondition(| {R2,R3} |)) = {{sunshine, strongWind}}
dunion(precondition(| {R1,R4} |)) = {{sunshine, openCommand},

{sunshine, closeCommand}, {sunshine, stopCommand}}
dunion(precondition(| {R2,R4} |)) = {{noSunshine, openCommand},

{noSunshine, closeCommand}, {noSunshine, stopCommand}}
dunion(precondition(| {R3,R4} |)) = {{strongWind, openCommand},

{strongWind, closeCommand}, {strongWind, stopCommand}}
A set of interacting requirements can now be rejected if all phenomena sets in the

combined disjunctive normal form contain a set of interacting phenomena, because then
there is no system state that leads to an interaction between the requirements. Formally,
we can specify this step using the following operation schema.

P3
ΔInteraction

∀ d : RelevantDomain • MinReqInteraction′(d) =
{R : MinReqInteraction(d) | ∃P : dunion(precondition(| R |)) •

∀ I :
⋃
(ran MinPhenInteraction) • ¬ I ⊆ P}

From the above equations, we see that R1 and R2 have interacting phenomena in their
combined precondition because there cannot be sunshine and noSunshine at the same
time. Hence, we remove {R1,R2} from the set of sets of interacting requirements. For
all other requirement sets, we can find system states that satisfy the combined precon-
ditions because there can be sunshine and strong wind at the same time and the user can
issue commands independently from the actual weather.

The remaining sets of interacting requirements have to be further analyzed to de-
termine if the requirements are interacting and which measures (such as prioritization)
shall be chosen to cope with the interactions.

From our running example we see that our method reduced the 21 initial combina-
tions of requirements that may interact to 4 combinations.

5 Validation

The proposed method was used for analyzing requirements of a real-life example in the
domain of smart grids. To use energy in an optimal way, smart grids make it possible to
couple the generation, distribution, storage, and consumption of energy. Smart grids use
information and communication technology, which allows financial, informational, and
electrical transactions. The gateway represents the central communication unit between
a household and the grid in a smart metering system. It is responsible for collecting,
processing, storing, and communicating meter data, and for controlling a household,
e.g., energy supply.

As information sources, we considered diverse documents such as “Application Case
Study: Smart Grid” and “Smart Grid Concrete Scenario” provided by the industrial
partners of the EU project NESSoS2. As sources for functional requirements for such a

2 http://www.nessos-project.eu/



Problem-Based Requirements Interaction Analysis 211

Table 3. Effort spent for conducting the method and resulting reduction

Method Step
Modeling of

Problem
Diagrams

Initial Setup
Reducing
Relevant
Domains

Set up
MinPhen

Reducing
Relevant

Requirements

Check for
Parallel

Requirements

Precondition-based
Pruning

Effort ∅ Per
Item

28 min. per
Problem
Diagram

2.5 min. per
Problem
Diagram

0.5 min. per
Domain

9.5 min.
per

Domain

0.5 min. per
Requirement

6.85 min. per
Problem
Diagram

8 min. per
Requirement

Number
of Items

27 Problem
Diagrams

27 Problem
Diagrams

19 Domains 4 Domains
27

Requirements
27 Problem
Diagrams

5 Requirements

Total
12.5 person

hours
1.125

person hour
0.16 person

hour
0.6 person

hour
0.225 person

hour
3 person hours 0.67 person hour

Potential
Interactions

% of
Initial

100% 100% 49% 49% 2.8% 2.8% 1.7%

Left
% of

Remain-
ing

100% 100% 49% 100% 5.8% 100% 60%

gateway, we considered “Requirements of AMI (Advanced Multi-metering Infrastruc-
ture]” [14] provided by the EU project OPEN meter3. We refined the 13 minimum uses
cases as described by this document to 27 requirements and modeled them as problem
diagrams using the UML4PF tool [15].

The general effort of preparing the problem diagrams and executing our method is
shown in Table 3. The steps of our method are added as columns. The rows are divided
into 2 main parts. First, the effort per item and the total effort regarding the number of
items. Second, the reduction of possible interactions within one step with regards to the
total number of interactions or with regards to the interaction left by the previous step.
This way, Table 3 provides the information about the effort and the resulting reduction
for each step.

The problem diagrams modeling the 27 requirements given by the 13 minimum use
cases served as an input to Phase 1, Step 1, resulting in 351 possible requirements in-
teractions. The initial requirements interaction table consisted of 19 domains and 27
requirements. A number of 64 phenomena were documented as relevant, because the
requirements mentioned them. In the second step, the number of domains on which an
interaction could happen was reduced to 4, and 7 requirements were removed from the
set of candidates, which could cause an interaction. At this point, the number of pos-
sible interactions was already reduced by more than fifty percent to 171 (see Table 3).
The involved number of possibly involved phenomena was cut down to 19. Three of
the phenomena were identified as possibly interacting phenomena. As a result, only 1
domain and 5 requirements remained after Step 3. Thus, at the end of Phase 1, we al-
ready reduced the number of possible interactions to 10, which makes a reduction by
more than 95 percent (see Table 3). Since all of the requirements left may have to be
fulfilled in parallel, no further reduction was possible in Phase 2. While checking the
preconditions in Phase 3, one more requirement could be rejected to be a candidate for
an interaction. In the end, 4 requirements, sources for 6 possible interactions, had to be
analyzed in depth.

The analysis revealed that the requirements left caused 2 interactions. One of the
original use cases in [14] described a process where the energy provider is able to

3 http://www.openmeter.com/



212 A. Alebrahim et al.

disconnect a household from the grid by ordering the gateway to cut off the electricity
supply. One reason could be unpaid bills. On the other hand, the provider can order
the gateway to reconnect the household. A second use case describes that the customer
is able to define a power consumption threshold. If the threshold is reached by the
actual power consumption, the household is also cut off the grid by the gateway. But
for this case, the consumer is allowed to override the cut-off manually, reconnecting the
household. The two use cases, and therefore also the requirements, did not refer to each
other, allowing the customer to override a cut-off ordered by the provider. Or the other
way round, the provider could reconnect a household which was taken off the grid on
demand of the customer. Hence, we found 2 real interactions.

To sum up, the effort to investigate requirements for interactions in depth was re-
duced by more than 95 percent. For the interactions left over to the in-depth analysis,
the precision was 33 percent (2 real interactions / 6 possible interactions), which is ac-
ceptable considering the overall reduction. For calculating the recall, we made a full in
depth analysis of all requirements and found no additional interactions which makes a
perfect recall of 100 percent. In general, when looking for interactions, it is favorable
to have a high recall rather than having a high precision. The reason is that missing one
real interaction makes any effort reduction worthless.

For the smart grid case study, especially the effort spent for phase one payed off (see
Table 3). Phase 2 and 3 resulted only in a minor reduction of possible interactions. This
result should be subject to further research, as it may depend on the special structure of
the smart grid case study. But overall, the effort of executing our method is reasonable
with regards to the reduction.

6 Related Work

Although the problem of interaction between requirements has been known for a long
time, there exist only few approaches dealing with this problem.

Egyed and Grünbacher [16] introduce an approach based on software quality at-
tributes and traces between requirements. They assume that two requirements are con-
flicting only if their quality attributes are conflicting and there is a dependency between
them. The authors do not consider the case of conflicting requirements due to their
functionality and not their quality.

The approach proposed by Alférez et al. [17] finds candidate points of interaction.
The authors first analyze the dependencies between use cases to identify potential can-
didates of conflict. Then they determine whether the detected use cases are related to
more than one feature. In contrast to our method, it is not formally defined. Furthermore,
this approach is based on use cases, whereas we rely on problem frames.

Kim et al. [18] propose a process for detecting and managing conflicts between func-
tional requirements expressed in natural language. After identifying, documenting, and
prioritizing requirements using goals and scenarios in the first phase, the requirements
are classified through the requirements partitioning criteria in the second step. In the
third phase, conflicts are detected using a syntactic method to identify candidate con-
flicts and a semantic method to identify actual conflicts. Step four manages the detected
conflicts according to the priorities. Similar to our method, this process reduces the



Problem-Based Requirements Interaction Analysis 213

scope of requirements to be considered by performing a syntactic analysis. The seman-
tic analysis is performed manually by the analyst to check and answer a list of questions.
As opposed to our method, this method is not formally specified.

In contrast to our problem-based method, Hausmann et al. [19] introduce a use case-
based approach to detect potential inconsistencies between functional requirements. A
rule-based specification of pre- and postconditions is proposed to express functional
requirements. The requirements are then formalized in terms of graph transformations
that enable expressing the dependencies between requirements. Conflict detection is
based on the idea of independence of graph transformations. The authors provide tool
support to represent the results of the analysis. Similar to our method, the results of the
conflict detection method have to be analyzed further manually. Our method detects a
set of interaction candidates that need to be analyzed further for real interactions. This
approach detects dependencies that represent errors or conflicts to be decided by the
modeler. This is due to the incomplete nature of use cases.

Lamsweerde et al. use different formal techniques for detecting conflicts among
goals based on KAOS [2]. One technique to detect conflicts is deriving boundary condi-
tions by backward chaining. Boundary conditions refer to combination of circumstances
causing inconsistency in among different goals. Every precondition yields a boundary
condition. The other technique is selecting a matching generic pattern. Our method for
finding conflicts among requirements can be seen as complementary to this approach
that provides techniques for detecting goal conflicts and resolving them. However, to
use our method in connection with this approach, requirements as refinement of goals
have to be modeled as problem diagrams.

Heisel and Souquières [13] developed a formal and heuristic method to detect re-
quirement interactions. Each requirement consists of a pre- and a postcondition. The
authors analyze whether the postconditions are contradictory by sharing common pre-
conditions. They also determine postcondition interaction candidates by looking for
incompatible postconditions. As opposed to our approach, the authors formalize the
whole set of requirements, which is costly and time-consuming. Our approach utilizes
the structure of problem diagrams to reduce the effort for the formalization.

An approach to detect feature interactions in the software product line (SPL) is pro-
posed by Classen et al. [20]. The authors link feature diagrams used in the SPL to the
problem frames approach by redefining the notions of feature and feature interaction
based on the entailment relationship D, S |= R [8,9]. This enables the authors to con-
sider the environment in addition to the requirements, similar to our method. To detect
feature interactions, four algorithms are presented based on a set of consistency rules.
This work is complementary to our work. Using our approach, the sets of requirements
and domains that have to be considered for interactions can be reduced and therefore
the modeling and formalization effort is reduced.

7 Conclusions and Future work

In this paper, we investigated how to identify requirements interaction using a problem-
based method. We described a structured method to identify requirements interactions
between functional requirements. The method is formalized using Z and this specifi-
cation serves as basis for the tool support of the proposed method. For the first phase,



214 A. Alebrahim et al.

we explained how to identify candidates for an interaction among a set of requirements
modeled as problem diagrams. In the second phase, we showed how to reduce this set
of candidates further using the information whether requirements have to be fulfilled in
parallel or not. In the third phase we further reduced the possibly parallel requirements
by checking their precondition. For the paper, we explained our method using a run-
ning example. For validation, we applied the method to a real example in the smart grid
domain. The main contributions are:

– A re-usable requirements interaction detection method which provides structured
guidance for a software engineer.

– A significant reduction of the initial set of requirements to be analyzed in depth
which makes the use of heavy weight analysis methods, such as formal methods,
practicable.

– A formal basis which enables tool-support that eases the execution of our method.4

– Identifying interactions among more than two requirements.

Considering the scalability of our method, we experienced a less than linear increase
in effort for a rising number of requirements regarding the pruning steps. The reason
is that the size of the requirements interaction table depends on the number of require-
ments and the number of domains. Even for a large amount of requirements, in most
cases, the number of involved domains remains stable. And even for a large table, each
decision can be done based on the information of one entry of the table. The table itself
can be generated automatically and tool support is existent or developed right now for
each pruning step. Hence, for the pruning the most effort stems from the modeling of
the requirements themselves (see Table 3). But this is a necessary and unavoidable step
when analyzing requirements in a structured way. By applying our method to a real-life
case study in this paper, we showed the feasibility and usefulness of the method.

For the problem frames approach itself, we experienced a linear increase in effort for
each additional requirement (see Table 3). Thus, the scalability is acceptable. Note that
our method can be applied to any other requirements notation as long as it provides all
involved domains in the environment, the constrains or refers relations between func-
tional requirements and domains, and the phenomena for the constrains and refers re-
lations. This also means that we do not use all information given by problem diagrams.
But from our point of view the full problem frames approach is a natural solution for
collecting this information as it is system centric, considers the environment with its
domains, and provides a structured method to deal with functional requirements and
refine them in the needed way.

For the future, we plan to add support for considering quality requirements. Addi-
tionally, we strive for extending the tool support. For example, we will implement the
possibility to express the concurrence of the fulfillment of requirements in graphical
way, e.g. using UML interaction overview diagrams. This enables the automatic gen-
eration of sets of parallel requirements. Finally, we plan to work on a method which
will guide the process of interactions resolving and the according modification of the
requirements.

4 Tool-support for generating the initial requirements table is available under
http://www.uml4pf.org/rit/rit.html.



Problem-Based Requirements Interaction Analysis 215

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering, FOSE 2007, pp. 37–54. IEEE Computer
Society, Washington, DC (2007)

2. van Lamsweerde, A., Letier, E., Darimont, R.: Managing Conflicts in Goal-Driven Require-
ments Engineering. IEEE Trans. Softw. Eng. 24(11), 908–926 (1998)

3. Sommerville, I., Sawyer, P., Viller, S.: Viewpoints for requirements elicitation: A practical
approach. In: Int. Conf. on RE: Putting Requirements Engineering to Practice, pp. 74–81.
IEEE Computer Society (1998)

4. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a critical
review and considered forecast. Comput. Netw. 41, 115–141 (2003)

5. Cameron, E.J., Velthuijsen, H.: Feature interactions in telecommunications systems. Comm.
Mag. 31(8), 18–23 (1993)

6. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction management. ACM
Comput. Surv. 35, 132–190 (2003)

7. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. In: Future of
Software Engineering, FOSE 2007, pp. 285–303. IEEE Computer Society (2007)

8. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley (2001)

9. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol. 6, 1–30 (1997)

10. Wordsworth, J.: Software development with Z - a practical approach to formal methods in
software engineering. International computer science series. Addison-Wesley (1992)

11. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle River
(1989), http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf

12. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable software. In:
Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 317–331. Springer, Heidelberg
(2010)

13. Heisel, M., Souquières, J.: A heuristic algorithm to detect feature interactions in require-
ments. In: Language Constructs for Describing Features, pp. 143–162. Springer (2000)

14. OPEN meter project: Requirements of AMI. Technical report, OPEN meter project (2009)
15. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF – a tool for problem-oriented

requirements analysis. In: Proc. of the Int. Conf. on Requirements Engineering (RE),
pp. 349–350. IEEE Computer Society (2011)

16. Egyed, A., Grunbacher, P.: Identifying requirements conflicts and cooperation: How quality
attributes and automated traceability can help. IEEE Softw. 21(6), 50–58 (2004)

17. Alférez, M., Moreira, A., Kulesza, U., Araújo, J.A., Mateus, R., Amaral, V.: Detecting fea-
ture interactions in SPL requirements analysis models. In: Proc. of the 1st Int. Workshop on
Feature-Oriented Software Development, FOSD 2009, pp. 117–123. ACM (2009)

18. Kim, M., Park, S., Sugumaran, V., Yang, H.: Managing requirements conflicts in software
product lines: A goal and scenario based approach. Data Knowl. Eng. 61, 417–432 (2007)

19. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach: a static analysis technique based on graph transformation. In:
Proc. of the 24th Int. Conf. on Software Engineering, ICSE 2002, pp. 105–115. ACM (2002)

20. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a feature: A requirements engineering
perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 16–30.
Springer, Heidelberg (2008)

http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf


 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 216–231, 2014. 
© Springer International Publishing Switzerland 2014 

Analyzing the Effect of the Collaborative Interactions  
on Performance of Requirements Validation 

Nelly Condori-Fernández1, Sergio España1, Klaas Sikkel2, Maya Daneva2,  
and Arturo González1 

1 Universitat Politècnica de València 
Camino de Vera 46022, Valencia, Spain 

{nelly,sergio.espana,agdelrio}@dsic.upv.es 
2 University of Twente 

Drienerlolaan 5,  
7522 NB Enschede, The Netherlands  

{m.daneva,k.sikkel}@utwente.nl 

Abstract. [Context] Requirements validation is critical in the pursuit of quality 
software. It usually demands the collaboration of multiple stakeholders with dif-
ferent perspectives. [Question] Our community has reported scarce experimen-
tal studies on the role of collaborative interaction in requirements validation. 
The goal of this study is to explore the effect of collaborative interactions on the 
performance of requirements validation. [Principal ideas] We performed a  
quasi-experiment involving 118 bachelor students to act analysts, and 40 volun-
teering students from the Social Sciences department to act clients. The  
requirements were specified using UML activity diagrams. The overall perfor-
mance is measured in terms of efficiency (missing requirements correctly iden-
tified in a time interval), and effectiveness (degree to which the validation 
yielded the correct result). Moreover, we measured also subjects' satisfaction on 
collaboration (questionnaire). [Contribution] We found that the teams com-
posed exclusively of analysts showed better efficiency and effectiveness than 
mixed teams (client and analysts). However, for certain types of requirements, 
the mixed teams’ efficiency was superior. Also, the degree of satisfaction was 
higher among the clients than among the analysts. We end up with identifying 
future research topics. 

Keywords: activity diagrams, reviews-based validation, validation effective-
ness, validation efficiency, requirements process performance, collaboration  
satisfaction. 

1 Introduction 

Requirements validation is a key activity in requirements engineering (RE); it aims to 
ensure that specifications accurately express the stakeholders’ needs [1]. Through the 
requirements validation process, errors in a software requirements specification (SRS) 
are identified and corrected before it is used in further system development. Usually, a 



 Analyzing Collaborative Interactions in Requirements Validation 217 

 

requirements validation process demands the collaboration of multiple stakeholders 
with various needs and perspectives. In environments where stakeholders can freely 
discuss, share their opinions and resolve conflicts among them, it is often particularly 
challenging to facilitate the validation of the requirements in an efficient and effective 
manner. 

Evaluation of collaboration interactions in software and non-software projects has 
been the subject of research in a number of contexts, be it virtual [8], [9], [11] or face-
to-face [10], [11]. To evaluate the effectiveness of collaborative interactions, both 
quantitative and qualitative reasoning approaches have been proposed.  

In software engineering, various publications analyze the effect of different human 
factors, such as personality or communication skills, in pair programming [2], [7], 
[10]. While these sources have been useful in planning our research, especially in 
developing awareness of the potential threats experienced by other authors in studies 
on collaboration and communication, we found few experimental studies focused on 
requirements validation in collaborative contexts [15, 16, 17]. Also, whatever work 
has been done, it is conducted from the requirements analysts’ perspective. E.g. 
Gemino [15] carried out an experiment to compare the effect of animation and narra-
tion techniques on requirements validation. Furthermore, He et al. [17] report results 
of a post-task survey on the application of an inspection technique during require-
ments validation. Both studies were conducted only from the analyst’s perspective.  
We note however that RE textbooks (e.g. [12]) treat requirements validation as a cli-
ent-focused activity. It is therefore surprising that we as a community lack any in-
depth understanding of how collaboration between clients and analysts possibly affects 
important outcomes of the requirements validation process. This gap of knowledge 
motivated us to initiate an empirical study in order to collect and analyse evidence to 
systematically address the gap.   

The goal of this paper is to provide better understanding of how collaborative in-
teractions affect the performance of requirements validation. We achieve this by  
conducting an exploratory experiment that was set up in three different scenarios: i) 
individual review from a client viewpoint; ii) requirements validation from an analyst 
viewpoint, working in pairs; and iii) requirements validation from combined client 
and analyst viewpoints.  

The following sections provide a detailed account of our study. Section 2 provides 
a background on reviews-based requirements validation and positions our exploration 
within a requirements validation process that relies on reviews. Section 3 describes 
our experiment plan and Section 4 reports our results. Section 5 discusses the validity 
threats and Section 6 concludes the paper. 

2 Reviews-Based Requirements Validation 

There is a wide range of requirements validation techniques [12], [23].  This section 
briefly describes reviews-based validation. We opted for this class of techniques be-
cause it has been widely applied in the software industry [5], [20]. A requirements 
review process is usually performed by a number of people from different  



218 N. Condori- Fernández et al. 

 

backgrounds, meeting together to detect conflicts, omissions, inconsistencies and 
errors in specifications.  

The steps of the process are the following: 1) Planning of review in terms of par-
ticipants. 2) Distributing documents to the review team members. 3) Individuals read 
the relevant documents searching for inconsistencies, conflicts, omissions and other 
problems before the review meeting (pre-review). 4) Individual comments and prob-
lems are discussed; a set of actions to address the problems is agreed upon. 5) Follow-
up actions to check if the agreed actions have been performed. 6) Final document is 
revised and the team members either accept it or plan further review iterations.   

As stated in [5], a significant disadvantage of this process is its resource-
intensiveness as review meetings span across several sessions and this in turn hinders 
the involvement of people from different departments at the same time. Hence,  
resource availability may easily become an issue.  

In this empirical study, we, the experimenters, carried out the first two steps of the 
requirement review process. Steps 3 and 4 were carried out by the experimental sub-
jects. The subjects had to check the completeness of a long SRS, represented by UML 
activity diagrams. In contrast to previous empirical studies ([15], [17], [21], [22]),  
we involve the viewpoint of the client, who had to review the SRS both by  
himself/herself and in collaboration with a team of analysts. 

3 Experiment Planning 

The goal of our experiment is to analyze the effect of the collaborative interaction on 
the performance of the requirements validation; in the context of bachelor students 
majoring in various IT sub-fields at University of Twente (UT), the Netherlands. We 
set out to answer three research questions (RQ):  

RQ1: When teams are validating SRSs, is their efficiency affected by the type of 
collaborative interaction? 

RQ2: Is the validation effectiveness affected by the type of collaborative interaction? 
We are also interested in assessing whether the type of requirements that are identi-
fied as missing in the SRS has an effect on validation effectiveness. 

RQ3: Is the efficiency of teams in validating requirements affected by the degree of 
collaboration satisfaction?  

3.1 Variables and Hypotheses 

In our attempt to investigate how the collaboration among stakeholders with different 
background can affect in the performance of requirements validation, we considered 
the following independent variables:  

• The collaborative interaction type. Given the lack of prior studies that involve the 
client viewpoint, we considered two types of collaborative interactions: interaction 
among participants with a different role (client and analyst), and interaction among 
participants with the same role (analyst).  



 Analyzing Collaborative Interactions in Requirements Validation 219 

 

• The type of missing requirement. Given the exploratory nature of the experiment, 
we limited the investigation to three types of requirements:  
─ Missing business activities that are part of the company’s work practice. 
─ Missing constraints that apply to the business activities. 
─ Missing business forms that are filled in/created/used by company’s staff. 
 
Fig. 1 overviews the variables of the experiment and their hypothesised  

relationships.  

 

VALIDATION 
EFFECTIVENESS

VALIDATION
EFFICIENCY

COLLABORATION 
SATISFACTION 

DEGREE

PERFORMANCE

RESPONSE VARIABLES

COLLABORATIVE 
INTERACTION 

TYPE

TYPE OF 
MISSING 

REQUIREMENT

INDEPENDENT VARIABLES

RQ1
H1

RQ2
H2 RQ3

H3
EXPLORE AS 
PART OF RQ2 

VARIABLE

INVESTI-
GATION

VARIABLE 
CATEGORY

RQx

Hx

RESEARCH 
QUESTION

HYPOTHESIS  

Fig. 1. Overview of the relationships among variables 

We identified the following response variables (a.k.a. dependent variables): 
Validation efficiency indicates how well a team used time to correctly identify 

missing requirements. In this study, 12 requirements were removed from the original 
specification (For more detail, see the description of the experimental object in sub-
section 3.2). Also, it is important to note that apart from correctly-identified missing 
requirements, we considered two types of errors that might be committed by the 
teams: 1) A functional fragmentation error, which means a functional requirement is 
correctly identified, yet incompletely specified and therefore appears in the form of 
two or more fragments (encapsulations). 2) A functional aggregation error, when two 
or more missing functional requirements were aggregated to a single ‘higher-level 
functional’ requirement.  

Regarding the validation time, as reviews-based requirements validation usually 
requires several sessions to be completed, in order to increase control, we limited the 
time to a single 2-hour session for all teams that participated in the experiment. 

Validation effectiveness is the degree to which the teams execute the validation 
task correctly. The test subjects were given a SRS from which the researchers had 
removed a set of requirements. Effectiveness is measured as the number of missing 
requirements correctly identified, divided by the total number of missing  
requirements.  

Collaboration satisfaction degree. A questionnaire was designed for each of the two 
roles (i.e. client and analyst) that participate in the different interaction scenarios (de-
scribed in Sect. 3.4). We consider two key points for the formulation of the questions 
[4]: (i) the members’ satisfaction is the basis of the team satisfaction; (ii) the degree of 
satisfaction derives from the working relationship. Based on these points, we  
identified the different collaboration relationships in the Scenarios II and III  
 



220 N. Condori- Fernández et al. 

 

 

 a) Scenario II b) Scenario III 

Fig. 2. Collaboration relationships identified in the scenarios 

(see Fig. 2) and we formulated specific questions for each relationship. We measured 
the satisfaction degree by means of these 5-point Likert scale questions1. 
Thus, from our research questions the following hypotheses were derived. 

• H10: The efficiency of teams in validating requirements is the same independently 
of the collaborative interaction type. 

• H20: The requirements validation effectiveness is the same independently of the 
collaborative interaction type. 

• H30: The efficiency of validating requirements is the same independently of the 
degree of collaboration satisfaction.  

3.2 Experimental Context 

Experimental Subjects. As we wanted to account for two different viewpoints in 
requirements validation, we included two different profiles of subjects. 1) Client role: 
40 students from the UT Social Sciences Department, without any background in 
modeling languages, volunteered to be trained in the business domain. Participants 
were invited by sending them a flyer offering 50€ for participation. 2) Analyst role: 
118 first-year bachelor students enrolled in the Information Systems (IS) course at UT 
were selected by convenience sampling and trained to play the analyst role. The stu-
dents were majoring in IT sub-fields such as Computer Science, Business Information 
Technology, and Technical Management Science. The IS course objective is to train 
the students in UML-based IS requirements specification and is taught by the 3rd 
author of this paper. 

A demographic questionnaire revealed that the group of analysts was quite homo-
geneous. 93% of the students had not participated in any previous course on dynamic- 
or static-oriented modelling techniques (also, see their perceived knowledge in Fig. 3, 
left). Their level of English was good; only 9% of them had obtained a grade 5 or 
lower out 10 points in English language (see Fig. 3, right). 

                                                           
1 The question numbers refer to the satisfaction questionnaires available at 
 http://users.dsic.upv.es/~nelly/valid.htm  



 Analyzing Collaborative Interactions in Requirements Validation 221 

 

 

Fig. 3. Demographic results of the participants playing the analyst role 

Experimental Objects. The SRS describes the information system needed by a Pho-
tography Agency that manages illustrated reports provided by photographers and 
distributes them to publishing houses. The SRS was created by the 2nd author using 
UML activity diagrams. We chose this type of diagrams because it is commonly used 
in industry to interact with clients during review and requirements validation [13]. 
The other authors checked the appropriateness of the SRS for the experiment. The 
SRS is 49 pages long. We decided to use the whole specification and remove 12 re-
quirements – the missing requirements that the subjects had to identify. Table 1  
(in Sect. 4.1) classifies the requirements in three types: missing business activities, 
missing constraints, and missing business forms. The explanation of each missing  
requirement is omitted for the sake of brevity and can be found at 
http://users.dsic.upv.es/~nelly/valid.htm 

3.3 Experimental Instruments  

Demographic questionnaires. The demographic questionnaire the students acting 
analysts aims at assessing the subjects’ English language proficiency and their back-
ground in RE modelling. The latter is operationalized by means of 7-point Likert-
scale questions about their knowledge and experience with 8 IS modelling techniques 
that deal with static (e.g. Class Diagram) and dynamic aspects (e.g. Activity Diagram) 
of the system. The results are shown in Fig. 3. The questionnaire distributed to the 
clients also corroborated that their proficiency in English was very good. 
 

• Satisfaction questionnaire. It uses 5-point Likert-scales to elicit the personal satis-
faction of both the client and the analysts with their interaction during the collabo-
rative validation; and the interaction between analysts when using a textual  
description. 

• Post-task survey. It gathers information about the difficulties encountered during 
validation with respect to the reviewed SRS. 

Moreover, a validation form was implemented to get details on the missing require-
ments that the subjects identified. For each missing requirement identified, the  



222 N. Condori- Fernández et al. 

 

analysts ought to offer a rationale and a textual description of the requirement identi-
fied. A link to the web version of the experimental instruments and is available at 
http://users.dsic.upv.es/~nelly/valid.htm 

3.4 Experiment Design 

The experiment was conducted in three different scenarios. 

• Scenario I. (Pre-review). The subjects acting clients read the requirements specifi-
cation and identified the missing functional requirements individually. The subject 
with the analyst role read the requirements specification in order to get familiar 
with the Photography Agency system.  

• Scenario II. Groups of three subjects − two ‘analysts’ and one ‘client’ identify the 
missing functional requirements cooperatively.  

• Scenario III. Pairs of subjects with the analyst role identify missing functional 
requirements, by using an additional textual description of Photography Agency.  

Considering the two types of collaborative interaction (interaction among participants 
with and without different role), our experiment adopted a between-subjects design 
(scenarios II and III).  Scenario I was also considered as part of the study, because 
according to the review-based requirements validation process an individual review 
(Pre-review) is required. 

3.5 Experimental Procedure 

Training Process. The subjects acting clients received 6 hours of training in the busi-
ness domain (the Photography Agency). For this, we used the demonstration/practice 
method [3]. First, slides about the Photography Agency were used to present the 
Agency and its main activities. Then, in order for the subject to acquire some practice 
in the agency’s domain, they were given three exercises to solve. After a break of 15 
min, a test (a questionnaire with 12 closed questions) about the problem domain was 
completed by the students with the purpose of verifying their acquired knowledge. 
Using the grade points average ([0-1]), we found that subjects had more difficulty to 
correctly answer Question 7: “Who establishes the yearly rates of the agency?” 
(mean = 0.26; std dev = 0.44); this question expects the subject to identify the organi-
zational role in charge of a given business activity. The rest of the questions had an 
acceptable average, which varied between 0,68 and 0,95.  

The subjects acting analysts were trained on the UML activity diagrams and re-
quirements validation as a regular part of the course. It took four two-hour sessions 
spread over multiple days, which consisted of lectures, exercises with multiple choice 
questions, and supervised exercises in the computer lab. We assessed their compe-
tence level (high:[10, 7[; medium:[7, 5[; low:[5,0])2 in  UML activity diagraming 
and requirements validation. We found that 70 % of the 118 subjects demonstrated a 

                                                           
2 Reverse square brackets are used in (semi-)open intervals. For instance [10, 7[ means “any real 

number with a value ranging from 10 to 7, including the value 10 but excluding the value 7”. 



 Analyzing Collaborative Interactions in Requirements Validation 223 

 

0

1

2

3

4

5

6

T1 T2
7 T8 T1
3

T4
0

T1
8

T3
4 T6 T1
4 T2 T2
3

T2
9

T3
3

T3
9

N
um

be
r o

f 
re

qu
ir

em
en

ts
 id

en
ti

fie
d

Scenario I: Client

medium level to assume their role as analyst. The subjects with a low competence 
level in modeling and validating (6.5% and 8.6%, respectively) were not considered.  

Execution. Afterwards, following a guideline that specified what to do and which 
forms to use, the subjects, once assigned to one of the three scenarios, proceeded to 
identify the missing requirements applying the reviews-based requirements validation 
technique. The pre-review (Scenario I) was carried out individually by the clients (to 
identify missing requirements) and the analyst (to get familiar with the problem do-
main). Time expected was about 1 hour. Two days after this session, each client dis-
cussed with a team of two analysts his/her individual comments and problems that 
he/she had during the requirements pre-review (Scenario II). Besides, this require-
ments review was also carried out by 22 pairs of analysts at the same time, but in a 
different building of the university (Scenario III). For both scenarios (II and III) the 
reviews took 2 hours. Subsequently, a questionnaire was distributed with the purpose 
of eliciting the personal satisfaction of the collaborative validation process. 

4 Analysis and Interpretation of Results 

Once data collection was over, two evaluators (the first two authors) reviewed the 
validation forms completed by all the teams. From this review, three possible values 
were considered for our list of missing requirements: i) identified correctly, ii) identi-
fied with error, iii) not identified.  

4.1 Analyzing the Effect of Type of Interaction on Efficiency 

To calculate the efficiency of the re-
quirements validation, first the size of 
the output of the validation process is 
calculated, by analyzing the data col-
lected in the evaluation forms. The 
requirements identified but described 
with any type of error were grouped 
and counted separately.  

As Fig. 4 shows, during the pre-
review, a maximum of 5 out of 12 
missing requirements were identified 
by one of the ‘clients’. Most ‘clients’ 
found at least 1 missing requirement. 

26 out of 40 ‘clients’ were not able to identify any missing requirement (the majority 
of them invented new requirements). However, when they interacted with the team of 
analysts (Scenario II), this number was reduced to 17 subjects, meaning an improve-
ment of 22% was observed (see Fig. 5, left). We found that teams of analysts that 
carried out the validation task without the client support (Scenario III) showed a better 
efficiency than the teams of analysts supported by a client (see Fig. 5, right). 

We applied the Mann-Whitney U test to verify our first hypothesis (H10), by using 
the data in Scenario II and III, considering only the requirements correctly identified 

Fig. 4. Missing requirements identified by client



224 N. Condori- Fernández et al. 

 

by the teams. We found that the two groups differed significantly from each other 
with U(61) = 147.5;  Z=-4.536; p = .000. This suggests that the interaction strictly 
among analysts, using an additional textual description of Photography Agency, had a 
beneficial effect on efficiency of requirements validation.  

Analyzing the post-task survey, we found that the pre-review of the specifications 
based on activity diagrams was very difficult for the clients, thus the communication 
does not seem to help when the clients only know their business and the analysts only 
know the modeling language. Communication and interaction difficulties among 
‘clients’ and ’analysts’ ’ could have affected in the validation efficiency. 

 

0

1

2

3

4

5

6

T1 T2
7 T8 T1
3

T4
0

T1
8

T3
4 T6 T1
4 T2 T2
3

T2
9

T3
3

T3
9N
um

be
r o

f 
re

qu
ir

em
en

ts
 id

en
ti

fie
d

Scenario II: Analysts and Client

 

0

1

2

3

4

5

6

A
T2

A
T4

A
T5

A
T7

A
T1

0

A
T1

3

A
T9

A
T1

5

A
T1

7

A
T1

9

A
T2

1N
um

be
r o

f 
re

qu
ir

em
en

ts
 id

en
ti

fie
d

Scenario III: Team of analysts

 
Identified with error Identified correctly  

Fig. 5. Number of missing requirements identified in scenarios II and III 

4.2 Analyzing the Effect of Type of Interaction on Validation Effectiveness 

As validation effectiveness is an indirect measure consisting of two measures, we first 
discuss the results related to frequency of identification for each one of the twelve 
expected missing requirements to be identified (success level). Then, the complete-
ness rate by type of missing requirements is calculated. 

According to the Table 1, the requirements that were most frequently identified are 
R4 (36 hits) and R12 (28 hits). Both requirements are business forms; that is, related 
to documents that the company sends to external parties (e.g. a letter). Other require-
ments were also identified with an acceptable degree of success across all the scena-
rios, such as R2 and R3 (constraints), or R1 (business activities). Conversely, there 
were requirements that were difficult to identify, as the results show. First, for R6, 
R11, although some teams of analysts in Scenario III (A) were able to completely 
identify them, the participants of Scenario II (C+A) were completely unable to identi-
fy this type of requirements. Similar results were obtained for the second type of re-
quirements, where R3 and R5 could not be correctly identified by any team. However, 
for requirements R8 and R10 (business forms), we observed that analysts of the third 
scenario score less than analyst from the second scenario (A+C). What makes them 
different? Both requirements involve processes that do not change any data in the  
 



 Analyzing Collaborative Interactions in Requirements Validation 225 

 

Table 1. Success level (total of hits) for each one of the twelve missing requirements (MR) 

Type MR Scenario Identified w. error Correctly identified Total  
Business 
activities 

R1 A+C 6 1 7 
A 7 1 8 

R6 A+C 2 2 
A 4 4 

R11 A+C 1 1 
A 2 4 6 

Constraints R2 A+C 6 6 
A 7 1 8 

R3 A+C 6 6 
A 7 7 

R5 A+C 1 1 
A 2 2 

Business 
forms 

R4 A+C 11 2 13 
A 5 10 15 

R7 A+C 5 1 6 
A 7 3 10 

R8 A+C 1 1 
A 0 

R9 A+C 0 
A 3 2 5 

R10 A+C 1 1 2 
A 0 

R12 A+C 8 2 10 
A 10 3 13 

 
system. It has to be remarked, however, the scores for teams of this scenario (A+C) 
are low, so that doesn’t say much.  

For requirement R9, we observed that no analysts with the client support (A+C) 
could ever find it, while analysts without clients did score fairly well. R9 is a business 
requirement related to the acquisition process, but it involves no system interaction. 
So, the analysts from the second scenario (A+C), who looked primarily at the dia-
grams, had to rely on the clients (who all missed it) and would not spot this from the 
diagrams. The analysts’ teams without clients did look into the requirements docu-
ment, saw that R9 was defined as part of the process, and identified it as missing in 
the specification.  

Now, by calculating the completeness rate by type of missing requirements, we 
found that the second group of requirement (missing constraints) were the less scored 
by the teams from both scenarios (Scenario II and Scenario III). Applying the Mann-
Whitney U test, we corroborated that the collaborative interaction type had a clear 
effect on validation effectiveness (H20), but only for the missing requirements of the 
type business activities and business forms (see Table 2).  

The interaction only among analysts with the support of a textual description had 
some beneficial effect on the validation effectiveness. This result indicates that re-
quirements validation done by comparing documents is more effective than validation 
by means of meetings with clients. 



226 N. Condori- Fernández et al. 

 

Table 2. Mann-Whitney U statistics for completeness rate by type of missing requirements 

 Business activities Constraints Business forms 
Mann-Whitney U 306.500 400.500 180.000
Wilcoxon W 1167.500 1261.500 1041.000

Z -2.962 -1.724 -4.110
Asymp. Sig. (2-tailed) .003 .085 .000

 
A possible reason for this could be that documents comparison can be done syste-

matically by checking if each textual statement in the description is represented in the 
requirements specification. On the contrary, there is no systematic way of recalling 
and checking each and every piece of domain knowledge in the mind of the client. 
Moreover, we consider that the way in which requirements were documented, by 
using an activity diagramming technique, played an important role in ensuring that 
analysts-only teams could more easily read and validate them than analyst teams with 
the participation of clients. 

4.3 Analyzing the Effect of Collaboration Satisfaction on Efficiency 

As collaboration is fundamentally a social activity relying on interaction between two 
or more individuals, it is inevitable that some degree of task-related effort remains at 
the individual level. Although we did not measure the individual performance, we 
evaluated the personal degree of satisfaction of the respective members in each team. 
To do this, we analyzed the data collected from the questionnaires that were applied 
in the Scenarios II and III. First we averaged the answers to the items of the question-
naire to obtain a representative value of the (client’s or analyst’s) satisfaction of col-
laborative requirements validation. Then, a 3-points ordinal scale (not at all satisfied, 
somewhat satisfied, and satisfied) was used in order to interpret better the results  
obtained (see Fig. 6). The low significance values obtained (p< 0,05) throughthe chi-
square test suggests that the average rate of the subjects does differ in terms of satis-
faction degree. In Fig. 6, (left) we observe that 80% of the clients were satisfied with 
the analysts’ performance. Clients considered the interaction with analysts to be very 
helpful in identifying missing requirements. However, analyzing the effect of their 
personal satisfaction with the efficiency of requirements validation (H30), we observe 
(Fig. 6, right) that the effect is not significant. A possible explanation is that the 
clients were unaware of the correctness of the missing requirements identified and 
their satisfaction did not affect the efficiency in the requirements validation. 

Regarding the analysts of Scenario II, Fig. 7 (left) shows the results to questions  
related to degree of satisfaction about (i) the information provided by the clients to 
facilitate the understanding of the problem domain (60% not at all satisfied) or the 
identification of missing requirements (60% not at all satisfied) and (ii) working with 
their partner (83% satisfied). 

On the other hand, when clients were asked about the individual-proactive partici-
pation of the analysts, we found that 32% of the clients indicated that only one of the 
two analysts was proactive. For the purpose of verifying the consistency of the  
answers given by clients and analysts of scenario II, we carried out a correlation  
analysis. 



 Analyzing Collaborative Interactions in Requirements Validation 227 

 

 

  

Fig. 6. Distribution of effect of the collaboration satisfaction degree (left) and its effect (right) 
on the efficiency of clients in Scenario II 

Due to lack of space, we show only the box plot for the degree of satisfaction on 
the client’s feedback to understand the problem domain (Fig. 7, right). 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Problem domain Missing
Requirements

Partner

Not at all satisfied Somewhat satisfied Satisfied  

Fig. 7. Distribution of effect of the collaboration satisfaction degree (left) and its effect (right) 
on the performance of analysts in Scenario II 

Regarding the effect of the degree of collaboration satisfaction on the analysts’ ef-
ficiency in Scenario III (H30) (Fig. 8, right), we observed that the analysts that were 
‘somewhat satisfied’ showed a greater efficiency than those who were ‘satisfied’. 
However, only 35% of these analysts were satisfied with their partners (Fig. 8, left). 

 



228 N. Condori- Fernández et al. 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Not at all
satisfied

Somewhat
satisfied

Satisfied

 

Fig. 8. Distribution of effect of the collaboration satisfaction degree (left) and its effect (right) 
on the efficiency of the analysts in scenario III  

5 Threats and Lines for Further Empirical Research 

In this experiment, we have balanced exploration – which offers the chance of gather-
ing new knowledge, and control − which minimizes risks. Below, we discuss the 
threats to the validity of our results and provide rationale for some of our experiment 
design decisions. 

Internal Validity Threats. We could not mitigate the instrumentation threat of “false 
answers” to the satisfaction questionnaire. However, we ascertained that the answers 
by members of the same team were correlated. Regarding the preparation of the in-
complete requirement specification (by seeding faults), we tried to make a homoge-
neous distribution of the 12 requirements that were removed along the specification. 
We minimized also the threat of subject selection by forming the teams randomly. We 
had a slight mortality; that is, two analyst subjects in scenario II dropped out in the 
last minute. Thanks to a contingency plan we reassigned two subjects from scenario 
III to Scenario II. 

Construct Validity Threats. In explorative study on collaboration in requirements 
validation, we chose the two basic types of stakeholders involved in the validation 
process (clients and analysts) and two types of interactions (client-analyst and analyst-
analyst). Other roles and types of interactions exist in practice, so this construct is 
under-represented. However, we opted for increasing complexity gradually (see con-
siderations below). The same applies to the types of requirements. We deliberately 
did not use a complex SRS, to keep the experiment under control, both in terms of 
time to complete the training and the experimental task. To minimize the threat of an 
inadequate preoperational explication of constructs, the collaboration satisfaction 
degree was operationalized according to two key issues proposed by Jun et al [4].  

External Validity Threats. We think that our sample of subjects was quite represent-
ative for real clients because we involved students with no modeling competence to 
act as clients. In order to guarantee enough knowledge about the problem domain, a 



 Analyzing Collaborative Interactions in Requirements Validation 229 

 

training session was conducted with the 40 participants. As for subjects acting ana-
lysts, they received intensive training on requirements engineering and UML model-
ing as part of their education, prior to the experimental task. Additionally, we did tests 
to assess the competence of both types of subjects: i) clients: domain knowledge test; 
ii) analysts: UML and validation competence tests. 

The use of students as surrogates for real practitioners is common practice ([14], 
[6]) and, given the exploratory nature of the experiment, we preferred having a large 
number of subjects (the chances of interesting effects to appear is increased) than 
using fewer practitioners. Also, the length of the Photography Agency SRS (537 
IFPUG functions points) intended to be manageable for experimentation but realistic 
enough to include some complexity.  

Considerations for Further Research. The exploratory experiment provides prelim-
inary results, on top of which further experiments can be designed. To deepen into the 
mechanisms of the validation process, it may be interesting to consider additional 
types of stakeholders, not only based on their roles but also in their characteristics.  

Similarly, other types of requirements can be included in the SRS. Our experience 
while trying to classify requirements and compare the way students treated the miss-
ing requirements indicates that a requirements taxonomy is needed. We found that in 
confronting a process-aware information system, it is not enough to distinguish be-
tween functional and non-functional requirements. As a starting point, we opted for 
classifying missing requirements into activities, constraints and business forms. 
Adopting an existing requirements taxonomy or classification (e.g. [22]) or proposing 
a suitable one is a recommended line for future research. We expect this to help for-
mulate more precise hypotheses concerning the performance of subjects while vali-
dating SRSs. 

An advanced experiment would require a detailed requirements classification that 
has proved to be valuable (even if just in research settings) and a domain case that 
includes both a greater variety of types of requirements and more requirements of 
each type. This way, the researchers can remove several requirements of each type 
and test whether there exist differences in their identification during validation,  and 
whether the collaborative interaction has a significant effect. We expect such results 
to shed light on the mechanisms of the validation process. 

Our results also show that comparing a textual description of the domain with the 
more technical SRS (activity diagrams) is more productive and effective than validat-
ing requirements by reviewing the with clients. However, a textual description is itself 
an SRS. In an industrial setting, a stakeholder needs to create this document. Also, it 
is subjected to the same risks as the technical SRS; namely, incompleteness and inva-
lidity. If a textual description is to be used for this purpose, it needs to be validated 
first. What is the difference in terms of performance between validating a textual 
specification and a diagram-based one? how does the language of the specification 
impact the collaborative interaction? To answer these questions, further empirical 
research needs to be done to better understand the practical use of activity diagrams 
(and other notations, e.g. BPMN) in validating requirements with different stakehold-
ers. It is also challenging to investigate how the interaction between stakeholders 
(clients and analysts) actually takes place during the interviews. For instance, time 
devoted to each task (e.g. phatic communication, answers, responses), disruptions 
(e.g. misunderstandings and time devoted to solve them), attitudes (e.g. proactivity). 



230 N. Condori- Fernández et al. 

 

This requires audio recording and transcribing the most relevant information. It would 
allow comparing the actual interaction with the perception of the subjects. 

Last but not least, once more precise hypotheses have been defined for improved 
experiments, the use of real practitioners can be considered.  

6 Conclusions and Future Work 

This paper has explored the collaborative interaction effect during requirements vali-
dation and has revealed certain relationships that deserve future investigation. We 
found that clients validating a requirements specification on their own are limited by 
their knowledge of the technical languages; their performance increases when they 
work collaboratively with a team of analysts. However, as per our results, the most 
successful scenario has been a team of analysts checking the specification against a 
textual description of the domain. Since this scenario entails certain difficulties and 
risks when applied in industrial settings (e.g. the textual description is a specification 
itself and may be incomplete or unavailable as one monolithic document but exist in 
the form of scattered interview proceedings) it is necessary to investigate deeper the 
collaborative interaction of clients working hand by hand with analysts. 

We also found that clients were more satisfied with the collaboration during re-
quirements validation, than analysts, which can be due to the fact that analysts feel 
more responsible towards to outcome of the interview since they often lead it. Other 
interesting outcomes have appeared, but they need to be contrasted with an observa-
tion of the behavior of subjects during the interview; this is planned as future work. 

We are aware of some risks due to removing certain requirements from the full 
SRS, e.g. too much emphasis on one type of requirements can cause problems of allo-
cating equal time/schedule and resources to other requirements types. We, therefore, 
plan to propose and evaluate a requirements taxonomy that applies to business infor-
mation systems in general and aids in requirements validation. On the other hand, as 
the selected validation technique could have had also an effect on response variables 
(e.g. satisfaction), we seek to replicate the experiment by including others interesting 
review-based validation techniques, such as the checklist-based reading technique. 

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments, and the participants of this study for their time and contribution. This 
work has been supported partially by the EU Marie Curie Fellowship Grant 50911302 
PIEF-2010,  the Spanish project PROS-Req TIN2010-19130-C02-02, the Generalitat 
Valenciana project ORCA (PROMETEO/2009/015) and  the European FP7 Project 
CaaS 611351. 

References 

1. Cheng, B., Atlee, J.M.: Research Directions in Requirements Engineering. In: Future of 
Software Engineering (FOSE), ICSE 2007, pp. 285–303. IEEE CS Press (2007) 

2. Panagiotis, S., Ioannis, S., Lefteris, A., Ignatios, D.: An experimental investigation of per-
sonality types impact on pair effectiveness in pair programming. Empirical Softw. 
Eng. 14(2), 187–226 (2009) 



 Analyzing Collaborative Interactions in Requirements Validation 231 

 

3. DOE Handbook, Alternative Systematic Approaches to Training, 1074-95 (January 1995)  
4. Jun, L., Ya-Feng, L.: A Method of Evaluating Collaboration Satisfaction Degree of NPD 

Team. In: Proc. CSCWD 2010, pp. 156–160 (2010) 
5. Saqib, B., Sheraz, A.: Requirements Validation Techniques practiced in industry: Studies 

of six companies, Blekinge Institute of Technology, Sweden. Master thesis, Software En-
gineering (Octotber 2008) 

6. Condori-Fernandez, N., Daneva, N., Sikkel, K., Herrmann, A.: Practical relevance of expe-
riments in comprehensibility of requirements specifications. In: EMPIRE 2011 Collocated 
at the RE Conference, Trento-Italy, Italy, pp. 21–28 (August 2011) 

7. Walle, T., Hannay, J.E.: Personality and the Nature of Collaboration in Pair Programming. 
In: Proc. ESEM 2009, pp. 203–213 (2009) 

8. Dwyer, P.: An Approach to Quantitatively Measuring Collaborative Performance in On-
line Conversations. Computers in Human Behavior 27, 1021–1032 (2011) 

9. Lin, C.-P., Wang, Y.-J., Tsai, Y.-H., Hsu, Y.-F.: Perceived Job Effectiveness in Coopera-
tion: A Survey of Virtual Teams within Business Organization. Computers in Human Be-
havior 26 (2010) 

10. Choi, K.S., Deek, F., Im, I.: Pair Dynamics in Tem Collaboration. Computers in Human 
Behavior 25, 833–852 (2009) 

11. Patel, H., Pettit, M., Wilson, J.: Factors of Collaborative Working: a Framework for a Col-
laboration Model. Applied Ergonomics 43, 1–26 (2012) 

12. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley (2002) 
13. Dobing, B., Parsons, J.: How UML is Used. Commun. ACM 49(5), 109–113 (2006) 
14. Runeson, P.: Using Students as Experiment Subjects - an Analysis on Graduate and 

Freshmen Student Data. In: 7th Int. Conf on EASE, Staffordshire, UK, pp. 95–102 (2002) 
15. Gemino, A.: Empirical comparisons of animation and narration in requirements validation. 

Requir. Eng. 9(3), 153–168 (2004) 
16. Condori-Fernandez, N., Daneva, M., Sikkel, K., Wieringa, R.J., Dieste, O., Pastor, O.: A 

Systematic Mapping Study on Empirical Evaluation of Software Requirements Specifica-
tions Techniques. In: ESEM 2009, pp. 503–505. CS Press (2009) 

17. He, L., Carver, J.C., Rayford, B.: Using Inspections to Teach Requirements Validation. 
CrossTalk: The Journal of Defense Software Engineering 21(1) (2008) 

18. Basili, V.R.: The Empirical Investigation of Perspective-Based Reading. J. of Empirical 
Softw. Eng. 1(2), 133–164 (1996) 

19. Leite, J.C.S.P., Freeman, P.A.: Requirements Validation through Viewpoint Resolution. 
IEEE Transactions on Software Engineering 17, 1253–1269 (1991) 

20. Raja, U.A.: Empirical Studies of Requirements Validation Techniques. In: 2nd Interna-
tional Conference on Computer, Control and Communication, vol. 1(9), pp. 17–18 (2009) 

21. Albayrak, O.: An Experiment to Observe the Impact of UML Diagrams on the Effective-
ness of Software Requirements Inspections. In: ESEM 2009, pp. 506–510 (2009) 

22. Walia, G., Carver, J.: Using Error Abstraction and Classification to Improve Requirements 
Quality: Conclusions from a Family of Four Empirical Studies. J. of Empirical Softw. 
Eng. 18(4), 625–658 (2013) 

23. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: Software Inspections after 25 
Years. Journal of Software Testing Verification and Reliability 12(3), 133–154 (2002) 



Argumentation-Based Discussion

for User Forum: A Research Preview

Itzel Morales-Ramirez1,2 and Anna Perini1

1 Software Engineering Research Unit, Fondazione Bruno Kessler, Via Sommarive 18,
38123 Trento-Povo, Italy

{imramirez,perini}@fbk.eu
2 International Doctoral School ICT- University of Trento, Italy

Abstract. [Context and motivation] User forums provide a virtual
space in which participants post comments, upon their experience in
using a software, that analysts can eventually redirect to an issue track-
ing system. Before users post any comment, they should search for a
request that is the closest to the one they are about to submit. In
doing this, they can face with large, unstructured discussions. [Ques-
tion/problem] Current user forum discussions are usually developed
as sequential comments that hide an explicit recognition of the attitude
of the participants (i.e. “in favour” or “against”) wrt. the initial request.
This poses difficulties to the analysts who should identify worth requests
to be further analysed. [Principal ideas/results] The key idea in our
approach is to exploit AI argumentation. The resulting argumentation-
based discussion will allow participants to get an overview of the trend of
such a discussion, and support analysts to identify important requests.
[Contribution] In this research preview, we describe how we represent
the forum’s discussion management problem in terms of AI argumen-
tation concepts, and a sketched algorithm for supporting the forum’s
participants tasks. A research plan for implementing and evaluating the
proposed argumentation-based discussion is also described.

Keywords: Requirements engineering, User forum, Argumentation
framework.

1 Introduction

The role of social media to enable collaboration in software projects has been dis-
cussed in recent work [1–6], which point out potential benefits and challenges.
An example of a collaborative platform is, for instance, an online user forum
that provides a virtual space in which participants exchange views on issues
about a software application on the basis of their experience in using it. Forums
are widely exploited by open source software projects where users of such ap-
plications post comments and other participants called “volunteer” developers
act as analysts who redirect relevant requests to an issue tracking system (e.g.
Bugzilla). In order to prevent the creation of complex, entangled discussions,
the participants are requested to follow some rules, e.g. “Do NOT submit a

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 232–238, 2014.
c© Springer International Publishing Switzerland 2014



Argumentation-Based Discussion for User Forum: A Research Preview 233

problem report without searching the existing ones first to ensure that the issue
you are reporting has not already been addressed”, this rule is specified in the
issue tracking system of Apache OpenOffice (AOOo) [7]. This implies that users
should search for the closest request to the one they are about to submit, by
simply making a text searching. Once, they find the request they might read the
whole sequence of comments and provide theirs upon the read, but they could
get lost if the discussion is large, as reported also in [8]. Only a careful reading
of the content of each comment may reveal to which previous comment it refers
to, thus inferring participants’ attitude (i.e. “in favour” or “against”) towards
the comment that initiated the discussion. Usually an overview of participants’
attitude in the discussion is missing, and this challenges also the task of ana-
lysts when evaluating what is worthy to be further analysed, as for instance to
identify new candidate requirements.

The goal of our research is to define methods and techniques to support users
and analysts of user forums when performing the above mentioned tasks. We
structure it along the following research questions:

RQ1. How can the attitude of the participants in user forums be made explicit
and recorded within the structure of a discussion?

RQ2. How can a structured discussion support decisions on what comments
should be further analyzed?

To answer these questions, we propose to represent an online discussion as
a structured set of arguments according to the AI argumentation [9] that de-
scribes a theory of logical inference and techniques for deriving conclusions from
arguments. Based on this, participants would be able to provide new comments
wrt. existing ones in the ongoing discussion, in a straightforward way. Moreover,
the overall attitude towards the initial comment will be automatically inferred.
This will allow analysts to recognize the relevant requests, and we believe that
also the quality of comments will improve.

In this paper we give a preview of our research by stating the forum’s dis-
cussion management problems in terms of the AI argumentation in Section 2.
The related work is mentioned in Section 3. A research plan for implementing
and evaluating the proposed approach along with some concluding remarks are
presented in Section 4.

2 Argumentation-Based Discussion Forum

We propose an extension to the Dung’s abstract argumentation framework [9]
to enable a structured discussion in user forums. According to [9] an abstract
argumentation framework (AF) is a pair 〈A, Def〉. A is a set of arguments and
Def ⊆ A × A is a binary relation of defeat between arguments. Defeat means
that an argument yi attacks an argument yj , therefore (yi, yj) ∈ Def .
The concepts conflict-free and defence are defined as follows.

– Let B ⊆ A.
– A set B is conflict-free iff there exist no yi, yj in B such that yi defeats yj .



234 I. Morales-Ramirez and A. Perini

– A set B defends an argument yi iff for each argument yj ∈ A, if yj defeats
yi, then there exists yk in B such that yk defeats yj .

A full implementation of this framework in terms of a directed graph is given
in [10]. We adapt and extend it to represent an Argumentation-based Discussion
Forum (ADF) as follows. A comment is an abstract argument, the Def relation
is refined into the support, rejection and neutral relations between pairs of com-
ments1, and we include the explicit representation of the participant with her
knowledge confidence (i.e. knowc) as a weight associated to her comments. We
represent an ADF as a directed acyclic graph (DAG), referred to as G = (V,E)
where:

– V is the set of comments in the discussion, i.e. vertices in G.
– E= S ∪ R ∪ N is the set of pairs of comments represented as edges in G,

where S is the set of support relations, R is the set of rejection relations and
N is the set of neutral relations that are defined as follows:

• R ⊆ V × V is the set of pairs of comments between which a rejection
relation holds, i.e. Reject(yi, yj), if yi rejects (attacks) yj . This is based
on the set Def introduced above.

• S ⊆ V × V is the set of pairs of comments between which a support
relation holds, i.e. Support(yi, yj).

• N ⊆ V × V is the set of pairs of comments (yi, yj), such that yi adds
extra information to yj .

Currently, we consider that a vertex (comment) contains information such as
an identifier (ID), participant’s name, description and the knowc parameter. This
last is a real number ranging from 0 to 1, which represents participants’ percep-
tion on their own expertise level. The knowc is asked to the participants using a
likert-type scale, e.g. novice=0, initiate=0.25, apprentice=0.50, advanced=0.75,
and expert=1, this is adapted from [12] and [13]. This parameter is used for the
computation of support and rejection relations between a pair or comments, see
Algorithm 1.

To exemplify an ADF let’s look at an excerpt of a discussion found in AOOo
bugzilla, see Figure 1. As can be observed, the current format of a discussion
(top) is sequential and hinders the trend of supporting and rejecting comments
wrt. a given comment.

On the other side, the ADF graph (down) makes explicit that comment 3
rejects comment 1, while comment 8 and 11 support the comment 0 and 3,
respectively. Comments 0, 3, 8, and 11 define a set of relevant comments for
comment 0 (i.e. RelCy0), which is a set of comments where given an initial
comment y0 belonging to the set, there are no comments, included in the set,
that reject y0.

We use DAG search algorithms to define procedures that can help participants
and analysts. Example of procedures for participants are: (i) finding if a given

1 Analogous works extend Def relation with the support relation but not with the
neutral one (e.g. [11])



Argumentation-Based Discussion for User Forum: A Research Preview 235

Fig. 1. Excerpt of the discussion #112163 in AOOo bugzilla (top), representation of
it as an ADF directed acyclic graph (down)

comment y0 in the actual discussion is supported or rejected; (ii) finding the set
of comments that support, reject or are neutral wrt. a selected comment y0; (iii)
computing the effect of adding a new comment (either reject or support type)
to the actual discussion. To support analysts: (iv) finding the most supported
request in the discussions that are active in a forum.

To give a flavour of the basic algorithms used, Algorithm 1 sketches how to
compute RelC for a given ADF. Lines 14 and 16 show how the parameter knowc

is used to compute the strength of the support and rejection relations.
To update RelC once a discussion is modified, by the addition of a new

comment, we can use an incremental search algorithm that considers only the
subgraph affected by the change.

3 Related Work

Recent work shows a growing interest within the Requirements Engineering
research community towards social media as distributed, collaborative work



236 I. Morales-Ramirez and A. Perini

Algorithm 1. proc RelC(G, v): pseudocode for computing RelC in ADF

Input A DAG G representing an ADF, v is a starting vertex in V (G)
Output RelC which is the set of relevant comments of v. {//RelC is initialized to ∅}
1: if v is a leaf then
2: return RelC ← RelC ∪ {v} {//iif v is root}
3: else
4: neutral=0 {//Counts the number of neutral relations}
5: supportS=0.0 {//Counts the weight knowc of v in the support relation}
6: rejectionS=0.0 {//Counts the weight knowc of v in the rejection relation}
7: for each edge e ∈ G.adjacentEdges(v) do
8: v′ ← G.adjacentV ertex(v, e)
9: switch v′.outgoingRelation
10: case NEUTRAL
11: neutral++ {//Recursive call and addition of neutral comments}
12: proc RelC(G, v′)
13: case SUPPORT
14: supportS+=proc RelC(G, v′) + v′.knowc/(supportS + rejectionS + neu-

tral){//Recursive call and normalisation of supportS}
15: case REJECTION
16: rejectionS+=proc RelC(G, v′) + v′.knowc/(rejectionS + supportS + neu-

tral){//Recursive call and normalisation of rejectionS}
17: end switch
18: RelC ← RelC ∪ {v′} {//iif supportSv′ > rejectionSv′}
19: end for
20: end if

enablers. For instance, the discovery of stakeholder communities by using con-
cept lattices to extract hidden profiles for the set of requirements of a certain
project [6], or the StakeRare method described in [2] uses social networks and a
collaborative filtering to elicit and prioritise requirements in large projects. Sim-
ilarly in [14], participants’ opinions posted through social networks are analyzed
and exploited for requirements prioritisation. In [15] collaborative filtering is
used to facilitate online discussions for requirements identification. These three
works assume to start with an initial requirements set to be refined through
social collaborations, while in our research we see the discussion as the potential
source for requirements.

In [4] is presented a software platform, called Requirements Bazaar, that
supports gathering and negotiation on user feedback about software applica-
tions. Focusing on on-line discussions, the IdeaTracker [8] tool provides a way
to support interface design review via discussion, by associating a color-code to
comments classified along their affective tone (i.e. negative-red, positive-green,
or both-yellow). Both works require users to explicitly express their preference
(vote) on the emerging requests, while in our approach we aim at automati-
cally inferring the effects of the developed argumentation on the statement that
initiated it.



Argumentation-Based Discussion for User Forum: A Research Preview 237

Concerning the use of argumentation-based approaches in RE, worth
mentioning are the work of Jureta et al. [16] that proposes the ACceptability
Evaluation Framework (ACE), to support stakeholders when performing require-
ments validation. This framework was applied in [17] to support validation of
law-compliance of software requirements by a team including law experts and
software engineers. Analogously in [18] argumentation techniques are proposed
to validate requirements and to highlight inconsistencies that may foster the
elicitation of missing requirements.

An extension to the Dung’s framework [9] is described in [11], this work adds
the possibility of assigning a strength to the argument, and use it for inference.
We make extensions to Dung’s framework to include for instance the partic-
ipants’ knowledge confidence that will be used for the computation of their
attitude in the discussion.

4 Concluding Remarks and Research Plan

In this paper we introduced the two research questions that drive our work on
argumentation-based discussion for user forum, which rests on an extension of
Dung’s framework and exploits DAG algorithms to compute the supported and
rejected comments, whose participants’ knowledge confidence about the topic
under discussion is also taken into account. We illustrated on a simple example
taken from the Apache OpenOffice bugzilla how participants’ attitudes towards
the initial statement can be made explicit in a structured discussion ADF. We
are implementing the proposed ADF using Neo4j [19] and collecting experimen-
tal evidences on the scalability of the ADF management algorithms on artificial
dataset containing argumentation with increasing numbers of comments (ver-
tices) and different percentages of support, reject and neutral relations (edges).
We plan to use different functions to compute the relevant comments, thus per-
forming a sort of sensitivity analysis. As a longer term objective, we aim at
integrating the proposed argumentation-based discussion into an collaborative
platform, e.g. [8], thus a further task will be that of selecting an hosting platform
and integrating our approach in it. This will allow us to perform an empirical
evaluation on the effectiveness of our Argumentation-based Discussion Forum
with users and analysts.

References

1. Begel, A., Bosch, J., Storey, M.: Bridging software communities through social
networking. IEEE Software 30(1), 26–28 (2013)

2. Lim, S.L., Finkelstein, A.: Stakerare: Using social networks and collaborative filter-
ing for large-scale requirements elicitation. IEEE Trans. Softw. Eng. 38(3), 707–735
(2012)

3. Pagano, D., Maalej, W.: How do open source communities blog? Empirical Software
Engineering 18(6), 1090–1124 (2013)



238 I. Morales-Ramirez and A. Perini

4. Renzel, D., Behrendt, M., Klamma, R., Jarke, M.: Requirements bazaar: Social
requirements engineering for community-driven innovation. In: 21st IEEE Interna-
tional Requirements Engineering Conference, RE 2013, pp. 326–327. IEEE (2013)

5. Sutcliffe, A., Sawyer, P.: Requirements elicitation: Towards the unknown un-
knowns. In: 21st IEEE International Requirements Engineering Conference, RE
2013, pp. 92–104. IEEE (2013)

6. Azmeh, Z., Mirbel, I., Crescenzo, P.: Highlighting stakeholder communities to sup-
port requirements decision-making. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013.
LNCS, vol. 7830, pp. 190–205. Springer, Heidelberg (2013)

7. Apache: Apache openoffice bugzilla (2010), https://issues.apache.org/ooo/
8. Zilouchian Moghaddam, R., Bailey, B.P., Poon, C.: Ideatracker: An interactive

visualization supporting collaboration and consensus building in online interface
design discussions. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque,
P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 259–276.
Springer, Heidelberg (2011)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

10. Bex, F., Prakken, H., Reed, C.: A formal analysis of the aif in terms of the as-
pic framework. In: Proceedings of the 2010 Conference on Computational Models
of Argument: Proceedings of COMMA 2010, pp. 99–110. IOS Press, Amsterdam
(2010)

11. Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI
2011, vol. 3, pp. 2287–2292. AAAI Press (2011)

12. Ericsson, K.A.: The Cambridge handbook of expertise and expert performance.
Cambridge University Press (2006)

13. Likert, R.: A technique for the measurement of attitudes. Archives of Psychology
(1932)

14. Fitsilis, P., Gerogiannis, V., Anthopoulos, L., Savvas, I.: Supporting the require-
ments prioritization process using social network analysis techniques. In: 2010 19th
IEEE International Workshop on Enabling Technologies: Infrastructures for Col-
laborative Enterprises (WETICE), pp. 110–115 (2010)

15. Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Enhancing stakeholder pro-
files to improve recommendations in online requirements elicitation. In: 17th IEEE
International Requirements Engineering Conference, RE 2009, pp. 37–46 (2009)

16. Jureta, I., Mylopoulos, J., Faulkner, S.: Analysis of multi-party agreement in re-
quirements validation. In: 17th IEEE International Requirements Engineering Con-
ference, RE 2009, pp. 57–66 (2009)

17. Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory
compliance of software requirements. Data & Knowledge Engineering 87, 279–296
(2013)

18. Mirbel, I., Villata, S.: Enhancing goal-based requirements consistency: An
argumentation-based approach. In: Fisher, M., van der Torre, L., Dastani, M.,
Governatori, G. (eds.) CLIMA XIII 2012. LNCS, vol. 7486, pp. 110–127. Springer,
Heidelberg (2012)

19. Neo Technology, I.: Neo4j (2013), http://www.neo4j.org/

https://issues.apache.org/ooo/
http://www.neo4j.org/


 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 239–253, 2014. 
© Springer International Publishing Switzerland 2014 

A Requirements-Led Approach for Specifying  
QoS-Aware Service Choreographies: An Experience Report 

Neil Maiden1, James Lockerbie1, Konstantinos Zachos1, Antonia Bertolino2,   
Guglielmo De Angelis2, and Francesca Lonetti2 

1 School of Informatics, City University London, London, UK 
2 Istituto di Scienza e Tecnologie  

dell'Informazione “A. Faedo” CNR, Pisa, Italy 
{N.A.M.Maiden@,James.Lockerbie.1@,kzachos@soi.}city.ac.uk, 
{antonia.bertolino@,guglielmo.deangelis@,francesca.lonetti@} 

isti.cnr.it 

Abstract. [Context and motivation] Choreographies are a form of service 
composition in which partner services interact in a global scenario without a 
single point of control. The absence of an explicitly specified orchestration re-
quires changes to requirements practices to recognize the need to optimize 
software services choreography and monitoring for satisfaction with system re-
quirements. [Question/problem] We developed a requirements-led approach 
that aims to provide tools and processes to transform requirements expressed on 
service-based systems to QoS-aware choreography specifications. [Principal 
ideas/results] The approach is used by domain experts to specify natural lan-
guage requirements on a service-based system, and by choreography designers 
to adapt their models to satisfy requirements more effectively. Non-functional 
requirements are mapped to BPMN choreography diagrams as quality proper-
ties, using the Q4BPMN notation, that support analysis and monitoring facili-
ties. [Contribution] We report the new integrated approach and provide lessons 
learned from applying it to a real-world example of dynamic taxi management 

Keywords: service choreographies, requirements monitors, user task models, 
adaptive systems, quality properties, requirements-led life-cycle. 

1 Introduction 

Choreographies are a form of service composition in which, unlike orchestration, 
services interact to achieve a goal without a single point of control [1]. The increased 
flexibility of architectures based on choreographies can deliver more adaptive service-
based systems that satisfy more ambitious requirements of certain types on these sys-
tems. However, we still need new techniques to design flexible choreographies that 
can be argued to satisfy system requirements, and new mechanisms for monitoring 
services invoked in these choreographies to show continued requirements satisfaction. 

The traditional approach to service composition uses orchestration coordinators 
and arranges services according to a predetermined business logic and execution  



240 N. Maiden et al. 

 

order [2] based on design choices about the type and granularity of available services. 
This execution order and logic is often expressed as a workflow using notations such 
as BPEL [2]. Whilst service orchestration is a widely deployed form of system  
architecture, it can result in a failure to satisfy requirements in increasingly adaptive 
environments as the predefined execution order and/or business logic can be rendered 
invalid by changes to a service consumer’s context. One advantage of service  
choreographies is that they impose fewer architecture-level constraints than orchestra-
tions, and as a consequence have greater potential to deliver adaptive systems that 
continue to satisfy the evolving requirements on them. They make fewer design 
choices about the granularity of services to be invoked, an execution order for these 
services does not need to be specified, and business logic is specified independent of 
the services [3]. 

Requirements work is needed to specify the required behavior and qualities of cho-
reography activities in a model. Quality of Service (QoS) has been acknowledged as a 
main concern in service-oriented computing (SOC) and in QoS-aware service compo-
sition. Relevant work in SOC includes quality-of-service ontologies and measurement 
[e.g. 4], however little research or practice traces service qualities back to the origi-
nating quality requirements on the systems. These specified behaviors and qualities 
are needed to guide local enactment of services and to enable the run-time monitoring 
of each choreography activity for continued requirements satisfaction. Indeed, this 
alternative paradigm for service technology creates new challenges, including how to: 

1. Optimize the specification of choreography diagrams with respect to system 
requirements; 

2. Associate specified system requirements with choreography activities in a cho-
reography diagram; 

3. Enhance choreography diagrams with quality properties that trace system re-
quirements, to support analysis and monitoring facilities. 

In this paper, we report results from the CHOReOS project (www.choreos.eu) to 
address the three challenges using a real-world dynamic taxi management example. 
The next section outlines the CHOReOS approach for specifying QoS-aware service 
choreographies. In sections 3 and 4 we report how this requirements approach uses 
user task models to generate a first-cut BPMN choreography diagram. Section 5  
describes Q4BPMN (http://labsedc.isti.cnr.it/tools/q4bpmn) for extending BPMN 
models with specifications of different types of quality properties [5], and how these 
extended models can drive the instantiation of corresponding monitors. Section 6 
presents lessons learned and the paper ends by looking at related work, reviewing 
current omissions in the approach, and outlining the next steps. 

2 The CHOReOS Approach 

Among the various challenges posed by the vision of the Future Internet (FI) [6], is 
how to provide user-centric processes to support the whole life cycle of SOC systems 
from their design, to their development, up to their maintenance and governance at 
run-time [7]. Requirements specification is a fundamental part of dealing with this 



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 241 

 

challenge. A distinctive feature of the FI vision affecting this activity is the active role 
of domain experts, who are intended to take the place of requirements analysts. The 
CHOReOS project tackled this challenge by elaborating an approach that considers 
the user as an active part in the choreography life cycle, and developed it from a busi-
ness standpoint by leveraging realistic B2B and B2C scenarios provided by the indus-
trial project partners e.g. the dynamic taxi management example in this paper. The 
result was a domain-expert centric approach supporting non-technical users to specify 
the desired choreography with respect to their business goals, requirements and quali-
ty expectations [8]. An overview of the approach is depicted in Figure 1. 

 

 

Fig. 1. The key stages of the user-centric requirements-led approach 

A domain expert specifies the requirements on a future service-based software sys-
tem in natural language using the new CHOReOS Requirements Tool. To maximize 
the uptake of the approach, we decided not to adopt more formal requirements speci-
fication techniques that would have necessitated trained analysts. Instead, the primary 
input to the approach is a small set of natural language requirements that need domain 
knowledge rather than analytic training to write (see Sections 3.1 and 3.2). To gener-
ate a first-cut choreography diagram that satisfies the requirements, the expert uses 
procedures adapted from previous work to retrieve user tasks models that match the 
requirements (see Section 3.3). The Requirements Tool then automatically reasons 
with retrieved models to generate a first-cut model of an under-constrained choreo-
graphy diagram that can satisfy the matched requirements (Section 4). The choreo-
graphy designer can select and refine the generated BPMN choreography activities 
that are the best-fit abstractions of the requirements problem to complete the design of 
the choreography. Finally, the requirements mapped to the functional BPMN choreo-
graphy diagram can be used to specify non-functional systems engineering properties 
using the existing Q4BPMN notation, an extension of BPMN (see Section 5). 

If it is applied successfully, the approach will transform functional and quality re-
quirements on a system expressed in natural language into a single service choreogra-
phy specification that is expressed using BPMN and Q4BPMN, and optimized to 
satisfy the requirements and the domain constraints extracted from matched user task 
models. In addition, the specification of such Q4BPMN properties of the choreogra-
phy activities enables the definition of software modules monitoring the fulfillment of 
QoS constraints directly traced from the requirements [9]. 



242 N. Maiden et al. 

 

3 From Natural-Language Requirements to First-Cut 
Choreography Specifications 

An objective of our requirements-based approach was for it to be usable in the largest 
number of service-oriented projects possible. Natural language continues to be the 
most used form of requirements expression [e.g. 10], so our approach assumes that 
functional and quality requirements to be satisfied by the service choreography will 
be expressed in natural language by domain experts rather than trained analysts. It 
assumes that a domain expert gathers requirements from the consumers of its services 
– the domain expert acts as a surrogate for service consumers such as travelers need-
ing a taxi, who are unlikely to participate directly in a requirements process. 

The domain expert is supported in 3 stages. In the first stage, they are guided to 
express system requirements with associated qualities. In the second stage, the expert 
is guided to cluster requirements on a single choreography. In the third stage, the 
cluster is matched to a catalogue of user task models to guide the initial design of the 
requirements-driven service choreography. 

3.1 Expressing Structured Natural Language Requirements 

Whilst our experiences have shown that domain experts with minimum training can 
write functional requirements in natural language [e.g. 11], we do not believe that 
they can express measurable quality requirements such as performance and reliability 
as effectively. Therefore we developed requirements writing guidelines based on the 
notion of a qualifier from the anatomy of well-written requirements [10] to transform 
the functional root of a requirement into one or more quality requirements. These 
guidelines are built into tool support that guides the domain expert to add one or more 
qualifiers indicative of different qualities to each specified functional requirement. 

The CHOReOS Requirements Tool provides support to the domain expert to de-
fine four different qualities considered the most relevant for the project scenarios: 
accuracy, reliability, performance and security. It tags and parses the functional re-
quirements text written by the domain expert to extract keywords and synonyms, then 
applies simple rules to infer which of the four qualities, if any, might be associated 
with the described requirement. The expert is then prompted to consider adding the 
inferred qualifier to the requirement, which s/he can accept or reject. For example, the 
functional requirement written by a domain expert in taxi management: The user shall 
receive a prompt notification of how long it will take for their taxi to arrive is parsed 
to infer a possible performance qualifier based on the keyword prompt. Next, to make 
each quality requirement measurable [12], the expert simply indicates the quality 
rating on a Likert scale of 1 (very low) to 5 (very high). The expert can then apply 
additional qualifiers if required, however the tool ensures that only one quality can be 
selected as the most important, as shown in Figure 2. Each response on the scale for 
each quality type has been associated with a predefined range of measures to deter-
mine satisfaction with the requirement. We describe this in detail in Section 5.2. 

The output from this stage is a set of structured natural language requirements on 
systems that can be implemented as service choreographies. 



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 243 

 

 

Fig. 2. Expressing quality requirements in the CHOReOS Requirements Tool 

3.2 Clustering Requirements 

Domain experts write requirements on systems rather than service choreographies. 
However, before these requirements can be mapped onto choreography activities, 
work is needed to cluster similar requirements that will map onto a single choreogra-
phy and its elements such as activities and roles. This is because a domain expert acts 
as the ghost author of requirements from multiple service consumers, and more than 
one requirement can specify the same or a similar function or quality. Therefore, to 
optimize the specification of a single choreography, similar and overlapping require-
ments need to be discovered and handled. 

To do this, the Requirements Tool provides the capability to calculate the semantic 
similarity between any pair of requirements in the set of requirements, similar to a 
linguistic approach for large-scale requirements management reported in [13]. The 
algorithm for computing semantic similarity is based on one element of an existing 
algorithm that computes measures of similarity between natural language require-
ments and service descriptions during service discovery [14]. The Requirements Tool 
invokes the algorithm as a third party service, taking the selected requirement and 
computing a measure of its similarity with every other requirement in the set. A de-
scription of the algorithm and an evaluation of its effectiveness are provided in [14].  

Figure 3 shows an example of a cluster of requirements on the Request Taxi 
choreography. The similarity algorithm function reorders the Requirements List table 
according to a match score (the most relevant at the top) and the expert can simply 
select and add the requirements into the Requirements Cluster. Similarly, there is also 
a keyword search that moves the matched requirements to the top of table. 

The output from this stage is a cluster of system requirements that are matched to 
user task models to inform the design of a first-cut service choreography. 

 



244 N. Maiden et al. 

 

 

Fig. 3. A completed requirements cluster for the taxi management example 

3.3 User Task Models for Choreography Specification 

A user task model is a description of the structured activities that are often executed 
by a user during the interaction with a system in its contextual environment to attain 
goals [15]. Research exploiting user task models to design service-based systems is 
scarce. For example, Paterno et al. [16] delivered an environment to support tasks and 
services matching with CTT task models to develop user interfaces but the association 
between tasks and services was manually established and not cost-effective. Ruiz et 
al. [17] proposed a method for designing web services that analyzed user task descrip-
tions to identify a web application’s required operations. Unlike Paterno’s work, this 
approach was automated but did not include activities such as discovering, selecting 
and composing software services specific to the design of service-based applications.  

Our approach utilizes class-level user task models expressed in the Concur-
TaskTrees (CTT) formalism [15] to apply an engineering approach to user task mod-
eling. The precise semantics of CTT enable greater automated guidance with which to 
specify choreographies, whilst the CTT models can bridge the semantic gap between 
natural language specifications and formal choreography specifications. For the  
approach, we built upon the existing library of domain-independent CTT models de-
veloped in S-Cube, the EU-funded Network of Excellence for Software Services 
(www.s-cube-network.eu/). We used commonly occurring class-level tasks such as 
requesting and booking and extended them with knowledge from the applied do-
mains. The CTT models were developed manually in a process reported in [18]. 

Figure 4 depicts the CTT model Request taxi. This CTT model follows a common 
3-tier structure we specified. The top-level user goal, Request taxi, is decomposed into 
intermediate level tasks such as Retrieve data. In turn, this task is decomposed into 
the application task level. Application tasks include detect current location; retrieve 
date and time; and optional tasks retrieve preferences and retrieve taxi membership. 
A description of the full semantics of CTT models can be found in [19]. 

Important to this design guidance, is a set of mappings between CTT and BPMN 
semantics that we use to generate a first-cut BPMN choreography diagram. The map-
ping rules are simple, and we can demonstrate them using the Request taxi CTT mod-
el. The sub-task Retrieve Data occurs concurrently (|[]|) with Provide taxi request 
details. These two tasks enable (>>) the sub-task Submit query. CTT semantics define 
enables (>>) sub-tasks as interleaved, so our rule specifies that both sub-tasks can be 



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 245 

 

undertaken in the same choreography activity. The Submit query sub-task enables and 
passes on information ([] >>) to the Process query sub-task. CTT semantics indicate 
that information is passed between the sub-tasks, so our rule specifies a boundary 
between choreography activities across which messages are exchanged. Finally, the 
CTT operator choice ([]) denotes a split in the tasks followed, so our rule specifies a 
split in the flow of the choreography, represented in BPMN as a gateway or loop. 

 

Fig. 4. The CTT specification of the user task Request Taxi 

Returning to the Requirements Tool, the cluster of requirements is fired at the 
TEDDiE service, which applies sophisticated information retrieval techniques to iden-
tify CTT models relevant to the requirements. Of course, the approach’s effectiveness 
depends upon the accurate automatic retrieval of user task models that match each 
requirement from the cluster to each CTT model. An evaluation of the retrieval 
process can be found in [18]. The normal course output from a single invocation of 
the TEDDIE engine is retrieval of one or more CTT models from the library, and each 
model is mapped to one or more individual requirement statements in the cluster. First 
evaluations have revealed that, because the CTT models in the library express class-
level tasks rather than more concrete and hence complete business processes, most 
requirements clusters are likely to match to more than one CTT model. 

The output is documented in a XML file that specifies the data with which to gen-
erate a first-cut BPMN choreography diagram.  

4 Generating a First-Cut Choreography as a BPMN 
Choreography Diagram with Associated Requirements 

Our approach uses the Business Process Model and Notation (www.bpmn.org), which 
is an emerging standard for business process modeling and the specification of service 
choreographies. The choreography designer designs BPMN choreographies using the 
MagicDraw visual modeling tool (www.nomagic.com), which we configured to accept 
the XML files output from the Requirements Tool. As a result, the choreography de-
signer receives explicit requirements-based guidance for designing a service choreo-
graphy based on a first-cut template model annotated with requirements information. 

A first-cut BPMN choreography diagram generated for the taxi example is shown 
in Figure 5. One consequence of the BPMN formalism being more complete than the 
CTT formalism is that each choreography diagram automatically generated from CTT  
 



246 N. Maiden et al. 

 

 

Fig. 5. Automatically generated first-cut BPMN choreography diagram in MagicDraw  

models will be incomplete. As well as integrating model elements generated from 
more than one CTT model, the choreography designer may need to add choreography 
tasks, as well as define the instance-level participant names in the choreography. 

All of the design refinement should be directly informed by the requirements 
linked to each choreography element, presented in MagicDraw as a requirements-
choreography task matrix. The matrix maps each original requirement to one or more 
choreography tasks in the choreography diagram. The designer can use the require-
ment traces imported from each matched user task model to refine the specification of 
the required levels of quality-of-service, and from them support the application of 
quality properties. An example of a requirements matrix is depicted in Figure 6. 

 

 

Fig. 6. Completed matrix mapping system requirements to choreography tasks in MagicDraw 



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 247 

 

The output of this stage is a first version of a service choreography diagram speci-
fied using the constraints derived from matching user task models, and with each 
element of the choreography that is annotated with requirements information derived 
from the original system requirements from domain experts and service consumers. 
For reference, a final elaborated version of the first-cut choreography diagram shown 
in Figure 5 can be found at http://labsedc.isti.cnr.it/tools/q4bpmn/co-taxing. 

5 Monitorable Service Qualities from Requirements 

To express qualities on service choreographies we used Q4BPMN (Quality for 
BPMN), a semi-formal notation for specifying quality annotations at the choreogra-
phy level [5]. It allows designers to extend BPMN models with quality properties that 
the services entering the choreography will have to abide by. With Q4BPMN, the 
choreography designer can state the quality requirements for the choreography and its 
roles at the same level of abstraction of the tasks’ flow without the need for additional 
models. The explicit introduction of non-functional constraints within a choreography 
specification supports the verification and validation of their impact on the overall 
quality requirements. At the same time, prospective participants can use this informa-
tion to understand the quality level required on their part. 

5.1 The Q4BPMN Notation 

Q4BPMN is an implementation of the Property Meta-Model (PMM) with which to 
specify the quality properties, metrics and observable events of a system [20]. 
Q4BPMN is implemented within MagicDraw as a design tool, and was conceived to 
support the specification of non-functional properties within a service choreography 
expressed in the BPMN notation. It provides designers and analysts the means to 
annotate a choreography diagram with quality requirements [5]. Specifically, 
Q4BPMN enables the definition of non-functional systems engineering properties that 
can be directly linked either to a single task (i.e. «Q4Task»), specific participant of a 
task (i.e. «Q4Participants»), or whole choreography (i.e. «Q4Choreography») [21]. 

Q4BPMN supports several kinds of properties, which correspond to the class of 
properties inherited from the PMM meta-model. Specifically, it currently defines four 
classes of properties: (i) dependability properties concerning the availability of the 
system and failure rates; (ii) performance properties related to time, mainly from a 
software and human interaction point of view; (iii) security properties related to en-
cryption of operations and trustworthiness of the business activities; and (iv) accuracy 
properties that relate to time and space dimensions. 

5.2 Mapping Requirements to Q4BPMN 

Although Q4BPMN provides the means for expressing quality properties within a 
BPMN choreography diagram, it does not bind to any specific methodology for defin-
ing which values, dimensions or context characterize these properties. In this sense, as 



248 N. Maiden et al. 

 

commonly happens during their specification, non-functional requirements can con-
ceal underspecified aspects that can allow many different interpretations depending 
on the context these desired system properties are offered [22]. For example, a user 
expressed performance requirement such as NFR0077: The user shall be able to use 
the taxi booking system efficiently is useful in the early stages of the requirement 
elicitation process, as this kind of natural language requirement can be easily unders-
tood by non-technical stakeholders (e.g. final users). However, quantifying such a 
high level user requirement could imply a different interpretation depending on the 
context and the functionalities intended to impact on it. 

To address this, the non-functional requirements and their various potential inter-
pretations were mitigated by quantifying each abstract property in a set of application 
contexts. From the analysis of our application domains we identified three major con-
cerns representing the different contexts for achieving the quality goals intended by 
the elicited non-functional requirements. Specifically, such concerns are: 

1. Software System: the properties specified under this concern represent those quality 
attributes quantifying either the behavior of software components, or their interac-
tions; 

2. Human–Computer Interaction: the properties specified under this concern 
represent those quality attributes quantifying any interactions between a human and 
any part of the considered software system; 

3. Business Activities: the properties specified under this concern represents those 
quality attributes quantifying the admissible constraint used in order to characterize 
the activities of both the whole system (i.e. software + human related activities), 
and its actors from a business perspective. 

The model shown in Figure 7 shows the requirements to Q4BPMN mapping which 
includes these concerns, modeled as agent-based quality goals. The left side of the 
model shows a user expressed systems requirement and the four main qualities that 
can be associated with it, indicated on scales of 1 to 5 as described in Section 3.1. 
These user expressed systems requirements correspond directly to four user quality 
goals on the wider service-based system – accuracy, dependability, performance and 
security. These goals are then decomposed into the 3 concerns described above: Soft-
ware System, HCI and Business, and shown as agent-based quality goals. Finally, the 
model shows the definition of the qualitative properties that could be used by the 
agent-based goals. In this case, we have instantiated the model for our application to 
the taxi management scenario. Specifically, for each of the properties we identified: 
the type and the dimension it addresses; but also its name and the values prescribed 
for each specific satisfaction level. 

In order to define the abstract properties, we drew upon research in disciplines such 
as software reliability and human-computer interaction to determine prototypical 
measures of different qualities that the expert uses to refine the requirement measure. 
For example, we considered the Secure Sockets Layer (SSL) protocol for security 
encryption-type requirements and Miller’s work [23] describing threshold levels of 
human attention for HCI time performance-type requirements. We then utilised the 
expert input available to us in our taxi management application domain to review the 
provided definitions and quantify the predefined ranges. 



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 249 

 

 

Fig. 7. Non-functional requirements mapping to quality properties in Q4BPMN 

Table 1, for example, shows mappings between two original system requirements 
and the quality properties they relate to. In the first, the traveller details are required to 
be transmitted with a performance level of 5, which translates to the software time 
performance property. The required time performance for all software interactions 
within this choreography task is therefore quantified as 50msec. However, the second 
requirement is mapped to a participant property limited specifically to the Taxi Com-
pany operating in the choreography task. It specifies that the taxi company shall be 
reputable, which maps a onto a trust property related to the business security quality 
goal. The instantiation of these properties reflect the specification introduced in  
Figure 7. 

Table 1. An example of mapping original system requirements to quality properties 

Choreography 
element, Name 

Original requirement 
Name, ID, description, quality 

Quality Property

Task  
Request Taxi  
Service  

MID send customer details (NFR0012): MID 
shall be able to transmit traveller (customer) 
details to the taxi company  
[Performance 5] 

timePer_Software_L5 

 isHard = true 
 metrics – DefaultMaxDurationMetric 
 nature = PRESCRIPTIVE 
 operator = LESS EQUAL 
 propertyClass – PERFORMANCE 
 unit = “msec” 
 value = “50” 

Participant  
property  
Taxi Company 

Reputable taxi company (NFR0086): The taxi 
company shall have an established reputa-
tion [Security 4] 

taxiCompanyBusinessTrust 

 NF Properties = resourcesTRU_Business_L4 
 ParticipantRef = Taxi Company 



250 N. Maiden et al. 

 

Once complete, the quality properties into which the requirements are mapped can 
be used to inform the generation of property-based service monitors. 

5.3 Software Monitors from Q4BPMN Specifications 

Software monitors can be accurately developed to monitor for specified qualities of a 
service choreography at run-time. A monitor is a software system that observes a 
target system’s behavior for qualities of interest such as satisfying the target system’s 
requirements [24]. Effective monitoring is key for adaptation to ensure that the target 
system can bind to and invoke new services in new contexts to ensure continued  
requirements satisfaction. Robinson distinguishes software and requirements moni-
tors. He defines a requirements monitor as a software component that determines the 
requirements status from a stream of significant input events [24], where the events 
are observed and recorded by software monitors. 

Our approach explicitly supports the choreography designer to map QoS require-
ment into monitorable properties on a choreography model, the individual choreogra-
phy tasks in the model, and on the roles in a task. By leveraging on generative  
techniques within the context of the model-driven engineering, the Q4BPMN proper-
ties support the synthesis of QoS monitoring modules of the service choreography. 
Specifically, each generated monitoring module determines whether a property asso-
ciated to a quality requirement is satisfied using observed data and messages. Given 
the need to map requirements of different types onto different types of event filters, 
our approach uses a flexible event-based monitoring infrastructure tailored to observe 
and analyze the behavior of distributed systems and services [25]. The reference im-
plementation of such event-based monitor includes a complex event-processing en-
gine based on Drools Fusion [26]. The details about the model-to-code transformation 
process of the Q4BPMN properties in presented at length in [27]. 

Our use of Q4BPMN is related to current requirements metrics such as Planguage, 
the keyword-driven language for writing measurable quality requirements [12]. Plan-
guage’s use of measures and metrics is similar to the Q4BPMN’s use of abstract, 
descriptive or prescriptive properties [27], however we believe that the grounding of 
these property types in observable data that can be collected using software monitors 
offers it a distinct advantage for service-based systems. 

6 Lessons Learned 

We return to the 3 challenges reported earlier to assess whether applying our approach 
helped to resolve them and report the most important lessons learned: 

Optimize the specification of choreography diagrams with respect to system re-
quirements. For the dynamic taxi management scenario, 97 system requirements were 
successfully specified and used to generate meaningful first-cut choreography dia-
grams. The simple interface of the requirements tool enabled system requirements to 
be specified effectively without training, and the similarity algorithm helped the user 
cluster requirements for specifying a single choreography. However, there was a  



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 251 

 

usability concern with the similarity function, as matching the selected requirement to 
the other 96 requirements took over 5 minutes using a standard laptop on the City 
University London network. An option for improving the performance of this function is 
to store the match results in a requirements matrix to remove the need for invoking the 
similarity algorithm web service for every requirement pair each time it is run. 

The requirements specified retrieved the domain specific Request taxi CTT model 
and the generic Calculate route model. Minor refinements were made to the generated 
choreography tasks, shown in figure 5, and the final choreography tasks listed in Fig-
ure 6. Additional tasks included Confirm taxi request and Board taxi situated at either 
end of the process flow. While the use of CTT models provided valuable design guid-
ance for the choreography design in this example, varying degrees of success were 
experienced for other choreographies. For example, in the context-aware traffic man-
agement choreography, the first-cut BPMN model elements generated by the retrieved 
CTT models Provide traffic information and Calculate route were either discarded or 
revised beyond recognition. Therefore, further work is needed to expand the catalogue 
of CTT models and to evaluate the effectiveness of the process in future case studies. 

Associate specified system requirements with choreography activities in a choreo-
graphy diagram. In our example, 38 out of the 40 clustered requirements were auto-
matically mapped to choreography tasks and provided a useful starting point for the 
user. However, our approach can only match requirements to each retrieved CTT 
model, therefore matched requirements are automatically allocated to the first choreo-
graphy task generated from each CTT model. Future work on the TEDDiE service to 
match the requirements to specific choreography tasks would improve the process and 
reduce the level of human input required. Also, it was evident that users need to be 
better supported where requirements are relevant to more than one choreography task 
in the model. As exemplified by the requirement NFR0077, which is mapped across 5 
of the choreography tasks (see Figure 6), high level user requirements could imply 
different interpretations depending on the context and the functionalities intended to 
impact on them. One possible way of addressing this would be to use satisfaction 
arguments, as defined in [29], to provide a means to reason about the relationships 
between user expressed quality requirements and lower-level system requirements. 
We have already made an initial attempt to implement satisfaction arguments in the 
Requirements Tool (see [30]), but we need to explore effective ways of implementing 
this, or a similar approach, in the MagicDraw modeling environment. 

Enhance choreography diagrams with quality properties that trace system re-
quirements, to support analysis and monitoring facilities. Although the Q4BPMN 
notation already existed, this was the first time that we traced the originating set of 
system requirements through the choreography specification process. Reconciling the 
user expressed quality scores with actual values for the quality properties was a chal-
lenge. This required a significant level of domain expert input as ultimately context 
was everything and generic values reported in literature were not necessarily suitable.  

Finally, it is worth mentioning the limitation that there is no backwards compatibil-
ity between the MagicDraw environment and the CHOReOS Requirements Tool. This 
restricts the possibility of revising the originating requirements without starting the 
process again and is an area that needs to be addressed in future. 



252 N. Maiden et al. 

 

7 Conclusion and Future Work 

In this paper we report an integrated approach for designing service choreographies 
from system requirements to deliver more adaptive software systems. We integrated 
new and existing work from different sub-disciplines to develop a pragmatic solution 
to a pressing problem – how to engineer increasingly adaptive service-based software. 
We believe the combination of techniques for natural language requirements expres-
sion, user task models, quality model extensions to business processes, and transfor-
mations of these models to construct requirements-based software monitors, is 
unique. Not only have we developed an end-to-end approach for generating service-
based systems that can be traced to their originating system requirements, but also we 
have developed an integrated toolkit based on BPMN modeling in MagicDraw. 

Of course the approach we presented is not complete – it has some important omis-
sions. One is the lack of discovery techniques to select and bind candidate services to 
choreographies at run-time. CHOReOS has developed such techniques linked to soft-
ware service repositories [28]. Another is the lack of support to develop service-level 
agreements from requirements. Such agreements are needed to manage contractual 
relationships with the providers of the services invoked in choreographies, and should 
be derived from requirements. Although the approach provides the foundations for 
requirements-led development of SLAs, it still has to be extended it to deliver it. 

Although we successfully applied the methods and tools in the demonstrated ex-
ample, the next stage of our work is to evaluate the approach formatively in the  
development of other service-based systems. We plan to report results from these 
formative evaluations in future work. 

Acknowledgment. The research is supported by CHOReOS project n° 257178 of the 
FP7 European program: FP7-ICT-2009-5. 

References 

1. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10), 46–52 
(2003) 

2. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., Hofstede, 
A.H.M.: Formal Semantics and Analysis of Control Flow in WS-BPEL. Science of Com-
puter Programming 2(3), 162–198 (2007) 

3. Ben Hamida, A., et al.: An Integrated Development and Runtime Environment for the Fu-
ture Internet. In: Álvarez, F., et al. (eds.) FIA 2012. LNCS, vol. 7281, pp. 81–92. Springer, 
Heidelberg (2012) 

4. Sawyer, P., Hutchinson, J., Walkerdine, J., Sommerville, I.: Faceted Service Specification. 
In: Proceedings SOCCER Workshop at RE 2005 Conference, Paris (2005) 

5. Bartolini, C., Bertolino, A., Ciancone, A., De Angelis, G., Mirandola, R.: Quality Require-
ments for Service Choreographies. In: Proceedings WEBIST 2012, pp. 143–148 (2012) 

6. ERCIM News. Special Theme: Future Internet Technology. Number 77 (April 2009) 
7. Shaw, M.: The Challenge of Pervasive Software to the Conventional Wisdom of Software 

Engineering. In: Keynote speech at ESEC/FSE (August 2009), http://www.esec-
fse-2009.ewi.tudelft.nl/downloads/ESECFSE09-shaw.pdf 

8. Autili, M., Di Ruscio, D., Inverardi, P., Lockerbie, J., Tivoli, M.: A Development Process for 
Requirements Based Service Choreography. In: Proceedings RESS 2011, pp. 59–62 (2011) 



 A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies 253 

 

9. Bartolini, C., Bertolino, A., Ciancone, A., De Angelis, G., Mirandola, R.: Apprehensive 
QoS Monitoring of Service Choreographies. In: Proceedings SAC 2013, pp. 1893–1899 
(2013) 

10. Alexander, I., Stevens, R.: Writing Better Requirements. Addison-Wesley (2002) 
11. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., Renou, L.: Model-Driven Re-

quirements Engineering: Synchronising Models in an Air Traffic Management Case Study. 
In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 368–383. Springer, 
Heidelberg (2004) 

12. Gilb, T.: Competitive Engineering: A Handbook For Systems Engineering, Requirements 
Engineering, and Software Engineering Using Planguage. Elsevier (2005) 

13. Nattoch Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: A linguistic engineering ap-
proach to large-scale requirements management. IEEE Software 22(1), 32–39 (2005) 

14. Zachos, K., Maiden, N.A.M., Zhu, X., Jones, S.: Discovering Web Services To Specify 
More Complete System Requirements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) 
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 142–157. Springer, Heidelberg (2007) 

15. Paterno, F., Santoro, C.: Preventing User Errors by Systematic Analysis of Deviations 
from the System Task Model. International Journal of Human-Computer Studies 56(2), 
225–245 (2002) 

16. Paterno, F., Santoro, C., Spano, L.D.: User Task-based Development of Multi-device Ser-
vice-oriented Applications. In: Proceedings of the International Conference on Advanced 
Visual Interfaces, Roma, Italy (2010) 

17. Ruiz, M., Pelechano, V., Pastor, O.: Designing Web Services for Supporting User Tasks: 
A Model Driven Approach. In: CoSS International Workshop on Conceptual Modeling of 
S-oSS, pp. 193–202 (2006) 

18. Zachos, K., Kounkou, A., Maiden, N.A.M.: Exploiting Codified User Task Knowledge to 
Discover Services at Design-Time. IJSSOE 3(2), 30–66 (2012) 

19. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for 
Specifying Task Models. In: Proceedings of the IFIP TC13 International Conference on 
Human-Computer Interaction, pp. 362–369 (1997) 

20. Di Marco, A., Pompilio, C., Bertolino, A., Calabrò, A., Lonetti, F., Sabetta, A.: Yet anoth-
er meta-model to specify non-functional properties. In: Proceedings QASBA 2011,  
pp. 9–16 (2011) 

21. Bartolini, C., Bertolino, A., Ciancone, A., De Angelis, G., Mirandola, R.: Non-functional 
analysis of service choreographies. In: Proceedings PESOS 2012, pp. 8–14 (2012) 

22. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer 
(2010) 

23. Miller, R.B.: Response time in man-computer conversational transactions. In: Proceedings 
of the Joint Computer Conference, pp. 267–277. ACM, New York (1968) 

24. Robinson, W.: A Roadmap for Comprehensive Requirements Monitoring. IEEE Comput-
er, 64–72 (May 2010) 

25. Bertolino, A., Calabrò, A., Lonetti, F., Sabetta, A.: GLIMPSE: a generic and flexible mon-
itoring infrastructure. In: Proceedings EWDC 2011, pp. 73–78 (2011) 

26. Drools Fusion: Complex Event Processor, 
http://www.jboss.org/drools/drools-fusion.html 

27. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a Model-Driven 
Infrastructure for Runtime Monitoring. In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, 
vol. 6968, pp. 130–144. Springer, Heidelberg (2011) 

28. Ali, M., De Angelis, G., Polini, A.: ServicePot – An Extensible Registry for Choreography 
Governance. In: Proceedings SOSE 2013, pp. 113–124 (2013) 

29. Hammond, J., Rawlings, R., Hall, A.: Will it work? In: Proceedings 5th IEEE International 
Symposium on Requirements Engineering, pp. 102–109. IEEE Computer Society (2001) 

30. http://www.choreos.eu/bin/view/Documentation/Requirements_Tool 



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 254–267, 2014. 
© Springer International Publishing Switzerland 2014 2014 

Experience-Oriented Approaches for Teaching  
and Training Requirements Engineering:  

An Experience Report 

Andrea Herrmann1, Anne Hoffmann2, Dieter Landes3, and Rüdiger Weißbach4 

1 Herrmann & Ehrlich, Stuttgart, Germany 
herrmann@herrmann-ehrlich.de  

2 Siemens AG, Erlangen, Germany 
anne.hoffmann@siemens.com 

3 University of Applied Sciences, Coburg, Germany  
dieter.landes@hs-coburg.de  

4 Hamburg University of Applied Sciences, Hamburg, Germany 
ruediger.weissbach@haw-hamburg.de 

Abstract. [Context & motivation] Experience-oriented learning is known to 
be more efficient than learning by listening. Small team projects can teach 
practical issues of applying methods and soft skills. [Question/problem] RE is 
a core qualification for diverse stakeholders, not only for software engineers. In 
trainings and academic education, people with different professional 
backgrounds and different experiences, representing different stages in the 
Dreyfus model of skill acquisition, come together. The teaching's setup should 
take this into account. [Principal ideas/results] This experience report presents 
examples of various approaches for teaching RE in academia and industry. We 
discuss findings from interdisciplinary projects and game-oriented approaches, 
differences of these learning settings and differences which are to be considered 
when designing didactic settings for different target groups. [Contribution] 
This article presents diverse course concepts and experiences, and shall inspire 
other instructors to seek for additional learning approaches by taking into 
account their participants' heterogeneous background. 

Keywords: Dreyfus model, experience-based learning, experience-oriented 
learning, interdisciplinary, learning, requirements engineering, teaching, 
training  

1 Motivation: Why Teaching and Training Requirements 
Engineering? 

Relevance of Requirements Engineering: Requirements Engineering (RE) is known 
to be critical for the success of software projects [1] and the education of software 
practitioners [2]. While this is a good motivation for learning and teaching RE, the 
growth of RE-related conferences and the rising number of RE certifications show 
that RE training has been recognized and accepted as being important. 



 Experience-Oriented Approaches for Teaching and Training RE 255 

 

Yet, RE knowledge is not only relevant for the software development team, but 
also for customers and other stakeholders, especially in the context of agile 
development. For instance, we see an increasing importance of business departments 
in decisions on information systems. This is not only caused, but intensified in the 
context of Cloud Computing, where business departments are able to buy Software as 
a Service (SaaS) products [3]. This trend is reflected in the authors’ “experience” in 
teaching and training RE not only for IT specialists, but for marketing and 
engineering staff.  

Whilst RE is typically seen as a task in an early stage of a waterfall project, RE is 
part of agile development, too. 

Teaching vs. Training: We distinguish between teaching and training:  
“Teaching” means the education that is part of the university curriculum during the 

studies and that prepares students for diverse work environments and roles. Most of 
the students have no work experience. Therefore, teaching cannot presuppose specific 
previous experiences or problem-awareness. 

In our understanding, “Training” is defined as commercial training given to 
professionals. It is typically customized to the “target group’s environment”, to the 
role (developer, project manager, etc.), and to the domain (e.g. automotive), and takes 
company- or domain-specific standards into account. Most participants in trainings 
have work experience and attend the course with specific questions in their minds 
which they seek answers for. 

In this experience paper, we try to find some answers to the question: “Which 
approach is appropriate for teaching or training RE to participants on which Dreyfus 
level?“ This paper is founded on the practical experiences and the reflections of the 
authors compiled in diverse RE teaching and training situations.  

2 Related Work 

2.1 Four Forms of Experience-Oriented Learning Methods 

“According to Lethbridge’s survey” [2], software professionals think that their 
education has been moderately relevant for their job (3.5 points on a scale of 0 to 5). 
From their point of view, it was more important to learn how to think than to learn 
specific methods.  

It is known that learning by listening is not as efficient as learning by doing [4]. 
While sitting in a lecture and listening to the lecturer, the student learns facts. 
However, only by applying a method, they get experience and learn the soft facts 
which cannot be transferred easily by lecturing.  

For instance, learning the elements of an UML model is only the first step in 
learning UML. When applying the method to a simple toy example, already many 
practical questions arise. However, applying UML modeling to more complex 
systems gives rise to further questions, like the ideal level of granularity or how to 
check for completeness. When students run a project from beginning to end, 
building on the requirements which they elicited and modeled themselves, they get 



256 A. Herrmann et al. 

 

direct feedback about the quality of their requirements. Working in a team 
additionally allows them to train soft skills they will need in practice. In distributed 
teams the students learn to work in virtual teams [5]. The most realistic learning effect 
can be achieved when students work in a real-life project with real organizations. A 
real-life project, compared to a role game, introduces difficulties beyond applying the 
rules of the RE methods. As the course has a certain duration and speed, it is not 
always easy to define a real-life project with the suitable scope. 

Role games or project simulations are conducted in a protected and controllable 
university environment. Consequently, for instructors these approaches are often an 
ideal compromise between applying methods to unrealistically simple examples and 
complex and barely controllable real-life projects.  

We define the difference between “role game” and “project simulation” as follows: 
Role games are a collection of individual games like an interview or an example 
where different methods are applied. In project simulations, methods and roles are 
applied to the same project. The teacher controls the role game or simulation by 
defining clear rules for the roles´ interactions during each step of the game. 

Examples of role games in RE teaching are: 

• The agile hour [6] and the extreme hour [7] where within one hour the learners 
simulate an agile project with three iterations, with the objective to implement a 
result by drawing it. 

• Simulated customer interviews and subsequent development tasks [8], [9], which 
can be combined with improvisational theatre [10]. 

• A business game where students create software companies and bid for a large 
scale development project [11]. 

• Performing a development project which leads to a user interface design [12] or to 
a prototype software [13]. 

• Simulating a software project in the form of a card game [14], [15]. 

Additional roles games within different types of engineering and natural science 
courses are discussed by Fadali et al. [16]. 

Compared to real-life projects, games are shorter interactions within a canonized 
set of rules and under controlled circumstances. Dawson [17] even recommends to 
play tricks on the students in order to better prepare them for work life. Such tricks 
can be: to present an uncertain and naive customer, to change requirements and 
priorities, and to have conflicting requirements and pressures. In real-life projects, the 
longer duration increases the possibilities of interventions and disruptions.  

Another way of learning is to analyze and discuss case descriptions, either real or 
invented cases. Cases are derived from realistically large projects in a way to 
highlight a specific aspect that is to be learned. Thus, students can learn from real 
projects, without the risks involved in executing them themselves. 

Improvisation theatre was invented by Keith Johnstone [18] to support students in 
acting and drama improving their acting abilities. Johnstone invented so-called games 
each training certain aspects of communication and self-awareness. The REIM 
approach utilizes storytelling to map these games to typical Requirements 
Engineering situations, see [19, 20] for details. 



 Experience-Oriented Approaches for Teaching and Training RE 257 

 

2.2 The Dreyfus Model 

The Dreyfus model, introduced by Stuart and Hubert Dreyfus in 1980, describes five 
stages through which a person passes in order to acquire skills needed in a certain 
area: novice, competence, proficiency, expertise, and mastery [21]. Most people will 
only reach the “competence” stage in a certain field ([22], p.28). According to the 
Dreyfus brothers, while one becomes more skilled he or she “depends less on abstract 
principles and more on concrete experience”. 
The main characteristics of the stages are: 

• Novice: Novices need to be given non-situational tasks and a set of rules to fulfill a 
certain task ([22], p.18f). 

• Competence: With a certain experience acquired, comes competence. With 
competence, one can deviate to a certain degree from prior rules given to the 
novice ([22], p.20). 

• Proficiency: With proficiency, one can solve known problems, seek guidance from 
experts and apply the advice given successfully ([22], p.20f). 

• Expertise: This is the first stage where one is able to reflect and correct oneself. 
On this level, one oversees the big picture and can learn from experience others 
made ([22], p.21ff). 

• Mastery: On this level, one has a huge fund of experience and works best based on 
intuition. Interestingly, if forced to use rules, persons on the mastery level have 
proven to become less successful fulfilling their tasks ([22], p.23f). 

The Dreyfus model allows us to align the approaches presented below to the 
different levels of expertise for which they can be used. 

3 Case Descriptions 

3.1 Characteristics 

In this chapter, we report on several cases that were run at universities in Germany 
and Switzerland and in industrial settings. These cases focus in particular on bringing 
some of the complexities of real projects into an academic setting, either in real life 
projects (Chapter 3.2, Chapter 3.3) or using role games (Chapter 3.4). Another case 
description shows the usage of improvisation theatre in professional education 
(Chapter 3.5). Additional aspects of these cases that are not directly related to RE are 
“also discussed elsewhere, [19, 20, 23, 24, 25, 26]”. 

The case descriptions emphasize various aspects, such as 

• Interdisciplinarity and complexity in social interactions, due to different skills and 
backgrounds of the participants (Chapter 3.2, Chapter 3.3) 

• Approximation to reality (Chapter 3.2, Chapter 3.3) 
• Methodical rigor (Chapter 3.4) vs. “real world muddling through” (Chapter 3.2, 

Chapter 3.3)  

These cases can be categorized with respect to Dreyfus’ levels of competence as 
indicated in Table 1. The levels were assigned based on asking the participants about 



258 A. Herrmann et al. 

 

their experiences and our observations during the course. We define a teaching resp. 
training experience as successful if the training objective is achieved. Empty entries in 
the table are still open for future research. Table 2 gives a short overview of the cases. 

Table 1. Participants´ Dreyfus levels on which the authors applied the training method 
successfully. The numbers refer to the chapter where the case is presented 

 Impro 
theatre 

Role game Simulation Real life 

Novice 3.5 3.4 3.4 3.2, 3.3 
Competence 3.5  3.4   
Proficiency 3.5  3.4   
Expertise 3.5    
Mastery     

Table 2. Overview of the cases presented in this paper 

Case  3.2 3.3 3.4 3.5 
Learning 
objective 

Elicitation and 
negotiation of 
requirements, 
understanding the 
roles of other 
stakeholders, 
communication 
across disciplinary 
boundaries 

Methods for 
elicitation, 
specification, 
management, soft 
skills, 
understanding  
of the user’s role 
in the process, 

Elicitation 
methods, 
specification 
methods, soft 
skills 

Soft skills and 
their specific 
aspects in RE-
related situation 
such as 
requirements 
clarification, 
prioritization 

Learning 
method 

Real life projects 
with internal or 
external 
stakeholders 

Real life projects 
with external 
stakeholders 

Project 
simulation 
including role 
games 

Interactive 
games from 
Improvisation 
Theatre, 
storytelling 

Course 
Size 

25-30 25-40 4-25 ??? 

Group size 10-25, depending 
on the number of 
students and 
customers 

5-12, depends on 
the number of 
students 

2 8-25, depends 
on trainer's 
experience 

Success 
criterion 

Customer accepts 
project outcome. 
Self-reflection on 
achievements and 
failures in a post-
mortem review. 

Projects are 
conducted in a 
real life situation. 
Customer accepts 
results. 
Additional 
written test with 
reflections on 
methods.  

Requirements 
specification 
and test cases 
satisfy quality 
criteria, 
customer 
accepts 
prototype 

Tasks per 
games are 
solved, 
anticipated 
results are 
achieved 



 Experience-Oriented Approaches for Teaching and Training RE 259 

 

Important dimensions for the description of the cases are the following:  

• Controllability: The instructor´s ability to control and adapt the initial conditions 
and the course of the learning experience. 

• Co-location: eligibility of the approach to be run with a distributed team or in a 
co-located fashion. 

• Feedback types: moment in time and method used by the instructor to obtain 
feedback about learning success. 

• Supervision need: Need of the learners to be supervised by instructors. 
• Requires theoretical / practical knowledge of participants: prerequisite RE 

knowledge for the course.  

These dimensions will be discussed in the chapter 4. 

3.2 Joint Project with ICT and Business Students 

Description 

One approach to gain experiences with some of the complexities of real projects is the 
students’ work in teams on projects that have a realistic goal or even a real customer. 
In particular if there is a real customer, interdisciplinary aspects come into play since 
in general the customer is active in a different application domain, i.e. students and 
customers do not share the same disciplinary background. In the cases that we ran at 
Coburg, we emphasized this even further since the project teams consisted of ICT and 
business students who had to establish ways to cooperate even across disciplinary 
borders in order to succeed in the project. In addition, project teams tended to be 
fairly large, giving rise to unexpected social interactions and coordination problems 
[24, 25]. Participants are in the final year of their bachelor’s studies. Each of them 
already passed one semester of compulsory internship. 

So far, we ran three iterations of such a project. Project I dealt with developing a 
software system in order to support claims handling in a (fictitious) insurance 
company. Business students played the role of the customer, expressing requirements 
and being involved in acceptance testing, while ICT students were in charge of 
building the system after figuring out what the system was supposed to do. In contrast 
to project I, there was a real customer in projects II and III (CEO of a medium-sized 
factory). Each of the projects ran over a complete term, i.e. roughly four months, 
calling for a weekly effort of approximately four hours for each participant. Each 
project was concluded by a post-mortem review which focusses on achievements and 
failures in the project. Furthermore, instructor observed the participants’ behavior 
during the project. 

As learning goals, participants should be capable of eliciting and negotiating 
requirements across disciplinary boundaries in a co-operative manner. Furthermore, 
participants should get a deep understanding of the roles of all the involved 
stakeholders. Learning goals are assumed to be achieved if the project outcome could 
be happily accepted by the customer and participants appropriately reflect their work 
in the post-mortem review. 



260 A. Herrmann et al. 

 

Experiences 

Each project fostered a much deeper understanding of the importance of requirements 
and the difficulties in handling them properly. Although both ICT and business 
students had been introduced to RE, they still did not really believe that there is a 
problem. In particular, in project I business students (in the role of customers) initially 
thought that quite a few things simply go without saying (for example the log on 
process). They assumed that ICT students would fill in the gaps that, from their point 
of view, were so evident that they would not bother addressing them explicitly. 
Conversely, ICT students had not expected that their customers, consciously or not, 
would tell them only part of the story. This experience for both sides was reinforced 
during acceptance testing: business students first complained about missing important 
functionalities of the delivered software product, but had to accept that they never ex-
pressed a requirement that mentioned these features. For the ICT students, it was a 
new experience that there were still hidden requirements, even after having asked 
their customers several times if there were additional issues that the solution should 
cover. Similarly, students initially tend to believe that requirements never change. 
Furthermore, projects can help to understand that other stakeholders may have a 
different perspective on particular things. 

But there are quite a few issues that are hard to handle in projects. First of all, the 
supervision of projects is difficult for larger numbers of students. As a second 
difficulty, it is hard to foresee what will happen in a specific project, especially when 
an external customer is involved. Therefore, it is hard to force particular phenomena, 
e.g. misunderstandings or requirements changes. Consequently, the learning outcome 
is to some extent left to chance, namely that a particular phenomenon actually 
happens in a project setting. If the focus of the learning arrangement is on a particular 
set of phenomena, other formats, such as role games, are more appropriate than 
projects simply as they are easier to control, yet at the expense of realism. 

3.3 Teaching Requirements Engineering to Business Students  

Description 

At Hamburg University of Applied Sciences [UAS], we continuously conduct a joint 
course for marketing bachelor students with marketing and RE content since winter 
2009/10 [26]. About 30 marketing students are working every semester in 4-6 real life 
projects which last 7 weeks. The course is in the last semester, so that all students 
have business experience of at least 6 months. The aim of the task is to solve a 
marketing problem with ICT support. The students have to define the requirements 
and then to decide about a software solution, to improve the usability of a web site, to 
implement a small solution etc. Participating organizations are commercial 
organizations as well as departments of the university or non-profit organizations. 

One professor for marketing and one for business informatics teach and coach the 
student groups in project management and RE. In some lessons, both professors stand 
together in front of the class and demonstrate different professional and individual 
points of view. For special tasks (usability tests), other departments of the university 
are co-operating. The students organize this co-operation process themselves.  



 Experience-Oriented Approaches for Teaching and Training RE 261 

 

Intended learning outcomes are (a) methodological knowledge for project 
management and requirements engineering and (b) “soft skills” from the experience 
of real life projects. 

Experiences 

At Hamburg UAS, a periodical evaluation of the courses is implemented. The 
students’ feedback is generally positive; they state learning success a well as fun. The 
different professional cultures of marketing and business informatics are perceived as 
a confusing, but realistic impression. 

For the participating organizations, these projects are important and the students’ 
expertise is accepted as a professional expertise. This is important for the self-
confidence of the students and for their role change as future professionals at the end 
of their university years. Some organizations conduct several projects consecutively 
with us, so that a student group will continue the work of a former team. In reality, 
this is a normal situation, but it is not common in teaching project management. 

Students criticize the expenditure of time (which correlates to the number of credit 
points), but first of all the organizational problems. Most of them are caused by the 
real life situation: Stakeholders have to react on a shift in priorities etc.  

The success rate regarding the students’ point of view is 100% - no project work 
deliverable was rejected by the co-operating organizations. The implementation rate 
of the projects is > 80%, only few of the projects have not been implemented due to 
changes in the co-operating organization or in their environment. 

Problems of the real life situation are: 

• Students have a pressure to succeed – therefore the projects have no “gaming” or 
“exploring” character.  

• Due to the required skills and the current curriculum, it is only possible to run such 
a course at the end of the BA curriculum.  

• Due to the different aims in the projects – from implementing only changes on a 
web site to developing algorithms fur customer clustering -, the focus on methods 
is different. This is challenging for the students and the teachers, but demonstrates 
the context-sensitivity.  

• Project work can only indirectly reflect students’ success. To guarantee a common 
basic “body of knowledge”, a written exam is the base for the grade. The project 
work can affect the grade positively. 

3.4 Requirements Engineering for Engineers  

Description 

The following format for a role game project simulation worked well for computer 
science students as well as for business informatics and electrical engineering 
students, and also for experienced practitioners: Each student plays the role of a 
customer who wants to get custom-made software and is the provider/ contractor for 
“another students’ project”. They work in pairs and change roles. They choose a 
project which they have implemented themselves before, a problem they have met or 



262 A. Herrmann et al. 

 

something they will implement soon. The most frequently chosen (and most simple) 
example was the design of a web site or web shop. But also more complex projects 
were chosen like steering a manufacturing system or the watering of a system of 
tennis courts. The objective of the project is to write a requirement specification, test 
cases and to develop a graphical user interface prototype. No software 
implementation is needed. However, students who are very experienced in web 
programming volunteered to “develop the customer’s website as a prototype”. 

This role game has successfully been applied four times:  

• In a lecture for computer science and business informatics students at the Technical 
University of Braunschweig, Germany (three groups), 

• In a lecture for business informatics students at the University of Bern, 
Switzerland, 

• In a summer school for engineering students and practitioners at the University of 
Stuttgart, Germany, and 

• In a summer school for computer science students and practitioners, at the 
University of Applied Sciences in Furtwangen, Germany. 

In the university context, the project simulation took the whole semester and the 
exercises were partly done as homework and partly during the course. The summer 
school courses took two whole days and no (or few) homework was possible to be 
done. So, the exercises were all done during the course and took more than half of the 
course time. Therefore, a shortened version of the project was executed then, with less 
software artifacts to be written. 

The students were led step by step through the process of requirements elicitation 
(using interviews, but also creativity techniques), UML specification, prioritization, 
and the implementation of a prototype and its acceptance test by the customer. Before 
each activity, the instructor provided theoretical knowledge about how to execute a 
method and standards of notations. As several teams work in parallel, the trainer 
cannot supervise all interactions but gets feedback about the learning progress when 
reviewing intermediate results. 

The teaching objective was that the requirements specification satisfies the typical 
quality criteria (completeness, consistency, etc.) and the customer accepts the 
prototype. 

Experiences 

The role games make the course a lively and interactive experience. As the same 
example project is used consistently from beginning to end of the course, the 
participants see how different RE methods for elicitation, specification and 
prioritization work together. Errors made in earlier steps are felt in later steps. 
However, the learning experience is less easily controllable by the trainer than when 
executing separate role games. 

The participants are highly motivated to do the specification well because they 
have a customer who is interested in the project, and sometimes the product is even 
planned to be built. This is more motivating than to describe the same library system 
as the other students in the same course and in the years before. 



 Experience-Oriented Approaches for Teaching and Training RE 263 

 

The project simulation worked well with novices as well as with advanced 
participants who have work experience. The novices need more support and direct 
feedback during the exercises. Different participants learn different lessons from the 
same experience: Novices learn the RE methods and modeling notations, while 
advanced participants discuss with the lecturer more advanced questions like the ideal 
level of granularity or questions from their practical experience. 

For the teacher, it is an advantage that the projects are all different. This makes the 
correction and grading of the specification documents an interesting task. And when 
working in homework, students ``cannot copy other students´ results”.  

The role play in this form makes only sense with a maximum of 20 participants. 
Students are working in two person teams (with one three person team, if the number 
is odd).  

The projects always are very different in complexity. It is important to tell the 
students that it is more important to apply the methods correctly than to end up with a 
complete specification. This is the difference between this exercise and a real project.  

When the course includes homework, it is important that all homework can be 
done alone and those exercises which must be done in pairs, take place during the 
course times to guarantee meetings.  

So, all in all, this form of the course demands a constant and individual steering by 
the trainer, who must be able to understand all projects in the course and help with 
their specification. This demands more than understanding just one sample solution. 

3.5 Using Improvisation Theater to Create Interaction 

Description 

The REIM format (Requirements Engineering and Improvisation) has been developed 
to train both factual knowledge and soft skills related to RE [19].  REIM follows a 
typical Improvisation Theater training session but utilizes Storytelling elements to 
adjust to the participants' background (see [20] for details).  

Each REIM workshop session consists of the three phases: warm-up, training and 
feedback. During each phase different types of improvisation games are played. Only 
the training games focus on the training of factual knowledge and soft skill 
competences [20]. Each training game addresses several related soft skill 
competences. As REIM is quite flexible in this aspect, the trainer prepares upfront 
which competences shall be addressed. On the other hand, given sufficient 
experience, games can be adjusted to the participants' needs as the workshop goes 
along. (This seems to be quite common in industrial trainings) 

For instance, RE prioritization is mainly taught and trained fact-oriented. One 
learns which methods exist and how to apply them, but the participant is left alone to 
realize this experience. REIM creates this experience by utilizing the “Requirements 
Game”, which – among other aspects – demonstrates priority setting and its 
difficulties. This is addressed by bringing the participants into a situation where they 
are so busy fulfilling the (factual-oriented) task given, that they forget to obey other 
rules which implicitly undermine the priority setting. 

The workshop has proven to work well for novices as well as experts in the field of 
RE. The Improvisation games being used are the same for both parties. Yet, the 
stories being told  differ. Interestingly, the reported personal learning outcomes differ 



264 A. Herrmann et al. 

 

depending on the degree of experience starting from the creation of numerous aha-
effects for novices reaching to intense discussions among participants for experts. 

Experiences 

REIM is an interactive format which activates each and every single participant. This 
is in fact what the warm-up games are used for: They are creating the atmosphere. 
There is no option of participating by observing. 

REIM very quickly connects factual knowledge to soft skills and creates 
experience for each and every participant. 

REIM has been applied to numerous groups and was always well perceived. The 
level of experience in these groups differed from novice to experts, maybe even 
mastery. During feedback, it became clear that different participants report on 
different issues that were most valuable in their learning. This seems to be related to 
the different stages of the Dreyfus model [21], but has not yet been validated. In 
addition, each participant rates his personal learning-to-having-fun ratio. Interestingly, 
more experienced groups tend to report a higher learning experience whereas 
beginners emphasize on the aspect of having had fun. 

REIM can be used for up to 40 participants, working best with 15-25. More 
participants could be (and have been trained) by splitting up the group into two and 
using a second trainer or repeating the session. This might however result into 
different non-comparable learning. 

From a trainer's perspective, the REIM format appears to be quite complex. In 
order to utilize the format, the trainer needs some knowledge in improvisation theater 
games as well as storytelling. It is the trainer who dominates and steers the approach 
(and thus the success of the workshop) quite significantly. 

Even though a Train-the-Trainer description has been formulated as a pattern and a 
trial session with other trainers was run [23], this complexity might still prevent the 
workshop format from becoming more widely spread in the community. This might 
be particularly true for the university area where trainers are often not trained prior to 
teaching but rather thrown in at the deep end. 

REIM appears to be an interesting workshop format to combine factual knowledge 
and soft skill training into one. It has however not yet been formally validated, nor has 
the correlation to the Dreyfus model been proven to be valid. This is part of a current 
investigation of one of the authors and shall result in a sophisticated understanding 
who REIM works within different group set-ups. 

4 Discussion  

The above case descriptions provide only a part of the four authors´ teaching and 
training experiences. Based on the experiences described in this paper and on 
additional experience, Table 3 describes the different preconditions for four forms of 
experience-oriented learning methods. 

The table indicates that there is no “silver bullet” and that methods could be and 
have to be adapted to special circumstances. It must be noted that the positive 
definition “the x-way of teaching fits to the situation y” does not automatically imply 



 Experience-Oriented Approaches for Teaching and Training RE 265 

 

that x will not fit to any other situation. To evaluate this could be an important task in 
future research. 

We suppose that not only the level in the Dreyfus model but also the concrete 
situation of the learner will influence the selection of the effective type of teaching. 

Table 3. Different preconditions under which four different types of teaching/ training have 
been used successfully 

 Improvisation 
theatre 

Role games Project 
simulation, 
toy project

Real-life 
project with 
real customer 

Group size Some games are 
possible with 
small groups 
only and others 
with large 
groups 

When group size 
is large, then 
need to form sub-
groups 

When group 
size is large, 
then need to 
form sub-
groups 

Only for small 
groups, because 
of limited 
availability of 
customer 

Controllability High High Average Low 
Distributed 
team 

No Possible Possible Possible 

Equipment Room without 
chairs 

Depends, usually 
seminar room 
with chairs 

Room with 
tables, chairs 
and computers 

Work places and 
meeting room 

Supervision 
need 

Active 
supervision for 
the whole time 

Active 
supervision for 
the whole time 

Initial 
explanations, 
answering 
questions, 
solving 
problems 

Regular 
supervision 

Theoretical 
knowledge of 
participants

None needed Must be provided Must be 
provided 

Must be 
provided 

Practical 
knowledge of 
participants

None needed None needed None needed, 
but desirable 

Essential for 
success 

Feedback to 
trainer about 
learning 
success 

Immediate Immediate When 
reviewing 
intermediate 
results 

When reviewing 
intermediate 
results 

Dreyfuss level 
of participants 

All levels Novice, 
competence 

Novice, 
competence 

All levels. For 
the levels of 
expertise and 
mastery, the 
character will be 
more a coaching 
than a training  



266 A. Herrmann et al. 

 

5 Conclusion and Future Work 

This experience report presents four approaches for teaching RE in academia and 
training in industry. In particular, we presented findings from four interdisciplinary, 
game-oriented courses. We analyzed these approaches with respect to different 
settings in which we applied them successfully and in which they also might be 
applicable, as well as additional issues that need to be considered when designing 
didactic settings for different target groups. In particular, we found that each of the 
techniques we employed is suitable for an audience on the novice level of the Dreyfus 
model, both for teaching and training. On the higher levels of the Dreyfus model, 
training on specific topics becomes more relevant. Consequently, methods like role 
games, project simulation and improvisation theatre are appropriate on these levels, 
primarily due to their good controllability. It should be noted, however, that our 
findings are derived after the fact from the specific cases that we explored. It is a 
matter of future work to analyze to what extent our findings are generalizable. 

Our discussion about our experiences led to some further research questions, like: 
How can we assess the level of expertise of the participants ex ante? And which level 
does the trainer need to have? How can trainers be trained? Further empirical 
substantiation of experiences as summarized in Tables 1 and 2 would test whether the 
training methods can be useful for participants on other Dreyfus levels, too. 

References 

1. Standish Group: Extreme CHAOS (2001) 
2. Lethbridge, T.: A survey of the relevance of computer science and software engineering 

education. In: llth International Conference on Software Engineering (1998) 
3. Cap Gemini: IT-Trends 2013, Berlin (October 2013), 

http://www.de.capgemini.com/ressourcen/it-trends-studie-2013 
4. Foppa, K.: Lernen, Gedächtnis, Verhalten: Ergebnisse und Probleme der Lernpsychologie, 

9th edn. Kiepenheuer & Witsch, Cologne (1975) 
5. Damian, D., Hadwin, A., Al-Ani, B.: Instructional Design and Assessment Strategies for 

Teaching Global Software Development: A Framework. In: 28th International Conference 
on Software Engineering, Shanghai, China, pp. 685–690 (2006) 

6. Lübke, D., Schneider, K.: Agile Hour: Teaching XP Skills to Students and IT 
Professionals. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547, 
pp. 517–529. Springer, Heidelberg (2005) 

7. http://c2.com/cgi/wiki?ExtremeHour 
8. Yusop, N., Mehboob, Z., Zowghi, D.: The Role of Conducting Stakeholder Meetings in 

Requirements Engineering Training. In: REET International Workshop on Requirements 
Engineering Education and Training, pp. 133–139 (2007) 

9. Regev, G., Gause, D.C., Wegmann, A.: Requirements Engineering Education in the 21st 
Century, An Experiential Learning Approach. In: 16th IEEE International Requirements 
Engineering Conference (2008) 

10. Mahaux, M.: Improvisational Theatre: an Approach to Soft Skills for Requirements 
Engineers. In: REET International Workshop on Requirements Engineering Education and 
Training, pp. 133–139 (2007) 



 Experience-Oriented Approaches for Teaching and Training RE 267 

 

11. Neville, K., Adam, F.: Integrating Theory and Practice in Education with Business Games. 
Informing Science, Special Series: Informing Each Other 6 (2003) 

12. Zapata, C.M., Awad-Aubad, J.G.: Requirements Game: Teaching Software Project 
Management. CLEI Electronic Journal 10(1), PAPER 3 (June 2007) 

13. Favela, J., Peña-Mora, F.: An experience in collaborative software engineering education. 
IEEE Software 18(2), 47–53 (2001) 

14. Baker, A., Oh Navarro, E., van der Hoek, A.: Problems and Programmers: an educational 
software engineering card game. In: ICSE 2003 Proceedings of the 25th International 
Conference on Software Engineering (2003) 

15. Carrington, D., Baker, A., van der Hoek, A.: It’s All in the Game: Teaching Software 
Process Concepts. In: 34th ASEE/IEEE Frontiers in Education Conference, Savannah, GA, 
October 20-23 (2004) 

16. Fadali, M.S., Robinson, M., Mcnichols, K.: Teaching Engineering to K-12 Students Using 
Role Playing Games. In: ASEE Annual Conf., American Society for Engineering 
Education, Washington, DC (2000) 

17. Dawson, R.: Twenty Dirty Tricks to Train Software Engineers. In: 22nd International 
Conference on Software Engineering (ICSE 2000), Limerick, Ireland (2000) 

18. Johnstone, K.: Improvisation und Theater. Alexander Verlag (2010) 
19. Hoffmann, A.: REIM - An Improvisation Workshop Format to Train Soft Skill Awareness. 

In: 5th International Workshop on Cooperative and Human Aspects of Software 
Engineering (CHASE). IEEE (2012) 

20. Hoffmann, A.: Game Language. In: EuroPLoP 2012: 17th European Conference on 
Pattern Languages of Programs, Hillside (2012) 

21. Dreyfus, S., Dreyfus, H.: A five-stage model of the mental activities involved in direct 
skill acquisition, No. ORC-80-2. Univ. Berkeley Operations Research Center (1980) 

22. Hunt, A.: Pragmatisches Denken und Lernen – Refactor your wetware! Carl Hanser Verlag 
GmbH & Co. KG (2009) 

23. Hoffmann, A.: A Trainer’s Guideline to Teaching Soft Skills Using Improvisation Theater 
- A Workshop Format Exemplified on a Requirements Engineering Game. In: EuroPLoP 
2011: 16th European Conference on Pattern Languages of Programs (2011) 

24. Landes, D., Pfeiffer, V., Sedelmaier, Y., Mottok, J., Hagel, G.: Learning and Teaching 
Software Process Models. In: IEEE Global Engineering Education (EDUCON), 
Marrakesh, Morocco, pp. 1153–1160 (2012) 

25. Rausch, P., Landes, D.: “Ihr könnt nur zusammen gewinnen” – Interdisziplinäre 
Praxisprojekte in der Hochschulausbildung. In: Dorn, K.-H., et al. (eds.) Projekte als 
Kulturerlebnis, pp. 63–74. Dpunkt Verlag, Heidelberg (2009) 

26. Weißbach, R.: Bridging the Communication Gap in Information System Projects. Enabling 
Non-IT Professionals for the Requirements Engineering Process. In: Kettunen, J., et al. 
(eds.) Applied Research and Professional Education. First CARPE Networking 
Conference, p. 259. Turku UAS, Turku (2012),  
http://julkaisut.turkuamk.fi/isbn9789522162519.pdf 



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 268–284, 2014. 
© Springer International Publishing Switzerland 2014 2014 

An Analysis of Priority-Based Decision Heuristics  
for Optimizing Elicitation Efficiency 

Norman Riegel and Joerg Doerr 

Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany 
{norman.riegel,joerg.doerr}@iese.fraunhofer.de 

Abstract. [Context & motivation] Requirements are often elicited in 
hierarchies, with more fine-grained requirements being derived from abstract 
ones. This approach is typically used in business-process-driven requirements 
engineering (BPRE) where fine-grained system functions are derived from 
business activities contained in business processes. [Question/problem]  
Especially in large requirements hierarchies, requirements engineers are faced 
with the challenge of having to identify the best elicitation order that maximizes 
business value. This is an essential activity for incremental development 
projects, where the most valuable functionality should be released as early as 
possible to achieve the highest return on investment. [Principal ideas/results] 
We developed and analyzed a set of priority-based decision heuristics in order 
to support requirements engineers in deciding which requirements should be 
elaborated next at a certain point during elicitation. [Contribution] We 
simulated the heuristics on different business-process-based requirements trees 
and compared them with regard to efficiency measures. We were able to 
identify significant differences between these heuristics. 

Keywords: Requirements Prioritization, Decision Heuristic, Requirements 
Elicitation, Business-Process-Driven Requirements Engineering, BPRE. 

1 Introduction 

In many information systems (IS) development projects, requirements are elicited and 
structured in hierarchies with several abstraction levels. Such a hierarchy is also 
created in business-process-driven requirements engineering (BPRE) projects, where 
the requirements elicitation starts at the level of business processes and successively 
derives more fine-grained software requirements from these [1][2] (see Fig. 1). 
Especially in incremental development projects, where functionality is delivered in 
several releases, the most valuable functionality should be released as early as 
possible to achieve the highest return on investment [3]. Thus, requirements engineers 
are faced with the challenge of having to identify the best requirements elicitation 
order that maximizes business value. This means that elicitation effort should be spent 
on the most promising requirements in terms of business value while at the same time 
minimizing elicitation effort for less important requirements. 

Imagine the following scenario in a BPRE setting, where several business 
processes should be analyzed: The flow of one of the processes has been elicited; the 



 An Analysis of Priority-Based Decision Heuristics 269 

 

activities included in the process have been identified and prioritized; some (but not 
all) have been analyzed in detail to derive the system functions. Is it now beneficial to 
continue specifying the remaining activities (and resulting system functions) until the 
requirements for this specific process are complete, or is it more beneficial to focus 
the elicitation effort on analyzing another business process from the processes in 
scope? The remaining requirements of the already (incompletely) analyzed process 
might not bring as much business value as the requirements from the new process. 

Thus, focusing on requirements of minor importance can lead to (1) wasted effort 
for unnecessary (RE) activities; (2) postponed elicitation of more valuable 
requirements to a later point in time (which might ultimately lead to a loss of revenue 
because important functionality is released too late).  

 

 

Fig. 1. Business-process-based Requirements Hierarchy 

In order to determine the most valuable requirements in a project, prioritization 
techniques are typically applied. In the literature, numerous prioritization approaches 
can be found, differing, e.g., in terms of procedure and complexity of the calculations 
(cf., e.g., [4]). Also, several approaches exist to prioritize requirements structured in 
hierarchies [5]. However, these approaches lack an important aspect: they do not 
support decision making during requirements elicitation, which is an essential issue 
especially in large requirements hierarchies. 

To overcome this problem, we developed a set of priority-based decision heuristics 
in order to support requirements engineers in deciding which requirements should be 
elaborated next at a certain point during elicitation. In a controlled experiment, we 
simulated the different heuristics on different data sets, i.e., different business-
process-based requirements hierarchies. By utilizing simulation, decision heuristics 
can be investigated on many different data sets, which would not be possible in a real-
world setting. Our main research question to be answered was whether requirements 
elicitation efficiency in BPRE differs between these decision heuristics. Thus, the 
focus of this paper is not on the prioritization of the requirements in such a hierarchy 
(as discussed in [2]), but rather on the decision heuristics, based on priorities that lead 
to a certain elicitation order within the requirements hierarchy. 

The remainder of this paper is structured as follows: Section 2 describes the 
context and problem in more detail, section 3 discusses related work in the area, 
section 4 presents our controlled experiment (using simulation) including descriptions 
of the compared heuristics as well as our findings, and section 5 finally concludes the 
paper and gives an outlook on future work. 



270 N. Riegel and J. Doerr 

 

2 Problem Definition 

The decision heuristics to be evaluated in this study are applied to a typical BPRE 
requirements hierarchy (Fig.1) [2] consisting of three requirements layers: (1) 
business processes, (2) business activities, and (3) system functions. Business 
processes consist of business activities, which in turn consist of several system 
functions. An example of a business process could be “Travel Management”, a 
process that is performed if an employee wants to request approval for a business trip. 
A business activity in this process could be “Create Travel Request”, describing the 
activity of an employee of filling out and forwarding a travel request form to his / her 
boss. A system function to support this activity could be “Show Travel Request 
Form”, a function of the system that shows the user a form on the screen. 

The focus of the decision heuristics in this paper is on the requirements selection 
decisions made during elicitation. This means that prioritization is not only done at 
the end of the elicitation phase, but several times during elicitation. Thus, elicitation 
and prioritization are performed alternately and prioritization is used to determine 
which of the requirements will be refined in the next elicitation step. 

The elicited and prioritized requirements can be regarded as being stored in a 
requirements backlog. Each requirement in the backlog is a candidate for refinement 
in the next elicitation step. The requirements backlog therefore consists of 
requirements on different levels of abstraction, with the requirements on the lowest 
abstraction level serving as input for the realization phase, i.e., development. This 
concept is based on the idea of agile approaches such as Scrum [3], where 
requirements are stored in a product backlog for further refinement. 

It is assumed that at the beginning of a project, the requirements tree is unknown, 
except for the list of (black-box) business processes in scope. “Black box” means that 
these processes have been identified but have not been analyzed yet, i.e., the 
workflow and the included activities are unknown. These business processes form the 
initial requirements backlog. The processes are then prioritized and the first decision 
to be made is which business process should be analyzed first. This decision is 
provided by the decision heuristic. 

After the decision has been made, the chosen business process is elicited (e.g., in 
an elicitation workshop), becomes “white box”, and the contained business activities 
are revealed (again as black boxes). These business activities are then prioritized. At 
this point in time, the requirements backlog consists of the prioritized remaining 
black-box business processes as well as the newly revealed prioritized black-box 
business activities. Again, a second decision is needed as to which of these 
requirements in the backlog shall be refined further. Depending on the rule of the 
decision heuristic (e.g., depth-first or breadth-first search [6]), one of the business 
activities or one of the processes will be analyzed next. 

This alternating procedure between prioritization, selection decision, and resulting 
elicitation is repeated until the project ends, i.e., until the requirements tree is 
complete or until the resources for elicitation are exhausted. The goal of a decision 
heuristic is to guide the requirements engineer in such a way that the most valuable 
functionality is elicited first while at the same time using as little elicitation effort as 
possible. Thus, we have two relevant parameters in our study: the business value of a 
requirement (represented by its priority) as well as the elicitation effort that is 



 An Analysis of Priority-Based Decision Heuristics 271 

 

incurred when eliciting this requirement. An important point to mention is that it is 
assumed that the priority of a requirement already includes an estimation of its 
realization effort (e.g., development costs, risks etc.), as otherwise it would be 
meaningless to optimize the elicitation order. The assumptions about the different 
parameters are described in section 4.1. 

3 Related Work 

Several prioritization approaches that can be applied in requirements hierarchies have 
already been described in the literature, e.g., Hierarchy AHP, Hierarchical Cumulative 
Voting [7] (and deviations like Value-oriented HCV) or Quantitative WinWin, which 
we already assessed with regard to their suitability for the BPRE context in our 
previous work [5]. One important outcome of this assessment was the lack of 
guidance for the order of elicitation, i.e., the prioritization approaches typically take 
as input a set of already finalized requirements (e.g., for release planning as in [8] or 
[9]). This means they are intended to be used after the elicitation process has finished 
(in order to determine the ranking of requirements or features for development) but 
not during elicitation. In other words, they do not provide any heuristic on how to 
decide which requirements shall be refined next at a certain point in time in the 
elicitation process. Closing this gap is the goal of this study.  

The decision heuristics and the resulting elicitation order within the requirements 
hierarchy in this paper are similar to well-known algorithms for traversing trees, e.g. 
depth-first search or breadth-first search [6]. To be more precise, best-first search [6] 
makes use of heuristics to determine which node (in a graph or tree) to visit next. 
However, best-first search algorithms are mostly designed to be applied on trees 
where the size and structure are known in advance. In our problem, we have a tree of 
requirements whose size is unknown at the beginning of a project. Most approaches 
dealing with such problems stem from the domain of (shortest) path finding, 
especially the robot movement [10][11][12][13][14]. At each node of an unknown 
graph or tree, the robot follows a certain edge along the graph based on a proposed 
heuristic. In our case, the edge weights are the combination of the business value 
(priority) of a requirement and its elicitation effort, whereas in path-finding problems, 
the edge weights represent the distance between nodes. 

In contrast to these problems, the edge weights are not fixed during traversal of the 
requirements tree: if, for example, two business processes are elicited, the costs for 
traversing over these nodes of the tree are incurred only once. After that, traversing 
over these nodes (for example jumping between the activities of these processes) does 
not re-incur any elicitation effort for the business processes. A similar kind of 
problem can be found in [10], where the robot is allowed to jump between already 
revealed nodes. However, our problem is not to find the shortest path between nodes 
in the tree but to optimize the business value compared to the elicitation effort.  

Simulation of prioritization strategies has been applied before in the work of Port 
et al. [15]. In this work, simulation was used to investigate agile and plan-based 
prioritization approaches. The simulations are done on base sets of (independent) 
requirements where new requirements emerge during runtime and are allocated to 
development iterations by utilizing prioritization. Dynamism is an important part of 



272 N. Riegel and J. Doerr 

 

this study. The performance of the strategies is compared by analyzing different 
measures, e.g., total value and total costs. In contrast to that, our work is based on 
requirements hierarchies where priorities are influenced by these dependencies. 
Furthermore, our focus is on elicitation effort, not on development costs. What the 
decision heuristics we investigated (section 4.2.2.) have in common with the 
prioritization strategies in [15] is that they utilize the priorities of the requirements to 
make a decision. However, the goal of the decision heuristics is to determine which 
requirements to refine further, whereas the prioritization strategies in [15] aim at 
ranking the requirements and allocating them to development iterations with respect 
to effort constraints. Thus, they have some parts in common, but are not directly 
comparable as the purpose is different. 

In our study we use a representative measure (the net present value, see section 
4.1), which is able to express that early value generation is more profitable than late 
value generation while at the same time regarding elicitation effort. This means that, 
for example, heuristic A could be better than heuristic B if the tree is traversed 
completely but not if the tree is traversed only partly (for example, if the budget has 
been exhausted). As the requirements tree is unknown in advance, an optimal solution 
cannot be pre-calculated. Thus, we are interested in decision heuristics that will lead 
the requirements engineer to a good solution in most of the cases, even if information 
about the tree is unavailable. To the best of our knowledge, no such study has been 
performed before in the area of requirements prioritization and elicitation. 

4 Controlled Experiment 

This section will describe our controlled experiment and our findings based on two 
different simulations and tests. 

4.1 Goal, Questions, Hypotheses and Metrics 

We used the GQM approach [16] as a basis for defining the measurements in our 
experiment. The evaluation goal was to analyze nine priority-based decision heuristics 
for the purpose of comparison with regard to elicitation efficiency from the viewpoint 
of requirements engineers in the context of a controlled experiment of simulations.  
The following research questions were to be answered: 

RQ1:“Is there a difference in elicitation efficiency when applying different decision 
heuristics in BPRE?” 
Thus, the hypothesis is: H1,1 There is a difference in elicitation efficiency in BPRE 
when applying the decision heuristics1. 

RQ2: “Is there a difference in elicitation efficiency when applying different decision 
heuristics in BPRE compared at different control points during project runtime?” 
Thus, the hypothesis is: H2,1 There is a difference in elicitation efficiency when 
applying the decision heuristics compared at different points during project runtime. 

                                                           
1 For reasons of brevity, we omit the corresponding null hypotheses here.   



 An Analysis of Priority-Based Decision Heuristics 273 

 

To compare elicitation efficiency between different heuristics, we performed tool-
based simulation on different BPRE requirements hierarchies (see section 4.2.4). 
To express elicitation efficiency, we utilize the concept of net present value (NPV), 
which allows expressing that (1) early value generation is more profitable than late 
value generation, and (2) lower elicitation effort is better than higher elicitation effort. 
The NPV is a business administration measure for dynamic investment calculations. In 
[17], this measure was already utilized to determine the return of investment of 
packaged software releases. By discounting to the beginning of an investment, 
payments occurring at an arbitrary point in time can be compared. The net present 
value NPV is given by: 

 

• t: the period of the cash flow, typically in years 
• i: the discount rate, i.e., the rate of return that could be earned on an 

investment in the financial markets with similar risk 
• Zt: the net cash flow, i.e., (cash inflow – cash outflow) at period t 
• N: the total number of periods 

 
In our case, we needed to adapt the NPV (because we did not compare payments) and 
assume the following for its parameters: 
Cash inflow & cash outflow:  

• Cash inflow is generated during the period when the elicitation of a 
requirement on the lowest abstraction level (i.e., system function) is finished. 
Thus, the assumption is that this system function is directly developed, 
released, and produces business value (e.g., revenues) without any delay. It 
also generates a constant cash inflow during each period after completion of 
its elicitation.  

• Cash inflow corresponds to the priority of the system function. 
• Cash outflow corresponds to the elicitation effort for a requirement during a 

period. We did not investigate development effort here. 
• Each requirement in the hierarchy needs a certain amount of time to be 

elicited (= # of periods), as well as a certain amount of resources (persons) 
that are needed for elicitation; thus, the total elicitation effort for a 
requirement is described by (# of periods needed for elicitation) * (# of 
resources needed for elicitation per period) 

o The time length of a period is defined as one hour. 

Net Cash Flow (Zt): Because we do not deal with monetary values, we normalize 
business value and elicitation effort to make them comparable. Net cash flow thus 
describes the difference between the relative business value created and the relative 
elicitation effort required in the period. This corresponds to the assumption that the 
sum of the business values of all system functions is equal to the total elicitation effort 
of all requirements. 

Interest Rate (i): The interest rate is assumed to be 

 



274 N. Riegel and J. Doerr 

 

which is the conformant interest rate for periods of less than a year, i.e., in our case for 
one hour (assuming 360 days per year and 8 hours per day) if the interest rate for a 
year is 10%. As the interest rate and periods are set to hours, the effect of time in each 
period is rather small. The above definitions imply that elicitation efficiency is 
described by the business value that is generated by the elicited system functions 
compared to the required elicitation effort, and that it is additionally influenced by 
time. Furthermore, business value is only generated by system functions, i.e., the 
elicitation of business processes and business activities is assumed to be not generating 
any value. Their business value is only realized by their system functions. We calculate 
the NPV for each heuristic at five control points until the requirements hierarchy is 
completely traversed. The control points are at 20%, 40%, 60%, 80%, and 100% of the 
number of periods needed to traverse the whole hierarchy (i.e., they are determined 
based on the number of the requirements and the number of periods needed for 
elicitation of these elements).  

4.2 Experimental Design and Setup 

Based on the study goals, the hypotheses, and the related metrics, the experiment was 
designed and prepared. Below, we describe the details of the experiment setup. 

4.2.1   Model Parameters of the Requirements Hierarchies 

In order to run our experiment, we created several requirements hierarchies (i.e., the 
subjects) where the different decision heuristics were applied. Each hierarchy consists 
of a certain number of business processes (BPs), business activities (BAs), and system 
functions (SFs). The root node can be considered as a “project”. The hierarchies 
(trees) were created according to the following properties: 

Requirements Numbers 

Business processes: The number of BPs for each tree is normally distributed in the 
whole population of the trees with a mean value of 30 and a standard deviation of 
25%, i.e., 7.5 BPs. 

Rationale: The number of business processes in scope is based on our past 
experiences in BPRE projects, as well as on some interviews with business process 
management (BPM) solution providers. In the interviews it was reported that the 
automation of around 30 business processes can be achieved within a time frame of 
two to six years by most of their customers (depending on company size). 
Furthermore, we decided to determine the number of BPs in our own institute and 
assessed how many of them could potentially be software supported by an IS, which 
finally resulted in the mean value of 30. To have a roughly homogenous group, the 
standard deviation should not be too high, so we set it to 7.5. 

Business activities: The number of BAs for each BP is normally distributed with a 
mean of 20 and a standard deviation of 25%, i.e., five business activities. 

Rationale: Again, from our past projects and the interviews we determined that most 
BPs have an average of 10-30 business activities. As we do not have any quantitative 
data here, we set the mean to 20 based on these previous experiences. 



 An Analysis of Priority-Based Decision Heuristics 275 

 

System functions: The number of SFs for each BA is normally distributed with a mean 
of 5 and a standard deviation of 25%, i.e., 1.25 SFs. 

Rationale: Based on our past experience, a typical BA description (e.g., a use case) 
normally contains 2-10 steps and around five SFs are refined from that. 
 
Priority Values  
As we are not interested in the actual prioritization of the requirements (this is a topic 
in [2]) but only in the decisions based on the priorities, the tree is prefilled with 
priorities for our simulations. This is done by randomly (equally distributed) 
assigning a value between 1 and 100 to the requirements and then normalizing and 
weighting them (see Fig. 2). This procedure is adopted from the hierarchical 
cumulative voting (HCV) method in [7]. 

 

Fig. 2. Relative Priorities in a Requirements Hierarchy 

Elicitation Effort: 
As described above, the elicitation effort for a requirement is described by # of 
periods and # of resources. The configuration is as follows: 

Business processes: The # of periods for BP is based on the number of the BAs that 
are contained in the BP. This means that larger BPs will have a larger number for # of 
periods. We utilize a ratio with a base of ten BAs (i.e., where this ratio calculates to 
1). The mean of the elicitation effort is determined based on the following formula:  

(# subBAs / 10) * baseMeanBP, where baseMeanBP = 3 
Briefly this means that the elicitation periods base for BPs (baseMeanBP) will be 
adapted by a factor based on the process size. After that, a randomly generated 
normally distributed number around this mean is generated with a standard deviation 
of 0.75. The # of resources is determined by  

Log3(# subBAs) * resourceMutliplierBP, where resourceMutliplierBP = 4 
resourceMutliplierBP is the resource number base (i.e., the number of persons needed 
for eliciting a BP in an elicitation session) we assume for BPs.  

Rationale: As we recorded the elicitation effort in our past projects, we were able to 
derive the base numbers (e.g., a 3-hour elicitation workshop for a BP containing ten 
BAs) from this data (but only from a small data set). By using a normally distributed 
number we express that the elicitation time needed for BPs with the same size 
actually differs in reality. The resourceMutliplierBP of 4 (one requirements engineer 
and three stakeholders in a business process elicitation workshop) is also derived from 
our past data and the log3 is used to adapt it to different BP sizes. The log helps to 
raise the number of resources only slowly for larger BPs (because the number of 



276 N. Riegel and J. Doerr 

 

stakeholders participating in a workshop does not increase linearly with the process 
size). This adaptation also matches the data derived from our past projects.  

Business activities: The # of periods for BAs is also based on the number of its sub-
elements (i.e., SFs). We utilize a ratio that is 1.5 times as high if the number of SFs is 
doubled and 0.5 times as high if the number of SFs is halved. The base is eight SFs 
(i.e., where this ratio calculates to 1). After that, the ratio is multiplied with the 
baseMeanBA of 2 to generate a mean value. A randomly generated, normally 
distributed number around this mean is generated with a standard deviation of 0.5. 
The resourceMutliplierBA is set to 2.  

Rationale: We assume a base effort of two hours for the elicitation for BAs, which is 
slightly adapted based on the sub-elements and also randomly generated and normally 
distributed. The resourceMutliplierBA assumes a one-to-one interview (one 
stakeholder, one requirements engineer) for eliciting a BA. 

System functions: The baseMeanSF for # of periods for SFs is set to 1. Based on this, 
a normally distributed random number around this mean is generated with a standard 
deviation of 0.5.The resourceMutliplierSF is set to 2.  

Rationale: We assume the base effort for SFs as a 1-hour interview between two 
resources (one stakeholder and one requirements engineer). 

4.2.2   Compared Decision Heuristics 
In search algorithms, a heuristic is a function that ranks alternatives at each branching 
step based on available information to decide which branch to follow [6]. In order to 
run our experiment, we defined and implemented several decision heuristics (i.e., the 
treatments). The heuristics are based on the literature as well as on our own ideas: 
Heuristics DH1 and DH2 are based on the most common heuristics found in the 
literature (depth-first [6] and highest value first [15]). Based on that, we created 
further heuristics in a derivation process: DH3 was created as a combination of DH1 
and DH2. A more sophisticated idea led to DH4-DH7 (see description of DH4). DH8 
is based on the idea of comparing values and costs to make a decision, which is also 
often discussed in the literature [4][15] (the difference here is that the costs are not 
development costs, but elicitation effort). Finally, we created DH9 as a kind of 
reference heuristic. DH9 has information about non-revealed requirements on lower 
levels. Thus, heuristics DH1-DH7 are only based on the priority values that are 
available at a certain point during traversal of the requirements tree, whereas DH8 and 
DH9 also utilize the costs incurred by refinement. We included them in order to check 
if this information advantage leads to a significant difference in performance. We do 
not deem this list of heuristics to be complete. Additional heuristics might emerge due 
to adaptation and further research. In the following, we will describe the decision 
rules of the heuristics. Due to space limitations, we omit pseudo code. The heuristics 
take as input a set (backlog) of already prioritized business processes. 

DH1. Highest Value (HV) First: At each decision point in the hierarchy, always 
refine the requirement with the highest priority next. This heuristic represents the 
typical intuitive, “straightforward” approach if requirements are chosen by priorities, 
as already applied in [15], for example.  



 An Analysis of Priority-Based Decision Heuristics 277 

 

DH2: System Functions (SF) First: Refine the requirements in depth-first order 
according to priority, i.e., refine the highest-valued business process, the highest-
valued business activity, and then all system functions of this business activity in 
order of their value; go to the second-highest business activity and refine all system 
functions in order of their value; repeat this procedure until the business process has 
been completely traversed and go to the next process. This heuristic represents a 
typical waterfall-like approach (depth-first search like [6]; steered by highest priority). 

DH3: SF First-HV First: Proceed as in DH2, but whenever there are no system 
functions in the backlog, refine the requirement with the highest priority. This is a 
combination of DH1 & DH2; we combined them in order to see if it is more valuable 
to “jump” to the highest prioritized element after refining all system functions. 

DH4: Remaining Value Global: Get the sum of the priorities of the most detailed 
requirements available in the backlog; check if this sum is greater than the highest 
priority of the requirement on the hierarchy level above; if it is, refine the low-level 
requirement with the highest priority; otherwise, go to the higher hierarchy level and 
repeat the procedure. This is one of our newly created heuristics. To the best of our 
knowledge, it has not been applied before in requirements prioritization and 
elicitation. It is based on the idea that if, for example, the highest-valued business 
activity in the backlog has lower priority than the sum of the available system 
functions, the system functions that can be revealed by refining this business activity 
(children of this business activity) will still have lower priority in sum. Thus, the 
system functions are refined until the sum is lower than the highest-valued business 
activity. 

DH5: Remaining Value Global All: Proceed as in DH4, but compare the sum on the 
system function level to the business activity level and the process level at the same 
time (instead of only checking against the business activity level). This is a variation 
of DH4, which we created because it might happen in DH4 that a business process 
with a high value is not refined as long as the system functions together have a higher 
value than the available business activities. This is prevented here. 

DH6: Remaining Value: Same as DH4, but only the elements in the same branch are 
summed up and compared. 

DH7: Remaining Value All: Same as DH6, but the sum of the system function 
values in the branch is compared to the highest-valued business activity in the backlog 
(instead of the branch). 

DH8 (informed heuristic): Value-Cost Optimal: Always refine the requirement with 
the highest value-effort relation. Basically, this is a combination of DH1 with the 
effort that is needed for elicitation. Please keep in mind that we assume that the 
priorities already include cost estimations for development.  

DH9 (informed heuristic): Optimal Solution: Calculate the best path (based on 
values and costs) to each system function in the hierarchy. Refine all requirements on 
the best path. Repeat. This heuristic is based on DH8, but instead of looking at the 
available requirements in the backlog, this heuristic “knows” the priority and the 
effort values of all requirements beforehand. Thus it is even better informed than 
DH8. 



278 N. Riegel and J. Doerr 

 

4.2.3   Experimental Design 
The experiment was designed as a two-way repeated measures ANOVA [18]. In this 
way we were able to identify possible differences between the heuristics over several 
control points (CP). Thus, one factor are the heuristics with nine levels, while the 
second factor are the control points with five levels. Each heuristic was applied to each 
requirement tree (within-design). The dependent variable is the elicitation efficiency 
represented by the NPV (see section 4.1), which is measured for each heuristic at each 
control point (5x9). 

4.2.4   Experiment Procedure and Data Collection 
Simulation 1 for testing H1,1: We configured our decision heuristics tool (developed 
for this purpose) with the aforementioned parameters for the requirements hierarchies. 
The sample size was pre-calculated with G*Power 32 for a repeated measures 
ANOVA (within-factors) with nine groups and five measurements. To test the first 
hypothesis, we assumed a small effect size f = 0.1 (as we are dealing with normalized 
values to calculate the NPV), which we adapted based on the description in [19] to f’ 
= 0.2236 for five measurements, an alpha error probability of 0.05, and a power of 
0.95. Based on our experience from test runs, we recognized a high correlation among 
the repeated measures, which made nonsphericity correction necessary. Correlation 
was set to 0.9 and nonsphericity correction to 0.2. The proposed sample size of 
G*Power was n = 18. As mentioned in [19], for more than two groups the adapted f’ 
leads to slight overestimation of the power and underestimation of the required 
sample size, so we corrected the sample size to n = 25. Thus, we generated 25 trees 
and stored them in a database. The trees contained a total of 813 business processes, 
16,267 business activities and 81,700 system functions in total, i.e., 32.52 business 
processes, 650.68 business activities and 3,268 system functions on average per tree. 
After that we simulated each heuristic on each of the generated requirements trees. 
The tool automatically calculates the NPV and at each control point, the data is saved 
to the database for later analyses accompanied by meta data such as configuration 
parameters, runtime, etc. Thus, we had 45 measurements for each requirement tree in 
total, resulting in 1,125 data points for the whole simulation. The total runtime of the 
simulation (including the generation of the requirements trees) was 01h:15m:40s on a 
standard PC, with an average of 03m:02s for each tree. 

Simulation 2 for testing H2,1: After the first simulation, we adapted the parameters of 
G*Power to test our second hypothesis. As we are interested in the performance of the 
heuristics at each control point, we decided to create an own sample to test each 
control point separately. In contrast to the first simulation (and based on the 
experience from that), we set f = 0.1 (in this case we only have one measurement, so 
it is not adapted to f’), and nonsphericity correction = 0.24 to determine the sample 
size. The proposed sample size of G*Power was n = 73. We rounded up to n = 75 and 
generated 375 trees to test each heuristic at each control point separately. The trees 
contained a total of 11,472 business processes, 229,373 business activities, and 
1,150,227 system functions in total, i.e., 30.59 business processes, 611.66 business 

                                                           
2 http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3 



 An Analysis of Priority-Based Decision Heuristics 279 

 

activities and 3,067.27 system functions on average per tree. The total runtime of the 
second simulation was 22h:16m:16s, with an average of 03m:34s for each tree. 

4.3 Experiment Analysis and Results 

The data gathered from the simulation was imported into the statistical tool PASW 
19. First, the collected data was checked for normal distribution using the 
Kolmogorov-Smirnov and the Shapiro-Wilk tests. Both tests were not significant, 
meaning that there was no significance for non-normal distribution. We cross-checked 
this result by creating histograms and Q-Q plots for each of the 45 measurement 
variables. No violation of non-normality could be identified by visual inspection, 
which confirmed the results of the other tests. After that we applied the two-way 
repeated measures ANOVA on the data of the first simulation. As we did not have 
any hypotheses about the performance of the heuristics, no contrasts were defined in 
advance. In the second analysis, we applied one-way repeated measures ANOVA on 
the data of the second simulation. This means that we applied it five times in total, on 
75 trees (of the 375) at a time for testing each control point. We did not use the data 
of the first simulation for these tests because of two reasons: 1) we estimated the 
sample size for a two-way ANONVA, so the sample size for the other tests would be 
too low; 2) statisticians do not universally approve the use of tests of simple main 
effects due to concerns regarding the conceptual error rate [20]. Thus, we decided to 
create samples to run our own one-way ANOVA for each control point. 

Simulation 1: The two-way repeated measures ANOVA with a Greenhouse-Geisser 
correction determined that mean elicitation efficiency differed statistically 
significantly between all heuristics over all control points (F(1.943, 46.620) = 
471.860, p < 0.001). Thus, the corresponding hypothesis H1,1 “There is a difference in 
elicitation efficiency in BPRE when applying decision heuristics” can be accepted 
(see Table 1 for descriptive statistics). Fig. 3 shows the mean NPV for control points 
1-3 (we omitted the others in favor of readability). There is almost no interaction 
between the heuristics, i.e., the refinement decisions at the beginning of the tree 
traversal (before CP1) seem to have the greatest influence on the outcome. Also, the 
interaction between control points and heuristic differed significantly (F(1.888, 
45.324) = 299.149, p < 0.001). We do not investigate this interaction here because we 
analyzed the control points separately in our second simulation. Post-hoc tests using 
the Bonferroni correction revealed the statistically significant differences between the 
heuristics shown in Table 2. It can be seen that the two heuristics DH5 and DH9 have 
a significantly higher mean NPV than all other heuristics. DH9 even has a slightly 
(though not significantly) higher mean than DH5. Also noticeable is that DH1 has a 
significantly lower mean than all other heuristics. A ranking would look like this: 

DH9 ~ DH5 > DH4 ~ DH8 > DH3 > DH6 > DH2 ~ DH7 > DH1 
The two informed heuristics DH9 and DH8 share the first places with the non-
informed heuristics DH5 and DH4 in this ranking. The “simple” heuristics DH1 and 
DH2 are ranked in the last places. 



280 N. Riegel and J. Doerr 

 

Fig. 3. Mean NPVs of the Heuristics over Control Points CP1-CP3 

Table 1. Descriptive Statistics (Simulation 1) 

 CP1 CP2 CP3 CP4 CP5 
 Mean SD Mean SD Mean SD Mean SD Mean SD 

DH1 78.822 25.90 518.21 107.72 1185.45 220.23 1940.53 342.1 2709.98 462.87 
DH2 172.97 38.52 605.15 120.23 1219.84 225.59 1939.56 343.85 2701.28 463.32 
DH3 179.93 38.48 692.25 131.77 1371.53 249.33 2124.6 372.99 2893.08 494.5 
DH4 224.54 46.13 730.41 136 1400.88 249.06 2150.74 370.29 2919.51 490.51 
DH5 237.96 49.07 773.70 143.95 1465.82 261.18 2225.69 384.57 2995.44 505.82 
DH6 173.28 36.02 652.07 121.24 1320.01 233.31 2071.71 356.93 2839.96 478.66 
DH7 110.97 25.18 558.53 101.61 1223.57 213.17 1976.92 336.13 2746.01 457.60 
DH8 199.99 44.51 712.01 141.54 1398.7 259.18 2158.01 382.57 2927.76 503.66 
DH9 233.26 49.09 782.07 148.59 1483.88 268.97 2245.92 393.91 3014.25 515.58 

Table 2. Pairwise Comparisons (i-j) of the Heuristics (Simulation 1) 

 DH1 DH2 DH3 DH4 DH5 DH6 DH7 DH8 DH9 
DH2 41.16* -        
DH3 165.68* 124.52* -       
DH4 198.62* 157.46* 32.94* -      
DH5 253.13* 211.96* 87.45* 54.51* -     
DH6 124.81* 83.65* -40.87* -73.81* -128.32* -    
DH7 36.60* -4.56 -129.08* -162.02* -216.52* -88.21* -   
DH8 192.70* 151.53* 27.02* -5.92 -60.43* 67.89* 156.09* -  
DH9 265.28* 224.12* 99.60* 66.66* 12.15 140.47* 228.67* 72.58* - 

                                                        *=statistically significant with p < 0.001 
 
Simulation 2: The one-way repeated measures ANOVA (applied separately at each 
control point) with a Greenhouse-Geisser correction determined that mean elicitation 
efficiency differed significantly between all heuristics for CP1 (F(1.766, 130.694) = 
1126.961, p < 0.001), CP2 (F(1.604, 118.686) = 792.293, p < 0.001), CP3 (F(1.648, 
121.982) = 935.815, p < 0.001), CP4 (F(1.940, 143.575) = 827.989, p < 0.001), and 
CP5 (F(1.861, 137.714) = 819.073, p < 0.001). Again, post-hoc tests using the 
Bonferroni correction revealed statistically significant differences between the 
heuristics. For the sake of brevity, we omit the descriptive statistics here and only 
present the results in a ranking notation:  



 An Analysis of Priority-Based Decision Heuristics 281 

 

CP 1: DH5 > DH9 ~ DH4 > DH8 > DH3 ~ DH2 ~ DH6 > DH7 > DH1 
CP 2: DH9 > DH5 > DH4 > DH8 > DH3 > DH6 > DH2 > DH7 > DH1 
CP 3: DH9 > DH5 > DH4 ~ DH8 > DH3 > DH6 > DH7 ~ DH2 > DH1 
CP 4: DH9 > DH5 > DH8 ~ DH4 > DH3 > DH6 > DH7 > DH1 ~ DH2 
CP 5: DH9 > DH5 > DH8 ~ DH4 > DH3 > DH6 > DH7 > DH1 > DH2 

Thus, the corresponding hypothesis H2,1 “There is a difference in elicitation efficiency 
when applying decision heuristics compared at different points during project 
runtime” can be accepted. The results for the single control points differ only slightly 
from the results of the first simulation over all control points, e.g., DH9 and DH5 are 
still ranked in the first places and DH1 and DH2 mostly in the last. 

4.4 Threats to Validity 

Concerning the validity of the experiment, some threats typically occurring when 
humans are used as subjects can be excluded here (e.g., evaluation apprehension, 
learning effects). Still, there exist some threats to validity that shall be discussed. 

Concerning construct validity, one possible threat is the use of the NPV as a 
measure for elicitation efficiency. We assume that value and effort can be directly 
compared, even if the value of a system function might not directly create monetary 
benefits that are comparable to effort. To cope with this threat, we only used 
normalized values in the calculations, which in turn make it hard to interpret the 
actually measured numbers of the NPV. Furthermore, there are possible threats 
regarding the requirements trees and their model parameters. We assume a three-level 
hierarchy in our simulations. In practice, this might be common, but hierarchies with 
only two levels or with even more than three levels are also conceivable. Further 
simulations are needed to assess the heuristics on these kinds of trees. To minimize 
the threat concerning the model parameters, we tried to set them up as realistically as 
possible; however, most of them are only based on our experience in past projects 
(and thus may be biased) and have not been further validated. Even though the 
detected differences in elicitation efficiency are significantly valid within this setting, 
the actual results could differ when replicating the experiment using requirements 
trees with different parameters. This refers to tree sizes and structure, to elicitation 
effort for requirements, as well as to priorities. However, we ran further simulations 
with different tree sizes (very small and large process numbers; not reported here) and 
it appears that these results are at least not sensitive to different process numbers. 

Besides the already described model parameters, internal validity should not be 
affected by further inferences. Concerning external validity, there are also possible 
threats regarding the content of the requirements trees. We only focused on 
requirements directly derived from the processes. Other requirements types (e.g., non-
functional requirements for the whole system) are not regarded here. Also, reuse of 
requirements is not regarded (e.g., system functions that can be utilized in different 
business activities). Furthermore, we assume that the business value is generated 
directly after the elicitation of a system function is finished. In reality, implementation 
takes time, produces additional effort, and the actual releases might differ from the 
elicitation order produced by the heuristics. Further simulations are needed to 
investigate this issue. This is not represented in our model or formulas. 



282 N. Riegel and J. Doerr 

 

Concerning conclusion validity, we assured that all requirements for the statistical 
tests that we applied (repeated measures ANOVA) were fulfilled. 

4.5 Interpretation and Possible Implications for Practice 

The results of this controlled experiment have shown that the usage of the right 
decision heuristic has the potential to make the requirements elicitation process more 
efficient. Noticeably, intuitive decision heuristics (e.g., DH1, DH2) seem to perform 
very low in contrast to more sophisticated ones. This also confirms the results in [15], 
even if the simulations there were different. It might be that the simple heuristics 
either “jump” too much between the different processes without generating value 
(refining too few system functions at the beginning of a project); or, on the other 
hand, “jump” too little, refining too many system functions of the same process and 
thus not exploiting the higher value of other processes. Another interesting insight is 
that informed heuristics that take into account elicitation effort are even outperformed 
(esp. DH8) by heuristics based only on priorities (DH4, DH5). This implies that if no 
elicitation effort judgment is at hand, it is still good advice to base decisions on 
reasonably defined priorities. This is certainly a remarkable result for practitioners 
working in the areas of BPRE and business process improvement and further 
strengthens the need for effective prioritization as stated in [2]. In further simulations 
with smaller (mean value of 8 and standard deviation of 2) and larger (mean value of 
70 and standard deviation of 8) tree sizes, which are not reported here, we already got 
the impression that the results (which have not been analyzed statistically yet) are 
similar. 

As we were dealing only with relative numbers in the calculations of the NPV, we 
want to conclude with an example using monetary numbers: given the parameters of 
our model, suppose we could save 3 minutes of time for each activity in a process 
with 20 activities. Suppose we have 14 processes with 60 instances per month for 
each process and labor costs of $100 per person-hour: this would result in $84,000 of 
savings a month (=$350 an hour). If we simulate this setting, the output in the first 
line of Table 3 is produced. The second line is the output produced when using 
normalized numbers as in our experiment. 

Table 3. Example: NPV for Specific Setting of 14 Processes 

DH5 

NPV 

DH9 

NPV 

DH4 

NPV 

DH8 

NPV 

DH3 

NPV 

DH6 

NPV 

DH2 

NPV 

DH7 

NPV 

DH1 

NPV 

$58,276 $54,930 $53,016 $42,919 $36,047 $27,469 $20,731 $19,144 $10,171 

(1447) (1439) (1432) (1404) (1387) (1362) (1339) (1339) (1314) 

 
As can be seen, the highest NPV of DH5 ($58,276) is 5.7 times as high as the one 

of DH1 ($10,171), and still 6% higher than the second one of DH9. Therefore, the 
application of a suitable decision heuristic during elicitation affects the value of the 
overall project outcome significantly. Of course, this is only an example with static 
numbers for each process, but these numbers indicate significant savings when using 
the top-rated heuristics. 



 An Analysis of Priority-Based Decision Heuristics 283 

 

5 Conclusion and Future Work 

This paper reported on an experiment with different decision heuristics applied in 
business-process-driven requirements hierarchies. These heuristics aim at supporting 
the requirements engineer in his / her decision-making to optimize the order of 
elicitation in terms of elicitation efficiency during the requirements elicitation process. 
The results have shown that elicitation efficiency significantly differs when applying 
different decision heuristics during traversal of the requirements hierarchy. 
Surprisingly, well-known heuristics such as highest value first performed very low and 
were outperformed by newly proposed ones, which is an interesting finding for 
practice. 

For the future, it will be interesting to see if the heuristics perform in the same way 
when applied to requirements hierarchies with different parameters, e.g., smaller or 
higher numbers of requirements. Furthermore, it would be interesting to extend our 
model of the requirements hierarchies to include different monetary values that can be 
used in the calculation of elicitation efficiency. We plan to investigate the influence of 
development effort and extend the simulation tool for use in industrial case studies. 
Last but not least, the results of this study will be integrated into our BPRE 
prioritization framework as proposed in [2] to support requirements engineers during 
prioritization and elicitation in BPRE. 

References 

1. De La Vara, J.S., Díaz, J.S.: Business process-driven requirements engineering: a goal-
based approach. In: CAiSE 2007 Workshop Proceedings. Tapir Academic Press (2007) 

2. Riegel, N.: Guiding Requirements Elicitation using a Prioritization Framework. In: 
REFSQ 2013 Workshop Proceedings, pp. 133–144 (2013) 

3. Racheva, Z., Daneva, M.: How Do Real Options Concepts Fit in Agile Requirements 
Engineering? In: 8th ACIS International Conference on SERA (2010) 

4. Daneva, M., Herrmann, A.: Requirements Prioritization Based on Benefit and Cost 
Prediction: An Agenda for Future Research. In: Proc. of RE 2009, pp. 125–134 (2009) 

5. Riegel, N., Doerr, J., Hummel, O.: Tackling Prioritization in Business-Process-Driven 
Software Development. In: REFSQ 2012 Workshop Proceedings, pp. 175–180 (2012) 

6. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, 
Upper Saddle River (2009) 

7. Berander, P., Jönsson, P.: Hierarchical Cumulative Voting (HCV) - Prioritization of 
Requirements in Hierarchies. International Journal of Software Engineering and 
Knowledge Engineering 16(6), 819–849 (2006) 

8. Saliu, O., Ruhe, G.: Supporting Software Release Planning Decisions for Evolving 
Systems. In: Proc. 29th Annual IEEE/NASA SEW, Washington, DC, pp. 14–26 (2005) 

9. Dong, X., Yang, Q., Wang, Q., Zhai, J., Ruhe, G.: Value-Risk Trade-off Analysis for 
Iteration Planning in eXtreme Programming. In: 18th Asia Pacific APSEC, pp. 397–404 
(2011) 

10. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. In: STOC 1997 Proc. of 
the 29th Annual ACM Symposium on Theory of Computing, pp. 416–425 (1997) 

11. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal Constrained Graph Exploration. 
ACM TALG 2(3), 380–402 (2006) 



284 N. Riegel and J. Doerr 

 

12. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. Journal of Algorithms 33, 
281–295 (1999) 

13. Papadimitriou, C.H., Yannakakis, M.: Shortest path without a map. Theoretical Computer 
Science 84(1), 127–150 (1991) 

14. Deng, X., Papadimitriou, H.: Exploring an unknown Graph. In: FOCS 1990, vol. 1,  
pp. 355–361 (1990) 

15. Port, D., Olkov, A., Menzies, T.: Using Simulation to Investigate Requirements 
Prioritization Strategies. In: 23rd IEEE/ACM International Conference on Automated 
Software Engineering (ASE), pp. 268–277 (2008) 

16. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia 
of Software Engineering 1, 528–532 (1994) 

17. Denne, M., Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return 
Development. Prentice Hall (2003) 

18. Stevens, J.: Applied Multivariate Statistics for the Social Sciences, 3rd edn. Lawrence 
Earlbaum Associates, Mahwah (1996) 

19. Rasch, B., Hofmann, W., Friese, M., Nauman, E.: G*Power Ergänzungen. Quantitative 
Methoden. Band 2, 3. Auflage. Springer, Heidelberg (2010),  
http://www.quantitative-methoden.de/dlcounter/ 
count.php?id=gpower7_A3 (October 22, 2013). 

20. How can I do tests of simple main effects in SPSS? UCLA: Statistical Consulting Group, 
http://www.ats.ucla.edu/stat/spss/faq/sme.htm (October 22, 2013)  



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 285–300, 2014. 
© Springer International Publishing Switzerland 2014 

The Effects of Requirements Elicitation Issues on 
Software Project Performance: An Empirical Analysis 

Neetu Kumari Sethia and Anitha S. Pillai 

Department of Computer Applications, Hindustan University, Tamil Nadu, India 
neetu_sethia@yahoo.com,  
mca@hindustanuniv.ac.in 

Abstract. [Context and motivation] Studies have emphasized the need for ef-
fective requirements elicitation owing to its significant impacts on software 
quality and overall project outcomes to meet system objectives. The empirical 
studies in literature present the relationships between the specific characteristics 
that affect elicitation and project performance that focus on process control and 
product flexibility. There is, however, no substantial research on the empirical 
relationship between the generalized problems in requirements elicitation and 
project performance. [Question/problem]The issues encountered in require-
ments elicitation generalized through categories of problems of scope, problems 
of volatility and problems of understanding. This study aims in establishing an 
empirical model to study the behavior between the requirements elicitation is-
sues and project performance. This study also validates the model for its consis-
tency with practitioner’s views and earlier studies. [Principal ideas/ results] 
Researchers and practitioners have focused on developing tools and techniques 
that will enhance the requirements elicitation and analysis phases. However, the 
effectiveness of the tool usage is dependent on skills and behaviors of people 
and organization using them.  The aspects of behavior are best modeled using 
techniques adopted in social research, viz. confirmatory factor analysis; the 
technique is adopted for this study. [Contribution] This study deduced a causal 
relationship between the requirements elicitation issues and project  
performance. This study also attempted to establish a priority-setting and deci-
sion-making to address elicitation issues that can control and manage residual 
performance risks.  

Keywords: Requirements elicitation issues, Confirmatory factor analysis, 
Causal model.  

1 Introduction 

Studies have determined that requirements engineering activities have an increasing 
impact on the overall project outcomes. This means that poor requirements engineer-
ing activities is one of the major causes for project failure. Requirements elicitation 
(RE) is an essential and foremost activity of the project. This activity, in itself, has a 
significant influence on the overall project performance. The importance of RE is also 



286 N.K. Sethia and A.S. Pillai 

 

driven from the fact that attracts a number of issues, as information systems (IS) de-
velopment shifts more towards adoption of global software development (GSD) 
frameworks [18]. 

Christel & Kang [1] categorize RE problems into three groups, namely, problems 
of scope, problems of volatility and problems of understanding. In their technical 
report [1], they describe these categories as follows: Problems of scope are those in 
which the requirements may address too little or too much information. This means 
that the boundaries of the system to be development may be ill-defined. Problems of 
volatility are related to the changing nature of requirements. This implies that re-
quirements evolve over time. Problems of understanding are related to the poor un-
derstanding of requirements, within groups as well as between groups such as users 
and developers. These are related to incomplete or poor understanding of require-
ments, lack of appropriate verbal and written communication, lack of domain know-
ledge, conflicting views amongst users amongst other critical pre-requisites for a good 
RE.  

Nidumolu [3] focus on uncertainty regarding user requirements because of its cen-
tral importance in software development. Adopting the theories of Nidumolu [3], 
requirements uncertainty encompasses three dimensions such as requirements insta-
bility, requirements diversity and requirements analyzability. Requirements instability 
and requirements diversity are dimensions that reflect elicitation issues. The defini-
tions are adopted from [3]. Requirements instability is the extent of changes in user 
environment over the course of the project; this is derived from the concept of envi-
ronmental instability in organization theory, which describes the extent of changes in 
the task environment. Requirements diversity is the extent to which the users differ 
amongst themselves in their requirements; this is derived from the concept of organi-
zational heterogeneity in organization theory, which describes the degree of variety or 
heterogeneity in the task environment. 

The survey conducted for this study shows that RE consumes a relatively small 
percentage of the overall effort required for IS development (Table 1).  The impacts 
of poor RE are severe, though. Researchers have identified several critical causes of 
poor RE [19, 21]. Prior studies have also established relationships between project 
performance and specific causes of poor RE such as change [9, 10], knowledge [11], 
quality [14], stakeholder [12, 13], human factors [14, 15], etc. There is, however, little 
or no empirical knowledge on how the summarized (say, summarized view of prob-
lems of scope, problems of volatility and problems of understanding) effect of issues 
in RE actually impact the overall performance of the project. There is a need to ad-
dress this gap, as knowledge on how this summarized view of issues in RE impacts 
the project performance, is of practical interest. 

This study integrates two theories described above to address the gap. One is re-
lated to the three categories of RE challenges by [1]; this theory forms the core 
framework for the rest of this work. The other is related to the dimensions of require-
ments uncertainty as described by [2, 3]. Based on explanation of these dimensions in 
Nidumolu’s theory, we captured the contextual equivalence between problems of 
volatility and requirements instability which enabled us to leverage the requirements 
instability constructs [3]. We also leveraged the construct for requirements diversity 



 The Effects of Requirements Elicitation Issues on Software Project Performance 287 

 

owing to similar contextual equivalence between the problems of scope and require-
ments diversity. We deduced a construct for problems of understanding to capture a 
summarized view of the challenges in RE. We use the term elicitation issues to de-
scribe this summarized view of problems of volatility, problems of scope and prob-
lems of understanding, for the rest of the discussion. 

To summarize, this study empirically confirms the general understanding of the re-
lationship between elicitation issues and project performance. This is accomplished 
through the adoption of confirmatory factor analysis and causal models. 

2 Background 

2.1 Theoritical Model 

The primary objective is to comprehend RE issues as categorized by [1] into an em-
pirical model. We attempt to construct the causality between RE issues, viz., prob-
lems of scope, problems of volatility and problems of understanding and overall 
project performance. This is done by defining measures that are attributable to beha-
vior and skills required for RE. 

Extensive studies have been done in identifying the causes for poor RE, especially 
in GSD environments [18, 19]. Literature has evidences that theoretically confirm the 
inability to elicit requirements, which lead to significant gaps; these gaps adversely 
affect the project execution and the project success. According to Nidumolu [3], these 
gaps are called requirements uncertainty. Adapting Nidumolu’s theory of require-
ments uncertainty, the constructs that play a critical role in this study are requirements 
instability and requirements diversity. The construct parameters were carefully ex-
amined for this study. We have leveraged constructs for elicitation issues needed for 
this study from Nidumolu’s work. Existing constructs have been modified and new 
constructs have been developed to ensure that the model captures all the dimensions 
of elicitation issues and meets the required objectives of this study. 

Studies have attempted to maximize project performance through implementation 
of contingency models.  The work of Nidumolu [2] discusses the generalized model 
(figure 1) that establishes links between the following constructs: requirements uncer-
tainty, uncertainty coping mechanisms, residual performance risks and project per-
formance.  The objective of the study is to construct causality between elicitation 
issues and project performance. Therefore, we re-design the existing requirements 
uncertainty model from [2] as shown in figure 2. 

The elicitation issues in the proposed model is expected to influence the residual 
performance risk in a manner similar to requirements uncertainty, as proven in prior 
studies. Horizontal and vertical co-ordination has been retained in the model as we 
experience similar arrangements in practice. The details of the constructs are dis-
cussed further in section 3.2. 



288 N.K. Sethia and A.S. Pillai 

 

 

Fig. 1. Generalized uncertainty framework [2] 

 

 

Fig. 2. Proposed requirements elicitation issues model 

2.2 Hypotheses 

The causal relationship between the constructs is depicted in Figure 2. Based on this, 
the study proposes two hypotheses that are discussed below. The elicitation issues 
reported in literature can be broadly characterized as change, communication, human-
factors, knowledge, scope, requirements, social and organizational, stakeholder and 
tools, techniques and methods. Theoretical and empirical studies present the individu-
al impacts of some of these characteristics to the overall project success. There is 
extensive focus in literature on the adoption of improved processes to enhance the 
quality of these characteristics so that the overall project quality and outcomes can be 
improved. Residual performance risk is the amount of risk remaining after the com-
pletion of the requirements analysis phases [3]. The characteristics of elicitation is-
sues are critical since they contribute to the residual performance risk, which in turn 
influences the overall project performance. This means that the degree of successful 
execution of these characteristics directly or indirectly determines project perfor-
mance. Based on the above discussion, the study formulates the first hypothesis, as 
described below: 

H1: Higher levels of elicitation issues will lead to higher levels of residual perfor-
mance risk. This means that an increase in the effects of elicitation issues will in-
crease the effects of residual performance risks. 

A successful project outcome is characterized by the controlled project cost, adhe-
rence to schedules and system benefits, amongst others. The amount of performance 
risk gradually decreases as performance becomes more evident [3]. Fall-outs due to 
elicitation issues are carried to the other phases of the project. These in turn contribute 



 The Effects of Requirements Elicitation Issues on Software Project Performance 289 

 

to the residual performance risk, impacting the system quality and project outcomes. 
For example, a common issue is about users not documenting requirements that seem 
“obvious”. This implies the existence of requirements that are overlooked and not 
documented contributes to the requirements uncertainty. If this issue is not handled or 
fixed in the project’s requirements engineering phase, this issue will increase the risk 
of the final system not meeting the required objectives. Based on this discussion, the 
study formulates the second hypothesis, which is described below: 

H2: Higher levels of residual performance risk will lead to lower levels of project 
performance. This means that a decrease (increase) in the effects of residual perfor-
mance risk will increase (decrease) the effects of project performance.  

3 Research Method 

3.1 Sampling 

A total of 203 online survey responses were obtained resulting in a response rate of 
92.27%. The sample included individuals extensively involved in RE and have been 
engaged in that project until closure. This approach was necessary to gather appropri-
ate data for effective analysis.  Purposive sampling was adopted for the purpose of 
this study. Table 1 represents the demographics features of the survey population.  

Table 1. Demographic features (N=203) 

Characteristics Value %/ Mean 
Project status Success 

Failure 
90.15% 
9.85% 

Location of Organization India 
U.K. 
U.S.A 

84.73%  
1.48% 
13.79% 

Project domain Healthcare/ Insurance 
 
Banking, Financial Services & Capital Market/ 
Communications/ Consure goods & services/ 
Defence/ Energy & utilities/ Life sciences/ 
Manufacturing/ Mining/ Retail/ Technology/ 
Transportation & logistics/ Travel & hospitality 
 
Others 

52.71% 
 
 

42.86% 
 

 
 
4.43% 

Team strength of the project  43.28 
*Overall duration of the project Note: 186 cases 1.95 years 

 



290 N.K. Sethia and A.S. Pillai 

 

Table 1. (continued) 
Characteristics Value %/ Mean 
Position of respondents in the 
elicitation process 

Management 
Technical  
Coaching/ Auditing  
Business/ Requirements analysts  
Others 

58.62%  
29.06% 
2.96% 
21.18% 
 1.97% 

*Number of [requirements/ 
business] analysts taking part 
in the elicitation process  

Note : 198 cases 7.17 

*Number of end-users 
participating in the elicitation 
process 

Note : 194 cases 9.79 

*% Proposition of overall 
system developement effort 
devoted to RE processes 

Note : 182 cases 25.27% 

*% Proposition of overall RE 
effort devoted to elicitation 
process 

Note: 171 cases 29.35% 

*Not all cases were considered since either the questions remained un-answered or they 
were considered outliers. 

3.2 Constructs 

Elicitation Issues. Elicitation issues represent the categorization of problems in RE as 
described by Christel & Kang [1]. Three dimensions describe elicitation issues and 
are discussed below: 

• The Problems of scope (PoS) are those in which the requirements may address too 
little or too much information [1]. This conceptually maps to the requirements di-
versity that describes the extent to which the users differ amongst themselves in the 
final requirements [3], Three items (PoS1, PoS2, PoS3) adapted from [3] that de-
scribe this scale (table 2).  

• The Problems of volatility (PoV) is the extent of changes that the requirements 
undergo during the project life cycle [1]. This conceptually maps to the require-
ments instability that describes the extent of changes in user environment over the 
course if the project [3]. A new item was introduced to capture a complete view 
based on the description provided by [1]. Five items (PoV1, PoV2, PoV3, PoV4, 
PoV5) of which top four items adapted from [3] describe this scale (table 2).  

• The Problems of understanding (PoU) is the degree of requirements understanding 
absorbed as part of the elicitation process. This describes the extent of ambiguity 
and communication challenges that can result in poor elicitation. Six items (PoU1, 
PoU2, PoU3, PoU4, PoU5, PoU6) based on the descriptions provided by [1] de-
scribe this scale (table 2). 

.Project Performance. Project performance is a multi-dimensional construct that de-
scribes the performance outcomes [3]. Two dimensions are selected to describe this 
construct: 



 The Effects of Requirements Elicitation Issues on Software Project Performance 291 

 

• The Process control (PC) is the extent to which the development process is under 
control [3]. Four items (PC1, PC2, PC3, PC4) of this construct (table 2) adapted 
from [3].  

• The Product flexibility (PF) is the degree of scalability exhibited by the final prod-
uct. This means the extent to which final product can distinctly support new fea-
tures and functionalities, according to [3]. Four items (PF1, PF2, PF3, PF4) of this 
construct (table 2) are adapted from [3].  

Uncertainty Coping Mechanisms. Multiple groups are involved in a software-
development project. A better coordination is always required for the project devel-
opment activities to be executed effectively. For this reason, there are two constructs 
identified that provide a comprehensive view of such coordination [3]. These coordi-
nation constructs collectively determine the uncertainty coping mechanism. 

• The horizontal co-ordination (HC) is the extent to which the co-ordination be-
tween users and project staff is undertaken through mutual adjustments and com-
munication [3]. Four items (HC1, HC2, HC3, HC4) of this construct (table 2) are 
adapted from the work of [3]. 

• The vertical coordination (VC) construct is the extent to which the coordination 
between the users and project teams is undertaken through decisions by authorized 
entities such as project managers and steering committees [3]. Three items (VC1, 
VC2, VC3) of this construct (table 2) are adapted from the work of [3]. 

Residual Performance Risk. Residual performance risk (RPR) is the extent of diffi-
culty in estimating the performance-related outcomes of the project, regardless of a 
specific estimation technique used. The amount of performance risks present in the 
later stages of the project after project planning and requirements analysis phases 
have been completed [2]. Five items (RPR1, RPR2, RPR3, RPR4, RPR5) of this con-
struct adapted from the work of [2] are shown in table 2. 

All the above constructs were measured on a 5-point Likert-type scale with 1= 
strongly agree and 5= strongly disagree. 

3.3 Confirmatory Factor Analysis 

Confirmatory factor analysis (CFA) is a type of structural equation modeling that 
deals with measurement models, that is, the relationship between the observed va-
riables and the latent variables [4]; this is used to establish or verify dimensionality of 
scales [6]. In this study, we have adopted second-order CFA using SPSS AMOS 21 to 
test the hypotheses. This dimensions described in table 2 are the observed variables 
whose measures are captured through survey responses. The model is designed (fig-
ure 3) based on eight first-order latent construct represented collectively through three 
second-order latent constructs such as elicitation issues (problems of scope, problems 
of volatility, problems of understanding), uncertainty coping mechanisms  (horizon-
tal coordination, vertical coordination) and project performance (process control, 
product flexibility).  

The estimation technique used to derive factor loadings is maximum likelihood. 
This technique has shown to be robust [6]. Multiple iterations executed to obtain an  
 



292 N.K. Sethia and A.S. Pillai 

 

Table 2. Dimension Characteristics 

 
*removed from subsequent analysis 

** PC- Process Control; PF – Product Flexibility; PoV – Problems of Volatility; PoS - Problems of Scope; 

PoU – Problems of understanding; HC – Horizontal coordination; VC - Vertical co-ordination; RPR – 

Residual Performance Risk 

 
appropriate model fit resulted in the removal of three items, HC4, PoV1 and VC1 
owing to poor factor loadings.  

ID** Dimension charateristics Factor 
loading 

Mean S.D 

PC1 Significant control over project costs .913 3.74 1.031 
PC2 Significant control over project schedule .870 3.67 1.114 
PC3 Project's adherence to auditability and control 

standards was high 
.519 3.77 .901 

PC4 Overall control exercised over the project was 
high 

.783 3.75 .911 

PF1 Cost of adapting the software to changes in 
business was low 

.659 3.41 .936 

PF2 Speed of adapting software to changes in 
business was high 

.744 3.62 .878 

PF3 Cost of maintaining software over its lifetime 
was low 

.746 3.47 .875 

PF4 Overall long-term flexibility of software was 
high 

.813 3.66 .878 

PoV1 Requirements fluctuated quite a bit in earlier 
phases* 

-   

PoV2 Requirements fluctuated quite a bit in later 
phases 

.850 3.49 1.078 

PoV3 Requirements identified at the beginning of 
the project were quite different from those 
existing at the end 

.561 3.02 1.167 

PoV4 Requirements will fluctuate quite a bit in 
future 

.666 3.12 1.008 

PoV5 Analyst's interpretation of technical details of 
requirements significantly low 

.409 2.96 1.107 

PoS1 Users of this software differed a great deal 
among themselves in the requirements to be 
met 

.917 3.29 1.085 

PoS2 Lot of effort had to be spent in reconciling 
requirements of various users of this software 

.917 3.38 1.108 

PoS3 It was difficult to customize software to one 
set of users without reducing support to other 
users 

.740 3.07 1.103 

PoU1 Users not completely sure of what is needed .707 3.03 1.108 
PoU2 Users had low understanding of capabilities 

and limitations of their computing 
environment 

.655 3.19 1.057 

PoU3 Users had low understanding of problem 
domain 

.676 2.83 1.065 

PoU4 Users had significant challenges in 
communicating requirements 

.881 2.97 1.087 

PoU5 Users omit information that seemed "obvious” .885 3.33 1.105 
PoU6 Users specified requirements which were 

ambiguous/ un-testable 
.826 3.15 1.063 

HC1 Oral communication (e.g., face-to-faco, 
telephone, etc) between users and project 
teams was high 

.880 4.02 .965 

HC2 Written communication (e.g., memos, notes, 
etc) between users and project teams was high 

.757 4.04 .892 

HC3 Scheduled group meetings between users and 
project teams were high 

.799 3.96 .908 

HC4 Unscheduled group meetings between users 
and project teams were high* 

-   

VC1 Individual (e.g., a project manager) influence 
or authority was high* 

-   



 The Effects of Requirements Elicitation Issues on Software Project Performance 293 

 

Validity and Reliability. The Cronbach’s coefficient α-value determines the internal 
consistency (reliability) and a value > .70 is acceptable. All factors (table 3) except 
for vertical coordination computed the α-value > .70 which is found acceptable [6]. 
Though the inclusion of vertical coordination might pose a problem, we continue to 
retain this factor in the model, owing to its importance in practice.  

Table 3. Internal consistency: Cronbach’s coefficient alpha test 

Dimensions PoS PoV PoU PC PF HC VC RPR 
α –value .862 .726 .883 .862 .769 .740 .553 .886 
Overall α-value for 34-items = .795   

 
It is necessary to establish convergent validity, discriminant validity and composite 

reliability, when doing a CFA [7, 8].  Convergent validity [7] describes the extent to 
which the latent factors are explained by the observed variables. Discriminant validity 
[7] explains the degree to which the latent factor is explained by other variables than 
its own observed variables. The thresholds for the convergent and discriminant validi-
ty and reliability are depicted in table 4. 

Table 4. Thresholds for model reliability and validity (adapted from [7, 8]) 

Measures Composite Relia-
bility (CR) 

Convergent  
Validity 

Discriminant  
Validity 

Thresholds CR > 0.7 CR > AVE* 
AVE > 0.5 

MSV** > AVE 
ASV*** < AVE 

*Average Variance Extracted **Maximum Shared Variance***Average Shared Variance 

 
An excel-based tool, StatsToolPackage.xls [7] aided in the computation of the va-

lidation and reliability measures. The results are shown in table 5. The values com-
puted confirm that the model adheres to the validity and reliability measures. 

Table 5. CFA model: reliability and validity 

     Correlations* 
 CR AVE MSV ASV PP RPR EI UCM 
PP 0.729 0.576 0.404 0.348 0.759    
RPR 0.872 0.580 0.514 0.301 -0.554 0.762   
EI 0.857 0.669 0.514 0.336 -0.636 0.717 0.818  
UCM 0.728 0.604 0.332 0.168 0.576 -0.285 -0.300 0.777 

*The diagonal in the correlation matrix contains the square-root of the AVE (bold) 

PP – Project Performance; RPR – Residual Performance Risk; EI – Elicitation Issues; UCM – Uncertainty 

Coping Mechanism; CR – Composite Reliability; AVE – Average Variance Extracted; MSV – Maximum 

Shared Variance; ASV – Average Shared Variance 

 



294 N.K. Sethia and A.S

 

The factor loadings and t
table 2. The measurement 
203, χ2/d.f. = 1.424, GFI=.
SRMR=.0663. The fit indic
fit as depicted in table 6. Th
proceed with a causal mode

3.4  “Causal” Model 

According to Bagozzi and 
theses yet are relevant to t
validations.” Figure 4 depi
 

. Pillai 

the computed mean and standard deviations are depicted
model (figure 3) produced the following fit indices: 

.848, CFI=.945, RMSEA=.046, PCLOSE=.790, NFI=.8
ces were within the acceptable thresholds [5, 6] of a mo
he fit indices resulted in a good model fit and enabled u
el. 

Fig. 3. Measurement model 

Yi [6], “SEMs have applicability to testing causal hy
testing functional relationships, generalizations and cro
cts the final causal model deduced from the measurem

d in 
N= 

839, 
odel 
us to 

 

ypo-
oss-

ment  



 The Effects of Requirem

 

model. The values in each o
degree of the causal relation

The causal model prod
GFI=.846, CFI=.943, RMS
computed fit indices were w

 
 
 
 
 
 

ments Elicitation Issues on Software Project Performance 

 

Fig. 4. Causal model results 

of the arrow depict the standard coefficients that reflect 
nship. 
duced the following fit indices: (N=203, χ2/d.f. =1.4
SEA=.047, PCLOSE=.733, NFI=.837, SRMR=.0700). T
within the acceptable thresholds (table 6). 

295 

the 

442, 
The 



296 N.K. Sethia and A.S. Pillai 

 

Table 6. Goodness-of-Fit : Comparitive measures 

GOF measure Recommended GOF 
level [5, 6]

CFA measures Causal model 
measures 

Chi-square/ d.f. Recommended level 
between 1 and 3 

1.424 1.442 

GFI 0 (No fit) to 1(perfect fit) 0.848 0.846 
CFI 0 (No fit) to 1(perfect fit) 0.945 0.943 
RMSEA <0.060 0.046 0.047 
PCLOSE >0.050 0.790 0.733 
NFI 0 (No fit) to 1(perfect fit) 0.839 0.837 
SRMR <0.090 0.0663 0.0700 

3.5 Discussion of Results 

H1: Higher levels of elicitation issues will lead to higher levels of residual perfor-
mance risk. This means that an increase in the effects of elicitation issues will in-
crease the effects of residual performance risks. 

The standardized co-efficient between elicitation issues and residual performance 
risk is 0.72 (p <.001), which determines a positive link between the latent factors. 
This proves that increased levels of elicitation issues will lead to increased levels of 
performance risk. This empirical finding supports H1. This also validates the theoreti-
cal view that elicitation issues impacts project performance; in this case is through the 
residual performance risk. The impacts of elicitation issues to residual performance 
risk will determine the strength of its association with project performance.  

Which problem contributes most to elicitation issues? This computed coefficients 
provide an interesting insight into the impacts of elicitation issues on residual perfor-
mance risk. Problems of volatility (coefficient=.91, p< .001) determine a higher im-
pact on elicitation issues, followed by problems of understanding (coefficient=.81, 
p<.001) and problems of scope (coefficient=.73, p< .001). This shows that the change 
in the user environment creates comparatively larger impacts. Change has been prov-
en to be a critical characteristic of elicitation issues in theory impacting project out-
comes. Based on this empirical result, we conclude the volatile nature of requirements 
to be the top contributing factor increasing residual performance risk; thereby impact-
ing project performance. This analysis presents a focus on the prioritization on the 
category of elicitation issues that need to be addressed.  

What contributes most within the problem category? This above conclusion can be 
further detailed to determine the measurement variables contribute to the increased 
effects of problems of volatility. For example, in this case, the standard coefficient 
between problems of volatility and POV3 is .80 (p < .001) depicts the strongest factor 
loading when compared to other parameters. This empirical evidence validates the 
theory on this observation and confirms that the final requirements drawn are differ-
ent from those identified during the requirements engineering phases of the project. 
Similarly degree of impacts of other measures can be drawn.  

This discussion can be extended to problems of understanding and problems  
of scope. The top contributing factor in problems of understanding is POU1  



 The Effects of Requirements Elicitation Issues on Software Project Performance 297 

 

(coefficient=.81, p<.001). POU1 describes that the users are not completely sure of 
what is needed. The top contributing factor in problems of scope is POS1 (coeffi-
cient=.80, p<.001). POS1 describes that the users of this software greatly differed 
amongst themselves in the requirements to be met. This empirical result validates the 
related theory that contributes to elicitation issues. 

H2: Higher levels of residual performance risk will lead to lower levels of project 
performance. This means that a decrease (increase) in the effects of residual perfor-
mance risk will increase (decrease) the effects of project performance. 

The standardized coefficient between residual performance risk and project per-
formance is -0.46 (p < .001), which determines a negative link between the factors. 
This finding supports H2. Similar conclusions have been drawn in past studies [2, 17]. 
The characteristics of elicitation are discussed in section 2.2. If activities that compre-
hend these characteristics are not executed according to the project’s expectation, the 
drawback will certainly influence the residual risk, thereby impacting project perfor-
mance. If the activities in elicitation are executed well, the level of risk that is carried 
to the other phases of the project is comparatively reduced and performance will im-
prove. Hence, there is a need to execute the requirements phase in a controlled man-
ner so that the residual risks are also controlled and managed effectively through the 
course of project execution. 

Though not explicitly hypothesized, the discussion of uncertainty coping mechan-
ism is important. Horizontal and vertical coordination are important dimensions in 
any project execution. They influence the overall project performance through their 
impacts on the residual performance risks. Nidumolu [3] empirically proves this asso-
ciation. His work [3] discusses the negative association of horizontal and vertical 
coordination with residual performance risk. In this study, we make two critical ob-
servations pertaining to uncertainty coping mechanism:  

• Firstly, higher levels of uncertainty coping mechanism lead to lower levels of 
performance risk (coefficient = -.06, p < .001). This means that increased level of 
interactions between users and project managers, both internally or through the 
involvement of authorities or steering committee, reduces the residual perfor-
mance risk and improves project performance.  

• Secondly, higher levels of uncertainty coping mechanism leads to lower levels of 
elicitation issues (coefficient =-.31, p < .001). Given the uncertainty coping me-
chanism is negatively associated with elicitation issues, increased levels of inte-
ractions between users and project staff, either internally or through authorities 
can reduce elicitation issues and thereby, reduce the related performance risk. 
These observations support the importance of uncertainty coping mechanism in 
any project execution for improved project performance. 

4 Threats to Validity 

This section discusses relevant validity threats based on the categories described un-
der pragmatist view in [20]. 

Theoretical Validity. The constructs used in this study are generalized categorization 
of elictation issues, namely the problems of scope, volatility and understanding. 



298 N.K. Sethia and A.S. Pillai 

 

Detailed factors such as scope, human factors, quality, requirements, etc. that 
contribute to elictation issues are not explictly considered to be part of the causal 
relationship. This generalized view can cause potential deficit in the considering key 
factors, thereby posing a threat to theoretical validity.   

External Validity. 84.73% of participants are from India and mostly associated with 
projects in the context of offshoring; 52.71% associated with healthcare/ insurance 
domain. Given the dynamic nature of the domain as well as challenges associated 
with global software development, the generalizability of outcomes may be 
challenged. The factor loadings may potentially represent context-dependent results 
and possibly vary for other domains and/or projects executed in-house, posing a threat 
to external validity.  

Construct Validity. As described in [3], factor analysis is a powerful technique in 
assessing construct validity. Table 2 describes the factor loadings across the relevant 
dimensions. Loading < 0.4 were excluded from the study and the remaining were 
carefully examined and retained for subsequent analysis. This statistically elevates 
any threat to this validity in this study. 

Internal Generalizability. This is concerned with the degree to which conclusions/ 
inferences are drawn about relationships between variables [20]. The conclusions are 
drawn based on 203 survey responses over 34 dimensions [table 2]. Practitioners  
confirm that the correlations drawn based on the causal model lead to accurate con-
clusions based on the good sample size. This statistically elevates the threat to this 
generalizability and confirms the conclusions to be reasonable with respect to the 
collected data. 

5 Implications for Research and Practice 

This study demonstrates the influence of the general categories of elicitation issues to 
project performance. Future research could extend this study to address the influence 
of detailed elicitation issues such as those identified in [19] to project performance. 
This will be a critical research area to understand and realize the influence of the core 
factors that contribute to poor elicitation and their influence on overall project  
performance. Given the dynamic nature of business requirements and applicable 
mandates and a good percentage of projects being executed in the global software 
development framework, this enhanced study will be of importance to conduct elicita-
tion effectively. 

For practitioners, this study has important implications. In practice, challenges per-
taining to lack of knowledge or experience in conducting effective elicitation have 
been recorded as leading to failures in capturing relevant requirements and in turn 
potential project failures. The model provides an empirical perspective on the impacts 
of elicitation issues along with priority-setting of elicitation issues. These priority-
setting of parameters can support business analyst and requirements engineers to be 
prepared to realize and address relevant risks that may potentially surface during elici-
tation. These findings will support in the continuous refinement of elicitation process 
guidelines that can draw practitioner’s attention to determining action on specific 



 The Effects of Requirements Elicitation Issues on Software Project Performance 299 

 

areas of focus during elicitation. This is also expected to aid in the decision making 
processes during the early planning phases of software development.  

6 Limitations 

Like any research, this study has certain limitations too. Firstly, the study focuses 
only on requirements elicitation and not any other activities of the project’s require-
ments engineering phase. Secondly, the constructs reflect elicitation issues catego-
rized as problems of scope, problems of volatility and problems of understanding. 
While the constructs provide an overall view of the impacts on elicitation, they may 
not best capture detailed factors of elicitation issues [19, 21] and their impacts to 
project outcomes. Thirdly, the assumption in this study is that project success is go-
verned largely by effective requirements gathering and hence, any other measure that 
might have contributed to the overall project success (thought elicitation as an activity 
may not been effective) is not considered or validated in this context. Lastly, Cron-
bach co-efficient α-value for internal consistency for vertical coordination is < .70 can 
be regarded as a limitation in this study.  

7 Conclusion 

This study deduced the causal relationship and level of influence amongst 13 elicita-
tion issue characteristics categorized as problems of scope, problems of volatility and 
problems of understanding with 8 characteristics of project performance categorized 
as product flexibility and process control. While empirical outcomes support the hy-
potheses, this study also deduced a priority-setting for categories in elicitation issues 
that can be addressed appropriately to keep residual performance risks in control 
throughout the project execution. In this case, the study suggests the factor that con-
tributes significantly to residual performance risk to be problems of volatility fol-
lowed by problems of understanding and problems of scope. The standard coefficient 
in the model provides in-depth view on the causes for poor elicitation by further stud-
ying the parameters within problems of volatility, problems of scope and problems of 
understanding. These empirical findings can support practitioners and researchers to 
strengthen their execution of the RE activities. This can aid in decision-making and 
project planning processes for improved project performance and reduced risks. 

References 

1. Christel, M.G., Kang, K.C.: Issues in Requirements Elicitation. Technical Report, Soft-
ware Engineering Institute (1992) 

2. Nidumolu, S.: The effect of coordination and uncertainty on software project performance: 
residual performance risk as an intervening variable. Information Systems Research,  
191–219 (1995) 

3. Nidumolu, S.: A comparison of the structural contingency and risk-based perspectives on 
coordination in software-development projects. Journal of Management Information Sys-
tems, 77–113 (1996) 



300 N.K. Sethia and A.S. Pillai 

 

4. Brown, T.A.: Confirmatory factor analysis for applied research. Guilford Press (2006) 
5. Cho, K., TaeHoon, H., ChangTaek, H.: Effect of project characteristics on project perfor-

mance in construction projects based on structural equation model. Expert Systems with 
Applications, 10461–10470 (2009) 

6. Bagozzi, R.P., Youjae, Y.: Specification, evaluation, and interpretation of structural equa-
tion models. Journal of the Academy of Marketing Science, 8–34 (2012) 

7. Gaskin, J.: Stats Tools Package, http://statwiki.kolobkreations.com 
8. Hair, J., Black, W., Babin, B., Anderson, R.: Multivariate data analysis. Prentice-Hall, Inc. 

(2010) 
9. Wang, E.T.G., Pei-Hung, J., James, J.J., Klein, G.: The effects of change control and man-

agement review on software flexibility and project performance. Information & Manage-
ment, 438–443 (2008) 

10. Zowghi, D., Nur, N.: A study of the impact of requirements volatility on software project 
performance. In: Software Engineering Conference, pp. 3–11. IEEE (2002) 

11. Al-Zayyat, N.A., Firas, A., Ibrahem, T., Ghassan, A.: The Effect of Knowledge Manage-
ment Processes on project Management. IBIMA Business Review (2009) 

12. Kujala, S., Marjo, K., Laura, L., Tero, K.: The role of user involvement in requirements 
quality and project success. In: 13th IEEE International Conference on, pp. 75–84 (2005) 

13. Lin, W.T., Benjamin, S.: The relationship between user participation and system success: a 
simultaneous contingency approach. Information & Management, 283–295 (2000) 

14. Liu, J., Hun-Gee, C., Charlie, C.C., Tsong, S.S.: Relationships among interpersonal con-
flict, requirements uncertainty, and software project performance. International Journal of 
Project Management, 547–556 (2011) 

15. Aronson, Z.H., Richard, R.R., Gary, S.L.: The impact of leader personality on new product 
development teamwork and performance: The moderating role of uncertainty. Journal of 
Engineering and Technology Management, 221–247 (2006) 

16. Sundararaman, A.: Information Quality Strategy - An Empirical Investigation of the Rela-
tionship Between Information Quality Improvements and Organizational Outcomes, Ph.D. 
dissertation (2012) 

17. Jiang, J.J., Klein, G., Wu, S.P.J., Liang, T.P.: The relation of requirements uncertainty and 
stakeholder perception gaps to project management performance. Journal of Systems and 
Software, 801–808 (2009) 

18. Nosheen, S., Faiza, I., Farooque, A., Muhammad, Y.J.: An Iterative Approach for Global 
Requirements Elicitation: A Case Study Analysis. Electronics and Information Engineer-
ing, 361–366 (2010) 

19. Sethia, N., Pillai, A.S.: A survey on global requirements elicitation issues and proposed re-
search framework. In: 2013 4th IEEE International Conference on Software Engineering 
and Service Science (ICSESS), pp. 554–557 (2013) 

20. Petersen, K., Gencel, C.: Worldviews, Research Methods, and their Relationship to Validi-
ty in Empirical Software Engineering Research. In: Proceedings of the Joint Conference of 
the 23rd International Workshop on Software Measurement and the 8th International Con-
ference on Software Process and Product Measurement (2013) 

21. Sethia, N., Pillai, A.S.: A study on the software requirements elicitation issues – its causes 
and effects. In: World Congress on Information and Communication Technologies (2013) 



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 301–308, 2014. 
© Springer International Publishing Switzerland 2014 

Requirements Reuse and Patterns: A Survey 

Cristina Palomares, Xavier Franch, and Carme Quer 

GESSI Research Group, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain 
{cpalomares,cquer,franch}@essi.upc.edu 

Abstract. Context and motivation: Multiple proposals exist that propose the 
adoption of reuse practices during requirements engineering processes. 
Question/problem: Which is the current level of adoption of these practices in 
organizations? Principal ideas/results: In this paper we present the preliminary 
results of a survey initiated at REFSQ’13 that addresses this question. The 
survey first investigates requirements reuse in general, and then goes in depth 
asking about a specific technique, software requirement patterns (SRP), which 
is the backbone of our PABRE framework. Contribution: The survey results 
show that requirements reuse is not a widespread practice in IT projects, being 
the most common techniques those based on the copy and later modification by 
hand of requirements coming from previous projects. Regarding the use of SRP, 
the results seem to support our hypothesis that SRP could help to ameliorate 
some common problems related to requirements specifications like lack of 
uniformity and incompleteness.  

Keywords: Requirement engineering, Requirement reuse, Requirement Patterns. 

1 Introduction 

The PABRE (PAttern-Based Requirements Elicitation) framework is the result of the 
collaboration between the GESSI research group at the UPC and the SSI department at the 
Public Research Centre Henri Tudor (TUDOR) in Luxembourg to adopt software 
requirement patterns (SRP) as an approach to reuse. PABRE includes a metamodel for 
SRP [1], a catalogue of 45 Functional SRP (for the content management system domain) 
[2], 29 Non-Functional SRP [3] and 37 Non-Technical SRP [4] (best suited for business 
information systems like customer relationship management, supply chain management 
and by the like), and several tools for SRP management and use [5].  

The formulation of the framework heavily relies on empirical work. The collaboration 
with TUDOR made it possible to analyze requirement specification documents used 
in industrial projects, which at its turn required a thorough systematic literature 
review on requirements reuse in general, and SRP in particular. As part of this 
empirical approach, we decided to investigate the current perception of requirements 
reuse by practitioners and academics and that’s why we designed and conducted a 
survey (http://www.upc.edu/gessi/PABRE/Survey.html). The goal of the paper is to 
report preliminary results on the current use of requirements engineering reuse 
practices in organizations and their benefits and drawbacks and, taking into account our 



302 C. Palomares, X. Franch, and C. Quer 

 

specific approach to requirements reuse, to know the opinion of participants about SRP as 
reuse artifact. It is worth to remark that the current paper focuses then in the state of the 
practice, not considering the responses that come from researchers without industrial 
experience which remains subject of later analysis. 

2 Research Method 

Research Questions  
• RQ1: Is requirements reuse a usual practice in current RE processes? Here we 

investigate the current situation of requirements reuse practices in organizations, i.e. 
the level of requirements reuse, the type of requirements that are more prone to be 
reused and the techniques used to achieve it. 

• RQ2: Which benefits and drawbacks can appear from the use of a catalogue of SRP? 
Taking into account our specific field of research, we are especially interested in SRP 
as reuse artefact. This is the reason for asking to the participants in which degree 
requirements engineering problems can be ameliorated by the existence of an SRP 
catalogue and about critical aspects and barriers for its introduction in an organization. 

 

Data Points. The data points considered are practitioners and academics with either 
“significant” or “some” level of experience on requirement engineering. We adapted the 
questions to each level of experience in order to obtain more accurate responses. 

Channel. The survey is implemented as an online questionnaire. Firstly, it was offered to 
REFSQ 2013 assistants (as part of the Empirical Track) who could answer it during the 
conference. Afterwards it was also offered to the requirements engineering community 
through other channels as LinkedIn requirement engineering groups, related tutorials 
attendees in conferences as RE 2013 and ICSE 2013, and online communities.  

Data Analysis. The results presented in this paper are based in descriptive statistics and 
content analysis (the last one only for questions with results in free text). In case of the 
questions using Likert scales, their results have been analyzed following the good 
practices presented in [6]. We are waiting to increase the number of data points before 
performing correlation and cluster analysis. 

Questionnaire Design. In order to avoid typical design errors in online surveys, we 
accompanied critical questions with a glossary of terms; we added whenever necessary 
text fields for clarification or for allowing the respondent adding missing values; and we 
conducted pilots of the questionnaire to ensure its correct understanding and its possible 
display effects. An excerpt of the online survey containing the questions necessary to 
answer the research questions analyzed in this paper can be found in [7]. 

Validity. On the one hand, in order to have a random sampling, aside from proposing the 
survey in several conferences, we introduced it as discussion topic in the main LinkedIn 
requirement engineering groups, and we introduced it as an open discussion in the groups 
to engage not only people that are already using requirement reuse practices. On the other 
hand, in order to mitigate the problem of coverage of the requirements engineering 
population and the low response-rate common in online surveys, we proposed the survey 
through the LinkedIn and community groups with around 12000 members altogether.  



 Requirements Reuse and Patterns: A Survey 303 

 

3 Results and Discussion 

At the moment of writing the paper, we had 50 completed responses from practitioners 
and researchers with industrial experience, from 19 countries around the world (mostly 
from North America and Europe). From them, 27 (54%) were requirement engineers in 
industry, 10 (20%) researchers with significant experience as requirement engineers, and 
13 (26%) researchers with some limited experience as requirement engineers. 

RQ1: Is Requirements Reuse a Usual Practice in Current RE Processes? 

We asked participants about three different aspects (see About Reuse during Requirements 
Engineering and About Observations on Requirements sections in [7]):  
• What is the level of requirements reuse they had in their projects (see Table 1). 
• Which are the types of non-functional and non-technical requirements (NFR, NTR 

respectively) that were more similar from project to project. A list of NFR and NTR 
types was provided so the similarity of each type among projects could be measured 
(see Table 2). It was possible to add other NFR or NTR types that could be relevant 
and not stated by the survey.  

• What are the techniques they implemented to achieve requirements reuse 
(multiresponse question). This last question was asked only to those participants that 
implemented some kind of requirements reuse in their projects, i.e. being the 
requirements reuse level in the first question marked at least as 2-Low (see Table 3). 

 
Table 1. Requirements reuse level 

 

 

Table 2. Requirement types more similar 
between projects (1 – Totally disagree, 5 – 
Totally agree) 

 

Table 3. Requirements reuse techniques 

 

 

Regarding the first question (Table 1), we got 38 participants (76%) that stated the 
requirements reuse level as equal or greater than 2-Low. However, reuse seems not to be 
an established practice in IT projects since only 22% of the participants marked it as equal 
or greater than 4-High. 

 #Participants 
(%Participants) 

Not able to answer 1 (2%) 
Inexistent or Very Low 11 (22%) 

Low 18 (36%) 
Medium 9 (18%) 

High 9 (18%) 
Very High 2 (4%) 

TOTAL 50 (100%) 

 Likert Scale 
Average 

4. Usability 3,60 
5. Reliability 3,48 
6. Security 3,44 

7. Maintainability 3,44 
2. Performance Efficiency 3,24 

11. Business Suitability 3,20 
12. Project Suitability 3,16 

3. Compatibility 3,08 
8. Portability 3,08 

1. Functionality Suitability 3,04 
10. Product Non-Technical 

Suitability 2,94 

9. Supplier Suitability 2,92 

 #Participants 
(%Participants) 

Copy & Paste of Individual reqs. 23 (60%) 
Copy & Paste of Groups of reqs. 21 (55%) 

Duplicate of a full reqs. specification 19 (50%) 
Fill in predefined templates 15 (39%) 

Use of a req. patterns catalogue 5 (13%) 



304 C. Palomares, X. Franch, and C. Quer 

 

The results of the second question about the types of NFR and NTR that were more 
similar from project to project (Table 2) do not highlight a big difference in the level of 
recurrence of the types, being most of them around 3 (equivalent to Neutral value). One of 
the possible reasons for this neutrality is that most of the people that took part in the 
survey did not carry out requirements reuse. The four requirement types that were ranked 
with a higher reuse rate were: Usability, Reliability, Security, and Maintainability. 

Regarding the techniques used to implement requirements reuse, the current results of 
the survey (Table 3) show that the most common techniques, used by more than 50% of 
the participants, are those based on the textual copy and later modification by hand of 
requirements coming from previous projects, i.e. Copy and paste of individual existing 
requirements or Copy and paste of groups of requirements in the requirements 
specification under construction and Duplicate of a full existing requirements specification 
and work in its parts as needed. Less common techniques seem to be Fill in of predefined 
templates and Use of a requirement patterns catalogue. 

Discussion 

IT practitioners include reuse in their daily practices, although the reuse process is 
probably most of the times simple Copy & Paste with its corresponding problems. The 
rationale behind is simple: during elicitation and definition of requirements, whenever  
the IT professional remembers some previous project where requirements looked close to 
the ones of the current project, copying and using them as a starting point seems natural. 
We think this is the reason why we found that 76% of participants declare to carry out 
some level of reuse in their projects. Thus our interpretation of the results is that 
requirements reuse is present in IT projects, but well-defined and mature reuse methods 
and processes have still to emerge and be integrated into the practice of organizations.  

Concerning the type of requirements more similar among projects, non-functional 
requirements (types numbered from 2 to 8) are considered as more similar among projects 
than functional ones (numbered as 1), which is corroborated by the fact that non-
functional requirements is the main focus of requirements reuse proposals [8][9][10]. In 
case of non-technical requirements (numbered from 9 to 12 most), the results are not the 
ones we expected. For instance, in case of the Supplier Suitability, which was defined in 
the questionnaire as corresponding to those requirements on the organization that supplies 
the software product, it was considered less recurrent than functional requirements. Our 
interpretation is that non-technical requirements were not well understood by participants, 
since according to our experience, this kind of requirement is in fact quite recurrent, if we 
think for instance on requirements about the positioning and strength of the supplier 
organization, the certifications that this organization has on software processes 
development, the services it offers or its maintenance and development procedures. This 
misunderstanding could be caused by the fact that these kinds of requirements are not 
always included in requirement specifications unless projects are call-for-tenders projects.   

Chernak conducted an online survey on requirements reuse during 2010 [11] 
(henceforth CheS). One of its questions can be directly related to the first aspect 
addressed in RQ1. Its results were that 59% of respondents reused requirements in 
their latest projects. If we compare this magnitude with ours, in our survey the 



 Requirements Reuse and Patterns: A Survey 305 

 

percentage is higher: considering the respondents with a level of reuse equal or above 
Low, we observe that 76% of interviewees do some reuse in their projects (Table 1). 
This difference may be caused by the different population of the surveys: CheS 
involved software engineers in general, whilst in our case we addressed requirements 
engineering practitioners. In addition, CheS survey’s results indicate that practitioners 
that adopt reuse practices do not usually follow well-defined reuse processes, 
sustaining also our results. 

RQ2: Which Benefits and Drawbacks Can Appear from the Use of a SRP Catalogue? 

To answer this research question we asked the participants to evaluate, using Likert 
Scales, a list of problems that could be ameliorated by the use of a SRP catalogue, and two 
lists of critical factors and barriers respectively that could affect the successful adoption of 
an SRP catalogue (see About Reuse through Patterns section in [7]). In the three lists, the 
participants had the opportunity to add new items not appearing in the lists. 

Regarding the problems that could be ameliorated by the use of an SRP catalogue (see 
Table 4), the four most mentioned problems in the survey are: Lack of requirements 
uniformity, Incompleteness of requirements specification, Ambiguity of requirements and 
Having too little time to spend in requirements elicitation.  

Regarding the factors that could be critical for the introduction of a SRP catalogue 
(see Table 5), all the listed factors were considered critical except the existence of 
Help Desk. Participants added other critical factors, being the most mentioned ones 
The existence of a ready-to-use SRP catalogue, The possibility of having free trials 
periods, and The existence of success cases using SRPs.  

 
Table 4. Problems ameliorated by the use of 
a SRP catalogue (1 – At all, 3 - A lot) 

 

 

Table 5. Critical factors for introducing a 
SRP catalogue (1 – Totally disagree, 5 – 
Totally agree) 

 

Table 6. Barriers to adopt successfully a SRP 
catalogue (1 – Totally disagree, 5 – Totally 
agree) 

 
 

 Likert Scale 
Average 

Lack of requirements uniformity 2,43 
Incompleteness of requirements 

specification 2,37 

Requirements ambiguity 2,32 
Too little time invested in require-

ments elicitation 2,31 

Requirements non-verifiable 2,21 
Too much time spent in require-

ments elicitation 2,20 

Stakeholders do not know exactly 
their needs 2,18 

Stakeholders needs’ change during 
the requirements elicitation process 2,18 

Requirements inconsistency 2,16 
Lack of requirements. traceability 2,12 

Lack of requirements quantification 2,12 
Lack of requirements prioritization 2,04 

Conflicts among needs stated by 
stakeholders 2,00 

 Likert Scale 
Average 

Well-defined use method 4,22 
Tool support 4,12 

Community of users existence 3,94 
Training courses 3,92 

Help desk 3,37 

 Likert Scale 
Average 

Resistance of req. engineers to change 4,10 
Integration of the catalogue with the 
existing req. engineering processes 3,96 

Risk of converting requirements 
elicitation in a stiff process 3,63 

Amount of reusable knowledge neces-
sary to create and maintain 3,59 



306 C. Palomares, X. Franch, and C. Quer 

 

Finally, for the list of factors that may represent a barrier to the successful adoption of 
an SRP catalogue (see Table 6), all of its items were considered as important barriers that 
should be taken into account, being the highest rated ones: The resistance of requirements 
engineers to change, and The integration of the catalogue with the existing requirements 
engineering process. Another barrier not included in the list but considered as very 
important by some participants was The lack of management support. 

Discussion 

The results of the first question are very important because the three problems 
identified by the survey participants corroborate the aim of our PABRE framework: to 
increase the uniformity and completeness of requirement specifications and to reduce 
ambiguity among requirements in these specifications.  

The critical factors obtained as more relevant also support our interpretation of the 
RQ1 results. The importance given to the existence of a reuse method and tool 
support is probably caused by the absence of a well-defined and mature method to 
guide the reuse processes undertaken by the participants. Regarding the barriers, it is 
not surprising that the ones that depend on people involvement are considered the 
most important: when we talk about processes in organizations, the implication of 
involved people become a key factor for the adoption and its success [12].  

In the CheS survey [11] there are two questions that can be considered indirectly 
related to RQ2, which ask about benefits and obstacles. In our case, we ask about 
similar aspects but specifically for reuse through patterns. The main benefit reported 
by the CheS survey participants was “faster-time-to-market”, mentioned by 50% of 
their respondents. We also had this response (Too much time spent in requirements 
elicitation in Table 4) as a possible answer of problems that could be ameliorated by 
the use of a SRP catalogue. Although in our case it was not ranked as the most 
important benefit, it was still considered as relevant by the participants. This “faster-
time-to-market” benefit has been proved to be true in real processes, such as Goldin et 
al. case study [13] conducted in an organization that was incorporating requirements 
reuse to their requirements engineering processes. On the other hand, CheS’ obstacles 
can be assimilated to barriers in our survey. Both surveys include as barriers the 
creation and maintenance of reusable artifacts, and the resistance of project managers 
and requirement engineers (see Table 6). It is difficult to compare both surveys 
because in CheS, the answers to these questions were open, and in ours a list was 
provided with an open field to extend it if needed; however, we still may observe that 
CheS’ results are included in ours.    

In Hoffmann et al. [14], the result of 5 semi-structured interviews (henceforth 
HKHL) with experienced requirements analysts is presented. They were asked on 
their opinions on the advantages and success factors they could perceive on the use of 
SRP approaches. In the case of advantages, 7 out of the 8 most important problems 
identified as potentially ameliorated by the use of SRP in our survey (Table 4) were 
also stated in the HKHL interviews. The only one that did not appear in HKHL was 
Too little time invested in requirements elicitation. In the case of success factors and 
barriers, all of those identified in our survey were also found in HKHL, and the ones 



 Requirements Reuse and Patterns: A Survey 307 

 

in HKHL that were not in our survey are more related to the quality of the SRP 
catalogue, which we did not considered as an option because we gave it for granted. 

4 Conclusions and Further Work 

In this paper, we presented the preliminary results of a survey to study the state of the 
practice on requirements reuse, and on the possible advantages, success factors and 
barriers of using SRP as reuse artifact. The survey results show that requirements 
reuse, although is not a widespread practice in IT projects, is used in a certain level in 
the projects were survey participants participated, but probably there is a lack of well-
defined and mature reuse methods and processes. Regarding the use of SRP, the 
results seem to support our hypothesis that SRP could help to ameliorate some 
common problems related to requirements specifications like lack of uniformity, 
incompleteness and ambiguity. The aspects more critical in the application are the 
implication of requirement engineers and project managers and also the existence of a 
well-defined method of use and the existence of tool support.           

Future work includes the extension of this study by gathering more responses, to 
include also responses given by researchers without practical experience and 
conducting correlation analysis and cluster analysis of responses considering also 
other general questions included in the questionnaire. 

Acknowledgements. This work has been supported by the Spanish project TIN2010-19130-
C02-01. We would also like to thank all participants of the surveys for their kindly cooperation. 

References 

1. Franch, X., Palomares, C., Quer, C., Renault, S., De Lazzer, F.: A Metamodel for Software 
Requirement Patterns. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, 
pp. 85–90. Springer, Heidelberg (2010) 

2. Palomares, C., Quer, C., Franch, X., Guerlain, C., Renault, S.: A Catalogue of Functional 
Software Requirement Patterns for the Domain of Content Management Systems. In: 
Requirements Engineering Track at 28th ACM SAC (RE-SAC), pp. 1260–1265. ACM 
(2013) 

3. Renault, S., Mendez, O., Franch, X., Quer, C.: A Pattern-based Method for building 
Requirements Documents in Call-for-tender Processes. Int. J. of Computer Science & 
Applications 6(5), 175–202 (2009) 

4. Franch, X., Quer, C., Renault, S., Guerlain, C., Palomares, C.: Constructing and Using 
Software Requirements Patterns. In: Maalej, W., Thurimella, A.K. (eds.) Managing 
Requirements Knowledge, pp. 95–116. Springer (2013) 

5. Palomares, C., Quer, C., Franch, X.: PABRE-Proj: Applying Patterns in Requirements 
Elicitation. In: IEEE International Requirement Engineering Conference (RE),  
pp. 332–333 (2013) 

6. Jamieson, S.: Likert Scales: How to (Ab)use Them. Medical Education 38(12), 1217–1218 
(2004) 



308 C. Palomares, X. Franch, and C. Quer 

 

7. Report of the Requirements Reuse and Patterns survey - excerpt, 
http://www.upc.edu/gessi/PABRE/Survey_Questions.pdf 

8. Jaramillo, A.F.: Non-functional requirements elicitation from business process models. In: 
5th International Conference on Research Challenges in Information Science (RCIS). 
IEEE CS Press (2011) 

9. Hoffmann, A., Schulz, T., Hoffmann, H., Jandt, S., Roßnagel, A., Leimeister, J.M.: 
Towards the Use of Software Requirement Patterns for Legal Requirements. In: 2nd 
International Requirements Engineering Efficiency Workshop (REEW) at REFSQ (2012) 

10. Toval, A., Carrillo-de-Gea, J.M., Fernandez-Aleman, J.L., Toval, R.: Learning systems 
development using reusable standard-based requirements catalogs. In: Global Engineering 
Education Conference (EDUCON). IEEE CS Press (2011) 

11. Chernak, Y.: Requirements Reuse: The State of the Practice. In: Software Science, 
Technology and Engineering (SWSTE), pp. 46–53. IEEE CS Press (2012) 

12. Dyba, T.: An empirical investigation of the key factors for success in software process 
improvement. IEEE Transactions on Software Engineering 31(5) (2005) 

13. Goldin, L., Berry, D.M.: Reuse of requirements reduced time to market at one industrial 
shop: a case study. In: Requirements Engineering Journal 18 (2013) 

14. Hoffmann, A., Janzen, A., Hoffmann, H., Leimeister, J.M.: Success Factors for 
Requirement Patterns Approaches. In: Sozio-technisches Systemdesign im Zeitalter des 
Ubiquitous Computing (SUBICO) im Rahmen der Informatik, Koblenz (2013) 



 

C. Salinesi and I. van de Weerd (Eds.): REFSQ 2014, LNCS 8396, pp. 309–324, 2014. 
© Springer International Publishing Switzerland 2014 

Safety Evidence Traceability:  
Problem Analysis and Model 

Sunil Nair1, Jose Luis de la Vara1, Alberto Melzi2, Giorgio Tagliaferri3,  
Laurent de-la-Beaujardiere4, and Fabien Belmonte4  

1 Simula Research Laboratory, Norway 
2 Centro Ricerche Fiat S.C.p.A., Italy 

3 Rina Services S.p.A., Italy 
4 Alstom Transport, France 

{sunil,jdelavara}@simula.no, alberto.melzi@crf.it, 
giorgio.tagliaferri@rina.org, 

{laurent.de-la-eaujardiere,fabien.belmonte} 
@transport.alstom.com 

Abstract. [Context and motivation] Safety evidence plays an important role in 
gaining confidence in the safe operation of a system in a given context. For a 
large system, it is necessary to provide information about thousands of artefacts 
that might be used as evidence and about the relationships among themselves 
and also with other safety assurance assets. [Question/problem] Past research 
has only addressed some needs of traceability in safety-critical systems and thus 
has not provided a complete picture of safety evidence traceability. Lack of 
knowledge and awareness of these needs can result in poor evidence 
management and lead to certification risks. [Principal ideas/results] This paper 
aims to provide a broad overview of safety evidence traceability needs for 
practice and its associated challenges. We also propose a safety evidence 
traceability model, which has been validated with data from real-world critical 
systems. [Contribution] We discuss the motivation and challenges for safety 
evidence traceability, and present the various traces that need to be captured and 
maintained. This information can help researchers to shape future research 
based on industry needs and can help practitioners to gain a deeper 
understanding and a wider knowledge of safety evidence traceability, thereby 
facilitating safety assurance and certification. 

Keywords: Safety evidence, Traceability, Safety assurance, Safety certification, 
Safety Standard, SafeTIM.  

1 Introduction 

Critical systems in many domains are subject to a rigorous assessment or assurance 
process through which the system is deemed safe for a particular context. Such 
assessment process is usually based on the fulfilment of the requirements of some 
safety standard. To comply with a standard, system suppliers have to gather and 
present evidence information supporting their claims about system safety. We define 



310 S. Nair et al. 

 

safety evidence as “artefacts that contribute to developing confidence in the safe 
operation of a system in a given environment” [1]. Some generic examples of safety 
evidence are test results, system specifications, and personnel competence. Such 
artefacts are used to support claims about system safety, and to show compliance with 
a standard.  

For a realistically large system, a system supplier needs to collect and manage a 
large quantity of safety evidence throughout the analysis, development, verification, 
maintenance, operation, and evolution of a system. The system supplier must also 
capture and maintain traces between pieces of evidence information and also from 
and to evidence and other safety assurance assets (claims, arguments, etc.) in order to 
be able to demonstrate system safety.  

In software engineering, traceability can be defined as the degree to which a 
relationship can be established between two or more products of the development 
process (aka artefacts), especially products having a predecessor-successor or master-
subordinate relationship to one another [2]. With the above definition in mind, we 
define safety evidence traceability as “the degree to which a relationship can be 
established to and from artefacts that are used as safety evidence”. 

Lack of knowledge and understanding of safety evidence traceability needs can 
result in improper evidence management, which may indirectly result in certification 
risks [3]. A system supplier might not be able to demonstrate system safety if the 
evidence is not well managed and traced. Consequently, a third party certification 
authority would not gain enough confidence in the safe operation of the system.  

Although traceability for safety-critical systems and more concretely safety 
evidence traceability have been addressed in past research, no study has yet provided 
a broad and complete picture of safety evidence traceability needs. Most of the 
research has only focused on the relationships between the artefacts used as evidence 
(e.g., [4]). The studies that have explicitly or implicitly studied other aspects of safety 
evidence traceability have not paid much attention to many necessary relationships for 
evidence traceability. For example, works that have dealt with the relationship 
between safety evidence and the argument that justifies evidence validity for a claim 
(e.g., [5]) have usually not paid attention to other traces such as to artefact versions.  

This paper aims to present an in-depth analysis of safety evidence traceability 
needs and its challenges that would be helpful for both researchers and practitioners. 
Based on others’ past work, on our knowledge about the state of the art and practice 
(e.g., [6][1]), and on own experience in safety assurance and certification projects, we 
discuss the motivation for safety evidence traceability and its challenges. We also 
present the traces that must be created and maintained from and to evidence 
information. As a result, we have created a Safety Evidence Traceability Information 
Model for safety evidence - SafeTIM. 

The results presented in this paper are part of the on-going work in OPENCOSS 
(www.opencoss-project.eu), a large-scale European research project on safety 
assurance and certification in the automotive, avionics, and railway domains. Beyond 
the usefulness of the results for the project, we consider that the contribution of the 
paper is twofold. Firstly, the problem analysis presented and SafeTIM can help 
researchers to better understand safety evidence traceability needs in industry and thus 
to identify aspects that might require further study. Secondly, practitioners can benefit 
by gaining awareness of important aspects related to safety evidence traceability 



 Safety Evidence Traceability 311 

 

whose management can be essential for safety assurance and certification, thereby 
improving project management and reducing cost. 

The rest of the paper is organised as follows. Section 2 presents the background of 
the paper. Section 3 discusses the motivation for safety evidence traceability. Section 
4 describes the safety evidence traces, and presents SafeTIM and its validation. 
Section 5 compares SafeTIM with other models and discusses the challenges for 
safety evidence traceability. Finally, Section 6 presents our conclusions. 

2 Background 

This section introduces a common certification framework that is being developed in 
the OPENCOSS project and reviews related work. 

2.1 Common Certification Framework 

The main technical objectives of OPENCOSS are to (1) devise a common 
certification framework for railway, avionics, and automotive industries, and (2) 
establish an open-source safety certification infrastructure.  

The common certification framework will consist of several, linked metamodels, 
each aimed at modelling different aspects of compliance [7]: (1) the safety standards 
followed; (2) project-specific aspects such as the actual process executed, the artefacts 
managed, and the argumentation used to justify the key decisions made; (3) the terms 
used in different safety standards and projects, and; (4) mappings between different 
standards and projects, in order to support cross-standard/domain certification.  

Some of these models have been already published (for e.g., [7]), while others are 
accessible only for the project members. However, SafeTIM corresponds to a 
fragment of the large framework. The model presented in this paper contains the set 
of fundamental concepts and relationships for safety evidence. It must be noted that 
more information might be necessary in a safety assurance and certification project 
for other purposes (e.g., for assessment of process-based compliance). We believe that 
SafeTIM is an underlying model that lies behind the common certification framework 
and needs to be explicitly modelled to deal specifically with safety evidence 
traceability.  

2.2 Related Work 

Traceability has been an important research topic in software engineering during the 
last two decades. Despite the acknowledged higher importance of traceability for 
safety-critical systems [8], literature reviews [9][10] have shown that the ratio of 
papers on the subject is low. 

Publications presenting and discussing the motivation (e.g. [11]), challenges (e.g., 
[12]), and open issues (e.g., [13]) for traceability are available in the literature. 
Studies on traces (e.g., [14]) and types of traces (e.g., [15]) can also be found, mainly 
in relation to traceability to and from requirements. Past work have also focused on 
strategic traceability needs and challenges specific to safety-critical projects [8]. 



312 S. Nair et al. 

 

What differentiates this paper from most of the past research on traceability is its 
focus on safety evidence. The number of publications addressing safety evidence 
traceability in isolation is limited, and there are few studies that discuss the needs and 
motivation of such traces [16][17]. For example, the literature on safety evidence 
traceability needs for evidence reuse is very limited. Given its importance for cost 
reduction in the development and assurance of new safety critical systems, we 
considered that it is an area that needs to be further investigated. Furthermore, these 
pieces of work have a very narrow scope (e.g., specific to a domain or safety 
standard) and do not provide a complete overview of the motivation and challenges 
regarding evidence traceability.  

Most of the existing studies on traceability for safety-critical systems have focused 
on traceability between the artefacts resulting from their analysis and development, 
such as requirements and hazards [18], requirements and components [16], 
requirements and design [19], or requirements and code [17]. These artefacts and the 
traces between them can themselves be used as safety evidence.  Models including a 
larger number of artefacts to trace have also been proposed [4][20]. Some papers have 
focused on traceability for specific safety standards (e.g., DO-178B [21] and 
ISO26262 [22]) or have modelled entities and relationships that abstract concepts 
common to different safety standards [7]. However these studies have not dealt with 
some specific traces to and from safety evidence that will be discussed in Section 4.1. 
With regard to safety evidence as an element of an assurance or safety case, the traces 
most frequently studied are with arguments and claims (e.g., [23]).  

Some recent works have broadened the scope of safety evidence traceability. 
SACM (Structured Assurance Case Metamodel; [24]) includes an evidence 
metamodel that specifies relationships between evidence items and between evidence 
items and other assurance assets. The link between evidence and the process from 
which it results is addressed in [5]. An evidence-related conceptual model for 
IEC61508 with relationships beyond those between artefacts used as evidence [25] 
and a generic evidence model for safety cases [26] have also been proposed. Although 
these works have provided valuable insights, they still lack details about safety 
evidence traceability and their results do not meet all the needs presented in the next 
section (e.g., the purpose of the traces beyond safety assurance and certification). 

Despite the limitations identified in the past research and the fact that no single 
study that has yet provided enough insights into safety evidence traceability in 
specific, our review of related work has helped us to better understand safety evidence 
traceability. As a result, we aimed to build and present in this paper SafeTIM - a 
holistic safety evidence traceability information model that synthesises traces 
indicated in the past work on evidence traceability and also deal with aspects that 
have not addressed in depth yet (e.g., evidence reuse). 

3 Motivation for Safety Evidence Traceability 

This section presents what we regard as the main reasons for safety evidence 
traceability: safety assurance, compliance with safety standards, change impact 
analysis, evidence reuse, and project management. Although some authors [11] have 
suggested that safety assurance and compliance with safety standards are the main 



 Safety Evidence Traceability 313 

 

reasons for traceability in safety-critical systems, empirical evidence indicates that 
other motivations exist too [6].  

Some of these motivations such as safety assurance and compliance with safety 
standards are specific to safety evidence or for safety-critical systems, while the 
others might be motivated from generic traceability needs. Nonetheless, these generic 
traceability needs are especially important for safety critical systems because of their 
rigorous and stringent certification context and the high costs associated to them. 

It must be noted that the aspects discussed below are not exclusively independent, 
but rather related to one another (e.g., evidence reuse and change impact analysis). 
This also applies to the challenges discussed in Section 5.2.  

M1: Safety assurance. A fundamental criterion for any safety-critical system, 
regardless of having to comply with some specific safety standard, is to ensure that its 
hazards have been avoided or mitigated. This allows gaining confidence in the overall 
safety of the system. Maintaining traceability of the evidence information involved is 
essential for this purpose so as to show that hazard mitigations have been properly 
developed and validated. For example, safety requirements can be specified from 
hazard identification and for their mitigation, and their satisfaction can be later 
verified with techniques such as formal methods. 

M2: Compliance with safety standards. In domains such as avionics and railway, 
safety-critical systems must comply with safety standards for certification purposes. 
Therefore, system suppliers have to show fulfilment of the requirements of the 
standards. Traceability can be a means for this activity. In addition, system suppliers 
might have to explicitly provide traceability specifications as a part of the information 
that constitutes evidence of compliance [6]. Indeed, some standards mandate this 
information (e.g., DO-178C [27]). 

M3: Change impact analysis. Changes in a safety-critical system and thus in its 
safety evidence are practically inevitable [28]. Practitioners must ensure that such 
changes in the system will not have any undesired effect in system safety and in the 
body of safety evidence. Therefore, such changes have to be managed adequately. For 
example, it is necessary to assess how a change in a piece of evidence might affect 
others [6]. Safety evidence traceability is necessary to perform such an impact 
analysis in order to identify the potential consequences of a change or to estimate 
what needs to be modified to accomplish a change. 

M4: Evidence reuse. Reuse of a safety-critical component (or system) and thus of its 
evidence is important in industry [6], mainly in order to increase the return on 
investment in component development and to decrease system cost. However, it must 
be ensured that evidence reuse is adequate [28], or that a change in a reused piece of 
evidence is propagated to other uses when considered necessary. Maintaining safety 
evidence traceability supports evidence reuse and the execution of the associated 
required activities.  

M5. Project management. Project management information such as that related to 
cost, effort, or degree of compliance is essential to make informed decisions during 
safety-critical system lifecycle. These decisions can be hard to make without adequate 



314 S. Nair et al. 

 

safety evidence traceability. For example, it allows the estimation of the cost of a 
possible change, and helps practitioners decide whether the change should be 
implemented or not. 

4 Safety Evidence Traces 

This section introduces the various traces necessary to create and maintain for safety 
evidence traceability. We represent these traces graphically in SafeTIM, the 
traceability information model for safety evidence that we propose.  

4.1 Traces to Create and Maintain 

Based on (1) the analysis of the motivation for safety evidence traceability in the 
previous section, (2) the traces that we have identified in previous work, and (3) our 
knowledge and experience, we present the set of traces that we regard as necessary for 
safety evidence. Nonetheless, we acknowledge that, depending on their purpose, some 
practitioners might not need all of the traces for a specific project, or would require 
other specific traces that are not mentioned below. The overall motivation that drives 
each trace is mentioned in brackets. 

Between Artefacts (M1, M2, M3 & M5). Traces must be created between the 
artefacts managed during system lifecycle such as a requirements specification and 
test cases. For those artefacts used as safety evidence, the traces between them can 
result in a chain of evidence [27]: a series of related pieces of safety evidence. 
However, traces could also be maintained to and from artefacts for purposes different 
to safety assurance or compliance [6]. For example, one might need to trace artefacts 
for change impact analysis. Traces between artefacts can also be used for project 
management. For example, requirements that have not been tested can be determined. 

Between Safety Evidence and Claims (M1-M5). Safety evidence is inherently 
targeted at supporting claims about system safety and thus at gaining confidence in it. 
When evidence changes, the confidence in the related claims can vary. Confidence in 
safety evidence can also vary if a claim changes. Traceability between evidence and 
claims support evidence reuse when similar or the same claims are made, for instance, 
in different projects. Analysis of the claims for which safety evidence exists is also 
part of project management. When a claim refers to requirements of a safety standard, 
the related evidence aims to show compliance. 

Between Safety Evidence and Arguments (M1-M5). Safety evidence alone might 
not be sufficient to gain confidence in a claim [26], and a justification might be 
necessary. Such a justification can take the form of an argument [23], which can 
clarify and substantiate claims based on safety evidence. When safety evidence 
changes, an argument might be affected, and likewise evidence might have to be 
revalidated when an argument changes. 



 Safety Evidence Traceability 315 

 

Between Artefacts and Reference Artefacts (M2 & M5). Safety standards usually 
prescribe types of artefacts (i.e., reference artefacts) that have to be produced to show 
compliance. Practitioners must show how the concrete artefacts produced in a project 
materialise the reference artefacts. For example, DO-178C requires the creation of a 
reference artefact called Software Verification Results. Such a type could be 
materialised in a project by means of, for instance, a specific review (of requirements, 
code, etc.).  

Between Pieces of Safety Evidence in Relation to a Claim (M1 & M3). Safety 
evidence traced to a claim could not only help gain confidence in its satisfaction, but 
could also make one lose confidence in the claim [24]. For example, a review could 
be used as a piece of evidence to support a claim about requirements accuracy, but 
other pieces of evidence (e.g., reviewer competence) could be used to show that not 
enough confidence exists in the accuracy. A relationship between two pieces of 
evidence can be created in order to specify that one supports or challenges the other in 
relation to a same claim. 

Between versions of an Artefact (M1 & M2). An artefact can be modified, making a 
new version of a previous one. Maintenance of traces between the versions of an 
artefact can be necessary for safety assurance and even mandated by a safety standard. 
For example, it might be necessary that the versions of two related artefacts are 
consistent (e.g., because of temporal constraints), and configuration management 
practices can be required [6]. 

Between (re)uses of an Artefact (M3 & M4). An artefact used in a project (e.g., as 
evidence) can be reused to support different claims in the same or in a different 
project. Maintaining traces between these uses is necessary mainly for change impact 
analysis.  Modification of an artefact in some of its uses might affect the others. For 
example, a new fault could be identified in a component used in one project and the 
same component might have been used in different projects. This trace would help to 
identify all the projects in which the component has been used and would allow the 
system supplier to change the required artefacts accordingly. It is also especially 
important to keep these traces when the artefacts reused are duplicated. 

Between Artefacts and Activities (M2, M3 & M5). Artefacts are the result of the 
execution of some activity [25]. For example, test results can be produced in some 
validation activity. It is necessary to trace artefacts and activities so that practitioners 
can (1) identify the activities that might have to be re-executed due to artefact 
modification, and (2) show that they have executed the activities mandated in a 
standard. At the same time, this trace can also act as a measure to keep track of 
activities that have not yet been executed in a project. 

Between Artefacts and Techniques used to Create Them (M1, M2 & M5). For 
safety assurance, an essential aspect of the artefacts managed in a project is to know 
how the artefacts have been created. More concretely, it is necessary to know the 
means (i.e., the techniques) used. Safety standards sometimes specify the techniques 
that should or must be used to create some artefacts. In many regulatory contexts, 



316 S. Nair et al. 

 

system suppliers are not completely free to use a given technique unless they justify 
the suitability of their selection. 

Between Artefacts/Pieces of Evidence and Provenance (M1, M3 & M5). Traces 
between artefacts and the information about their management (who created it, when 
it was created, artefact evaluations, etc.) can be very important for safety assurance 
[24]. This information can also help practitioners to decide on who should deal with 
changes in an artefact. Pieces of evidence can also have provenance information (e.g., 
who approved it). 

4.2 SafeTIM: A Traceability Information Model for Safety Evidence 

Based on the traces identified, we propose a traceability information model for safety 
evidence called SafeTIM. The model is shown in Fig. 1 in the form of a class 
diagram. The importance of explicitly creating a traceability information model for 
safety critical projects has already been highlighted in past research [8]. 

The definition of each class is based on past work. Every class has a unique 
identification attribute (ID) for implementation purposes [4][8]. SafeTIM classes are 
defined as follows. 

• Artefact: Individual, identifiable units of data managed (used, modified, and/or 
produced) throughout system lifecycle [8][24].  

• Piece of Evidence: The use of an artefact as evidence for a claim [24]. 
• Claim: Propositions being asserted in relation to system safety (or other safety-

related system properties) [24][29]. 
• Artefact/Evidence Provenance: Characteristics of artefacts (or pieces of 

evidence) that correspond to information related to their lifecycle and the 
responsibility for their management [24].  

• Project: An individual or collaborative enterprise [29] for system assurance or 
certification and in which artefacts are managed [24].  

• Version: A particular form of an artefact differing in certain respects from an 
earlier form or other forms [24][29]. 

• Argument: A body of information (or reasons [29]) presented with the intention 
to establish one or more claims about system safety through the presentation of 
related supporting claims, pieces of evidence, and contextual information [24]. In 
essence, an argument aims to justify the validity of a piece of evidence for a 
claim.  

• Participant: A party involved in the management of an artefact or piece of 
evidence [29]. 

• Artefact Relationship: This class represents the existence of a relationship and 
thus of a trace between two artefacts [30][12]. A relationship can be recorded in 
an artefact if the relationship itself is used as evidence (e.g., DO-178C explicitly 
requests the provision traceability information). Examples of types of 
relationships between artefacts (e.g., with regard to the content, abstraction, or 
evolution of an artefact) can be found in [24][12][14]. 

 



 Safety Evidence Traceability 317 

 

Fig. 1. SafeTIM – A Safety Evidence Traceability Information Model 

• Evidence Relationship: This class represents the existence of a relationship and 
thus of a trace between two pieces of evidence in relation to the confidence in the 
validity of one of the pieces according to the other [30][24][12]. 

• Reference Artefact: Types of unit of data that a safety standard prescribes to be 
created and maintained during system lifecycle. Reference artefacts are 
materialised in assurance projects by means of (concrete) artefacts [30]. This 
means that these artefacts have the same or a similar structure (syntax) and/or 
purpose (semantics) [4]. 

• Activity: A unit of work that requires, modifies and/or produces artefacts [24] and 
corresponds to something being performed in system lifecycle [29]. Activities 
can be defined at different degrees of granularity (process, phase, task, etc.). 

• Technique: A specific procedure through which a particular way of creating an 
artefact is accomplished [29].  
There are also three enumerations in SafeTIM. 

• Event Type: This enumeration corresponds to types of events that can occur in 
the lifecycle of an artefact or piece of evidence [24][29]. Its literals are: 
− Creation: When an artefact or piece of evidence is brought into existence. 
− Modification: When a change is made in some characteristic of an artefact 

or piece of evidence.  
− Evaluation: When an element is assessed or evaluated. 
− Approval: When an element is accepted as satisfactory or as valid. 
− Revocation: When an element is cancelled or withdrawn. 

• Status Type: This enumeration corresponds to the status of an artefact or piece 
of evidence, for instance, after a change in some related information. Its literals 
are: 

ID: String
name: String
description: String
status: StatusType
location: String

Artefact

ID: String
name: String
description: String

Claim

ID: String
impact: ConfidenceImpactType
staus: String

PieceOfEvidence
ID: String
impact: ConfidenceImpactType

EvidenceRelationship

ID: String
name: String
description: String

Argument

ID: String
name: String
description: String

Activity
ID: String
name: String
description: String
aim: String

Technique
ID: String
name: String
description: String
status: StatusType
location: String

Version

ID: String
name: String
description: String
role: String
phone: String
email: String

Participant

ID: String
type: EventType
description: String
timeStamp: Date

EvidenceProvenanceID: String
type: EventType
description: String
timeStamp: Date

ArtefactProvenance

ID: String
name: String
description: String

ReferenceArtefact

ID: String
name: String
description: String

ArtefactRelationship

ID: String
name: String
description: String

Project

creation
modification
evaluation
approval
revocation

<<enumeration>>
EventType

confirmation
support
challenge
refutation

<<enumeration>>
ConfidenceImpactType

toValidate
valid
approved
revoked

<<enumeration>>
StatusType

1..*

0..*
0..*

0..* 0..*

0..* 0..*

0..*

0..*

0..*
0..*

1
1

1

0..*

0..*

0..*

0..* 0..* 0..*

0..*0..*

0..*

0..*

0..*

0..*

1

1

1

0.. 1

-project

-artefact

-source

-target

-artefact -ownedArtefact

-artefact

-artefact

-inputAct -outputAct

-output-input

-technique

-evidence

-claim

-pieceOfEvidence-refArtefact

-sourceRel

-targetRel

-version

-source

-target

-sourceRel

-targetRel

-justifiedEvidence

-argument

-responsible

-owner-responsible

-artefact



318 S. Nair et al. 

 

− To Validate: The validity of the artefact or piece of evidence has to be 
determined. 

− Valid: The artefact or piece of evidence is regarded as adequate for safety 
assurance and/or certification, but it still has to be approved. 

− Approved: The artefact or piece of evidence has been evaluated as valid, 
and not further evaluation is necessary unless some change takes place.  

− Revoked: the artefact or piece of evidence has been cancelled, withdrawn or 
revoked. 

• Confidence Impact Type: This enumeration corresponds to the types of 
confidence in the validity of one evidence element as a result of the existence of 
another evidence element. Its literals are: 
− Confirmation: The validity of an evidence element is confirmed or 

established because of the existence of another evidence element. 
− Support: The validity of an evidence element is supported or provided by 

the existence of another evidence element. 
− Challenge: The validity of an evidence element is challenged or disputed by 

the existence of another evidence element. 
− Refutation: The validity of an evidence element is proven to be wrong 

because of the existence of another evidence element.  

4.3  Model Validation  

We developed SafeTIM with close reference to the results obtained from two large 
previous studies: a systematic literature review (on 216 publication) on the state of the 
art [1] and a survey (with 52 participants) on the state of the practice [6] concerning 
safety evidence management. In addition, most of the authors of this paper have 
extensive experience in safety assurance and certification in industry. Although the 
creation of the model based on our own knowledge and experience could be regarded 
as an implicit validation, we have performed further explicit validation. 

The validation presented in this paper corresponds to the review of documentation 
(and artefacts) from real safety assurance and certification projects. These reviews 
were aimed to identify information in the documentation that map to the structure of 
SafeTIM. This way, we could explicitly validate that SafeTIM concepts and 
relationship have been used in real projects.  

For the validation, we reviewed the following documentations: 
− A synopsis of several safety studies and system specifications (e.g., safety 

requirements) of a sub-system targeted at complying with ISO26262 [31] in the 
automotive domain. 

− The system safety case from a railway project that was certified against 
CENELEC standards [32]. 

− The system safety case, the safety plan, two sub-system safety cases, two hazard 
logs, several safety studies (e.g., the preliminary hazard analysis), several system 
specifications (e.g., requirements and design specifications), several V&V 
(verification and validation) plan reports (e.g., test procedures), several  
V&V results reports (e.g., testing results), and several safety certificates  



 Safety Evidence Traceability 319 

 

(which correspond to the approval for executing some activity) from another 
railway project that was also certified against CENELEC standards. 

We provide the following information about the documentation reviewed in order 
to show the size of the projects. For the sub-system of the automotive domain, the 
safety studies had a number of hazards that were mitigated and traced back to around 
50 specific safety requirements. For the first railway project, the safety case consisted 
of almost 200 pages. For the second railway project, the safety plan consisted of over 
35 pages. One of the hazard logs contained over 500 entries and over 2,500 traces 
from safety requirements to other six different types of artefacts. A typical example of 
the type of the railway projects has around 10000 requirements. More specific details 
cannot be provided for confidentiality reasons. 

The main findings from reviewing these projects are as follows: 

− All the classes and relationships of SafeTIM could be identified in several 
artefacts. 

− In some cases, SafeTIM information was not explicit in the artefacts. For 
example, the safety cases did not explicitly contain information regarding 
arguments. However, arguments for justifying the use of an artefact as evidence 
could be extracted from the safety cases. 

− We did not find any examples of counter-evidence (i.e., confidence impact 
corresponding to Challenge or Refutation). The reason could be that the 
documentation we reviewed corresponded to the final artefacts used to show 
system safety for the projects. However, we believe that practitioners should 
consider counter-evidence for their claims for reasons such as avoiding 
confirmation bias [33]. We neither found artefacts or pieces of evidence that were 
revoked, probably for the same reason. 

− The companies had their own defined event types, but they can be mapped to 
those proposed in SafeTIM. 

It must also be noted that the terminology used in SafeTIM is not exactly the same 
as the terminology used in some domains or safety standards. For example, the 
concepts of work product in ISO26262 or data item in DO-178C correspond to 
Artefact in SafeTIM. 

In addition to the above documentation, we have also reviewed examples of safety 
evidence information in related work (e.g., [26]) and in OPENCOSS deliverables 
(e.g., [34]) to validate SafeTIM. We have also checked different safety standards 
(e.g., [27][31][32]). 

Fig. 2 shows an illustration of the use of SafeTIM based on the information of one 
of the railway projects. The figure corresponds to an instance of SafeTIM. The 
information presented in the figure is generic and corresponds to the sanitised version 
of real data for publication purposes due to intellectual property constraints. 
Nonetheless, we believe that the illustration is sufficient to show one example of how 
the elements and relationships of SafeTIM correspond to the information of a real 
safety assurance and certification project. 

In the example, the Artefact safety plan has a relationship to the Claim made about 
the description of the methods used to ensure that the safety goals are met. The 
artefact therefore is used as evidence for the particular claim with a confidence impact  



320 S. Nair et al. 

 

Fig. 2. Instance of SafeTIM concepts and relationships from a railway project 

type Support. The safety plan is produced as a result of the Activity specification of 
the safety plan. The safety plan is used as input in the Activity preliminary hazard 
analysis. Apart from the activity, specific Techniques such as failure mode and effect 
analysis are employed in the project to give create artefacts. The model also shows 
some relationships between several artefacts. For example, a specific Artefact namely 
hazard log entry is part of the hazard log. The structure of the hazard log is defined in 
the safety plan. Since the example illustrates the information reviewed from one 
railway project, all the artefacts are managed by the same Project. Every artefact has 
Provenance information such as who created it and when, who owns it, and what is 
the role of the person involved along with contact details. Some artefact had versions 
in this example, as shown in the figure.  

5 Discussion 

In this section, we compare SafeTIM with other similar models. We also discuss the 
various challenges of safety evidence traceability and its application.  

5.1 Comparison with Other Models 

An important difference between SafeTIM and other evidence models (e.g., [24]) is 
the explicit distinction between artefacts and their use as evidence. In our notion, a 
piece of evidence cannot exist on its own. An artefact only represents information 
used, modified, or produced in some activity. An artefact can be used as evidence 
when associated to a claim. Furthermore, an artefact can be used as evidence for 
several claims. As a result, emergent evidence properties arise that do not exist in an 
artefact per se. Such properties depend on a claim. For example, an artefact can 

ID = 67838
name = Safety Plan
status = approved
location = 
SIG_SafetyPlanFile

Safety Plan: Artefact

ID = 95323

SpecificationOfSafetyPlan
: Activity ID = 62353

timeStamp = 06.12.2012
changes = Section 2.3 
Updated
reference = RSP763

SafetyPlanVersion: Version

ID =  09127

The Method Used to 
Ensure That the Safety 
Target is Met have Been 

Described: Claim

ID = 321782
status = approved
impact = Support

EvidenceInstance: 
pieceOfEvidence

ID = 8363
type = creation
timeStamp = 05.01.2011

ArtefactOwnershipInfo: 
ArtefactProvenance

aim = Failure analysis
name = FMEA

FailureModeEffectAnalysis: 
Technique

ID = 17264

PriliminaryHazardAnalysis:
Activity

ID = 76443
name = Railway Signalling 
System

RailSignal: Project

name = DefinedIn

StructureDefinedIn:
ArtefactRelationship

aim = identify Hazards

HazardOperabilityStudy:
Technique

ID = 5123
name = Hazard log

HazardLog: 
Artefact

description = specs of conditions that can lead to a 
hazard

HazardSpecification: Activity

ID = 1216778

The on-board Equipment 
Ensures Safe Operation in 
Case of Transmission of a 
Corrupted Message: Claim

name = David
role = Safety Assurance 
Manager
email = david@smd.com

David: Particpant

ID = 69387
type = creation
timeStamp = 09.06.2012

ArtefactProvenanceInstance: 
ArtefactProvenance

ID = 63494
name = isPartOf

isPartOf:
ArtefactRelationship

ID = 52844

HazardLogEntry001:
Artefact

ID = PEO005
impact = Support
status = Valid

EvidenceInstance2:
peiceOfEvidence

name = Johny
role = RAMS engineer
email = johny@smd.com

Johny: Participant

-ownedArtefact -artefact

-artefact

-artefact

-artefact

-target
-source

-target

-artefact

-artefact

-source

-artefact

-project
-project

-outputAct

-outputAct

-evidence

-evidence

-claim

-claim

-inputAct

-technique

-version

-responsible-owner

-targetRel-sourceRel

-technique

-targetRel

-sourceRel

-responsible

-output-input

-output



 Safety Evidence Traceability 321 

 

support some claims and challenge others. The need of defining new concepts in a 
conceptual model in such cases has been acknowledged in the literature (e.g., [30]).  

When compared to the models reviewed in Section 2.2, SafeTIM can be regarded 
as a combination of some models. For example, SafeTIM includes process-related and 
artefact-related information as in [25], and evidence-specific information as in [26].  
On the other hand, some models (e.g., [4][25]) correspond to instances of SafeTIM. 
This is logical given the fact that these models are specific to some projects or safety 
standards and SafeTIM provides a more abstract picture. In this sense, we have 
benefited from the past work while trying to mitigate and address possible gaps and 
limitations. One of such limitation, and as explained above, is the need for 
differentiating artefacts and pieces of evidence in the model. 

One aspect that must be noted in SafeTIM is that it only includes direct 
relationships to and from safety evidence (i.e., to and from the Artefact and Piece of 
Evidence classes). More relationships can be maintained to and from the other classes, 
and thus indirect relationships with evidence can exist. For example, an activity in a 
project can correspond to the materialisation of a reference activity of a safety 
standard. Likewise, relationships can be established between Activity and Technique 
in order to specify the techniques used to perform some activity. In addition, more 
classes can be included for modelling the possible attributes of an Artefact (e.g., the 
result of the execution of a test case, which could be passed or failed) to extend 
SafeTIM.  

Although SafeTIM tries to provide a global picture, we understand and 
acknowledge that it cannot be regarded as a fully finished model. Firstly, and as we 
have mentioned, it only deals with the direct relationships to and from evidence. 
Secondly, the model will be integrated in a common certification framework (Section 
2.1). This framework will consist of more concepts and relationships. Thirdly, the 
model has only been validated in a static way [35]. We plan to conduct case studies to 
analyse how practitioners can benefit from using SafeTIM. Finally, tool support must 
be developed to facilitate the adoption of SafeTIM in the industry. 

Last but not least, and as acknowledged by several authors (e.g., [4][36][37]), 
defining a traceability information model at the earliest is essential so that traceability 
activities succeed in industry. Therefore, we believe that SafeTIM can definitely 
enable and improve safety evidence traceability practice. 

5.2 Challenges for Safety Evidence Traceability 

We regard the following list as the major challenges for safety evidence traceability in 
practice nowadays. Some of these challenges are specific to safety evidence, while 
others are generic challenges to traceability that has significant effect on safety-
critical systems.  

Vast Amount of Artefacts and Evidence to Trace. Management of vast amounts of 
data has always been a challenge for information systems [30], but it becomes even 
more demanding in the safety-critical domain due to strict regulatory compliance and 
the vast amount of evidence to create, maintain and trace. For example, we identified 
a set of 49 basic, generic types of safety evidence from the literature [1], which can 
correspond to over 100 types for some standards (e.g., [31]). In addition to the 



322 S. Nair et al. 

 

challenges inherent to traceability, practitioners can have problems to ensure the 
consistency of evidence traces. Guidance and tool support are necessary.  

Artefacts and Evidence Can be Located in Many Different Locations. Building a 
critical-system in parts simultaneously in different locations around the world can 
cause problems in traceability since artefacts used as evidence are in locations 
different to where the final certification documentation (e.g., a safety case) is 
developed. This causes problems, such as the coordination of work among distributed 
development teams and difficulties to ensure that the results are consistent and will 
not pose any certification risk. 

Artefacts and Evidence are Created with and Stored in Different Tools. System 
suppliers usually have a tool-chain for development, and seamless integration of these 
tools for safety evidence collection can be difficult. Evidence combination can also be 
hindered because of the heterogeneity in the formats of the artefacts [24]. 

Confidence in the Traces Maintained. One of the main challenges that both system 
suppliers and certifiers face is in gaining confidence in the traces maintained. 
Providing traces to and from safety evidence are far from enough, as practitioners 
must aim to be sure that the traces presented are consistent and correct [8].  

High Effort and Cost. Although better traceability practices can reduce development 
effort and costs [9], reality is that it is still a time-consuming activity. As a result, 
practitioners can end up only dealing with a limited set of traces, usually those 
mandatory for compliance. However, this might pose certification risks later, or make 
change management very expensive. Again, adequate guidance and tool support are 
very important to face this challenge. 

Need for Purpose, Value-Based Traceability. In relation to the previous challenge, 
it is essential that the need for and purpose of safety evidence traceability is clear to 
those involved in the activity [8]. Otherwise, traceability might not be managed as 
well as it should be, or its importance might be underestimated. Practitioners must 
define and be aware of the value of tracing beyond the scope of a single project. For 
example, adequate safety evidence traceability can facilitate system reuse and change 
impact analysis in the future, and thus reduce costs. 

Some of the above challenges such as the vast amount of artefacts and evidence to 
trace, artefacts and evidence located in many different locations, and artefacts are 
created with and stored in different tools can be tackled by employing a good 
traceability strategy such as the one proposed in this paper.  

6 Conclusion 

This paper has presented an analysis of safety evidence traceability based on our 
knowledge of the state of the art and practice on safety evidence management. The 
paper presents what we consider as the major motivations that drive the need for 
evidence traceability. The paper also identifies the traces that need to be created and 
maintained between safety evidence information items and between evidence and 
other assurance assets such as claims. As a result of this analysis, we have proposed 
SafeTIM, a traceability information model for safety evidence.  



 Safety Evidence Traceability 323 

 

SafeTIM provides the set of fundamental concepts and relationships necessary to 
enact evidence traceability in real industrial settings. In addition to making a clear 
distinction between the artefacts managed during system lifecycle and their use as 
evidence for a claim, SafeTIM tries to provide a global picture of evidence 
traceability. We have validated the model with documentation from three different 
real safety assurance and certification projects. The validation showed that all the 
classes and relationships of SafeTIM were present in the documentation. In some 
cases, the presence of the classes and relationships was implicit. 

The paper has also compared SafeTIM with other related models and presented 
what we regard as the major challenges for evidence traceability. In general, we 
consider that new guidance and tool support can significantly facilitate evidence 
traceability in industry. 

As future work, we plan to extend SafeTIM within the context of the common 
certification framework to be developed in OPENCOSS, and further validate and 
evaluate the model in industrial case studies. We also aim to find solutions to some of 
the challenges presented in the paper.  
 
Acknowledgments. The research leading to this paper has received funding from the 
FP7 programme under the grant agreement n° 289011 (OPENCOSS) and from the 
Research Council of Norway under the project Certus-SFI. We also thank the 
OPENCOSS partners and the colleagues who have provided input and feedback. 

References 

1. Nair, S., et al.: Classification, Structuring, and Assessment of Evidence For Safety: A 
Systematic Literature Review. In: ICST, pp. 94–103 (2013) 

2. IEEE: IEEE Standard Glossary of Software Engineering Terminology, Std. 610.12-1990 
3. Alexander, R., Kelly, T., Gorry, B.: Safety Lifecycle Activities for Autonomous Systems 

Development. In: SEAS/TR/2009/2 (2009) 
4. Cleland-Huang, J., Heimdahl, M., Huffman Hayes, J., Lutz, R., Maeder, P.: Trace queries 

for safety requirements in high assurance systems. In: Regnell, B., Damian, D. (eds.) 
REFSQ 2011. LNCS, vol. 7195, pp. 179–193. Springer, Heidelberg (2012) 

5. Habli, I., Kelly, T.: A model-driven approach to assuring process reliability. In: ISSRE 
2008, pp. 7–16 (2008) 

6. Nair, S., et al.: The State of the Practice on Evidence Management for Compliance with 
Safety Standards. Simula Research Lab. Technical Report (2013) 

7. de la Vara, J.L., Panesar-Walawege, R.K.: SafetyMet: A metamodel for safety standards. 
In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. 
LNCS, vol. 8107, pp. 69–86. Springer, Heidelberg (2013) 

8. Cleland-Huang, J., et al.: Software and systems traceability. Springer-Verlag New York 
Incorporated (2012) 

9. Nair, S., De la Vara, J.L., Sen, S.: A Review of Traceability Research at the Requirements 
Engineering Conference. In: RE (2013) 

10. Torkar, R., et al.: Requirements traceability: a systematic literature review and industry 
case study. IJSEKE 22(3), 1–49 (2012) 

11. Regan, G., et al.: Traceability-Why do it? In: SPICE 2012, pp. 161–172 (2012) 
12. Regan, G., et al.: The Barriers to Traceability and their Potential Solutions: Towards a 

Reference Framework. In: SEAA 2012, pp. 319–322 (2012) 



324 S. Nair et al. 

 

13. Gotel, O., Cleland-Huang, J., Hayes, H., Zisman, A., Egyed, A., Grunbacher, P., Antoniol, 
G.: The quest for Ubiquity: A roadmap for software and systems traceability research. In: 
2012 20th IEEE International Requirements Engineering Conference (RE), pp. 71–80. 
IEEE (2012) 

14. Spanoudakis, G., Zisman, A.: Software traceability: a roadmap. Handbook of Software 
Engineering and Knowledge Engineering 3, 395–428 (2005) 

15. Pohl, K.: Requirements engineering: fundamentals, principles, and techniques. Springer 
Publishing Company, Incorporated (2010) 

16. Lee, J.S., et al.: Means-ends and whole-part traceability analysis of safety requirements. 
Journal of Systems and Software 83, 1612–1621 (2010) 

17. Mason, P.A.J., Saeed, A., Riddle, S.: On the role of traceability for standards compliance: 
Tracking requirements to code. In: Anderson, S., Felici, M., Littlewood, B. (eds.) 
SAFECOMP 2003. LNCS, vol. 2788, pp. 303–316. Springer, Heidelberg (2003) 

18. Ridderhof, W., Gross, H.-G., Doerr, H.: Establishing evidence for safety cases in 
automotive systems–A case study. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. 
LNCS, vol. 4680, pp. 1–13. Springer, Heidelberg (2007) 

19. Nejati, S., et al.: A SysML-based approach to traceability management and design slicing 
in support of safety certification: Framework, tool support, and case studies. Information 
and Software Technology 54, 569–590 (2012) 

20. Katta, V., Stalhane, T.: A conceptual model of traceability for safety systems. In: CSDM-
Poster Presentation (2010) 

21. Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA DO-
178B) information: conceptual model and UML profile. Software & Systems Modeling 10, 
337–367 (2011) 

22. Born, M., et al.: Application of ISO DIS 26262 in practice. In: CARS 2010, pp. 3–6 (2010) 
23. Graydon, P., Habli, I., Hawkins, R., Kelly, T., Knight, J.: Arguing Conformance. IEEE 

Software 29, 50–57 (2012) 
24. OMG: Structured Assurance Case Metamodel (SACM) (2013) 
25. Panesar-Walawege, R.K., et al.: Supporting the Verification of Compliance to Safety 

Standards via Model-Driven Engineering: Approach, Tool-Support and Empirical 
Validation. Information and Software Technology 55(5), 836–864 (2012) 

26. Sun, L., Kelly, T.: Elaborating the Concept of Evidence in Safety Cases. In: SCSC 2013 
(2013) 

27. RTCA: DO-178C - Software Considerations in Airborne Systems and Equipment (2012) 
28. De la Vara, J.L., et al.: Towards a model-based evolutionary chain of evidence for 

compliance with safety standards. In: SAFECOMP 2012 Workshops, pp. 64–78 (2012) 
29. Oxford Dictionaries (online), http://oxforddictionaries.com 
30. Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007) 
31. ISO: International Standard Road vehicles - Functional safety - ISO/DIS 26262 (2011) 
32. CENELEC: Railway applications - Communications, signalling and processing systems - 

Software for railway control and protection systems - EN 50128 (2011) 
33. Leveson, N.: The Use of Safety Cases in Certification and Regulation. Journal of System 

Safety 47 (2011) 
34. OPENCOSS: D1.2 – Use case description and business impact (2012) 
35. Gorschek, T., et al.: A model for technology transfer in practice. IEEE Software 23, 88–95 

(2006) 
36. Gotel, O., et al.: The quest for Ubiquity: A roadmap for software and systems traceability 

research. In: RE 2012, pp. 71–80 (2012) 
37. Mäder, P., Jones, P., Zhang, Y., Cleland-Huang, J.: Strategic Traceability for Safety-

Critical Projects. IEEE Software 30(3), 58–66 (2013) 



Author Index

Abelein, Ulrike 95
Alebrahim, Azadeh 200
Ali, Raian 72, 112
Almaliki, Malik 72
Alrobai, Amen 112

Bahsoon, Rami 72, 152
Baudry, Benoit 135
Belmonte, Fabien 309
Bertolino, Antonia 239
Brown, David 168

Chen, Yunchuan 55
Condori-Fernández, Nelly 216
Cooper, Kendra M.L. 17

Daneva, Maya 216
De Angelis, Guglielmo 239
de-la-Beaujardiere, Laurent 309
de la Vara, Jose Luis 309
dell’Orletta, Felice 23
Doerr, Joerg 268

España, Sergio 216

Faniyi, Funmilade 72
Faßbender, Stephan 200
Ferrari, Alessio 23
Franch, Xavier 301

Geist, Verena 184
Gnesi, Stefania 23
González, Arturo 216
Grünbacher, Paul 88

Hayes, Jane Huffman 168
Heisel, Maritta 200
Herrmann, Andrea 254
Hoffmann, Anne 254

Igel, Burkhard 119
Illibauer, Christa 184

Jin, Zhi 55

Kamsties, Erik 119
Kasurinen, Jussi 1
Knauss, Eric 39
Kneer, Fabian 119
Kolb, Bernd 119
Kossak, Felix 184

Landes, Dieter 254
Li, Wenbin 168
Li, Zhi 55
Lockerbie, James 239
Lonetti, Francesca 239
Longstreet, C. Shaun 17

Maglyas, Andrey 1
Maiden, Neil 239
Mashkoor, Atif 184
Meis, Rene 200
Melzi, Alberto 309
Morales-Ramirez, Itzel 232

Nair, Sunil 309
Nasr, Eman S. 17

Ojameruaye, Bendra 152
Ott, Daniel 39

Paech, Barbara 95
Palomares, Cristina 301
Perini, Anna 232
Phalp, Keith 72, 112
Pillai, Anitha S. 285

Quer, Carme 301

Rabiser, Rick 88
Riegel, Norman 268

Sannier, Nicolas 135
Sethia, Neetu Kumari 285
Sikkel, Klaas 216
Smolander, Kari 1
Spagnolo, Giorgio Oronzo 23

Tagliaferri, Giorgio 309
Truszczynski, Miroslaw 168



326 Author Index

Vierhauser, Michael 88
Voelter, Markus 119

Weißbach, Rüdiger 254

Yang, Zhuoqun 55

Zachos, Konstantinos 239


	Preface
	Conference Organization
	Do Not Fear the Plumber
	Table of Contents
	Is Requirements Engineering Useless in Game Development?
	1 Introduction
	2 Related Research
	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 Categories
	4.2 Findings
	4.3 Process Models

	5 Discussion
	6 Conclusion
	References

	Towards Model-Driven Requirements Engineering for Serious Educational Games: Informal, Semi-formal, and Formal Models
	1 Introduction
	2 Overview
	3 Transforming the Informal to Semi-formal Model
	4 Transforming Semi-formal to XML Formal Model
	5 Conclusions and Future Work
	References

	Measuring and Improving the Completenessof Natural Language Requirements
	1 Introduction
	2 Defining and Measuring Completeness
	3 Motivation
	4 Metrics for Backward Functional Completeness
	4.1 Identification of Relevant Terms
	4.2 Identification of Relevant Relations

	5 A Word-Game to Support Requirements Definition
	6 Pilot Test
	6.1 Quantitative Evaluation
	6.2 Qualitative Evaluation

	7 Conclusions
	References

	(Semi-) automatic Categorizationof Natural Language Requirements
	1 Introduction
	2 Related Works
	3 Socio-technical Requirements Classification
	4 Text Classification Algorithms
	5 Evaluation
	5.1 Research Method
	5.2 Participants and Data Collection
	5.3 Descriptive Statistics

	6 Discussion
	6.1 Performance of Fully Automatic Classification (H1 and H2)
	6.2 Cold Start and Ability to Adjust to Domain (H3 and H4)
	6.3 Performance of Semi-automatic Approach (H5 and H6)
	6.4 Threats to Validity

	7 Conclusion and Outlook
	References

	A Systematic Literature Review of Requirements Modeling and Analysis for Self-adaptive Systems
	1 Introduction
	2 Research Method
	2.1 Research Questions
	2.2 Search Process
	2.3 Quality Assessment Checklist
	2.4 Data Extraction

	3 Results and Discussion
	4 Threats to Validity
	5 Related Roadmaps and Surveys
	6 Conclusion and Future Work
	References

	Requirements-Driven Social Adaptation: Expert Survey
	1 Introduction
	2 Social Adaptation
	3 Expert Survey Design
	3.1 Experts Selection
	3.2 Design, Test and Distribution of the Survey

	4 FirstPhaseResults
	4.1 Social Adaptation Benefits and Value
	4.2 Challenges to Supporting Benefits to Developers and Users
	4.3 Implementation Choices (Autonomy and Feedback Acquisition)
	4.4 Research Challenges to Implementing Social Adaptation

	5 Second Phase Results
	6 Threats to Validity
	7 Conclusion
	References

	A Requirements Monitoring Infrastructure for Very-Large-Scale Software Systems
	1 Introduction
	2 Industrial Motivation and Challenges
	3 Infrastructure Capabilities for Requirements Monitoring in VLSS
	4 Summary and Outlook
	References

	State of Practice of User-Developer Communicationin Large-Scale IT ProjectsResults of an Expert Interview Series
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results and Discussion
	4.1 Existence of UDC in Large-Scale IT Projects (RQ 1)
	4.2 Organizational Obstacles for UDC (RQ 2)
	4.3 Factors for and Consequences Caused by Communication Gaps (RQ 3)
	4.4 Ideas to Overcome Obstacles for the Implementation of UDC and Factors for Communication Gaps (RQ 4)

	5 Threats to Validity
	6 Conclusion
	References
	7 Appendix

	Digital Addiction:A Requirements Engineering Perspective
	1 Introduction
	2 Empirical Investigation of DA
	3 Digital Addiction: A Requirements Perspective
	4 Challenges and Future Work
	5 Conclusions
	References

	Feedback-Aware Requirements Documentsfor Smart Devices
	1 Introduction
	2 Background
	3 Development Time Representation Using mbeddr
	3.1 mbeddr Overview
	3.2 Requirements in mbeddr
	3.3 Extension of mbeddr to Deal with Runtime Requirements

	4 Runtime Representation of Requirements
	4.1 Requirements Model
	4.2 Monitor
	4.3 Impact Analyzer
	4.4 System
	4.5 Requirements Feedback
	4.6 Scenario

	5 Related Work
	6 Discussion
	References

	INCREMENT: A Mixed MDE-IR Approach for Regulatory Requirements Modeling and Analysis
	1 Introduction
	2 Analyzing Nuclear Regulatory Requirements in the Large: An Example
	3 Formalizing the Nuclear Requlatory Requirements Domain
	3.1 Toward a Domain Specific Modeling Approach in the Industry
	3.2 The Connexion Metamodel

	4 Breathing Life into a Regulatory Requirements Model
	5 Hybridizing MDE and IR in the Tool
	6 Threat to Validity
	7 Related Work
	8 Conclusion
	References

	Systematic Elaboration of Compliance Requirements Using Compliance Debt and Portfolio Theory
	1 Introduction
	2 Motivation and Related Work
	2.1 Managing Compliance Using Goal-Driven Requirement Engineering
	2.2 Portfolio Management and Requirements
	2.3 Technical Debt, Compliance Debt, Obstacles and Portfolio

	3 Analysing Compliance Obstacles Using Portfolio Reasoning and Compliance Debt.
	3.1 Reasoning of Compliance Debt in Handling Obstacles for Compliance
	3.2 Portfolio-Based Approach for Managing Compliance Debt

	4 Illustrative Exam mple
	5 Discussion and Limitations
	6 Conclusion
	References

	Answer-Set Programming in Requirements Engineering
	1 Introduction
	2 Benchmark Examples of System Requirements
	3 TeALOverview
	4 FromTeALtoclingcon Language
	5 Tools Developed for Processing TeAL Theories
	6 Study Results
	7 Discussion, Conclusions, and Future Work
	References

	Improving the Understandabilityof Formal Specifications: An Experience Report
	1 Introduction
	2 Related Work
	3 The ASM Method
	4 How to Render Specifications Understandable
	4.1 Identifiers
	4.2 Reducing Brackets
	4.3 Keywords and Structure of Expressions
	4.4 Set Expressions

	5 Demonstration
	6 Discussion and Evaluation
	7 Conclusion
	References

	Problem-Based Requirements Interaction Analysis
	1 Introduction
	2 Background
	3 Running Example
	4 Interaction Detection Method
	4.1 Phase One: Structure-Based Pruning
	4.2 Phase Two: Check for Parallel Requirements
	4.3 Phase Three: Precondition-Based Pruning

	5 Validation
	6 Related Work
	7 Conclusions and Future work
	References

	Analyzing the Effect of the Collaborative Interactions on Performance of Requirements Validation
	1 Introduction
	2 Reviews-Based Requirements Validation
	3 Experiment Planning
	3.1 Variables and Hypotheses
	3.2 Experimental Context
	3.3 Experimental Instruments
	3.4 Experiment Design
	3.5 Experimental Procedure

	4 Analysis and Interpretation of Results
	4.1 Analyzing the Effect of Type of Interaction on Efficiency
	4.2 Analyzing the Effect of Type of Interaction on Validation Effectiveness
	4.3 Analyzing the Effect of Collaboration Satisfaction on Efficiency

	5 Threats and Lines for Further Empirical Research
	6 Conclusions and Future Work
	References

	Argumentation-Based Discussionfor User Forum: A Research Preview
	1 Introduction
	2 Argumentation-Based Discussion Forum
	3 Related Work
	4 Concluding Remarks and Research Plan
	References

	A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies: An Experience Report
	1 Introduction
	2 The CHOReOS Approach
	3 From Natural-Language Requirements to First-Cut Choreography Specifications
	3.1 Expressing Structured Natural Language Requirements
	3.2 Clustering Requirements
	3.3 User Task Models for Choreography Specification

	4 Generating a First-Cut Choreography as a BPMN Choreography Diagram with Associated Requirements
	5 Monitorable Service Qualities from Requirements
	5.1 The Q4BPMN Notation
	5.2 Mapping Requirements to Q4BPMN
	5.3 Software Monitors from Q4BPMN Specifications

	Lessons Learned
	Conclusion and Future Work
	References

	Experience-Oriented Approaches for Teaching and Training Requirements Engineering: An Experience Report
	1 Motivation: Why Teaching and Training Requirements Engineering?
	2 Related Work
	2.1 Four Forms of Experience-Oriented Learning Methods
	2.2 The Dreyfus Model

	3 Case Descriptions
	3.1 Characteristics
	3.2 Joint Project with ICT and Business Students
	3.3 Teaching Requirements Engineering to Business Students
	3.4 Requirements Engineering for Engineers
	3.5 Using Improvisation Theater to Create Interaction

	4 Discussion
	5 Conclusion and Future Work
	References

	An Analysis of Priority-Based Decision Heuristics for Optimizing Elicitation Efficiency
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Controlled Experiment
	4.1 Goal, Questions, Hypotheses and Metrics
	4.2 Experimental Design and Setup
	4.3 Experiment Analysis and Results
	4.4 Threats to Validity
	4.5 Interpretation and Possible Implications for Practice

	5 Conclusion and Future Work
	References

	The Effects of Requirements Elicitation Issues on Software Project Performance: An Empirical Analysis
	1 Introduction
	2 Background
	2.1 Theoritical Model
	2.2 Hypotheses

	3 Research Method
	3.1 Sampling
	3.2 Constructs
	3.3 Confirmatory Factor Analysis
	3.4 “Causal” Model
	3.5 Discussion of Results

	4 Threats to Validity
	5 Implications for Research and Practice
	6 Limitations
	7 Conclusion
	References

	Requirements Reuse and Patterns: A Survey
	1 Introduction
	2 Research Method
	3 Results and Discussion
	4 Conclusions and Further Work
	References

	Safety Evidence Traceability: Problem Analysis and Model
	1 Introduction
	2 Background
	2.1 Common Certification Framework
	2.2 Related Work

	3 Motivation for Safety Evidence Traceability
	4 Safety Evidence Traces
	4.1 Traces to Create and Maintain
	4.2 SafeTIM: A Traceability Information Model for Safety Evidence
	4.3 Model Validation

	5 Discussion
	5.1 Comparison with Other Models
	5.2 Challenges for Safety Evidence Traceability

	6 Conclusion
	References

	Author Index



